Asphaltene dispersants as demulsification aids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manek, M.B.
1995-11-01
Destabilization of petroleum asphaltenes may cause a multitude of problems in crude oil recovery and production. One major problem is their agglomeration at the water-oil interface of crude oil emulsions. Once agglomeration occurs, destabilized asphaltenes can form a thick pad in the dehydration equipment, which significantly reduces the demulsification rate. Certain polymeric dispersants increase asphaltene solubilization in hydrocarbon media, and when used in conjunction with emulsion breakers, facilitate the demulsification process. Two case studies are presented that demonstrate how asphaltene dispersants can efficiently inhibit pad formation and help reduce demulsifier dosage. Criteria for dispersant application and selection are discussed, whichmore » include the application of a novel laboratory technique to assess asphaltene stabilization in the crude oil. The technique monitors asphaltene agglomeration while undergoing titration with an incompatible solvent (precipitant). The method was used to evaluate stabilization of asphaltenes in the crude oil and to screen asphaltene dispersants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, S.; Perkson, A.; Trass, O.
1996-12-31
Oil agglomeration is an excellent technique for the beneficiation of fine coal. For separation of the spherical agglomerates by screening, a high level of oil must be used, however. When the subsequent separation is done by flotation, this disadvantage is eliminated. Better pyrite removal is also possible. In this paper, such a fine coal beneficiation process, also called hydrophobic flocculation-flotation (HFF), is described. It features low non-polar oil consumption, intensive mechanical energy input, and smaller agglomerates or looser flocs. This process can be simplified by grinding the coal in water with small amounts of oil added. The excess grinding energymore » is then used for agglomerating the coal. The Prince coal from Nova Scotia contained 13.3% ash and 3.3% total sulfur, 1.4% pyritic. After four stages of flotation, ash and pyrite removal were 93% and 66% respectively, with 87% combustibles recovery. The parameters affecting the HFF process, such as particle size, dosage of non-polar oil, pH value of the slurry and duration of agitation, were investigated. Simultaneous grinding and agglomeration (SGA) utilizing the Szego Mill was also explored at the very low oil levels used. The intensive agitation/preconditioning step prior to flotation was eliminated. When the other parameters established from the sequential process were used with the SGA process, virtually identical beneficiation results were obtained, but with slightly lower combustibles recovery. While further testing is required to properly optimize the SGA process conditions, significant equipment simplification and energy savings are possible.« less
Low-rank coal oil agglomeration product and process
Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.
1992-01-01
A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.
Low-rank coal oil agglomeration product and process
Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.
1992-11-10
A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.
Low-rank coal oil agglomeration
Knudson, Curtis L.; Timpe, Ronald C.
1991-01-01
A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.
Low-rank coal oil agglomeration
Knudson, C.L.; Timpe, R.C.
1991-07-16
A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.
NASA Astrophysics Data System (ADS)
Indarti, E.; Marwan; Wanrosli, W. D.
2015-06-01
Nanocrystallinecellulose (NCC) from biomass is a promising material with huge potentials in various applications. A big challenge in its utilization is the agglomeration of the NCC's during processing due to hydrogen bonding among the cellulose chains when in close proximity to each other. Obtaining NCC's in a non-agglomerated and non-aqueous condition is challenging. In the present work NCC's was isolated from oil palm empty fruit bunch (OPEFB) using TEMPO-oxidation reaction method. To obtain non-agglomerated and non-aqueous products, the NCC's underwent post-treatment using oven drying (OD) and solvent exchanged (SE) techniques. The thermal stability of all samples was determined from TGA and DTG profiles whilst FTIR was used to analyzethe chemical modifications that occurred under these conditions. NCC-SE has better thermal stability than the NCC-OD and its on-set degradation temperature and residue are also higher. FTIR analysis shows that NCC-SE has a slightly different chemical composition whereby the absorption band at 1300 cm-1 (due to C-O symmetric stretching) is absent as compared to NCC-OD indicating that in NCC-SE the carboxylate group is in acid form which contribute to its thermal stability
Dalyander, P. Soupy; Long, Joseph W.; Plant, Nathaniel G.; Thompson, David M.
2013-01-01
During the Deepwater Horizon oil spill, oil in the surf zone mixed with sediment in the surf zone to form heavier-than-water sediment oil agglomerates of various size, ranging from small (cm-scale) pieces (surface residual balls, SRBs) to large mats (100-m scale, surface residue mats, SR mats). Once SR mats formed in the nearshore or in the intertidal zone, they may have become buried by sand moving onshore or alongshore. To assist in locating possible sites of buried oil, wave scenarios previously developed by the U.S. Geological Survey (USGS) were used to determine the depths at which surface oil had the potential to mix with suspended sediment. For sediment to mix with floating oil and form an agglomerate of sufficient density to sink to the seafloor, either the water must be very shallow (e.g., within the swash zone) or sediment must be suspended to the water surface in sufficient concentrations to create a denser-than-sea water agglomerate. The focus of this study is to analyze suspended sediment mixing with surface oil in depths beyond the swash zone, in order to define the seaward limit of mat formation. A theoretical investigation of sediment dynamics in the nearshore zone revealed that non-breaking waves do not suspend enough sediment to the surface to form sinking sand/oil agglomerates. For this study, it was assumed that the cross-shore distribution of potential agglomerate formation is associated with the primary breaker line, and the presence of plunging breakers, over the time frame of oiling. The potential locations of submerged oil mats (SOMs) are sites where (1) possible agglomerate formation occurred, where (2) sediment accreted post-oiling and buried the SOM, and where (3) the bathymetry has not subsequently eroded to re-expose any mat that may have formed at that site. To facilitate identification of these locations, the range of water level variation over the time frame of oiling was also prescribed, which combined with the wave-breaking depth analysis and pre-oiling bathymetry would identify the potential geographic locations of SOMs.
Process and apparatus for coal hydrogenation
Ruether, John A.
1988-01-01
In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.
NASA Astrophysics Data System (ADS)
Yasar, Özüm; Uslu, Tuncay
2017-12-01
Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.
Process and apparatus for coal hydrogenation
Ruether, John A.; Simpson, Theodore B.
1991-01-01
In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture is drained of excess water and dried at atmospheric pressure leaving catalyst deposited on the agglomerates. The agglomerates then are fed to an extrusion device where they are formed into a continuous ribbon of extrudate and fed into a hydrogenation reactor at elevated pressure and temperature. The catalytic hydrogenation converts the extrudate primarily to liquid hydrocarbons in the reactor. The liquid drained in recovering the agglomerates is recycled.
NASA Astrophysics Data System (ADS)
Gustitus, Sarah A.; Clement, T. Prabhakar
2017-12-01
Crude oil that is spilled in marine environments often interacts with suspended sediments to form residues that can impact the recovery of the affected nearshore ecosystems. When spilled oil and sediment interact, they can form either small microscopic aggregates, commonly referred to as oil-particle aggregates, or large macroscopic agglomerates, referred to as sediment-oil agglomerates or sediment-oil mats. Although these different sized oil-sediment residues have similar compositions, they are formed under different conditions and have different fates in nearshore environments; the goal of this review is to synthesize our current understanding of these two types of residues. We believe that researchers who focus solely on studying either microscopic aggregates or macroscopic agglomerates could benefit from understanding the research findings available in the other field. In this study, we compare and contrast various processes that control the formation, fate, and impacts of these two types of residues in nearshore environments and point out some of the knowledge gaps in this field. Additionally, these residues have been referred to by many names in the past, leading to confusion and misconceptions at times. In this effort, we recommend a uniform nomenclature to distinguish them based on their physical size. Our overall aim is to bridge the gap between microscopic and macroscopic oil-sediment residue literature to foster a robust exchange of ideas, which we believe can lead to the development of efficient strategies for managing oil spills that affect nearshore environments.
Field observations of artificial sand and oil agglomerates
Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.
2015-01-01
Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.
The Underlying Physics in Wetted Particle Collisions
NASA Astrophysics Data System (ADS)
Donahue, Carly; Hrenya, Christine; Davis, Robert
2008-11-01
Wetted granular particles are relevant in many industries including the pharmaceutical and chemical industries and has applications to granulation, filtration, coagulation, spray coating, drying and pneumatic transport. In our current focus, we investigate the dynamics of a three-body normal wetted particle collision. In order to conduct collisions we use an apparatus called a ``Stokes Cradle,'' similar to the Newton's Cradle (desktop toy) except that the target particles are covered with oil. Here, we are able to vary the oil thickness, oil viscosity, and material properties. With a three particle collision there are four possible outcomes: fully agglomerated (FA); Newton's Cradle (NC), the striker and the first target ball are agglomerated and the last target ball is separated; Reverse Newton's Cradle (RNC), the striker is separated and the two targets are agglomerated; and fully separated (FS). Varying the properties of the collisions, we have observed all four outcomes. We use elastohydrodynamics as a theoretical basis for modeling the system. We also have considered the glass transition of the oil as the pressure increases upon impact and the cavitation of the oil as the pressure drops below the vapor pressure upon rebound. A toy model has been developed where the collision is modeled as a series of two-body collisions. A qualitative agreement between the toy model and experiments gives insight into the underlying physics.
NASA Astrophysics Data System (ADS)
Dalyander, S.; Long, J.; Plant, N. G.; Penko, A.; Calantoni, J.; Thompson, D.; Mclaughlin, M. K.
2014-12-01
When weathered oil is transported ashore, such as during the Deepwater Horizon oil spill, it can mix with suspended sediment in the surf zone to create heavier-than-water sand and oil agglomerates in the form of mats several centimeters thick and tens of meters long. Broken off pieces of these mats and smaller agglomerates formed in situ (called Surface Residual Balls, SRBs) can cause beach re-oiling months to years after the initial spill. The physical dynamics of these SRBs in the nearshore, where they are larger (cm-scale) and less dense than natural sediment, are poorly understood. In the current study, SRB mobility and seafloor interaction is investigated through a combination of laboratory and field experiments with pseudo-SRBs developed to be physically stable proxies for genuine agglomerates. Formulations for mobility prediction based on comparing estimated shear stress to the critical Shields and modified Shields parameters developed for mixed sediment beds are assessed against observations. Processes such as burial, exhumation, and interaction with bedforms (e.g., migrating ripples) are also explored. The observations suggest that incipient motion estimates based on a modified Shields parameter have some skill in predicting SRB movement, but that other forcing mechanisms such as pressure gradients may be important under some conditions. Additionally, burial and exhumation due to the relatively high mobility of sand grains are confirmed as key processes controlling SRB dynamics in the surf zone. This work has broad implications for understanding surf zone sediment transport at the short timescale associated with mobilizing sand grains and SRBs as well as at the longer timescales associated with net transport patterns, sediment budgets, and bed elevation changes.
Removing micron size particles from coal liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, B.R.; Westmoreland, P.R.
This paper reports results of an investigation which was undertaken in order to improve purification of liquid fuels obtained by coal liquefaction processes. It is shown that settling and filtration rates increased substantially after agglomeration. And, ground coal was found to be an economical substitute for diatomaceous earth in filtration. The effects of certain solvents on the agglomerating tendencies of solids in the unfiltered oil (UFO) from the SRC and COED processes were determined by oil immersion microscopy. The significant results obtained by these experiments are listed. Economic advantages are presented. 13 references.
Kim, Kwang Ho; Jeong, Han Seob; Kim, Jae-Young; Han, Gyu Seong; Choi, In-Gyu; Choi, Joon Weon
2012-10-01
This study was performed to investigate the utility of bio-oil, produced via a fast pyrolysis process, as an antifungal agent against wood-rot fungi. Bio-oil solutions (25-100 wt.%) were prepared by diluting the bio-oil with EtOH. Wood block samples (yellow poplar and pitch pine) were treated with diluted bio-oil solutions and then subjected to a leaching process under hot water (70°C) for 72 h. After the wood block samples were thoroughly dried, they were subjected to a soil block test using Tyromyces palustris and Trametes versicolor. The antifungal effect of the 75% and 100% bio-oil solutions was the highest for both wood blocks. Scanning electron microscopy analysis indicated that some chemical components in the bio-oil solution could agglomerate together to form clusters in the inner part of the wood during the drying process, which could act as a wood preservative against fungal growth. According to GC/MS analysis, the components of the agglomerate were mainly phenolic compounds derived from lignin polymers. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, G.A.; Winschel, R.A.; Burke, F.P.
In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatmentmore » of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.« less
Nearshore dynamics of artificial sand and oil agglomerates
Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.
2015-01-01
Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.
Assessing mobility and redistribution patterns of sand and oil agglomerates in the surf zone
Dalyander, P. Soupy; Long, Joesph W.; Plant, Nathaniel G.; Thompson, David M.
2014-01-01
Heavier-than-water sand and oil agglomerates that formed in the surf zone following the Deepwater Horizon oil spill continued to cause beach re-oiling 3 years after initial stranding. To understand this phenomena and inform operational response now and for future spills, a numerical method to assess the mobility and alongshore movement of these “surface residual balls” (SRBs) was developed and applied to the Alabama and western Florida coasts. Alongshore flow and SRB mobility and potential flux were used to identify likely patterns of transport and deposition. Results indicate that under typical calm conditions, cm-size SRBs are unlikely to move alongshore, whereas mobility and transport is likely during storms. The greater mobility of sand compared to SRBs makes burial and exhumation of SRBs likely, and inlets were identified as probable SRB traps. Analysis of field data supports these model results.
NASA Astrophysics Data System (ADS)
Abbasian Arani, Ali Akbar; Aberoumand, Hossein; Jafarimoghaddam, Amin; Aberoumand, Sadegh
2017-09-01
The heat transfer and flow characteristics of Cu-heat transfer oil nanofluid during mixed convection through horizontal annular tubes under uniform heat flux as boundary condition are investigated experimentally. Data were acquired at low Reynolds number ranged from about 26 to 252. The applied nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. Pure heat transfer oil and nanofluids with nanoparticles weight concentrations of 0.12, 0.36 and 0.72% were used as the working fluids. Based on these results, Effects of nanoparticles concentration, heat flux and free convection on the thermal field development are studied under buoyancy assisted flow condition for Grashof number, Richardson number between 2820 and 12,686, and 0.1-10, respectively. Results show that Nusselt number increases with an increase of nanoparticles weight concentrations from 0 to 0.72% under certain Richardson numbers.
Development of clean coal and clean soil technologies using advanced agglomeration techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignasiak, B.; Ignasiak, T.; Szymocha, K.
1990-01-01
Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)
York, J Dalton; Firoozabadi, Abbas
2008-01-24
Natural gas is projected to be the premium fuel of the 21st century because of availability, as well as economical and environmental considerations. Natural gas is coproduced with water from the subsurface forming gas hydrates. Hydrate formation may result in shutdown of onshore and offshore operations. Industry practice has been usage of alcohols--which have undesirable environmental impacts--to affect bulk-phase properties and inhibit hydrate formation. An alternative to alcohols is changing the surface properties through usage of polymers and surfactants, effective at 0.5-3 wt % of coproduced water. One group of low-dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are anti-agglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, reported work on hydrate anti-agglomeration is very limited. In this paper, our focus is on the use of two vastly different surfactants as anti-agglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. We examine the effectiveness of a quaternary ammonium salt (i.e., quat). Visual observation measurements show that a small concentration of the quat (0.01%) can prevent agglomeration. However, a quat is not a green chemical and therefore may be undesirable. We show that a rhamnolipid biosurfactant can be effective to a concentration of 0.05 wt %. One difference between the two surfactants is the stability of the water-in-oil emulsions created. The biosurfactant forms a less stable emulsion, which makes it very desirable for hydrate application.
Process for removing pyritic sulfur from bituminous coals
Pawlak, Wanda; Janiak, Jerzy S.; Turak, Ali A.; Ignasiak, Boleslaw L.
1990-01-01
A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.
NASA Astrophysics Data System (ADS)
Abbasian Arani, A. A.; Aberoumand, H.; Aberoumand, S.; Jafari Moghaddam, A.; Dastanian, M.
2016-08-01
In this work an experimental study on Silver-oil nanofluid was carried out in order to present the laminar convective heat transfer coefficient and friction factor in a concentric annulus with constant heat flux boundary condition. Silver-oil nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. The average sizes of particles were 20 nm. Nanofluids with various particle Volume fractions of 0.011, 0.044 and 0.171 vol% were employed. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as flow Reynolds number, tube diameter ratio and nanofluid particle concentration on heat transfer coefficient are studied. Results show that, heat transfer coefficient increased by using nanofluid instead of pure oil. Maximum enhancement of heat transfer coefficient occurs in 0.171 vol%. In addition the results showed that, there are slight increases in pressure drop of nanofluid by increasing the nanoparticle concentration of nanofluid in compared to pure oil.
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
Laboratory observations of artificial sand and oil agglomerates
Jenkins, Robert L.; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.
2018-04-27
Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil spill. A limited number of numerical modeling and field studies exist on the transport and dynamics of centimeter-scale SOAs and their interaction with the sea floor. Numerical models used to study SOAs have relied on shear-stress formulations to predict incipient motion. However, uncertainty exists as to the accuracy of applying these formulations, originally developed for sand grains in a uniformly sorted sediment bed, to larger, nonspherical SOAs. In the current effort, artificial sand and oil agglomerates (aSOAs) created with the size, density, and shape characteristics of SOAs were studied in a small-oscillatory flow tunnel. These experiments expanded the available data on SOA motion and interaction with the sea floor and were used to examine the applicability of shear-stress formulations to predict SOA mobility. Data collected during these two sets of experiments, including photographs, video, and flow velocity, are presented in this report, along with an analysis of shear-stress-based formulations for incipient motion. The results showed that shear-stress thresholds for typical quartz sand predicted the incipient motion of aSOAs with 0.5–1.0-cm diameters, but were inaccurate for aSOAs with larger diameters (>2.5 cm). This finding implies that modified parameterizations of incipient motion may be necessary under certain combinations of aSOA characteristics and environmental conditions.
Process for converting heavy oil deposited on coal to distillable oil in a low severity process
Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.
1994-01-01
A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.
Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows
NASA Astrophysics Data System (ADS)
Njobuenwu, Derrick O.; Fairweather, Michael
2017-08-01
An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.
Physicochemical cleaning and recovery of coal
NASA Astrophysics Data System (ADS)
Wheelock, T. D.
1982-03-01
The development and demonstration of a method of depressing iron pyrites which is applicable to both the froth flotation and oil agglomeration methods of cleaning and recoverying fine-size coal are described.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2011-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.
A Critical Study of Agglomerated Multigrid Methods for Diffusion
NASA Technical Reports Server (NTRS)
Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris
2009-01-01
Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.
Surface functionalization of WS2 fullerene-like nanoparticles.
Shahar, Chen; Zbaida, David; Rapoport, Lev; Cohen, Hagai; Bendikov, Tatyana; Tannous, Johny; Dassenoy, Fabrice; Tenne, Reshef
2010-03-16
WS(2) belongs to a family of layered metal dichalcogenide compounds that are known to form cylindrical (inorganic nanotubes-INT) and polyhedral nanostructures--onion or nested fullerene-like (IF) particles. The outermost layers of these IF nanoparticles can be peeled under shear stress, thus IF nanoparticles have been studied for their use as solid lubricants. However, the IF nanoparticles tend to agglomerate, presumably because of surface structural defects induced by elastic strain and curvature, a fact that has a deleterious effect on their tribological properties. In the present work, chemical modification of the IF-WS(2) surface with alkyl-silane molecules is reported. The surface-modified IF nanoparticles display improved dispersion in oil-based suspensions. The alkyl-silane coating reduces the IF-WS(2) nanoparticles' tendency to agglomerate and consequently improves the long-term tribological behavior of oil formulated with the IF additive.
Coal-oil gold agglomeration assisted flotation to recover gold from refractory ore
NASA Astrophysics Data System (ADS)
Otsuki, A.; Yue, C.
2017-07-01
This study aimed to investigate the applicability of coal-oil gold agglomeration (CGA) assisted flotation to recover gold from a refractory ore. The ore with the grade of 2-5 g/t was tested with the CGA-flotation process in six different size fractions from 38 to 300 urn using different collector types and dosages. In addition, the flotation without CGA was performed under the same condition for comparison. The results showed that the higher gold grade and recovery were achieved by applying the CGA-flotation, compared with the flotation without CGA. More than 20-60 times grade increase from the head grade was obtained with CGA-flotation. The elemental analysis of gold and sulphur explained their relationship with gold recovery. The results well indicated the applicability of CGA to upgrade the refractory gold ore.
Fragmentation and bond strength of airborne diesel soot agglomerates
Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard
2008-01-01
Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015
Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers
NASA Technical Reports Server (NTRS)
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
Multifrequency scanning probe microscopy study of nanodiamond agglomerates
NASA Astrophysics Data System (ADS)
Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team
Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
Coal hydrogenation and deashing in ebullated bed catalytic reactor
Huibers, Derk T. A.; Johanson, Edwin S.
1983-01-01
An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.
Oscillatory Dynamics of Single Bubbles and Agglomeration in a Sound Field in Microgravity
NASA Technical Reports Server (NTRS)
Marston, Philip L.; Trinh, Eugene H.; Depew, Jon; Asaki, Thomas J.
1994-01-01
A dual-frequency acoustic levitator containing water was developed for studying bubble and drop dynamics in low gravity. It was flown on USML-1 where it was used in the Glovebox facility. High frequency (21 or 63 kHz) ultrasonic waves were modulated by low frequencies to excite shape oscillations on bubbles and oil drops ultrasonically trapped in the water. Bubble diameters were typically close to 1 cm or larger. When such large bubbles are acoustically trapped on the Earth, the acoustic radiation pressure needed to overcome buoyancy tends to shift the natural frequency for quadrupole (n = 2) oscillations above the prediction of Lamb's equation. In low gravity, a much weaker trapping force was used and measurements of n = 2 and 3 mode frequencies were closer to the ideal case. Other video observations in low gravity include: (i) the transient reappearance of a bulge where a small bubble has coalesced with a large one, (ii) observations of the dynamics of bubbles coated by oil indicating that shape oscillations can shift a coated bubble away from the oil-water interface of the coating giving a centering of the core, and (iii) the agglomeration of bubbles induced by the sound field.
Proceedings: Fourteenth annual EPRI conference on fuel science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-01
EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less
Experimental study of acoustic agglomeration and fragmentation on coal-fired ash
NASA Astrophysics Data System (ADS)
Shen, Guoqing; Huang, Xiaoyu; He, Chunlong; Zhang, Shiping; An, Liansuo; Wang, Liang; Chen, Yanqiao; Li, Yongsheng
2018-02-01
As the major part of air pollution, inhalable particles, especially fine particles are doing great harm to human body due to smaller particle size and absorption of hazardous components. However, the removal efficiency of current particles filtering devices is low. Acoustic agglomeration is considered as a very effective pretreatment technique for removing particles. Fine particles collide, agglomerate and grow up in the sound field and the fine particles can be removed by conventional particles devices easily. In this paper, the agglomeration and fragmentation of 3 different kinds of particles with different size distributions are studied experimentally in the sound field. It is found that there exists an optimal frequency at 1200 Hz for different particles. The agglomeration efficiency of inhalable particles increases with SPL increasing for the unimodal particles with particle diameter less than 10 μm. For the bimodal particles, the optimal SPLs are 115 and 120 dB with the agglomeration efficiencies of 25% and 55%. A considerable effectiveness of agglomeration could only be obtained in a narrow SPL range and it decreases significantly over the range for the particles fragmentation.
Chatterjee, Arindam; Gupta, Madan Mohan; Srivastava, Birendra
2017-01-01
Tablets have been choice of manufacturers over the years due to their comparatively low cost of manufacturing, packaging, shipping, and ease of administration; also have better stability and can be considered virtually tamper proof. A major challenge in formulation development of the tablets extends from lower solubility of the active agent to the elaborated manufacturing procedures for obtaining a compressible granular material. Moreover, the validation and documentation increases, as the numbers of steps increases for an industrially acceptable granulation process. Spherical crystallization (SC) is a promising technique, which encompass the crystallization, agglomeration, and spheronization phenomenon in a single step. Initially, two methods, spherical agglomeration, and emulsion solvent diffusion, were suggested to get a desired result. Later on, the introduction of modified methods such as crystallo-co-agglomeration, ammonia diffusion system, and neutralization techniques overcame the limitations of the older techniques. Under controlled conditions such as solvent composition, mixing rate and temperature, spherical dense agglomerates cluster from particles. Application of the SC technique includes production of compacted spherical particles of drug having improved uniformity in shape and size of particles, good bulk density, better flow properties as well as better solubility so SC when used on commercial scale will bring down the production costs of pharmaceutical tablet and will increase revenue for the pharmaceutical industries in the competitive market. This review summarizes the technologies available for SC and also suggests the parameters for evaluation of a viable product.
NASA Astrophysics Data System (ADS)
Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin
2017-07-01
The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction error is lower than 5% for the four propellants tested. Results of this study are expected to provide better insight and enrich in the theoretical frame of aluminum agglomeration.
Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS
NASA Astrophysics Data System (ADS)
Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.
Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.
In situ measurement of the rheological properties and agglomeration on cementitious pastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae Hong; Yim, Hong Jae, E-mail: yimhj@knu.ac.kr; Ferron, Raissa Douglas
2016-07-15
Various factors influence the rheology of cementitious pastes, with the most important being the mixing protocol, mixture proportions, and mixture composition. This study investigated the influence of ground-granulated blast-furnace slag, on the rheological behavior of cementitious pastes. In tandem with the rheological measurements, fresh state microstructural measurements were conducted using three different techniques: A coupled stroboscope-rheometer, a coupled laser backscattering-rheometer, and a conventional laser diffraction technique. Laser diffraction and the coupled stroboscope-rheometer were not good measures of the in situ state of flocculation of a sample. Rather, only the laser backscattering technique allowed for in situ measurement on a highlymore » concentrated suspension (cementitious paste). Using the coupled laser backscattering-rheometer technique, a link between the particle system and rheological behavior was determined through a modeling approach that takes into account agglomeration properties. A higher degree of agglomeration was seen in the ordinary Portland cement paste than pastes containing the slag and this was related to the degree of capillary pressure in the paste systems.« less
Friction Stir Welding of Al Alloy 2219-T8: Part II-Mechanical and Corrosion
NASA Astrophysics Data System (ADS)
Kang, Ju; Feng, Zhi-Cao; Li, Ji-Chao; Frankel, G. S.; Wang, Guo-Qing; Wu, Ai-Ping
2016-09-01
In Part I of this series, abnormal agglomerations of θ particles with size of about 100 to 1000 µm were observed in friction stir welded AA2219-T8 joints. In this work, the effects of these agglomerated θ particles on the mechanical and corrosion properties of the joints are studied. Tensile testing with in situ SEM imaging was utilized to monitor crack initiation and propagation in base metal and weld nugget zone (WNZ) samples. These tests showed that cracks initiated in the θ particles and at the θ/matrix interfaces, but not in the matrix. The WNZ samples containing abnormal agglomerated θ particles had a similar ultimate tensile stress but 3 pct less elongation than other WNZ samples with only normal θ particles. Measurements using the microcell technique indicated that the agglomerated θ particles acted as a cathode causing the dissolution of adjacent matrix. The abnormal θ particle agglomerations led to more severe localized attack due to the large cathode/anode ratio. Al preferential dissolution occurred in the abnormal θ particle agglomerations, which was different from the corrosion behavior of normal size θ particles.
Incipient Motion of Sand and Oil Agglomerates
NASA Astrophysics Data System (ADS)
Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.
2016-12-01
Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.
Mixing of nanosize particles by magnetically assisted impaction techniques
NASA Astrophysics Data System (ADS)
Scicolone, James V.
Nanoparticles and nanocomposites offer unique properties that arise from their small size, large surface area, and the interactions of phases at their interfaces, and are attractive for their potential to improve performance of drugs, biomaterials, catalysts and other high-value-added materials. However, a major problem in utilizing nanoparticles is that they often lose their high surface area due to grain growth. Creating nanostructured composites where two or more nanosized constituents are intimately mixed can prevent this loss in surface area, but in order to obtain homogeneous mixing, de-agglomeration of the individual nanoparticle constituents is necessary. Due to high surface area, nano-particles form very large, fractal agglomerates. The structure of these agglomerates can have a large agglomerate composed of sub-agglomerates (SA), which itself consists of primary agglomerates (PA), that contain chain or net like nano-particle structures; typically sub-micron size. Thus the final agglomerate has a hierarchical, fractal structure, and depending upon the forces applied, it could break down to a certain size scale. The agglomerates can be fairly porous and fragile or they could be quite dense, based on primary particle size and its surface energy. Thus depending upon the agglomerate strength at different length scales, one could achieve deagglomeration and subsequent mixing at varying length scale. A better understanding of this can have a major impact on the field of nano-structured materials; thus the long term objective of this project is to gain fundamental understanding of deagglomeration and mixing of nano-agglomerates. Dry mixing is in general not effective in achieving desired mixing at nanoscale, whereas wet mixing suffers from different disadvantages like nanomaterial of interest should be insoluble, has to wet the liquid, and involves additional steps of filtration and drying. This research examines the use of environmentally friendly a novel approach based on use of small magnetic particles as mixing media is introduced that achieves a high-degree of mixing at scales of about a micron. The method is tested for binary mixture of alumina/silica and silica/titania. Various parameters such as processing time, size of the magnets, and magnetic particle to powder mixed ratio are considered. Experiments are carried out in batch containers in liquid and dry mediums, as well as a fluidized bed set-up. Homogeneity of Mixing (HoM), defined as the compliment of the Intensity of Segregation, was evaluated at the micron scale through field-emission scanning electron microscopy (FESEM) and the energy dispersive x-ray spectroscopy (EDS). Secondary electron images, along with elemental mappings, were used to visualize the change in agglomerate sizes. Compositional percent data of each element were obtained through an EDS spatial distribution point analysis and used to obtain quantitative analysis on the homogeneity of the mixture. The effect of magnet impaction on mixing quality was examined on the HoM of binary mixtures. The research shows that HoM improved with magnetically assisted impaction mixing techniques indicating that the HoM depends on the product of processing time with the number of magnets. In a fluidized bed set-up, MAIM not only improved dispersion, but it was also found that the magnetic particles served to break down the larger agglomerates, to reduce the minimum fluidization velocity, to delay the onset of bubbling, and to convert the fluidization behavior of ABF powder to APF. Thus MAIM techniques may be used to achieve mixing of nanopowders at a desired HoM through adjusting the number of magnets and processing time; and its inherent advantages are its simplicity, an environmentally benign operation, and reduced cost as compared with wet mixing techniques.
Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer.
Maghsoodi, Maryam; Nokhodchi, Ali
2016-12-01
Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.
Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.
Wong, Tin Wui; Musa, Nafisah
2012-07-01
Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama
2018-01-01
Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.
NASA Astrophysics Data System (ADS)
Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.
2012-01-01
Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.
NASA Astrophysics Data System (ADS)
Mu, Wangzhong; Dogan, Neslihan; Coley, Kenneth S.
2018-05-01
The agglomeration behavior of non-metallic inclusions in the steelmaking process is important for controlling the cleanliness of the steel. In this work, the observation of agglomeration behaviors of inclusions at steel/Ar and steel/slag interfaces using a high-temperature confocal laser scanning microscope (HT-CLSM) is summarized. This HT-CLSM technique has been applied to observe phase transformation during solidification and heat treatment and the engulfment and pushing behavior of inclusions in front of the solidified interface. In the current work, the inclusion agglomeration behavior at steel/Ar and steel/slag interfaces is summarized and discussed. Subsequently, the development of the theoretical work investigating inclusion agglomeration at steel/Ar and steel/slag interfaces including the initial capillary force model and Kralchevsky-Paunov model is described. Finally, the Kralchevsky-Paunov model is applied to investigating nitride inclusion agglomeration at high-manganese steel/Ar interfaces. This work aims to give a critical review of the application of HT-CLSM in secondary refining as well as a better control of inclusion elimination for clean steel production.
Acoustic agglomeration methods and apparatus
NASA Technical Reports Server (NTRS)
Barmatz, M. B. (Inventor)
1984-01-01
Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widjaja, Ongky, E-mail: wijayaongky@yahoo.co.id; Arie, Arenst Andreas, E-mail: arenst@unpar.ac.id; Halim, Martin
In this work, kerosene oil based nanocarbons were synthesized by a nebulized spray pyrolysis method. This method was conducted at temperature of 700°C under a nitrogen inert atmospheric condition. Activated carbon and ferrocene were used as substrate and catalyst, respectively. Initially, ferrocene was dissolved in the oil with fixed concentration of 0.02 g/ml. The pyrolysis reaction was carried out by varying the operating time of 15, 30 and 45 minutes. The main aim of this work was to investigate the effect of varying the operation time on the morphology and structural characteristics of as-prepared carbon products. The morphology and structural characteristicsmore » of synthesized nanocarbons were examined by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and Raman Spectroscopy, respectively. SEM and TEM observations showed that nano carbons were formed as agglomerated carbon nanospheres (CNSs) and graphene for all variation of operating time. Furthermore, it was observed that the size of agglomerated CNSs was proportional with the operating time from 15 to 45 minutes. Raman analysis showed that the ratio between graphite like and disorder carbon structure (I{sub G}/I{sub D})of carbon samples increased from operating time of 15 to 30 minutes, however the ratio decreased from 30 minutes to 45 minutes.« less
NASA Astrophysics Data System (ADS)
Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan
2012-11-01
We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.
Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan
2012-11-09
We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.
2012-01-01
We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide. PMID:23140103
Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions.
Ludwig, D Brett; Carpenter, John F; Hamel, Jean-Bernard; Randolph, Theodore W
2010-04-01
The effect of silicone oil on the stability of therapeutic protein formulations is of concern in the biopharmaceutical industry as more proteins are stored and delivered in prefilled syringes. Prefilled syringes provide convenience for medical professionals and patients, but prolonged exposure of proteins to silicone oil within prefilled syringes may be problematic. In this study, we characterize systems of silicone oil-in-aqueous buffer emulsions and model proteins in formulations containing surfactant, sodium chloride, or sucrose. For each of the formulations studied, silicone oil-induced loss of soluble protein, likely through protein adsorption onto the silicone oil droplet surface. Excipient addition affected both protein adsorption and emulsion stability. Addition of surfactant stabilized emulsions but decreased protein adsorption to silicone oil microdroplets. In contrast, addition of sodium chloride increased protein adsorption and decreased emulsion stability. Silicone oil droplets with adsorbed lysozyme rapidly agglomerated and creamed out of suspension. This decrease in the kinetic stability of the emulsion is ascribed to surface charge neutralization and a bridging flocculation phenomenon and illustrates the need to investigate not only the effects of silicone oil on protein stability, but also the effects of protein formulation variables on emulsion stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Advanced coal cleaning meets acid rain emission limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boron, D.J.; Matoney, J.P.; Albrecht, M.C.
1987-03-01
The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.
Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers.
Campos, Adriana de; Sena Neto, Alfredo R de; Rodrigues, Vanessa B; Luchesi, Bruno R; Moreira, Francys K V; Correa, Ana Carolina; Mattoso, Luiz H C; Marconcini, José M
2017-11-01
Cassava starch films reinforced with cellulose nanowhiskers from oil palm mesocarp fibers were produced by casting. Nanowhiskers were obtained by sulphuric acid hydrolysis followed by microfluidization and incorporated in starch films at various loadings (1-10wt%). Morphological and mechanical characterizations showed that the reinforcing effect of oil palm cellulose nanowhiskers was significant at loadings of up to 6wt%, which was determined to be the nanowhiskers percolation threshold. Above this content, formation of agglomerates became more significant, causing a decrease in mechanical properties of starch bionanocomposites. Below percolation threshold, such as 2wt%, elongation at break increased by 70%, showing an effective reinforcing effect. Dynamic mechanical analyses revealed filler/matrix interactions through hydrogen bonding in bionanocomposites. Copyright © 2017 Elsevier Ltd. All rights reserved.
Process for hydrocracking carbonaceous material in liquid carrier
Duncan, Dennis A.
1980-01-01
Solid carbonaceous material is hydrocracked to provide aliphatic and aromatic hydrocarbons for use as gaseous and liquid fuels or chemical feed stock. Particulate carbonaceous material such as coal in slurry with recycled product oil is preheated in liquid state to a temperature of 600.degree.-1200.degree. F. in the presence of hydrogen gas. The product oil acts as a sorbing agent for the agglomerating bitumins to minimize caking within the process. In the hydrocracking reactor, the slurry of oil and carbonaceous particles is heated within a tubular passageway to vaporize the oil and form a gas-solid mixture which is further heated to a hydropyrolysis temperature in excess of 1200.degree. F. The gas-solid mixture is quenched by contact with additional oil to condense normally liquid hydrocarbons for separation from the gases. A fraction of the hydrocarbon liquid product is recycled for quenching and slurrying with the carbonaceous feed. Hydrogen is recovered from the gas for recycle and additional hydrogen is produced by gasification of residual char.
Feathering effect detection and artifact agglomeration index-based video deinterlacing technique
NASA Astrophysics Data System (ADS)
Martins, André Luis; Rodrigues, Evandro Luis Linhari; de Paiva, Maria Stela Veludo
2018-03-01
Several video deinterlacing techniques have been developed, and each one presents a better performance in certain conditions. Occasionally, even the most modern deinterlacing techniques create frames with worse quality than primitive deinterlacing processes. This paper validates that the final image quality can be improved by combining different types of deinterlacing techniques. The proposed strategy is able to select between two types of deinterlaced frames and, if necessary, make the local correction of the defects. This decision is based on an artifact agglomeration index obtained from a feathering effect detection map. Starting from a deinterlaced frame produced by the "interfield average" method, the defective areas are identified, and, if deemed appropriate, these areas are replaced by pixels generated through the "edge-based line average" method. Test results have proven that the proposed technique is able to produce video frames with higher quality than applying a single deinterlacing technique through getting what is good from intra- and interfield methods.
Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent
NASA Astrophysics Data System (ADS)
Gärtner, R. S.; Witkamp, G. J.
2002-04-01
Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.
Fatema, Ummul K; Rahman, M Muhibur; Islam, M Rakibul; Mollah, M Yousuf A; Susan, Md Abu Bin Hasan
2018-03-15
Water in oil microemulsion (w/o) is a simple preparative route for nanoparticles where water droplets (dispersed in continuous oil medium and stabilized by surfactants and cosurfactants) act as nanoreactors to carry out chemical reactions. If polymeric matrix is incorporated inside the core of the microemulsions, it should prevent the agglomeration of nanoparticles after separation from microemulsions. Thus polymer nanocomposite films prepared from w/o microemulsions are expected to give narrow and homogeneous size distribution of nanoparticles throughout the polymer host. Silver/poly(vinyl alcohol) (Ag/PVA) nanocomposite film was successfully prepared, for the first time, using Triton X-100 (TX-100)/1-butanol/cyclohexane/water microemulsion. Reduction of the metal salt was carried out in the core of w/o microemulsion droplets containing PVA polymeric matrix. After separation from the microemulsion, Ag/PVA nanocomposite film was then prepared by solution casting method. The antibacterial activity of the nanocomposites was tested against Gram-negative, Escherichia coli and Gram-positive, Staphylococcus aureus by agar diffusion method. Ag nanoparticles with an average diameter of 105 nm could be synthesized using PVA, whereas in the absence of PVA the nanoparticles agglomerated. The distribution of Ag nanoparticles on PVA surface of the nanocomposite film prepared using microemulsion was uniform, whereas the film prepared through in situ generation of Ag nanoparticles by chemical reduction process on PVA host showed non-uniform, coagulated, bunches of Ag nanoparticles. The film synthesized using microemulsion exhibited enhanced antibacterial efficacy compared to that prepared through in situ synthesis under the same test condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Peering through the flames: imaging techniques for reacting aluminum powders
Zepper, Ethan T.; Pantoya, Michelle L.; Bhattacharya, Sukalyan; ...
2017-03-17
Combusting metals burn at high temperatures and emit high-intensity radiation in the visible spectrum which can over-saturate regular imaging sensors and obscure the field of view. Filtering the luminescence can result in limited information and hinder thorough combustion characterization. A method for “seeing through the flames” of a highly luminescent aluminum powder reaction is presented using copper vapor laser (CVL) illumination synchronized with a high-speed camera. A statistical comparison of combusting aluminum particle agglomerate between filtered halogen and CVL illumination shows the effectiveness of this diagnostic approach. When ignited by an electrically induced plasma, aluminum particles are entrained as solidmore » agglomerates that rotate about their centers of mass and are surrounded by emitted, burning gases. Furthermore, the average agglomerate diameter appears to be 160 micrometers when viewed with standard illumination and a high-speed camera. But, a significantly lower diameter of 50 micrometers is recorded when imaged with CVL illumination. Our results advocate that alternative imaging techniques are required to resolve the complexities of metal particle combustion.« less
Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
Gong, Xiuqing; Wu, Jinbo; Huang, Xianxiang; Wen, Weijia; Sheng, Ping
2008-04-23
We show that the chemical structures of silicone oils can have an important role in the giant electrorheological (GER) effect. The interaction between silicone oils and solid nanoparticles is found to significantly influence the ER effect. By increasing the kinematic viscosity of silicone oils, which is a function of siloxane chain length, sol-like, gel-like and clay-like appearances of the constituted ER fluids were observed. Different functional-group-terminated silicone oils were also employed as the dispersing media. Significant differences of yield stress were found. We systematically study the effect of siloxane chain lengths on the permeability of oils traveling through the porous spaces between the particles (using the Washburn method), oils adsorbed on the particles' surface (using FT-IR spectra), as well as their particle size distribution (using dynamic light scattering). Our results indicate the hydrogen bonds are instrumental in linking the silicone oil to GER solid particles, and long chain lengths can enhance the agglomeration of the GER nanoparticles to form large clusters. An optimal oil structure, with hydroxyl-terminated silicone oil and a suitable viscosity, was chosen which can create the highest yield stress of ∼300 kPa under a 5 kV mm(-1) DC electric field.
Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain
Basak, Soubir; Brogan, David; Dietrich, Hans; Ritter, Rogers; Dacey, Ralph G; Biswas, Pratim
2009-01-01
A current advance in nanotechnology is the selective targeting of therapeutics by external magnetic field-guided delivery. This is an important area of research in medicine. The use of magnetic forces results in the formation of agglomerated structures in the field region. The transport characteristics of these agglomerated structures are explored. A nonintrusive method based on in situ light-scattering techniques is used to characterize the velocity of such particles in a magnetic field gradient. A transport model for the chain-like agglomerates is developed based on these experimental observations. The transport characteristics of magnetic nanoparticle drug carriers are then explored in gel-based simulated models of the brain. Results of such measurements demonstrate decreased diffusion of magnetic nanoparticles when placed in a high magnetic field gradient. PMID:19421367
Prince, Roger C; Butler, Josh D
2014-01-01
Dispersants are important tools in oil spill response. Taking advantage of the energy in even small waves, they disperse floating oil slicks into tiny droplets (<70 μm) that entrain in the water column and drift apart so that they do not re-agglomerate to re-form a floating slick. The dramatically increased surface area allows microbial access to much more of the oil, and diffusion and dilution lead to oil concentrations where natural background levels of biologically available oxygen, nitrogen, and phosphorus are sufficient for microbial growth and oil consumption. Dispersants are only used on substantial spills in relatively deep water (usually >10 m), conditions that are impossible to replicate in the laboratory. To date, laboratory experiments aimed at following the biodegradation of dispersed oil usually show only minimal stimulation of the rate of biodegradation, but principally because the oil in these experiments disperses fairly effectively without dispersant. What is needed is a test protocol that allows comparison between an untreated slick that remains on the water surface during the entire biodegradation study and dispersant-treated oil that remains in the water column as small dispersed oil droplets. We show here that when this is accomplished, the rate of biodegradation is dramatically stimulated by an effective dispersant, Corexit 9500. Further development of this approach might result in a useful tool for comparing the full benefits of different dispersants.
Quantitative characterization of nanoparticle agglomeration within biological media
NASA Astrophysics Data System (ADS)
Hondow, Nicole; Brydson, Rik; Wang, Peiyi; Holton, Mark D.; Brown, M. Rowan; Rees, Paul; Summers, Huw D.; Brown, Andy
2012-07-01
Quantitative analysis of nanoparticle dispersion state within biological media is essential to understanding cellular uptake and the roles of diffusion, sedimentation, and endocytosis in determining nanoparticle dose. The dispersion of polymer-coated CdTe/ZnS quantum dots in water and cell growth medium with and without fetal bovine serum was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques. Characterization by TEM of samples prepared by plunge freezing the blotted solutions into liquid ethane was sensitive to the dispersion state of the quantum dots and enabled measurement of agglomerate size distributions even in the presence of serum proteins where DLS failed. In addition, TEM showed a reduced packing fraction of quantum dots per agglomerate when dispersed in biological media and serum compared to just water, highlighting the effect of interactions between the media, serum proteins, and the quantum dots. The identification of a heterogeneous distribution of quantum dots and quantum dot agglomerates in cell growth medium and serum by TEM will enable correlation with the previously reported optical metrology of in vitro cellular uptake of this quantum dot dispersion. In this paper, we present a comparative study of TEM and DLS and show that plunge-freeze TEM provides a robust assessment of nanoparticle agglomeration state.
Uncovering a New Moral Dilemma of Economic Optimization in Biotechnological Processing.
Vochozka, Marek; Stehel, Vojtěch; Maroušková, Anna
2017-06-08
The trend of emerging biorefineries is to process the harvest as efficiently as possible and without any waste. From the most valuable phytomass, refined medicines, enzymes, dyes and other special reactants are created. Functional foods, food ingredients, oils, alcohol, solvents, plastics, fillers and a wide variety of other chemical products follow. After being treated with nutrient recovery techniques (for fertilizer production), biofuels or soil improvers are produced from the leftovers. Economic optimization algorithms have confirmed that such complex biorefineries can be financially viable only when a high degree of feedstock concentration is included. Because the plant material is extremely voluminous before processing, the farming intensity of special plants increases in the nearest vicinity of agglomerations where the biorefineries are built for logistical reasons. Interdisciplinary analyses revealed that these optimization measures lead to significantly increased pollen levels in neighbouring urban areas and subsequently an increased risk of allergies, respectively costs to the national health system. A new moral dilemma between the shareholder's profit and public interest was uncovered and subjected to disputation.
NASA Astrophysics Data System (ADS)
Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua
2018-01-01
A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.
Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S
2016-09-29
We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.
Wang, Jing; Pui, David Y H
2013-01-14
Carbon nanotubes (CNTs) tend to form bundles due to their geometry and van der Walls forces, which usually complicates studies of the CNT properties. Dispersion plays a significant role in CNT studies and we summarize dispersion techniques to generate airborne CNTs from suspensions or powders. We describe in detail our technique of CNT aerosolization with controlled degree of agglomeration using an electrospray system. The results of animal inhalation studies using the electrosprayed CNTs are presented. We have performed filtration experiments for CNTs through a screen filter. A numerical model has been established to simulate the CNT filtration experiments. Both the modeling and experimental results show that the CNT penetration is less than the penetration for a sphere with the same mobility diameter, which is mainly due to the larger interception length of the CNTs. There is a need for instruments capable of fast and online measurement of gas-borne nanoparticle agglomerates. We developed an instrument Universal NanoParticle Analyzer (UNPA) and the measurement results for diesel exhaust particulates are presented. The results presented here are pertinent to non-spherical aerosol particles, and illustrate the effects of particle morphology on aerosol behaviors.
NASA Astrophysics Data System (ADS)
Ghorbanpour Arani, A.; Zamani, M. H.
2018-06-01
The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.
Efficient solid rocket propulsion for access to space
NASA Astrophysics Data System (ADS)
Maggi, Filippo; Bandera, Alessio; Galfetti, Luciano; De Luca, Luigi T.; Jackson, Thomas L.
2010-06-01
Space launch activity is expected to grow in the next few years in order to follow the current trend of space exploitation for business purpose. Granting high specific thrust and volumetric specific impulse, and counting on decades of intense development, solid rocket propulsion is a good candidate for commercial access to space, even with common propellant formulations. Yet, some drawbacks such as low theoretical specific impulse, losses as well as safety issues, suggest more efficient propulsion systems, digging into the enhancement of consolidated techniques. Focusing the attention on delivered specific impulse, a consistent fraction of losses can be ascribed to the multiphase medium inside the nozzle which, in turn, is related to agglomeration; a reduction of agglomerate size is likely. The present paper proposes a model based on heterogeneity characterization capable of describing the agglomeration trend for a standard aluminized solid propellant formulation. Material microstructure is characterized through the use of two statistical descriptors (pair correlation function and near-contact particles) looking at the mean metal pocket size inside the bulk. Given the real formulation and density of a propellant, a packing code generates the material representative which is then statistically analyzed. Agglomerate predictions are successfully contrasted to experimental data at 5 bar for four different formulations.
NASA Astrophysics Data System (ADS)
Pujiastuti, A.; Cahyono, E.; Sumarni, W.
2017-04-01
Mosquito (Aedes aegypti) is a threat to human health due to its capability to spread dengue fever. Citronellal in citronella oil is one ofnatural active compound that has repellent activity. Essential oil is a sensitive material whichiseasy to degrade. Encapsulation is coating technology use to avoid essential oil from degradation problems. β-Cyclodextrin is frequently used as acoating material in encapsulation. The aims of this study wereto prepare the citronellal encapsulation and to evaluate its control-released and repellency. In this study, encapsulated citronellal was prepared using 83.65% citronellal and encapsulation were prepared with the theemulsion-based method and dried using freeze-dryer. The best-controlled release was performed in citronellal encapsulate with a weight ratio of 1:1 (citronellal : β-Cyclodextrin). The morphology of encapsulated citronellal was analyzed using SEM. SEM result showed it has three dimensions random shape and agglomerate in some part with thebrighter spot. Citronellal encapsulate showed the highest repellent effect at 84,67% for 5 minutes in mosquito repellency test although it has lower result compared with citronellal inliquid form.
Fock, Jeppe; Parmvi, Mattias; Strömberg, Mattias; Svedlindh, Peter; Donolato, Marco; Hansen, Mikkel Fougt
2017-02-15
There is an increasing need to develop biosensor methods that are highly sensitive and that can be combined with low-cost consumables. The use of magnetic nanoparticles (MNPs) is attractive because their detection is compatible with low-cost disposables and because application of a magnetic field can be used to accelerate assay kinetics. We present the first study and comparison of the performance of magnetic susceptibility measurements and a newly proposed optomagnetic method. For the comparison we use the C-reactive protein (CRP) induced agglutination of identical samples of 100nm MNPs conjugated with CRP antibodies. Both methods detect agglutination as a shift to lower frequencies in measurements of the dynamics in response to an applied oscillating magnetic field. The magnetic susceptibility method probes the magnetic response whereas the optomagnetic technique probes the modulation of laser light transmitted through the sample. The two techniques provided highly correlated results upon agglutination when they measure the decrease of the signal from the individual MNPs (turn-off detection strategy), whereas the techniques provided different results, strongly depending on the read-out frequency, when detecting the signal due to MNP agglomerates (turn-on detection strategy). These observations are considered to be caused by differences in the volume-dependence of the magnetic and optical signals from agglomerates. The highest signal from agglomerates was found in the optomagnetic signal at low frequencies. Copyright © 2016 Elsevier B.V. All rights reserved.
Advances in high frequency ultrasound separation of particulates from biomass.
Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai
2017-03-01
In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Protein aggregation and particle formation in prefilled glass syringes.
Gerhardt, Alana; Mcgraw, Nicole R; Schwartz, Daniel K; Bee, Jared S; Carpenter, John F; Randolph, Theodore W
2014-06-01
The stability of therapeutic proteins formulated in prefilled syringes (PFS) may be negatively impacted by the exposure of protein molecules to silicone oil-water interfaces and air-water interfaces. In addition, agitation, such as that experienced during transportation, may increase the detrimental effects (i.e., protein aggregation and particle formation) of protein interactions with interfaces. In this study, surfactant-free formulations containing either a monoclonal antibody or lysozyme were incubated in PFS, where they were exposed to silicone oil-water interfaces (siliconized syringe walls), air-water interfaces (air bubbles), and agitation stress (occurring during end-over-end rotation). Using flow microscopy, particles (≥2 μm diameter) were detected under all conditions. The highest particle concentrations were found in agitated, siliconized syringes containing an air bubble. The particles formed in this condition consisted of silicone oil droplets and aggregated protein, as well as agglomerates of protein aggregates and silicone oil. We propose an interfacial mechanism of particle generation in PFS in which capillary forces at the three-phase (silicone oil-water-air) contact line remove silicone oil and gelled protein aggregates from the interface and transport them into the bulk. This mechanism explains the synergistic effects of silicone oil-water interfaces, air-water interfaces, and agitation in the generation of particles in protein formulations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D
2015-12-30
The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.
The stability behavior of sol-emulsion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunkel, J.M.; Berg, J.C.
1996-05-10
Sol-emulsion systems, i.e., colloids consisting of mixed populations of solid particles and emulsion droplets, are encountered in a number of applications, e.g., oil-assisted agglomeration for particle removal (coal fines from water). The stability characteristics of mixed aqueous dispersions of titanium dioxide and mineral oil emulsion droplets are examined as a function of pH and emulsifier type and content. Zeta potentials of both the titanium dioxide and the mineral oil particles are measured under all conditions to identify regions of expected heterocoagulation and to quantify the electrostatic boundary conditions. The latter are used in the numerical solution of the pair interactionmore » potentials based on the recent theory of McCormack et al. The potential functions are used in a modified version of the stability model of Hogg, Healy, and Fuerstenau to calculate early-stage aggregation rates. Photon correlation spectroscopy is used to determine stability ratios for homo- and heterocoagulation, and initial results indicate good agreement between experiments and computations.« less
Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions
NASA Astrophysics Data System (ADS)
Yang, Bingqiao; Huang, Pengliang; Song, Shaoxian; Luo, Huihua; Zhang, Yi
2018-06-01
In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10-5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough.
Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation
2010-01-01
Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by macrophages. Conclusion Primary particle size, gold concentration and particle purity are important features to check, since these characteristics may deviate from the manufacturer's description. Suspensions of well dispersed 50 nm and 250 nm particles as well as their agglomerates produced very mild pulmonary inflammation at the same mass based dose. We conclude that single 50 nm gold particles do not pose a greater acute hazard than their agglomerates or slightly larger gold particles when using pulmonary inflammation as a marker for toxicity. PMID:21126342
NASA Astrophysics Data System (ADS)
George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy
2016-03-01
The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.
Consolidation of Partially Stabilized ZrO2 in the Presence of a Noncontacting Electric Field
NASA Astrophysics Data System (ADS)
Majidi, Hasti; van Benthem, Klaus
2015-05-01
Electric field-assisted sintering techniques demonstrate accelerated densification at lower temperatures than the conventional sintering methods. However, it is still debated whether the applied field and/or resulting currents are responsible for the densification enhancement. To distinguish the effects of an applied field from current flow, in situ scanning transmission electron microscopy experiments with soft agglomerates of partially stabilized yttria-doped zirconia particles are carried out. A new microelectromechanical system-based sample support is used to heat particle agglomerates while simultaneously exposing them to an externally applied noncontacting electric field. Under isothermal condition at 900 °C , an electric field strength of 500 V /cm shows a sudden threefold enhancement in the shrinkage of the agglomerates. The applied electrostatic potential lowers the activation energy for point defect formation within the space charge zone and therefore promotes consolidation. Obtaining similar magnitudes of shrinkage in the absence of any electric field requires a higher temperature and longer time.
NASA Astrophysics Data System (ADS)
Weinbruch, S.; Benker, N.; Kandler, K.; Schütze, K.; Kling, K.; Berlinger, B.; Thomassen, Y.; Drotikova, T.; Kallenborn, R.
2018-01-01
Individual soot agglomerates collected at four different locations on the Arctic archipelago Svalbard (Norway) were characterised by transmission electron microscopy and energy-dispersive X-ray microanalysis. For source identification of the ambient soot agglomerates, samples from different local sources (coal burning power plants in Longyearbyen and Barentsburg, diesel and oil burning for power generation in Sveagruva and Ny Ålesund, cruise ship) as well as from other sources which may contribute to Arctic soot concentrations (biomass burning, aircraft emissions, diesel engines) were investigated. Diameter and graphene sheet separation distance of soot primary particles were found to be highly variable within each source and are not suited for source identification. In contrast, concentrations of the minor elements Si, P, K, Ca and Fe showed significant differences which can be used for source attribution. The presence/absence of externally mixed particle groups (fly ashes, tar balls, mercury particles) gives additional hints about the soot sources. Biomass/wood burning, ship emissions and coal burning in Barentsburg can be excluded as major source for ambient soot at Svalbard. The coal power plant in Longyearbyen is most likely a major source of soot in the settlement of Longyearbyen but does not contribute significantly to soot collected at the Global Atmosphere Watch station Zeppelin Mountain near Ny Ålesund. The most probable soot sources at Svalbard are aircraft emissions and diesel exhaust as well as long range transport of coal burning emissions.
Effect of temperature on porosity of iron ore sinter with biochar derived from EFB
NASA Astrophysics Data System (ADS)
Purwanto, H.; Rozhan, A. N.; Zakiyuddin, A.; Mohamad, A. S.
2018-01-01
In this research, the replacement of fossil fuel energy (coke) with oil palm empty fruit bunch as a potential energy in sintering of iron ore was investigated. Carbon derived biomass has been produced by using oil palm empty fruit bunch by heat treatment process. In the present investigation, sintering process was carried out by heating the mixed iron ore and biochar at various temperatures. The apparent density and porosity for iron sinter show a significant increase and gradual decrement as the temperature increase, respectively. The porosity of iron sinter shows a gradual decrement from 950 °C to 1050 °C but up to 1150 °C it shows a significant decrement about 44%. Inferring to the micrograph, the agglomeration and assimilation of sinter at high temperature is better compared with low sintering temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orr, C. Jr.; Keng, E.Y.H.
1974-06-01
Oils, greases, and waxes frequently occur in industrial waste waters. Simultaneously, soaps and detergents enter most waste waters from domestic and other sources. When the mixtures of waste particles in water, known as emulsions, come in contact with the soaps and detergents, they generally become quite stable. One way to break such emulsions and thereby separate out the wastes is to add chemicals that will cause the oil droplet to agglomerate into larger drops. This study sought to assess the usefulness of electrical measurements, particularly the so-called zeta potential, in guiding the treatment process to chemicals and application rates thatmore » can break measured emulsions. When the zeta potential, which for a highly stable emulsion may be as negative as -0.090 volt, is made to approach -0.015 volt, the stability of the emulsion deteriorates rapidly. Past this poin oil-in-water emulsions often break spontaneously. The larger drops will then rise to the water surface and form a distinct oil layer that can be easily removed. Laboratory applications of various chemicals to emulsion samples and subsequent zeta potential measurement should thus provide a ready guide to those trying to remove oily waste water discharge.« less
Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method
Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...
2016-09-22
Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less
Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalchev, Delyan Z.; Lee, C. S.; Villa, U.
Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less
Glymes as benign co-solvents for CaO-catalyzed transesterification of soybean oil to biodiesel.
Tang, Shaokun; Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe
2013-07-01
The base (such as CaO)-catalyzed heterogeneous preparation of biodiesel encounters a number of obstacles including the need for CaO pretreatment and the reactions being incomplete (typically 90-95% yields). In this study, a number of glymes were investigated as benign solvents for the CaO-catalyzed transesterification of soybean oil into biodiesel with a high substrate loading (typically soybean oil >50% v/v). The triglyceride-dissolving capability of glymes led to a much faster reaction rate (>98% conversions in 4h) than in methanol alone (typically 24h) and minimized the saponification reaction when catalyzed by anhydrous CaO or commercial lime without pre-activation. The use of glyme (e.g. P2) as co-solvent also activates commercial lime to become an effective catalyst without calcination pretreatment. The SEM images suggest a dissolution-agglomeration process of CaO surface in the presence of P2, which could remove the CaCO3 and Ca(OH)2 layer coated on the surface of lime. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, S.C.; Manwani, P.
Coal-water slurries have been regarded as a potential substitute for heavy fuel oil. Various demonstrations of coal-water slurry combustion have been performed; however, a fundamental understanding of how the combustion process of a slurry fuel is enhanced is still not adequate. The combustion of coal-water mixture droplets suspended on microthermocouples has been investigated. It was found that droplets of lignite coal (which is a noncaking coal) burn effectively; however, droplets of bituminous coal (which is a caking coal) are relatively difficult to burn. During the heat-up of bituminous coal-water slurry droplets may turn to ''popcorn'' and show significant agglomeration. Themore » incomplete combustion of coal-water slurry droplets in furnaces has been reported, and this is a drawback of this process. The objective of the present study is to explore the possibility of enhancing the combustion of coal-water slurry droplets with the use of a combustible emulsified oil.« less
Reusability Performance of Zinc Oxide Nanoparticles for Photocatalytic Degradation of POME
NASA Astrophysics Data System (ADS)
Zarifah Zainuri, Nur; Hanis Hayati Hairom, Nur; Abu Bakar Sidik, Dilaelyana; Misdan, Nurasyikin; Yusof, Norhaniza; Wahab Mohammad, Abdul
2018-03-01
Performance and reusability of different zinc oxide nanoparticles (ZnO-PVP and ZnO-PEG) for photocatalytic degradation of palm-mill oil effluent (POME) has been studied. The nanoparticles properties were characterised with fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM results show that ZnO-PEG nanoparticles exhibit the smaller size than ZnO-PVP with less agglomeration. It was found that ZnO-PEG shows better effectiveness than ZnO-PVP in reducing turbidity, colour and increasing the dissolved oxygen (DO). By using two types of reusability methods: (a) oven drying (b) hot water rinsing, the oven drying method portrayed the most efficient route for POME treatment. This research would be a solution to the palm oil industry for photocatalyst recovering as well as reduction of the chemical usage in order to meet the development of advanced and greener technologies.
John, Gerald F; Han, Yuling; Clement, T Prabhakar
2016-12-15
The Deepwater Horizon (DWH) oil spill event released a large amount of sweet crude oil into the Gulf of Mexico (GOM). An unknown portion of this oil that arrived along the Alabama shoreline interacted with nearshore sediments and sank forming submerged oil mats (SOMs). A considerable amount of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), were trapped within these buried SOMs. Recent studies completed using the oil spill residues collected along the Alabama shoreline have shown that several PAHs, especially higher molecular weight PAHs (four or more aromatic rings), are slowly weathering compared to the weathering levels experienced by the oil when it was floating over the GOM. In this study we have hypothesized that the weathering rates of PAHs in SOMs have slowed down because the buried oil was isolated from direct exposure to sunlight, thus hindering the photodegradation pathway. We further hypothesized that re-exposing SOMs to sunlight can reactivate various weathering reactions. Also, SOMs contain 75-95% sand (by weight) and the entrapped sand could either block direct sunlight or form large oil agglomerates with very little exposed surface area; these processes could possibly interfere with weathering reactions. To test these hypotheses, we completed controlled experiments to study the weathering patterns of PAHs in a field recovered SOM sample after re-exposing it to sunlight. Our experimental results show that the weathering levels of several higher molecular weight PAHs have slowed down primarily due to the absence of sunlight-induced photodegradation reactions. The data also show that sand particles in SOM material could potentially interfere with photodegradation reactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Positive and negative effects of dielectric breakdown in transformer oil based magnetic fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jong-Chul, E-mail: jclee01@gwnu.ac.kr; Lee, Won-Ho; Lee, Se-Hee
The transformer oil based magnetic fluids can be considered as the next-generation insulation fluids because they offer exciting new possibilities to enhance dielectric breakdown voltage as well as heat transfer performance compared to pure transformer oils. In this study, we have investigated the dielectric breakdown strength of the fluids with the various volume concentrations of nanoparticles in accordance with IEC 156 standard and have tried to find the reason for changing the dielectric breakdown voltage of the fluids from the magnetic field analysis. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 kV withmore » the gap distance of 1.5 mm. In the case of our transformer oil-based magnetic fluids with 0.08% < Φ < 0.6% (Φ means the volume concentration of magnetic nanoparticles), the dielectric breakdown voltage shows above 40 kV, which is 3.3 times higher positively than that of pure transformer oil. Negatively in the case when the volume concentration of magnetic nanoparticles is above 0.65%, the dielectric breakdown voltage decreases reversely. From the magnetic field analysis, the reason might be considered as two situations: the positive is for the conductive nanoparticles dispersed well near the electrodes, which play an important role in converting fast electrons to slow negatively charged particles, and the negative is for the agglomeration of the particles near the electrodes, which leads to the breakdown initiation.« less
Allahham, Ayman; Stewart, Peter J; Das, Shyamal C
2013-11-30
Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.
In vitro dosimetry of agglomerates
NASA Astrophysics Data System (ADS)
Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.
2014-06-01
Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d
Fuel agglomerates and method of agglomeration
Wen, Wu-Wey
1986-01-01
Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.
Numerical investigation of adhesion effects on solid particles filtration efficiency
NASA Astrophysics Data System (ADS)
Shaffee, Amira; Luckham, Paul; Matar, Omar K.
2017-11-01
Our work investigate the effectiveness of particle filtration process, in particular using a fully-coupled Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) approach involving poly-dispersed, adhesive solid particles. We found that an increase in particle adhesion reduces solid production through the opening of a wire-wrap type filter. Over time, as particle agglomerates continuously deposit on top of the filter, layer upon layer of particles is built on top of the filter, forming a particle pack. It is observed that with increasing particle adhesion, the pack height build up also increases and hence decreases the average particle volume fraction of the pack. This trend suggests higher porosity and looser packing of solid particles within the pack with increased adhesion. Furthermore, we found that the pressure drop for adhesive case is lower compared to non-adhesive case. Our results suggest agglomerating solid particles has beneficial effects on particle filtration. One important application of these findings is towards designing and optimizing sand control process for a hydrocarbon well with excessive sand production which is major challenge in oil and gas industry. Funding from PETRONAS and RAEng UK for Research Chair (OKM) gratefully acknowledged.
Instrumental measurement of odour nuisance in city agglomeration using electronic nose
NASA Astrophysics Data System (ADS)
Szulczyński, Bartosz; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek
2018-01-01
The paper describes an operation principle of odour nuisance monitoring network in a city agglomeration. Moreover, it presents the results of investigation on ambient air quality with respect to odour obtained during six-month period. The investigation was carried out using a network comprised of six prototypes of electronic nose and Nasal Ranger field olfactometers employed as a reference method. The monitoring network consisted of two measurement stations localized in a vicinity of crude oil processing plant and four stations localized near the main emitters of volatile odorous compounds such as sewage treatment plant, municipal landfill, phosphatic fertilizer production plant. The electronic nose prototype was equipped with a set of six semiconductor sensors by FIGARO Co. and one PID-type sensor. The field olfactometers were utilized for determination of mean concentration of odorants and for calibration of the electronic nose prototypes in order to provide their proper operation. Mean monthly values of odour concentration depended on the site of measurement and on meteorological parameters. They were within 0 - 6.0 ou/m3 range. Performed investigations revealed the possibility of electronic nose instrument application as a tool for monitoring of odour nuisance.
2014-01-01
In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105
Mobility and settling rate of agglomerates of polydisperse nanoparticles.
Spyrogianni, Anastasia; Karadima, Katerina S; Goudeli, Eirini; Mavrantzas, Vlasis G; Pratsinis, Sotiris E
2018-02-14
Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO 2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter d m and is compared with that from scaling laws for fractal-like agglomerates. The ratio d m /d g of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant d m and mean d p , the agglomerate settling rate, u s , increases with increasing PP geometric standard deviation σ p,g (polydispersity). A linear relationship between u s and agglomerate mass to d m ratio, m/d m , is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the u s of agglomerates consisting of polydisperse PPs is then derived, u s =1-ρ f ρ p g3πμmd m (ρ f is the density of the fluid, ρ p is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs underestimates u s by a fraction depending on σ p,g and agglomerate mass mobility exponent. Simulations are in excellent agreement with deposition rate measurements of fumed SiO 2 agglomerates in water.
Mobility and settling rate of agglomerates of polydisperse nanoparticles
NASA Astrophysics Data System (ADS)
Spyrogianni, Anastasia; Karadima, Katerina S.; Goudeli, Eirini; Mavrantzas, Vlasis G.; Pratsinis, Sotiris E.
2018-02-01
Agglomerate settling impacts nanotoxicology and nanomedicine as well as the stability of engineered nanofluids. Here, the mobility of nanostructured fractal-like SiO2 agglomerates in water is investigated and their settling rate in infinitely dilute suspensions is calculated by a Brownian dynamics algorithm tracking the agglomerate translational and rotational motion. The corresponding friction matrices are obtained using the HYDRO++ algorithm [J. G. de la Torre, G. del Rio Echenique, and A. Ortega, J. Phys. Chem. B 111, 955 (2007)] from the Kirkwood-Riseman theory accounting for hydrodynamic interactions of primary particles (PPs) through the Rotne-Prager-Yamakawa tensor, properly modified for polydisperse PPs. Agglomerates are generated by an event-driven method and have constant mass fractal dimension but varying PP size distribution, mass, and relative shape anisotropy. The calculated diffusion coefficient from HYDRO++ is used to obtain the agglomerate mobility diameter dm and is compared with that from scaling laws for fractal-like agglomerates. The ratio dm/dg of the mobility diameter to the gyration diameter of the agglomerate decreases with increasing relative shape anisotropy. For constant dm and mean dp, the agglomerate settling rate, us, increases with increasing PP geometric standard deviation σp,g (polydispersity). A linear relationship between us and agglomerate mass to dm ratio, m/dm, is revealed and attributed to the fast Brownian rotation of such small and light nanoparticle agglomerates. An analytical expression for the us of agglomerates consisting of polydisperse PPs is then derived, us=(1/-{ρf/ρp})g 3 π μ m/dm (ρf is the density of the fluid, ρp is the density of PPs, μ is the viscosity of the fluid, and g is the acceleration of gravity), valid for agglomerates for which the characteristic rotational time is considerably shorter than their settling time. Our calculations demonstrate that the commonly made assumption of monodisperse PPs underestimates us by a fraction depending on σp,g and agglomerate mass mobility exponent. Simulations are in excellent agreement with deposition rate measurements of fumed SiO2 agglomerates in water.
Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.
Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees
2012-01-23
Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.
Staged mold for encapsulating hazardous wastes
Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.
1990-01-01
A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.
Staged mold for encapsulating hazardous wastes
Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.
1988-01-01
A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.
Method for encapsulating hazardous wastes using a staged mold
Unger, Samuel L.; Telles, Rodney W.; Lubowitz, Hyman R.
1989-01-01
A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.
NASA Astrophysics Data System (ADS)
Vorozhtsov, S.; Kudryashova, O.; Promakhov, V.; Dammer, V.; Vorozhtsov, A.
2016-12-01
It is known that the use of external effects, such as acoustic fields (from ultrasonic to low-frequency range), help in breaking down agglomerates, improving particle wettability, providing uniform particle distribution in the melt volume, and reducing the grain size. The fragmentation of growing crystals, de-agglomeration of particles and their mixing in liquid metal under the influence of vibration (with frequencies of 10-100 Hz) are considered in this paper. The major advantage of such a technique in comparison with high-frequency methods (sonic, ultrasonic) is the capability of processing large melt volumes proportional to the wavelength. The mechanisms of the breaking down of particle agglomerates and the mixing of particles under conditions of cavitation and turbulence during the vibration treatment of the melt are considered. Expressions linking the threshold intensity and frequency with the amplitude necessary to activate mechanisms of turbulence and cavitation were obtained. The results of vibration treatment experiments for an aluminum alloy containing diamond nanoparticles are given. This treatment makes it possible to significantly reduce the grain size and to improve the casting homogeneity and thus improve the mechanical properties of the alloy.
Micro/Nanomechanical characterization of multi-walled carbon nanotubes reinforced epoxy composite.
Cui, Peng; Wang, Xinnan; Tangpong, X W
2012-11-01
In this paper, the mechanical properties of 1 wt.% multi-walled carbon nanotubes (MWCNTs) reinforced epoxy nanocomposites were characterized using a self-designed micro/nano three point bending tester that was on an atomic force microscope (AFM) to in situ observe MWCNTs movement on the sample surface under loading. The migration of an individual MWCNT at the surface of the nanocomposite was tracked to address the nanomechanical reinforcing mechanism of the nanocomposites. Through morphology analysis of the nanocomposite via scanning electron microscopy, AFM, and digital image correlation technique, it was found that the MWCNTs agglomerate and the bundles were the main factors for limiting the bending strength of the composites. The agglomeration/bundle effect was included in the Halpin-Tsai model to account for the elastic modulus of the nanocomposites.
Kumar, Suveen; Ashish; Kumar, Saurabh; Augustine, Shine; Yadav, Santosh; Yadav, Birendra Kumar; Chauhan, Rishi Pal; Dewan, Ajay Kumar; Malhotra, Bansi Dhar
2018-04-15
We report results of the studies relating to fabrication of nanostructured metal oxide (NMO) based cancer biosensor. With the help of 2D electroactive reduced graphene oxide (RGO), we successfully inhibited the Brownian motion of NMO that led to reduced agglomeration of NMO. The nanostructured hafnium oxide (nHfO 2 ) was used as a model NMO. The reduced agglomeration of nHfO 2 was achieved through controlled hydrothermal synthesis and investigated via nanoparticles tracking analysis (NTA). X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM) techniques were used for phase identification as well as morphological analysis of the synthesized nanohybrid (nHfO 2 @RGO) material. The 3-aminopropyl triethoxysilane (APTES) was used for the functionalization of nHfO 2 @RGO and electrophoretic deposition (EPD) technique was used for its deposition onto ITO coated glass electrode. Further, antibodies of cancer biomarker (anti-CYFRA-21-1) were immobilized via EDC-NHS chemistry and Bovine serum albumin (BSA) was used for blocking of the non-specific binding sites. The electrochemical response studies of fabricated immunoelectrode (BSA/anti-CYFRA-21-1/APTES/nHfO 2 @RGO/ITO) revealed higher sensitivity (18.24µAmLng -1 ), wide linear detection range (0 to 30ngmL -1 ), with remarkable lower detection limit (0.16ngmL -1 ). The obtained results showed good agreement with the concentration of CYFRA-21-1 obtained through enzyme linked immunosorbent assay (ELISA) in saliva samples of oral cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Daeseong; Kim, Hackjin
2018-03-01
We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.
Synthesis of FeCoB amorphous nanoparticles and application in ferrofluids
NASA Astrophysics Data System (ADS)
Zhao, Shuchun; Bian, Xiufang; Yang, Chuncheng; Yu, Mengchun; Wang, Tianqi
2018-03-01
Magnetic FeCoB amorphous nanoparticles were successfully synthesized by borohydride reduction in water/n-hexane (W/He) microemulsions. The as-prepared FeCoB alloys are amorphous and spherical nanoparticles with an average particle size about 10.7 nm, compared to FeCoB alloys with an average particle size about 304.2 nm which were synthesized by a conventional aqua-solution method. Furthermore, three kinds of FeCoB ferrofluids (FFs) were prepared by dispersing FeCoB particles into W/He microemulsion, water and silicone oil respectively. Results show that the W/He-based FeCoB FFs are superparamagnetic with saturation magnetization (Ms) reaching to 12.4 emu/g. Besides, compared to water-based and silicone oil-based FFs, W/He-based FeCoB FFs exhibit high stability, with magnetic weights decreasing slightly even under the magnetic field intensity of H = 210 mT. In the W/He-based FeCoB FFs, interfacial tensions of water phase and oil phase are supposed to prevent the agglomeration and sedimentation of FeCoB nanoparticles dispersed in different water droplets of the microemulsion, compared to the current stabilizing method of directly modifying the surface of particles.
Mehle, Andraž; Kitak, Domen; Podrekar, Gregor; Likar, Boštjan; Tomaževič, Dejan
2018-05-09
Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R 2 =0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jambagi, Sudhakar C.; Agarwal, Anish; Sarkar, Nilmoni; Bandyopadhyay, P. P.
2018-05-01
Properties of plasma-sprayed ceramic coatings can be improved significantly by reinforcing such coatings with carbon nanotube (CNT). However, it is difficult to disperse CNT in the plasma spray feedstock owing to its tendency to form agglomerate. A colloidal processing technique, namely heterocoagulation, is effective in bringing about unbundling of CNT, followed by its homogeneous dispersion in the ceramic powder. This report deals with the mixing of micro-sized crushed titania and agglomerated alumina powders with CNT using the heterocoagulation technique. Heterocoagulation of titania was attempted with both cationic and anionic surfactants, and the latter was found to be more effective. Mixing of the oxides and carbon nanotube was also accomplished in a ball mill either in a dry condition or in alcohol, and powders thus obtained were compared with the heterocoagulated powder. The heterocoagulated powder has shown a more homogeneous dispersion of CNT in the oxide. The coatings produced from the heterocoagulated powder demonstrated improvement in hardness, porosity, indentation fracture toughness and elastic modulus. This is attributed to CNT reinforcement.
NASA Astrophysics Data System (ADS)
Renard, Jean-Baptiste; Daugeron, Daniel; Personne, Pascal; Legros, Guillaume; Baillargeat, Jacques; Hadamcik, Edith; Worms, Jean-Claude
2005-02-01
Reference scattering curves for polarization and intensity produced by aggregates and agglomerates of ethylene and kerosene soot are obtained for scattering angles in the 10-170° range. The polarization measurements were obtained with the Propriétés Optiques des Grains Astronomiques et Atmosphèriques instrument for particles that levitate in microgravity during parabolic flights and on the ground by an air draught technique. The intensity measurements were obtained also on the ground with a Laboratoire de Metéorologie Physique nephelometer. The maximum polarization is of the order of 80% at a scattering angle of 80° at lambda = 632.8 nm and approximately 75% at an angle of 90° at lambda = 543.5 nm. The polarization increases by approximately 10% when the size of the agglomerate increases from 10 μm to a few hundred micrometers. The intensity curve exhibits a strong increase at small scattering angles. These reference curves will be used in the near future for the detection of stratospheric soot by remote-sensing measurement techniques.
A model to estimate the size of nanoparticle agglomerates in gas-solid fluidized beds
NASA Astrophysics Data System (ADS)
de Martín, Lilian; van Ommen, J. Ruud
2013-11-01
The estimation of nanoparticle agglomerates' size in fluidized beds remains an open challenge, mainly due to the difficulty of characterizing the inter-agglomerate van der Waals force. The current approach is to describe micron-sized nanoparticle agglomerates as micron-sized particles with 0.1-0.2-μm asperities. This simplification does not capture the influence of the particle size on the van der Waals attraction between agglomerates. In this paper, we propose a new description where the agglomerates are micron-sized particles with nanoparticles on the surface, acting as asperities. As opposed to previous models, here the van der Waals force between agglomerates decreases with an increase in the particle size. We have also included an additional force due to the hydrogen bond formation between the surfaces of hydrophilic and dry nanoparticles. The average size of the fluidized agglomerates has been estimated equating the attractive force obtained from this method to the weight of the individual agglomerates. The results have been compared to 54 experimental values, most of them collected from the literature. Our model approximates without a systematic error the size of most of the nanopowders, both in conventional and centrifugal fluidized beds, outperforming current models. Although simple, the model is able to capture the influence of the nanoparticle size, particle density, and Hamaker coefficient on the inter-agglomerate forces.
Bed material agglomeration during fluidized bed combustion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Dawson, M.R.; Smeenk, J.L.
The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occurmore » in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).« less
Riera-Franco de Sarabia, E; Elvira-Segura, L; González-Gómez, I; Rodríguez-Maroto, J J; Muñoz-Bueno, R; Dorronsoro-Areal, J L
2003-06-01
Removing very fine particles in the 0.01-1 micro m range generated in diesel combustion is important for air pollution abatement because of the impact such particles have on the environment. By forming larger particles, acoustic agglomeration of submicron particles is presented as a promising process for enhancing the efficiency of the current filtration systems for particle removal. Nevertheless, some authors have pointed out that acoustic agglomeration is much more efficient for larger particles than for smaller particles. This paper studies the effect of humidity on the acoustic agglomeration of diesel exhausts particles in the nanometer size range at 21 kHz. For the agglomeration tests, the experimental facility basically consists of a pilot scale plant with a diesel engine, an ultrasonic agglomeration chamber a dilution system, a nozzle atomizer, and an aerosol sampling and measuring station. The effect of the ultrasonic treatment, generated by a linear array of four high-power stepped-plate transducers on fumes at flow rates of 900 Nm(3)/h, was a small reduction in the number concentration of particles at the outlet of the chamber. However, the presence of humidity raised the agglomeration rate by decreasing the number particle concentration by up to 56%. A numerical study of the agglomeration process as a linear combination of the orthokinetic and hydrodynamic agglomeration coefficients resulting from mutual radiation pressure also found that acoustic agglomeration was enhanced by humidity. Both results confirm the benefit of using high-power ultrasound together with humidity to enhance the agglomeration of particles much smaller than 1 micro m.
Method for providing improved solid fuels from agglomerated subbituminous coal
Janiak, Jerzy S.; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.
1989-01-01
A method is provided for separating agglomerated subbituminous coal and the heavy bridging liquid used to form the agglomerates. The separation is performed by contacting the agglomerates with inert gas or steam at a temperature in the range of 250.degree. to 350.degree. C. at substantially atmospheric pressure.
Gupta, Sanju; Evans, Brendan; Henson, Alex; Carrizosa, Sara B.
2017-01-01
Nanodiamond particles form agglomerates in the dry powder state and this poses limitation to the accessibility of their diamond-like core thus dramatically impacting their technological advancement. In this work, we report de-agglomeration of nanodiamond (ND) by using a facile technique namely, salt-assisted ultrasonic de-agglomeration (SAUD). Utilizing ultrasound energy and ionic salts (sodium chloride and sodium acetate), SAUD is expected to break apart thermally treated nanodiamond aggregates (~50–100 nm) and produce an aqueous slurry of de-aggregated stable colloidal nanodiamond dispersions by virtue of ionic interactions and electrostatic stabilization. Moreover, the SAUD technique neither has toxic chemicals nor is it difficult to remove impurities and therefore the isolated nanodiamonds produced are exceptionally suited for engineered nanocarbon for mechanical (composites, lubricants) and biomedical (bio-labeling, biosensing, bioimaging, theranostic) applications. We characterized the microscopic structure using complementary techniques including transmission electron microscopy combined with selected-area electron diffraction, optical and vibrational spectroscopy. We immobilized SAUD produced NDs on boron-doped diamond electrodes to investigate fundamental electrochemical properties. They included surface potential (or Fermi energy level), carrier density and mapping electrochemical (re)activity using advanced scanning electrochemical microscopy in the presence of a redox-active probe, with the aim of understanding the surface redox chemistry and the interfacial process of isolated nanodiamond particles as opposed to aggregated and untreated nanoparticles. The experimental findings are discussed in terms of stable colloids, quantum confinement and predominantly surface effects, defect sites (sp2–bonded C and unsaturated bonds), inner core (sp3–bonded C)/outer shell (sp2–bonded C) structure, and surface functionality. Moreover, the surface electronic states give rise to midgap states which serve as electron donors (or acceptors) depending upon the bonding (or antibonding). These are important as electroanalytical platforms for various electrocatalytic processes. PMID:29125547
Powder agglomeration in a microgravity environment
NASA Technical Reports Server (NTRS)
Cawley, James D.
1994-01-01
This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.
Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity
NASA Astrophysics Data System (ADS)
Peluso, Enzo
The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.
Electroless plating apparatus for discrete microsized particles
Mayer, Anton
1978-01-01
Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur.
Bosselmann, Stephanie; Nagao, Masao; Chow, Keat T; Williams, Robert O
2012-09-01
Nanoparticles, of the poorly water-soluble drug, itraconazole (ITZ), were produced by the Advanced Evaporative Precipitation into Aqueous Solution process (Advanced EPAS). This process combines emulsion templating and EPAS processing to provide improved control over the size distribution of precipitated particles. Specifically, oil-in-water emulsions containing the drug and suitable stabilizers are sprayed into a heated aqueous solution to induce precipitation of the drug in form of nanoparticles. The influence of processing parameters (temperature and volume of the heated aqueous solution; type of nozzle) and formulation aspects (stabilizer concentrations; total solid concentrations) on the size of suspended ITZ particles, as determined by laser diffraction, was investigated. Furthermore, freeze-dried ITZ nanoparticles were evaluated regarding their morphology, crystallinity, redispersibility, and dissolution behavior. Results indicate that a robust precipitation process was developed such that size distribution of dispersed nanoparticles was shown to be largely independent across the different processing and formulation parameters. Freeze-drying of colloidal dispersions resulted in micron-sized agglomerates composed of spherical, sub-300-nm particles characterized by reduced crystallinity and high ITZ potencies of up to 94% (w/w). The use of sucrose prevented particle agglomeration and resulted in powders that were readily reconstituted and reached high and sustained supersaturation levels upon dissolution in aqueous media.
NASA Astrophysics Data System (ADS)
Jux, Maximilian; Finke, Benedikt; Mahrholz, Thorsten; Sinapius, Michael; Kwade, Arno; Schilde, Carsten
2017-04-01
Several epoxy Al(OH)O (boehmite) dispersions in an epoxy resin are produced in a kneader to study the mechanistic correlation between the nanoparticle size and mechanical properties of the prepared nanocomposites. The agglomerate size is set by a targeted variation in solid content and temperature during dispersion, resulting in a different level of stress intensity and thus a different final agglomerate size during the process. The suspension viscosity was used for the estimation of stress energy in laminar shear flow. Agglomerate size measurements are executed via dynamic light scattering to ensure the quality of the produced dispersions. Furthermore, various nanocomposite samples are prepared for three-point bending, tension, and fracture toughness tests. The screening of the size effect is executed with at least seven samples per agglomerate size and test method. The variation of solid content is found to be a reliable method to adjust the agglomerate size between 138-354 nm during dispersion. The size effect on the Young's modulus and the critical stress intensity is only marginal. Nevertheless, there is a statistically relevant trend showing a linear increase with a decrease in agglomerate size. In contrast, the size effect is more dominant to the sample's strain and stress at failure. Unlike microscaled agglomerates or particles, which lead to embrittlement of the composite material, nanoscaled agglomerates or particles cause the composite elongation to be nearly of the same level as the base material. The observed effect is valid for agglomerate sizes between 138-354 nm and a particle mass fraction of 10 wt%.
High concentration agglomerate dynamics at high temperatures.
Heine, M C; Pratsinis, S E
2006-11-21
The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.
Microbial effects on colloidal agglomeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hersman, L.
1995-11-01
Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared tomore » sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.« less
Method for recovering light hydrocarbons from coal agglomerates
Huettenhain, Horst; Benz, August D.; Getsoian, John
1991-01-01
A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.
Gyulai, Orsolya; Kovács, Anita; Sovány, Tamás; Csóka, Ildikó; Aigner, Zoltán
2018-04-20
This research work presents the use of the Quality by Design (QbD) concept for optimization of the spherical agglomeration crystallization method in the case of the active agent, ambroxol hydrochloride (AMB HCl). AMB HCl spherical crystals were formulated by the spherical agglomeration method, which was applied as an antisolvent technique. Spherical crystals have good flowing properties, which makes the direct compression tableting method applicable. This means that the amount of additives used can be reduced and smaller tablets can be formed. For the risk assessment, LeanQbD Software was used. According to its results, four independent variables (mixing type and time, dT (temperature difference between solvent and antisolvent), and composition (solvent/antisolvent volume ratio)) and three dependent variables (mean particle size, aspect ratio, and roundness) were selected. Based on these, a 2⁻3 mixed-level factorial design was constructed, crystallization was accomplished, and the results were evaluated using Statistica for Windows 13 program. Product assay was performed and it was revealed that improvements in the mean particle size (from ~13 to ~200 µm), roundness (from ~2.4 to ~1.5), aspect ratio (from ~1.7 to ~1.4), and flow properties were observed while polymorphic transitions were avoided.
Numerical and analytical simulation of the production process of ZrO2 hollow particles
NASA Astrophysics Data System (ADS)
Safaei, Hadi; Emami, Mohsen Davazdah
2017-12-01
In this paper, the production process of hollow particles from the agglomerated particles is addressed analytically and numerically. The important parameters affecting this process, in particular, the initial porosity level of particles and the plasma gun types are investigated. The analytical model adopts a combination of quasi-steady thermal equilibrium and mechanical balance. In the analytical model, the possibility of a solid core existing in agglomerated particles is examined. In this model, a range of particle diameters (50μm ≤ D_{p0} ≤ 160 μ m) and various initial porosities ( 0.2 ≤ p ≤ 0.7) are considered. The numerical model employs the VOF technique for two-phase compressible flows. The production process of hollow particles from the agglomerated particles is simulated, considering an initial diameter of D_{p0} = 60 μm and initial porosity of p = 0.3, p = 0.5, and p = 0.7. Simulation results of the analytical model indicate that the solid core diameter is independent of the initial porosity, whereas the thickness of the particle shell strongly depends on the initial porosity. In both models, a hollow particle may hardly develop at small initial porosity values ( p < 0.3), while the particle disintegrates at high initial porosity values ( p > 0.6.
NASA Astrophysics Data System (ADS)
Ao, Wen; Liu, Peijin; Yang, Wenjing
2016-12-01
In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for most element compositions for all the carbon inclusions. The rough, spherical, strip shape and flake shape carbon-inclusions are believed to be derived from the degradation products of the binder or oxidizer, while the fiber silk is possibly the combustion product of fiber inside the heat insulation layer of the propellants. Images of products at different pressures reveal high pressure reduces the degree of agglomeration. The chemical compositions, size range and content of all the observed structures are given in this paper. Results of our study are expected to provide better insight in the working process of solid rocket motor.
Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Kanchymalay, Kasturi; Salim, N.; Sukprasert, Anupong; Krishnan, Ramesh; Raba'ah Hashim, Ummi
2017-08-01
The aim of this paper was to study the correlation between crude palm oil (CPO) price, selected vegetable oil prices (such as soybean oil, coconut oil, and olive oil, rapeseed oil and sunflower oil), crude oil and the monthly exchange rate. Comparative analysis was then performed on CPO price forecasting results using the machine learning techniques. Monthly CPO prices, selected vegetable oil prices, crude oil prices and monthly exchange rate data from January 1987 to February 2017 were utilized. Preliminary analysis showed a positive and high correlation between the CPO price and soy bean oil price and also between CPO price and crude oil price. Experiments were conducted using multi-layer perception, support vector regression and Holt Winter exponential smoothing techniques. The results were assessed by using criteria of root mean square error (RMSE), means absolute error (MAE), means absolute percentage error (MAPE) and Direction of accuracy (DA). Among these three techniques, support vector regression(SVR) with Sequential minimal optimization (SMO) algorithm showed relatively better results compared to multi-layer perceptron and Holt Winters exponential smoothing method.
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-09-30
Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of heap leaching.« less
Modeling of Particle Agglomeration in Nanofluids
NASA Astrophysics Data System (ADS)
Kanagala, Hari Krishna
Nanofluids are colloidal dispersions of nano sized particles (<100nm in diameter) in dispersion mediums. They are of great interest in industrial applications as heat transfer fluids owing to their enhanced thermal conductivities. Stability of nanofluids is a major problem hindering their industrial application. Agglomeration and then sedimentation are some reasons, which drastically decrease the shelf life of these nanofluids. Current research addresses the agglomeration effect and how it can affect the shelf life of a nanofluid. The reasons for agglomeration in nanofluids are attributable to the interparticle interactions which are quantified by the various theories. By altering the governing properties like volume fraction, pH and electrolyte concentration different nanofluids with instant agglomeration, slow agglomeration and no agglomeration can be produced. A numerical model is created based on the discretized population balance equations which analyses the particle size distribution at different times. Agglomeration effects have been analyzed for alumina nanoparticles with average particle size of 150nm dispersed in de-ionized water. As the pH was moved towards the isoelectric point of alumina nanofluids, the particle size distribution became broader and moved to bigger sizes rapidly with time. Particle size distributions became broader and moved to bigger sizes more quickly with time with increase in the electrolyte concentration. The two effects together can be used to create different temporal trends in the particle size distributions. Faster agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces which is due to decrease in the induced charge and the double layer thickness around the particle. Bigger particle clusters show lesser agglomeration due to reaching the equilibrium size. The procedures and processes described in this work can be used to generate more stable nanofluids.
Blodgett, Robert B.; Sralla, Bryan
2008-01-01
A major angular unconformity separates carbonates and shales of the Upper Triassic Kamishak Formation from an underlying unnamed sequence of Permian agglomerate, volcaniclastic rocks (sandstone), and limestone near Puale Bay on the Alaska Peninsula. For the first time, we photographically document the angular unconformity in outcrop, as clearly exposed in a seacliff ~1.3 mi (2.1 km) west of Cape Kekurnoi in the Karluk C?4 and C?5 1:63,360-scale quadrangles. This unconformity is also documented by examination of core chips, ditch cuttings, and (or) open-hole electrical logs in two deep oil-and-gas-exploration wells (Humble Oil & Refining Co.?s Bear Creek No. 1 and Standard Oil Co. of California?s Grammer No. 1) drilled along the Alaska Peninsula southwest of Puale Bay. A third well (Richfield Oil Corp.?s Wide Bay Unit No. 1), south of and structurally on trend with the other two wells, probed deeply into the Paleozoic basement, but Triassic strata are absent, owing to either a major unconformity or a large fault. Here we briefly review current and newly acquired data on Permian and Triassic rocks of the Puale Bay-Becharof Lake-Wide Bay area on the basis of an examination of surface and subsurface materials. The resulting reinterpretation of the Permian and Triassic stratigraphy has important economic ramifications for oil and gas exploration on the Alaska Peninsula and in the Cook Inlet basin. We also present a history of petroleum exploration targeting Upper Triassic reservoirs in the region.
Lee, Jai-Sung; Choi, Joon-Phil; Lee, Geon-Yong
2013-01-01
This paper provides an overview on our recent investigations on the consolidation of hierarchy-structured nanopowder agglomerates and related applications to net-shaping nanopowder materials. Understanding the nanopowder agglomerate sintering (NAS) process is essential to processing of net-shaped nanopowder materials and components with small and complex shape. The key concept of the NAS process is to enhance material transport through controlling the powder interface volume of nanopowder agglomerates. Based upon this concept, we have suggested a new idea of full density processing for fabricating micro-powder injection molded part using metal nanopowder agglomerates produced by hydrogen reduction of metal oxide powders. Studies on the full density sintering of die compacted- and powder injection molded iron base nano-agglomerate powders are introduced and discussed in terms of densification process and microstructure. PMID:28788317
NASA Astrophysics Data System (ADS)
Bolshakov, V. V.
2017-11-01
The article analyzes the research and design methods of urban agglomerations in the context of the Chelyabinsk agglomeration from the point of view of correctness, objectivity and consistency of the results obtained. The completed and approved project of the Chelyabinsk agglomeration is analysed to provide architectural and planning solutions for sustainable social and economic development according to the theories that have been formed to date. The possibility of effectuation and implementation of the approved project of the Chelyabinsk agglomeration taking in account existing specific natural, historical and socio-economic factors characteristic for the territory under consideration is examined. The authors draw the conclusions the project of the Chelyabinsk agglomeration has been developed in line with the town-planning solutions that do not reflect modern approaches based on the competitive advantages of territories and do not form a space providing transition to a modernized and innovative economy. Specific town-planning decisions have a weak justification and an undeveloped methodology for pre-project analysis and methodology for designing urban agglomerations because of absence of a full study of the phenomenon of urban agglomeration and processes occurring in it today. It is necessary to continue research in the field of development of the Chelyabinsk agglomeration with the use of a logical and objective methodology to analyze the territory and design which can lead to the formation of an urban-planning information model that reflects all the system processes and allows for predicting project solutions.
Krause, Maya; Blum, Jürgen
2004-07-09
In a second microgravity experiment on the formation of dust agglomerates by Brownian motion-induced collisions we find that the agglomerates have fractal dimensions as low as 1.4. Because of much better data, we are now able to derive the diffusion constant of the agglomerates as a function of mass, to show that a power law with an exponent of 1.7 describes the temporal evolution of the mean agglomerate mass very well and to prove that the collision cross section is proportional to the geometrical cross section. In addition to that we derived the universal mass-distribution function of the agglomerates.
Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics
Pant, Lalit M.; Weber, Adam Z.
2017-04-14
A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.
Molecules coating magnetic nanoparticles for oil-field applications
NASA Astrophysics Data System (ADS)
Zuluaga, Sebastian; Manchanda, Priyanka; Pantelides, Sokrates
Magnetic nanoparticles have recently attracted significant attention in scientific and industrial communities due to their use in the fields of catalysis, spintronics, biomedical applications, and oil recovery and reservoir characterization. However, these nanoparticles have to be protected with a coating layer of molecules that prevents the nanoparticles from oxidation, which is known to occur in air, and from agglomeration into larger nanoparticles. Therefore, the binding of the molecules to the nanoparticles is critical before a large scale implementation can be done. Here we report results of density functional theory calculations on several molecules (methylamine, acetic acid, boronic acid, ethyl phosphate, and ethyl trihydroxysilane) and magnetic nanoparticles (Fe3O4, NiFe2O4, and Fe3C). We focus on two main points: 1) the bond strength between the organic molecule and the nano particle, and 2) how, H2O and H+ in the oil well may facilitate the desorption of the molecules. The results show that H+ and H2O molecules facilitate the desorption of molecules reducing the bond strength by several eV. On the other hand, the results allow us to identify and design molecules that exhibit the best performance in protecting each nanoparticle. Supported by a Grant from the Petroleum Institute, Abu Dhabi.
Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour
NASA Astrophysics Data System (ADS)
Shi, Y.; Durrell, J. H.; Dennis, A. R.; Huang, K.; Namburi, D. K.; Zhou, D.; Cardwell, D. A.
2017-01-01
Rare earth-barium-copper oxide bulk superconductors fabricated in large or complicated geometries are required for a variety of engineering applications. Initiating crystal growth from multiple seeds reduces the time taken to melt-process individual samples and can reduce the problem of poor crystal texture away from the seed. Grain boundaries between regions of independent crystal growth can reduce significantly the flow of current due to crystallographic misalignment and the agglomeration of impurity phases. Enhanced supercurrent flow at such boundaries has been achieved by minimising the depth of the boundary between A growth sectors generated during the melt growth process by reducing second phase agglomerations and by a new technique for initiating crystal growth that minimises the misalignment between different growth regions. The trapped magnetic fields measured for the resulting samples exhibit a single trapped field peak indicating they are equivalent to conventional single grains.
Characterization of desert sand as a sensible thermal energy storage medium
NASA Astrophysics Data System (ADS)
Diago, Miguel; Iniesta, Alberto Crespo; Delclos, Thomas; Soum-Glaude, Audrey; Shamim, Tariq; Calvet, Nicolas
2016-05-01
Desert sand from the United Arab Emirates (UAE) is considered as a possible sensible heat, thermal energy storage (TES) material. Its thermal stability, specific heat capacity and tendency to agglomerate are studied at high temperatures. The analyses show that it is possible to use desert sand as a TES material up to 800-1000 °C. Above 800 °C, weak agglomeration effects start to become significant. The samples become solid above 1000 °C. This may represent a major operating limit depending on the handling mechanism in place for the possible transport of the sand. The sand chemical composition is analyzed with the XRF and XRD techniques, which reveal the dominance of quartz and carbonates. Finally, the spectral absorptivity of the samples is measured before and after a thermal cycle, as it may be possible to use the desert sand not only as a TES material but also as a direct solar absorber.
Acousto-Optical Evaluation Of Fiber Size In Wood Pulp
NASA Astrophysics Data System (ADS)
Dion, J. L.; Garceau, J. J.; Morissette, J. C.
1986-10-01
In the pulp and paper industry, the problem of regular and fast evaluation of wood fiber characteristics such as length and specific area is an important one. With this in view, we have been studying an acousto-optical technique based on the acoustic agglomeration of fibers in a water suspension, where a stationary ultrasonic field is created at about 150 kHz. Under the influence of radiation forces, fibers re-orient themselves parallel to the nodal planes of acoustic pressure, and regroup or agglomerate in these planes in different characteristic times. These are mesured by means of the light scattered at small angles. We have found that these times depend on the size distribution of fibers, particularly length. We present results obtained with an assortment of fiber types, under various experimental conditions which indicate eventual applications in the automatic control of pulp production.
Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban
2018-01-01
Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature. PMID:29489897
Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban
2018-01-01
Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature.
The Magnet Cove Rutile Company mine, Hot Spring County, Arkansas
Kinney, Douglas M.
1949-01-01
The Magnet Cove Rutile Company mine was mapped by the U.S. Geological Survey in November 1944. The pits are on the northern edge of Magnet Cove and have been excavated in the oxidized zone of highly weathered and altered volcanic agglomerate. The agglomerate is composed of altered mafic igneous rocks in a matrix of white to gray clay, a highly altered tuff. The agglomerate appears layered and is composed of tuffaceous clay material below and igneous blocks above. The agglomerate is cut by aplite and lamprophyre dikes. Alkalic syenite dikes crop out on the ridge north of the pits. At the present stage of mine development the rutile seems to be concentrated in a narrow zone beneath the igneous blocks of the agglomerate. Rutile, associated with calcite and pyrite, occurs as disseminated acicular crystals and discontinuous vein-like masses in the altered tuff. Thin veins of rutile locally penetrate the mafic igneous blocks of the agglomerate.
Green bio-oil extraction for oil crops
NASA Astrophysics Data System (ADS)
Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.
2016-06-01
The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.
Composite propellant combustion with low aluminum agglomeration
NASA Astrophysics Data System (ADS)
Mullen, Jessica Christine
Aluminum behavior---accumulation, agglomeration and ignition---is studied in a unique, wide-distribution, ammonium perchlorate/hydroxyl-terminated polybutadiene (AP/HTPB) propellant formulation that results in low Al agglomeration, even at low pressures (1--30 atm). Variations in formulation---such as fine-AP/binder ratio, Al particle size, Al loading, coarse-AP size---are also examined. A fuel-rich, oxygenated binder matrix highly loaded with fine (2-mum) AP (FAP) at 75/25:FAP/binder (by mass) is found to have premixed flame conditions that produce minimal agglomeration (without ignition) of 15-mum Al. Coarse AP (CAP) is added to the system in the form of either particles (200 or 400 mum) or pressed-AP laminates (simulated CAP). In the 2-D laminate system the CAP/oxyfuel-matrix flame structure is seen to be similar to that previously described for non-aluminized laminates with split (diffusion) and merged (partially-premixed) flame regimes, depending on pressure and fuel-matrix thickness. Both laminate and particulate systems show that with CAP present, Al can agglomerate more extensively on CAP via lateral surface migration from fuel matrix to the CAP region. The particulate CAP system also shows that Al can accumulate/agglomerate via settling on CAP from above (in the direction of burning). Both systems, but more clearly the 2-D laminates, show that with CAP present, Al is ignited by the outer CAP/fuel-matrix canopy flames. Thus, a propellant formulation is proposed for reducing overall Al agglomeration through intrinsically reduced agglomeration in the fuel-matrix and a reduced number of CAP-particle agglomerates via higher FAP/CAP ratio.
Farley, Carlton; Kassu, Aschalew; Bose, Nayana; Jackson-Davis, Armitra; Boateng, Judith; Ruffin, Paul; Sharma, Anup
2017-06-01
A short distance standoff Raman technique is demonstrated for detecting economically motivated adulteration (EMA) in extra virgin olive oil (EVOO). Using a portable Raman spectrometer operating with a 785 nm laser and a 2-in. refracting telescope, adulteration of olive oil with grapeseed oil and canola oil is detected between 1% and 100% at a minimum concentration of 2.5% from a distance of 15 cm and at a minimum concentration of 5% from a distance of 1 m. The technique involves correlating the intensity ratios of prominent Raman bands of edible oils at 1254, 1657, and 1441 cm -1 to the degree of adulteration. As a novel variation in the data analysis technique, integrated intensities over a spectral range of 100 cm -1 around the Raman line were used, making it possible to increase the sensitivity of the technique. The technique is demonstrated by detecting adulteration of EVOO with grapeseed and canola oils at 0-100%. Due to the potential of this technique for making measurements from a convenient distance, the short distance standoff Raman technique has the promise to be used for routine applications in food industry such as identifying food items and monitoring EMA at various checkpoints in the food supply chain and storage facilities.
Modeling of particle agglomeration in nanofluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, K. Hari; Neti, S.; Oztekin, A.
2015-03-07
Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid wasmore » moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.« less
Spatial Linkage and Urban Expansion: AN Urban Agglomeration View
NASA Astrophysics Data System (ADS)
Jiao, L. M.; Tang, X.; Liu, X. P.
2017-09-01
Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.
A flow-free droplet-based device for high throughput polymorphic crystallization.
Yang, Shih-Mo; Zhang, Dapeng; Chen, Wang; Chen, Shih-Chi
2015-06-21
Crystallization is one of the most crucial steps in the process of pharmaceutical formulation. In recent years, emulsion-based platforms have been developed and broadly adopted to generate high quality products. However, these conventional approaches such as stirring are still limited in several aspects, e.g., unstable crystallization conditions and broad size distribution; besides, only simple crystal forms can be produced. In this paper, we present a new flow-free droplet-based formation process for producing highly controlled crystallization with two examples: (1) NaCl crystallization reveals the ability to package saturated solution into nanoliter droplets, and (2) glycine crystallization demonstrates the ability to produce polymorphic crystallization forms by controlling the droplet size and temperature. In our process, the saturated solution automatically fills the microwell array powered by degassed bulk PDMS. A critical oil covering step is then introduced to isolate the saturated solution and control the water dissolution rate. Utilizing surface tension, the solution is uniformly packaged in the form of thousands of isolating droplets at the bottom of each microwell of 50-300 μm diameter. After water dissolution, individual crystal structures are automatically formed inside the microwell array. This approach facilitates the study of different glycine growth processes: α-form generated inside the droplets and γ-form generated at the edge of the droplets. With precise temperature control over nanoliter-sized droplets, the growth of ellipsoidal crystalline agglomerates of glycine was achieved for the first time. Optical and SEM images illustrate that the ellipsoidal agglomerates consist of 2-5 μm glycine clusters with inner spiral structures of ~35 μm screw pitch. Lastly, the size distribution of spherical crystalline agglomerates (SAs) produced from microwells of different sizes was measured to have a coefficient variation (CV) of less than 5%, showing crystal sizes can be precisely controlled by microwell sizes with high uniformity. This new method can be used to reliably fabricate monodispersed crystals for pharmaceutical applications.
Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, N. E.
2017-03-22
Up until Dec 2016, the thermal agglomeration was very heuristic, and as such, difficult to define. The lack of predictability became problematic, and the current notes represent the first real attempt to systematize the specification of the agglomerated process parameters.
Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid
2011-01-01
Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135
Alian, A R; Meguid, S A
2017-02-08
Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.
Curtis, Andrew R; Palin, William M; Fleming, Garry J P; Shortall, Adrian C C; Marquis, Peter M
2009-02-01
To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique. RBCs with microhybrid (Filtek Z250), 'nanohybrid' (Grandio) and 'nanofilled' (Filtek Supreme), filler particle morphologies were investigated. Filler particles were provided by the manufacturer or separated from the unpolymerized resin using a dissolution technique. Filler particles (n=30) were subjected to compression using a micromanipulation technique between a descending glass probe and a glass slide. The number of distinct fractures particles underwent was determined from force/displacement and stress/deformation curves and the force at fracture and pseudo-modulus of stress was calculated. Agglomerated fillers ('nanoclusters') exhibited up to four distinct fractures, while spheroidal and irregular particles underwent either a single fracture or did not fracture following micromanipulation. Z-tests highlighted failure of nanoclusters to be significant compared with spheroidal and irregular particles (P<0.05). The mean force at first fracture of the nanoclusters was greater (1702+/-909 microN) than spheroidal and irregular particles (1389+/-1342 and 1356+/-1093 microN, respectively). Likewise, the initial pseudo-modulus of stress of nanoclusters (797+/-555 MPa) was also greater than spheroidal (587+/-439 MPa) or irregular (552+/-275 MPa) fillers. The validity of employing the micromanipulation technique to determine the mechanical properties of filler particulates was established. The 'nanoclusters' exhibited a greater tendency to multiple fractures compared with conventional fillers and possessed a comparatively higher variability of pseudo-modulus and load prior to and at fracture, which may modify the damage tolerance of the overall RBC system.
Successfully use agglomeration for size enlargement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietsch, W.
1996-04-01
The processing of fine and ultrafine particles by size enlargement finds an ever increasing application. At the same time, undesirable agglomeration such as buildup, caking, bridging, and uncontrolled aggregation of fine particles can occur during processing and handling of these particulate solids. This article will provide a survey of the phenomena of agglomeration and discuss the unit operation of size enlargement by agglomeration. This article is also an invitation, particularly to young engineers, to become interested in agglomeration. Considering that mechanical process technologies are requiring more energy every year than any other group of consumers and efficiencies are typically inmore » the single digits or teens at best, considerable rewards can be expected from the development of scientifically modified, more energy-efficient methods and equipment.« less
A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS
A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...
Urban Planning Problems of Agglomerations
NASA Astrophysics Data System (ADS)
Olenkov, V. D.; Tazeev, N. T.
2017-11-01
The article explores the state of the air basin of the Chelyabinsk agglomeration and gives the examples of solutions for the pollution problems from the point of view of city planning. The main features and structure of the modern urban agglomerations are considered, the methods for determining their boundaries are studied and the main problems are identified. The study of the boundaries and territorial structure of the Chelyabinsk urban agglomeration is conducted, and a general description of the territory is given. The data on the change in the volume of pollutant emissions into the atmosphere and the index of atmospheric pollution for the period 2003-2015 are given basing on the annual comprehensive reports regarding the state of the environment. The review of the world experience of city-planning actions on the decision of ecological problems is carried out. The most suitable ways for the ecological problems solving in the Chelyabinsk agglomeration are considered. The authors give recommendations for the ecological situation improving in the territory of the Chelyabinsk agglomeration.
Morphological characterization of diesel soot agglomerates based on the Beer-Lambert law
NASA Astrophysics Data System (ADS)
Lapuerta, Magín; Martos, Francisco J.; José Expósito, Juan
2013-03-01
A new method is proposed for the determination of the number of primary particles composing soot agglomerates emitted from diesel engines as well as their individual fractal dimension. The method is based on the Beer-Lambert law and it is applied to micro-photographs taken in high resolution transmission electron microscopy. Differences in the grey levels of the images lead to a more accurate estimation of the geometry of the agglomerate (in this case radius of gyration) than other methods based exclusively on the planar projections of the agglomerates. The method was validated by applying it to different images of the same agglomerate observed from different angles of incidence, and proving that the effect of the angle of incidence is minor, contrary to other methods. Finally, the comparisons with other methods showed that the size, number of primary particles and fractal dimension (the latter depending on the particle size) are usually underestimated when only planar projections of the agglomerates are considered.
Mohanty, D.; Hockaday, E.; Li, J.; ...
2016-02-21
During LIB electrode manufacturing, it is difficult to avoid the certain defects that diminish LIB performance and shorten the life span of the batteries. This study provides a systematic investigation correlating the different plausible defects (agglomeration/blisters, pinholes/divots, metal particle contamination, and non-uniform coating) in a LiNi 0.5Mn 0.3Co 0.2O 2 positive electrode with its electrochemical performance. Additionally, an infrared thermography technique was demonstrated as a nondestructive tool to detect these defects. The findings show that cathode agglomerates aggravated cycle efficiency, and resulted in faster capacity fading at high current density. Electrode pinholes showed substantially lower discharge capacities at higher currentmore » densities than baseline NMC 532 electrodes. Metal particle contaminants have an extremely negative effect on performance, at higher C-rates. The electrodes with more coated and uncoated interfaces (non-uniform coatings) showed poor cycle life compared with electrodes with fewer coated and uncoated interfaces. Further, microstructural investigation provided evidence of presence of carbon-rich region in the agglomerated region and uneven electrode coating thickness in the coated and uncoated interfacial regions that may lead to the inferior electrochemical performance. In conclusion, this study provides the importance of monitoring and early detection of the electrode defects during LIB manufacturing processes to minimize the cell rejection rate after fabrication and testing.« less
Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes
NASA Astrophysics Data System (ADS)
Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena
2017-08-01
Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.
Zhang, Tiantian; Britton, Ben; Shollock, Barbara; Dunne, Fionn
2016-01-01
A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270–1480 MPa. PMID:27279765
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; Jiang, Jun; Britton, Ben; Shollock, Barbara; Dunne, Fionn
2016-05-01
A crystal plasticity finite-element model, which explicitly and directly represents the complex microstructures of a non-metallic agglomerate inclusion within polycrystal nickel alloy, has been developed to study the mechanistic basis of fatigue crack nucleation. The methodology is to use the crystal plasticity model in conjunction with direct measurement at the microscale using high (angular) resolution-electron backscatter diffraction (HR-EBSD) and high (spatial) resolution-digital image correlation (HR-DIC) strain measurement techniques. Experimentally, this sample has been subjected to heat treatment leading to the establishment of residual (elastic) strains local to the agglomerate and subsequently loaded under conditions of low cyclic fatigue. The full thermal and mechanical loading history was reproduced within the model. HR-EBSD and HR-DIC elastic and total strain measurements demonstrate qualitative and quantitative agreement with crystal plasticity results. Crack nucleation by interfacial decohesion at the nickel matrix/agglomerate inclusion boundaries is observed experimentally, and systematic modelling studies enable the mechanistic basis of the nucleation to be established. A number of fatigue crack nucleation indicators are also assessed against the experimental results. Decohesion was found to be driven by interface tensile normal stress alone, and the interfacial strength was determined to be in the range of 1270-1480 MPa.
NASA Astrophysics Data System (ADS)
Simonow, Barbara Katrin; Wenzlaff, Daniela; Meyer-Plath, Asmus; Dziurowitz, Nico; Thim, Carmen; Thiel, Jana; Jandy, Mikolaj; Plitzko, Sabine
2018-06-01
The assessment of the toxicity of airborne nanofibers is an important task. It relies on toxicological inhalation studies and validated exposure measurement techniques. Both require nanofiber-containing aerosols of known morphological composition and controlled fraction of individual fibers. Here, a dry powder dispersion method is presented that operates with mixtures of nanofibers and microscale beads. Aerosolization experiments of mixtures of multi-walled carbon nanotubes (MWCNTs) and glass beads that were continuously fed into a Venturi nozzle enabled high generation rates of aerosols composed of individual and agglomerate nanofiber structures. The aerosol process achieved good stability over more than 2 h with respect to concentration and aerodynamic size distribution. Its operation duration is limited only by the reservoir volume of the cyclone used to separate the beads from the aerosol. The aerosol concentration can be controlled by changing the mass ratio of MWCNTs and glass beads or by adapting the mass feed rate to the nozzle. For two agglomerated MWCNT materials, aerosol concentrations ranged from 1700 to 64,000 nano-objects per cm3. Comprehensive scanning electron microscope analysis of filter samples was performed to categorize and determine the morphological composition of the aerosol, its fiber content as well as fiber length and diameter distributions. High fractions of individual fibers of up to 34% were obtained, which shows the setup to be capable of dispersing also highly tangled MWCNT agglomerates effectively.
Yeo, Eudora S Y; Mathys, Gary I; Brack, Narelle; Thostenson, Erik T; Rider, Andrew N
2017-05-30
Functionalization of carbon nanomaterials is often a critical step that facilitates their integration into larger material systems and devices. In the as-received form, carbon nanomaterials, such as carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs), may contain large agglomerates. Both agglomerates and impurities will diminish the benefits of the unique electrical and mechanical properties offered when CNTs or GNPs are incorporated into polymers or composite material systems. Whilst a variety of methods exist to functionalize carbon nanomaterials and to create stable dispersions, many the processes use harsh chemicals, organic solvents, or surfactants, which are environmentally unfriendly and may increase the processing burden when isolating the nanomaterials for subsequent use. The current research details the use of an alternative, environmentally friendly technique for functionalizing CNTs and GNPs. It produces stable, aqueous dispersions free of harmful chemicals. Both CNTs and GNPs can be added to water at concentrations up to 5 g/L and can be recirculated through a high-powered ultrasonic cell. The simultaneous injection of ozone into the cell progressively oxidizes the carbon nanomaterials, and the combined ultrasonication breaks down agglomerates and immediately exposes fresh material for functionalization. The prepared dispersions are ideally suited for the deposition of thin films onto solid substrates using electrophoretic deposition (EPD). CNTs and GNPs from the aqueous dispersions can be readily used to coat carbon- and glass-reinforcing fibers using EPD for the preparation of hierarchical composite materials.
Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes
NASA Astrophysics Data System (ADS)
Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan
2013-01-01
Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-03-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; J. A. Gurtler
2005-09-30
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less
Rock geochemistry in the Mahd adh Dhahab district, Kingdom of Saudi Arabia
Worl, R.G.; Doebrich, J.L.; Allen, M.S.; Afifi, A.M.; Ebens, R.J.
1987-01-01
Anomalous values of gold, silver, lead, and to a lesser extent copper and zinc in surface rock samples clearly delineated the northern mineralized zone in the upper agglomerate, and an east-vein area and west-vein area of the southern mineralized zone in the lower agglomerate. A third geochemically anomalous area occurs farther to the west in the lower agglomerate, suggesting that mineralization may have extended at least to this area along the lower agglomerate-lower tuff contact, and possibly even further to the west.
Search for the contamination source of butyltin compounds in wine: agglomerated cork stoppers.
Jiang, Gui-Bin; Liu, Ji-Yan; Zhou, Qun-Fang
2004-08-15
A possible butyltin contamination source in wine was studied in this paper. Agglomerated cork stoppers, which were produced in Portugal, Spain, and Italy, used in wine bottles were examined. The domestic cork products, cork granules, and mucus used for cork products were also analyzed. The levels of mono- and dibutyltin compounds in corks were found in the range from <0.0024 to 3.3 and from <0.0029 to 6.7 microg of Sn/g, respectively. A low level of tributyltin contamination was also found in 2 of 31 tested samples. The presence of butyltin compounds in agglomerated cork stoppers was confirmed by GC-MS. Experimental results indicated that all overseas agglomerated cork stoppers studied contained mono- and/or dibutyltins. Butyltins were not detected in cork granules, mucus, most of the natural cork stoppers, and domestic agglomerated cork products. The concentrations of mono- and dibutyltins increased with the time in a 30-day experiment, showing that butyltin compounds can leach from agglomerated cork to the wine. When the butyltin concentrations in wine samples were compared with their levels in the corresponding agglomerated cork stoppers, a correlation was found. The potential harm of such food contamination was evaluated by the toxic research of butyltin compounds using Daphnia sp. as the experimental model.
Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.
2007-07-01
This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.
Mensch, Christopher D; Davis, Harrison B; Blue, Jeffrey T
2015-01-01
The purpose of this work was to investigate the susceptibility of an aluminum adjuvant and an aluminum-adjuvanted native outer membrane vesicle (nOMV) vaccine formulation to freeze/thaw-induced agglomeration using static light scattering and micro-flow Imaging analysis; and to evaluate the use of propylene glycol as a vaccine formulation excipient by which freeze/thaw-induced agglomeration of a nOMV vaccine formulation could be mitigated. Our results indicate that including 7% v/v propylene glycol in an nOMV containing aluminum adjuvanted vaccine formulation, mitigates freeze/thaw-induced agglomeration. We evaluated the effect of freeze-thawing on an aluminum adjuvant and an aluminum adjuvanted native outer membrane vesicle (nOMV) vaccine formulation. Specifically, we characterized the freeze/thaw-induced agglomeration through the use of static light scattering, micro-flow imaging, and cryo-electron microscopy analysis. Further, we evaluated the use of 0-9% v/v propylene glycol as an excipient which could be included in the formulation for the purpose of mitigating the agglomeration induced by freeze/thaw. The results indicate that using 7% v/v propylene glycol as a formulation excipient is effective at mitigating agglomeration of the nOMV vaccine formulation, otherwise induced by freeze-thawing. © PDA, Inc. 2015.
NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.K. Kawatra; T.C. Eisele; J.A. Gurtler
2005-04-01
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; J. A. Gurtler
2004-03-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nigel; Lodge, Mike; Hilton, Linda
The nuclear industry is not a provider of oils and solvents but uses them in motors, equipment and even in chemical processes to extract valuable products. Currently, for old and contaminated oils and solvents, techniques still exist, such as incineration, but not all the oils and solvents are compatible with this technique because the activities of some components inside the oils are too high to be accepted at the incineration facility. For these oils, an alternative technique needs to be found for treatment. A process developed for water treatment using a technique of adsorption coupled with electrochemical regeneration has beenmore » investigated to assess its capability to treat these organic wastes. One of the strengths of the process is its flexibility and adaptation to different compositions of oils. This point is important because, in the AREVA case, there are a lot of small volumes of old oils which need to be re-characterized. It takes time and money to do it especially when oils are contaminated; this is one reason why the technique is interesting to investigate. Tests have been performed with different oils coming from different sites to test the feasibility. Results demonstrate the destruction of a range of organics with regeneration energy requirements of 13.4 - 68.7 kWh/l and offer confidence for the future potential of the process. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, J.A.; Carey, R.G.; Janecky, D.R.
1994-06-01
The instrumentation, the luminescence microprobe, and synchronously scanned luminescence spectroscopy technique described here can be used to classify microliter quantities of oil such as those in fluid inclusions in cements from petroleum reservoirs. It is primarily constructed to obtain synchronously scanned luminescence spectra from microscopic sized samples to characterize the organic classes of compounds that predominate. At present no other technique can so readily analyze a single oil-bearing fluid inclusion. The data collected from the technique are pertinent to evaluating systems and providing quantitative data for solving problems in oil migration and maturation determinations, oil-to-oil and oil-to-source correlations, oil degradation,more » and episodes and chemistry of cementation.« less
Chemometric techniques in oil classification from oil spill fingerprinting.
Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wong, Kok Fah; Retnam, Ananthy; Zali, Munirah Abdul; Mokhtar, Mazlin; Yusri, Mohd Ayub
2016-10-15
Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mondragón, Rosa; Torres-Mendieta, Rafael; Meucci, Marco; Mínguez-Vega, Gladys; Enrique Juliá, J.; Sani, Elisa
2016-07-01
A laser-based "green" synthesis of nanoparticles (NPs) was used to manufacture gold NPs in water. The light source is a Ti:Sapphire laser with 30 fs FWHM pulses, 800 nm mean wavelength, and 1 kHz repetition rate. The method involves two stages: (1) pulsed laser ablation in liquids and (2) photo-fragmentation (PF). Highly pure and well-dispersed NPs with a diameter of 18.5 nm that can be stored at room temperature without showing any agglomeration over a period of at least 3 months were produced without the need to use any stabilizer. Transmittance spectra, extinction coefficient, NPs agglomeration dynamics, and thermal conductivity of the nanofluids obtained were analyzed before and after being submitted to thermal cycling and compared to those obtained for commercial gold/water suspensions. Optical properties have also been investigated, showing no substantial differences for thermal applications between NPs produced by the laser ablation and PF technique and commercial NPs. Therefore, nanofluids produced by this technique can be used in thermal applications, which are foreseen for conventional nanofluids, e.g., heat transfer enhancement and solar radiation direct absorption, but offering the opportunity to produce them in situ in almost any kind of fluid without the production of any chemical waste.
NASA Astrophysics Data System (ADS)
Kamaruddin; Edikresnha, D.; Sriyanti, I.; Munir, M. M.; Khairurrijal
2017-05-01
Green Tea Extract (GTE) as an active substance has successfully loaded to PVP nanostructures using electrohydrodynamic spraying technique. The precursor solution was the mixture of ethanolic polyvinylpyrrolidone (PVP) with a molecular weight of 1,300 kg/mol and ethanolic GTE solutions at a weight concentration of 4 wt.% and 2 wt.%, respectively, and it was estimated that the entanglement number was 2. The electrospraying was conducted at the voltage of 15 kV, the flow rate of 10 µL/min., and the distance between the collector and the tip of the nozzle of 10 cm. The SEM images showed that the PVP/GTE nanostructures had a combination of agglomerated beads (less spherical particles) and nanofibers. This occurred because if the PVP concentration is low, the PVP/GTE composite has weak core structures that cause the shell to be easily agglomerated each other. The intermolecular interaction between PVP and GTE in the PVP/GTE nanostructures occurred as confirmed by the peak at 3396 cm-1, which is the carboxyl group, proving that the PVP/GTE nanostructures contained water, alcohols, and phenols. The peak at 1040 cm-1, which is the stretching of C-O group in amino acid, gave another proof to the intermolecular interaction.
Amorphous iron–chromium oxide nanoparticles with long-term stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iacob, Mihail; Institute of Chemistry of ASM, Academiei str. 3, Chisinau 2028, Republic of Moldova; Cazacu, Maria, E-mail: mcazacu@icmpp.ro
2015-05-15
Highlights: • Fe–Cr oxide nanoparticles with pre-established metals ratio were obtained. • The amorphous state and its long-term stability were highlighted by X-ray diffraction. • The average diameter of dried nanoparticles was 3.5 nm, as was estimated by TEM, AFM. • In hexane dispersion, nanoparticles with diameter in the range 2.33–4.85 nm were found. • Superparamagnetic state of NPs co-exists with diamagnetism of the organic layer. - Abstract: Iron–chromium nanoparticles (NPs) were obtained through the thermal decomposition of μ{sub 3}-oxo heterotrinuclear (FeCr{sub 2}O) acetate in the presence of sunflower oil and dodecylamine (DA) as surfactants. The average diameter of themore » NPs was 3.5 nm, as estimated on the basis of transmission electron microscopy and atomic force microscopy images. Both techniques revealed the formation of roughly approximated spheres with some irregularities and agglomerations in larger spherical assemblies of 50–100 nm. In hexane, NPs with diameters in the 2.33–4.85 nm range are individually dispersed, as emphasized by dynamic light scattering measurements. The amorphous nature of the product was emphasized by X-ray powder diffraction. The study of the magnetic properties shows the presence of superparamagnetic state of iron–chromium oxide NPs and the diamagnetic contribution from DA layer forming a shell of NPs.« less
Dynamic forces on agglomerated particles caused by high-intensity ultrasound.
Knoop, Claas; Fritsching, Udo
2014-03-01
In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.
Cost-effectiveness of conservation payment schemes for species with different range sizes.
Drechsler, Martin; Smith, Henrik G; Sturm, Astrid; Wätzold, Frank
2016-08-01
Payments to compensate landowners for carrying out costly land-use measures that benefit endangered biodiversity have become an important policy instrument. When designing such payments, it is important to take into account that spatially connected habitats are more valuable for many species than isolated ones. One way to incentivize provision of connected habitats is to offer landowners an agglomeration bonus, that is, a bonus on top of payments they are receiving to conserve land if the land is spatially connected. Researchers have compared the cost-effectiveness of the agglomeration bonus with 2 alternatives: an all-or-nothing, agglomeration payment, where landowners receive a payment only if the conserved land parcels have a certain level of spatial connectivity, and a spatially homogeneous payment, where landowners receive a payment for conserved land parcels irrespective of their location. Their results show the agglomeration bonus is rarely the most cost-effective option, and when it is, it is only slightly better than one of the alternatives. This suggests that the agglomeration bonus should not be given priority as a policy design option. However, this finding is based on consideration of only 1 species. We examined whether the same applied to 2 species, one for which the homogeneous payment is best and the other for which the agglomeration payment is most cost-effective. We modified a published conceptual model so that we were able to assess the cost-effectiveness of payment schemes for 2 species and applied it to a grassland bird and a grassland butterfly in Germany that require the same habitat but have different spatial-connectivity needs. When conserving both species, the agglomeration bonus was more cost-effective than the agglomeration and the homogeneous payment; thus, we showed that as a policy the agglomeration bonus is a useful conservation-payment option. © 2016 Society for Conservation Biology.
Electrostatic formation of liquid marbles and agglomerates
NASA Astrophysics Data System (ADS)
Liyanaarachchi, K. R.; Ireland, P. M.; Webber, G. B.; Galvin, K. P.
2013-07-01
We report observations of a sudden, explosive release of electrostatically charged 100 μm glass beads from a particle bed. These cross an air gap of several millimeters, are engulfed by an approaching pendant water drop, and form a metastable spherical agglomerate on the bed surface. The stability transition of the particle bed is explained by promotion of internal friction by in-plane electrostatic stresses. The novel agglomerates formed this way resemble the "liquid marbles" formed by coating a drop with hydrophobic particles. Complex multi-layered agglomerates may also be produced by this method, with potential industrial, pharmaceutical, environmental, and biological applications.
Oil pollution signatures by remote sensing.
NASA Technical Reports Server (NTRS)
Catoe, C. E.; Mclean, J. T.
1972-01-01
Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.
Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil
Vieira, Silvia Cristina Heredia; de Paulo, Luis Fernando; Svidzinski, Terezinha Inez Estivaleti; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; de Souza, Amanda; Young, Maria Cláudia Marx; Cortez, Diógenes Aparício Garcia
2011-01-01
In vitro activity of the essential oil from Piper diospyrifolium leaves was tested using disk diffusion techniques. The antifungal assay showed significant potencial antifungal activity: the oil was effective against several clinical fungal strains. The majority compounds in the essential oil were identified as sesquiterpenoids by GC-MS and GC-FID techniques. PMID:24031717
NASA Astrophysics Data System (ADS)
Chen, Y. Q.; Chen, H. P.; Yang, H. P.; Wang, X. H.; Zhang, S. H.
With the depleting of fossil fuel and environmental polluting increasing, the utilization of biomass resources caught increasing concern. Biomass gasification in fluidized bed, as one promising technology, developed quickly. However, serious agglomeration was displayed as biomass ash reacted with bed material (silica sand) at higher temperature. It hindered the wide utilization of CFB gasifier. The objective ofthis work is to investigate the agglomeration behavior between biomass ash and silica sand, and catch the inherent mechanism. Firstly, the influence of ash compounds on the agglomeration behavior was analyzed with biomass ash and synthesis ash compounds addition in fixed bed as ash sample mixed with bed material evenly before every trial. The reaction temperature was set 850°C that is the operated temperature for many fluidized bed gasificated biomass fuels. Then the influence of reaction time was analyzed. The characteristics of the agglomerated silica sand particles were analyzed by the XRD. Finally, it was simulated with HSC computer mode based on thermodynamic equilibrium. It was observed that when the ratio of the biomass ash to the silica sand was above 0.2, the agglomeration was observed. With the increase of the reaction time, more silica sand particles agglomerated with the biomass ash. There are two kinds of silicate eutecticum investigated by the XRD. It is of great significance for the running ofCFB biomass gasifier and the development ofbiomass utilization technology.
Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki
2017-10-30
We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (<100μm). Second, five polymethacrylate latexes were powdered by spray freeze drying to produce colloidal agglomerates. Finally, mechanical particle coating was performed by mixing theophylline spheres and polymethacrylate agglomerates using the processor. The agglomerates were broken under mechanical stress to coat the spheres effectively. The coating performance of polymethacrylate agglomerates tended to increase as their pulverization progressed. Differences in the grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Ankit; Smith, Kandler; Santhanagopalan, Shriram
Galvanostatic intermittent titration technique (GITT) - a popular method for characterizing kinetic and transport properties of battery electrodes - is predicated on the proper evaluation of electrode active area. LiNi 0.5044Co 0.1986Mn 0.2970O 2 (NCM523) material exhibits a complex morphology in which sub-micron primary particles aggregate to form secondary particle agglomerates. Our work proposes a new active area formulation for primary/secondary particle agglomerate materials to better mimic the morphology of NCM532 electrodes. Furthermore, this formulation is then coupled with macro-homogeneous models to simulate GITT and half-cell performance of NCM523 electrodes. Subsequently, the model results are compared against the experimental resultsmore » to refine the area formulation. A single parameter, the surface roughness factor, is proposed to mimic the change in interfacial area, diffusivity and exchange current density simultaneously and detailed modeling results are presented to provide valuable insights into the efficacy of the formulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Ankit; Smith, Kandler; Santhanagopalan, Shriram
Galvanostatic intermittent titration technique (GITT) – a popular method for characterizing kinetic and transport properties of battery electrodes – is predicated on the proper evaluation of electrode active area. LiNi0.5044Co0.1986Mn0.2970O2 (NCM523) material exhibits a complex morphology in which sub-micron primary particles aggregate to form secondary particle agglomerates. This work proposes a new active area formulation for primary/secondary particle agglomerate materials to better mimic the morphology of NCM532 electrodes. This formulation is then coupled with macro-homogeneous models to simulate GITT and half-cell performance of NCM523 electrodes. Subsequently, the model results are compared against the experimental results to refine the area formulation.more » A single parameter, the surface roughness factor, is proposed to mimic the change in interfacial area, diffusivity and exchange current density simultaneously and detailed modeling results are presented to provide valuable insights into the efficacy of the formulation.« less
Experimental investigation of the combustion products in an aluminised solid propellant
NASA Astrophysics Data System (ADS)
Liu, Zhu; Li, Shipeng; Liu, Mengying; Guan, Dian; Sui, Xin; Wang, Ningfei
2017-04-01
Aluminium is widely used as an important additive to improve ballistic and energy performance in solid propellants, but the unburned aluminium does not contribute to the specific impulse and has both thermal and momentum two-phase flow losses. So understanding of aluminium combustion behaviour during solid propellant burning is significant when improving internal ballistic performance. Recent developments and experimental results reported on such combustion behaviour are presented in this paper. A variety of experimental techniques ranging from quenching and dynamic measurement, to high-speed CCD video recording, were used to study aluminium combustion behaviour and the size distribution of the initial agglomerates. This experimental investigation also provides the size distribution of the condensed phase products. Results suggest that the addition of an organic fluoride compound to solid propellant will generate smaller diameter condensed phase products due to sublimation of AlF3. Lastly, a physico-chemical picture of the agglomeration process was also developed based on the results of high-speed CCD video analysis.
Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites
NASA Astrophysics Data System (ADS)
Liu, Xiao-guang; Li, Yan; Xue, Wen-dong; Sun, Jia-lin; Tang, Qian
2018-06-01
A cryogenic scanning electron microscopy (cryo-SEM) technique was used to explore the shear-thickening behavior of Fe-ZSM5 zeolite pastes and to discover its underlying mechanism. Bare Fe-ZSM5 zeolite samples were found to contain agglomerations, which may break the flow of the pastes and cause shear-thickening behaviors. However, the shear-thickening behaviors can be eliminated by the addition of halloysite and various boehmites because of improved particle packing. Furthermore, compared with pure Fe-ZSM5 zeolite samples and its composite samples with halloysite, the samples with boehmite (Pural SB or Disperal) additions exhibited network structures in their cryo-SEM images; these structures could facilitate the storage and release of flow water, smooth paste flow, and avoid shear-thickening. By contrast, another boehmite (Versal 250) formed agglomerations rather than network structures after being added to the Fe-ZSM5 zeolite paste and resulted in shear-thickening behavior. Consequently, the results suggest that these network structures play key roles in eliminating the shear-thickening behavior.
Powder free PECVD epitaxial silicon by plasma pulsing or increasing the growth temperature
NASA Astrophysics Data System (ADS)
Chen, Wanghua; Maurice, Jean-Luc; Vanel, Jean-Charles; Cabarrocas, Pere Roca i.
2018-06-01
Crystalline silicon thin films are promising candidates for low cost and flexible photovoltaics. Among various synthesis techniques, epitaxial growth via low temperature plasma-enhanced chemical vapor deposition is an interesting choice because of two low temperature related benefits: low thermal budget and better doping profile control. However, increasing the growth rate is a tricky issue because the agglomeration of clusters required for epitaxy leads to powder formation in the plasma. In this work, we have measured precisely the time evolution of the self-bias voltage in silane/hydrogen plasmas at millisecond time scale, for different values of the direct-current bias voltage applied to the radio frequency (RF) electrode and growth temperatures. We demonstrate that the decisive factor to increase the epitaxial growth rate, i.e. the inhibition of the agglomeration of plasma-born clusters, can be obtained by decreasing the RF OFF time or increasing the growth temperature. The influence of these two parameters on the growth rate and epitaxial film quality is also presented.
Verma, Ankit; Smith, Kandler; Santhanagopalan, Shriram; ...
2017-11-03
Galvanostatic intermittent titration technique (GITT) - a popular method for characterizing kinetic and transport properties of battery electrodes - is predicated on the proper evaluation of electrode active area. LiNi 0.5044Co 0.1986Mn 0.2970O 2 (NCM523) material exhibits a complex morphology in which sub-micron primary particles aggregate to form secondary particle agglomerates. Our work proposes a new active area formulation for primary/secondary particle agglomerate materials to better mimic the morphology of NCM532 electrodes. Furthermore, this formulation is then coupled with macro-homogeneous models to simulate GITT and half-cell performance of NCM523 electrodes. Subsequently, the model results are compared against the experimental resultsmore » to refine the area formulation. A single parameter, the surface roughness factor, is proposed to mimic the change in interfacial area, diffusivity and exchange current density simultaneously and detailed modeling results are presented to provide valuable insights into the efficacy of the formulation.« less
Method of separating and de-watering fine particles
Yoon, Roe-Hoan
2016-12-13
A process for cleaning and dewatering hydrophobic particulate materials is presented. The process is performed in two steps: 1) agglomeration of the hydrophobic particles in a first hydrophobic liquid/aqueous mixture; followed by 2) dispersion of the agglomerates in a second hydrophobic liquid to release the water trapped within the agglomerates along with the entrained hydrophilic particles.
Overpopulated, Underdeveloped Urban Agglomerations: Tomorrow’s Unstable Operating Environment
2012-05-08
DATES COVERED (From - To) 4. TITLE AND SUBTITLE Overpopulated , Underdeveloped Urban Agglomerations: Tomorrow’s 5a. CONTRACT NUMBER...ABSTRACT This paper asserts that a unique future operational environment is developing: overpopulated , underdeveloped urban agglomerations. A...proposed definition for this operating environment is (or would be) an overpopulated urban area which is located within a developing or underdeveloped
Suitability of online 3D visualization technique in oil palm plantation management
NASA Astrophysics Data System (ADS)
Mat, Ruzinoor Che; Nordin, Norani; Zulkifli, Abdul Nasir; Yusof, Shahrul Azmi Mohd
2016-08-01
Oil palm industry has been the backbone for the growth of Malaysia economy. The exports of this commodity increasing almost every year. Therefore, there are many studies focusing on how to help this industry increased its productivity. In order to increase the productivity, the management of oil palm plantation need to be improved and strengthen. One of the solution in helping the oil palm manager is by implementing online 3D visualization technique for oil palm plantation using game engine technology. The potential of this application is that it can helps in fertilizer and irrigation management. For this reason, the aim of this paper is to investigate the issues in managing oil palm plantation from the view of oil palm manager by interview. The results from this interview will helps in identifying the suitable issues could be highlight in implementing online 3D visualization technique for oil palm plantation management.
A new shock wave assisted sandalwood oil extraction technique
NASA Astrophysics Data System (ADS)
Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.
A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.
NASA Astrophysics Data System (ADS)
Kröll, L.; de Haart, L. G. J.; Vinke, I.; Eichel, R.-A.
2017-04-01
The microstructural evolution of a porous electrode consisting of a metal-ceramic matrix, consisting of nickel and yttria-stabilized zirconia (Y S Z ), is one of the main degradation mechanisms in a solid-oxide cell (SOC), in either fuel cell or electrolyzer mode. In that respect, the agglomeration of nickel particles in a SOC electrode leads to a decrease in the electronic conductivity as well as in the active catalytic area for the oxidation-reduction reaction of the fuel-water steam. An analytical model of the agglomeration behavior of a Ni /Y S Z electrode is proposed that allows for a quantitative description of the nickel agglomeration. The accuracy of the model is validated in terms of a comparison with experimental degradation measurements. The model is based on contact probabilities of nickel clusters in a porous network of nickel and Y S Z , derived from an algorithm of the agglomeration process. The iterative algorithm is converted into an analytical function, which involves structural parameters of the electrode, such as the porosity and the nickel content. Furthermore, to describe the agglomeration mechanism, the influence of the steam content and the flux rate are taken into account via reactions on the nickel surface. In the next step, the developed agglomeration model is combined with the mechanism of the Ostwald ripening. The calculated grain-size growth is compared to measurements at different temperatures and under low flux rates and low steam content, as well as under high flux rates and high steam content. The results confirm the necessity of connecting the two mechanisms and clarify the circumstances in which the single processes occur and how they contribute to the total agglomeration of the particles in the electrode.
NASA Astrophysics Data System (ADS)
Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei
2017-09-01
Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.
Gibbsite Growth History — Revelations of a New Scanning Electron Microscope Technique
NASA Astrophysics Data System (ADS)
Roach, Gerald I. D.; Cornell, John B.; Griffin, Brendan J.
A new scanning electron microscope technique termed charge contrast imaging (CCI), unique to the Environmental SEM, has been developed at the Centre for Microscopy and Microanalysis. The technique enables the growth history of gibbsite particles from the Bayer process to be studied. The technique is used on uncoated polished sections. The seed gibbsite is clearly distinguished from freshly precipitated gibbsite enabling information on agglomeration and growth to be unambiguously obtained. Growth rings associated with each pass through precipitation are readily observed which enables the complete growth history of a particle to be ascertained; for example batch and continuously grown gibbsites can be distinguished. Growth of gibbsite on different crystal faces can be directly measured and the presence of secondary nucleation detected. The data obtained via this technique have been confirmed using specially prepared laboratory samples. The technique is now finding wider application in areas such as medicine (examination of kidney stones), mineralogy and ceramics.
2014-03-27
between the nozzle /shroud tube interface, where the liquid is allowed to rapidly expand from the smaller diameter of the nozzle into the larger diameter...the CO2(l) freezes and agglomerates in the shroud tube, producing particles that are larger than if the liquid were expanded through a single nozzle ...Traditional seeding materials used for gas flows . . . . . . . . . . . . . . . . . 17 2.6 Example correlation peak for one IR in PIV
Use of glow discharge in fluidized beds
NASA Technical Reports Server (NTRS)
Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)
1981-01-01
Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.
Engineering development of selective agglomeration: Task 5, Bench- scale process testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.
Engineering development of selective agglomeration: Task 5, Bench- scale process testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.
NASA Astrophysics Data System (ADS)
Wang, Lu; Zhang, Guo-Hua; Wang, Jing-Song; Chou, Kuo-Chih
2016-08-01
An agglomeration of the furnace charge always takes place during the oxidation roasting process of molybdenite concentrate (with the main component of MoS2) in multiple hearth furnaces, which greatly affects the production process and furnace service life. In the present work, a preliminary study about the influence of various components on the agglomeration phenomenon of pure MoS2 have been carried out. The results show that reaction temperature, impurity content, and air flow rate have significant effects on the agglomeration extent. Meanwhile, the impurity type added into the pure MoS2 plays a crucial role. It was found that CaO and MgO have a stronger sulfur-fixing effect and that the desulphurization of the roasted product was uncompleted. It was also concluded that the agglomeration is due to the formation of low-melting-point eutectics, including that between MoO3 and impurities and that between MoO3 and Mo4O11. It is suggested that decreasing the impurities contents, especially K, Cu, Pb, and Fe, is an effective method for reducing the extent of agglomeration.
Effect of binder liquid type on spherical crystallization.
Maghsoodi, Maryam; Hajipour, Ali
2014-11-01
Spherical crystallization is a process of formation of agglomerates of crystals held together by binder liquid. This research focused on understanding the effect of type of solvents used as binder liquid on the agglomeration of crystals. Carbamazepine and ethanol/water were used respectively as a model drug and crystallization system. Eight solvents as binder liquid including chloroform, dichloromethane, isopropyl acetate, ethyl acetate, n-hexane, dimethyl aniline, benzene and toluene were examined to better understand the relationship between the physical properties of the binder liquid and its ability to bring about the formation of the agglomerates. Moreover, the agglomerates obtained from effective solvents as binder liquid were evaluated in term of size, apparent particle density and compressive strength. In this study the clear trend was observed experimentally in the agglomerate formation as a function of physical properties of the binder liquid such as miscibility with crystallization system. Furthermore, the properties of obtained agglomerates such as size, apparent particle density and compressive strength were directly related to physical properties of effective binder liquids. RESULTS of this study offer a useful starting point for a conceptual framework to guide the selection of solvent systems for spherical crystallization.
Theranostic potential of gold nanoparticle-protein agglomerates
NASA Astrophysics Data System (ADS)
Sanpui, Pallab; Paul, Anumita; Chattopadhyay, Arun
2015-11-01
Owing to the ever-increasing applications, glittered with astonishing success of gold nanoparticles (Au NPs) in biomedical research as diagnostic and therapeutic agents, the study of Au NP-protein interaction seems critical for maximizing their theranostic efficiency, and thus demands comprehensive understanding. The mutual interaction of Au NPs and proteins at physiological conditions may result in the aggregation of protein, which can ultimately lead to the formation of Au NP-protein agglomerates. In the present article, we try to appreciate the plausible steps involved in the Au NP-induced aggregation of proteins and also the importance of the proteins' three-dimensional structures in the process. The Au NP-protein agglomerates can potentially be exploited for efficient loading and subsequent release of various therapeutically important molecules, including anticancer drugs, with the unique opportunity of incorporating hydrophilic as well as hydrophobic drugs in the same nanocarrier system. Moreover, the Au NP-protein agglomerates can act as `self-diagnostic' systems, allowing investigation of the conformational state of the associated protein(s) as well as the protein-protein or protein-Au NP interaction within the agglomerates. Furthermore, the potential of these Au NP-protein agglomerates as a novel platform for multifunctional theranostic application along with exciting future-possibilities is highlighted here.
NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.K. Kawatra; T.C. Eisele; J.A. Gurtler
2004-04-01
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.« less
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka
2017-06-26
Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.
NASA Astrophysics Data System (ADS)
Khadilkar, Aditi B.
The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied. Each particle class undergoes distinct transformations of mineral matter at fluidized bed operating temperatures, as determined by using high temperature X-ray diffraction, thermo-mechanical analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). For the incorporation of a particle size distribution, bottom ash from an operating plant was divided into four size intervals and the system granular temperatures and dynamic bed height were computed using MFIX, a CFD simulation software. The kinetic theory of granular flow was used to obtain a distribution of binary collision frequencies for the entire particle size distribution. With this distribution of collision frequencies, which is computed based on hydrodynamics and granular physics of the poly-disperse system, as the particles grow, defluidize and decrease in number, the collision frequency also decreases. Under the conditions studied, the growth rate in the latter half of the run decreased to almost 1/5th the initial rate, with this decrease in collision frequency. This interdependent effect of chemistry and physics-based parameters, at the particle-level, was used to predict the agglomerate growth probabilities of Pittsburgh No. 8, Illinois No. 6 and Skidmore anthracite coals in this study, to illustrate the utility of the modeling methodology. The study also showed that agglomerate growth probability significantly increased above 15 to 20 wt. % slag. It was limited by ash chemistry at levels below this amount. Ash agglomerates were generated in a laboratory-scale fluidized bed combustor at Penn State to support the proposed agglomerate growth mechanism. This study also attempted to gain a mechanistic understanding of agglomerate growth with particle-level initiation occurring at the relatively low operating temperatures of about 950 °C, found in some fluidized beds. The results of this study indicated that, for the materials examined, agglomerate growth in fluidized bed combustors and gasifiers is initiated at the particle-level by low-melting components rich in iron- and calcium-based minerals. Although the bulk ash chemical composition does not indicate potential for agglomeration, study of particle-level heterogeneities revealed that agglomeration can begin at lower temperatures than the fluidized bed operating temperatures of 850 °C. After initiation at the particle-level, more slag is observed to form from alumino-silicate components at about 50 to 100 °C higher temperatures caused by changes in the system, and agglomerate growth propagates in the bed. A post-mortem study of ash agglomerates using SEM-EDX helped to identify stages of agglomerate growth. Additionally, the modeling methodology developed was used to simulate agglomerate growth in a laboratory-scale fluidized bed combustor firing palm shells (biomass), reported in the literature. A comparison of the defluidization time obtained by simulations to the experimental values reported in the case-study was made for the different operating conditions studied. This indicated that although the simulation results were comparable to those reported in the case study, modifications such as inclusion of heat transfer calculations to determine particle temperature resulting from carbon conversion would improve the predictive capabilities. (Abstract shortened by ProQuest.).
Martins, Evandro; Poncelet, Denis; Rodrigues, Ramila Cristiane; Renard, Denis
2017-09-01
In the first part of this article, it was described an innovative method of oil encapsulation from dripping-inverse gelation using water-in-oil (W/O) emulsions. It was noticed that the method of oil encapsulation was quite different depending on the emulsion type (W/O or oil-in-water (O/W)) used and that the emulsion structure (W/O or O/W) had a high impact on the dripping technique and the capsules characteristics. The objective of this article was to elucidate the differences between the dripping techniques using both emulsions and compare the capsule properties (mechanical resistance and release of actives). The oil encapsulation using O/W emulsions was easier to perform and did not require the use of emulsion destabilisers. However, capsules produced from W/O emulsions were more resistant to compression and showed the slower release of actives over time. The findings detailed here widened the knowledge of the inverse gelation and gave opportunities to develop new techniques of oil encapsulation.
An effective ostrich oil bleaching technique using peroxide value as an indicator.
Palanisamy, Uma Devi; Sivanathan, Muniswaran; Radhakrishnan, Ammu Kutty; Haleagrahara, Nagaraja; Subramaniam, Thavamanithevi; Chiew, Gan Seng
2011-07-05
Ostrich oil has been used extensively in the cosmetic and pharmaceutical industries. However, rancidity causes undesirable chemical changes in flavour, colour, odour and nutritional value. Bleaching is an important process in refining ostrich oil. Bleaching refers to the removal of certain minor constituents (colour pigments, free fatty acid, peroxides, odour and non-fatty materials) from crude fats and oils to yield purified glycerides. There is a need to optimize the bleaching process of crude ostrich oil prior to its use for therapeutic purposes. The objective of our study was to establish an effective method to bleach ostrich oil using peroxide value as an indicator of refinement. In our study, we showed that natural earth clay was better than bentonite and acid-activated clay to bleach ostrich oil. It was also found that 1 hour incubation at a 150 °C was suitable to lower peroxide value by 90%. In addition, the nitrogen trap technique in the bleaching process was as effective as the continuous nitrogen flow technique and as such would be the recommended technique due to its cost effectiveness.
NASA Astrophysics Data System (ADS)
Fitri, Noor; Yandi, Nefri; Hermawati, Julianto, Tatang Shabur
2017-03-01
A comparative study of the quality of patchouli oil using Water-Steam Distillation (WSD) and Water Bubble Distillation (WBD) techniques has been studied. The raw materials were Patchouli plants from Samigaluh village, Kulon Progo district, Yogyakarta. This study is aimed to compare two distillation techniques in order to find out the optimal distillation technique to increase the content of patchouli alcohol (patchoulol) and the quality of patchouli oil. Pretreatment such as withering, drying, size reduction and light fermentation were intended to increase the yield. One kilogramm of patchouli was moisturized with 500 mL of aquadest. The light fermentation process was carried out for 20 hours in a dark container. Fermented patchouli was extracted for 6 hours using Water-Steam and Water Bubble Distillation techniques. Physical and chemical properties test of patchouli oil were performed using SNI standard No. SNI-06-2385-2006 and the chemical composition of patchouli oil was analysed by GC-MS. As the results, the higher yield oil is obtained using Water-Steam Distillation, i.e. 5.9% versus 2.4%. Spesific gravity, refractive index and acid number of patchouli oil in Water-Steam Distillation results did not meet the SNI standard, i.e. 0.991; 1.623 and 13.19, while the Water Bubble Distillation met the standard, i.e. 0.955; 1.510 and 6.61. The patchoulol content using Water Bubble Distillation technique is 61.53%, significant higher than those using Water-Steam Distillation, i.e. 38.24%. Thus, Water Bubble Distillation promises a potential technique to increase the content of patchoulol in the patchouli oil.
Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine
NASA Astrophysics Data System (ADS)
Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik
2014-08-01
The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.
Parallel performance investigations of an unstructured mesh Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
2000-01-01
A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.
NASA Technical Reports Server (NTRS)
1978-01-01
The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.
In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates
NASA Astrophysics Data System (ADS)
Høydalsvik, Kristin; Bø Fløystad, Jostein; Zhao, Tiejun; Esmaeili, Morteza; Diaz, Ana; Andreasen, Jens W.; Mathiesen, Ragnvald H.; Rønning, Magnus; Breiby, Dag W.
2014-06-01
Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO2 capture material, was studied at a pressure of one atmosphere in air and in CO2, at temperatures exceeding 600 °C. Images with a spatial resolution better than 200 nm were retrieved, and possibilities for improving the experiment are described.
NASA Astrophysics Data System (ADS)
Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo
2016-07-01
Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.
High thermally stable Ni /Ag(Al) alloy contacts on p-GaN
NASA Astrophysics Data System (ADS)
Chou, C. H.; Lin, C. L.; Chuang, Y. C.; Bor, H. Y.; Liu, C. Y.
2007-01-01
Ag agglomeration was found to occur at Ni /Ag to p-GaN contacts after annealing at 500°C. This Ag agglomeration led to the poor thermal stability showed by the Ni /Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10at.% Al by e-gun deposition, the Ni /Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.
Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles
Huber, Dale L [Albuquerque, NM
2011-07-05
A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.
High thermally stable Ni/Ag(Al) alloy contacts on p-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C. H.; Lin, C. L.; Chuang, Y. C.
2007-01-08
Ag agglomeration was found to occur at Ni/Ag to p-GaN contacts after annealing at 500 degree sign C. This Ag agglomeration led to the poor thermal stability showed by the Ni/Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10 at. % Al by e-gun deposition, the Ni/Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.
NASA Astrophysics Data System (ADS)
Saha, Mrinal; Mukherjee, Soumya; Gayen, Arup; Mukherjee, Siddhartha
2017-04-01
Co-SiO2 nano composite has been synthesized via sol-gel technique using dextrose [C6H12O6] as a reducer and tetraethyl orthosilicate [Si(OCH2CH3)4] as oxide forming agent, respectively. The dried gel has been subsequently calcined at different temperature (850 and 900 °C) for 30 min in an inert atmosphere by N2 purging. The synthesized materials have been characterized by X-ray diffraction, high resolution transmission microscope, Fourier transform infrared spectroscopy, UV-Vis spectroscopy, scanning electron microscope, field emission microscope, atomic force microscope and physical property measurement system. The crystallite sizes of the face centered cubic cobalt nano composite materials have been found to be in the range of 14-28 nm. The crystallite size of the material found to be increased at higher calcination temperature due to the grain growth. The surface morphology of the obtained material has been found to be agglomerated but spherical in nature. This agglomeration tendency could be attributed to magnetic interaction between particles, large surface area as well as high surface energy. The band gap value of the obtained material has been determined to be 1.92 eV. The saturation magnetization (Ms) and the coercivity (Hc) of the composite material were found to be 29.45 emu g-1and 23.2 Oe, respectively. This technique has thus been found to be a convenient and effective method to prepare pure metallic cobalt nanoparticles with uniform size and homogeneous distribution throughout the matrix.
NASA Astrophysics Data System (ADS)
Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.
2014-05-01
The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.
Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.; ...
2016-07-05
Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.
Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less
The use of oil for in-flight flow visualization
NASA Technical Reports Server (NTRS)
Curry, R. E.; Meyer, R. R., Jr.; Oconnor, M.
1984-01-01
Oil was used to visualize inflight aerodynamic characteristics such as boundary layer transition, shock wave location, regions of separated flow, and surface flow direction. The technique, which is similar to wind tunnel oil-flow testing, involves an oil mixture to test aircraft before takeoff. After takeoff, the airplane climbs immediately to the test altitude and photographs are taken. The developmental experience is summarized, several examples of inflight oil-flow photographs are presented and discussed, and an approach for potential users of the technique is presented.
MICROBIAL POPULATION CHANGES DURING BIOREMEDIATION OF AN EXPERIMENTAL OIL SPILL
Three crude oil bioremediation techniques were applied in a randomized block field experiment simulating a coastal oil-spill. Four treatments (no oil control, oil alone, oil + nutrients, and oil + nutrients + an indigenous inoculum) were applied. In-situ microbial community str...
Summers, Stephen; Henry, Theodore; Gutierrez, Tony
2018-05-01
Microplastics (<5 mm) have often been studied under in-vitro conditions where plastics have been investigated in isolation. However, in the natural environment microplastics readily form agglomerates conferring the particles with properties different to their pristine counterparts. Here, we examined the interaction of exopolymers with polystyrene nanoplastics and microplastics. Formation of plastic agglomerates was examined using simulated sea surface conditions. Flow cytometry coupled with microscopy revealed that nano- and microplastic particle spheres form agglomerates in seawater with a mucilagenous material and an associated microbial community. To characterise this material, differential staining methods revealed it to be glycoprotein in composition. Exposing increasing concentrations of a marine bacterial glycoprotein EPS to nano- or microplastics revealed that these types of polymers contribute to the formation and abundance of plastic agglomerates. This work highlights the importance of EPS on the fate of plastic and future research should take this into account when evaluating the impact of plastics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Agglomeration of dust in convective clouds initialized by nuclear bursts
NASA Astrophysics Data System (ADS)
Bacon, D. P.; Sarma, R. A.
Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.
El-Gendy, Nashwa; Pornputtapitak, Warangkana; Berkland, Cory
2015-01-01
Particle engineering strategies remain at the forefront of aerosol research for localized treatment of lung diseases and represent an alternative for systemic drug therapy. With the hastily growing popularity and complexity of inhalation therapy, there is a rising demand for tailor-made inhalable drug particles capable of affording the most proficient delivery to the lungs and the most advantageous therapeutic outcomes. To address this formulation demand, nanoparticle agglomeration was used to develop aerosols of the asthma therapeutics, fluticasone or albuterol. In addition, a combination aerosol was formed by drying agglomerates of fluticasone nanoparticles in the presence of albuterol in solution. Powders of the single drug nanoparticle agglomerates or of the combined therapeutics possessed desirable aerodynamic properties for inhalation. Powders were efficiently aerosolized (~75% deposition determined by cascade impaction) with high fine particle fraction and rapid dissolution. Nanoparticle agglomeration offers a unique approach to obtain high performance aerosols from combinations of asthma therapeutics. PMID:21964203
NASA Astrophysics Data System (ADS)
Kellogg, Kevin; Liu, Peiyuan; Lamarche, Casey; Hrenya, Christine
2017-11-01
In flows of cohesive particles, agglomerates will readily form and break. These agglomerates are expected to complicate how particles interact with the surrounding fluid in multiphase flows, and consequently how the solids flow. In this work, a dilute flow of particles driven by gas against gravity is studied. A continuum framework, composed of a population balance to predict the formation of agglomerates, and kinetic-theory-based balances, is used to predict the flow of particles. The closures utilized for the birth and death rates due to aggregation and breakage in the population balance take into account how the impact velocity (the granular temperature) affects the outcome of a collision as aggregation, rebound, or breakage. The agglomerate size distribution and solids velocity predicted by the continuum framework are compared to discrete element method (DEM) simulations, as well to experimental results of particles being entrained from the riser of a fluidized bed. Dow Corning Corporation.
Maghsoodi, Maryam
2015-01-01
Crystallization is often used for manufacturing drug substances. Advances of crystallization have achieved control over drug identity and purity, but control over the physical form remains poor. This review discusses the influence of solvents used in crystallization process on crystal habit and agglomeration of crystals with potential implication for dissolution. According to literature it has been known that habit modification of crystals by use of proper solvents may enhance the dissolution properties by changing the size, number and the nature of crystal faces exposed to the dissolution medium. Also, the faster dissolution rate of drug from the agglomerates of crystals compared with the single crystals may be related to porous structure of the agglomerates and consequently their better wettability. It is concluded from this review that in-depth understanding of role of the solvents in crystallization process can be applied to engineering of crystal habit or crystal agglomeration, and predictably dissolution improvement in poorly soluble drugs. PMID:25789214
Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater.
Piccapietra, Flavio; Sigg, Laura; Behra, Renata
2012-01-17
To gain important information on fate, mobility, and bioavailability of silver nanoparticles (AgNP) in aquatic systems, the influence of pH, ionic strength, and humic substances on the stability of carbonate-coated AgNP (average diameter 29 nm) was systematically investigated in 10 mM carbonate and 10 mM MOPS buffer, and in filtered natural freshwater. Changes in the physicochemical properties of AgNP were measured using nanoparticle tracking analysis, dynamic light scattering, and ultraviolet-visible spectroscopy. According to the pH-dependent carbonate speciation, below pH 4 the negatively charged surface of AgNP became positive and increased agglomeration was observed. Electrolyte concentrations above 2 mM Ca(2+) and 100 mM Na(+) enhanced AgNP agglomeration in the synthetic media. In the considered concentration range of humic substances, no relevant changes in the AgNP agglomeration state were measured. Agglomeration of AgNP exposed in filtered natural freshwater was observed to be primarily controlled by the electrolyte type and concentration. Moreover, agglomerated AgNP were still detected after 7 days of exposure. Consequently, slow sedimentation and high mobility of agglomerated AgNP could be expected under the considered natural conditions. A critical evaluation of the different methods used is presented as well.
Space Processing Application Rocket project, SPAR 5
NASA Technical Reports Server (NTRS)
Reeves, F. (Compiler); Schaefer, D. (Compiler)
1980-01-01
Post flight results and analysis are presented on the following experiments: 'Agglomeration in Immiscible Liquids', 'Contained Polycrystalline Solidification in Low G', 'The Direct Observation of Dendrite Remelting and Macrosegregation in Casting', and 'Uniform Dispersion by Crystallization'. An engineering report on the performance of the SPAR Black Brant rocket is also included. Much useful data and information were accumulated for directing and developing experimental techniques and investigations toward an expanding commercially beneficial program of materials processing in the coming shuttle era.
Kristensen, Jakob
2006-10-27
The purpose of this research was to investigate the use of polyethylene glycol (PEG) solutions as the primary binder liquid in a 2-step agglomeration process performed in a rotary processor and characterize the resulting granules and their tableting characteristics. This was done by granulation of binary mixtures of microcrystalline cellulose (MCC) and either lactose, calcium phosphate, acetaminophen, or theophylline, in a 1:3 ratio, using a 50% (wt/wt) aqueous solution of PEG and water as the binder liquid. Formulations containing lactose were agglomerated using 5 different amounts of the PEG binder solution, giving rise to a PEG content in the range of 6% to 43% (wt/wt). The process outcome was characterized according to adhesion, yield, and water requirement, and the prepared granules were characterized according to size, size distribution, and flow properties as well as tableting properties. The agglomeration of all mixtures resulted in high yields of free-flowing agglomerates and gave rise to good reproducibility of the investigated agglomerate characteristics. The process allowed for the incorporation of 42.5% (wt/wt) PEG, which is higher than the percentage of PEG reported for other equipment. Tablets of sufficient strength could be prepared with all investigated excipients using 20% wt/wt PEG; higher PEG contents gave rise to adhesion and prolonged disintegration. In conclusion, agglomeration in a torque-controlled rotary processor using solutions of PEG as the primary binder liquid was found to be a robust process, suitable for the incorporation of high contents of PEG and/or drug compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whizin, Akbar D.; Colwell, Joshua E.; Blum, Jürgen, E-mail: Akbar.Whizin@ucf.edu
2017-02-10
We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO{sub 2} dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficientsmore » of restitution and fragmentation thresholds near 1 m s{sup −1} for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s{sup −1}, somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s{sup −1}. Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.« less
Estimation of Fine and Oversize Particle Ratio in a Heterogeneous Compound with Acoustic Emissions.
Nsugbe, Ejay; Ruiz-Carcel, Cristobal; Starr, Andrew; Jennions, Ian
2018-03-13
The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage. This work assesses the feasibility of a real-time monitoring approach using a benchtop test rig and a prototype acoustic-based measurement approach to provide information that can be correlated to product quality and provide the opportunity for future process optimisation. Acoustic emission (AE) was chosen as the sensing method due to its low cost, simple setup process, and ease of implementation. The performance of the proposed method was assessed in a series of experiments where the offline quality check results were compared to the AE-based real-time estimations using data acquired from a benchtop powder free flow rig. A designed time domain based signal processing method was used to extract particle size information from the acquired AE signal and the results show that this technique is capable of estimating the required ratio in the washing powder compound with an average absolute error of 6%.
Novel Binders and Methods for Agglomeration of Ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. K. Kawatra; T. C. Eisele; K. A. Lewandowski
2006-12-31
Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the performance of pellet binders, and have directly saved energy by increasing filtration rates of the pelletization feed by as much as 23%.« less
Saka, Boualem; Djouahri, Abderrahmane; Djerrad, Zineb; Terfi, Souhila; Aberrane, Sihem; Sabaou, Nasserdine; Baaliouamer, Aoumeur; Boudarene, Lynda
2017-06-01
In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas-chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave-assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
A Review of Oil Spill Remote Sensing
Brown, Carl E.
2017-01-01
The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day–night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable. PMID:29301212
A Review of Oil Spill Remote Sensing.
Fingas, Merv; Brown, Carl E
2017-12-30
The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day-night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable.
Guidi, Giambattista; Sliskovic, Merica; Violante, Anna Carmela; Vukic, Luka
2016-01-01
An oil spill is the accidental or intentional discharge of petroleum products into the environment due to human activities. Although oil spills are actually just a little percent of the total world oil pollution problem, they represent the most visible form of it. The impact on the ecosystems can be severe as well as the impact on economic activities. Oil spill cleanup is a very difficult and expensive activity, and many techniques are available for it. In previous works, a methodology based on different kinds of criteria in order to come to the most satisfactory technique was proposed and the relative importance of each impact criterion on the basis of the Saaty's Analytic Hierarchy Process (AHP) was also evaluated. After a review of the best available techniques (BATs) available for oil spill response, this work suggests criteria for BATs' selection when oil spills occur in the Mediterranean Sea under well-defined circumstances: calm sea and presence of economic activities in the affected area. A group of experts with different specializations evaluated the alternative BATs by means of AHP method taking into account their respective advantages and disadvantages.
Recent Advances in Agglomerated Multigrid
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.
2013-01-01
We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.
Effect of composition on physical properties of food powders
NASA Astrophysics Data System (ADS)
Szulc, Karolina; Lenart, Andrzej
2016-04-01
The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.
NASA Astrophysics Data System (ADS)
Li, Mao; Li, Lel-in
2018-03-01
For the sake of curbing the spreading of Changsha-Zhuzhou-Xiangtan urban agglomeration and spatial disorder in the process of urbanization development on the regional bearing capacity of land resources and ecological environment and assisting to plan the integration process of ChangZhuTan,this paper uses the DMSP/OLS night light data of Chang ZhuTan in 1992 to 2013 to invert the urbanization process index of ChangZhuTan urban agglomeration. Based on the two scales of time and space, this paper analyzes the average index of lights, the speed of urban expansion and urban compactness index et al and studies the temporal and spatial characteristics of ChangZhuTan urban agglomeration in this period.
Development of the fine-particle agglomerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, P.; Balasic, P.
1999-07-01
This paper presents the current status of the commercial development of a new technology to more efficiently control fine particulate emissions. The technology is based on an invention by Environmental Elements Corporation (EEC) which utilizes laminar flow to promote contact of fine submicron particles with larger particles to form agglomerates prior to their removal in a conventional particulate control device, such as an ESP. As agglomerates the particles are easily captured in the control device, whereas a substantial amount would pass through if allowed to remain as fine particles. EEC has developed the laminar-flow agglomerator technology through the laboratory proof-of-conceptmore » stage, which was funded by a DOE SBIR grant, to pilot-scale and full-scale demonstrations.« less
Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J
2018-04-01
The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1976-07-01
This report covers the results of a study utilizing a radioactive tracer technique to determine wear effects on the upper compression rings of a two-stroke cycle diesel engine burning mixtures of waste lube oil in fuel oil. The radioactive tracer tec...
Sarbatly, Rosalam; Krishnaiah, Duduku; Kamin, Zykamilia
2016-05-15
The growths of oil and gas exploration and production activities have increased environmental problems, such as oil spillage and the resulting pollution. The study of the methods for cleaning up oil spills is a critical issue to protect the environment. Various techniques are available to contain oil spills, but they are typically time consuming, energy inefficient and create secondary pollution. The use of a sorbent, such as a nanofibre sorbent, is a technique for controlling oil spills because of its good physical and oil sorption properties. This review discusses about the application of nanofibre sorbent for oil removal from water and its current developments. With their unique physical and mechanical properties coupled with their very high surface area and small pore sizes, nanofibre sorbents are alternative materials for cleaning up oil spills. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Webb, Anthony J.
Phase Change Materials (PCMs), like paraffin wax, can be used for passive thermal management of portable electronics if their overall bulk thermal conductivity is increased through the addition of highly conducting nanoparticles. Finite Element Analysis (FEA) is used to investigate the influence of nanoparticle agglomeration on the overall conductive thermal transport in a nanoenhanced composite by dictating the thermal conductivity of individual elements according to their local inclusion volume fraction and characteristics inside a low conducting PCM matrix. The inclusion density distribution is dictated by an agglomeration factor, and the effective thermal conductivity of each element is calculated from the nanoparticle volume fraction using a method similar to the Representative Volume Element (RVE) methodology. FEA studies are performed for 2-D and 3-D models. In the 2-D model, the grain boundary is fixed at x = 0 for simplicity. For the 3-D model, the grain boundary geometry is randomly varied. A negligible 2-D effect on thermal transport in the 2-D model is seen, so a 1-D thermal resistance network is created for comparison, and the results agree within 4%.The influence of the agglomeration factor and contact Biot number on the overall bulk thermal conductivity is determined by applying Fourier's Law on the entire simulated composite. For the 2-D and 3-D models with a contact Biot number above 1, the overall bulk thermal conductivity decreases prior to the percolation threshold being met and then increases with increasing agglomeration. Finally, a MatlabRTM based image processing tool is created to estimate the agglomeration factor based on an experimental image of a nanoparticle distribution, with a calculated approximate agglomeration value of Beta*L = 5 which results in a bulk thermal conductivity of 0.278 W/(m-K).
Shen, Yonglin
2017-01-01
This paper adopts the PM2.5 concentration data obtained from 1497 station-based monitoring sites, population and gross domestic product (GDP) census data, revealing population exposure and economic effects of PM2.5 in four typical urban agglomerations of China, i.e., Beijing-Tianjin-Hebei (BTH), the Yangtze River delta (YRD), the Pearl River delta (PRD), and Chengdu-Chongqing (CC). The Cokriging interpolation method was used to estimate the PM2.5 concentration from station-level to grid-level. Next, an evaluation was conducted mainly at the grid-level with a cell size of 1 × 1 km, assisted by the urban agglomeration scale. Criteria including the population-weighted mean, the cumulative percent distribution and the correlation coefficient were applied in our evaluation. The results showed that the spatial pattern of population exposure in BTH was consistent with that of PM2.5 concentration, as well as changes in elevation. The topography was also an important factor in the accumulation of PM2.5 in CC. Moreover, the most polluted urban agglomeration based on the population-weighted mean was BTH, while the least was PRD. In terms of the cumulative percent distribution, only 0.51% of the population who lived in the four urban agglomerations, and 2.33% of the GDP that was produced in the four urban agglomerations, were associated with an annual PM2.5 concentration smaller than the Chinese National Ambient Air Quality Standard of 35 µg/m3. This indicates that the majority of people live in the high air polluted areas, and economic development contributes to air pollution. Our results are supported by the high correlation between population exposure and the corresponding GDP in each urban agglomeration. PMID:28671643
Airborne optical detection of oil on water.
NASA Technical Reports Server (NTRS)
Millard, J. P.; Arvesen, J. C.
1972-01-01
Airborne measurements were made over controlled oil-spill test sites to evaluate various techniques, utilizing reflected sunlight, for detecting oil on water. The results of these measurements show that (1) maximum contrast between oil and water is in the UV and red portions of the spectrum; (2) minimum contrast is in the blue-green; (3) differential polarization appears to be a very promising technique; (4) no characteristic absorption bands, which would permit one oil to be distinguished from another, were discovered in the spectral regions measured; (5) sky conditions greatly influence the contrast between oil and water; and (6) highest contrast was achieved under overcast sky conditions.
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.
Investigating Montara platform oil spill accident by implementing RST-OIL approach.
NASA Astrophysics Data System (ADS)
Satriano, Valeria; Ciancia, Emanuele; Coviello, Irina; Di Polito, Carmine; Lacava, Teodosio; Pergola, Nicola; Tramutoli, Valerio
2016-04-01
Oil Spills represent one of the most harmful events to marine ecosystems and their timely detection is crucial for their mitigation and management. The potential of satellite data for their detection and monitoring has been largely investigated. Traditional satellite techniques usually identify oil spill presence applying a fixed threshold scheme only after the occurrence of an event, which make them not well suited for their prompt identification. The Robust Satellite Technique (RST) approach, in its oil spill detection version (RST-OIL), being based on the comparison of the latest satellite acquisition with its historical value, previously identified, allows the automatic and near real-time detection of events. Such a technique has been already successfully applied on data from different sources (AVHRR-Advanced Very High Resolution Radiometer and MODIS-Moderate Resolution Imaging Spectroradiometer) showing excellent performance in detecting oil spills both during day- and night-time conditions, with an high level of sensitivity (detection also of low intensity events) and reliability (no false alarm on scene). In this paper, RST-OIL has been implemented on MODIS thermal infrared data for the analysis of the Montara Platform (Timor Sea - Australia) oil spill disaster occurred in August 2009. Preliminary achievements are presented and discussed in this paper.
Effects of skylight polarization, cloudiness, and view angle on the detection of oil on water.
NASA Technical Reports Server (NTRS)
Millard, J. P.; Arvesen, J. C.
1971-01-01
Three passive radiometric techniques, which use the contrast of sunlight reflected and backscattered from oil and water in specific wavelength regions, have potential application for remote sensing of oil spills. These techniques consist of measuring (1) total radiance, (2) the polarization components (normal and parallel) of radiance, and (3) the difference between the normal and parallel components. In this paper, the best view directions for these techniques are evaluated, conclusions are drawn as to the most promising technique, and explanations are developed to describe why previous total-radiance measurements yielded highest contrast between oil and water under overcast skies. The technique based on measurement of only the normal polorization component appears to be the most promising. The differential technique should be further investigated because of its potential to reduce the component of backscattered light from below the surface of the water. Measurements should be made about 45 deg nadir view angle in the direction opposite the sun. Overcast sky conditions provide a higher intensity of skylight relative to clear sky conditions and a lower intensity of backscatter within the water relative to surface reflectance. These factors result in higher contrast between oil and water under overcast skies.
NASA Astrophysics Data System (ADS)
Darezereshki, E.; Schaffie, M.; Lotfalian, M.; Seiedbaghery, S. A.; Ranjbar, M.
2011-04-01
Bioleaching was examined for copper extraction from a low grade ore using mesophilic and moderate thermophilic bacteria. Five equal size columns were used for the leaching of the ore. Sulfuric acid solution with a flow rate of 3.12 L·m-2·h-1 and pH 1.5 passed through each column continuously for 90 d. In the first and the second column, bioleaching was performed without agglomeration of the ore and on the agglomerated ore, respectively. 28wt% of the copper was extracted in the first column after 40 d, while this figure was 38wt% in the second column. After 90 d, however, the overall extractions were almost the same for both of them. Bioleaching with mesophilic bacteria was performed in the third column without agglomeration of the ore and in the fourth column on the agglomerated ore. After 40 d, copper extractions in the third and the fourth columns were 62wt% and 70wt%, respectively. Copper extractions were 75wt% for both the columns after 90 d. For the last column, bioleaching was performed with moderate thermophilic bacteria and agglomerated ore. Copper extractions were 80wt% and 85wt% after 40 and 90 d, respectively. It was concluded that crushing and agglomeration of the ore using bacteria could enhance the copper extraction considerably.
Paulus, Anja S; Heinzler, Raphael; Ooi, Huey Wen; Franzreb, Matthias
2015-07-08
The purpose of this work was the synthesis and characterization of thermally switchable magnetic particles for use in biotechnological applications such as protein purification and enzymatic conversions. Reversible addition-fragmentation chain-transfer polymerization was employed to synthesize poly(N-isopropylacrylamide) brushes via a "graft-from" approach on the surface of magnetic microparticles. The resulting particles were characterized by infrared spectroscopy and thermogravimetric analysis and their temperature-dependent agglomeration behavior was assessed. The influence of several factors on particle agglomeration (pH, temperature, salt type, and particle concentration) was evaluated. The results showed that a low pH value (pH 3-4), a kosmotropic salt (ammonium sulfate), and a high particle concentration (4 g/L) resulted in improved agglomeration at elevated temperature (40 °C). Recycling of particles and reversibility of the temperature-switchable agglomeration were successfully demonstrated for ten heating-cooling cycles. Additionally, enhanced magnetic separation was observed for the modified particles. Ionic monomers were integrated into the polymer chain to create end-group functionalized particles as well as two- and three-block copolymer particles for protein binding. The adsorption of lactoferrin, bovine serum albumin, and lysozyme to these ion exchange particles was evaluated and showed a binding capacity of up to 135 mg/g. The dual-responsive particles combined magnetic and thermoresponsive properties for switchable agglomeration, easy separability, and efficient protein adsorption.
Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films
NASA Astrophysics Data System (ADS)
Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang
2018-04-01
In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.
Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique
NASA Technical Reports Server (NTRS)
Monson, Daryl J.; Mateer, George G.; Menter, Florian R.
1993-01-01
A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.
Ignition and Combustion Studies of Hazard Division 1.1 and 1.3 Substances
2010-07-01
Effect of Time at Temperature on Burning Rate. The burning rate of the HD1.1 explosive PBXN -5 is compared to that of neat cyclotetramethylene...tetranitramine (HMX) in Figure 14. The explosive, PBXN -5, is composed of 95 weight percent HMX and 5 percent Viton A as binder. The HMX burning rate...the closed bomb technique (Reference 18). The PBXN -5 was composed of small agglomerates of HMX coated with the binder (Reference 19). The PBXN -5
NASA Astrophysics Data System (ADS)
Pathak, R. K. P.; Pei, X.; Hallquist, M.; Pagels, J. H.
2017-12-01
Morphological transformation of soot particle by condensation of low volatility materials on it is a dominant atmospheric process with serious implications for its optical and hygroscopic properties, and atmospheric lifetime. In this study, the morphological transformation of soot agglomerate under the influence of condensation of vapours of sulphuric acid, and/or limonene ozonolysis products were investigated systematically using a Differential Mobility Analyser-Aerosol Particle Mass Analyser (DMA-APM) and the Tandem DMA techniques integrated with a laminar flow-tube system. We discovered that the morphology transformation of soot in general was a sequence of two-step process, i.e. (i) filling of void space within soot agglomerate; (ii) growth of particle diameter. These two steps followed and complimented each other. In the very beginning the filling was the dominant process followed by growth until it led to the accumulation of enough material that in turn exerted surface forces that eventually facilitated the further filling. The filling of void space was constrained by the initial morphology of fresh soot and the nature and amount of the material condensed. This process continued in several sequential steps until all void space within the soot agglomerate was filled completely and then growth of a spherical particle continued as long as mass was condensed on it. In this study, we developed a framework to quantify the microphysical transformation of soot upon the condensation of various materials. The framework utilized experimental data and hypothesis of ideal sphere growth and filling of voids to quantify the distribution of condensed materials in these two processes complimenting each other. Using this framework, we have quantified the percentage of material that went into processes of particle growth and void filling at each step. Using the same framework, we further estimated the fraction of internal voids and open voids and used this information to derive the volume equivalent diameter of soot agglomerate containing internal voids and calculated in-situ dynamic shape factor. Our study is the first study that tracks in situ microphysical changes in soot morphology quantitatively, providing the detailed status of both fresh and coated soot particles.
In situ X-ray ptychography imaging of high-temperature CO{sub 2} acceptor particle agglomerates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Høydalsvik, Kristin; Bø Fløystad, Jostein; Esmaeili, Morteza
2014-06-16
Imaging nanoparticles under relevant reaction conditions of high temperature and gas pressure is difficult because conventional imaging techniques, like transmission electron microscopy, cannot be used. Here we demonstrate that the coherent diffractive imaging technique of X-ray ptychography can be used for in situ phase contrast imaging in structure studies at atmospheric pressure and elevated temperatures. Lithium zirconate, a candidate CO{sub 2} capture material, was studied at a pressure of one atmosphere in air and in CO{sub 2}, at temperatures exceeding 600 °C. Images with a spatial resolution better than 200 nm were retrieved, and possibilities for improving the experiment are described.
Investigation of the interaction of ferromagnetic fluids with proteins by dynamic light scattering
NASA Astrophysics Data System (ADS)
Velichko, Elena; Nepomnyashchaya, Elina; Dudina, Alina; Pleshakov, Ivan; Aksenov, Evgenii
2018-04-01
In this article the interaction between ionically stabilized magnetic nanoparticles and blood serum albumin proteins in liquid medium are discussed. Some distributions of nanoparticles' agglomerate sizes in solutions of albumin molecules, magnetic nanoparticles and their mixtures both under the influence of magnetic field and free from it are presented. It is shown that magnetic nanoparticles interact with albumin molecules, forming agglomerates. It is also shown that at the influence of magnetic field sizes of agglomerates increase proportionally to the magnetic field density.
Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid
2013-08-30
A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique
NASA Astrophysics Data System (ADS)
Cervantes-Espinosa, L. M.; de L. Castillo-Alvarado, F.; Lara-Hernández, G.; Cruz-Orea, A.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.
2014-10-01
Thermal properties of several vegetable oils such as soy, corn, and avocado commercial oils were obtained by using a photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. The obtained results are in good agreement with the thermal effusivity reported for other vegetable oils. All measurements were done at room temperature.
Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.
Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan
2016-07-01
Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition in olfactory mucosa on particle size implies that the occupation deposition of welding fume manganese can be expected to vary with welding method. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Impact of Colloidal Silica on Silicone Oil-Silica Mixed Antifoams
NASA Astrophysics Data System (ADS)
Yuan, Zheng
Antifoams are utilized as an industrial additive to control undesired foam during processing. This study focuses on the impact of silica on the antifoam stability. Antifoam stability refers to the ability to maintain efficiency in foam destruction after prolonged shelf storage. Common antifoams are a mixture of hydrophobic silica particles and silicone oil. Based on the general mechanisms of antifoam action discussed in Chapter 1, silica particles play a significant role in foam destruction. Silica particles contribute to foam control by facilitating the entry and the penetration depth of oil-silica globules into surfactant-water films (foam bubble walls). The size, morphology and hydrophobicity of silica can be manipulated to generate optimal antifoam globules. For example, the two silicas with good shelf life performance (8375 and 9512) had the largest silica particles and both showed a tendency to aggregate in toluene solution. We conclude that improved shelf life is related to the propensity of PDMS oil to adsorb on silica, which leads to aggregation and particle size increase. We measured the time-evolution of dynamic light scattering (DLS) from 3-vol% antifoam dissolved in toluene (Chapter 2). For the sample with the largest hydrodynamic radius (9512) the scattered intensity decreased significantly after applying ultrasonic dispersion. Decreasing intensity also occurred for 8375 albeit at later times. The decrease of intensity is attributed to the growth and precipitation of oil-silica globules. The concentration dependence of light scattering confirmed the growth-precipitation hypothesis. FT-IR (Chapter 3) was consistent with precipitation due to oil adsorption, but the data were not definitive. Chapter 4 examines the time-evolution of silica structures by static light scattering and X-ray scattering. The combined data are consistent with a hierarchical structure for silica. Agglomeration occurred fastest for 9512, which is consistent with DLS observations above. The last chapter concludes that PDMS-silica adhesion controls antifoam stability. The decline in performance with shelf-life aging is attributed to loss of hydrophobicity of silica, which could be due to adsorption of surfactants or some chemical alteration of the hydrophobic silica surface.
Dispersant use as a response to oil spills: toxicological effects on fish cardiac performance.
Milinkovitch, Thomas; Thomas-Guyon, Hélène; Lefrançois, Christel; Imbert, Nathalie
2013-04-01
Dispersant use is a controversial technique used to respond to oil spills in nearshore areas. In order to assess the toxicity of this technique, this study evaluated the cardiac toxicological effects on juvenile golden grey mullets Liza aurata exposed for 48 h to either dispersant alone, chemically dispersed oil, mechanically dispersed oil, the water-soluble fraction of oil or a control condition. Following exposure, the positive inotropic effects of adrenaline were assessed in order to evaluate a potential impairment on the cardiac performance. The results revealed an impairment of the positive inotropic effects of adrenaline for all the contaminants (single dispersant, dispersed and undispersed oil, water-soluble fraction of oil). This suggests that: (1) cardiac performance is a valuable parameter to study the physiopathological effects of dispersed oil; (2) dispersant application is likely to impair cardiac performance.
Methods of Oil Detection in Response to the Deepwater ...
Detecting oil in the northern Gulf of Mexico following the Deepwater Horizon oil spill presented unique challenges due to the spatial and temporal extent of the spill and the subsequent dilution of oil in the environment. Over time, physical, chemical, and biological processes altered the composition of the oil, further complicating its detection. Reservoir fluid, containing gas and oil, released from the Macondo well was detected in surface and subsurface environments. Oil monitoring during and after the spill required a variety of technologies, including nimble adaptation of techniques developed for non-oil-related applications. The oil detection technologies employed varied in sensitivity, selectivity, strategy, cost, usability, expertise of user, and reliability. Innovative technologies ranging from remote sensing to laboratory analytical techniques were employed and produced new information relevant to oil spill detection, including the chemical characterization, the dispersion effectiveness, and the detection limits of oil. The challenge remains to transfer these new technologies to oil spill responders so that detection of oil following a spill can be improved. To publish a perspective paper on oil detection technologies during the Deepwater Horizon Oil Spill. This is for a special issue book/journal.
A comparison of dispersing media for various engineered carbon nanoparticles.
Buford, Mary C; Hamilton, Raymond F; Holian, Andrij
2007-07-27
With the increased manufacture and use of carbon nanoparticles (CNP) there has been increasing concern about the potential toxicity of fugitive CNP in the workplace and ambient environment. To address this matter a number of investigators have conducted in vitro and in vivo toxicity assessments. However, a variety of different approaches for suspension of these particles (culture media, Tween 80, dimethyl sulfoxide, phosphate-buffered saline, fetal calf serum, and others), and different sources of materials have generated potentially conflicting outcomes. The quality of the dispersion of nanoparticles is very dependent on the medium used to suspend them, and this then will most likely affect the biological outcomes. In this work, the distributions of different CNP (sources and types) have been characterized in various media. Furthermore, the outcome of instilling the different agglomerates, or size distributions, was examined in mouse lungs after one and seven days. Our results demonstrated that CNP suspended in serum produced particle suspensions with the fewest large agglomerates, and the most uniform distribution in mouse lungs. In addition, no apparent clearance of instilled CNP took place from lungs even after seven days. This work demonstrates that CNP agglomerates are present in all dispersing vehicles to some degree. The vehicle that contains some protein, lipid or protein/lipid component disperses the CNP best, producing fewer large CNP agglomerates. In contrast, vehicles absent of lipid and protein produce the largest CNP agglomerates. The source of the CNP is also a factor in the degree of particle agglomeration within the same vehicle.
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2016-03-01
In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.
Particle agglomeration and fuel decomposition in burning slurry droplets
NASA Astrophysics Data System (ADS)
Choudhury, P. Roy; Gerstein, Melvin
In a burning slurry droplet the particles tend to agglomerate and produce large clusters which are difficult to burn. As a consequence, the combustion efficiency is drastically reduced. For such a droplet the nonlinear D2- t behavior associated with the formation of hard to burn agglomerates can be explained if the fuel decomposes on the surface of the particles. This paper deals with analysis and experiments with JP-10 and Diesel #2 slurries prepared with inert SiC and Al 2O 3 particles. It provides direct evidence of decomposed fuel residue on the surface of the particles heated by flame radiation. These decomposed fuel residues act as bonding agents and appear to be responsible for the observed agglomeration of particles in a slurry. Chemical analysis, scanning electron microscope photographs and finally micro-analysis by electron scattering clearly show the presence of decomposed fuel residue on the surface of the particles. Diesel #2 is decomposed relatively easily and therefore leaves a thicker deposit on SiC and forms larger agglomerates than the more stable JP-10. A surface reaction model with particles heated by flame radiation is able to describe the observed trend of the diameter history of the slurry fuel. Additional experiments with particles of lower emissivity (Al 2O 3) and radiation absorbing dye validate the theoretical model of the role of flame radiation in fuel decomposition and the formation of agglomerates in burning slurry droplets.
Tantra, Ratna; Tompkins, Jordan; Quincey, Paul
2010-01-01
This paper describes the use of nanoparticle characterisation tools to evaluate the interaction between bovine serum albumin (BSA) and dispersed nanoparticles in aqueous media. Dynamic light scattering, zeta-potential measurements and scanning electron microscopy were used to probe the state of zinc oxide (ZnO) and titanium dioxide (TiO(2)) nanoparticles in the presence of various concentrations of BSA, throughout a three-day period. BSA was shown to adhere to ZnO but not to TiO(2). The adsorption of BSA led to subsequent de-agglomeration of the sub-micron ZnO clusters into smaller fragments, even breaking them up into individual isolated nanoparticles. We propose that certain factors, such as adsorption kinetics of BSA on to the surface of ZnO, as well as the initial agglomerated state of the ZnO, prior to BSA addition, are responsible for promoting the de-agglomeration process. Hence, in the case of TiO(2) we see no de-agglomeration because: (a) the nanoparticles are more highly agglomerated to begin with and (b) BSA does not adsorb effectively on the surface of the nanoparticles. The zeta-potential results show that, for either ZnO or TiO(2), the presence of BSA resulted in enhanced stability. In the case of ZnO, the enhanced stability is limited to BSA concentrations below 0.5 wt.%. Steric and electrostatic repulsion are thought to be responsible for improved stability of the dispersion.
Frederix, Sofie A; Van Hoeymissen, Klaartje E; Courtin, Christophe M; Delcour, Jan A
2004-12-29
Water-extractable arabinoxylan (WE-AX) of variable molecular weight (MW) and water-unextractable arabinoxylan (WU-AX) were added to wheat flour to study their effect on gluten agglomeration in a dough and batter gluten-starch separation process with recovery of gluten from the batter with a set of vibrating sieves (400, 250, and 125 microm). Low MW WE-AX had almost no impact on the distribution of the gluten on the different sieves. High MW WE-AX decreased yields of the largest (400 microm sieve) gluten aggregates, more than their medium MW counterparts, indicating the importance of AX MW for their effect on gluten interactions. Correlations between the total level of gluten protein recovered on the three sieves and the batter extract viscosity as well as between the proportion of gluten protein recovered on the 400 microm sieve to that on the three sieves and the batter extract viscosity pointed to the importance of viscosity as an indicator for gluten agglomeration, as did the fact that another viscosity increasing plant polysaccharide (guar gum) also negatively influenced gluten agglomeration. However, the obtained data cannot rule out that AX and guar gum also exert steric effects on gluten agglomeration. WU-AX, present as discrete cell wall fragments, had a negative impact on the level of large gluten aggregates. Taken together, the results show that both native WE-AX and WU-AX detrimentally impact gluten agglomeration.
Getty: producing oil from diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zublin, L.
1981-10-01
Getty Oil Company has developed unconventional oil production techniques which will yield oil from diatomaceous earth. They propose to mine oil-saturated diatomite using open-pit mining methods. Getty's diatomite deposit in the McKittrick field of California is unique because it is cocoa brown and saturated with crude oil. It is classified also as a tightly packed deposit, and oil cannot be extracted by conventional oil field methods.
ERIC Educational Resources Information Center
Rillo, Thomas J.
1974-01-01
Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)
Two-stage agglomeration of fine-grained herbal nettle waste
NASA Astrophysics Data System (ADS)
Obidziński, Sławomir; Joka, Magdalena; Fijoł, Olga
2017-10-01
This paper compares the densification work necessary for the pressure agglomeration of fine-grained dusty nettle waste, with the densification work involved in two-stage agglomeration of the same material. In the first stage, the material was pre-densified through coating with a binder material in the form of a 5% potato starch solution, and then subjected to pressure agglomeration. A number of tests were conducted to determine the effect of the moisture content in the nettle waste (15, 18 and 21%), as well as the process temperature (50, 70, 90°C) on the values of densification work and the density of the obtained pellets. For pre-densified pellets from a mixture of nettle waste and a starch solution, the conducted tests determined the effect of pellet particle size (1, 2, and 3 mm) and the process temperature (50, 70, 90°C) on the same values. On the basis of the tests, we concluded that the introduction of a binder material and the use of two-stage agglomeration in nettle waste densification resulted in increased densification work (as compared to the densification of nettle waste alone) and increased pellet density.
Long, Wu-Jian; Li, Hao-Dao; Fang, Chang-Le; Xing, Feng
2018-01-09
The properties of graphene oxide (GO)-based cement paste can be significantly affected by the state of GO dispersion. In this study, the effects of uniformly dispersed and re-agglomerated GO on the rheological, mechanical properties and microstructure of cement paste were systematically investigated. Two distinct dispersion states can be achieved by altering the mixing sequence: Polycarboxylate-ether (PCE) mixed with GO-cement or cement mixed with GO-PCE. The experimental results showed that the yield stress and plastic viscosity increased with the uniformly dispersed GO when compared to those of re-agglomerated GO cement paste. Moreover, the 3-day compressive and flexural strengths of uniformly dispersed GO paste were 8% and 27%, respectively, higher than those of re-agglomerated GO pastes. The results of X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses demonstrated that uniformly dispersed GO more effectively promotes the formation of hydration products in hardened cement paste. Furthermore, a porosity analysis using mercury intrusion porosimetry revealed that the homogeneous dispersion of GO can better inhibit the formation of large-size pores and optimize the pore size distribution at 3 and 7 days than the re-agglomerated GO.
Leukocyte Agglomeration Reaction in Diagnosis of Allergy Reactions from Antibiotics,
tested in a clinic on 80 patients with serious allergic anamnesis . The results of the studies indicate that the leukocyte agglomeration reaction is a highly sensitive immunological indicator of hypersensitivity to antibiotics.
Chen, Xu; He, Xiao-Wei; Zhang, Bin; Fu, Xiong; Jane, Jay-Lin; Huang, Qiang
2017-11-01
This study aimed to understand effects of adding corn oil (CO) and soy protein (SP) to corn starch on the physicochemical properties and digestive rates of annealed starch complex and mechanisms of interactions between corn starch (CS), CO and SP. Binary and ternary blends were prepared using CS mixed with CO (10%, dsb) and/or SP (10%, dsb) and incubated in a water bath at 50°C for 14h. Results showed that more agglomerates of the granules were in the ternary blends. With the addition of CO and/or SP, the CS displayed a decreased pasting temperature, an increased peak viscosity and a decreased enthalpy change of amylose-lipid complex dissociation. The CO can reinforce but SP hinder the annealing phenomenon. Results also showed that CO decreased retrogradation of CS, whereas SP increased it. The digestibility studies showed that the addition of CO and SP decreased the content of rapidly digestible starch and increased the sum of slowly digestible starch and resistant starch contents. SP displayed more impact on the digestibility of the ternary blends than CO. The physical barrier of CO, and amylose-lipid complex and protein-starch matrix can provide resistance to starch digestion. Copyright © 2017. Published by Elsevier B.V.
Creating nanoscale emulsions using condensation.
Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K
2017-11-08
Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.
Use of cork powder and granules for the adsorption of pollutants: a review.
Pintor, Ariana M A; Ferreira, Catarina I A; Pereira, Joana C; Correia, Patrícia; Silva, Susana P; Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2012-06-15
Cork powder and granules are the major subproducts of the cork industry, one of the leading economic activities in Portugal and other Mediterranean countries. Many applications have been envisaged for this product, from cork stoppers passing through the incorporation in agglomerates and briquettes to the use as an adsorbent in the treatment of gaseous emissions, waters and wastewaters. This paper aims at reviewing the state of the art on the properties of cork and cork powder and their application in adsorption technologies. Cork biomass has been used on its original form as biosorbent for heavy metals and oils, and is also a precursor of activated carbons for the removal of emerging organic pollutants in water and VOCs in the gas phase. Through this literature review, different potential lines of research not yet explored can be more easily identified. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chord length distributions interpretation using a polydispersed population: Modeling and experiments
NASA Astrophysics Data System (ADS)
Cameirao, A.; Le Ba, H.; Darbouret, M.; Herri, J.-M.; Peytavy, J.-L.; Glénat, P.
2012-03-01
Chord length distributions were measured during the crystallization of gas hydrates in a flow loop. The conditions on the flow loop were similar with the conditions in the marine pipelines. The flow loop was filled with water in oil emulsion and pressurized with methane (7 MPa) at low temperature (277 K). During crystallization water droplets crystallize and agglomerate. The CLD measures were interpreted in a preceding work [Le Ba et al., 2010] [1] by constructing random aggregates with known geometrical proprieties from a monodispersed population of droplets and calculating their CLD. Comparing calculated CLD with CLD from the experiment, the geometrical parameters: number of primary particles and fractal dimension of experimental aggregates are identified. However some differences remained between the experiment and the calculated CLD. In the present work the droplets population was considered polydispersed improving the comparison between the model and the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi
Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less
NASA Astrophysics Data System (ADS)
Bălău, Oana; Bica, Doina; Koneracka, Martina; Kopčansky, Peter; Susan-Resiga, Daniela; Vékás, Ladislau
Rheological and magnetorheological behaviour of monolayer and double layer sterically stabilized magnetic fluids, with transformer oil (UTR), diloctilsebacate (DOS), heptanol (Hept), pentanol (Pent) and water (W) as carrier liquids, were investigated. The data for volumic concentration dependence of dynamic viscosity of high colloidal stability UTR, DOS, Hept and Pent samples are particularly well fitted by the formulas given by Vand (1948) and Chow (1994). The Chow type dependence proved its universal character as the viscosity data for dilution series of various magnetic fluids are well fitted by the same curve, regardless the nonpolar or polar charcater of the sample. The magnetorheological effect measured for low and medium concentration water based magnetic fluids is much higher, due to agglomerate formation process, than the corresponding values obtained for the well stabilized UTR, DOS, Hept and Pent samples, even at very high volumic fraction of magnetic nanoparticles.
Ilmi, Miftahul; Abduh, Muhammad Y; Hommes, Arne; Winkelman, Jozef G M; Hidayat, Chusnul; Heeres, Hero J
2018-01-17
Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)- water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid-liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode. The cascade was run for 8 h without operational issues. Enzyme recycling was studied by reintroduction of the water phase from the CCCS outlet to the stirred tank reactor. Product yield decreased over time to an average of 50% of the initial value, likely due to accumulation of 1-butanol in water phase, loss of enzyme due to agglomeration, and the formation of a separate enzyme layer.
Basic and applied research related to the technology of space energy conversion systems
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Mattick, A. T.; Bruckner, A. P.
1988-01-01
The first six months' research effort on the Liquid Droplet Radiator (LDR) focussed on experimental and theoretical studies of radiation by an LDR droplet cloud. Improvements in the diagnostics for the radiation facility have been made which have permitted an accurate experimental test of theoretical predictions of LDR radiation over a wide range of optical depths, using a cloud of Dow silicone oil droplets. In conjunction with these measurements an analysis was made of the evolution of the cylindrical droplet cloud generated by a 2300-hole orifice plate. This analysis indicates that a considerable degree of agglomeration of droplets occurs over the first meter of travel. Theoretical studies have centered on developments of an efficient means of computing the angular scattering distribution from droplets in an LDR droplet cloud, so that a parameter study can be carried out for LDR radiative performance vs fluid optical properties and cloud geometry.
2017-01-01
Fatty acid butyl esters were synthesized from sunflower oil with 1-butanol using a homogeneous Rhizomucor miehei lipase in a biphasic organic (triglyceride, 1-butanol, hexane)– water (with enzyme) system in a continuous setup consisting of a cascade of a stirred tank reactor and a continuous centrifugal contactor separator (CCCS), the latter being used for integrated reaction and liquid–liquid separation. A fatty acid butyl ester yield up to 93% was obtained in the cascade when operated in a once-through mode. The cascade was run for 8 h without operational issues. Enzyme recycling was studied by reintroduction of the water phase from the CCCS outlet to the stirred tank reactor. Product yield decreased over time to an average of 50% of the initial value, likely due to accumulation of 1-butanol in water phase, loss of enzyme due to agglomeration, and the formation of a separate enzyme layer. PMID:29398779
A pocket model for aluminum agglomeration in composite propellants
NASA Technical Reports Server (NTRS)
Cohen, N. S.
1981-01-01
This paper presents a model for the purpose of estimating the fraction of aluminum powder that will form agglomerates at the surface of deflagrating composite propellants. The basic idea is that the fraction agglomerated depends upon the amount of aluminum that melts within effective binder pocket volumes framed by oxidizer particles. The effective pocket depends upon the ability of ammonium perchlorate modals to encapsulate the aluminum and provide a local temperature sufficient to ignite the aluminum. Model results are discussed in the light of data showing effects of propellant formulation variables and pressure.
Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators
Bukhari, Syed Faisal Ahmed; Yang, Wuqiang
2006-01-01
In the oil industry, huge saving may be made if suitable multi-interface level measurement systems are employed for effectively monitoring crude oil separators and efficient control of their operation. A number of techniques, e.g. externally mounted displacers, differential pressure transmitters and capacitance rod devices, have been developed to measure the separation process with gas, oil, water and other components. Because of the unavailability of suitable multi-interface level measurement systems, oil separators are currently operated by the trial-and-error approach. In this paper some conventional techniques, which have been used for level measurement in industry, and new development are discussed.
Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.
Hassan, H; Lim, J K; Hameed, B H
2016-12-01
Co-pyrolysis of biomass with abundantly available materials could be an economical method for production of bio-fuels. However, elimination of oxygenated compounds poses a considerable challenge. Catalytic co-pyrolysis is another potential technique for upgrading bio-oils for application as liquid fuels in standard engines. This technique promotes the production of high-quality bio-oil through acid catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize research progress on co-pyrolysis and catalytic co-pyrolysis, as well as their benefits on enhancement of bio-oils derived from biomass. This review focuses on the potential of plastic wastes and coal materials as co-feed in co-pyrolysis to produce valuable liquid fuel. This paper also proposes future directions for using this technique to obtain high yields of bio-oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oil core microcapsules by inverse gelation technique.
Martins, Evandro; Renard, Denis; Davy, Joëlle; Marquis, Mélanie; Poncelet, Denis
2015-01-01
A promising technique for oil encapsulation in Ca-alginate capsules by inverse gelation was proposed by Abang et al. This method consists of emulsifying calcium chloride solution in oil and then adding it dropwise in an alginate solution to produce Ca-alginate capsules. Spherical capsules with diameters around 3 mm were produced by this technique, however the production of smaller capsules was not demonstrated. The objective of this study is to propose a new method of oil encapsulation in a Ca-alginate membrane by inverse gelation. The optimisation of the method leads to microcapsules with diameters around 500 μm. In a search of microcapsules with improved diffusion characteristics, the size reduction is an essential factor to broaden the applications in food, cosmetics and pharmaceuticals areas. This work contributes to a better understanding of the inverse gelation technique and allows the production of microcapsules with a well-defined shell-core structure.
Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers
Atif, Rasheed
2016-01-01
Summary One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG) and carbon nanotubes (CNTs) tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites. PMID:27826492
A comparison of dispersing media for various engineered carbon nanoparticles
Buford, Mary C; Hamilton, Raymond F; Holian, Andrij
2007-01-01
Background With the increased manufacture and use of carbon nanoparticles (CNP) there has been increasing concern about the potential toxicity of fugitive CNP in the workplace and ambient environment. To address this matter a number of investigators have conducted in vitro and in vivo toxicity assessments. However, a variety of different approaches for suspension of these particles (culture media, Tween 80, dimethyl sulfoxide, phosphate-buffered saline, fetal calf serum, and others), and different sources of materials have generated potentially conflicting outcomes. The quality of the dispersion of nanoparticles is very dependent on the medium used to suspend them, and this then will most likely affect the biological outcomes. Results In this work, the distributions of different CNP (sources and types) have been characterized in various media. Furthermore, the outcome of instilling the different agglomerates, or size distributions, was examined in mouse lungs after one and seven days. Our results demonstrated that CNP suspended in serum produced particle suspensions with the fewest large agglomerates, and the most uniform distribution in mouse lungs. In addition, no apparent clearance of instilled CNP took place from lungs even after seven days. Conclusion This work demonstrates that CNP agglomerates are present in all dispersing vehicles to some degree. The vehicle that contains some protein, lipid or protein/lipid component disperses the CNP best, producing fewer large CNP agglomerates. In contrast, vehicles absent of lipid and protein produce the largest CNP agglomerates. The source of the CNP is also a factor in the degree of particle agglomeration within the same vehicle. PMID:17655771
Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride.
Samuel, Devon; Steinhauser, Carl; Smith, Jeffrey G; Kaufman, Aaron; Radin, Maxwell D; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J
2017-12-20
One obstacle to realizing a practical, rechargeable magnesium-ion battery is the development of efficient Mg electrolytes. Electrolytes based on simple Mg(BH 4 ) 2 salts suffer from poor salt solubility and/or low conductivity, presumably due to strong ion pairing. Understanding the molecular-scale processes occurring in these electrolytes would aid in overcoming these performance limitations. Toward this goal, the present study examines the solvation, agglomeration, and transport properties of a family of Mg electrolytes based on the Mg(BH 4 ) 2 salt using classical molecular dynamics. These properties were examined across five different solvents (tetrahydrofuran and the glymes G1-G4) and at four salt concentrations ranging from the dilute limit up to 0.4 M. Significant and irreversible salt agglomeration was observed in all solvents at all nondilute Mg(BH 4 ) 2 concentrations. The degree of clustering observed in these divalent Mg systems is much larger than that reported for electrolytes containing monovalent cations, such as Li. The salt agglomeration rate and diffusivity of Mg 2+ were both observed to correlate with solvent self-diffusivity: electrolytes using longer- (shorter-) chain solvents had the lowest (highest) Mg 2+ diffusivity and agglomeration rates. Incorporation of Mg 2+ into Mg 2+ -BH 4 - clusters significantly reduces the diffusivity of Mg 2+ by restricting displacements to localized motion within largely immobile agglomerates. Consequently, diffusion is increasingly impeded with increasing Mg(BH 4 ) 2 concentration. These data are consistent with the solubility limitations observed experimentally for Mg(BH 4 ) 2 -based electrolytes and highlight the need for strategies that minimize salt agglomeration in electrolytes containing divalent cations.
Finding and Producing Oil and Gas
ERIC Educational Resources Information Center
Geotimes, 1974
1974-01-01
Condenses the current research in exploration for gas and oil as described at a symposium at Case Western Reserve University. Briefly discusses reserves, oil exploration and extraction techniques. (BR)
Recovery rates, enhanced oil recovery and technological limits
Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter
2014-01-01
Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR. PMID:24298076
Recovery rates, enhanced oil recovery and technological limits.
Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter
2014-01-13
Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.
Polymer Nanocomposite Materials with High Dielectric Permittivity and Low Dielectric Loss Properties
NASA Astrophysics Data System (ADS)
Toor, Anju
Materials with high dielectric permittivity have drawn increasing interests in recent years for their important applications in capacitors, actuators, and high energy density pulsed power. Particularly, polymer-based dielectrics are excellent candidates, owing to their properties such as high breakdown strength, low dielectric loss, flexibility and easy processing. To enhance the dielectric permittivity of polymer materials, typically, high dielectric constant filler materials are added to the polymer. Previously, ferroelectric and conductive fillers have been mainly used. However, such systems suffered from various limitations. For example, composites based on ferroelectric materials like barium titanate, exhibited high dielectric loss, and poor saturation voltages. Conductive fillers are used in the form of powder aggregates, and they may show 10-100 times enhancement in dielectric constant, however these nanoparticle aggregates cause the dielectric loss to be significant. Also, agglomerates limit the volume fraction of fillers in polymer and hence, the ability to achieve superior dielectric constants. Thus, the aggregation of nanoparticles is a significant challenge to their use to improve the dielectric permittivity. We propose the use of ligand-coated metal nanoparticle fillers to enhance the dielectric properties of the host polymer while minimizing dielectric loss by preventing nanoparticle agglomeration. The focus is on obtaining uniform dispersion of nanoparticles with no agglomeration by utilizing appropriate ligands/surface functionalizations on the gold nanoparticle surface. Use of ligand coated metal nanoparticles will enhance the dielectric constant while minimizing dielectric loss, even with the particles closely packed in the polymer matrix. Novel combinations of materials, which use 5 nm diameter metal nanoparticles embedded inside high breakdown strength polymer materials are evaluated. High breakdown strength polymer materials are chosen to allow further exploration of these materials for energy storage applications. In summary, two novel nanocomposite materials are designed and synthesized, one involving polyvinylidene fluoride (PVDF) as the host polymer for potential applications in energy storage and the other with SU-8 for microelectronic applications. Scanning elec- tron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy and ultramicrotoming techniques were used for the material characterization of the nanocomposite materials. A homogeneous dispersion of gold nanoparticles with low particle agglomeration has been achieved. Fabricated nanoparticle polymer composite films showed the absence of voids and cracks. Also, no evidence of macro-phase separation of nanoparticles from the polymer phase was observed. This is important because nanoparticle agglomeration and phase separation from the polymer usually results in poor processability of films and a high defect density. Dielectric characterization of the nanocomposite materials showed enhancement in the dielectric constant over the base polymer values and low dielectric loss values were observed.
Active silicone oil removal with a modified vacuum syringe.
Bajaire, Boris J; Oudovitchenko, Elena; Salguero, Andrés E; Paipilla, Diego F
2012-01-01
At present, the number of clinical indications for the use of silicone oil (SO) has increased in intraocular surgery because of the advent of new techniques in vitreoretinal surgery, availability of better quality oils, and greater experience in its use. Consequently, the number of procedures for SO removal has increased, and support technologies for these procedures are always a concern. A simple active technique for SO removal based on a 5-mL standard syringe with an 18G cannula was developed. The oil is suctioned into the syringe by the pulling effect of a spring assembled along the axis of the piston. No abrupt change in the intraocular pressure is produced because of the oil viscosity and the reduced diameter of the cannula. A technique for SO removal that has been used successfully during the past 7 years is presented in this article. During the 7-year period, 234 SO removals were performed without any complication or device failure. Using the present method, the average time for SO removal was 4 minutes. The average extraction time with the technique is 4 minutes, which is in the range of other active techniques, and it is faster than passive methods that are performed between 8 and 9 minutes. The technique is in line with the advantages of more elaborated active methods without using complex technology. It is considered to be highly successful and easy to implement.
Analysis of the high-temperature particulate collection problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razgaitis, R.
1977-10-01
Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiyuan; Cen, Jiajie; Zhao, Yue
Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.
Wu, Qiyuan; Cen, Jiajie; Zhao, Yue; ...
2017-12-08
Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.
Borràs, Eva; Ferré, Joan; Boqué, Ricard; Mestres, Montserrat; Aceña, Laura; Calvo, Angels; Busto, Olga
2016-07-15
Three instrumental techniques, headspace-mass spectrometry (HS-MS), mid-infrared spectroscopy (MIR) and UV-visible spectrophotometry (UV-vis), have been combined to classify virgin olive oil samples based on the presence or absence of sensory defects. The reference sensory values were provided by an official taste panel. Different data fusion strategies were studied to improve the discrimination capability compared to using each instrumental technique individually. A general model was applied to discriminate high-quality non-defective olive oils (extra-virgin) and the lowest-quality olive oils considered non-edible (lampante). A specific identification of key off-flavours, such as musty, winey, fusty and rancid, was also studied. The data fusion of the three techniques improved the classification results in most of the cases. Low-level data fusion was the best strategy to discriminate musty, winey and fusty defects, using HS-MS, MIR and UV-vis, and the rancid defect using only HS-MS and MIR. The mid-level data fusion approach using partial least squares-discriminant analysis (PLS-DA) scores was found to be the best strategy for defective vs non-defective and edible vs non-edible oil discrimination. However, the data fusion did not sufficiently improve the results obtained by a single technique (HS-MS) to classify non-defective classes. These results indicate that instrumental data fusion can be useful for the identification of sensory defects in virgin olive oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
The state of the art of conventional flow visualization techniques for wind tunnel testing
NASA Technical Reports Server (NTRS)
Settles, G. S.
1982-01-01
Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.
A novel method for qualitative analysis of edible oil oxidation using an electronic nose.
Xu, Lirong; Yu, Xiuzhu; Liu, Lei; Zhang, Rui
2016-07-01
An electronic nose (E-nose) was used for rapid assessment of the degree of oxidation in edible oils. Peroxide and acid values of edible oil samples were analyzed using data obtained by the American Oil Chemists' Society (AOCS) Official Method for reference. Qualitative discrimination between non-oxidized and oxidized oils was conducted using the E-nose technique developed in combination with cluster analysis (CA), principal component analysis (PCA), and linear discriminant analysis (LDA). The results from CA, PCA and LDA indicated that the E-nose technique could be used for differentiation of non-oxidized and oxidized oils. LDA produced slightly better results than CA and PCA. The proposed approach can be used as an alternative to AOCS Official Method as an innovative tool for rapid detection of edible oil oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Leal-Calderon, Fernando; Cansell, Maud
2017-09-01
An experimental device based on the measurement of the heat flux dissipated during chemical reactions, previously validated for monitoring lipid oxidation in plant oils, was extended to follow lipid oxidation in water-in-oil emulsions. Firstly, validation of the approach was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions and measured directly in water-in-oil emulsions, in isothermal conditions at 60°C. Secondly, several emulsions based on plant oils differing in their n-3 fatty acid content were compared. The oxidability parameter derived from the enthalpy curves reflected the α-linolenic acid proportion in the oils. On the whole, the micro-calorimetry technique provides a sensitive method to assess lipid oxidation in water-in-oil emulsions without requiring any phase extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
The structure of hydrophobic gas diffusion electrodes.
NASA Technical Reports Server (NTRS)
Giner, J.
1972-01-01
The 'flooded agglomerate' model of the Teflon-bonded gas diffusion electrode is discussed. A mathematical treatment of the 'flooded agglomerate' model is given; it can be used to predict the performance of the electrode as a function of measurable physical parameters.
Growth and form of planetary seedlings: results from a microgravity aggregation experiment.
Blum, J; Wurm, G; Kempf, S; Poppe, T; Klahr, H; Kozasa, T; Rott, M; Henning, T; Dorschner, J; Schräpler, R; Keller, H U; Markiewicz, W J; Mann, I; Gustafson, B A; Giovane, F; Neuhaus, D; Fechtig, H; Grün, E; Feuerbacher, B; Kochan, H; Ratke, L; El Goresy, A; Morfill, G; Weidenschilling, S J; Schwehm, G; Metzler, K; Ip, W H
2000-09-18
The outcome of the first stage of planetary formation, which is characterized by ballistic agglomeration of preplanetary dust grains due to Brownian motion in the free molecular flow regime of the solar nebula, is still somewhat speculative. We performed a microgravity experiment flown onboard the space shuttle in which we simulated, for the first time, the onset of free preplanetary dust accumulation and revealed the structures and growth rates of the first dust agglomerates in the young solar system. We find that a thermally aggregating swarm of dust particles evolves very rapidly and forms unexpected open-structured agglomerates.
Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu
2017-05-01
The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.
Comparison of the agglomeration behavior of thin metallic films on SiO2
NASA Astrophysics Data System (ADS)
Gadkari, P. R.; Warren, A. P.; Todi, R. M.; Petrova, R. V.; Coffey, K. R.
2005-07-01
The stability of continuous metallic thin films on insulating oxide surfaces is of interest to applications such as semiconductor interconnections and gate engineering. In this work, we report the study of the formation of voids and agglomeration of initially continuous Cu, Au, Ru and Pt thin films deposited on amorphous thermally grown SiO2 surfaces. Polycrystalline thin films having thicknesses in the range of 10-100 nm were ultrahigh vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150-800 °C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all of the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play an important part in deciding the mode of void growth in Au and Pt thin films. Last, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer.
A complex network approach for nanoparticle agglomeration analysis in nanoscale images
NASA Astrophysics Data System (ADS)
Machado, Bruno Brandoli; Scabini, Leonardo Felipe; Margarido Orue, Jonatan Patrick; de Arruda, Mauro Santos; Goncalves, Diogo Nunes; Goncalves, Wesley Nunes; Moreira, Raphaell; Rodrigues-Jr, Jose F.
2017-02-01
Complex networks have been widely used in science and technology because of their ability to represent several systems. One of these systems is found in Biochemistry, in which the synthesis of new nanoparticles is a hot topic. However, the interpretation of experimental results in the search of new nanoparticles poses several challenges. This is due to the characteristics of nanoparticle images and due to their multiple intricate properties; one property of recurrent interest is the agglomeration of particles. Addressing this issue, this paper introduces an approach that uses complex networks to detect and describe nanoparticle agglomerates so to foster easier and more insightful analyses. In this approach, each detected particle in an image corresponds to a vertice and the distances between the particles define a criterion for creating edges. Edges are created if the distance is smaller than a radius of interest. Once this network is set, we calculate several discrete measures able to reveal the most outstanding agglomerates in a nanoparticle image. Experimental results using images of scanning tunneling microscopy (STM) of gold nanoparticles demonstrated the effectiveness of the proposed approach over several samples, as reflected by the separability between particles in three usual settings. The results also demonstrated efficacy for both convex and non-convex agglomerates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca
2016-01-15
Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jonesmore » potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.« less
NASA Astrophysics Data System (ADS)
Fernandez, Ruben; Jodoin, Bertrand
2017-08-01
Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned
2015-03-10
Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ)more » potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.« less
Detecting gas hydrate behavior in crude oil using NMR.
Gao, Shuqiang; House, Waylon; Chapman, Walter G
2006-04-06
Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.
Zheng, Songyan; Puri, Aastha; Li, Jinjiang; Jaiswal, Archana; Adams, Monica
2017-01-01
Micro-flow imaging (MFI) has been used for formulation development for analyzing sub-visible particles. Archimedes, a novel technique for analyzing sub-micron particles, has been considered as an orthogonal method to currently existing techniques. This study utilized these two techniques to investigate the effectiveness of polysorbate (PS-80) in mitigating the particle formation of a therapeutic protein formulation stored in silicone oil-coated pre-filled syringes. The results indicated that PS-80 prevented the formation of both protein and silicone oil particles. In the case of protein particles, PS-80 might involve in the interactions with the hydrophobic patches of protein, air bubbles, and the stressed surfaces of silicone oil-coated pre-filled syringes. Such interactions played a role in mitigating the formation of protein particles. Subsequently, quartz crystal microbalance with dissipation (QCM-D) was utilized to characterize the interactions associated with silicone oil, protein, and PS-80 in the solutions. Based on QCM-D results, we proposed that PS-80 likely formed a layer on the interior surfaces of syringes. As a result, the adsorbed PS-80 might block the leakage of silicone oil from the surfaces to solution so that the silicone oil particles were mitigated at the presence of PS-80. Overall, this study demonstrated the necessary of utilizing these three techniques cooperatively in order to better understand the interfacial role of PS-80 in mitigating the formation of protein and silicone oil particles.
Investigation of Oil Fluorescence as a Technique for the Remote Sensing of Oil Spills
DOT National Transportation Integrated Search
1971-06-01
The flexibility of remote sensing of oil spills by laser-excited oil fluorescence is investigated. The required parameters are fed into a physical model to predict signal and background levels; and the predictions are verified by field experiments. A...
Influence of stability of polymer surfactant on oil displacement mechanism
NASA Astrophysics Data System (ADS)
Liu, Li; Li, Chengliang; Pi, Yanming; Wu, Di; He, Ying; Geng, Liang
2018-02-01
At present, most of the oilfields of China have entered the late stage of high water-cut development, and three oil recovery technique has become the leading technology for improving oil recovery. With the improvement of three oil recovery techniques, the polymer surfactant flooding technology has been widely promoted in oil fields in recent years. But in the actual field experiment, it has been found that the polymer surfactant has chromatographic separation at the extraction end, which indicates that the property of the polymer surfactant has changed during the displacement process. At present, there was few literature about how the stability of polymer surfactant affects the oil displacement mechanism. This paper used HuaDing-I polymer surfactant to conduct a micro photolithography glass flooding experiment, and then compared the oil displacement law of polymer surfactant before and after static setting. Finally, the influence law of stability of polymer surfactant on the oil displacement mechanism is obtained by comprehensive analysis.
Monitoring the Thermal Parameters of Different Edible Oils by Using Thermal Lens Spectrometry
NASA Astrophysics Data System (ADS)
Jiménez-Pérez, J. L.; Cruz-Orea, A.; Lomelí Mejia, P.; Gutierrez-Fuentes, R.
2009-08-01
Several vegetable edible oils (sunflower, canola, soya, and corn) were used to study the thermal diffusivity of edible oils. Thermal lens spectrometry (TLS) was applied to measure the thermal properties. The results showed that the obtained thermal diffusivities with this technique have good agreement when compared with literature values. In this technique an Ar+ laser and intensity stabilized He-Ne laser were used as the heating source and probe beam, respectively. These studies may contribute to a better understanding of the physical properties of edible oils and the quality of these important foodstuffs.
Getting Over the Barrel- Achieving Independence from Foreign Oil in 2018
2009-02-03
material called kerogen. Kerogen can be converted into oil via heating in the chemical process of pyrolysis .44 Depending on the richness of oil shale, it...vegetable oil, animal fat, corn , soybeans, jatropha seed oil, palm oil, switch grass and even algae. Biofuel production techniques and technologies...vary widely based on the input source – sugar-based, starch-based or oil-based. This document only examines corn -based ethanol production. The other
Integrated geostatistics for modeling fluid contacts and shales in Prudhoe Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, G.; Chopra, A.K.; Severson, C.D.
1997-12-01
Geostatistics techniques are being used increasingly to model reservoir heterogeneity at a wide range of scales. A variety of techniques is now available with differing underlying assumptions, complexity, and applications. This paper introduces a novel method of geostatistics to model dynamic gas-oil contacts and shales in the Prudhoe Bay reservoir. The method integrates reservoir description and surveillance data within the same geostatistical framework. Surveillance logs and shale data are transformed to indicator variables. These variables are used to evaluate vertical and horizontal spatial correlation and cross-correlation of gas and shale at different times and to develop variogram models. Conditional simulationmore » techniques are used to generate multiple three-dimensional (3D) descriptions of gas and shales that provide a measure of uncertainty. These techniques capture the complex 3D distribution of gas-oil contacts through time. The authors compare results of the geostatistical method with conventional techniques as well as with infill wells drilled after the study. Predicted gas-oil contacts and shale distributions are in close agreement with gas-oil contacts observed at infill wells.« less
Friction-Stir Welding - Heavy Inclusions in Bi-metallic welds of Al 2219/2195
NASA Technical Reports Server (NTRS)
Rietz, Ward W., Jr.
2008-01-01
Heavy Inclusions (HI) were detected for the first time by radiographic examination in aluminum alloy 2219forging/2195plate (advancing/retreating side) Friction Sir Welds (FSW) for the Space Shuttle External Tank (ET) Program. Radiographic HI indications appear as either small (approx.0.005"-0.025") individual particles or clusters of small particles. Initial work was performed to verify that the HI was not foreign material or caused by FSW pin tool debris. That and subsequent elemental analysis determined that the HI were large agglomerations of Al2Cu (theta phase), which is the strengthening precipitate in Al2219. A literature search on that subject determined that the agglomeration of phase has also been found in Al2219 bead on plate FSW [Ref. 1]. Since this was detected in ET space flight hardware, an investigative study of the effect of agglomerated theta phase particles in FSW Al2219f/2195p was performed. Numerous panels of various lengths were welded per ET weld procedures and radiographically inspected to determine if any HI was detected. Areas that had HI were sampled for room temperature and cyclic cryogenic (-423F) tensile testing and determined no significant adverse affect on mechanical properties when compared to test specimens without HI and historical data. Fracture surface examination using the Scanning Electron Microscope (SEM) revealed smaller phase agglomerations undetectable by radiographic inspection dispersed throughout the Al2219f/2195p FSW. This indicates that phase agglomeration is inherent to the Al2219f/2195p FSW process and only rarely creates agglomerations large enough to be detected by radiography. HI has not been observed in FSW of plate to plate material for either Al2219 or AL2195.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.; Dawson, M.R.; Noble, S.D.
Agglomerates formed in laboratory coal combustion tests were analyzed to determine the chemical and mineral reactions which lead to the cohesion of bed particles. Combustion tests were conducted at 75, 90, 100, and 120% theoretical air values. The test at 75% theoretical air resulted in the formation of bed agglomerates within 30 minutes. Agglomerates which formed at the lower theoretical air values were compared to unagglomerated bed samples by X-ray diffraction analyses. Polished thin sections of the agglomerates were made for optical and scanning electron microscopy. The results of these analyses indicate there were, in a broad sense, two typesmore » of mineralogic reactions which lead to the cohesion of bed particles in the agglomerates. One mechanism of cohesion resulted from the melting of bed particles to form a viscous material which bridged other bed particles. Based on the chemical composition of the glass (which resulted from the melt), this material was probably derived from aluminosilicate minerals in the sand bed or from clays within the coal. Because of the high iron content in these glasses (4 to 5 wt%), it is likely that iron pyrites in the coal were involved in fluxing reactions. In addition, MgO appears to be relatively high in the glasses. It is suspected that Ca-Mg carbonates (dolomite) from the bed sand are also involved in mineralogic reactions with the aluminosilicate melt. The second type of mineralogic reaction appears to be a reaction involving calcium and magnesium with other bed particles and with the aluminosilicate melt to form new mineral phases. Although the composition of these phases is somewhat variable, some resemble single-chain silicates or pyroxenes.« less
NASA Astrophysics Data System (ADS)
Román, Sebastián; Lund, Fernando; Bustos, Javier; Palza, Humberto
2018-01-01
In several technological applications, carbon nanotubes (CNT) are added to a polymer matrix in order to develop electrically conductive composite materials upon percolation of the CNT network. This percolation state depends on several parameters such as particle characteristics, degree of dispersion, and filler orientation. For instance, CNT aggregation is currently avoided because it is thought that it will have a negative effect on the electrical behavior despite some experimental evidence showing the contrary. In this study, the effect of CNT waviness, degree of agglomeration, and external strain, on the electrical percolation of polymer composites is studied by a three dimensional Monte-Carlo simulation. The simulation shows that the percolation threshold of CNT depends on the particle waviness, with rigid particles displaying the lowest values. Regarding the effect of CNT dispersion, our numerical results confirm that low levels of agglomeration reduce the percolation threshold of the composite. However, the threshold is shifted to larger values at high agglomeration states because of the appearance of isolated areas of high CNT concentrations. These results imply, therefore, an optimum of agglomeration that further depends on the waviness and concentration of CNT. Significantly, CNT agglomeration can further explain the broad percolation transition found in these systems. When an external strain is applied to the composites, the percolation concentration shifts to higher values because CNT alignment increases the inter-particle distances. The strain sensitivity of the composites is affected by the percolation state of CNT showing a maximum value at certain filler concentration. These results open up the discussion about the relevance in polymer composites of the dispersion state of CNT and filler flexibility towards electrically conductive composites.
NASA Astrophysics Data System (ADS)
Marvanová, Soňa; Kulich, Pavel; Skoupý, Radim; Hubatka, František; Ciganek, Miroslav; Bendl, Jan; Hovorka, Jan; Machala, Miroslav
2018-04-01
Size-segregated particulate matter (PM) is frequently used in chemical and toxicological studies. Nevertheless, toxicological in vitro studies working with the whole particles often lack a proper evaluation of PM real size distribution and characterization of agglomeration under the experimental conditions. In this study, changes in particle size distributions during the PM sample manipulation and also semiquantitative elemental composition of single particles were evaluated. Coarse (1-10 μm), upper accumulation (0.5-1 μm), lower accumulation (0.17-0.5 μm), and ultrafine (<0.17 μm) PM fractions were collected by high volume cascade impactor in Prague city center. Particles were examined using electron microscopy and their elemental composition was determined by energy dispersive X-ray spectroscopy. Larger or smaller particles, not corresponding to the impaction cut points, were found in all fractions, as they occur in agglomerates and are impacted according to their aerodynamic diameter. Elemental composition of particles in size-segregated fractions varied significantly. Ns-soot occurred in all size fractions. Metallic nanospheres were found in accumulation fractions, but not in ultrafine fraction where ns-soot, carbonaceous particles, and inorganic salts were identified. Dynamic light scattering was used to measure particle size distribution in water and in cell culture media. PM suspension of lower accumulation fraction in water agglomerated after freezing/thawing the sample, and the agglomerates were disrupted by subsequent sonication. Ultrafine fraction did not agglomerate after freezing/thawing the sample. Both lower accumulation and ultrafine fractions were stable in cell culture media with fetal bovine serum, while high agglomeration occurred in media without fetal bovine serum as measured during 24 h.
Leung, Sharon Shui Yee; Tang, Patricia; Zhou, Qi Tony; Tong, Zhenbo; Leung, Cassandra; Decharaksa, Janwit; Yang, Runyu; Chan, Hak-Kim
2015-11-01
The US pharmacopeia (USP) and Alberta throats were recently reported to cause further de-agglomeration of carrier-free powders emitted from some dry powder inhalers (DPIs). This study assessed if they have similar influences on commercially available carrier-based DPIs. A straight tube, a USP throat, and an Alberta throat (non-coated and coated) were used for cascade impaction testing. Aerosol fine particle fraction (FPF ≤ 5 μm) was computed to evaluate throat-induced de-agglomeration. Computational fluid dynamics are employed to simulate airflow patterns and particle trajectories inside the USP and Alberta throats. For all tested products, no significant differences in the in vitro aerosol performance were observed between the USP throat and the straight tube. Using fine lactose carriers (<10 μm), Symbicort(®) and Oxis(™) showed minimal impaction inside the Alberta throat and resulted in similar FPF among all induction ports. For products using coarse lactose carriers (>10 μm), impaction frequency and energy inside the Alberta throat were significant. Further de-agglomeration was noted inside the non-coated Alberta throat for Seretide(®) and Spiriva(®), but agglomerates emitted from Relenza(®), Ventolin(®), and Foradil(®) did not further break up into smaller fractions. The coated Alberta throat considerably reduced the FPF values of these products due to the high throat retention, but they generally agreed better with the in vivo data. In conclusion, depending on the powder formulation (including carrier particle size), the inhaler, and the induction port, further de-agglomeration could happen ex-inhaler and create differences in the in vitro measurements.
Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd. Sapuan; Hussein, Mohd. Zobir; Shameli, Kamyar
2011-01-01
In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3′,4,4′-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique. PMID:22016643
Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd Sapuan; Hussein, Mohd Zobir; Shameli, Kamyar
2011-01-01
In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
Banerjee, Chiranjib; Westberg, Michael; Breitenbach, Thomas; Bregnhøj, Mikkel; Ogilby, Peter R
2017-06-06
The oxidation of lipids is an important phenomenon with ramifications for disciplines that range from food science to cell biology. The development and characterization of tools and techniques to monitor lipid oxidation are thus relevant. Of particular significance in this regard are tools that facilitate the study of oxidations at interfaces in heterogeneous samples (e.g., oil-in-water emulsions, cell membranes). In this article, we establish a proof-of-principle for methods to initiate and then monitor such oxidations with high spatial resolution. The experiments were performed using oil-in-water emulsions of polyunsaturated fatty acids (PUFAs) prepared from cod liver oil. We produced singlet oxygen at a point near the oil-water interface of a given PUFA droplet in a spatially localized two-photon photosensitized process. We then followed the oxidation reactions initiated by this process with the fluorescence-based imaging technique of structured illumination microscopy (SIM). We conclude that the approach reported herein has attributes well-suited to the study of lipid oxidation in heterogeneous samples.
Remote Oil Spill Detection and Monitoring Beneath Sea Ice
NASA Astrophysics Data System (ADS)
Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.
2016-08-01
The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.
Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A
2014-12-07
Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.
Alcohol cosurfactants in hydrate antiagglomeration.
York, J Dalton; Firoozabadi, Abbas
2008-08-28
Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at concentrations higher than chemical surfactants.
Determining the Discharge Rate from a Submerged Oil Leaks using ROV Video and CFD study
NASA Astrophysics Data System (ADS)
Saha, Pankaj; Shaffer, Frank; Shahnam, Mehrdad; Savas, Omer; Devites, Dave; Steffeck, Timothy
2016-11-01
The current paper reports a technique to measure the discharge rate by analyzing the video from a Remotely Operated Vehicle (ROV). The technique uses instantaneous images from ROV video to measure the velocity of visible features (turbulent eddies) along the boundary of an oil leak jet and subsequently classical theory of turbulent jets is imposed to determine the discharge rate. The Flow Rate Technical Group (FRTG) Plume Team developed this technique that manually tracked the visible features and produced the first accurate government estimates of the oil discharge rate from the Deepwater Horizon (DWH). For practical application this approach needs automated control. Experiments were conducted at UC Berkeley and OHMSETT that recorded high speed, high resolution video of submerged dye-colored water or oil jets and subsequently, measured the velocity data employing LDA and PIV software. Numerical simulation have been carried out using experimental submerged turbulent oil jets flow conditions employing LES turbulence closure and VOF interface capturing technique in OpenFOAM solver. The CFD results captured jet spreading angle and jet structures in close agreement with the experimental observations. The work was funded by NETL and DOI Bureau of Safety and Environmental Enforcement (BSEE).
Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak
2016-01-01
The objective of this paper is to review different risk assessment techniques applicable to onshore unconventional oil and gas production to determine the risks to water quantity and quality associated with hydraulic fracturing and produced water management. Water resources could be at risk without proper management of water, chemicals, and produced water. Previous risk assessments in the oil and gas industry were performed from an engineering perspective leaving aside important social factors. Different risk assessment methods and techniques are reviewed and summarized to select the most appropriate one to perform a holistic and integrated analysis of risks at every stage of the water life cycle. Constraints to performing risk assessment are identified including gaps in databases, which require more advanced techniques such as modeling. Discussions on each risk associated with water and produced water management, mitigation strategies, and future research direction are presented. Further research on risks in onshore unconventional oil and gas will benefit not only the U.S. but also other countries with shale oil and gas resources. Copyright © 2015 Elsevier B.V. All rights reserved.
Cho, Yunju; Ahmed, Arif; Islam, Annana; Kim, Sunghwan
2015-01-01
Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study. © 2014 Wiley Periodicals, Inc.
Incipient fault diagnosis of power transformers using optical spectro-photometric technique
NASA Astrophysics Data System (ADS)
Hussain, K.; Karmakar, Subrata
2015-06-01
Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.
Martins, César C; Doumer, Marta E; Gallice, Wellington C; Dauner, Ana Lúcia L; Cabral, Ana Caroline; Cardoso, Fernanda D; Dolci, Natiely N; Camargo, Luana M; Ferreira, Paulo A L; Figueira, Rubens C L; Mangrich, Antonio S
2015-10-01
Spectroscopic and chromatographic techniques can be used together to evaluate hydrocarbon inputs to coastal environments such as the Paranaguá estuarine system (PES), located in the SW Atlantic, Brazil. Historical inputs of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed using two sediment cores from the PES. The AHs were related to the presence of biogenic organic matter and degraded oil residues. The PAHs were associated with mixed sources. The highest hydrocarbon concentrations were related to oil spills, while relatively low levels could be attributed to the decrease in oil usage during the global oil crisis. The results of electron paramagnetic resonance were in agreement with the absolute AHs and PAHs concentrations measured by chromatographic techniques, while near-infrared spectroscopy results were consistent with unresolved complex mixture (UCM)/total n-alkanes ratios. These findings suggest that the use of a combination of techniques can increase the accuracy of assessment of contamination in sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
OXIDATIVE STRESS AND LIPID MEDIATORS INDUCED IN ALVEOLAR MACHROPHAGES BY ULTRAFINE PARTICLES
In ambient aerosols, ultrafine particles (UFP) and their agglomerates are considered to be major factors contributing to adverse health effects. Reactivity of agglomerated UFP of elemental carbon (EC), Printex 90, Printex G, and diesel exhaust particles (DEP) was evaluated by the...
Sizova, Elena; Miroshnikov, Sergey; Yausheva, Elena; Polyakova, Valentina
2015-01-01
The research was performed on male Wistar rats based on assumptions that new microelement preparations containing metal nanoparticles and their agglomerates had potential. Morphological and functional changes in tissues in the injection site and dynamics of chemical element metabolism (25 indicators) in body were assessed after repeated intramuscular injections (total, 7) with preparation containing agglomerate of iron nanoparticles. As a result, iron depot was formed in myosymplasts of injection sites. The quantity of muscle fibers having positive Perls' stain increased with increasing number of injections. However, the concentration of the most chemical elements and iron significantly decreased in the whole skeletal muscle system (injection sites are not included). Consequently, it increased up to the control level after the sixth and the seventh injections. Among the studied organs (liver, kidneys, and spleen), Caspase-3 expression was revealed only in spleen. The expression had a direct dependence on the number of injections. Processes of iron elimination from preparation containing nanoparticles and their agglomerates had different intensity.
Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan
2013-12-01
This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules. Copyright © 2013. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Walsh, A. J.; Tielens, A. G. G. M.; Ruth, A. A.
2016-07-01
We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp3/sp2 hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.
Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian
2015-10-01
Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Balderas-López, J. A.; Mandelis, Andreas
2003-01-01
The thermal wave resonator cavity (TWRC) was used to measure the thermal properties of vegetable oils. The thermal diffusivity of six commercial vegetable oils (olive, corn, soybean, canola, peanut, and sunflower) was measured by means of this device. A linear relation between both the amplitude and phase as functions of the cavity length for the TWRC was observed and used for the measurements. Three significant figure precisions were obtained. A clear distinction between extra virgin olive oil and other oils in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights the potential of this relatively new technique for assessing the quality of this kind of fluids in terms of their thermophysical properties.
HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony R. Kovscek
2003-04-01
This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanismsmore » by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.« less
In-Situ Burning of Spilled Oil.
ERIC Educational Resources Information Center
Allen, Alan A.
1991-01-01
Reviews in-situ burning with particular emphasis on how it can be applied in water-related oil spill situations. Presents and discusses the use of nomograms and development of techniques cited for safe and effective ignition and controlled burning of spilled oil. Includes representative oil spill scenarios and possible responses. (15 references)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Scott R.; Efird, Marty
The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of othermore » fields of use.« less
High volume production of nanostructured materials
Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerard M [Oak Ridge, TN
2009-10-13
A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.
Methods for high volume production of nanostructured materials
Ripley, Edward B [Knoxville, TN; Morrell, Jonathan S [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Ludtka, Gerald M [Oak Ridge, TN
2011-03-22
A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.
Universities' Entrepreneurial Performance: The Role of Agglomeration Economies
ERIC Educational Resources Information Center
Chen, Ping Penny
2011-01-01
In spite of the extensive research on universities' entrepreneurship, whether research strength fosters or dampens their entrepreneurial performance remains controversial. Much research claims an influential role of research universities in regional economy, however, little has been said about what a part that the agglomeration economies may play…
Huang, Shansong; Bai, Yang; Tan, Qingmei
2017-01-01
The agglomeration of innovation determinants has a significant influence on the innovation performance of industries and enterprises. Such an effect has received less attention in empirical research studies. This study involves a survey of the agglomeration effect of two important innovation determinants, R&D investment and R&D personnel, and its influence on innovation performance from the perspective of the industrial level. We analysed the agglomeration features based on the panel data of 23 Chinese industrial sectors from 2001~2013. An interpretation model is proposed to examine the agglomeration effect on innovation performance for 4 industrial groups: state-owned enterprises, individual enterprises, foreign-owned enterprises and enterprises as a whole. We found two main results. First, the agglomeration of determinants has a clear positive effect on the innovation performance of all 4 groups but affects individual enterprises more significantly, followed by state-owned and foreign-owned enterprises. Second, the state-owned enterprises show a much higher concentration of R&D investment and R&D personnel than other groups. However, the induced innovation efficiency in the state-owned enterprises is worse than in the individual enterprises. The advantage of resources and capital does not translate into corresponding innovation output. The privately owned small and medium-sized enterprises (SMEs) show a high capability of technological innovation and mercerization but have limited innovation resources.
Huang, Shansong; Bai, Yang; Tan, Qingmei
2017-01-01
The agglomeration of innovation determinants has a significant influence on the innovation performance of industries and enterprises. Such an effect has received less attention in empirical research studies. This study involves a survey of the agglomeration effect of two important innovation determinants, R&D investment and R&D personnel, and its influence on innovation performance from the perspective of the industrial level. We analysed the agglomeration features based on the panel data of 23 Chinese industrial sectors from 2001~2013. An interpretation model is proposed to examine the agglomeration effect on innovation performance for 4 industrial groups: state-owned enterprises, individual enterprises, foreign-owned enterprises and enterprises as a whole. We found two main results. First, the agglomeration of determinants has a clear positive effect on the innovation performance of all 4 groups but affects individual enterprises more significantly, followed by state-owned and foreign-owned enterprises. Second, the state-owned enterprises show a much higher concentration of R&D investment and R&D personnel than other groups. However, the induced innovation efficiency in the state-owned enterprises is worse than in the individual enterprises. The advantage of resources and capital does not translate into corresponding innovation output. The privately owned small and medium-sized enterprises (SMEs) show a high capability of technological innovation and mercerization but have limited innovation resources. PMID:28099452
Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion
NASA Astrophysics Data System (ADS)
Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha
Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.
Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.
Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan
2015-02-05
When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Su, Yu; Yang, Guoqing; Lu, Kun; Petersen, Elijah J.; Mao, Liang
2017-01-01
Understanding the colloidal stability of graphene is essential for predicting its transport and ecological risks in aquatic environments. We investigated the agglomeration of 14C-labeled few-layer graphene (FLG) at concentrations spanning nearly four orders of magnitude (2 μg/L to 10 mg/L) using dynamic light scattering and sedimentation measurements. FLG agglomerates formed rapidly in deionized water at concentrations > 3 mg/L. From 1 mg/L to 3 mg/L, salt-induced agglomeration was decreased with dilution of FLG suspensions; the critical coagulation concentration of the more concentrated suspension (3 mg/L) was significantly lower than the dilute suspension (1 mg/L) in the presence of NaCl (1.6 mmol/L and 10 mmol/L, respectively). In contrast, FLG underwent slow agglomeration and settling at concentrations ≤ 0.1 mg/L in NaCl solutions and ambient waters with low ionic strength (< 10 mmol/L). Although salt-induced agglomeration led to 67 % reduction in number of small FLG (25 nm to 50 nm) according to atomic force microscopy characterization, transition from concentrated to dilute suspension retarded the removal of the small FLG. Additionally, the small FLG exhibited greater bioaccumulation in zebrafish embryo and stronger chorion penetration ability than larger ones. These findings suggest that FLG at more environmentally relevant concentration is relatively stable and may have implications for exposure of small FLG to ecological receptors. PMID:27720543
DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E; Eric Frickey, E; Leung Heung, L
An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tendmore » to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be scaled up using commercial granulators. The current laboratory-scale external gelation column produces approximately one gram of granules per hour. To increase the production output from a single column, multiple feed injection systems in a larger diameter column could be used.« less
Sugumaran, Vatsala; Prakash, Shanti; Ramu, Emmandi; Arora, Ajay Kumar; Bansal, Veena; Kagdiyal, Vivekanand; Saxena, Deepak
2017-07-15
Bio-oil obtained from pyrolysis is highly complicated mixture with valued chemicals. In order to reduce the complexity for unambiguous characterization of components present in bio-oil, solvent extractions using different solvents with increasing polarity have been adopted. The fractions have been analyzed by Fourier transform infrared (FTIR) spectroscopy for identifying the functional groups and Gas chromatography-mass spectrometry (GC-MS), for detailed characterization of components present in various fractions, thereby providing in-depth information at molecular level of various components in bio-oil. This paper reveals the potential of the analytical techniques in identification and brings out the similarities as well as differences in the components present in the bio-oil obtained from two non-edible oil seed-cakes, viz., Jatropha and Karanjia. Copyright © 2017 Elsevier B.V. All rights reserved.
Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan
2015-08-01
Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.
The Federal Oil Spill Team for Emergency Response Remote Sensing (FOSTERRS)
NASA Astrophysics Data System (ADS)
Stough, T.; Jones, C. E.; Leifer, I.; Lindsay, F. E.; Murray, J. J.; Ramirez, E. M.; Salemi, A.; Streett, D.
2014-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, for which remote sensing plays a critical role in detection and monitoring of oil spills. The FOSTERRS interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft) and analysis techniques are quickly, effectively and seamlessly available to oil spills responders. FOSTERRS enables cooperation between agencies with core environmental remote sensing assets and capabilities and academic and industry experts to act as an oil spill remote sensing information clearinghouse. The US government and its collaborators have a broad variety of aircraft and satellite sensors, imagery interrogation techniques and other technology that can provide indispensable remote sensing information to agencies, emergency responders and the public during an oil spill. Specifically, FOSTERRS will work to ensure that (1) suitable aircraft and satellite imagery and radar observations are quickly made available in a manner that can be integrated into oil spill detection and mitigation efforts, (2) existing imagery interrogation techniques are in the hands of those who will provide the 24 x 7 operational support and (3) efforts are made to develop new technology where the existing techniques do not provide oil spills responders with important information they need. The FOSTERRS mission goal places it in an ideal place for identification of critical technological needs, and identifying bottlenecks in technology acceptance. The core FOSTERRS team incorporates representation for operations and science for agencies with relevant instrumental and platform assets (NASA, NOAA, USGS, NRL). FOSTERRS membership will open to a wide range of end-user agencies and planned observer status from industry and academic experts, and eventually international partners. Through these collaborations, FOSTERRS facilitates interagency and cooperation and communication to the larger end-user community on remote sensing and its best use.
Thermal Characterization of Edible Oils by Using Photopyroelectric Technique
NASA Astrophysics Data System (ADS)
Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.
2013-05-01
Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.
Luminescence and fluorescence of essential oils. Fluorescence imaging in vivo of wild chamomile oil.
Boschi, F; Fontanella, M; Calderan, L; Sbarbati, A
2011-06-16
Essential oils are currently of great importance to pharmaceutical companies, cosmetics producers and manufacturers of veterinary products. They are found in perfumes, creams, bath products, and household cleaning substances, and are used for flavouring food and drinks. It is well known that some of them act on the respiratory apparatus. The increasing interest in optical imaging techniques and the development of related technologies have made possible the investigation of the optical properties of several compounds. Luminescent properties of essential oils have not been extensively investigated. We evaluated the luminescent and fluorescent emissions of several essential oils, in order to detect them in living organisms by exploiting their optical properties. Some fluorescent emission data were high enough to be detected in dermal treatments. Consequently, we demonstrated how the fluorescent signal can be monitored for at least three hours on the skin of living mice treated with wild chamomile oil. The results encourage development of this technique to investigate the properties of drugs and cosmetics containing essential oils.
Gear Damage Detection Using Oil Debris Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2001-01-01
The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.
NASA Astrophysics Data System (ADS)
Ivonin, D. V.; Skrunes, S.; Brekke, C.; Ivanov, A. Yu.
2016-03-01
A simple automatic multipolarization technique for discrimination of main types of thin oil films (of thickness less than the radio wave skin depth) from natural ones is proposed. It is based on a new multipolarization parameter related to the ratio between the damping in the slick of specially normalized resonant and nonresonant signals calculated using the normalized radar cross-section model proposed by Kudryavtsev et al. (2003a). The technique is tested on RADARSAT-2 copolarization (VV/HH) synthetic aperture radar images of slicks of a priori known provenance (mineral oils, e.g., emulsion and crude oil, and plant oil served to model a natural slick) released during annual oil-on-water exercises in the North Sea in 2011 and 2012. It has been shown that the suggested multipolarization parameter gives new capabilities in interpreting slicks visible on synthetic aperture radar images while allowing discrimination between mineral oil and plant oil slicks.
Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.
Wang, Zhenjun; Xu, Yuanming; Gu, Yuting
2015-11-01
Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.
Luminescence and fluorescence of essential oils. Fluorescence imaging in vivo of wild chamomile oil
Boschi, F.; Fontanella, M.; Calderan, L.; Sbarbati, A.
2011-01-01
Essential oils are currently of great importance to pharmaceutical companies, cosmetics producers and manufacturers of veterinary products. They are found in perfumes, creams, bath products, and household cleaning substances, and are used for flavouring food and drinks. It is well known that some of them act on the respiratory apparatus. The increasing interest in optical imaging techniques and the development of related technologies have made possible the investigation of the optical properties of several compounds. Luminescent properties of essential oils have not been extensively investigated. We evaluated the luminescent and fluorescent emissions of several essential oils, in order to detect them in living organisms by exploiting their optical properties. Some fluorescent emission data were high enough to be detected in dermal treatments. Consequently, we demonstrated how the fluorescent signal can be monitored for at least three hours on the skin of living mice treated with wild chamomile oil. The results encourage development of this technique to investigate the properties of drugs and cosmetics containing essential oils. PMID:22193298
NASA Astrophysics Data System (ADS)
Mohammed, M. A.; Eman, Y.; Hussein, A. H.; Hasson, A. R.
2015-12-01
Arab countries face the corruption issues in its several public organizations. The corruption in these countries is considered as the main challenge. The oil sector is one of the public sectors that have huge level of corruption. However, the Iraqi economy had become dependable on oil sector daring the last three decades, and on the contrary, of what other oil countries did. The capital is considered as one of the essential factor for economic development. The revenues of oil exports will stay the essential source for economic development in Iraq in the future in order to reduce being dependable on oil. Since the beginning of the 3rd thousands, the world witnessed great rise in the demand on oil, but the Iraqi exports of crude oil come to be less than its similarities in the seventeenths of last century. So our oil sector is still in need of deep study. This study focuses on technological technique that can make huge decrease for corruption in oil sector in Iraq. However, e-government is considered as the best techniques that can decrease the corruption. Thus, this study bases on challenges that effect on build successful e-government project in Iraqi oil industry.
Strzemski, Maciej; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Agacka-Mołdoch, Monika; Drączkowski, Piotr; Matosiuk, Dariusz; Kurach, Łukasz; Kocjan, Ryszard; Dresler, Sławomir
2017-11-01
Carlina genus plants e.g. Carlina acanthifolia subsp. utzka have been still used in folk medicine of many European countries and its biological activity is mostly associated with root essential oils. In the present paper, Raman spectroscopy (RS) was applied for the first time for evaluation of essential oil distribution in root of C. acnthifolia subsp. utzka and identification of root structures containing the essential oil. Furthermore, RS technique was applied to assess chemical stability of oil during drying of plant material or distillation process. Gas chromatography-mass spectrometry was used for qualitative and quantitative analysis of the essential oil. The identity of compounds was confirmed using Raman, ATR-IR and NMR spectroscopy. Carlina oxide was found to be the main component of the oil (98.96% ± 0.15). The spectroscopic study showed the high stability of essential oil and Raman distribution analysis indicated that the oil reservoirs were localized mostly in the structures of outer layer of the root while the inner part showed nearly no signal assigned to the oil. Raman spectroscopy technique enabled rapid, non-destructive direct analysis of plant material with minimal sample preparation and allowed straightforward, unambiguous identification of the essential oil in the sample. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Ji Won; Kalathil, Abdul Kareem; Yim, Chul Jin
Li-rich Li{sub 1.2}Ni{sub 0.17}Co{sub 0.17}Mn{sub 0.5}O{sub 2} cathode materials were synthesized by electrospinning technique with different polymers, and their structural, morphological, and electrochemical performances were investigated. It was found that the electrospinning process leads to the formation of a fiber and flower-like morphology, by using different polymers and heat treatment conditions. The nanostructured morphology provided these materials with high initial discharge capacity. The cycling stability was improved with agglomerated nano-particles, as compared with porous materials. - Highlights: • Fiber and flower-like Li-rich cathode was synthesized by simple electrospinning. • Polymer dependent morphology and electrochemical performance was investigated. • Well-organized porousmore » structure facilitates the diffusion of lithium ions. • Technique could be applicable to other cathode materials as well.« less
Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Halim, Zaini Abdul; Ibrahim, Haidi; Ali, Syed Salim Syed
2012-01-01
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category. PMID:23202043
PROTOTYPIC CONTINUITY METHODS FOR FASTER RECOVERY OF OIL PRODUCTS SUPPLY AFTER GREAT QUAKE
NASA Astrophysics Data System (ADS)
Yasuno, Takato
In the Great East Japan Earthquake, some oil product farms and tanks had a lot of damages. Then we temporally run short of oil products such as gasoline, lamp oil. The oil product is indispensable to make cargo shipment, or rescue operations, and some trouble must come for everyday shopping and movement of business. The lifeline damages come out electric power, water service, gas and communication. In addition the oil product shortage overlaps then the importance to restore was recognized. After earthquake disaster, there is a possibility to interrupt supply services such as shipping from oil tanks and sale at stations. Even if their discontinuation comes, it needs some business continuity policies in order to recover supply service at early stage. This paper grasps oil product discontinuation of supply and restoration transition and tries to get disaster lessons. This paper proposes prototypic techniques to minimize the sum of penalties to supply no service for neighbor region with capacities of critical stations. It applies to Tohoku regions and their gas stations and comments the usefulness of techniques and implication of supply service continuity policy.
Investigation of self-help oil-spill response techniques and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enderlin, W I; Downing, J P; Enderlin, C W
1992-06-01
The US Coast Guard commissioned Pacific Northwest Laboratory (PNL) to conduct this study of 45 self-help oil-spill response techniques and equipment for oceangoing tankers and inland tank barges to assess the potential effectiveness of the proposed countermeasure categories. This study considers the hypothetical outflow of oil in the case of side damage and bottom damage to single-hull designs. The results will be considered by the Coast Guard in drafting regulations pertaining to the requirement for tanker vessels to carry oil pollution response equipment (i.e., in response to the oil Pollution Act of 1990). PNL's approach to this investigation included: assessingmore » time-dependent oil outflow in the cases of collision and grounding of both tankers and barges; identifying environmental constraints on self-help countermeasure operation; identifying human factor issues, such as crew performance, safety, and training requirements for the self-help countermeasures considered; and assessing each self-help countermeasure with respect to its potential for minimizing oil loss to the environment. Results from the time-dependent oil outflow, environmental limitations, and human factors requirements were input into a simulation model.« less
Intelligent color vision system for ripeness classification of oil palm fresh fruit bunch.
Fadilah, Norasyikin; Mohamad-Saleh, Junita; Abdul Halim, Zaini; Ibrahim, Haidi; Syed Ali, Syed Salim
2012-10-22
Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing techniques. Then the color features were extracted from those images and used as the inputs for Artificial Neural Network (ANN) learning. The performance of the ANN for ripeness classification of oil palm FFB was investigated using two methods: training ANN with full features and training ANN with reduced features based on the Principal Component Analysis (PCA) data reduction technique. Results showed that compared with using full features in ANN, using the ANN trained with reduced features can improve the classification accuracy by 1.66% and is more effective in developing an automated ripeness classifier for oil palm FFB. The developed ripeness classifier can act as a sensor in determining the correct oil palm FFB ripeness category.
Thermal properties measurements in biodiesel oils using photothermal techniques
NASA Astrophysics Data System (ADS)
Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; Vargas, H.; Constantino, R.; Baesso, M. L.
2005-08-01
In this Letter, thermal lens and open cell photoacoustic techniques are used to measure the thermal properties of biodiesel oils. The absolute values of the thermal effusivity, thermal diffusivity, thermal conductivity and the temperature coefficient of the refractive index were determined for samples obtained from soy, castor bean, sunflower and turnip. The results suggest that the employed techniques may be useful as complementary methods for biodiesel certification.
Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1993--March 31, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, D.J.; Parker, R.J.; Simpson, P.L.
1993-07-01
Five barrels of a Wilsonville process derived solvent (V-1074) from Black Thunder coal were obtained. This material boils within the preferred gas oil range, is more aromatic than previous solvents, and will therefore be used for the bench unit studies. Several repeat runs were performed in the autoclave to confirm the results of the matrix study. In addition, runs were carried out with different catalysts, with agglomerates and with the V-1074 solvent. The results of the autoclave runs were analyzed with respect to coal conversion, CO conversion, oil yield, hydrogen consumption and oxygen removal. It was concluded that the bestmore » operating conditions for the first stage operation was a temperature of at least 390{degrees}C, residence time of at least 30 minutes, cold CO pressure of at least 600 psig and potassium carbonate catalyst (2% wt on total feed). The data also indicated however, that the coal conversion goes through a maximum, and too high a severity leads to retrograde reaction and lower coal solubilization. The scope for increasing temperature and time is therefore limited. Petrographic examination of the THF insoluble resids from the autoclave program indicated a maximum coal conversion of about 90% for Black Thunder coal. The bench unit construction was also essentially completed and the bench unit program to be carded out in the next twelve months was defined.« less
NASA Astrophysics Data System (ADS)
Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.
2016-07-01
The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.
Heavy Oil Detection (Prototypes)
2009-06-01
accomplish a variety of tasks to be successful. These include detecting the oil, possibly concentrating/ corralling the oil for collection, and...structures (e.g., reefs , cables, and pipelines). Other non-contact seafloor survey techniques such as ROV video surveys pose the additional
DOE/DOE Tight Oil Flammability & Transportation Spill Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, David L.
2014-12-01
This presentation describes crude oils, their phase behavior, the SPR vapor pressure program, and presents data comparisons from various analytical techniques. The overall objective is to describe physical properties of crude oil relevant to flammability and transport safety
Cabral, E C; Sevart, L; Spindola, H M; Coelho, M B; Sousa, I M O; Queiroz, N C A; Foglio, M A; Eberlin, M N; Riveros, J M
2013-02-01
The oil obtained from Pterodon pubescens (Leguminosae) seeds are known to display anti-cancer, anti-dermatogenic and anti-nociceptive activitiy. Phytochemical studies have demonstrated that its main constituents are diterpenoids with voucapan skeletons. Considering the potential biological activities of the oil, rapid and efficient methods for assessing its quality would facilitate certification and quality control. To develop a direct mass spectrometric fingerprinting method for the P. pubescens seed oil that would focus on the major diterpenoids constituents, enabling quality control, origin certification and recognition of marker species in commercially available products. Two techniques were used: (i) direct infusion electrospray ionisation (ESI) mass spectrometry after solvent extraction and dilution and (ii) ambient desorption/ionisation via easy ambient sonic-spray ionisation, EASI(+)-MS, performed directly on the seed surface or at a paper surface imprinted with the oil. From a combination of ESI-MS, HRESI-MS and ESI-MS/MS data, 12 diterpenes were characterised, and typical profiles were obtained for the oil extract or the crude oil via both ESI-MS and EASI-MS. These techniques require no or very simple sample preparation protocols and the whole analytical processes with spectra acquisition take just a few minutes. Both techniques, but particularly EASI-MS, provide simple, fast and efficient MS fingerprinting methodologies to characterise the P. pubescens oil with typical (di)terpene profiles being applicable to quality control and certification of authenticity and origin. Copyright © 2012 John Wiley & Sons, Ltd.
Xia, Dengning; Gan, Yong; Cui, Fude
2014-01-01
This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.
Nano-based systems for oil spills control and cleanup.
Avila, Antonio F; Munhoz, Viviane C; de Oliveira, Aline M; Santos, Mayara C G; Lacerda, Glenda R B S; Gonçalves, Camila P
2014-05-15
This paper reports the development of superhydrophobic nanocomposite systems which are also oleophilic. As hydrophobicity is based on low energy surface and surface roughness, the electrospinning technique was selected as the manufacturing technique. N,N' dimethylformamide (DMF) was employed as the polystyrene (PS) solvent. The "Tea-bag" (T-B) nanocomposite system is based on exfoliated graphite surrounded by PS superhydrophobic membranes. The T-B systems were tested regarding its adsorption and absorption rates. To test these properties, it was employed three different water/oil emulsions, i.e., new and used motor oil, which have physical properties (viscosity and specific gravity) similar to heavy crude oil extracted in Brazil, and vacuum pump oil (which does not form oil/water emulsion). It was observed that oil adsorption rate is dependent on oil surface tension, while the absorption rate is mainly dependent on membrane/exfoliated graphite surface area. Experimental data show that oil absorption rates ranged between 2.5g/g and 40g/g, while the adsorption rate oscillated from 0.32g/g/min to 0.80g/g/min. Furthermore, T-B systems were tested as containment barriers and sorbent materials with good results including its recyclability. Copyright © 2014 Elsevier B.V. All rights reserved.
Microstructural studies of nanocrystalline α-alumina powder produced from Al13-cluster
NASA Astrophysics Data System (ADS)
Harun Al Rashid Megat Ahmad, Megat; Aziz Mohamed, Abdul; Ibrahim, Azmi; Seman Mahmood, Che; Giri Rachman Putra, Edy; Jamro, Rafhayudi; Kasim, Razali; Rawi Muhammad Zin, Muhammad
2007-12-01
Nanocrystalline alumina powder was produced from calcinations of Al13-oxalate precipitates at 1100 °C. A nearly normal distribution of agglomerated alumina powder was obtained with an average particle size of about 1 μm. XRD measurement confirmed that the alumina produced was of high purity and crystalline α-phase. Microstructural features of both the precipitates and alumina obtained were studied using the small angle neutron scattering (SANS) technique. SANS examinations show the formation of microstructures in the alumina powder of mass fractals type with dimension of ˜2.8 indicative of low intra-granular porosity.
Coal beneficiation by gas agglomeration
Wheelock, Thomas D.; Meiyu, Shen
2003-10-14
Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.
Continuous air agglomeration method for high carbon fly ash beneficiation
Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.
2000-01-01
The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.
Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.
Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia
2012-10-01
A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Extraction of citral oil from lemongrass (Cymbopogon Citratus) by steam-water distillation technique
NASA Astrophysics Data System (ADS)
Alam, P. N.; Husin, H.; Asnawi, T. M.; Adisalamun
2018-04-01
In Indonesia, production of citral oil from lemon grass (Cymbopogon Cytratus) is done by a traditional technique whereby a low yield results. To improve the yield, an appropriate extraction technology is required. In this research, a steam-water distillation technique was applied to extract the essential oil from the lemongrass. The effects of sample particle size and bed volume on yield and quality of citral oil produced were investigated. The drying and refining time of 2 hours were used as fixed variables. This research results that minimum citral oil yield of 0.53% was obtained on sample particle size of 3 cm and bed volume of 80%, whereas the maximum yield of 1.95% on sample particle size of 15 cm and bed volume of 40%. The lowest specific gravity of 0.80 and the highest specific gravity of 0.905 were obtained on sample particle size of 8 cm with bed volume of 80% and particle size of 12 cm with bed volume of 70%, respectively. The lowest refractive index of 1.480 and the highest refractive index of 1.495 were obtained on sample particle size of 8 cm with bed volume of 70% and sample particle size of 15 cm with bed volume of 40%, respectively. The solubility of the produced citral oil in alcohol was 70% in ratio of 1:1, and the citral oil concentration obtained was around 79%.
ERIC Educational Resources Information Center
Greenman, Geri
2000-01-01
Describes the first assignment for an intermediate oil painting class in which the students painted the human figure. Explains that the assignment involved three techniques: (1) abstract application of acrylic paint; (2) oil "Paintstiks" from Shiva; and (3) a final layer of actual oil paint. (CMK)
Coast Guard's Response to Spilled Oil
ERIC Educational Resources Information Center
Ard, R. W., Jr.
1976-01-01
The Coast Guard utilizes a number of monitoring detectors, sensors, and techniques to find, recover and identify oil spills. Discussed in this article are in-situ and airborne sensors, systems developed to provide clean-up capability such as air deployable anti-pollution transfer system (ADAPTS), and techniques which will determine the source of a…
GABE: A Cloud Brokerage System for Service Selection, Accountability and Enforcement
ERIC Educational Resources Information Center
Sundareswaran, Smitha
2014-01-01
Much like its meteorological counterpart, "Cloud Computing" is an amorphous agglomeration of entities. It is amorphous in that the exact layout of the servers, the load balancers and their functions are neither known nor fixed. Its an agglomerate in that multiple service providers and vendors often coordinate to form a multitenant system…
The relationship between cellulose nanocrystal dispersion and strength
Yizheng Cao; Pablo Zavattieri; Jeffrey Youngblood; Robert Moon; Jason Weiss
2016-01-01
This paper studies the agglomeration of cellulose nanocrystals (CNCs) and uses ultrasonication to disperse CNCs in cement pastes in an attempt to improve strength. Rheological measurements show that when the concentration of CNCs exceeds 1.35% by volume in deionized water, agglomerates start to develop. This experimental finding is comparable to the value obtained from...
Scanning Electron Microscope Studies on Aggregation Characteristics of Alumina Nanofluids
2013-08-01
acoustic cavitation refers to the formation, growth and implosive collapse of bubbles in a liquid due to ultrasound that passes through the liquid...1 2.0 THEORY: ACOUSTIC CAVITATION AND AGGLOMERATION...be achieved to maximize the overall thermal conductivity of the nanofluid. 2.0 THEORY: ACOUSTIC CAVITATION AND AGGLOMERATION The phenomenon of
[Carbon footprint of buildings in the urban agglomeration of central Liaoning, China].
Shi, Yu; Yun, Ying Xia; Liu, Chong; Chu, Ya Qi
2017-06-18
With the development of urbanization in China, buildings consumed lots of material and energy. How to estimate carbon emission of buildings is an important scientific problem. Carbon footprint of the central Liaoning agglomeration was studied with carbon footprint approach, geographic information system (GIS) and high-resolution remote sensing (HRRS) technology. The results showed that the construction carbon footprint coefficient of central Liaoning urban agglomeration was 269.16 kg·m -2 . The approach of interpreting total building area and spatial distribution with HRRS was effective, and the accuracy was 89%. The extraction approach was critical for total carbon footprint and spatial distribution estimation. The building area and total carbon footprint of central Liaoning urban agglomeration in descending order was Shenyang, Anshan, Fushun, Liao-yang, Yingkou, Tieling and Benxi. The annual average increment of footprint from 2011 to 2013 in descending order was Shenyang, Benxi, Fushun, Anshan, Tieling, Yingkou and Liaoyang. The accurate estimation of construction carbon footprint spatial and its distribution was of significance for the planning and optimization of carbon emission reduction.
Lahijani, Pooya; Zainal, Zainal Alimuddin
2011-01-01
Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sizova, Elena; Miroshnikov, Sergey; Yausheva, Elena; Polyakova, Valentina
2015-01-01
The research was performed on male Wistar rats based on assumptions that new microelement preparations containing metal nanoparticles and their agglomerates had potential. Morphological and functional changes in tissues in the injection site and dynamics of chemical element metabolism (25 indicators) in body were assessed after repeated intramuscular injections (total, 7) with preparation containing agglomerate of iron nanoparticles. As a result, iron depot was formed in myosymplasts of injection sites. The quantity of muscle fibers having positive Perls' stain increased with increasing number of injections. However, the concentration of the most chemical elements and iron significantly decreased in the whole skeletal muscle system (injection sites are not included). Consequently, it increased up to the control level after the sixth and the seventh injections. Among the studied organs (liver, kidneys, and spleen), Caspase-3 expression was revealed only in spleen. The expression had a direct dependence on the number of injections. Processes of iron elimination from preparation containing nanoparticles and their agglomerates had different intensity. PMID:25789310
Nifedipine Nanoparticle Agglomeration as a Dry Powder Aerosol Formulation Strategy
Plumley, Carl; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory
2009-01-01
Efficient administration of drugs represents a leading challenge in pulmonary medicine. Dry powder aerosols are of great interest compared to traditional aerosolized liquid formulations in that they may offer improved stability, ease of administration, and simple device design. Particles 1–5 µm in size typically facilitate lung deposition. Nanoparticles may be exhaled as a result of their small size; however, they are desired to enhance the dissolution rate of poorly soluble drugs. Nanoparticles of the hypertension drug nifedipine were co-precipitated with stearic acid to form a colloid exhibiting negative surface charge. Nifedipine nanoparticle colloids were destabilized by using sodium chloride to disrupt the electrostatic repulsion between particles as a means to achieve the agglomerated nanoparticles of a controlled size. The aerodynamic performance of agglomerated nanoparticles was determined by cascade impaction. The powders were found to be well suited for pulmonary delivery. In addition, nanoparticle agglomerates revealed enhanced dissolution of the drug species suggesting the value of this formulation approach for poorly water soluble pulmonary medicines. Ultimately, nifedipine powders are envisioned as an approach to treat pulmonary hypertension. PMID:19015016
Hou, Kang; Zhou, Jieting; Li, Xuxiang; Ge, Shengbin
2016-01-01
Analysis of human living environmental quality of Shenyang-Dalian urban agglomerations has important theoretical and practical significance in rapid development region. A lot of investigations have been carried for Shenyang-Dalian urban agglomerations, including 38 counties. Based on the carrying capacity of resources, natural and socioeconomic environmental factors and regional changes of human living environmental evaluation are analyzed with the application of geographic information systems (GIS) software. By using principal component analysis (PCA) model and natural breaks classification (NBC) method, the evaluation results are divided into five categories. The results show that the human living environmental evaluation (HLEE) indexes of Dalian, Shenyang, and Liaoyang are higher than other counties. Among these counties, the human living environmental evaluation (HLEE) indexes of coastal counties are significantly higher than inland counties. The range of the human living environmental evaluation index in most of the study area is at III, IV, and V levels, accounting for 80.01%. Based on these results, it could illustrate the human living environment is in relatively suitable condition in Shenyang-Dalian urban agglomeration. PMID:27200212
New method for stock-tank oil compositional analysis.
McAndrews, Kristine; Nighswander, John; Kotzakoulakis, Konstantin; Ross, Paul; Schroeder, Helmut
2009-01-01
A new method for accurately determining stock-tank oil composition to normal pentatriacontane using gas chromatography is developed and validated. The new method addresses the potential errors associated with the traditional equipment and technique employed for extended hydrocarbon gas chromatography outside a controlled laboratory environment, such as on an offshore oil platform. In particular, the experimental measurement of stock-tank oil molecular weight with the freezing point depression technique and the use of an internal standard to find the unrecovered sample fraction are replaced with correlations for estimating these properties. The use of correlations reduces the number of necessary experimental steps in completing the required sample preparation and analysis, resulting in reduced uncertainty in the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Subhash; Pal, Kaushik, E-mail: pl_kshk@yaho
Interface between ceramic particulate and matrix is known to control the response of the materials and functionality of the composite. Among numerous physical properties, grain structure of the materials has also played a significant role in defining the behaviour of metal matrix composites. Usually, silicon carbide (SiC) particles show poor interfacial wettability in aluminium melt. Herein, we were successfully synthesized magnesium oxide (MgO) and nanocrystalline magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel coated silicon carbide (SiC) core-shell micro-composites through sol-gel technique to improve the wettability of dispersoids. Core-shell structures of submicron size were thoroughly investigated by various characterization techniques. Further, aluminiummore » matrix composites incorporated with pristine SiC, MgO grafted SiC and MgAl{sub 2}O{sub 4} grafted SiC particles were fabricated by stir casting technique, respectively. Additionally, as-cast composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron back scattered diffraction (EBSD), Field emission scanning electron microscopy (FE-SEM) and X-ray energy dispersion spectroscopy (EDX) analysis were conducted for investigating grain size refinement, adequate dispersion, stability and de-agglomeration of encapsulated SiC particles in aluminium matrix. The mechanical as well as thermal cyclic (from − 100 to 400 °C) damping performance of the as-cast and friction stir processed composites were studied, respectively. Finally, the enhanced properties were attributable to reduced agglomeration, stabilization and proper dispersion of the tailored SiC particles Al matrix. - Highlights: •Synthesizing a novel coating layer of MgO and MgAl{sub 2}O{sub 4} spinel onto SiC particles •Significant improvement in UTS and hardness by reinforcing tailored SiC in Al •Significant grain refinements were obtained through FSP •SiC/MgAl{sub 2}O{sub 4}/Al exhibits ~ 61% higher storage modulus as compare to pure Al after FSP.« less
NASA Astrophysics Data System (ADS)
Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael
1993-12-01
This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.
Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques.
Cravotto, Giancarlo; Bicchi, Carlo; Mantegna, Stefano; Binello, Arianna; Tomao, Valerie; Chemat, Farid
2011-06-01
Kiwi seed oil has a nutritionally interesting fatty acid profile, but a rather low oxidative stability, which requires careful extraction procedures and adequate packaging and storage. For these reasons and with the aim to achieve process intensification with shorter extraction time, lower energy consumption and higher yields, four different non-conventional techniques were experimented. Kiwi seeds were extracted in hexane using classic Soxhlet as well as under power ultrasound (US), microwaves (MWs; closed vessel) and MW-integrated Soxhlet. Supercritical CO₂ was also employed and compared to the other techniques in term of yield, extraction time, fatty acid profiles and organoleptic properties. All these non-conventional techniques are fast, effective and safe. A sensory evaluation test showed the presence of off-flavours in oil samples extracted by Soxhlet and US, an indicator of partial degradation.
Distributed acoustic sensing technique and its field trial in SAGD well
NASA Astrophysics Data System (ADS)
Han, Li; He, Xiangge; Pan, Yong; Liu, Fei; Yi, Duo; Hu, Chengjun; Zhang, Min; Gu, Lijuan
2017-10-01
Steam assisted gravity drainage (SAGD) is a very promising way for the development of heavy oil, extra heavy oil and tight oil reservoirs. Proper monitoring of the SAGD operations is essential to avoid operational issues and improve efficiency. Among all the monitoring techniques, micro-seismic monitoring and related interpretation method can give useful information about the steam chamber development and has been extensively studied. Distributed acoustic sensor (DAS) based on Rayleigh backscattering is a newly developed technique that can measure acoustic signal at all points along the sensing fiber. In this paper, we demonstrate a DAS system based on dual-pulse heterodyne demodulation technique and did field trial in SAGD well located in Xinjiang Oilfield, China. The field trail results validated the performance of the DAS system and indicated its applicability in steam-chamber monitoring and hydraulic monitoring.
de Jong, Marjan; Lucas, Cees; Bredero, Hansje; van Adrichem, Leon; Tibboel, Dick; van Dijk, Monique
2012-08-01
This article is a report of a randomized controlled trial of the effects of 'M' technique massage with or without mandarin oil compared to standard postoperative care on infants' levels of pain and distress, heart rate and mean arterial pressure after major craniofacial surgery. There is a growing interest in non-pharmacological interventions such as aromatherapy massage in hospitalized children to relieve pain and distress but well performed studies are lacking. This randomized controlled trial allocated 60 children aged 3-36 months after craniofacial surgery from January 2008 to August 2009 to one of three conditions; 'M' technique massage with carrier oil, 'M' technique massage with mandarin oil or standard postoperative care. Primary outcome measures were changes in COMFORT behaviour scores, Numeric Rating Scale pain and Numeric Rating Scale distress scores assessed from videotape by an observer blinded for the condition. In all three groups, the mean postintervention COMFORT behaviour scores were higher than the baseline scores, but differences were not statistically significant. Heart rate and mean arterial pressure showed a statistically significant change across the three assessment periods in all three groups. These changes were not related with the intervention. Results do not support a benefit of 'M' technique massage with or without mandarin oil in these young postoperative patients. Several reasons may account for this: massage given too soon after general anaesthesia, young patients' fear of strangers touching them, patients not used to massage. © 2011 Blackwell Publishing Ltd.
Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.
Xiong, Jin Wen; Wan, Man Pun
2017-01-01
The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehmat, A.; Khinkis, M.
The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated withmore » ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.« less
Lankoff, Anna; Sandberg, Wiggo J; Wegierek-Ciuk, Aneta; Lisowska, Halina; Refsnes, Magne; Sartowska, Bożena; Schwarze, Per E; Meczynska-Wielgosz, Sylwia; Wojewodzka, Maria; Kruszewski, Marcin
2012-02-05
Nanoparticles (NPs) occurring in the environment rapidly agglomerate and form particles of larger diameters. The extent to which this abates the effects of NPs has not been clarified. The motivation of this study was to examine how the agglomeration/aggregation state of silver (20nm and 200nm) and titanium dioxide (21nm) nanoparticles may affect the kinetics of cellular binding/uptake and ability to induce cytotoxic responses in THP1, HepG2 and A549 cells. Cellular binding/uptake, metabolic activation and cell death were assessed by the SSC flow cytometry measurements, the MTT-test and the propidium iodide assay. The three types of particles were efficiently taken up by the cells, decreasing metabolic activation and increasing cell death in all the cell lines. The magnitude of the studied endpoints depended on the agglomeration/aggregation state of particles, their size, time-point and cell type. Among the three cell lines tested, A549 cells were the most sensitive to these particles in relation to cellular binding/uptake. HepG2 cells showed a tendency to be more sensitive in relation to metabolic activation. THP-1 cells were the most resistant to all three types of particles in relation to all endpoints tested. Our findings suggest that particle features such as size and agglomeration status as well as the type of cells may contribute to nanoparticles biological impact. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Diagnostics of wear in aeronautical systems
NASA Technical Reports Server (NTRS)
Wedeven, L. D.
1979-01-01
The use of appropriate diagnostic tools for aircraft oil wetted components is reviewed, noting that it can reduce direct operating costs through reduced unscheduled maintenance, particularly in helicopter engine and transmission systems where bearing failures are a significant cost factor. Engine and transmission wear modes are described, and diagnostic methods for oil and wet particle analysis, the spectrometric oil analysis program, chip detectors, ferrography, in-line oil monitor and radioactive isotope tagging are discussed, noting that they are effective over a limited range of particle sizes but compliment each other if used in parallel. Fine filtration can potentially increase time between overhauls, but reduces the effectiveness of conventional oil monitoring techniques so that alternative diagnostic techniques must be used. It is concluded that the development of a diagnostic system should be parallel and integral with the development of a mechanical system.
Estimating the age of oil palm trees using remote sensing technique
NASA Astrophysics Data System (ADS)
Fitrianto, A. C.; Darmawan, A.; Tokimatsu, K.; Sufwandika, M.
2018-04-01
One of renewable energy that can be converted into electricity is biomass. Biomass energy or bio energy is the largest source of domestic renewable energy in Indonesia. Since palm oil development is rapidly increasing, Empty Fruit Bunch (EFB) and Mesocarp Fiber (MF) are becoming the highest contributor of oil palm waste. Understanding biomass waste potential is very important for further utilization. Remote sensing technique can be used to detect oil palm trees age based on the canopy density and to estimate the amount of EFB in further analysis. In this research, the percentage of canopy density of oil palm trees/stands depends on their ages and the age is divided into four classes; seeds (<3 years old; <10%), young (3-8 years old; 10-40 %), teenage (9-14 years old; 41-80 %), and mature (15-25 years old; >80 %).
Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Yen-Sen
1995-01-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of the RSRM geometry.
Shahcheraghi, Seyed Hadi; Schaffie, Mahin; Ranjbar, Mohammad
2018-06-01
The main objective of this study was the development of a simple, clean, and industrial applicable electrochemical process for production of high pure nano-copper oxides from mining and industrial resources (e.g., ore, spent, slag and wastewater). To conduct the proposed process, a special set up containing an electrochemical cell in an ultrasonic system (28 kHz and 160 W) was proposed. Accordingly, using this set up and applying appropriate voltage (≈ 5 V) at 25 °C, in the presence of N 2 gas, the simultaneous anode dissolution and nano-copper oxides formation (≈ 24 nm) can be occurred, rapidly (less than 45 min). Then, the effect of N 2 gas and free radicals generated by ultrasonic irradiation was studied. The results showed, in the absence of ultrasonic irradiation and N 2 , an increase of electrolyte pH from 6.42 to 10.92, a decrease of electrolyte Eh from 285 mV to -1.14 V, and formation of copper nanoparticles. While, in the presence of ultrasonic and N 2 , the CuO nanoparticles were formed due to presence of H 2 O 2 generated by interaction of free radicals. Moreover, a novel method for kinetics modeling of nanoparticles agglomeration was proposed according to distributed activation energy model and Arrhenius parameters variation. The results showed that, in the absence of ultrasonic irradiation, the nanoparticle agglomerates were firstly formed (interface controlled mechanism) and then, the diffusion of nanoparticle agglomerates was occurred (diffusion controlled mechanism). Therefore, the control of nanoparticles size and shape may be impossible without surfactant. Also, in the presence of ultrasonic irradiation, the whole of agglomeration process followed interface controlled mechanism. Therefore, using ultrasonic irradiation, the nanoparticles shape and size don't change due to prevention of agglomerates diffusion. Copyright © 2018 Elsevier B.V. All rights reserved.
Monte Carlo Simulation of Nanoparticle Encapsulation in Flames
NASA Technical Reports Server (NTRS)
Sun, Z.; Huertas, J. I.; Axelbaum, R. L.
1999-01-01
Two critical challenges facing the application of flames for synthesis of nanopowder materials are: (1) overcoming formation of agglomerates and (2) ensuring that the highly reactive nanopowders that are synthesized in flames can be produced in such a manner that their purity is maintained during subsequent processing. Agglomerates are produced in flames because particle formation occurs in a high temperature and high number density environment. They are undesirable in most advanced applications of powders. For example, agglomerates have a deleterious effect on compaction density, leading to voids when nanopowders are consolidated. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Powder purity must also be maintained during subsequent handling of nanopowders and this poses a significant challenge for any synthesis route because nanopowders, particularly metals and non-oxide ceramic powders, are inherently reactive. Impurities acquired during handling of nanopowders have slowed the advancement of the nanostructured materials industry. One promising approach that has been proposed to address these problems is nano-encapsulation. In this approach, the core particles are encapsulated in a removable material while they are within the flame but before excessive agglomeration has occurred. Condensation can be very rapid so that core particles are trapped within the condensed material and agglomeration is limited. Nano-encapsulation also addresses the handling concerns for post-synthesis processing. Results have shown that when nano-encapsulated powders are exposed to atmosphere the core particles are protected from oxidation and/or hydrolysis. Thus, handling of the powders does not require extreme care. If, for example, at the time of consolidation the encapsulation material is removed by vacuum annealing, the resulting powder remains unagglomerated and free of impurities. In this work, we described a novel aerosol model that has been developed to simulate particle encapsulation in flames. The model will ultimately be coupled to a one-dimensional spherical flame code and compared to results from microgravity flame experiments.
Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.
Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J
2014-02-10
Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.
Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle
2015-08-18
The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region.
Detection of Vegetable Oil Variance Using Surface Plasmon Resonance (SPR) Technique
NASA Astrophysics Data System (ADS)
Supardianningsih; Panggabean, R. D.; Romadhon, I. A.; Laksono, F. D.; Nofianti, U.; Abraha, K.
2018-05-01
The difference between coconut oil, corn oil, olive oil, and palm oil has been detected using surface plasmon resonance (SPR) technique. This is a new method in material characterization that can be used to identify vegetable oil variance. The SPR curve was measured by SPR system consisting of optical instruments, mechanical instruments, Main UNIT, and user interface (computer). He-Ne laser beam of wavelength 633 nm was used as light source, while gold (Au) thin film evaporated on half cylinder prism was used as the base so that surface plasmon polariton (SPP) waves propagate at the interface. Tween-80 and PEG-400 are used as surfactant and co-surfactant to make water-oil emulsion from each sample. The sample was prepared with the ratio of oil: surfactant: co-surfactant as 1:2:1 and then stirred on the water to make emulsions. The angle shift was measured by the change of SPR angle from prism/Au/air system to prism/Au/water-oil emulsion. The different SPR angle of each sample has been detected in the various number of spray, a method that was used for depositing the emulsion. From this work, we conclude that the saturated fatty acid component was the most significant component that changes the refractive index in the vegetable oil in water emulsion that can be used to characterize the vegetable oil variance.
Equilibrium gas-oil ratio measurements using a microfluidic technique.
Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid
2013-07-07
A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.
Dong, Jiang Xue; Gao, Zhong Feng; Zhang, Ying; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun
2017-05-15
In this paper, a simple sensor platform is presented for highly selective and sensitive detection of dissolved ammonia in aqueous solutions without pretreatment based on temperature gradient headspace single drop microextraction (HS-SDME) technique, and fluorescence and UV-vis spectrophotometry are utilized with the Ag nanoclusters (Ag NCs) functioned by citrate and glutathione as the probe. The sensing mechanism is based on the volatility of ammonia gas and the active response of Ag NCs to pH change caused by the introduction of ammonia. High pH can make the Ag NCs agglomerate and lead to the obvious decrease of fluorescence intensity and absorbance of Ag NCs solution. Moreover, the presented method exhibits a remarkably high selectivity toward dissolved ammonia over most of inorganic ions and amino acid, and shows a good linear range of 10-350μM (0.14-4.9mgNL -1 ) with a low detection limit of 336nM (4.70μgNL -1 ) at a signal-to-noise ratio of 3. In addition, the practical applications of the sensor have been successfully demonstrated by detecting dissolved ammonia in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Cross-sectional characterization of the dewetting of a Au/Ni bilayer film.
Cen, Xi; Thron, Andrew M; Zhang, Xinming; van Benthem, Klaus
2017-07-01
The solid state dewetting of Au/Ni bilayer films was investigated by cross-sectional transmission electron microscopy techniques, including energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy and precession electron diffraction. After annealing under high vacuum conditions the early stage of film agglomeration revealed significant changes in film morphology and chemical distribution. Both Au and Ni showed texturing. Despite the initial deposition sequence of the as-deposited Au/Ni/SiO 2 /Si interface structure, the majority of the metal/SiO 2 interface was Au/SiO 2 after annealing at 675°C for 1h. Void nucleation was predominantly observed at Au/Ni/SiO 2 triple junctions, rather than grain boundary grooving at free surface of the metal film. Detailed cross-sectional characterization reveals that the Au/Ni interface in addition to small amounts of metal alloying strongly affects film break-up and agglomeration kinetics. The formation of Au/SiO 2 interface sections is found to be energetically preferred over Ni/SiO 2 due to compressive stress in the as-deposited Ni layer. Void nucleation is observed at the film/substrate interface, while the formation of voids at Ni/Au phase boundaries inside the metal film is caused by the Kirkendall effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Number size distribution of fine and ultrafine fume particles from various welding processes.
Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas
2013-04-01
Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.
A simplified approach to predict performance degradation of a solid oxide fuel cell anode
NASA Astrophysics Data System (ADS)
Khan, Muhammad Zubair; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung
2018-07-01
The agglomeration of nickel (Ni) particles in a Ni-cermet anode is a significant degradation phenomenon for solid oxide fuel cells (SOFCs). This work aims to predict the performance degradation of SOFCs due to Ni grain growth by using a simplified approach. Accelerated aging of Ni-scandia stabilized zirconia (SSZ) as an SOFC anode is carried out at 900 °C and subsequent microstructural evolution is investigated every 100 h up to 1000 h using scanning electron microscopy (SEM). The resulting morphological changes are quantified using a two-dimensional image analysis technique that yields the particle size, phase proportion, and triple phase boundary (TPB) point distribution. The electrochemical properties of an anode-supported SOFC are characterized using electrochemical impedance spectroscopy (EIS). The changes of particle size and TPB length in the anode as a function of time are in excellent agreement with the power-law coarsening model. This model is further combined with an electrochemical model to predict the changes in the anode polarization resistance. The predicted polarization resistances are in good agreement with the experimentally obtained values. This model for prediction of anode lifetime provides deep insight into the time-dependent Ni agglomeration behavior and its impact on the electrochemical performance degradation of the SOFC anode.
NASA Astrophysics Data System (ADS)
Noel, Alexandra
It is estimated that by 2014 more than 10 million jobs related to the nanotechnology field will be created worldwide. It is therefore important to investigate the possible health effects caused by nanoparticles (NP). Due to their small size, NP (< 100 nm) can coagulate quickly, which promotes their entry into the body in the form of agglomerates. However, few studies have evaluated their pulmonary toxicity, considering the physicochemical properties of NP, as well as the size of the agglomerates formed in the aerosols. The objective of this study is to evaluate the influence of the agglomeration state of three different primary particle sizes (5, 10-30 and 50 nm) of titanium dioxide (TiO2) NP on the pulmonary toxicity of male rats (F344) exposed to aerosols at 2, 7 or 20 mg/m3 for 6 hours. In an inhalation chamber, six groups of rats (n = 6 per group) were acutely exposed by nose-only inhalation to aerosols with a 5-nm primary particle size, produced in the form of small agglomerates (< 100 nm) (SA) or large agglomerates (> 100 nm) (LA) at 2, 7 and 20 mg/m3. Similarly, four other groups of rats were exposed to aerosols at 20 mg/m 3 with a primary particle size of 10-30 and 50 nm. The different aerosols were generated by nebulization of suspensions or by dry dispersion. For each mass concentration, one group of control rats (n = 6 per group) was exposed to compressed air under the same conditions. The size, shape, structure and agglomeration state of NP in both the bulk powders and the generated aerosols were characterized by transmission electron microscopy and using an electrical low pressure impactor. Mass concentrations were determined by gravimetric measurements. The animals were sacrificed 16 hours after the end of exposure, and analysis of the bronchoalveolar lavage fluids was used to measure markers of inflammatory (total and differential cell counts, as well as various cytokines: IL-1alpha, IL-6, MIP-1alpha, MCP-1 and TNF-alpha), cytotoxicity (lactate dehydrogenase (LDH), alkaline phosphatase and total protein concentration) and oxidative stress (heme oxygenase-1, glutathione and 8-isoprostane) effects. Lung sections were also analyzed for histopathology. The influence of the agglomeration state of TiO2 NP (5 nm) could not be determined at 2 mg/m3. For mass concentrations of 7 and 20 mg/m3, our results showed that an acute inflammatory response (increase in the number of neutrophils) was induced following exposure to LA aerosols. In addition to this response, exposure to SA aerosols resulted in a significant increase in 8-isoprostane and LDH. At 20 mg/m3, the cytotoxic effects were greater after exposure to the 5-nm NP in the SA aerosol. Given the significant work done to generate and characterize aerosols, this study showed that TiO2 NP use different mechanisms to induce their pulmonary toxicity as a function of their primary particle size and their agglomeration state.
Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.
Izquierdo, M T; Rubio, B
2008-06-30
Carbon-enriched coal fly ash was evaluated in this work as a low-cost adsorbent for SO2 removal from stack gases. The unburned carbon in coal fly ash was concentrated by mechanical sieving and vegetal oil agglomeration. The carbon concentrates were activated with steam at 900 degrees C in order to develop porosity onto the samples. The performance of these samples in the SO2 abatement was tested in the following conditions: 100 degrees C, 1000 ppmv SO2, 5% O2, 6% water vapor. A good SO2 removal capacity was shown by some of the studied samples that can be related to their textural properties. Cycles of SO2 adsorption/regeneration were carried out in order to evaluate the possibility of thermal regeneration and re-use of these carbons. Regeneration of the exhausted carbons was carried out at 400 degrees C of temperature and a flow of 25 ml/min of Ar. After each cycle, the SO2 removal capacity of the sample decreases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, W.G.; Longanbach, J.R.; Muralidhara, H.S.
Standard reaction conditions of 427 C, 5 minutes reaction time, 2:1 solvent/coal ratio and 1000 psig (r.t.) hydrogen overpressure result in good, but not maximum, conversions to THF soluble with both Illinois No. 6 and Wyodak (upper seam) coals. The cumulative effects of the pretreatment steps were also examined using feedstocks which were dried in a vacuum oven at room temperature under nitrogen before liquefaction to remove the effects of moisture. Chloride removal followed by drying had a positive effect on liquefaction. Oil agglomeration followed by drying also improved liquefaction reactivity significantly. Solvent drying also resulted in a small increasemore » in liquefaction reactivity. The overall reactivity of coal treated in sequence with each pretreatment step was slightly less than that of the dry ground coal. Liquefaction under a high partial pressure of hydrogen sulfide in hydrogen also results in a significant increase in conversion to THF solubles. 1 reference, 12 figures, 7 tables.« less
Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; ...
2016-08-03
Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less
Kadamne, Jeta V; Jain, Vishal P; Saleh, Mohammed; Proctor, Andrew
2009-11-25
Conjugated linoleic acid (CLA) isomers in oils are currently measured as fatty acid methyl esters by a gas chromatography-flame ionization detector (GC-FID) technique, which requires approximately 2 h to complete the analysis. Hence, we aim to develop a method to rapidly determine CLA isomers in CLA-rich soy oil. Soy oil with 0.38-25.11% total CLA was obtained by photo-isomerization of 96 soy oil samples for 24 h. A sample was withdrawn at 30 min intervals with repeated processing using a second batch of oil. Six replicates of GC-FID fatty acid analysis were conducted for each oil sample. The oil samples were scanned using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and the spectrum was collected. Calibration models were developed using partial least-squares (PLS-1) regression using Unscrambler software. Models were validated using a full cross-validation technique and tested using samples that were not included in the calibration sample set. Measured and predicted total CLA, trans,trans CLA isomers, total mono trans CLA isomers, trans-10,cis-12 CLA, trans-9,cis-11 CLA and cis-10,trans-12 CLA, and cis-9,trans-11 CLA had cross-validated coefficients of determinations (R2v) of 0.97, 0.98, 0.97, 0.98, 0.97, and 0.99 and corresponding root-mean-square error of validation (RMSEV) of 1.14, 0.69, 0.27, 0.07, 0.14, and 0.07% CLA, respectively. The ATR-FTIR technique is a rapid and less expensive method for determining CLA isomers in linoleic acid photo-isomerized soy oil than GC-FID.
Economic analysis of secondary and enhanced oil recovery techniques in Wyoming
NASA Astrophysics Data System (ADS)
Kara, Erdal
This dissertation primarily aims to theoretically analyze a firm's optimization of enhanced oil recovery (EOR) and carbon dioxide sequestration under different social policies and empirically analyze the firm's optimization of enhanced oil recovery. The final part of the dissertation empirically analyzes how geological factors and water injection management influence oil recovery. The first chapter builds a theoretical model to analyze economic optimization of EOR and geological carbon sequestration under different social policies. Specifically, it analyzes how social policies on sequestration influence the extent of oil operations, optimal oil production and CO2 sequestration. The theoretical results show that the socially optimal policy is a subsidy on the net CO2 sequestration, assuming negative net emissions from EOR. Such a policy is expected to increase a firm's total carbon dioxide sequestration. The second chapter statistically estimates the theoretical oil production model and its different versions. Empirical results are not robust over different estimation techniques and not in line with the theoretical production model. The last part of the second chapter utilizes a simplified version of theoretical model and concludes that EOR via CO2 injection improves oil recovery. The final chapter analyzes how a contemporary oil recovery technology (water flooding of oil reservoirs) and various reservoir-specific geological factors influence oil recovery in Wyoming. The results show that there is a positive concave relationship between cumulative water injection and cumulative oil recovery and also show that certain geological factors affect the oil recovery. Moreover, the curvature of the concave functional relationship between cumulative water injection and oil recovery is reservoir-specific due to heterogeneities among different reservoirs.
Mixing Time Effects on the Dispersion Performance of Adhesive Mixtures for Inhalation
Grasmeijer, Floris; Hagedoorn, Paul; Frijlink, Henderik W.; de Boer, H. Anne
2013-01-01
This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de-) agglomeration of the drug (and fine lactose) particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol) and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables. PMID:23844256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1982-10-01
Commercial calcium silicate bearing Portland cement type III (PC III), in the form of agglomerated cement sorbent (ACS) pellets, is being investigated for in-situ desulfurization of fuel gases and for improved coal gasification. The preparation procedure and conditions for pelletizing agglomerated cement sorbent (ACS) by a low energy, low cost agglomeration technique have been modified using a two-stage pelletization procedure, which yields ACS pellets of greater mechanical strength. A 40 mm ID bench scale fluidized bed gasifier (FBG) was used to determine sulfur removal efficiency of ACS pellets as well as their attrition resistance, using a simulated gas mixture. Thesemore » tests show that 90% or more of the sulfur removal from the gas is achieved until 35% of the ACS pellet is sulfidated and that it has excellent attrition resistance (less than 0.1% wt loss) during cyclic tests excluding the first conditioning cycle. The gasification of coal by partial oxidation with air to low Btu gas was conducted in a 1-inch bench scale FBG unit by our collaborator, the Foster Wheeler Corporation (FWC). At temperatures between 800/sup 0/C and 950/sup 0/C the efficiency of coal gasification is improved by as much as 40% when ACS pellets are used compared to the use of Greer limestone. At the same time the sulfur removal efficiency is increased from 50 to 65% with Greer limestone to over 95% with the ACS pellets. The test on sulfur fixation characteristics of the sorbent in the 1-inch FBG unit using a simulated gas also shows that the ACS pellet is much more reactive toward H/sub 2/S than Greer limestone. The ability of ACS pellets to simultaneously desulfurize and improve the gasification efficiency of coal in FBG justifies further investigation.« less
Prediction of wax buildup in 24 inch cold, deep sea oil loading line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asperger, R.G.; Sattler, R.E.; Tolonen, W.J.
1981-10-01
When designing pipelines for cold environments, it is important to know how to predict potential problems due to wax deposition on the pipeline's inner surface. The goal of this work was to determine the rate of wax buildup and the maximum, equlibrium wax thickness for a North Sea field loading line. The experimental techniques and results used to evaluate the waxing potential of the crude oil (B) are described. Also, the theoretic model which was used for predicting the maximum wax deposit thickness in the crude oil (B) loading pipeline at controlled temperatures of 40 F (4.4 C) and 100more » F (38 C), is illustrated. Included is a recommendation of a procedure for using hot oil at the end of a tanker loading period in order to dewax the crude oil (B) line. This technique would give maximum heating of the pipeline and should be followed by shutting the hot oil into the pipeline at the end of the loading cycle which will provide a hot oil soaking to help soften existing wax. 14 references.« less
Antioxidant Activity of Essential Oil Extracted by SC-CO₂ from Seeds of Trachyspermum ammi.
Singh, Aarti; Ahmad, Anees
2017-07-11
Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO₂) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi . A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO₂ flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO₂ methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w , respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC 50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL -1 , respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO₂ method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity.
NASA Astrophysics Data System (ADS)
Sudarmaji, A.; Margiwiyatno, A.; Ediati, R.; Mustofa, A.
2018-05-01
The aroma/vapor of essential oils is complex compound which depends on the content of the gases and volatiles generated from essential oil. This paper describes a design of quick, simple, and low-cost static measurement system to acquire vapor profile of essential oil. The gases and volatiles are captured in a chamber by means of 9 MOS gas sensors which driven with advance temperature modulation technique. A PSoC CY8C28445-24PVXI based-interface unit is built to generate the modulation signal and acquire all sensor output into computer wirelessly via radio frequency serial communication using Digi International Inc., XBee (IEEE 802.15.4) through developed software under Visual.Net. The system was tested to measure 2 kinds of essential oil (Patchouli and Clove Oils) in 4 temperature modulations (without, 0.25 Hz, 1 Hz, and 4 Hz). A cycle measurement consists of reference and sample measurement sequentially which is set during 2 minutes in every 1 second respectively. It is found that the suitable modulation is 0,25Hz; 75%, and the results of Principle Component Analysis show that the system is able to distinguish clearly between Patchouli Oil and Clove Oil.
Vallejo-Cardona, Alba A; Cerón-Camacho, Ricardo; Karamath, James R; Martínez-Palou, Rafael; Aburto, Jorge
2017-07-01
Unconventional crude oil as heavy, extra heavy, bitumen, tight, and shale oils will meet 10% of worldwide needs for 2035, perhaps earlier. Petroleum companies will face problems concerning crude oil extraction, production, transport, and refining, and some of these are addressed by the use of surfactants and other chemicals. For example, water-in-crude oil emulsions are frequently found during the production of mature wells where enhanced recovery techniques have been deployed. Nevertheless, the selection of adequate surfactant, dosage, type of water (sea, tap or oilfield), kind of crude oil (light, heavy, extra heavy, tight, shale, bitumen) affect the effectivity of treatment and usual bottle tests give limited information. We developed a fluorescence technique to study the effect of surfactants on medium, heavy, and extra heavy crude oil employing the natural fluorophore molecules from petroleum. We first carried out the characterization of commercial and synthetic surfactants, then dispersions of petroleum in water were studied by steady-state fluorometry and the size of petroleum aggregates were measured. The aggregation of petroleum incremented from medium to extra heavy crude oil and we discussed the effect of different surfactants on such aggregation.
The spectral analysis of fuel oils using terahertz radiation and chemometric methods
NASA Astrophysics Data System (ADS)
Zhan, Honglei; Zhao, Kun; Zhao, Hui; Li, Qian; Zhu, Shouming; Xiao, Lizhi
2016-10-01
The combustion characteristics of fuel oils are closely related to both engine efficiency and pollutant emissions, and the analysis of oils and their additives is thus important. These oils and additives have been found to generate distinct responses to terahertz (THz) radiation as the result of various molecular vibrational modes. In the present work, THz spectroscopy was employed to identify a number of oils, including lubricants, gasoline and diesel, with different additives. The identities of dozens of these oils could be readily established using statistical models based on principal component analysis. The THz spectra of gasoline, diesel, sulfur and methyl methacrylate (MMA) were acquired and linear fittings were obtained. By using chemometric methods, including back propagation, artificial neural network and support vector machine techniques, typical concentrations of sulfur in gasoline (ppm-grade) could be detected, together with MMA in diesel below 0.5%. The absorption characteristics of the oil additives were also assessed using 2D correlation spectroscopy, and several hidden absorption peaks were discovered. The technique discussed herein should provide a useful new means of analyzing fuel oils with various additives and impurities in a non-destructive manner and therefore will be of benefit to the field of chemical detection and identification.
Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods
NASA Astrophysics Data System (ADS)
Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.
Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.
Char binder for fluidized beds
Borio, Richard W.; Accortt, Joseph I.
1981-01-01
An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.
Microstickies agglomeration by electric field.
Du, Xiaotang Tony; Hsieh, Jeffery S
2016-01-01
Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)
1996-01-01
The premature capacity failure of Na/NiCl2 secondary cells due to agglomeration of nickel particles on the surface of the NiCl2 cathode is prevented by addition of a minor amount such as 10 percent by weight of a transition metal such as Co, Fe or Mn to the cathode. The chlorides of the transition metals have lower potentials than nickel chloride and chlorinate during charge. A uniform dispersion of the transition metals in the cathodes prevents agglomeration of nickel, maintains morphology of the electrode, maintains the electrochemical area of the electrode and thus maintains capacity of the electrode. The additives do not effect sintering. The addition of sulfur to the liquid catholyte is expected to further reduce agglomeration of nickel in the cathode.
Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T
2016-10-01
Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Georgouli, Konstantia; Martinez Del Rincon, Jesus; Koidis, Anastasios
2017-02-15
The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel variable-gravity simulation method: potential for astronaut training.
Sussingham, J C; Cocks, F H
1995-11-01
Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.
NASA Astrophysics Data System (ADS)
Cheynis, F.; Leroy, F.; Passanante, T.; Müller, P.
2013-04-01
Grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction techniques are used to characterise the thermally induced solid-state dewetting of Ge(001) thin films leading to the formation of 3D Ge islands. A quantitative analysis based on the Kolmogorov-Johnson-Mehl-Avrami model is derived. The main physical parameters controlling the dewetting (activation energy and kinetic pre-factors) are determined. Assuming that the dewetting is driven by surface/interface minimisation and limited by surface diffusion, the Ge surface self-diffusion reads as Ds ,0c0 e-Ea/(kBT) ˜3×1018 e-2.6±0.3eV/(kBT) nm2/s. GISAXS technique enables to reconstruct the mean Ge-island shape, including facets.
Connatser, Raynella M.; Lewis, Sr., Samuel Arthur; Keiser, James R.; ...
2014-10-03
Integrating biofuels with conventional petroleum products requires improvements in processing to increase blendability with existing fuels. This work demonstrates analysis techniques for more hydrophilic bio-oil liquids that give improved quantitative and qualitative description of the total acid content and organic acid profiles. To protect infrastructure from damage and reduce the cost associated with upgrading, accurate determination of acid content and representative chemical compound analysis are central imperatives to assessing both the corrosivity and the progress toward removing oxygen and acidity in processed biomass liquids. Established techniques form an ample basis for bio-liquids evaluation. However, early in the upgrading process, themore » unique physical phases and varied hydrophilicity of many pyrolysis liquids can render analytical methods originally designed for use in petroleum-derived oils inadequate. In this work, the water solubility of the organic acids present in bio-oils is exploited in a novel extraction and titration technique followed by analysis on the water-based capillary electrophoresis (CE) platform. The modification of ASTM D664, the standard for Total Acid Number (TAN), to include aqueous carrier solvents improves the utility of that approach for quantifying acid content in hydrophilic bio-oils. Termed AMTAN (modified Total Acid Number), this technique offers 1.2% relative standard deviation and dynamic range comparable to the conventional ASTM method. Furthermore, the results of corrosion product evaluations using several different sources of real bio-oil are discussed in the context of the unique AMTAN and CE analytical approaches developed to facilitate those measurements.« less
Wavelet Analyses of Oil Prices, USD Variations and Impact on Logistics
NASA Astrophysics Data System (ADS)
Melek, M.; Tokgozlu, A.; Aslan, Z.
2009-07-01
This paper is related with temporal variations of historical oil prices and Dollar and Euro in Turkey. Daily data based on OECD and Central Bank of Turkey records beginning from 1946 has been considered. 1D-continuous wavelets and wavelet packets analysis techniques have been applied on data. Wavelet techniques help to detect abrupt changing's, increasing and decreasing trends of data. Estimation of variables has been presented by using linear regression estimation techniques. The results of this study have been compared with the small and large scale effects. Transportation costs of track show a similar variation with fuel prices. The second part of the paper is related with estimation of imports, exports, costs, total number of vehicles and annual variations by considering temporal variation of oil prices and Dollar currency in Turkey. Wavelet techniques offer a user friendly methodology to interpret some local effects on increasing trend of imports and exports data.
Alacid, Beatriz
2018-01-01
This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716
DOT National Transportation Integrated Search
1982-11-01
The use of chemicals for oil spill dispersal, while not presently widespread in the U.S., would have implications for the U.S. Coast Guard's Marine Environmental Protection program. This report explores the logistics of oil disperant application by t...
THE MOVEMENT OF OIL UNDER NON-BREAKING WAVES
The combined effects of wave kinematics, turbulent diffusion, and buoyancy on the transport of oil droplets at sea were investigated in this work using random walk techniques in a Monte Carlo framework. Six hundred oil particles were placed at the water surface and tracked for 5...
Waseem, Rabia; Low, Kah Hin
2015-02-01
In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sayago, Ana; González-Domínguez, Raúl; Beltrán, Rafael; Fernández-Recamales, Ángeles
2018-09-30
This work explores the potential of multi-element fingerprinting in combination with advanced data mining strategies to assess the geographical origin of extra virgin olive oil samples. For this purpose, the concentrations of 55 elements were determined in 125 oil samples from multiple Spanish geographic areas. Several unsupervised and supervised multivariate statistical techniques were used to build classification models and investigate the relationship between mineral composition of olive oils and their provenance. Results showed that Spanish extra virgin olive oils exhibit characteristic element profiles, which can be differentiated on the basis of their origin in accordance with three geographical areas: Atlantic coast (Huelva province), Mediterranean coast and inland regions. Furthermore, statistical modelling yielded high sensitivity and specificity, principally when random forest and support vector machines were employed, thus demonstrating the utility of these techniques in food traceability and authenticity research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
Background: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. Methods: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Results: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Conclusion: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation. PMID:29296263
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
2018-01-01
Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.
Kamali, Hossein; Aminimoghadamfarouj, Noushin; Golmakani, Ebrahim; Nematollahi, Alireza
2015-01-01
Aim: The aim of this study was to examine and evaluate crucial variables in essential oils extraction process from Lavandula hybrida through static-dynamic and semi-continuous techniques using response surface method. Materials and Methods: Essential oil components were extracted from Lavandula hybrida (Lavandin) flowers using supercritical carbon dioxide via static-dynamic steps (SDS) procedure, and semi-continuous (SC) technique. Results: Using response surface method the optimum extraction yield (4.768%) was obtained via SDS at 108.7 bar, 48.5°C, 120 min (static: 8×15), 24 min (dynamic: 8×3 min) in contrast to the 4.620% extraction yield for the SC at 111.6 bar, 49.2°C, 14 min (static), 121.1 min (dynamic). Conclusion: The results indicated that a substantial reduction (81.56%) solvent usage (kg CO2/g oil) is observed in the SDS method versus the conventional SC method. PMID:25598636
Microfluidic Assessment of Frying Oil Degradation
Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu
2016-01-01
Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation. PMID:27312884
Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian
2016-12-01
Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Jun; Dong, Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.
2013-04-01
The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of 100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter ( D 50 %) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m2/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.
Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M
2015-01-01
The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.
Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions
2012-01-01
The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application. PMID:22333487
Anaerobic Metabolism of Biodiesel and Its Impact on Metal Corrosion
2010-05-05
biodiesel reduces the societal dependence on imported oil ; therefore, it is produced as a major biofuel throughout the world.1 The worldwide production of...including oil reservoirs,10-12 oil -contaminated habitats,13 refineries, storage vessels, pipelines, oil -water separators, and ballast tanks. We exposed...dispersive spectroscopy (EDS) techniques. Experimental Section Biodiesel Incubations with Anaerobic Inocula. A soy -based biodiesel was used in the experiments
Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites.
Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani
2017-01-01
Many essential oils have been reported as natural sources of insect repellents; however, due to high volatility, they present low repellent effect. Formulation technique by using microencapsulation enables to control the volatility of essential oil and thereby extends the duration of repellency. In this study, the effectiveness of microencapsulated essential oils of Alpinia galanga, Citrus grandis and C. aurantifolia in the lotion formulations were evaluated against mosquito bites. Essential oils and N,N-Diethyl-3-methylbenzamide (DEET) were encapsulated by using interfacial pre- cipitation techniques before incorporation into lotion base to form microencapsulated (ME) formulation. The pure essential oil and DEET were also prepared into lotion base to produce non-encapsulated (NE) formulation. All the prepared formulations were assessed for their repellent activity against Culex quinquefasciatus under laboratory condition. Field evaluations also were conducted in three different study sites in Peninsular Malaysia. In addi- tion, Citriodiol® (Mosiquard®) and citronella-based repellents (KAPS®, MozAway® and BioZ Natural®) were also included for comparison. In laboratory conditions, the ME formulations of the essential oils showed no significant difference with regard to the duration of repellent effect compared to the microencapsulated DEET used at the highest con- centration (20%). It exhibited >98% repellent effect for duration of 4 h (p = 0.06). In the field conditions, these formulations demonstrated comparable repellent effect (100% for a duration of 3 h) to Citriodiol® based repellent (Mosiguard®) (p = 0.07). In both test conditions, the ME formulations of the essential oils presented longer duration of 100% repellent effect (between 1 and 2 h) compared to NE formulations. The findings of the study demonstrate that the application of the microencapsulation technique during the preparation of the formulations significantly increases the duration of the repellent effect of the essential oils, suggesting that the ME formulation of essential oils have potential to be commercialized as an alternative plant-based repellent in the market against the mosquitoes.
Numerical Modeling of Inclusion Behavior in Liquid Metal Processing
NASA Astrophysics Data System (ADS)
Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain
2013-09-01
Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.
ERIC Educational Resources Information Center
Kantor, Shawn; Whalley, Alexander
2009-01-01
In this paper we quantify the extent and magnitude of agglomeration spillovers from a formal institution whose sole mission is the creation and dissemination of knowledge--the research university. We use the fact that universities follow a fixed endowment spending policy based on the market value of their endowments to identify the causal effect…
Sedgley, Norman; Elmslie, Bruce
2011-01-01
Evidence of the importance of urban agglomeration and the offsetting effects of congestion are provided in a number of studies of productivity and wages. Little attention has been paid to this evidence in the economic growth literature, where the recent focus is on technological change. We extend the idea of agglomeration and congestion effects to the area of innovation by empirically looking for a nonlinear link between population density and patent activity. A panel data set consisting of observations on 302 USA metropolitan statistical areas (MSAs) over a 10-year period from 1990 to 1999 is utilized. Following the patent and R&D literature, models that account for the discreet nature of the dependent variable are employed. Strong evidence is found that agglomeration and congestion are important in explaining the vast differences in patent rates across US cities. The most important reason cities continue to exist, given the dramatic drop in transportation costs for physical goods over the last century, is probably related to the forces of agglomeration as they apply to knowledge spillovers. Therefore, the empirical investigation proposed here is an important part of understanding the viability of urban areas in the future.
NASA Astrophysics Data System (ADS)
Djenadic, Ruzica; Winterer, Markus
2017-02-01
The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.
NASA Astrophysics Data System (ADS)
Walker, C. T.; Goll, W.; Matsumura, T.
1997-06-01
The fuel investigated was manufactured by Siemens-KWU and irradiated at low rating in the KWO reactor in Germany. The MOX agglomerates in the cold outer region of the fuel shared several common features with the high burn-up structure at the rim of UO 2 fuel. It is proposed that in both cases the mechanism producing the microstructure change is recrystallisation. Further, it is shown that surface MOX agglomerates do not noticeably retard cladding creepdown although they swell into the gap. The contracting cladding appears able to push the agglomerates back into the fuel. The thickness of the oxide layer on the inner cladding surface increased at points where contact with surface MOX agglomerates had occurred. Despite this, the mean thickness of the oxide did not differ significantly from that found in UO 2 fuel rods of like design. It is judged that the high burn-up structure will form in the UO 2 matrix when the local burn-up there reaches 60 to 80 GWd/tM. Limiting the MOX scrap addition in the UO 2 matrix will delay its formation.
Stability of dry coated solid dosage forms.
Kablitz, Caroline Désirée; Urbanetz, Nora Anne
2009-01-01
The dry coating process was evaluated in terms of storage stability investigating drug release and agglomeration tendency of the different coated oral dosage forms; hydroxypropyl methylcellulose acetate succinate (HPMCAS) was used with triethylcitrate (TEC) as plasticizer and acetylated monoglyceride (Myvacet) as wetting agent. Talc or colloidal silicon dioxide (Aerosil) was used as anti-tacking agents. In contrast to coating formulations consisting of HPMCAS and Myvacet all formulations containing TEC showed enteric resistance and no agglomeration tendency after preparation. After storage at 10% RH +/- 5% enteric resistance is increased slightly. This increase is more pronounced at 60% RH +/- 5%. The formulations without anti-tacking agents showed higher drug releases after 12 and 24 months due to the damage of the film's integrity during sample preparation caused by the high tackiness of the film. Tackiness is not affected by storing if samples are stored at low relative humidity. At high relative humidity tackiness increases upon storage especially for formulations without anti-tacking agents. The sieving results of the agglomeration measurements after storage can be confirmed by ring shear measurements performed immediately after preparation and approved to be a tool, which is able to predict the agglomeration during storage.
A rapid screening for adulterants in olive oil using DNA barcodes
USDA-ARS?s Scientific Manuscript database
A distinctive methodology is developed to trace out the mixing into olive oil, which is marketed every year with 20% or more fraudulent oils. Such adulteration has been difficult to differentiate using fatty acid analysis and other available current techniques, as chemically fatty acids are the same...
Extraction and Analysis of Tomato Seed Oil
USDA-ARS?s Scientific Manuscript database
Tomato seeds represent a very large waste by-product from the processing of tomatoes into products such as tomato juice, sauce and paste. One potential use for these seeds is as a source of vegetable oil. This research investigated the oil content of tomato seeds using several extraction technique...
In Situ Solid Particle Generator
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.
2013-01-01
Particle seeding is a key diagnostic component of filter testing and flow imaging techniques. Typical particle generators rely on pressurized air or gas sources to propel the particles into the flow field. Other techniques involve liquid droplet atomizers. These conventional techniques have drawbacks that include challenging access to the flow field, flow and pressure disturbances to the investigated flow, and they are prohibitive in high-temperature, non-standard, extreme, and closed-system flow conditions and environments. In this concept, the particles are supplied directly within a flow environment. A particle sample cartridge containing the particles is positioned somewhere inside the flow field. The particles are ejected into the flow by mechanical brush/wiper feeding and sieving that takes place within the cartridge chamber. Some aspects of this concept are based on established material handling techniques, but they have not been used previously in the current configuration, in combination with flow seeding concepts, and in the current operational mode. Unlike other particle generation methods, this concept has control over the particle size range ejected, breaks up agglomerates, and is gravity-independent. This makes this device useful for testing in microgravity environments.
Stankiewicz, Maria; Dąbrowski, Marcin; de Lima, Maria Elena
2012-01-01
Nervous system of Periplaneta americana cockroach is used in a wide range of pharmacological studies, including electrophysiological techniques. This paper presents its role as a preparation in the development of toxinological studies in the following electrophysiological methods: double-oil-gap technique on isolated giant axon, patch-clamp on DUM (dorsal unpaired median) neurons, microelectrode technique in situ conditions on axon in connective and DUM neurons in ganglion, and single-fiber oil-gap technique on last abdominal ganglion synapse. At the end the application of cockroach synaptosomal preparation is mentioned. PMID:22666245
NASA Astrophysics Data System (ADS)
Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin
2018-02-01
Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.
Halyo; Kim; Lee; Lee; Loomba; Perl
2000-03-20
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.
KISS: Kinetics and Structure of Superagglomerates Produced by Silane and Acetylene
NASA Technical Reports Server (NTRS)
Mulholland, G. W.; Yang, J. C.; Scott, J. H.; Sivithanu, Y.
2001-01-01
The objective of this study is to understand the process of gas phase agglomeration leading to superagglomerates and a gel-like structure for microgravity (0-g) silane and acetylene flames. Ultimately one would apply this understanding to predicting flame conditions that could lead to the gas phase production of an aero-gel. The approach is to burn acetylene and silane and to analyze the evolution of the soot and silica agglomerates. Acetylene is chosen because it has one of the highest soot volume fractions and there is evidence of super agglomerates being formed in laminar acetylene flames. Silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke.
RST analysis of thermal infrared satellite data for a continuous oil spill detection and monitoring
NASA Astrophysics Data System (ADS)
Grimaldi, C. S. L.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V.
2012-04-01
Oil spills is one of the main sea pollution sources causing remarkable ecological impact on maritime and coastal environments. Oil spills can derive both from natural phenomena (hurricanes, landslides, earthquakes) and "human errors" (tankers collisions, shipwrecks, platform accidents), even if the main contribution to this kind of technological hazard comes from operational discharge from tankers (i.e. oil dumped during cleaning operations) representing 45% of total hydrocarbons marine pollution. Mainly for this reason, the developing of systems able to provide a high frequent sampling and observation of sea surface is fundamental. Satellite remote sensing, thanks to global coverage and continuity of observations, might effectively contribute to mitigate oil spill environmental impact, provided that reliable and effective detection techniques are developed and that relevant information and products are timely delivered and made available. In particular, satellite remote sensing by passive optical sensors on board meteorological satellites, thanks to their high temporal resolution (from a few hours to 15 minutes, depending on the characteristics of the platform/sensor), can give a significant opportunity in this field. Unfortunately, up to now, optical satellite data found a poor application in oil spill alert system mainly for the lack of data analysis techniques suitable for an automatic oil spill detection. The few methods up to now proposed are only able to manually and interactively localize the presence of an already known oil spill, mainly for "a posteriori" mapping purpose, often requiring the intervention of an expert operator. In particular, techniques based on Thermal Infrared (TIR) records exploit oil and water different thermal inertia in order to map spill sea pollution. Oil thermal inertia, in fact, is lower than sea water one, so that oil polluted areas usually show Brightness Temperature (BT) higher than sea water in TIR images collected in daytime while the opposite is true at night-time. Oil BT behaviour in night-time acquisitions makes more difficult oil detection in TIR satellite images collected because also clouds shows at this time BT lower than sea water, producing possible false identifications. The Robust Satellite Techniques (RST) approach is a general strategy for multi-temporal satellite data analysis, applicable on whatever signal and independently from a specific satellite/sensor. This allowed us to apply it for an automatic oil spill detection and monitoring using single channel TIR diurnal data, as well as on a combination of two TIR channels (e.g. split window) to obtain a reliable oil spill detection also during night-time acquisitions. Results achieved using data acquired from both AVHRR (Advanced Very High Resolution Radiometer) and MODIS (Moderate Resolution Imaging Spectroradiometer) data, in different geographic areas and observational conditions, demonstrated the good performances of the proposed approach in the context of a h24 near real time oil spill disaster monitoring system. In this paper some of these results are shown and discussed, pointing out on the relevance that a system based on such an approach might have in reducing oil spill impact on marine ecosystem.
Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration.
Cha, Zhixiong; Lin, Cheng-Fang; Cheng, Chia-Jung; Andy Hong, P K
2010-01-01
Ever increasing energy demand worldwide necessitates energy supply, inevitably leading to an increasing volume of process waters containing hydrocarbon contaminants. Among them, dispersed and dissolved oils in produced water need to be removed adequately in order to reuse or avoid surface sheen from coastal discharge. We have recently developed a new ozonation technique coupled with sand filtration to quickly remove oil from process water and prevent oil sheen. The technique incorporates rapid, successive cycles of compression and decompression during ozonation. Gas bubbles expanding from small to large sizes occur that provide ample reactive zones at the gas-liquid interface, resulting in heightened chemical conversions-notably the conversion of hydrophobic hydrocarbon molecules into hydrophilic ones. This study examined the removal of hydrocarbons and sheen according to treatment parameters and configurations, as assessed by changes in turbidity, COD, BOD, and sheen presence following treatment. When a synthetic produced water containing 120ppm of oil (about 100ppm of dispersed and 20ppm of soluble oil at a total COD of 320mgL(-1)) was subjected to 10 pressure cycles (reaching 1.0MPa; 20s each) of ozonation and sand filtration at 6cmmin(-1) and then repeated by 20 cycles of ozonation and sand filtration, it resulted in removal of oil to 20ppm as water-soluble organic acids, decrease of turbidity from 200 to 2NTU, and complete sequestration of surface sheen. The new technique offers a treatment alternative for produced water and likely other tailings waters, promoting safe discharge to the environment and beneficial uses of the water. 2009 Elsevier Ltd. All rights reserved.
Antioxidant Activity of Essential Oil Extracted by SC-CO2 from Seeds of Trachyspermum ammi
Singh, Aarti; Ahmad, Anees
2017-01-01
Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO2) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi. A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO2 flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO2 methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w, respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL−1, respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO2 method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity. PMID:28930268
Improved consolidation of silicon carbide
NASA Technical Reports Server (NTRS)
Freedman, M. R.; Millard, M. L.
1986-01-01
Alpha silicon carbide powder was consolidated by both dry and wet methods. Dry pressing in a double acting steel die yielded sintered test bars with an average flexural strength of 235.6 MPa with a critical flaw size of approximately 100 micro m. An aqueous slurry pressing technique produced sintered test bars with an average flexural strength of 440.8 MPa with a critical flaw size of approximately 25 micro m. Image analysis revealed a reduction in both pore area and pore size distribution in the slurry pressed sintered test bars. The improvements in the slurry pressed material properties are discussed in terms of reduced agglomeration and improved particle packing during consolidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Pulido, A.; Martínez-Gutiérrez, H.; Calderon-Polania, G. A.
Nitrogen-doped multiwalled carbon nanotubes (CNx-MWNTs) have been decorated with γ-Al 2O 3 nanoparticles by a novel method. This process involved a wet chemical approach in conjunction with thermal treatment. During the particle anchoring process, individual CNx-MWNT nanotubes agglomerated into bundles, resulting in arrays of aligned CNx-MWNT coated with γ-Al 2O 3. Extensive characterization of the resulting γ-Al 2O 3/CNx-MWNT bundles was performed using a range of electron microscopy imaging and microanalytical techniques. In conclusion, a possible mechanism explaining the nanobundle alignment is described, and possible applications of these materials for the fabrication of ceramic composites using CNx-MWNTs are briefly discussed.
Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers
Brostow, Witold; Lobland, Haley E. Hagg; Hnatchuk, Nathalie; Perez, Jose M.
2017-01-01
Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention. PMID:28336900
Integrated ultrasonic particle positioning and low excitation light fluorescence imaging
NASA Astrophysics Data System (ADS)
Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.
2013-12-01
A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.
Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.
2012-05-01
This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.
NASA Astrophysics Data System (ADS)
Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling
2016-10-01
A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.
[Laser induced fluorescence spectrum characteristics of common edible oil and fried cooking oil].
Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Chen, He; Guo, Pan; Ge, Xian-ying; Gao, Li-lei
2013-09-01
In order to detect the trench oil the authors built a trench oil rapid detection system based on laser induced fluorescence detection technology. This system used 355 nm laser as excitation light source. The authors collected the fluorescence spectrum of a variety of edible oil and fried cooking oil (a kind of trench oil) and then set up a fluorescence spectrum database by taking advantage of the trench oil detection system It was found that the fluorescence characteristics of fried cooking oil and common edible oil were obviously different. Then it could easily realize the oil recognition and trench oil rapid detection by using principal component analysis and BP neural network, and the overall recognition rate could reach as high as 97.5%. Experiments showed that laser induced fluorescence spectrum technology was fast, non-contact, and highly sensitive. Combined with BP neural network, it would become a new technique to detect the trench oil.
Characterization of manufactured TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Motzkus, C.; Macé, T.; Vaslin-Reimann, S.; Ausset, P.; Maillé, M.
2013-04-01
Technological advances in nanomaterials have allowed the development of new applications in industry, increasing the probability of finding airborne manufactured and engineered nano-objects in the workplace, as well as in ambient air. Scientific studies on health and environmental risks have indicated that airborne nano-objects in ambient air have potential adverse effects on the health of exposed workers and the general population. For regulatory purposes, ambient measurements of particulate matter are based on the determination of mass concentrations for PM10 and PM2.5, as regulated in the European Directive 2008/50/EC. However, this legislation is not suitable for airborne manufactured and engineered nano-objects. Parameters characterising ultrafine particles, such as particle number concentration and size distribution, are under consideration for future health-based legislation, to monitor workplaces and to control industrial processes. Currently, there are no existing regulations covering manufactured airborne nano-objects. There is therefore a clear, unaddressed need to focus on the toxicology and exposure assessment of nano-objects such as titanium dioxide (TiO2), which are manufactured and engineered in large quantities in industry. To perform reliable toxicology studies it is necessary to determine the relevant characteristics of nano-objects, such as morphology, surface area, agglomeration, chemical composition, particle size and concentration, by applying traceable methods. Manufacturing of nanomaterials, and their use in industrial applications, also require traceable characterisation of the nanomaterials, particularly for quality control of the process. The present study arises from the OECD WPMN sponsorship programme, supported by the French Agency for Environmental and Occupational Health Safety (ANSES), in order to develop analytical methods for the characterization of TiO2 nanoparticles in size and count size distribution, based on different techniques to characterize five different manufactured TiO2 nanoparticles. In this study, different measurement techniques have been implemented: Transmission Electron Microscopy (TEM), Scanning Mobility Particle Sizer (SMPS) and Aerodynamic Particle Sizer (APS). The TEM results lead to a relatively good agreement between data from the manufacturer and our characterizations of primary particle size. With regard to the dustiness, the results show a strong presence of agglomerates / aggregates of primary particles and a significant presence of emitted airborne nanoparticles with a diameter below 100 nm (composed of isolated primary particles and small aggregates / agglomerates formed from a few primary particles): the number proportion of these particles varies from 0 to 44 % in the measurement range 14-360 nm depending on the types of powders and corrections of measurements.
Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S
2008-01-01
The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.
Pauluhn, Jürgen
2009-05-01
Inhaled polydisperse micronsized agglomerated particulates composed of nanosized primary particles may exert their pulmonary toxicity in either form, depending on whether these tightly associated structures are disintegrated within the biological system or not. This hypothesis was tested in a rat bioassay using two calcined aluminum oxyhydroxides (AlOOH) consisting of primary particles in the range of 10-40 nm. Male Wistar rats were nose-only exposed to 0.4, 3, and 28 mg/m(3) in two 4-week (6 h/day, 5 days/week) inhalation studies followed by a 3-month postexposure period. The respective mass median aerodynamic diameter (MMAD) of agglomerated particles in inhalation chambers was 1.7 and 0.6 mum. At serial sacrifices, pulmonary toxicity was characterized by bronchoalveolar lavage (BAL) and histopathology. The retention kinetics of aluminum (Al) was determined in lung tissue, BAL cells, and selected extrapulmonary organs, including lung-associated lymph nodes (LALNs). Significant changes in BAL, lung, and LALN weights occurred at 28 mg/m(3). Histopathology revealed alveolar macrophages with enlarged and foamy appearance, increased epithelial cells, inflammatory cells, and focal septal thickening. The determination of aluminum in lung tissue shows that the cumulative lung dose was higher following exposure to AlOOH-40 nm/MMAD-0.6 mum than to AlOOH-10 nm/MMAD-1.7 mum, despite identical exposure concentrations. The associated pulmonary inflammatory response appears to be principally dependent on the agglomerated rather than primary particle size. Despite high lung burdens, conclusively increased extrapulmonary organ burdens did not occur at any exposure concentration and postexposure time point. Particle-induced pulmonary inflammation was restricted to cumulative doses exceeding approximately 1 mg AlOOH/g lung following 4-week exposure at 28 mg/m(3). It is concluded that the pulmonary toxicity of nanosized, agglomerated AlOOH particles appears to be determined by the size of agglomerated rather than primary particles, whereas the clearance half-time of particles appears to increase with decreased primary particle size. However, in regard to toxicokinetics, this outcome is highly contingent upon the total lung burden and especially whether overloading or non-overloading conditions were attained or not. In order to reliably demonstrate retention-related different characteristics in toxicity and fate of poorly soluble (nano)particles postexposure periods of at least 3 months appear to be indispensible.
Microgravity Superagglomerates Produced By Silane And Acetylene
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman (Technical Monitor); Bundy, Matthew; Mulholland, George W.; Manzello, Samuel; Yang, Jiann; Scott, John Henry; Sivathanu, Yudaya
2003-01-01
The size of the agglomerates produced in the upper portion of a flame is important for a variety of applications. Soot particle size and density effect the amount of radiative heat transfer from a fire to its surroundings. Particle size determines the lifetime of smoke in a building or in the atmosphere, and exposure hazard for smoke inhaled and deposited in the lungs. The visibility through a smoke layer and dectectability of the smoke are also greatly affected by agglomerate size. Currently there is limited understanding of soot growth with an overall dimension of 10 m and larger. In the case of polystyrene, smoke agglomerates in excess of 1 mm have been observed raining out from large fires. Unlike hydrocarbon fuels, silane has the advantage that silica particles are the major combustion product resulting in a particle volume fraction a factor of ten greater than that for a carbonaceous smoke. There are two very desirable properties of silica aero-gels that are important for both space and earth based applications. The first important property is its inertness to most oxidizing and reducing atmospheres. Therefore, silica aero-gels make excellent fire ablatives and can be used in very demanding applications. The second important property is that silica aero-gels are expected to have very high porosity (greater than 0.999), making them lightweight and ideal for aerospace applications. The added benefit of the high porosity is that they can be used as extremely efficient filters for many earth based applications as well. Evidence of the formation of superagglomerates in a laminar acetylene/air diffusion flame was found by Sorensen et al. [1]. An interconnecting web of super-agglomerates was observed to span the width of the soot plume in the region just above the flame tip and described as a gel state. It was observed that this gel state immediately breaks up into agglomerates as larges as 100 m due to buoyancy induced turbulence. Large soot agglomerates were observed in microgravity butane jet diffusion flames by Ito et al.[2]. Several other works to date have studied the effect of flame structure on soot volume fraction and agglomeration size in a microgravity environment.[3-4]. In microgravity the absence of buoyant convective flows increases the residence time in the flame and causes a broadening of the high temperature region in the flame. Both of these factors play a significant role in gas phase radiation and soot formation
A Novel Surgical Technique for Ahmed Valves in Refractory Glaucoma With Silicone Oil Endotamponade.
Davo-Cabrera, Juan Maria; Lanzagorta-Aresti, Aitor; Alcocer Yuste, Pablo
2017-10-01
The purpose of the study is to describe a novel technique to implant Ahmed valves in patients with refractory glaucoma because of silicone oil (SO) endotamponade PATIENTS:: Three patients with glaucoma without SO removal were used as an example for this technique. Technique report. We introduce a standard technique modification for Ahmed valves in patients with SO. This modification consists on locating the Ahmed valve more tangential to the limbus curvature instead of the usual perpendicular position and inserting the tube in the posterior chamber. The tube can be longer and run parallel to pupil. This technique allows use superotemporal quadrant (fewer complications), avoid corneal touch and decrease SO loss through the tube to subconjunctival space.
Chuang, Yen-Jun; Liu, Feng; Wang, Wei; Kanj, Mazen Y; Poitzsch, Martin E; Pan, Zhengwei
2016-06-15
Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.
Thermal Properties of Jojoba Oil Between 20°C and 45°C
NASA Astrophysics Data System (ADS)
Lara-Hernández, G.; Flores-Cuautle, J. J. A.; Hernandez-Aguilar, C.; Suaste-Gómez, E.; Cruz-Orea, A.
2017-08-01
Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba ( Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between 20°C and 45°C were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 W\\cdot s^{1/2}\\cdot m^{-2}\\cdot K^{-1} to 378 W\\cdot s^{1/2}m^{-2}\\cdot K^{-1} as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between 20°C and 45°C.
Compound Method to Disperse CaCO3 Nanoparticles to Nano-Size in Water.
Gu, Sui; Cai, Jihua; Wang, Jijun; Yuan, Ye; Chang, Dewu; Chikhotkin, Viktor F
2015-12-01
The invalidation of CaCO3 nanoparticles (nCaCO3) is often caused by the fact of agglomeration and inhomogeneous dispersion which limits its application into water-based drilling muds for low permeability reservoirs such as coalbed methane reservoir and shale gas/oil reservoir. Effective methods to disperse nCaCO3 to nano-size (≤ 100 nm) in water have seldom been reported. Here we developed a compound method containing mechanical stirring, ultrasonic treatment, the use of surfactant and stabilizer to disperse nCaCO3 in water. It comprises the steps adding 2% nCaCO3, 1% sodium dodecyl sulfonate (SDS), 2% cetyltrimethyl ammonium bromide (CTAB), 2% OP-10, 3% to 4% biopolymer (XC) in water successively, stirring it at a shear rate of 6000 to 8000 r/min for 15 minutes and treating it with ultrasonic at a frequency of 28 KHz for 30 to 40 minutes. The dispersed nCaCO3 was characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size distribution (PSD) tests. We found that nCaCO3 could be dispersed to below 100 nm in water and the medium value of nCaCO3 was below 50 nm. This method paved the way for the utilization of nCaCO3 in drilling fluid and completion fluid for low permeability reservoirs such as coal seams and shale gas/oil formations.
NASA Astrophysics Data System (ADS)
Pandolfi, M.; Gonzalez-Castanedo, Y.; Alastuey, A.; Pey, J.; Querol, X.; de La Rosa, J. D.
2009-04-01
The recognized adverse health effect of the PM10 and PM2.5 particles leads to an increasing demand of a more efficient control of pollutant emissions especially in industrial and/or urban sites. The degree with which the control of the emissions can be accomplished depends on the identification of the pollutant sources and the estimation of their contribution. The chemical speciation of ambient PM coupled with receptor modelling can be considered as a powerful tool to estimate origin of the sources and their contribution to the PM10 and PM2.5 fractions. This work aims to evaluate the effect on air quality of the anthropogenic activities performed in one of the most important industrial estates of Southern Spain located in the Bay of Gibraltar. The area under study is characterized by the presence of metallurgy industries and oil refineries around which four urban agglomerates are located, namely: Los Barrios (36°11'7.39"N, 5°29'33.89"O), La Linea (36° 9'40.24"N, 5°20'53.72"O), Algeciras (36°7'47.21"N, 5°26'51.71"O) y Puente Mayorga (36°10'54.60"N, 5°23'8.32"O). Traffic is consequently another important source of pollutants in the considered area together with an intense shipping activity. The estimation of the pollutant sources and their contribution was obtained by applying the Positive Matrix Factorization (PMF) model to the PM10 and PM2.5 levels and chemical speciation data simultaneously obtained in the four urban agglomerates during a period of 4 years (March 2003 - December 2007). Given the small size of the area under study, the PM data collected in all the four stations was simultaneously introduced within the PMF model. This procedure allowed the PMF to use a higher number of data rather than using the 4 database separately, thus improving the performances of the model. Following this procedure a total of 567 and 341 samples for the PM10 and PM2.5 fractions respectively were introduced within the PMF. Moreover, before running the model, a detailed inspection of the database was performed in order to look for the possible presence of weaker data such as contaminated data, below detection limit data, missing data etc. This procedure is important in order to improve the performances of the model, reducing the error associated with the calculated sources contributions. In the present work seven sources were obtained in both PM10 and PM2.5 fractions, namely: crustal (traced by Al, Ca, K, Ti, Fe, Rb, Sr), marine (traced by Na, Cl, Mg), industrial (Cr, Mn, P, Zn, Fe, As, Ni, Pb), oil combustion (traced by V, Ni y La from both oil refinery and shipping emissions), traffic (OC+EC, Cu, Sn, Sb), secondary sulphate (SO4= and NH4+), ammonium nitrate in PM2.5 (traced by NO3- and NH4+) and sodium nitrate in PM10 (Na and NO3-). In PM10 fraction the main contributing sources in all stations were secondary sulphate (19-22% of PM10 mass), sodium nitrate (15-21%) and crustal (14-23%) followed by traffic (10-21%), marine (10-17%), oil combustion (6-9%) and industrial (1-5%). The main contributing sources in PM2.5 were regional sulphate (28-34%), ammonium nitrate and traffic (10-15%), crustal (8-18%), oil combustion and marine (8-10%), and industrial (2-7%). Further information on source contributions and locations were obtained by coupling PMF with wind direction data which show two privileged mean wind directions in the considered area: SSE-ESE (75% of occurrence) and W-NW (80% of occurrence). In this work wind data was used to separately evaluate the contributions from shipping and oil refinery which were not separated by the PMF model mainly as a consequence of the similarity in the fingerprints of these two sources. Acknowledgements This work was funded by the Spanish Ministry of Science and Innovation (GRACCIE-SCD2007-00067), Ministry of the Environment (CALIOPE, Ref.: 441-2006-3-12.1), and the Junta of Andalucía.
ERIC Educational Resources Information Center
Fullerton, Andrew S.; Villemez, Wayne J.
2011-01-01
Several recent studies across the social sciences show that the spatial agglomeration of employment in a local labor market benefits both firms and workers in terms of better firm performance and higher wages. Drawing from the organizational ecology perspective, we argue that workers receive higher wages in large industrial clusters and urban…
Size and weight graded multi-ply laminar electrodes
Liu, Chia-Tsun; Demczyk, Brian G.; Rittko, Irvin R.
1984-01-01
An electrode is made comprising a porous backing sheet, and attached thereto a catalytically active layer having an electrolyte permeable side and a backing layer contacting side, where the active layer comprises a homogeneous mixture of active hydrophobic and hydrophilic agglomerates with catalyst disposed equally throughout the active layer, and where the agglomerate size increases from the electrolyte permeable side to the backing sheet contacting side.
Monte Carlo Simulation of Nanoparticle Encapsulation in Flames
NASA Technical Reports Server (NTRS)
Sun, Z.; Huertas, J. I.; Axelbaum, R. L.
1999-01-01
Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature environment of a flame is excellent for producing high-purity simple compounds, ultrafine metals and non-oxide ceramic powders are inherently reactive in the presence of oxygen and/or moisture. Thus, the handling of these powders after synthesis poses a challenging problem. Impurities acquired during handling of nanoparticles have plagued the advancement of nanostructured materials technology.
Ku, Bon Ki; Evans, Douglas E.
2015-01-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard’s estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles. PMID:26526560
Ku, Bon Ki; Evans, Douglas E
2012-04-01
For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density of agglomerates improves the accuracy of the Maynard's estimation method and that an effective density should be taken into account, when known, when estimating aerosol surface area of nonspherical aerosol such as open agglomerates and fibrous particles.
Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia
2008-01-01
This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.
Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia
2008-01-01
This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180
Overview of the technology and status of oil sands development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, R.J.
1981-01-01
In conjunction with the increasing emphasis upon alternate energy sources, interest in the oil sands resource is discussed. This paper reviews the primary established oil sands recovery techniques including surface mining, surface retorting, in situ thermal and nonthermal in situ, and presents an overview of their application in specific projects.