Data & Tools | Bioenergy | NREL
Procedures NREL develops lab procedures to help researchers perform analyses for biofuels and bio-oils . Biomass Compositional Analysis Bio-Oil Analysis Microalgae Compositional Analysis Biomass Feedstock and
Bianchini, Ange; Santoni, François; Paolini, Julien; Bernardini, Antoine-François; Mouillot, David; Costa, Jean
2009-07-01
Composition of Helichrysum italicum subsp. italicum essential oil showed chemical variability according to vegetation cycle, environment, and geographic origins. In the present work, 48 individuals of this plant at different development stages and the corresponding root soils were sampled: i) 28 volatile components were identified and measured in essential oil by using GC and GC/MS; ii) ten elements from plants and soils have been estimated using colorimetry in continuous flux, flame atomic absorption spectrometry, or emission spectrometry (FAAS/FAES); iii) texture and acidity (real and potential) of soil samples were also reported. Relationships between the essential-oil composition, the inorganic plant composition, and the soil characteristics (inorganic composition, texture, and acidity) have been established using multivariate analysis such as Principal Component Analysis (PCA) and partial Redundancy Analysis (RDA). This study demonstrates a high level of intraspecific differences in oil composition due to environmental factors and, more particularly, soil characteristics.
Marčetić, Mirjana; Kovačević, Nada; Lakušić, Dmitar; Lakušić, Branislava
2017-03-01
Plant specialised metabolites like essential oils are highly variable depending on genetic and various ecological factors. The aim of the present work was to characterise essential oils of the species Seseli rigidum Waldst. & Kit. (Apiaceae) in various organs on the individual and populational levels. Geographical variability and the impact of climate and soil type on essential oil composition were also investigated. Individually sampled essential oils of roots, aerial parts and fruits of plants from seven populations were analysed by GC-FID and GC-MS. The investigated populations showed high interpopulational and especially intrapopulational variability of essential oil composition. In regard to the variability of essential oils, different chemotypes were defined. The essential oils of S. rigidum roots represented a falcarinol chemotype, oils of aerial parts constituted an α-pinene or α-pinene/sabinene chemotype and fruit essential oils can be characterised as belonging to a complex sabinene/α-pinene/β-phellandrene/falcarinol/germacrene B chemotype. At the species level, analysis of variance (ANOVA), principal component analysis (PCA) and canonical discriminant analysis (CDA) showed that the plant part exerted the strongest influence on the composition of essential oils. Climate had a high impact on composition of the essential oils of roots, aerial parts and fruits, while influence of the substrate was less pronounced. The variations in main compounds of essential oils based on climate or substrate were complex and specific to the plant part. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na
2015-01-01
In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.
Chemical Composition Variability of Essential Oils of Daucus gracilis Steinh. from Algeria.
Benyelles, Batoul; Allali, Hocine; Dib, Mohamed El Amine; Djabou, Nassim; Paolini, Julien; Costa, Jean
2017-06-01
The chemical compositions of 20 Algerian Daucus gracilis essential oils were investigated using GC-FID, GC/MS, and NMR analyses. Altogether, 47 compounds were identified, accounting for 90 - 99% of the total oil compositions. The main components were linalool (18; 12.5 - 22.6%), 2-methylbutyl 2-methylbutyrate (20; 9.2 - 20.2%), 2-methylbutyl isobutyrate (10; 4.2 - 12.2%), ammimajane (47; 2.6 - 37.1%), (E)-β-ocimene (15; 0.2 - 12.8%) and 3-methylbutyl isovalerate (19; 3.3 - 9.6%). The chemical composition of the essential oils obtained from separate organs was also studied. GC and GC/MS analysis of D. gracilis leaves and flowers allowed identifying 47 compounds, amounting to 92.3% and 94.1% of total oil composition, respectively. GC and GC/MS analysis of D. gracilis leaf and flower oils allowed identifying linalool (22.7%), 2-methylbutyl 2-methylbutyrate (18.9%), 2-methylbutyl isovalerate (13.6%), ammimajane (10.4%), 3-methylbutyl isovalerate (10.3%), (E)-β-ocimene (8.4%) and isopentyl 2-methylbutyrate (8.1%) as main components. The chemical variability of the Algerian oil samples was studied using statistical analysis, which allowed the discrimination of three main Groups. A direct correlation between the altitudes, nature of soils and the chemical compositions of the D. gracilis essential oils was evidenced. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana
2016-01-01
The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Rosati, Adolfo; Cafiero, Caterina; Paoletti, Andrea; Alfei, Barbara; Caporali, Silvia; Casciani, Lorena; Valentini, Massimiliano
2014-09-15
We examined whether some agronomical practices (i.e. organic vs. conventional) affect olive fruit and oil composition, and oil sensory properties. Fruit characteristics (i.e. fresh and dry weight of pulp and pit, oil content on a fresh and dry weight basis) did not differ. Oil chemical traits did not differ except for increased content of polyphenols in the organic treatments, and some changes in the acidic composition. Sensory analysis revealed increased bitterness (both cultivars) and pungency (Frantoio) and decreased sweetness (Frantoio) in the organic treatment. Fruit metabolomic analysis with HRMAS-NMR indicated significant changes in some compounds including glycocholate, fatty acids, NADPH, NADP+, some amino acids, thymidine, trigonelline, nicotinic acid, 5,6-dihydrouracil, hesanal, cis-olefin, β-D-glucose, propanal and some unassigned species. The results suggest that agronomical practices may have effects on fruit composition that may be difficult to detect unless a broad-spectrum analysis is used. Copyright © 2014 Elsevier Ltd. All rights reserved.
Composition and Chemical Variability of Ivoirian Xylopia staudtii Leaf Oil.
Yapi, Thierry Acafou; Boti, Jean Brice; Ahibo, Antoine Coffy; Sutour, Sylvain; Bighelli, Ange; Casanova, Joseph; Tomi, Félix
2015-06-01
The chemical composition of a leaf oil sample from Ivoirian Xylopia staudtii Engler & Diels (Annonaceae) has been investigated by a combination of chromatographic [GC(RI)] and spectroscopic (GC-MS, 13C NMR) techniques. Thirty-five components that accounted for 91.8% of the whole composition have been identified. The oil composition was dominated by the furanoguaiadienes furanoguaia-1,4-diene (39.0%) and furanoguaia-1,3-diene(7.5%), and by germacrene D (17.5%). The composition of twelve other leaf oil samples demonstrated qualitative homogeneity, but quantitative variability. Indeed, the contents of the major components varied substantially: furanoguaia-1,4-diene (24.7-51.7%) and germacrene D (5.9-24.8%). The composition of X. staudtii leaf oil is close to that of X. rubescens leaf oil but varied drastically from those of the essential oils isolated from other Xylopia species. 13C NMR spectroscopy appeared as a powerful and complementary tool for analysis of sesquiterpene-rich essential oils.
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.
Fabrication of Glass Fiber Reinforced Composites Based on Bio-Oil Phenol Formaldehyde Resin
Cui, Yong; Chang, Jianmin; Wang, Wenliang
2016-01-01
In this study, bio-oil from fast pyrolysis of renewable biomass was added by the mass of phenol to synthesize bio-oil phenol formaldehyde (BPF) resins, which were used to fabricate glass fiber (GF) reinforced BPF resin (GF/BPF) composites. The properties of the BPF resin and the GF/BPF composites prepared were tested. The functional groups and thermal property of BPF resin were thoroughly investigated by Fourier transform infrared (FTIR) spectra and dynamic thermomechanical analysis (DMA). Results indicated that the addition of 20% bio-oil exhibited favorable adaptability for enhancing the stiffness and heat resistance of phenol formaldehyde (PF) resin. Besides, high-performance GF/BPF composites could be successfully prepared with the BPF resin based on hand lay-up process. The interface characteristics of GF/BPF composites were determined by the analysis of dynamic wettability (DW) and scanning electron microscopy (SEM). It exhibited that GF could be well wetted and embedded in the BPF resin with the bio-oil addition of 20%. PMID:28774009
NASA Astrophysics Data System (ADS)
Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri
2014-05-01
Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.
USDA-ARS?s Scientific Manuscript database
Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...
Three new natural compounds from the root bark essential oil from Xylopia aethiopica.
Yapi, Thierry Acafou; Boti, Jean Brice; Attioua, Barthelemy Koffi; Ahibo, Antoine Coffy; Bighelli, Ange; Casanova, Joseph; Tomi, Félix
2012-01-01
In the course of on-going work on the characterisation of aromatic plants from the Ivory Coast we investigated the composition of the root oil from Xylopia aethiopica. The aim of this work was to investigate the chemical composition of X. aethiopica root oil and elucidate the structure of two new compounds. Analysis of the essential oil was carried out using a combination of chromatographic (CC, GC with retention indices) and spectroscopic techniques (MS, (13)C-NMR, 2D-NMR). Twenty seven components, accounting for 95.6% of the whole composition, were identified including various compounds for which spectroscopic data were absent on commercial computerised MS libraries. Three compounds are reported for the first time as natural compounds and the structure of two new compounds, 4,4-dimethyl-2-vinylcyclohexene and endo-5-methoxy-3-patchoulene, has been elucidated using extensive two-dimensional NMR spectroscopy. The composition of X. aethiopica root oil is dominated by two dimethylvinylcyclohexene isomers. It differs drastically from the composition of leaf and fruit oils of the same plant. The combination of analytical techniques appeared crucial for a fruitful analysis. Copyright © 2012 John Wiley & Sons, Ltd.
Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min
2012-01-01
The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC50 = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline- 6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:23203088
Huang, Huey-Chun; Wang, Hsiao-Fen; Yih, Kuang-Hway; Chang, Long-Zen; Chang, Tsong-Min
2012-11-12
The study was aimed at investigating the antimelanogenic and antioxidant properties of essential oil when extracted from the leaves of Artemisia argyi, then analyzing the chemical composition of the essential oil. The inhibitory effect of the essential oil on melanogenesis was evaluated by a mushroom tyrosinase activity assay and B16F10 melanoma cell model. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis, and the volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The results revealed that the essential oil significantly inhibits mushroom tyrosinase activity (IC(50) = 19.16 mg/mL), down-regulates B16F10 intracellular tyrosinase activity and decreases the amount of melanin content in a dose-dependent pattern. Furthermore, the essential oil significantly scavenged 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) ABTS radicals, showed an apparent reduction power as compared with metal-ion chelating activities. The chemicals constituents in the essential oil are ether (23.66%), alcohols (16.72%), sesquiterpenes (15.21%), esters (11.78%), monoterpenes (11.63%), ketones (6.09%), aromatic compounds (5.01%), and account for a 90.10% analysis of its chemical composition. It is predicted that eucalyptol and the other constituents, except for alcohols, in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from A. argyi leaves decreased melanin production in B16F10 cells and showed potent antioxidant activity. The essential oil can thereby be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products.
Oreizi, Elaheh; Rahiminejad, Mohammad Reza; Asghari, Gholamreza
2014-11-01
Perovskia abrotanoides Karel. is a medicinal plant used in Iranian folk medicine as a pain killer. Forty-one components have been identified in P. abrotanoides samples collected from Baluchistan Province, and 29 components have been recognized in samples collected from Khorasan Province. The leaves of P. abrotanoides have glandular trichomes (capitates and peltate) on both sides of the lamina. This study aimed to evaluate the variation of oil constituents of the plant and illustrate the glandular trichomes types and then show the influence of environment on oil constituents and glandular trichomes. The essential oil of the plant was obtained using hydrodistillation and the analysis of oils carried out using GC-MS. The anatomical analysis of leaves was done by fixing, coloring, and photoing the sections. Glandular trichomes composed of capitates and peltate trichomes. The essential oil composition differs. Viridiflora and neryl acetate were not identified in yellow glandular trichomes. It seems that there is no relation between anatomical characteristics of the plant leaves and its essential oil composition.
Gül, Süleyman; Demirci, Betül; Başer, Kemal Hüsnü Can; Akpulat, H Aşkin; Aksu, Pinar
2012-05-01
The aim of this study was to determine the chemical composition of Urtica dioica essential oil, and to evaluate its cytotoxic and genotoxic effects, using cytogenetic tests such as the cytokinesis-block micronucleus assay and chromosomal aberration analysis in human lymphocyte cultures in vitro. GC-MS analysis of U. dioica essential oil identified 43 compounds, representing 95.8% of the oil. GC and GC-MS analysis of the essential oil of U. dioica revealed that carvacrol (38.2%), carvone (9.0%), naphthalene (8.9%), (E)-anethol (4.7%), hexahydrofarnesyl acetone (3.0%), (E)-geranyl acetone (2.9%), (E)-β-ionone (2.8%) and phytol (2.7%) are the main components, comprising 72.2% of the oil. A significant correlation was found between the concentration of essential oil and the following: chromosomal aberrations, micronuclei frequency, apoptotic cells, necrotic cells, and binucleated cells.
USDA-ARS?s Scientific Manuscript database
Several partial least squares (PLS) models were created correlating various properties and chemical composition measurements with the 1H and 13C NMR spectra of 73 different of pyrolysis bio-oil samples from various biomass sources (crude and intermediate products), finished oils and small molecule s...
Automatic 1H-NMR Screening of Fatty Acid Composition in Edible Oils
Castejón, David; Fricke, Pascal; Cambero, María Isabel; Herrera, Antonio
2016-01-01
In this work, we introduce an NMR-based screening method for the fatty acid composition analysis of edible oils. We describe the evaluation and optimization needed for the automated analysis of vegetable oils by low-field NMR to obtain the fatty acid composition (FAC). To achieve this, two scripts, which automatically analyze and interpret the spectral data, were developed. The objective of this work was to drive forward the automated analysis of the FAC by NMR. Due to the fact that this protocol can be carried out at low field and that the complete process from sample preparation to printing the report only takes about 3 min, this approach is promising to become a fundamental technique for high-throughput screening. To demonstrate the applicability of this method, the fatty acid composition of extra virgin olive oils from various Spanish olive varieties (arbequina, cornicabra, hojiblanca, manzanilla, and picual) was determined by 1H-NMR spectroscopy according to this protocol. PMID:26891323
Fekih, Nadia; Allali, Hocine; Merghache, Salima; Chaïb, Faïza; Merghache, Djamila; El Amine, Mohamed; Djabou, Nassim; Muselli, Alain; Tabti, Boufeldja; Costa, Jean
2014-01-01
Objective To find new bioactive natural products, the chemical composition and to sudy the antibacterial activity of essential oil components extracted from the aerial parts of the Algerian aromatic plant Pinus halepensis Miller (P. halepensis) (needles, twigs and buds). Methods The essential oil used in this study was isolated by hydrodistillation using a Clevenger-type apparatus according to the European Pharmacopoeia. The chemical composition was investigated using GC-retention indices (RI) and GC-MS. Results Forty-nine compounds, representing 97.9% of the total collective oil, were identified. Essential oil was dominated by hydrocarbon compounds (80.6%) especially monoterpenes (65.5%). The major compounds from ten oils stations were: myrcene (15.2%-32.0%), α-pinene (12.2%-24.5%), E-β-caryophyllene (7.0%-17.1%), terpinolene (1.8%-13.3%), 2-phenyl ethyl isovalerate (4.8%-10.9%), terpinene-4-ol (1.0%-8.2 %) and sabinene (1.5%-6.3%). The intra-species variations of the chemical compositions of P. halepensis aerial parts essential oils from ten Algerian sample locations were investigated using statistical analysis. Essential oil samples were clustered in 2 groups by hierarchical cluster analysis, according to their chemical composition. The essential oil revealed an interesting antimicrobial effect against Lysteria monocytogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumanii, Citrobacter freundii and Klebsiella pneumoniae. Conclusions These results suggest that the essential oil from P. halepensis may be a new potential source as natural antimicrobial applied in pharmaceutical and food industries.
Hajdari, Avni; Mustafa, Behxhet; Nebija, Dashnor; Miftari, Elheme; Quave, Cassandra L; Novak, Johannes
2015-11-01
Ripe cones of Juniperus communis L. (Cupressaceae) were collected from five wild populations in Kosovo, with the aim of investigating the chemical composition and natural variation of essential oils between and within wild populations. Ripe cones were collected, air dried, crushed, and the essential oils obtained by hydrodistillation. The essential-oil constituents were identified by GC-FID and GC/MS analyses. The yield of essential oil differed depending on the population origins and ranged from 0.4 to 3.8% (v/w, based on the dry weight). In total, 42 compounds were identified in the essential oils of all populations. The principal components of the cone-essential oils were α-pinene, followed by β-myrcene, sabinene, and D-limonene. Taking into consideration the yield and chemical composition, the essential oil originating from various collection sites in Kosovo fulfilled the minimum requirements for J. communis essential oils of the European Pharmacopoeia. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) were used to determine the influence of the geographical variations on the essential-oil composition. These statistical analyses suggested that the clustering of populations was not related to their geographic location, but rather appeared to be linked to local selective forces acting on the chemotype diversity. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
NASA Astrophysics Data System (ADS)
Yang, Yunlai; Arouri, Khaled
2016-03-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
Yang, Yunlai; Arouri, Khaled
2016-01-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways.
Yang, Yunlai; Arouri, Khaled
2016-03-11
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain
2016-03-01
The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography/mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and it exhibited a notable activity on a large panel of clinically significant microorganisms. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Dussert, Stéphane; Guerin, Chloé; Andersson, Mariette; Joët, Thierry; Tranbarger, Timothy J.; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne
2013-01-01
Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505
New method for stock-tank oil compositional analysis.
McAndrews, Kristine; Nighswander, John; Kotzakoulakis, Konstantin; Ross, Paul; Schroeder, Helmut
2009-01-01
A new method for accurately determining stock-tank oil composition to normal pentatriacontane using gas chromatography is developed and validated. The new method addresses the potential errors associated with the traditional equipment and technique employed for extended hydrocarbon gas chromatography outside a controlled laboratory environment, such as on an offshore oil platform. In particular, the experimental measurement of stock-tank oil molecular weight with the freezing point depression technique and the use of an internal standard to find the unrecovered sample fraction are replaced with correlations for estimating these properties. The use of correlations reduces the number of necessary experimental steps in completing the required sample preparation and analysis, resulting in reduced uncertainty in the analysis.
Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A
2016-01-01
Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.
Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.
2016-01-01
Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768
Verzera, Antonella; Trozzi, Alessandra; Gazea, Florea; Cicciarello, Giuseppe; Cotroneo, Antonella
2003-01-01
This paper reports the composition of bergamot oils obtained from plants grafted on the following rootstocks: sour orange, Carrizo citrange, trifoliate orange, Alemow, Volkamerian lemon, and Troyer citrange. The aim of this study is to evaluate the possibility of using rootstocks other than sour orange, checking their effect on the composition of the essential oil. Results are reported for analysis of 203 bergamot oils during the years 1997-1998, 1998-1999, and 1999-2000. The oils were analyzed by HRGC and HRGC/MS; 78 components were identified, and the results were in agreement with those reported in the literature for the Calabrian bergamot oils obtained from industry. Because of the quality of their essential oils, Alemow and Volkamerian lemon can be considered as substitutes for sour orange rootstocks.
The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents.
Craft, Jonathan D; Satyal, Prabodh; Setzer, William N
2017-06-29
Background: Common sage ( Salvia officinalis ) is a popular culinary and medicinal herb. A literature survey has revealed that sage oils can vary widely in their chemical compositions. The purpose of this study was to examine sage essential oil from different sources/origins and to define the possible chemotypes of sage oil. Methods: Three different samples of sage leaf essential oil have been obtained and analyzed by GC-MS and GC-FID. A hierarchical cluster analysis was carried out on 185 sage oil compositions reported in the literature as well as the three samples in this study. Results: The major components of the three sage oils were the oxygenated monoterpenoids α-thujone (17.2-27.4%), 1,8-cineole (11.9-26.9%), and camphor (12.8-21.4%). The cluster analysis revealed five major chemotypes of sage oil, with the most common being a α-thujone > camphor > 1,8-cineole chemotype, of which the three samples in this study belong. The other chemotypes are an α-humulene-rich chemotype, a β-thujone-rich chemotype, a 1,8-cineole/camphor chemotype, and a sclareol/α-thujone chemotype. Conclusions: Most sage oils belonged to the "typical", α-thujone > camphor > 1,8-cineole, chemotype, but the essential oil compositions do vary widely and may have a profound effect on flavor and fragrance profiles as well as biological activities. There are currently no studies correlating sage oil composition with fragrance descriptions or with biological activities.
Characteristics and Composition of African Oil Bean Seed (Pentaclethra macrophylla Benth)
NASA Astrophysics Data System (ADS)
Ikhuoria, Esther U.; Aiwonegbe, Anthony E.; Okoli, Peace; Idu, Macdonald
The African oil bean (Pentaclethra macrophylla) seed was analyzed for its proximate composition. The seed oil was also analyzed for mineral content and physicochemical characteristics. Proximate analysis revealed that the percentage crude protein, crude fibre, moisture and carbohydrate were 9.31, 21.66, 39.05 and 38.95%, respectively. The percentage oil content was 47.90% while the ash content was 3.27%. Results of minerals analysis showed that calcium had the highest concentration of all the elements analyzed and were found to be of the order: Ca > Mg > Pb > Fe > Mn > P > Cu. The low iodine value of the seed oil showed that it can be classified as non-drying oil and thus not suitable for paint and polish production. However, the low acid and free fatty acid values suggest its utilization as edible oil.
Oreizi, Elaheh; Rahiminejad, Mohammad Reza; Asghari, Gholamreza
2014-01-01
Background: Perovskia abrotanoides Karel. is a medicinal plant used in Iranian folk medicine as a pain killer. Forty-one components have been identified in P. abrotanoides samples collected from Baluchistan Province, and 29 components have been recognized in samples collected from Khorasan Province. The leaves of P. abrotanoides have glandular trichomes (capitates and peltate) on both sides of the lamina. Objectives: This study aimed to evaluate the variation of oil constituents of the plant and illustrate the glandular trichomes types and then show the influence of environment on oil constituents and glandular trichomes. Materials and Methods: The essential oil of the plant was obtained using hydrodistillation and the analysis of oils carried out using GC-MS. The anatomical analysis of leaves was done by fixing, coloring, and photoing the sections. Results: Glandular trichomes composed of capitates and peltate trichomes. The essential oil composition differs. Viridiflora and neryl acetate were not identified in yellow glandular trichomes. Conclusions: It seems that there is no relation between anatomical characteristics of the plant leaves and its essential oil composition. PMID:25625046
Paulauskiene, Tatjana
2018-04-01
This work aimed to evaluate the sorption capacity of natural sorbents (wool, moss, straw, peat) and their composites during the sorption of crude oil and of diesel overspread on the water surface. The work presents the research results of the maximum sorption capacity of the sorbents/their composites using crude oil/diesel; the sorption capacity of the sorbents/their composites when crude oil/diesel is spilled on the water surface; and the research results of the unrealized part of the crude oil/diesel in the sorbents. The results of the analysis showed that all the sorbents and their composites have their selectivity to crude oil less than 50%. Also the results showed that the distribution of diesel and water in the sorbents and their composites is very different compared with the distribution of crude oil during the sorption analyses. In total, the diesel in the liquid mass absorbed by the straw and the peat amounted to 17 and 20%, respectively. This shows that these sorbents are much more selective for water but not for diesel. A larger part of the diesel was in the liquid amount absorbed by the composites-up to 33%. Accordingly, the use of these composites in watery environments is much more effective than the use of individual sorbents. The composition of sorbents in the composite enhanced both the hydrophobic and the oleophilic properties; as a result, a more effective removal of the diesel and oil from the water surface was achieved.
Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations
Satyal, Prabodh; Murray, Brittney L.; McFeeters, Robert L.; Setzer, William N.
2016-01-01
Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%). A cluster analysis based on the compositions of these essential oils as well as 81 additional T. vulgaris essential oils reported in the literature revealed 20 different chemotypes. This work represents the first chiral analysis of T. vulgaris monoterpenoids and a comprehensive description of the different chemotypes of T. vulgaris. PMID:28231164
de Brum, Thiele Faccim; Boligon, Aline Augusti; Frohlich, Janaína Kieling; Schwanz, Thiago Guilherme; Zadra, Marina; Piana, Mariana; Froeder, Amanda Luana Forbrig; Athayde, Margareth Linde
2013-04-01
This study is designed to examine the chemical composition and antioxidant activity of the essential oil of Vitex megapotamica. Gas chromatography-mass spectrometry analysis resulted in the detection of 27 components, representing 92.36% of the total oil composition. The main components in the oil were butylated hydroxytoluene (BHT) (34.17%), phytol (12.66%), α-caryophyllene (11.84%), δ-elemene (10.65%), β-caryophyllene (7.82%), γ-elemene (4.24%) and germacrene D (2.82%). The antioxidant activity of the oil was evaluated in terms of their free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl. The oil showed percentage inhibition of 35.62% and 75.25% at concentrations of 76 and 101.6 mg mL(-1), respectively. BHT (36.30%) was also determined by HPLC-DAD in the hexane fraction from the leaves. To the best of our knowledge, this is the first study of the composition and antioxidant activity of the essential oil of the species V. megapotamica.
Brunel, Marion; Vitrac, Caroline; Costa, Jean; Mzali, Fatima; Vitrac, Xavier; Muselli, Alain
2016-02-10
The chemical composition of Phagnalon sordidum (L.) essential oil was investigated for the first time using gas chromatography and chromatography-mass spectrometry. Seventy-six compounds, which accounted for 87.9% of the total amount, were identified in a collective essential oil of P. sordidum from Corsica. The main essential oil components were (E)-β-caryophyllene (14.4%), β-pinene (11.0%), thymol (9.0%), and hexadecanoic acid (5.3%). The chemical compositions of essential oils from 19 Corsican locations were investigated. The study of the chemical variability using statistical analysis allowed identifying direct correlation between the three populations of P. sordidum widespread in Corsica and the essential oil compositions they produce. The in vitro antimicrobial activity of P. sordidum essential oil was evaluated and exhibited a notable activity on a large panel of clinically significant microorganisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Tuttolomondo, Teresa; Dugo, Giacomo; Ruberto, Giuseppe; Leto, Claudio; Napoli, Edoardo M; Cicero, Nicola; Gervasi, Teresa; Virga, Giuseppe; Leone, Raffaele; Licata, Mario; La Bella, Salvatore
2015-01-01
In this study the chemical characterisation of 10 Sicilian Rosmarinus officinalis L. biotypes essential oils is reported. The main goal of this work was to analyse the relationship between the essential oils yield and the geographical distribution of the species plants. The essential oils were analysed by GC-FID and GC-MS. Hierarchical cluster analysis and principal component analysis statistical methods were used to cluster biotypes according to the essential oils chemical composition. The essential oil yield ranged from 0.8 to 2.3 (v/w). In total 82 compounds have been identified, these represent 96.7-99.9% of the essential oil. The most represented compounds in the essential oils were 1.8-cineole, linalool, α-terpineol, verbenone, α-pinene, limonene, bornyl acetate and terpinolene. The results show that the essential oil yield of the 10 biotypes is affected by the environmental characteristics of the sampling sites while the chemical composition is linked to the genetic characteristics of different biotypes.
Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.
Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia
2015-01-01
The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.
Abdel-Sattar, Essam; Zaitoun, Ahmed A; Farag, Mohamed A; Gayed, Sabah H El; Harraz, Fathalla M H
2010-02-01
Fruit and leaf essential oils of Schinus molle showed insect repellent and insecticidal activity against Trogoderma granarium and Tribolium castaneum. In these oils, 65 components were identified by GC-MS analysis. Hydrocarbons dominated the oil composition with monoterpenes occurring in the largest amounts in fruits and leaves, 80.43 and 74.84%, respectively. p-Cymene was identified as a major component in both oils. The high yield and efficacy of S. molle essential oil against T. granarium and T. castaneum suggest that it may provide leads for active insecticidal agents.
NASA Astrophysics Data System (ADS)
Dorneanu, Petronela Pascariu; Cojocaru, Corneliu; Olaru, Niculae; Samoila, Petrisor; Airinei, Anton; Sacarescu, Liviu
2017-12-01
In this work, pure polyvinylidene fluoride (PVDF) and PVDF/cobalt ferrite (CoFe2O4) magnetic fibrous composite were successfully prepared by electrospinning method for oil spill sorption applications. The pure spinel phase of CoFe2O4 and PVDF/CoFe2O4 composites were confirmed by X-ray diffraction analysis (XRD). Electrospun sorbent materials were characterized by scanning and transmission electron microscopy (SEM and TEM) as well as by contact angle measurements. In addition, the composite sorbent (PVDF/CoFe2O4) was characterized by magnetic measurements. It revealed good magnetic properties that are of real interest to facilitate the separation of the oil-loaded sorbent under the external magnetic field. Finally, the produced electrospun sorbents were tested for sorption of oily liquids, such as: decane, dodecane and commercial motor oils. We obtained good oil sorption capacity (between 9.751-23.615 g/g of pure PVDF) and (8.133-18.074 g/g for the magnetic composite) depending on the nature of oil tested. The present electrospun magnetic PVDF/CoFe2O4 fibrous composite could be potentially useful for the efficient removal of oil in water and recovery of sorbent material.
Chemical variability of the needle oil of Juniperus communis ssp. alpina from Corsica.
Ottavioli, Josephine; Gonny, Marcelle; Casanova, Joseph; Bighelli, Ange
2009-12-01
The composition of 109 samples of essential oil isolated from the needles of Juniperus communis ssp. alpina growing wild in Corsica was investigated by GC (in combination with retention indices), GC/MS, and 13C-NMR. Forty-four compounds accounting for 86.7-96.7% of the oil were identified. The oils consisted mainly of monoterpene hydrocarbons, in particular, limonene (9.2-53.9%), beta-phellandrene (3.7-25.2%), alpha-pinene (1.4-33.7%), and sabinene (0.1-33.6%). The 109 oil compositions were submitted to k-means partitioning and principal component analysis, which allowed the distinction of two groups within the oil samples. The composition of the major group (92% of the samples) was dominated by limonene and beta-phellandrene, while the second group contained mainly sabinene beside limonene and beta-phellandrene.
Chemical composition of the essential oil and botanical study of the flowers of Mentha suaveolens.
El-Kashoury, El-Sayeda A; El-Askary, Hesham I; Kandil, Zeinab A; Salem, Mohamed A
2014-06-01
Herbal medicines play a paramount role in the treatment of wide range of diseases, so there is a growing need for their quality control and standardization. Traditionally, histological and morphological inspections have been the usual methods to authenticate herbs intended for medicinal applications. Mentha suaveolens Ehrh. (Lamiaceae) is native to Africa Temperate Asia and Europe and it's cultivated in Egypt. The macro- and micromorphology of the flowers of M. suaveolens Ehrh. cultivated in Egypt were studied to find the diagnostic characters of this species. In addition, the chemical composition of the essential oil of the flowers was also studied to define the chemotype of the plant. Photographs of macro- and micromorphology were taken using Casio and Leica DFC500 digital cameras, respectively. In addition, the essential oil was prepared by hydrodistillation followed by gas chromatographic/mass spectrometric (GC/MS) analysis for identification of its components. The macro- and micromorphological characteristics of M. suaveolens were determined. The yield of the essential oil obtained by hydrodistillation from M. suaveolens flowers was 1.7% calculated on dry weight basis. GC/MS analysis of the oil resulted in identification of 29 components, which amounted to 99.77% of the total oil composition. The major component was carvone (50.59%) followed by limonene (31.25%). The results obtained herein revealed for the macro, micromorphological and chemical composition characteristics of the flowers. The results of GC/MS analysis of the essential oil supported that M. suaveolens cultivated in Egypt could be categorized as carvone-rich chemotype since this compound pertained its high relative percentile.
Huang, Zhan; Liu, Xiaochang; Jia, Shiliang; Zhang, Longteng; Luo, Yongkang
2018-02-02
Antimicrobial and antioxidant effects of essential oils (oregano, thyme, and star anise) on microbial composition and quality of grass carp fillets were investigated. Essential oils treatment was found to be effective in inhibiting microbial growth, delaying lipid oxidation, and retarding the increase of TVB-N, putrescine, hypoxanthine, and K-value. Based on sensory analysis, shelf-life of grass carp fillets was 6days for control and 8days for treatment groups. Among the essential oils, oregano essential oil exhibited the highest antimicrobial and antioxidant activities. GC-MS analysis of essential oils components revealed that carvacrol (88.64%) was the major component of oregano essential oil. According to the results of high-throughput sequencing, Aeromonas, Glutamicibacter, and Aequorivita were the predominant microbiota in fresh control samples. However, oregano essential oil decreased the relative abundance of Aeromonas, while thyme and star anise essential oils decreased the relative abundance of Glutamicibacter and Aequorivita in fresh treated samples. The microbial composition of both control and treatment groups became less diverse as storage time increased. Aeromonas and Pseudomonas were dominant in spoiled samples and contributed to fish spoilage. Compared to the control, essential oils effectively inhibited the growth of Aeromonas and Shewanella in grass carp fillets during chilled storage. Copyright © 2017 Elsevier B.V. All rights reserved.
Hajdari, Avni; Mustafa, Behxhet; Nebija, Dashnor; Selimi, Hyrmete; Veselaj, Zeqir; Breznica, Pranvera; Quave, Cassandra Leah; Novak, Johannes
The principal aim of this study was to analyze the chemical composition and qualitative and quantitative variability of essential oils obtained from seven naturally grown populations of the Pinus peuce Grisebach, Pinaceae in Kosovo. Plant materials were collected from three populations in the Sharri National Park and from four other populations in the Bjeshkët e Nemuna National Park, in Kosovo. Essential oils were obtained by steam distillation and analyzed by GC-FID (Gas Chromatography-Flame Ionization Detection) and GC-MS (Gas Chromatography-Mass Spectrometry). The results showed that the yield of essential oils (v/w dry weight) varied depending on the origin of population and the plant organs and ranged from 0.7 to 3.3%. In total, 51 compounds were identified. The main compounds were α-pinene (needles: 21.6-34.9%; twigs: 11.0-24%), β-phellandrene (needles: 4.1-27.7; twigs: 29.0-49.8%), and β-pinene (needles: 10.0-16.1; twigs: 6.9-20.7%). HCA (Hierarchical Cluster Analysis) and PCA (Principal Component Analyses) were used to assess geographical variations in essential oil composition. Statistical analysis showed that the analyzed populations are grouped in three main clusters which seem to reflect microclimatic conditions on the chemical composition of the essential oils.
Quantitative 13C NMR characterization of fast pyrolysis oils
Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.
2016-10-20
Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.
Quantitative 13C NMR characterization of fast pyrolysis oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.
Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.
Techno-economic and resource analysis of hydroprocessed renewable jet fuel.
Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; Wang, Wei-Cheng
2017-01-01
Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics. This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C 16 and C 18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.
Padalia, Rajendra C; Verma, Ram S; Sundaresan, Velusamy; Chanotiya, Chandan S
2010-08-01
The essential-oil compositions of leaves, flowers, and rhizomes of Alpinia galanga (L.) Willd., Alpinia calcarata Rosc., Alpinia speciosa K. Schum., and Alpinia allughas Rosc. were examined and compared by capillary GC and GC/MS. Monoterpenoids were the major oil constituents identified. 1,8-Cineole, alpha-terpineol, (E)-methyl cinnamate, camphor, terpinen-4-ol, and alpha- and beta-pinenes were the major constituents commonly distributed in leaf and flower essential oils. The presence of endo-fenchyl acetate, exo-fenchyl acetate, and endo-fenchol was the unique feature of rhizome essential oils of A. galanga, A. calcarata, and A. speciosa. On contrary, the rhizome oil of A. allughas was dominated by beta-pinene. Significant qualitative and quantitative variations were observed in essential-oil compositions of different parts of Alpinia species growing in subtemperate and subtropical regions of Northern India. Cluster analysis was performed to find similarities and differences in essential-oil compositions based on representative molecular skeletons. Monoterpenoids, viz., 1,8-cineole, terpinen-4-ol, camphor, pinenes, (E)-methyl cinnamate, and fenchyl derivatives, were used as chemotaxonomic markers.
Noshad, Mohammad; Hojjati, Mohammad; Alizadeh Behbahani, Behrooz
2018-03-01
The aim of this study was to perform chemical compositions and phytochemical analysis of Black Zira essential oil and other goal of this research was to investigate the antimicrobial effects of Black Zira essential oil against Enterobacter aerogenes, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Staphylococcus epidermidis, Streptococcus pyogenes and Candida albicans. Black Zira essential oil was extracted by hydrodistillation method using clevenger apparatus. Black Zira essential oil chemical composition was identified through gas chromatography/mass spectrometry. γ-terpinene with a percentage of 24.8% was the major compound of Black Zira essential oil. The antimicrobial effect Black Zira essential oil was evaluated by several qualitative and quantitative methods (disk diffusion, well diffusion, microdilution broth, agar dilution and minimum bactericidal/fungicidal concentration). Phytochemical analysis Black Zira essential oil were appraised based on qualitative methods. Antioxidant activity (2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid inhibition) and total phenolic content (Folin-Ciocalteu) were examined. The results of phytochemical analysis of Black Zira essential oil showed the existence of phenolic, flavonoids, saponins, alkaloids and tannins. The total phenolic content and antioxidant activity (reported as IC 50 ) of Black Zira essential oil were equal to 120.50 ± 0.50 mg GAE/g and 11.55 ± 0.25 μg/ml, respectively. The MIC of the Black Zira essential oil ranged from 1 mg/ml to 8 mg/ml, while its MBC and MFC ranged from 1 mg/ml to 16 mg/ml. The results presented that the longest and the shortest inhibition zone diameter at the concentration of 8 mg/ml pertained to C. albicans and E. aerogenes, respectively. Copyright © 2018. Published by Elsevier Ltd.
Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiaceae) essential oil.
Di Napoli, Michela; Varcamonti, Mario; Basile, Adriana; Bruno, Maurizio; Maggi, Filippo; Zanfardino, Anna
2018-05-21
Conium maculatum is a nitrophilous weed belonging to the Apiaceae family and occurring in hedgerows, pastures, waste ground, along rivers and roadsides. Little is known on the chemistry and bioactivity of other secondary metabolites occurring in the plant. In the present work, we have analysed the chemical composition and antimicrobial activity of the essential oils hydrodistilled from leaves and inflorescenes of C. maculatum growing in Sicily, Italy. The composition of essential oils was achieved by gas chromatography-mass spectrometry (GC-MS) analysis, whereas the inhibitory effects on the growth of two Gram negative strains, namely Escherichia coli and Pseudomonas aeruginosa were assessed by two different analysis. The essential oils exhibited different chemical profiles (1-butylpiperidine and myrcene in the inflorescenes), (mostly (E)-caryophyllene in the leaves). The latter oil was particularly active in inhibiting the growth of P. aeruginosa. These results shed light on the possible application of hemlock essential oils as antimicrobial agents.
Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping
2015-07-16
Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils. Copyright © 2015 Elsevier B.V. All rights reserved.
Yapi, Thierry Acafou; Ouattara, Zana Adama; Boti, Jean Brice; Tonzibo, Zanahi Félix; Paoli, Mathieu; Bighelli, Ange; Casanova, Joseph; Tomi, Félix
2018-05-13
The composition of Enantia polycarpa Engler & Diels leaf essential oil has been investigated for the first time using a combination of chromatographic and spectroscopic techniques. The compositions of 52 leaf essential oil samples have been subjected to statistical analysis, hierarchical cluster analysis (HCA) and principal component analysis (PCA). Four groups were differentiated, whose compositions were dominated by β-elemene and germacrene B (Group III, 22/52 samples); germacrene D (Group I, 16/52 samples); β-cubebene (Group IV, 8/52 samples) and by germacrene B and germacrene D (Group II, 6/52 samples). A special attention was brought to the quantification of the thermolabile components, germacrene A, germacrene B and germacrene C, as well as that of their rearranged compounds, β-elemene, γ-elemene and δ-elemene. 13 C NMR data of β-cubebene have been provided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Huang, Huey-Chun; Chang, Tzu-Yun; Chang, Long-Zen; Wang, Hsiao-Fen; Yih, Kuang-Hway; Hsieh, Wan-Yu; Chang, Tsong-Min
2012-03-30
This study was aimed at investigating the antimelanogenic and antioxidative properties of the essential oil extracted from leaves of V. negundo Linn and the analysis of the chemical composition of this essential oil. The efficacy of the essential oil was evaluated spectrophotometrically, whereas the volatile chemical compounds in the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed that the essential oil effectively suppresses murine B16F10 tyrosinase activity and decreases the amount of melanin in a dose-dependent manner. Additionally, the essential oil significantly scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals, and showed potent reducing power versus metal-ion chelating properties in a dose-dependent pattern. The chemical constituents in the essential oil are sesquiterpenes (44.41%), monoterpenes (19.25%), esters (14.77%), alcohols (8.53%), aromatic compound (5.90%), ketone (4.96%), ethers (0.4%) that together account for 98.22% of its chemical composition. It is predicted that the aromatic compound in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from V. negundo Linn leaves decreased melanin production in B16F10 melanoma cells and showed potent antioxidant activities. The essential oil can thereby serve as an inhibitor of melanin synthesis and could also act as a natural antioxidant.
Portarena, S; Gavrichkova, O; Lauteri, M; Brugnoli, E
2014-12-01
Authentication of food origin is relevant to avoid food fraud. This work aimed to explore the variation of isotopic compositions (δ(13)C, δ(18)O) of extra-virgin olive oils from Italy growing in different environmental conditions. A total of 387 oil samples from nine different regions (from North to South), produced on 2009, 2010 and 2011, were analysed. Statistical analysis showed correlations among oil isotope compositions and latitude, mean annual temperature, mean annual precipitation and xerothermic index. No correlation was found comparing isotope compositions with elevation and longitude. An observed shift of the oil δ(18)O per centigrade degree of the mean annual temperature is congruent with literature. The year effect was significant for both δ(18)O and δ(13)C. Samples from Sicilia and Sardegna were higher in (13)C and (18)O than oils from northern regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tsasi, Gerasimia; Mailis, Theofilos; Daskalaki, Artemis; Sakadani, Eleni; Razis, Panagis; Samaras, Yiannis; Skaltsa, Helen
2017-01-01
Five varieties of Ocimum basilicum L. namely lettuce, cinnamon, minimum, latifolia, and violetto were separately cultivated in field and greenhouse in the island Kefalonia (Greece). The effect of successive harvesting to the essential oil content was evaluated. In total 23 samples of essential oils (EOs) were analyzed by GC-FID and GC-MS. Ninety-six constituents, which accounted for almost 99% of the oils, were identified. Cluster analysis was performed for all of the varieties in greenhouse and field conditions, in order to investigate the possible differentiation on the chemical composition of the essential oils, obtained between harvests during growing period. Each basil variety showed a unique chemical profile, but also the essential oil composition within each variety seems to be differentiated, affected by the harvests and the cultivation site. PMID:28927018
Ali, Nasser A Awadh; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Al-Othman, Al-Husein M R
2011-08-01
In this study, we report the preliminary data on the chemical composition of Yemeni Schinus molle L. volatile oil obtained by supercritical extraction with carbon dioxide (40°C and 90 bar), SFE, and by hydrodistillation (HD). The composition of the volatile oil has been analysed by GC and GC-MS. The content of the major constituents in the oils from leaves varied in the following ranges: germacrene D 3.7% in SFE and 16.7% in HD; β-caryophyllene 19.1% in SFE and 13.5% in HD. The amount of monoterpenes constituted 4%, in all the analysed samples, while the number of sesquiterpenes was 44% in supercritical and 67% in HD oil. Some compounds were not identified by GC-MS and it will require further analysis using other analytical techniques.
Heredia-Guerrero, José A; Ceseracciu, Luca; Guzman-Puyol, Susana; Paul, Uttam C; Alfaro-Pulido, Alejandro; Grande, Chiara; Vezzulli, Luigi; Bandiera, Tiziano; Bertorelli, Rosalia; Russo, Debora; Athanassiou, Athanassia; Bayer, Ilker S
2018-07-15
Ethyl cellulose (EC)/polydimethylsiloxane (PDMS) composite films were prepared at various concentrations of PDMS in the films (0, 5, 10, 15, and 20 wt.%). Morphological and chemical analysis by EDX-SEM and ATR-FTIR showed that EC-rich matrices and PDMS-rich particles were formed, with the two polymers interacting through Hbonds. The number and diameter of particles in the composite depended on the PDMS content and allowed a fine tuning of several properties such as opacity, hydrophobicity, water uptake, and water permeability. Relative low amounts of clove essential oil were also added to the most waterproof composite material (80 wt.% ethyl cellulose and 20 wt.% PDMS). The essential oil increased the flexibility and the antioxidant capacity of the composite. Finally, the antimicrobial properties were tested against common pathogens such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The presence of clove essential oil reduced the biofilm formation on the composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Przyjalgowski, Milosz A.; Ryder, Alan G.; Feely, Martin; Glynn, Thomas J.
2005-06-01
Hydrocarbon-bearing fluid inclusions (HCFI) are microscopic cavities within rocks that are filled with petroleum oil, the composition of which may not have changed since the trapping event. Thus, the composition of that entrapped oil can provide information about the formation and evolution of the oil reservoir. This type of information is important to the petroleum production and exploration industries. Crude oil fluorescence originates from the presence of cyclic aromatic compounds and the nature of the emission is governed by the chemical composition of the oil. Fluorescence based methods are widely used for analysis of crude oil because they offer robust, non-contact and non-destructive measurement options. The goal of our group is the development of a non-destructive analytical method for HCFI using time-resolved fluorescence methods. In broad terms, crude oil fluorescence behavior is governed by the concentration of quenching species and the distribution of fluorophores. For the intensity averaged fluorescence lifetime, the best correlations have been found between polar or alkane concentrations, but these are not suitable for robust, quantitative analysis. We have recently started to investigate another approach for characterizing oils by looking at Time-resolved Emission Spectra (TRES). TRES are constructed from intensities sampled at discrete times during the fluorescence decay of the sample. In this study, TRES, from a series of 10 crude oils from the Middle East, have been measured at discrete time gates (0.5 ns, 1 ns, 2 ns, 4 ns) over the 450-700 nm wavelength range. The spectral changes in TRES, such as time gate dependent Stokes' shift and spectral broadening, are analyzed in the context of energy transfer rates. In this work, the efficacy of using TRES for fingerprinting individual oils and HCFI is also demonstrated.
Essential Oil Composition of Pinus peuce Griseb. Needles and Twigs from Two National Parks of Kosovo
Hajdari, Avni; Mustafa, Behxhet; Selimi, Hyrmete; Veselaj, Zeqir; Breznica, Pranvera; Novak, Johannes
2016-01-01
The principal aim of this study was to analyze the chemical composition and qualitative and quantitative variability of essential oils obtained from seven naturally grown populations of the Pinus peuce Grisebach, Pinaceae in Kosovo. Plant materials were collected from three populations in the Sharri National Park and from four other populations in the Bjeshkët e Nemuna National Park, in Kosovo. Essential oils were obtained by steam distillation and analyzed by GC-FID (Gas Chromatography-Flame Ionization Detection) and GC-MS (Gas Chromatography-Mass Spectrometry). The results showed that the yield of essential oils (v/w dry weight) varied depending on the origin of population and the plant organs and ranged from 0.7 to 3.3%. In total, 51 compounds were identified. The main compounds were α-pinene (needles: 21.6–34.9%; twigs: 11.0–24%), β-phellandrene (needles: 4.1–27.7; twigs: 29.0–49.8%), and β-pinene (needles: 10.0–16.1; twigs: 6.9–20.7%). HCA (Hierarchical Cluster Analysis) and PCA (Principal Component Analyses) were used to assess geographical variations in essential oil composition. Statistical analysis showed that the analyzed populations are grouped in three main clusters which seem to reflect microclimatic conditions on the chemical composition of the essential oils. PMID:27579344
Monti, D; Tampucci, S; Chetoni, P; Burgalassi, S; Bertoli, A; Pistelli, L
2009-07-01
Previous studies in vitro had identified niaouli essential oil (NEO) as a valuable transdermal permeation promoter for estradiol (ES). Subsequent considerations on the complex issue of NEO provenance and composition stimulated the present investigation, which was aimed at defining the composition of NEOs obtained from four different sources, at evaluating their influence on transdermal permeation of ES through hairless mouse skin, and at formulating and evaluating simpler terpene mixtures mimicking the NEOs' composition. While all oils contained 1,8-cineol (eucalyptol) as the main component, appreciable variations in composition could be evidenced, originating differences on the ES cutaneous permeation. Two artificial mixtures containing the same proportions of the main terpenes present in each oil (except the commercially unavailable gamma-terpineol) proved equal or significantly superior in activity when compared with the original oils. It is felt that this study might contribute to the formulation of terpene mixtures acting more efficiently and reproducibly with respect to natural NEOs, whose complex and variable composition, depending on growing place, season, and extraction process, is well documented in the relevant literature.
Ben Ayed, Rayda; Ennouri, Karim; Ercişli, Sezai; Ben Hlima, Hajer; Hanana, Mohsen; Smaoui, Slim; Rebai, Ahmed; Moreau, Fabienne
2018-04-10
Virgin olive oil is appreciated for its particular aroma and taste and is recognized worldwide for its nutritional value and health benefits. The olive oil contains a vast range of healthy compounds such as monounsaturated free fatty acids, especially, oleic acid. The SAD.1 polymorphism localized in the Stearoyl-acyl carrier protein desaturase gene (SAD) was genotyped and showed that it is associated with the oleic acid composition of olive oil samples. However, the effect of polymorphisms in fatty acid-related genes on olive oil monounsaturated and saturated fatty acids distribution in the Tunisian olive oil varieties is not understood. Seventeen Tunisian olive-tree varieties were selected for fatty acid content analysis by gas chromatography. The association of SAD.1 genotypes with the fatty acids composition was studied by statistical and Bayesian modeling analyses. Fatty acid content analysis showed interestingly that some Tunisian virgin olive oil varieties could be classified as a functional food and nutraceuticals due to their particular richness in oleic acid. In fact, the TT-SAD.1 genotype was found to be associated with a higher proportion of mono-unsaturated fatty acids (MUFA), mainly oleic acid (C18:1) (r = - 0.79, p < 0.000) as well as lower proportion of palmitic acid (C16:0) (r = 0.51, p = 0.037), making varieties with this genotype (i.e. Zarrazi and Tounsi) producing more monounsaturated oleic acid (C18: 1) than saturated acid. These varieties could be thus used as nutraceuticals and functional food. The SAD.1 association with the oleic acid composition of olive oil was identified among the studied varieties. This correlation fluctuated between studied varieties, which might elucidate variability in lipidic composition among them and therefore reflecting genetic diversity through differences in gene expression and biochemical pathways. SAD locus would represent an excellent marker for identifying interesting amongst virgin olive oil lipidic composition.
Murakami, Cynthia; Cordeiro, Inês; Young, Maria Cláudia M.
2017-01-01
Background: Hedyosmum brasiliense Mart. ex Miq. (Chloranthaceae) is a dioecious shrub popularly used in Brazil to treat foot fungi and rheumatism. This work investigated the chemical composition, antifungal, and antioxidant activities of flowers and leaves of H. brasiliense essential oils; Methods: H. brasiliense male and female flowers and leaves were collected at Ilha do Cardoso (São Paulo) and the essential oils were extracted by hydrodistillation and analyzed by GC/MS and their similarity compared by Principal Component Analysis. Antifungal activity was performed by bioautography and antioxidant potential by 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) free radical scavenging and β-carotene/linoleic acid system; Results: The major compounds for all oils were sabinene, curzerene, and carotol, but some differences in their chemical composition were discriminated by Principal Component Analysis (PCA) analysis. Bioautography showed two antifungal bands at Rf’s 0.67 and 0.12 in all samples, the first one was identified as curzerene. The oils presented stronger antioxidant potential in β-carotene/linoleic acid bioassay, with IC50’s from 80 to 180 μg/mL, than in DPPH assay, with IC50’s from 2516.18 to 3783.49 μg/mL; Conclusions: These results suggested that curzerene might be responsible for the antifungal activity of H. brasiliense essential oils. Besides, these essential oils exhibited potential to prevent lipoperoxidation, but they have a weak radical scavenger activity. PMID:28930269
Topological and thermal properties of polypropylene composites based on oil palm biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com
Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and thenmore » injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.« less
Chemical variability of Xylopia quintasii Engl. & Diels leaf oil from Côte d'Ivoire.
Yapi, Thierry Acafou; Boti, Jean Brice; Tonzibo, Zanahi Félix; Ahibo, Coffy Antoine; Bighelli, Ange; Casanova, Joseph; Tomi, Félix
2014-02-01
The chemical composition of 42 essential-oil samples isolated from the leaves of Xylopia quintasii harvested in three Ivoirian forests was investigated by GC-FID, including the determination of retention indices (RIs), and by (13) C-NMR analyses. In total, 36 components accounting for 91.9-92.6% of the oil composition were identified. The content of the main components varied drastically from sample to sample: (E)-β-caryophyllene (0.9-56.9%), (Z)-β-ocimene (0.3-54.6%), β-pinene (0.8-27.9%), α-pinene (0.1-22.8%), and furanoguaia-1,4-diene (0.0-17.6%). The 42 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The composition of the oils of the major group (22 samples) was dominated by (E)-β-caryophyllene. The oils of the second group (12 samples) contained β-pinene and α-pinene as the principal compounds, while the oils of the third group (8 samples) were dominated by (Z)-β-ocimene, germacrene D, (E)-β-ocimene, and furanoguaia-1,4-diene. The oil samples of Group I and II came from clay-soil forests, while the oil samples belonging to Group III were isolated from leaves harvested in a sandy-soil forest. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Zhang, Zhen-Shan; Liu, Yu-Lan; Che, Li-Ming
2018-03-01
Supercritical carbon dioxide extraction (SC-CO 2 ) technology was used to extract oil from Eucommia ulmoides seed. The optimum conditions and significant parameters in SC-CO 2 were obtained using response surface methodology (RSM). The qualities of the extracted oil were evaluated by physicochemical properties, fatty acid composition, vitamin E composition. It was found that the optimum extraction parameters were at pressure of 37 MPa, temperature of 40°C, extraction time of 125 min and CO 2 flow rate of 2.6 SL/min. Pressure, temperature and time were identified as significant parameter effecting on extraction yield. The importance of evaluated parameters decreased in the order of pressure > extraction time > temperature > CO 2 flow rate. GC analysis indicated that E. ulmoides seed oil contained about 61% of linolenic acid and its fatty acid composition was similar with that of flaxseed oil and perilla oil. The content and composition of vitamin E was determined using HPLC. The E. ulmoides seed oil was rich in vitamin E (190.72 mg/100 g), the predominant vitamin E isomers were γ- tocopherol and δ- tocopherol, which accounted for 70.87% and 24.81% of the total vitamin E, respectively. The high yield and good physicochemical properties of extracted oil support the notion that SC-CO 2 technology is an effective technique for extracting oil from E. ulmoides seed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn
Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less
Rokbeni, Nesrine; M'rabet, Yassine; Dziri, Salma; Chaabane, Hedia; Jemli, Marwa; Fernandez, Xavier; Boulila, Abdennacer
2013-12-01
The essential oils of Daucus carota L. (Apiaceae) seeds sampled from ten wild populations spread over northern Tunisia were characterized by GC-FID and GC/MS analyses. In total, 36 compounds were identified in the D. carota seed essential oils, with a predominance of sesquiterpene hydrocarbons in most samples (22.63-89.93% of the total oil composition). The main volatile compounds identified were β-bisabolene (mean content of 39.33%), sabinene (8.53%), geranyl acetate (7.12%), and elemicin (6.26%). The volatile composition varied significantly across the populations, even for oils of populations harvested in similar areas. The chemometric principal component analysis and the hierarchical clustering identified four groups, each corresponding to a composition-specific chemotype. The in vitro antimicrobial activity of the isolated essential oils was preliminarily evaluated, using the disk-diffusion method, against one Gram-positive (Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as against a pathogenic yeast (Candida albicans). All tested essential oils exhibited interesting antibacterial and antifungal activities against the assayed microorganisms. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Essential oil composition of Dracocephalum kotschyi Boiss. from Iran.
Sonboli, Ali; Mirzania, Foroogh; Gholipour, Abbas
2018-06-06
Dracocephalum kotschyi is one of the medicinal and fragrant herbs that can be found in natural locations of mountainous areas. In this investigation the hydrodistilled essential oils obtained from aerial parts of two populations of D. kotschyi collected from Siahbisheh and Baladeh were analysed by capillary GC-FID and GC-MS. Essential oil analysis led to the identification of 48 compounds that represented 85.9 and 90.0% of the total oil compositions, respectively. As the major group of compounds, oxygenated monoterpens comprised 45.5 and 57.4% in the essential oils of compounds as the main group in the essential oils of Siahbisheh and Baladeh samples, respectively. Disagreement in the major contents of the essential oils of these two samples may be ascribed to differences in the ecological, climatic and genetically factors.
Bonikowski, Radosław; Celiński, Konrad; Wojnicka-Półtorak, Aleksandra; Maliński, Tomasz
2015-02-01
The compositions of mountain pine (Pinus uncinata) and peat-bog pine (P. uliginosa) needle essential oils were investigated. Enantiomeric compositions of selected monoterpene hydrocarbons were also examined. Respectively, fifty-three and seventy-six components of the essential oils were identified using GC-MS and retention indexes. The main group of essential oil components of mountain pine needles were monoterpenes, and bornyl acetate constituted approximately 30% (46.3 g/100 g) of the oil. In peat-bog pine essential oil, monoterpenes and sesquiterpenes exhibited a similar content (ca. 40%). Bornyl acetate and α-pinene were the main constituents of both essential oils. In the essential oil of P. uncinata needles, limonene, camphene, myrcene and (E)-β-caryophyllene were also noticeable, while in the essential oil of P. uliginosa needles, Δ-car-3-ene, (E)-β-caryophyllene, germacrene D, δ-cadinene, germacrene D 4-ol and α-cadinol were present in notable quantities. In both essential oils, borneol propionate, isobutyrate, 2-methylbutyrate and isovalerate were detected. Their presence was confirmed by synthesis and analysis of the standards; retention indexes on a non-polar column are published herein.
Rapposelli, Emma; Melito, Sara; Barmina, Giovanni Gabriele; Foddai, Marzia; Azara, Emanuela; Scarpa, Grazia Maria
2015-09-01
Salvia desoleana is a herbaceous perennial shrub endemic of Sardinia (Italy). The leaves are a source of essential oil, used in pharmaceutical and cosmetic industries. The therapeutic function of this species has been associated to the presence of essential oils rich in α/β-pinene, p-cimene, linalool, linalyl acetate and 1,8-cineole. Today.the industrial request of Salvia essential oils is increasing and most of the biomass is exploited from the natural populations which are under severe risk of genetic erosion. In order to improve the essential oil production, the study of the environmental parameters that influence composition, quality and quantity of the essential oils, turns out to be necessary. Soil physical and chemical structure represents one of the determinant factors in secondary metabolites production, and could also be involved in volatiles fraction composition in the same species. The main aim of this research was to explore the relationship between essential oil profiles and soil characteristics in S. desoleana populations. GC/MS analysis performed on the essential oil extracts identified 22 principal compounds, which were extremely variable among the five S. desoleana populations studied. The analysis of the essential oils revealed different compositions in the terpenes fractions: 68.2% of monoterpenes, 27.3% of sesquiterpenes and 4.5% of diterpenes. Analysis of chemical and physical soil parameters at the collection sites revealed that silt and sand contents were correlated with α-pinene and sclareol fractions and the total K20 was significantly correlated to several compounds belonging to the three terpene fractions identified. These results will provide guidelines for the in site conservation and for the improvement of the commercial value of the species.
Marrufo, Tatiana; Nazzaro, Filomena; Mancini, Emilia; Fratianni, Florinda; Coppola, Raffaele; De Martino, Laura; Agostinho, Adelaide Bela; De Feo, Vincenzo
2013-09-09
The antioxidant capacity and antimicrobial activity of the essential oil of Moringa oleifera (Moringaceae) grown in Mozambique was investigated. The chemical composition was studied by means of GC and GC-MS analysis. Hexacosane (13.9%), pentacosane (13.3%) and heptacosane (11.4%) were the main components. Ultra High Performance Chromatography-DAD analysis detected the flavonoids quercetin (126 μg/g) and luteolin (6.2 μg/g). The essential oil exhibited a relatively low free radical scavenging capacity. The antimicrobial activity of the essential oil was assayed against two Gram-positive strains (Bacillus cereus, Staphylococcus aureus), two Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa), and five fungal strains of agro-food interest (Penicillium aurantiogriseum, Penicillium expansum, Penicillium citrinum, Penicillium digitatum, and Aspergillus niger spp.). B. cereus and P. aeruginosa, as well as the fungal strains were sensitive to the essential oil.
Cytotoxic and Antimicrobial Constituents from the Essential Oil of Lippia alba (Verbenaceae)
dos Santos, Nara O.; Pascon, Renata C.; Vallim, Marcelo A.; Figueiredo, Carlos R.; Soares, Marisi G.; Lago, João Henrique G.; Sartorelli, Patricia
2016-01-01
Backgroud: Lippia alba (Verbenaceae) is a plant widely used in folk medicine to treat various diseases. The present work deals with the chemical composition of the crude essential oil extracted from leaves of L. alba and evaluation of its antimicrobial and cytotoxic activities. Methods: Leaves of L. alba were extracted by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) as well as by nuclear magnetic resonance (NMR) spectroscopy. Cytotoxic and antimicrobial activities of crude essential oil were evaluated in vitro using MTT and broth microdilution assays, respectively. Results: Chemical analysis afforded the identification of 39 substances corresponding to 99.45% of the total oil composition. Concerning the main compounds, monoterpenes nerol/geraniol and citral correspond to approximately 50% of crude oil. The cytotoxic activity of obtained essential oil against several tumor cell lines showed IC50 values ranging from 45 to 64 µg/mL for B16F10Nex2 (murine melanoma) and A549 (human lung adenocarcinoma). In the antimicrobial assay, was observed that all tested yeast strains, except C. albicans, were sensitive to crude essential oil. MIC values were two to four-folds lower than those determined to bacterial strains. Conclusion: Analysis of chemical composition of essential oils from leaves of L. alba suggested a new chemotype nerol/geraniol and citral. Based in biological evidences, a possible application for studied oil as an antifungal in medicine, as well as in agriculture, is described. PMID:28930132
Cytotoxic and Antimicrobial Constituents from the Essential Oil of Lippia alba (Verbenaceae).
Santos, Nara O Dos; Pascon, Renata C; Vallim, Marcelo A; Figueiredo, Carlos R; Soares, Marisi G; Lago, João Henrique G; Sartorelli, Patricia
2016-08-12
Backgroud: Lippia alba (Verbenaceae) is a plant widely used in folk medicine to treat various diseases. The present work deals with the chemical composition of the crude essential oil extracted from leaves of L. alba and evaluation of its antimicrobial and cytotoxic activities. Methods: Leaves of L. alba were extracted by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) as well as by nuclear magnetic resonance (NMR) spectroscopy. Cytotoxic and antimicrobial activities of crude essential oil were evaluated in vitro using MTT and broth microdilution assays, respectively. Results: Chemical analysis afforded the identification of 39 substances corresponding to 99.45% of the total oil composition. Concerning the main compounds, monoterpenes nerol/geraniol and citral correspond to approximately 50% of crude oil. The cytotoxic activity of obtained essential oil against several tumor cell lines showed IC 50 values ranging from 45 to 64 µg/mL for B16F10Nex2 (murine melanoma) and A549 (human lung adenocarcinoma). In the antimicrobial assay, was observed that all tested yeast strains, except C. albicans , were sensitive to crude essential oil. MIC values were two to four-folds lower than those determined to bacterial strains. Conclusion: Analysis of chemical composition of essential oils from leaves of L. alba suggested a new chemotype nerol/geraniol and citral. Based in biological evidences, a possible application for studied oil as an antifungal in medicine, as well as in agriculture, is described.
Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd
2013-10-10
The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
Seasonal variations in the composition of the essential oils of Lavandula angustifolia (Lamiacae).
Lakusić, Branislava; Lakusić, Dmitar; Ristić, Mihailo; Marcetić, Mirjana; Slavkovska, Violeta
2014-06-01
Seasonal variations in the composition of the essential oils obtained from the same individual (of the same genotype) of Lavandula angustifolia cultivated in Belgrade were determined by GC and GC/MS. The main constituents were 1,8-cineole (7.1-48.4%), linalool (0.1-38.7%), bomeol (10.9-27.7%), beta-phellandrene (0.5-21.2%) and camphor (1.5-15.8%). Cluster analysis showed that the 21 samples collected each month during the vegetation cycle were separable into three main clades with different compositions of essential oils. In the shoots with flowers, inflorescences and fruits of clade I, linalool is dominant, in the young leaves before flowering and old leaves of clade II, 1,8-cineole is dominant. In the young and incompletely developed leaves of clade III, beta-phellandrene is dominant. The composition of the essential oils of lavender depended on the plant part and the stage of development.
Techno-economic and resource analysis of hydroprocessed renewable jet fuel
Tao, Ling; Milbrandt, Anelia; Zhang, Yanan; ...
2017-11-09
Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.« less
Techno-economic and resource analysis of hydroprocessed renewable jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Ling; Milbrandt, Anelia; Zhang, Yanan
Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield)more » and overall process economics. Our study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis, thus, indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks - camelina, pennycress, jatropha, castor bean, and yellow grease - using the HEFA process concept. The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.« less
Xu, Shu-Ling; Wei, Fang; Xie, Ya; Lv, Xin; Dong, Xu-Yan; Chen, Hong
2018-03-23
Vegetable oils and animal fats are dietary source of lipids that play critical and multiple roles in biological function. Triacylglycerols (TAGs) are the principal component of oils and fats with significant difference in profile among different oils and fats. TAG profiling is essential for nutritional evaluation, quality control and assurance of safety in oils and fats. However, analysis of TAGs is a challenging task because of the complicated composition of TAGs and their similar physicochemical properties in oils and fats. The rapid development of mass spectrometry (MS) technology in recent years makes it possible to analyze the composition, content and structure of TAGs in the study of the physical, chemical and nutritional properties of oils, fats and related products. This review described the research advancement based on MS for profiling of TAGs in oil, fat and their applications in food. The application of MS, including direct infusion strategies, and its combination with chromatography, gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS), in the analysis of TAGs were reviewed. The advantages and disadvantages of these analytical methods with relevant applications for TAGs analysis in food were also described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koukos, P K; Papadopoulou, K I; Patiaka, D T; Papagiannopoulos, A D
2000-04-01
The composition of essential oils from twigs and needles of Balkan pine (Pinus peuce Gris.) grown in northern Greece was investigated. The compounds were identified by using GC-MS analysis. The twig oil was rich in alpha-pinene (7.38%), beta-pinene (12.46%), beta-phellandrene (26.93%), beta-caryophyllene (4.48%), and citronellol (12.48%), and the needle oil was rich in alpha-pinene (23.07%), camphene (5.52%), beta-pinene (22.00%), beta-phellandrene (6.78%), bornyl acetate (9.76%), beta-caryophyllene (3.05%), and citronellol (13.42%). The mean oil yield was 2.85% for twigs and 0. 57% for needles.
Lemberkovics, Eva; Kakasy, András Zoltán; Héthelyi, B Eva; Simándi, Béla; Böszörményi, Andrea; Balázs, Andrea; Szoke, Eva
2007-01-01
In this work the essential oil composition of some less known Dracocephalum species was studied and compared the effectiveness, selectivity and influence of different extraction methods (hydrodistillation, Soxhlet extraction with organic solvents and supercritical fluid extraction) on essential oils. For investigations in Hungary and Transylvania cultivated plant material was used. The analysis of essential oils was carried out by GC and GC-MS methods. The components were identified by standard addition, retention factors and mass spectra. The percentile evaluation of each volatile constituents was made on basis of GC-FID chromatograms. The accuracy of measurements was characterized by relative standard deviation. In the essential oil of D. renati Emb. (studied firstly by us) 18.3% of limonene was measured and carvone, citrals and linalyl acetate monoterpenes, methyl chavicol and some sesquiterpene (e.g. bicyclovetivenol) determined in lower quantities. We established that more than 50% of essential oil of D. grandiflorum L. was formed by sesquiterpenes (beta-caryophyllene and- oxide, beta-bourbonene, beta-cubebene, aromadendrene) and the essential oil of D. ruyschiana L. contained pinocamphone isomers in more than 60%. The oxygenated acyclic monoterpenes, the characteristic constituents of Moldavian dragonhead were present in some tenth percent only in D. renati oil. We found significant differences in the composition of the SFE extract and traditional essential oil of D. moldavica L. The supercritical fractions collected at the beginning of the extraction process were richer in valuable ester component (geranyl acetate) than the essential oil obtained by hydrodistillation. The fractions collected at the end of supercritical were poor in oxygenated monoterpenes but rich in minor compounds of traditional oil, e.g. palmitic acid.
Chemotypic Characterization and Biological Activity of Rosmarinus officinalis.
Satyal, Prabodh; Jones, Tyler H; Lopez, Elizabeth M; McFeeters, Robert L; Ali, Nasser A Awadh; Mansi, Iman; Al-Kaf, Ali G; Setzer, William N
2017-03-05
Rosemary ( Rosmarinus officinalis L.) is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia), Alabama (USA), Western Cape (South Africa), Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+)-α-pinene (13.5%-37.7%), 1,8-cineole (16.1%-29.3%), (+)-verbenone (0.8%-16.9%), (-)-borneol (2.1%-6.9%), (-)-camphor (0.7%-7.0%), and racemic limonene (1.6%-4.4%). Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities.
Chemotypic Characterization and Biological Activity of Rosmarinus officinalis
Satyal, Prabodh; Jones, Tyler H.; Lopez, Elizabeth M.; McFeeters, Robert L.; Ali, Nasser A. Awadh; Mansi, Iman; Al-kaf, Ali G.; Setzer, William N.
2017-01-01
Rosemary (Rosmarinus officinalis L.) is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia), Alabama (USA), Western Cape (South Africa), Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+)-α-pinene (13.5%–37.7%), 1,8-cineole (16.1%–29.3%), (+)-verbenone (0.8%–16.9%), (−)-borneol (2.1%–6.9%), (−)-camphor (0.7%–7.0%), and racemic limonene (1.6%–4.4%). Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities. PMID:28273883
Machado, Kamilla N.; Kaneko, Telma M.; Young, Maria Cláudia M.; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H.
2017-01-01
Background: Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Methods: Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. Results: The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. Conclusions: The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa. PMID:28930241
Machado, Kamilla N; Kaneko, Telma M; Young, Maria Cláudia M; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H
2017-05-01
Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa.
Xi, Xiu-Jie; Zhu, Yun-Guo; Tong, Ying-Peng; Yang, Xiao-Ling; Tang, Nan-Nan; Ma, Shu-Min; Li, Shan; Cheng, Zhou
2016-01-01
Job’s tears (Coix lachryma-jobi L.) is an important crop used as food and herbal medicine in Asian countries. A drug made of Job’s tears seed oil has been clinically applied to treat multiple cancers. In this study, the genetic diversity of Job’s tears accessions and the fatty acid composition, triglyceride composition, and anti-proliferative effect of Job’s tears seed oil were analyzed using morphological characteristics and ISSR markers, GC-MS, HPLC-ELSD, and the MTT method. ISSR analysis demonstrated low genetic diversity of Job’s tears at the species level (h = 0.21, I = 0.33) and the accession level (h = 0.07, I = 0.10), and strong genetic differentiation (GST = 0.6702) among all accessions. It also clustered the 11 accessions into three cultivated clades corresponding with geographical locations and two evidently divergent wild clades. The grouping patterns based on morphological characteristics and chemical profiles were in accordance with those clustered by ISSR analysis. Significant differences in morphological characteristics, fatty acid composition, triglyceride composition, and inhibition rates of seed oil were detected among different accessions, which showed a highly significant positive correlation with genetic variation. These results suggest that the seed morphological characteristics, fatty acid composition, and triglyceride composition may be mainly attributed to genetic factors. The proportion of palmitic acid and linoleic acid to oleic acid displayed a highly significant positive correlation with the inhibition rates of Job’s tears seed oil for T24 cells, and thus can be an important indicator for quality control for Job’s tears. PMID:27070310
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
Essential-oil composition and chemical variability of Senecio vulgaris L. from Corsica.
Andreani, Stéphane; Paolini, Julien; Costa, Jean; Muselli, Alain
2015-05-01
The chemical composition of the essential oils isolated from the aerial parts of Senecio vulgaris plants collected in 30 Corsican localities was characterized using GC-FID and GC/MS analyses. Altogether, 54 components, which accounted for 95.2% of the total oil composition, were identified in the 30 essential-oil samples. The main compounds were α-humulene (1; 57.3%), (E)-β-caryophyllene (2; 5.6%), terpinolene (3; 5.3%), ar-curcumene (4; 4.3%), and geranyl linalool (5; 3.4%). The chemical composition of the essential oils obtained from separate organs and during the complete vegetative cycle of the plants were also studied, to gain more knowledge about the plant ecology. The production of monoterpene hydrocarbons, especially terpinolene, seems to be implicated in the plant-flowering process and, indirectly, in the dispersal of this weed species. Comparison of the present results with the literature highlighted the originality of the Corsican S. vulgaris essential oils and indicated that α-humulene might be used as taxonomical marker for the future classification of the Senecio genus. A study of the chemical variability of the 30 S. vulgaris essential oils using statistical analysis allowed the discrimination of two main clusters according to the soil nature of the sample locations. These results confirmed that there is a relation between the soil nature, the chemical composition of the essential oils, and morphological plant characteristics. Moreover, they are of interest for commercial producers of essential oil in selecting the most appropriate plants. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.
Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami
2017-04-15
The aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition. While the PCR-CE assay proved equally efficient as gas chromatography analysis in detecting adulteration with soybean, palm, rapeseed, sunflower, sesame, cottonseed and peanut oils, it was superior to the widely utilized analytical chemistry approach in revealing the adulterant species and detecting small quantities of corn and safflower oils in olive oil. Moreover, the DNA-based test correctly identified all tested olive oil: hazelnut oil blends whereas it was not feasible to detect hazelnut oil adulteration through fatty acid profile analysis. Thus, the present research has shown the feasibility of a PCR-CE barcode assay to detect adulteration in olive oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of Kevlar and carbon fibres on tensile properties of oil palm/epoxy composites
NASA Astrophysics Data System (ADS)
Amir, S. M. M.; Sultan, M. T. H.; Jawaid, M.; Cardona, F.; Ishak, M. R.; Yusof, M. R.
2017-12-01
Hybrid composites with natural and synthetic fibers have captured the interests of many researchers. In this work, Kevlar/oil palm Empty Fruit Bunch (EFB)/Kevlar and carbon/oil palm EFB hybrid/carbon composites were prepared using hand lay-up technique by keeping the oil palm EFB fiber as the core material. The tensile properties which include tensile strength, tensile modulus and elongation at break were investigated. It is observed that the tensile strength and modulus for carbon/oil palm EFB/carbon hybrid composites were much higher as compared with Kevlar/oil palm EFB/Kevlar hybrid composites. However, the elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites exhibited higher value as compared to carbon/oil palm EFB/carbon hybrid composites and oil palm EFB/epoxy composites. The tensile strength for carbon/oil palm EFB/carbon hybrid composites is 93.6 MPa and the tensile modulus for carbon/oil palm EFB/carbon hybrid composites is 6.5 GPa. The elongation at break for Kevlar/oil palm EFB/Kevlar hybrid composites is 3.6%.
Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja
An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with themore » 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.« less
Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil
Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef
2015-01-01
Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025
Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.
Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav
2015-01-01
Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.
Rahimi, Mohammad Ali; Nazeri, Vahideh; Andi, Seyed Ali; Sefidkon, Fatemeh
2018-05-21
In present work, the chemical composition of the essential oils obtained from dried flowering aerial parts of Teucrium hircanicum L. (Labiatae) originated from ten wild populations in Iran was analyzed by a GC-FID and GC/MS system. The oil yields varied from 0.04% to 0.1%. A total of thirty-two compounds representing 67.6-97.7% of the oil were identified. The essential oil was found to be rich in sesquiterpene hydrocarpons (E)-α-bergamotene (17.5-86.9%) and (E)-β-farnesene (0.5-21.4%). Of the total identified compounds, sesquiterpene hydrocarpons (36.1-89.7%) were included the greatest essential oil fraction in all the populations, followed by oxygenated monoterpenes (2.2-21.6%), oxygenated sesquiterpenes (0.0-14.4%) and monoterepene hydrocarbons (0.0-9.5%). Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA) were used to distinguish any geographical variations, indicating that the clustering of populations is related to their geographic origin. According to the GC/MS analysis, two chemotypes consisting of (E)-α-bergamotene and (E)-α-bergamotene-(E)-β-farnesene were identified in the populations.
Leonardi, Michele; Ambryszewska, Katarzyna E; Melai, Bernardo; Flamini, Guido; Cioni, Pier Luigi; Parri, Federico; Pistelli, Luisa
2013-03-01
The composition of 21 essential-oil samples isolated from Helichrysum italicum collected in seven locations of Elba Island (Tuscany, Italy), characterized by different soil types, during three different periods (January, May, and October 2010) was determined by GC-FID and GC/EI-MS analyses. In total, 115 components were identified, representing 96.8-99.8% of the oil composition. The oils were characterized by a high content of oxygenated monoterpenes (38.6-62.7%), while monoterpene and sesquiterpene hydrocarbons accounted for 2.3-41.9 and 5.1-20.1% of the identified constituents, respectively. The main oxygenated derivatives were nerol (2.8-12.8%) and its ester derivative neryl acetate (5.6-45.9%). To compare the chemical variability of the species within Elba Island and between the island and other localities within the Mediterranean area, studied previously, multivariate statistical analysis was performed. The results obtained showed a difference in the composition of the essential oils of H. italicum from Elba Island, mainly due to the environment where the plant grows, and, in particular, to the soil type. These hypotheses were further confirmed by the comparison of these oils with essential oils obtained from H. italicum collected on other islands of the Tuscan archipelago. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Chemical Polymorphism of Essential Oils of Artemisia vulgaris Growing Wild in Lithuania.
Judzentiene, Asta; Budiene, Jurga
2018-02-01
Compositional variability of mugwort (Artemisia vulgaris L.) essential oils has been investigated in the study. Plant material (over ground parts at full flowering stage) was collected from forty-four wild populations in Lithuania. The oils from aerial parts were obtained by hydrodistillation and analyzed by GC(FID) and GC/MS. In total, up to 111 components were determined in the oils. As the major constituents were found: sabinene, 1,8-cineole, artemisia ketone, both thujone isomers, camphor, cis-chrysanthenyl acetate, davanone and davanone B. The compositional data were subjected to statistical analysis. The application of PCA (Principal Component Analysis) and AHC (Agglomerative Hierarchical Clustering) allowed grouping the oils into six clusters. AHC permitted to distinguish an artemisia ketone chemotype, which, to the best of our knowledge, is very scarce. Additionally, two rare cis-chrysanthenyl acetate and sabinene oil types were determined for the plants growing in Lithuania. Besides, davanone was found for the first time as a principal component in mugwort oils. The performed study revealed significant chemical polymorphism of essential oils in mugwort plants native to Lithuania; it has expanded our chemotaxonomic knowledge both of A. vulgaris species and Artemisia genus. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Zhang, Zhikun; Zhang, Lei; Li, Aimin
2015-04-01
Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Essential oil composition and antimicrobial activity of Santiria trimera bark.
Martins, A P; Salgueiro, L R; Gonçalves, M J; Proença da Cunha, A; Vila, R; Cañigueral, S
2003-01-01
The composition and the antimicrobial activity of the bark oil of Santiria trimera (Oliv.) Aubrév., a plant widely used by the traditional healers in S. Tomé and Príncipe, especially for wound healing, are reported for the first time. The analysis of the essential oil was carried out by GC and GC-MS. The oil contains a high content of monoterpenes, alpha-pinene (66.6 %) being the major constituent, followed by beta-pinene (20.0 %). The essential oil was active against both bacteria and fungi strains, except Staphylococcus epidermidis and Aspergillus niger. It exhibited significant antimicrobial activity against Proteus vulgaris and Cryptococcus neoformans with MICs values of 1.11 microl/ml and lower than 0.71 microl/ml, respectively.
Shang, Xiaoguang; Cheng, Chaoze; Ding, Jian; Guo, Wangzhen
2017-02-01
Cotton is an economically important crop grown for natural fiber and seed oil production. Cottonseed oil ranks third after soybean oil and colza oil in terms of edible oilseed tonnage worldwide. The fatty acid composition of cottonseed oil determines its industrial application and nutritional values. However, little progress has been made in understanding cottonseed oil biogenesis. Stearoyl-acyl carrier protein desaturase (SAD), the only known enzyme to convert saturated fatty acids into unsaturated fatty acids in plants, plays key roles in determining the fatty acid composition of cottonseed oil. In this study, we identified 9, 9, 18 and 19 SAD genes in the genomes of four sequenced cotton species: diploid Gossypium raimondii (D 5 ), G. arboreum (A 2 ), tetraploid G. hirsutum acc. TM-1 (AD 1 ) and G. barbadense cv. Xinhai21 (AD 2 ), respectively. Bioinformatic and phylogenetic analyses revealed that cotton SADs can be classified into two classes. Expression patterns showed developmental and spatial regulation of SADs in cotton. GhSAD2 and GhSAD4 were preferentially expressed in developing ovules 20-35 days post-anthesis, and significantly different expression patterns were found between high-oil and low-oil cotton cultivars, implying these two genes could be involved in cottonseed oil biogenesis. Association analysis further confirmed that GhSAD4-At expression was closely related to the oleic acid (O) content, linoleic acid (L) content and O/L value in cottonseed, implying GhSAD4 plays an important role in cottonseed oil composition. This study brings new perspectives for integrated genome-wide identification of SADs in cotton and provides references for the genetic improvement of cottonseed oil.
Disentangling oil weathering using GC x GC. 1. chromatogram analysis.
Arey, J Samuel; Nelson, Robert K; Reddy, Christopher M
2007-08-15
Historically, the thousands of compounds found in oils constituted an "unresolved complex mixture" that frustrated efforts to analyze oil weathering. Moreover, different weathering processes inflict rich and diverse signatures of compositional change in oil, and conventional methods do not effectively decode this elaborate record. Using comprehensive two-dimensional gas chromatography (GC x GC), we can separate thousands of hydrocarbon components and simultaneously estimate their chemical properties. We investigated 13 weathered field samples collected from the Bouchard 120 heavy fuel oil spill in Buzzards Bay, Massachusetts in 2003. We first mapped hydrocarbon vapor pressures and aqueous solubilities onto the compositional space explored by GC x GC chromatograms of weathered samples. Then we developed methods to quantitatively decouple mass loss patterns associated with evaporation and dissolution. The compositional complexity of oil, traditionally considered an obstacle, was now an advantage. We exploited the large inventory of chemical information encoded in oil to robustly differentiate signatures of mass transfer to air and water. With this new approach, we can evaluate mass transfer models (the Part 2 companion to this paper) and more properly account for evaporation, dissolution, and degradation of oil in the environment.
Essential oil composition of two myrtus communis L. varieties grown in North Tunisia.
Aidi Wannes, Wissem; Mhamdi, Baya; Marzouk, Brahim
2007-06-01
Two Myrtus communis varieties (var. italica and baetica) were studied in order to investigate their essential oil yield and composition. Essential oil yield varied in leaves, fruits and stems. So, in leaves, it was 0.5% for italica and 0.3% for baetica and was higher than in fruits and stems with respectively 0.1% and 0.04% for italica and 0.07% and 0.03% for baetica. The essential oil analysis performed by GC and GC/MS showed a composition characterized by a high percentage of monoterpene hydrocarbons in leaves, largely due to alpha-pinene with 51.3% for italica and 27.7% for baetica; 1,8-cineole, the alone compound of ether class, was predominant in fruits and stems with respectively 31.6% and 34.7% for italica and 19.8% and 25.8% for baetica.
Tenfen, Adrielli; Siebert, Diogo Alexandre; Yamanaka, Celina Noriko; Mendes de Córdova, Caio Maurício; Scharf, Dilamara Riva; Simionatto, Edésio Luiz; Alberton, Michele Debiasi
2016-09-01
This study describes the qualitative and quantitative chemical composition and evaluates the antibacterial activity of essential oil from Eugenia platysema leaves. Analysis by GC-FID and GC-MS allowed the identification of 22 compounds. Different from the other species of the Eugenia genus, the major compound found in the essential oil was the diterpene phytol (66.05%), being this the first report of the presence of this compound in the essential oils from Eugenia genus. The sesquiterpene elixene was the second most concentrated compound in the studied essential oil (9.16%). The essential oil from E. platysema was tested for its antibacterial activity against cell-walled bacteria and mollicute strains of clinical interest using the microdilution broth assay. The results showed that the essential oil of E. platysema was inactive until 1000 μg mL(-1) against tested bacteria.
Đorđević, Aleksandra S; Jovanović, Olga P; Zlatković, Bojan K; Stojanović, Gordana S
2016-06-01
The essential oils isolated from fresh aerial parts of Ballota macedonica (two populations) and Ballota nigra ssp. foetida were analyzed by GC and GC/MS. Eighty five components were identified in total; 60 components in B. macedonica oil (population from the Former Yugoslav Republic of Macedonia), 34 components in B. macedonica oil (population from the Republic of Serbia), and 33 components in the oil of B. nigra ssp. foetida accounting for 93.9%, 98.4%, and 95.8% of the total oils, respectively. The most abundant components in B. macedonica oils were carotol (13.7 - 52.1%), germacrene D (8.6 - 24.6%), and (E)-caryophyllene (6.5 - 16.5%), while B. nigra ssp. foetida oil was dominated by (E)-phytol (56.9%), germacrene D (10.0%), and (E)-caryophyllene (4.7%). Multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis) were used to compare and discuss relationships among Ballota species examined so far based on their volatile profiles. The chemical compositions of B. macedonica essential oils are reported for the first time. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Endo, Yasushi
2018-01-01
Edible fats and oils are among the basic components of the human diet, along with carbohydrates and proteins, and they are the source of high energy and essential fatty acids such as linoleic and linolenic acids. Edible fats and oils are used in for pan- and deep-frying, and in salad dressing, mayonnaise and processed foods such as chocolates and cream. The physical and chemical properties of edible fats and oils can affect the quality of oil foods and hence must be evaluated in detail. The physical characteristics of edible fats and oils include color, specific gravity, refractive index, melting point, congeal point, smoke point, flash point, fire point, and viscosity, while the chemical characteristics include acid value, saponification value, iodine value, fatty acid composition, trans isomers, triacylglycerol composition, unsaponifiable matters (sterols, tocopherols) and minor components (phospholipids, chlorophyll pigments, glycidyl fatty acid esters). Peroxide value, p-anisidine value, carbonyl value, polar compounds and polymerized triacylglycerols are indexes of the deterioration of edible fats and oils. This review describes the analytical methods to evaluate the quality of edible fats and oils, especially the Standard Methods for Analysis of Fats, Oils and Related Materials edited by Japan Oil Chemists' Society (the JOCS standard methods) and advanced methods.
Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomeroy, Marc D
Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.
Cruz, Elizangela Mércia de Oliveira; Pinto, Jéssika Andreza Oliveira; Fontes, Saymo Santos; Arrigoni-Blank, Maria de Fátima; Bacci, Leandro; de Jesus, Hugo César Ramos; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald
2014-01-01
The aim of this study was to analyze the chemical composition of the essential oil from leaves of Lippia gracilis genotypes, in the dry and rainy seasons, and with and without irrigation. The extraction of essential oil was realized by hydrodistillation in a Clevenger apparatus. The chemical composition analysis was performed using a GC-MS/FID. The leaves of the L. gracilis genotypes provide essential oil with content between 1.25% and 1.92% in the rainy season and 1.42% and 2.70% in the dry season; when irrigation was used the content was between 1.42% and 2.87%, without irrigation contents were between 1.60% and 3.00%. The chemical composition of L. gracilis showed high levels of terpenes. The major constituent of genotypes LGRA-106 was thymol and carvacrol was the major constituent for the other genotypes. Concentrations showed little variation between seasons, demonstrating the stability of the chemical composition of L. gracilis even with different climatic conditions. PMID:25302321
Qiu, Jiazhang; Li, Hongen; Su, Hongwei; Dong, Jing; Luo, Mingjing; Wang, Jianfeng; Leng, Bingfeng; Deng, Yanhong; Liu, Juxiong; Deng, Xuming
2012-04-01
In this study, fennel oil was isolated by hydrodistillation, and the chemical composition was determined by gas chromatography/mass spectral analysis. The antimicrobial activity of fennel oil against Staphylococcus aureus was evaluated by broth microdilution. A haemolysis assay, tumour necrosis factor (TNF) release assay, western blot, and real-time reverse transcription (RT)-PCR were applied to investigate the influence of fennel oil on the production of S. aureus virulence-related exoproteins. The data show that fennel oil, which contains a high level of trans-anethole, was active against S. aureus, with MICs ranging from 64 to 256 μg/ml. Furthermore, fennel oil, when used at subinhibitory concentrations, could dose-dependently decrease the expression of S. aureus exotoxins, including α-toxin, Staphylococcal enterotoxins (SEs) and toxic shock syndrome toxin 1 (TSST-1).
Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P
2013-10-01
One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.
Safaralie, Asghar; Fatemi, Shohreh; Sefidkon, Fatemeh
2008-02-08
The composition of essential oil extracted from Valeriana officinalis L. roots growing wild in Iran was studied by hydrodistillation and supercritical CO2 extraction. Forty-seven components representing 89.3% and 35 constituents varying from 86.1% to 95.1% of the oil obtained by hydrodistillation and supercritical CO2 were identified, respectively. The major components in the extracted oil from supercritical CO2 were isovaleric acid (18.7-41.8%), valerenic acid (8.2-11.8%), acetoxyvaleranone (5.6-9.6%), (Z)-valernyl acetate (4.5-6.5%), bornyl acetate (2.3-7.7%) and valerenol (3.7-5.2%), whereas by hydrodistillation were bornyl acetate (11.6%), valerenic acid (8.0%), (Z)-valernyl acetate (7.9%) and acetoxyvaleranone (7.6%). The analysis of the extracts was performed by capillary GC and GC/MS.
Pena Muniz, Marcos Antônio; Ferreira dos Santos, Marina Nídia; da Costa, Carlos Emmerson Ferreira; Morais, Luiz; Lamarão, Maria Louze Nobre; Ribeiro-Costa, Roseane Maria; Silva-Júnior, José Otávio Carréra
2015-01-01
The present study aimed at characterizing the oil extracted from Bertholletia excelsa H.B.K. almond, a native species from the Amazon region. Analytical methods used for oils and fats were employed through pharmacopoeia assays, AOCS (American Oil Chemists Society) standard methods as well as those recommended by ANVISA (National Health Surveillance Agency) such as acidity, peroxide value, saponification index, iodine value and refractive index, pH and relative density, and also thermoanalytical analyses (thermogravimetry, differential thermogravimetry and differential thermal analysis) as well as chromatographic analysis (gas chromatography). The characterization assessments of B. excelsa oil showed results indicating that the oil contains polyunsaturated fatty acids in large proportion. The termoanalytical tests indicated that B.excelsa oil showed thermal stability up to 220 °C, These results showed that the oil extracted from B. excelsa has acceptable characteristics and is of good quality. PMID:25709225
Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane
2012-01-01
In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625
Fan, Sanpeng; Chang, Jin; Zong, Yufeng; Hu, Gaosheng; Jia, Jingming
2018-03-04
Dendranthema indicum var. aromaticum , which is an aromatic plant with a strong and special fragrance throughout the whole plant, is used for the treatment of colds and headaches, and as a mosquito repellant in Shennongjia, Hubei province, China. To analyze the composition of the essential oil from this medicinal herb, we developed a gas chromatography-mass Spectrometry (GC-MS) method including microwave-assisted extraction, hydrodistillation and direct headspace analysis in two different stationary phase columns. In total, 115 volatile compounds were identified, of which 90 compounds were identified using Rxi-5MS and 78 using HP-INNOWAX. Our results revealed that the oil was mainly composed of five categories of compound: oxygenated monoterpenes (28.76-78.10%), oxygenated sesquiterpenes (4.27-38.06%), sesquiterpenes (3.22-11.57%), fatty hydrocarbons (1.65-9.81%) and monoterpenes (0-3.32%). The major constituents are α-thujone, β-thujone, cis -sabinol, sabinyl acetate and (-)-neointermedeol.However, the essential oil composition in the published literature differs significantly. Therefore, a cluster analysis was carried out using the top ten compositions in the reported literature as well as this study, using Minitab software. To provide detailed information on plant origin, the ITS1-5.8s-ITS2 region was amplified and sequenced (Accession No. MF668250). Besides, in order to provide a macroscopic view of the chemical composition, the biosynthetic pathway of the main components was summarized according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the published literatures.
Chemical composition of the essential oil of Stachys menthifolia Vis.
Ćavar, Sanja; Maksimović, Milka; Vidic, Danijela; Šolić, Marija Edita
2010-02-01
Stachys menthifolia Vis. (Lamiaceae) is an endemic species from the Balkan Peninsula spread throughout Albania, Greece, Montenegro, and Croatia. This article presents the first investigation of the essential oil composition of this species from Croatia. Aerial parts of the plant were collected from three different natural habitats in the region of Biokovo Mountain. The studied populations showed similarity in qualitative, but not in quantitative, composition of their essential oils. Hydrodistilled volatile oil obtained from the plant material of S. menthifolia was subjected to gas chromatographic analysis coupled to mass spectrometry. More than 100 compounds were identified in the three samples, representing 86.8-90.8% of the total oil. The terpene profile of S. menthifolia is characterized by a high content of oxygenated sesquiterpenes (48.4-58.9%) and diterpene hydrocarbons (3.5-25.2%), with 8-alpha-acetoxyelemol (6.9-21.3%), abietatriene (3.5-21.1%), and 4'-methoxyacetophenone (4.5-17.0%) as the main constituents.
Turkmenoglu, Fatma Pinar; Agar, Osman Tuncay; Akaydin, Galip; Hayran, Mutlu; Demirci, Betul
2015-06-22
According to distribution of genus Achillea, two main centers of diversity occur in S.E. Europe and S.W. Asia. Diversified essential oil compositions from Balkan Peninsula have been numerously reported. However, report on essential oils of Achillea species growing in Turkey, which is one of the main centers of diversity, is very limited. This paper represents the chemical compositions of the essential oils obtained by hydrodistillation from the aerial parts of eleven Achillea species, identified simultaneously by gas chromatography and gas chromatography-mass spectrometry. The main components were found to be 1,8-cineole, p-cymene, viridiflorol, nonacosane, α-bisabolol, caryophyllene oxide, α-bisabolon oxide A, β-eudesmol, 15-hexadecanolide and camphor. The chemical principal component analysis based on thirty compounds identified three species groups and a subgroup, where each group constituted a chemotype. This is the first report on the chemical composition of A. hamzaoglui essential oil; as well as the antioxidant and antimicrobial evaluation of its essential oil and methanolic extract.
NASA Astrophysics Data System (ADS)
Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei
2015-04-01
Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.
Belabbes, Rania; Dib, Mohammed El Amine; Djabou, Nassim; Ilias, Faiza; Tabti, Boufeldja; Costa, Jean; Muselli, Alain
2017-05-01
The chemical composition of the essential oils and hydrosol extract from aerial parts of Calendula arvensis L. was investigated using GC-FID and GC/MS. Intra-species variations of the chemical compositions of essential oils from 18 Algerian sample locations were investigated using statistical analysis. Chemical analysis allowed the identification of 53 compounds amounting to 92.3 - 98.5% with yields varied of 0.09 - 0.36% and the main compounds were zingiberenol 1 (8.7 - 29.8%), eremoligenol (4.2 - 12.5%), β-curcumene (2.1 - 12.5%), zingiberenol 2 (4.6 - 19.8%) and (E,Z)-farnesol (3.5 - 23.4%). The study of the chemical variability of essential oils allowed the discrimination of two main clusters confirming that there is a relation between the essential oil compositions and the harvest locations. Different concentrations of essential oil and hydrosol extract were prepared and their antioxidant activity were assessed using three methods (2,2-diphenyl-1-picrylhydrazyl, Ferric-Reducing Antioxidant Power Assay and β-carotene). The results showed that hydrosol extract presented an interesting antioxidant activity. The in vitro antifungal activity of hydrosol extract produced the best antifungal inhibition against Penicillium expansum and Aspergillus niger, while, essential oil was inhibitory at relatively higher concentrations. Results showed that the treatments of pear fruits with essential oil and hydrosol extract presented a very interesting protective activity on disease severity of pears caused by P. expansum. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.
Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik
2016-03-01
The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Cicatelli, Angela; Fortunati, Tancredi; De Feis, Italia; Castiglione, Stefano
2013-09-01
The present study is focused on determining the olive oil fatty acid composition of ancient and recent varieties of the Campania region (Italy), but also on molecularly characterizing the most common cultivated varieties in the same region, together with olive trees of the garden of the University Campus of Salerno and of three olive groves of south Italy. Fatty acid methyl esters in the extra virgin oil derived olive fruits were determined, during three consecutive harvests, by gas chromatography. The statistical analysis on fatty acid composition was performed with the ffmanova package. The genetic biodiversity of the olive collection was estimated by using eight highly polymorphic microsatellite loci and calculating the most commonly used indexes. "Dice index" was employed to estimate the similarity level of the analysed olive samples, while the Structure software to infer their genetic structure. The fatty acid content of extra virgin olive oils, produced from the two olive groves in Campania, suggests that the composition is mainly determined by genotype and not by cultural practices or climatic conditions. Furthermore, the analysis conducted on the molecular data revealed the presence of 100 distinct genotypes and seven homonymies out of the 136 analysed trees. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Devi, Amita; Khatkar, B S
2018-01-01
This study was carried out to investigate the effect of fatty acid composition and microstructure properties of fats and oils on the textural properties of cookie dough and quality attributes of cookies. Fatty acid composition and microstructure properties of six fats and oils (butter, hydrogenated fat, palm oil, coconut oil, groundnut oil, and sunflower oil) were analyzed. Sunflower oil was found to be the most unsaturated oil with 88.39% unsaturated fatty acid content. Coconut oil and palm oil differed from other fats and oils by having an appreciable amount of lauric acid (59.36%) and palmitic acid (42.14%), respectively. Microstructure size of all fats and oils ranged from 1 to 20 μm being the largest for coconut oil and the smallest for palm oil. In palm oil, small rod-shaped and randomly arranged microstructures were observed, whereas sunflower oil and groundnut oil possessed large, scattered ovule shaped microstructures. It was reported that sunflower oil produced the softest dough, the largest cookie spread and the hardest cookie texture, whereas hydrogenated fat produced the stiffest dough, the lowest spread and most tender cookies. Statistical analysis depicted that palmitic acid and oleic acid demonstrated a positive correlation with dough hardness. Linoleic acid exhibited positive link with cookie spread ratio (r = 0.836**) and breaking strength (r = 0.792**). Microstructure size showed a significant positive relationship with dough density (r = 0.792**), cookie density (r = 0.386*), spread ratio (r = 0.312*), and breaking strength (r = 0.303*).
Avetisyan, Arpi; Markosian, Anahit; Petrosyan, Margarit; Sahakyan, Naira; Babayan, Anush; Aloyan, Samvel; Trchounian, Armen
2017-01-19
The plants belonging to the Ocimum genus of the Lamiaceae family are considered to be a rich source of essential oils which have expressed biological activity and use in different area of human activity. There is a great variety of chemotypes within the same basil species. Essential oils from three different cultivars of basil, O. basilicum var. purpureum, O. basilicum var. thyrsiflora, and O. citriodorum Vis. were the subjects of our investigations. The oils were obtained by steam distillation in a Clevenger-type apparatus. The gas chromatography mass selective analysis was used to determine their chemical composition. The antioxidant activities of these essential oils were measured using 1,1-diphenyl-2-picrylhydrazyl assays; the tyrosinase inhibition abilities of the given group of oils were also assessed spectophotometrically, and the antimicrobial activity of the essential oils was determined by the agar diffusion method, minimal inhibitory concentrations were expressed. According to the results, the qualitative and quantitative composition of essential oils was quite different: O. basilicum var. purpureum essential oil contained 57.3% methyl-chavicol (estragol); O. basilicum var. thyrsiflora oil had 68.0% linalool. The main constituents of O. citriodorum oil were nerol (23.0%) and citral (20.7%). The highest antioxidant activity was demonstrated by O. basilicum var. thyrsiflora essential oil. This oil has also exhibited the highest tyrosinase inhibition level, whereas the oil from O. citriodorum cultivar demonstrated the highest antimicrobial activity. The results obtained indicate that these essential oils have antioxidant, antibacterial and antifungal activity and can be used as natural antioxidant and antimicrobial agents in medicine, food industry and cosmetics.
Tocopherol content and Fatty Acid profile of different Iranian date seed oils.
Biglar, Mahmood; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Hassani, Shokufeh; Moghaddam, Ghazaleh; Sadeghi, Naficeh; Oveisi, Mohammad Reza
2012-01-01
Date is one of the world's oldest food-producing plants wich has always played an important role in the economy and social life. Various researchers examined chemical composition and nutritional values of edible parts of dates while limited information about chemical composition and nutritional quality of date seed is available. In this study, fatty acid composition and total tocopherol content of 14 Iranian date seed oils were studied. Statistical analysis was performed through SPSS computing package. According to the fatty acid profiles, seven fatty acids were found through nearly 50% oleic acid in seeds. Shekar cultivar by 51.40% had the maximum amount and Lasht cultivar by 33.38% had the minimum amount of oleic acid. Tocopherol content in the samples varied between 33.86 μg vit E/g oil for Shahabi2 to 10.09 μg vit E/g oil for Shekar. Tocopherol content was 1.88 and 0.61 μg respectively in one-gram seed of these two cultivars. Iranian date seed oils classified as oleic-lauric oil, had a high amount of oleic acid and could serve as a profitable source of valuable oils for industrial applications.
Determination of sugars composition in abscission zone of oil palm fruit
NASA Astrophysics Data System (ADS)
Thang, Y. M.; Ariffin, A. A.; Appleton, D. R.; Asis, A. J.; Mokhtar, M. N.; Yunus, R.
2017-06-01
Fresh oil palm fruit bunches (FFB) arriving at a palm oil mill are graded manually and randomly for ripeness classification by counting the number of empty fruit sockets (EFS) found in each bunch before processing. FFBs with at least ten EFS are classified as ripe bunch, FFBs with less than ten EFS are classified as under-ripe, while bunches without any EFS are classified as unripe. The aim of the present study is to determine the composition of sugars in the abscission of these three groups of FFBs by monitoring their sugars composition. The bunches were grouped according to the number of empty fruit sockets: (i) nil; (ii) 1-9; (iii) ≥10 as unripe, under-ripe and ripe bunches, respectively. Non-structural, structural and water-soluble sugars extracted from the abscission zone were analyzed. The principal component analysis (PCA) based on various sugars compositions revealed some natural clustering among the samples. Bunches with more than one empty fruit sockets were distinguished from the others using glucose, sucrose and oligomers. In conclusion, analysis of sugars composition of the abscission zone could potentially be used as a chemical marker to differentiate those bunches at different stages of ripeness.
Effect of nutrient-based fertilisers of olive trees on olive oil quality.
Tekaya, Meriem; Mechri, Beligh; Bchir, Amani; Attia, Faouzi; Cheheb, Hechmi; Daassa, Mohamed; Hammami, Mohamed
2013-06-01
This work was conducted to determine the effects of two nutrient-based fertilisers on the general physicochemical characteristics (including free fatty acid content, peroxide value and UV spectrophotometric characteristics), fatty acid profile, total phenols, o-diphenols and phytosterol composition of olive oil. Foliar applications were carried out in two successive years and included four treatments: TC (control, without foliar nutrition), T1 (rich in nitrogen, applied at the start of vegetation, 10 days later and 20 days later), T2 (rich in boron, magnesium, sulfur and manganese, applied at the beginning of flowering and 10 days later) and T3 (T1+T2). At the end of the experiment (after 2 years), oils were extracted and analysed. No effect was found on either general physicochemical characteristics or fatty acid composition. Foliar fertilisation caused a significant decrease in both polyphenol and o-diphenol contents. Total sterol content was unaffected by foliar fertilisation. However, the phytosterol composition of the oil, particularly its β-sitosterol level, was markedly improved after foliar nutrient application. Principal component analysis of the phytosterol composition showed discrimination between the control oil and the oils from T1, T2 and T3 treatments. The results of this study extend the current knowledge of such cross-talk between plant nutrition and quality of oil. © 2012 Society of Chemical Industry.
Carbon Nano Tube Composites with Chemically Functionalized Plant Oils
NASA Astrophysics Data System (ADS)
Thielemans, Wim; Wool, Richard P.; Blau, Werner; Barron, Valerie
2003-03-01
Carbon Nano Tube Composites with Chemically Functionalized Plant Oil Wim Thielemans, R., P. Wool, V. Barron and W. Blau Multi-Wall Carbon Nano Tubes (MWCNT) made by the Kratchmer-Huffman CCVD process were found to interact and solubilize by slow mechanical stirring, with chemically functionalized plant oils, such as acrylated, epoxidized and maleinated triglycerides (TG) derived from plant oils. The chemical functionality on the TG imparted amphiphilic properties to the oils which allows them to self-assemble on the nanotubes, promoting both dissolution and the ability to make nanocomposites with unusual properties. Once in solution, the MWCT can be processed in a variety of methods, in particular to make composites with enhanced mechanical, fracture and thermal properties. Since the tensile modulus of MWs is about 1 TPa and a vector percolation analysis indicated tensile strengths of 50-100 GPa, we obtain significantly improved properties with even small amounts (1-3the glass transition temperature of the composite by about 20 oC, and the tensile modulus by about 11significant effects on the fracture stress can be obtained due to the both the influence of the strength and length of the MWNT at the crack tip. The ability of the oils to self-assemble on the carbon nanotube surfaces also makes them ideal candidates for self-healing materials. The properties with different functionalized oils will be reported. Supported by EPA, DoE and ISF
Baananou, Sameh; Bagdonaite, Edita; Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Boughattas, Naceur A
2015-01-01
The anti-inflammatory activity of two extracts from the aerial parts of Ledum palustre has been reported. The volatile oil was obtained by supercritical fluid extraction (SFE) and the essential oil by hydrodistillation (HD). The oils were analysed by gas chromatography-mass spectrometry to monitor their composition. Both extracts shared as main compound (41.0-43.4%) ledol (23.3-26.7%) and ascaridole (15.1-4.5%). The anti-inflammatory activity was evaluated by the subcutaneous carrageenan injection-induced hind paw oedema. The treated animals received essential oil (SFE and HD), the reference group received ketoprofen or piroxicam and the control group received NaCl 0.9%. A statistical analysis was performed by the Student t-test. The results show that L. palustre essential oil enhanced a significant inhibition of oedema (50-73%) for HD oil and (52-80%) for SFE oil. These results were similar to those obtained with piroxicam (70%) and ketoprofen (55%).
Van, Kyujung; McHale, Leah K
2017-06-01
Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.
Van, Kyujung; McHale, Leah K.
2017-01-01
Soybean [Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs. PMID:28587169
Extraction of Suspended Sediments from Landsat Imagery in the Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Hardin, D. M.; Drewry, M.; He, M. Y.; Ebersole, S.
2011-12-01
The Sediment Analysis Network for Decision Support (SANDS) project is utilizing enhancement methods to highlight suspended sediment in remotely sensed data and imagery of the Northern Gulf of Mexico. The analysis thus far has shown that areas of suspended sediments can be extracted from Landsat imagery. In addition, although not an original goal of SANDS, the analysis techniques have revealed oil floating on the water's surface. Detection of oil floating on the surface through remotely sensed imagery can be helpful in identifying and understanding the geographic distribution and movement of oil for environmental concerns. Data from Landsat, and MODIS were obtained from NASA Earth Science Data Centers by the Information Technology and Systems Center at the University of Alabama in Huntsville and prepared for analysis by subsetting to the region of interest and converting from HDF-EOS format (in the case of MODIS) to GeoTiff. Analysts at the Geological Survey of Alabama (GSA) working with Landsat data initially, employed enhancement methods, including false color composites, spectral ratios, and other spectral enhancements based on the mineral composition of sediments, to combinations of visible and infrared bands of data. Initial results of this approach revealed suspended sediments. The analysis technique also revealed areas of oil floating on the surface of the Gulf near Chandeleur Island immediately after Hurricane Katrina in 2005. True color Landsat imagery compares the original Landsat scene to the same region after enhancement. The areas of floating oil are clearly visible. The oil washed out from oil spills on land. This paper will present the intermediate result of the SANDS project thus far.
Sharopov, Farukh S; Satyal, Prabodh; Ali, Nasser A Awadh; Pokharel, Suraj; Zhang, Hanjing; Wink, Michael; Kukaniev, Muhammadsho A; Setzer, William N
2016-02-01
The aerial parts of Ocimum basilicum L. were collected from four different geographical locations, Sindhuli and Biratnagar (Nepal), Chormaghzak village (Tajikistan), and Sana'a (Yemen). The essential oils were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. A cluster analysis of 179 essential oil compositions revealed six major chemotypes: Linalool, eugenol, estragole, methyl eugenol, 1,8-cineole, and geraniol. All four of the basil oils in this study were of the linalool-rich variety. Some of the basil oils were screened for bioactivity including antimicrobial, cytotoxicity in human cancer cells, brine shrimp lethality, nematicidal, larvicidal, insecticidal, and antioxidant. The basil oils in this study were not notably antibacterial, cytotoxic, antioxidant, nor nematicidal, but were active in the brine shrimp lethality test, and did show larvicidal and insecticidal activities. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Takshak, Swabha; Agrawal, S B
2016-04-01
The effects of supplemental ultraviolet-B (s-UV-B; 3.6 kJ m(-2) day(-1) above ambient) radiation were investigated on plant metabolite profile, essential oil content and composition, and free radical scavenging capacities of methanolic extracts of Coleus forskohlii (an indigenous medicinal plant) grown under field conditions. Essential oil was isolated using hydrodistillation technique while alterations in metabolite profile and oil composition were determined via gas chromatography-mass spectroscopy (GC-MS). Leaf and root methanolic extracts were investigated via various in vitro assays for their DPPH radical-, superoxide radical-, hydrogen peroxide-, hydroxyl radical-, and nitric oxide radical scavenging activities, ferrous ion chelating activity, and reducing power. Phytochemical analysis revealed the presence of alkaloids, anthocyanins, coumarins, flavonoids, glycosides, phenols, saponins, steroids, tannins, and terpenoids. Oil content was found to be reduced (by ∼7 %) in supplemental UV-B (s-UV-B) treated plants; the composition of the plant extracts as well as essential oil was also considerably altered. Methanolic extracts from treated plant organs showed more potency as free radical scavengers (their EC50 values being lower than their respective controls). Anomalies were observed in Fe(2+) chelating activity for both leaves and roots. The present study concludes that s-UV-B adversely affects oil content in C. forskohlii and also alters the composition and contents of metabolites in both plant extracts and oil. The results also denote that s-UV-B treated plant organs might be more effective in safeguarding against oxidative stress, though further studies are required to authenticate these findings.
Cosentino, Sofia; Barra, Andrea; Pisano, Barbara; Cabizza, Maddalena; Pirisi, Filippo Maria; Palmas, Francesca
2003-07-01
In this work, the chemical compositions and antimicrobial properties of Juniperus essential oils and of their main components were determined. Five berry essential oils obtained from different species of Juniperus growing wild in Sardinia were analyzed. The components of the essential oils were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The antimicrobial activities of the oils and their components against food spoilage and pathogenic microorganisms were determined by a broth microdilution method. The GC-MS analysis showed a certain variability in the concentrations of the main constituents of the oils. Alpha-pinene was largely predominant in the oils of the species J. phoenicea subsp. turbinata and J. oxycedrus. Alpha-pinene and myrcene constituted the bulk (67.56%) of the essential oil of J. communis. Significant quantitative differences were observed for myrcene, delta-3-carene, and D-germacrene. The results of the antimicrobial assay show that the oils of J. communis and J. oxycedrus failed to inhibit any of the microorganisms at the highest concentrations tested (MLC > or = 900 microg/ml), while the oils extracted from J. turbinata specimens were active against fungi, particularly against a strain of Aspergillus flavus (an aflatoxin B1 producer). Of the single compounds tested, delta-3-carene was found to possess the broadest spectrum of activity and appeared to contribute significantly to the antifungal activity observed for J. turbinata oils. This activity may be helpful in the prevention of aflatoxin contamination for many foods.
Simplice, Mouokeu Raymond; Macaire, Womeni Hilaire; Hervé, Njike Ngamga Fabrice; Fabrice, Tonfack Djikeng; Justin, Djopnang DJimbie; François, Tchoumbougnang; Jules-Roger, Kuiate
2018-03-12
Oils of fish origin are a very rich source of Omega - 3 and Omega - 6 fatty acids. They have been suggested to provide numerous health benefits for humans involving antimicrobial properties. Chrysichthys nigrodigitatus and Hepsetus odoe are two fishes well known in Cameroon. The chemical composition and the antibacterial activity of these fishes derived oils are unknown. The study was designed to valorise C. nigrodigitatus and H.s odoe oils activity against food poisoning bacteria. Oils were extracted by pressing and maceration methods. Their quality was assessed by analysing quality indexes including peroxides, acid, iodine, anisidine and thiobarbituric acid values. Chemical analysis was established by gas chromatography coupled to flame ionization detector. Antibacterial activity was evaluated by broth microdilution method. C. nigrodigitatus oil obtained by maceration exhibited highest acid (7.33 ± 0.00 mg KOH/g), anisidine (34.5 ± 1.84) and thiobarbituric acid (7.50 ± 0.30 μmol MDA/Kg) values compared to that obtained by pressing method (9.13 ± 0.64 and 6.72 ± 0.34 μmol MDA/Kg) respectively. H. odoe oil obtained by pressing method showed highest peroxide value (6.22 ± 1.31 meq O 2 /kg). Oil chemical analysis revealed long chain polyunsaturated fatty acids of the ω-3 family: linolenic acid (C18:3); eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) and ω-6 family; arachidonic acid (C20:4). In addition, C. nigrodigitatus oil obtained by pressing and maceration methods showed Minimum Inhibitory Concentrations (MIC) values ranging from 32 to 64 mg/ml. H. odoe oil obtained by pressing method revealed MIC values ranging between 8 and 64 mg/ml. C. nigrodigitatus and H. odoe oils have activity against food poisoning bacteria, due to their chemical composition.
Al-Taweel, A M; Fawzy, G A; Perveen, S; El Tahir, K E H
2013-09-01
The present study reports Gas chromatographic mass analysis (GC-MS) as well as important biological activities of Cymbopogon proximus essential oil. The chemical composition of the essential oil of Cymbopogon proximus was investigated by GC-MS. Furthermore, the effects of Cymbopogon proximus essential oil on the cardiac parasympathetic ganglia in rats, the intra-tracheal pressure in guinea-pigs and on carrageenan-induced inflammation in the rats paw, were studied. The GC-MS study led to the identification of 22 components with Piperitone representing (73.81%), Elemol (9.32%), alpha-Eudesmol (5.21%) and alpha-Terpineol (3.01%) of the oils composition. The percentage protective effect of the oil on the vagus-induced bradycardia in rats was 90.1±3.1%, which represents a significant protection. As for the effect of Cymbopogon oil on bronchoconstrictors-induced increase in intra-tracheal pressure in guinea-pigs, the oil antagonized the actions of 5-HT and histamine by 80±3.7 and 93±8.3%, respectively. Pharmacological investigations using Cymbopogon oil revealed its inherent ability to possess a bronchodilator activity mediated via blockade of both histamine and serotonin receptors. It possessed a significant ganglionic blocking action and a limited anti-inflammatory activity that seemed to involve blockade of histamine and serotonin receptors in the rats' paws. © Georg Thieme Verlag KG Stuttgart · New York.
Rodrigues, Nuno; Malheiro, Ricardo; Casal, Susana; Asensio-S-Manzanera, M Carmen; Bento, Albino; Pereira, José Alberto
2012-08-01
Lipids oxidation is one of the main factors leading to quality losses in foods. Its prevention or delay could be obtained by the addition of antioxidants. In this sense the present work intend to monitor the protective effects of Lavandula latifolia essential oil during soybean oil microwave heating. To achieve the proposed goal quality parameters (free acidity, peroxide value, specific coefficients of extinction and ΔK), fatty acids profile, tocopherols and tocotrienols composition, antioxidant activity and oxidative stability were evaluated in soybean oil with and without spike lavender essential oils (EO) submitted to different microwave heating exposure times (1, 3, 5, 10 and 15 min; 1000 Watt) with a standard domestic microwave equipment. Microwave heating induced severe quality and composition losses, mainly above 3 min of microwave heating, regardless the sample tested. However, spike lavender EO addition counteracts the oxidation comparatively to control oils, by presenting enhanced values in quality parameters. A higher protection in unsaturated fatty acids loss was also observed as well as a higher antioxidant activity and oxidative stability. The microwave heating effects were clearly different in the samples with essential oils addition, allowing discrimination from plain soybean oils by a principal component analysis, being also capable to discriminate the different heating times tested within each sample. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Erica A.; Lee, Young Jin
2010-08-23
Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Amongmore » those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.« less
Boukouada, Mustapha; Ghiaba, Zineb; Gourine, Nadhir; Bombarda, Isabelle; Saidi, Mokhtar; Yousfi, Mohamed
2014-12-01
The fatty acid composition of date seed oil from two different date palm (Phoenix dactylifera L.) cultivars, locally known as Degla-Baïdha and Tafezouine, were investigated. GC analysis revealed the presence of five dominant fatty acids: oleic C18:1 (46.51; 39.15%), lauric C12:0 (22.1; 28.5%), myristic C14:0 (10.7; 11.4%), palmitic C16:0 (9.6; 8.7%) and linoleic C18:2 (6.9; 6.1%). The oils was characterised by a low content of tocopherols (0.53; 1.41 μg/g). The antioxidant activity of the oils was investigated using the DPPH*(1,1-di-phenyl-2-picryl-hydrazyl) scavenging assay. The oils had a weak bleaching effect on DPPH* free radicals. This study showed that the qualities of the tested oils are highly comparable with those of some commercial seed oils of other plants. Furthermore, a statistical analysis using the hierarchy ascendant classification method was conducted in order to highlight the similarities and/or the differences regarding the contents of the main fatty acids found in some common plants and in the five most famous cultivars of Phoenix dactylifera of south eastern Algeria (Tafezouine, Degla-Baïdha, Deglet-Nour, Ghars, Tamdjouhert).
NASA Astrophysics Data System (ADS)
Vintila, Iuliana; Gavrus, Adinel
2017-10-01
The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).
Chemical composition of the essential oil of Feronia elephantum Correa.
Pande, Chitra; Tewari, Geeta; Singh, Charu; Singh, Shalini; Padalia, R C
2010-11-01
The essential oil composition of Feronia elephantum Correa (family: Rutaceae) was examined by capillary gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS). The analysis revealed the presence of 24 constituents, of which 18 constituents were identified. Trans-anethole (57.73%) and methyl chavicol (37.48%) were the major compounds, while cis-anethole, p-anisaldehyde, (E)-jasmone, methyl eugenol, β-caryophyllene, linalool and (E)-methyl isoeugenol were also present as the minor constituents.
On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes.
Ristic, Nenad D; Djokic, Marko R; Van Geem, Kevin M; Marin, Guy B
2016-08-05
The shift to heavy crude oils and the use of alternative fossil resources such as shale oil are a challenge for the petrochemical industry. The composition of heavy crude oils and shale oils varies substantially depending on the origin of the mixture. In particular they contain an increased amount of nitrogen containing compounds compared to the conventionally used sweet crude oils. As nitrogen compounds have an influence on the operation of thermal processes occurring in coker units and steam crackers, and as some species are considered as environmentally hazardous, a detailed analysis of the reactions involving nitrogen containing compounds under pyrolysis conditions provides valuable information. Therefore a novel method has been developed and validated with a feedstock containing a high nitrogen content, i.e., a shale oil. First, the feed was characterized offline by comprehensive two-dimensional gas chromatography (GC × GC) coupled with a nitrogen chemiluminescence detector (NCD). In a second step the on-line analysis method was developed and tested on a steam cracking pilot plant by feeding pyridine dissolved in heptane. The former being a representative compound for one of the most abundant classes of compounds present in shale oil. The composition of the reactor effluent was determined via an in-house developed automated sampling system followed by immediate injection of the sample on a GC × GC coupled with a time-of-flight mass spectrometer (TOF-MS), flame ionization detector (FID) and NCD. A novel method for quantitative analysis of nitrogen containing compounds using NCD and 2-chloropyridine as an internal standard has been developed and demonstrated.
Manzo, Alessandra; Musso, Loana; Panseri, Sara; Iriti, Marcello; Dallavalle, Sabrina; Catalano, Enrico; Scarì, Giorgio; Giorgi, Annamaria
2016-07-01
This research aimed at improving knowledge as to the chemical composition and the antibacterial and anti-cancer activities of the essential oil of Waldheimia glabra, a wild plant from the Himalayan Mountains. The results obtained by GC-MS showed that spathulenol, 9-tetradecenol, thujopsene, α-thujone, santolina alcohol and terpinen-4-ol were the main constituents of Waldheimia glabra essential oil. These results were confirmed by HS-SPME GC-MS analysis that also reported high amounts of artemisia alcohol and camphor. Disc diffusion assay suggested a mild antibacterial activity against both Escherichia coli and Staphylococcus aureus. Finally, a dose-response correlation was observed between Waldhemia glabra essential oil concentration and viability of human breast adenocarcinoma cells MDA-MB-231 and MCF-7. Together with the GC-MS method, HS-SPME GC-MS proved to be a reliable technique to characterise the chemical composition of essential oil obtained from aromatic plants. Further studies will focus on W. glabra phytochemicals and their biological activity, in order to support traditional uses of the plant. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam
2016-01-01
Objective: The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Materials and Methods: Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. Results: GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Conclusion: Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs). PMID:27462560
Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi
2015-03-01
In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.
Gertler, Christoph; Näther, Daniela J; Cappello, Simone; Gerdts, Gunnar; Quilliam, Richard S; Yakimov, Michail M; Golyshin, Peter N
2012-09-01
Diversity of indigenous microbial consortia and natural occurrence of obligate hydrocarbon-degrading bacteria (OHCB) are of central importance for efficient bioremediation techniques. To investigate the microbial population dynamics and composition of oil-degrading consortia, we have established a series of identical oil-degrading mesocosms at three different locations, Bangor (Menai Straits, Irish Sea), Helgoland (North Sea) and Messina (Messina Straits, Mediterranean Sea). Changes in microbial community composition in response to oil spiking, nutrient amendment and filtration were assessed by ARISA and DGGE fingerprinting and 16Sr RNA gene library analysis. Bacterial and protozoan cell numbers were quantified by fluorescence microscopy. Very similar microbial population sizes and dynamics, together with key oil-degrading microorganisms, for example, Alcanivorax borkumensis, were observed at all three sites; however, the composition of microbial communities was largely site specific and included variability in relative abundance of OHCB. Reduction in protozoan grazing had little effect on prokaryotic cell numbers but did lead to a decrease in the percentage of A. borkumensis 16S rRNA genes detected in clone libraries. These results underline the complexity of marine oil-degrading microbial communities and cast further doubt on the feasibility of bioaugmentation practices for use in a broad range of geographical locations. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio
2016-03-04
Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.
Liu, Qiaoxiao; Li, Dengwu; Wang, Wei; Wang, Dongmei; Meng, Xiaxia; Wang, Yongtao
2016-09-01
The chemical composition and antioxidant activity of essential oils and MeOH extracts of stems, needles, and berries from Juniperus rigida were studied. The results indicated that the yield of essential oil from stems (2.5%) was higher than from needles (0.8%) and berries (1.0%). The gas chromatography/mass spectrometer (GC/MS) analysis indicated that 21, 17, and 14 compounds were identified from stems, needles, and berries essential oils, respectively. Caryophyllene, α-caryophyllene, and caryophyllene oxide were primary compounds in both stems and needles essential oils. However, α-pinene and β-myrcene mainly existed in berries essential oils and α-ionone only in needles essential oils. The high-performance liquid chromatography (HPLC) analysis indicated that the phenolic profiles of three parts exhibited significant differences. Needles extracts had the highest content of chlorogenic acid, catechin, podophyllotoxin, and amentoflavone, and for berries extracts, the content of those compounds was the lowest. Meanwhile, three in vitro methods (DPPH, ABTS, and FRAP) were used to evaluate antioxidant activity. Stems essential oil and needles extracts exhibited the powerful antioxidant activity than other parts. This is the first comprehensive study on the different parts of J. rigida. The results suggested that stems and needles of J. rigida are useful supplements for healthy products as new resources. © 2016 Wiley-VHCA AG, Zürich.
Wang, Haiyang; Gu, Dongyu; Wang, Miao; Guo, Hong; Wu, Huijuan; Tian, Guangliang; Li, Qian; Yang, Yi; Tian, Jing
2017-06-09
The discovery of leads from medicinal plants is crucial to drug development. The present study presents a strategy based on GC-MS coupled with molecular docking for analysis, identification and prediction of protein tyrosine phosphatase 1B inhibitors in the essential oil from Himalayan Cedar (HC). The essential oil with IC 50 value of 120.71±0.26μg/mL exhibited potential activity against protein tyrosine phosphatase 1B (PTP1B) in vitro. After GC-MS analysis, 35 compounds were identified from this oil. The identified compounds were individually docked with PTP1B. Caryophyllene oxide with the lowest binding energy of -6.28kcal/mol was completely wrapped by the active site of PTP1B. The docking results indicated that caryophyllene oxide has potential PTP1B inhibitory activity and may be responsible for the PTP1B inhibitory activity of the essential oil. Caryophyllene oxide in the essential oil of Himalayan Cedar was isolated by HSCCC and the PTP1B inhibitory activity of this compound was then evaluated; the IC 50 value was 31.32±0.38μM. The result revealed that the present strategy can effectively discover the active composition from the complex mixture of medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Helmi, Zead; Al Azzam, Khaldun Mohammad; Tsymbalista, Yuliya; Ghazleh, Refat Abo; Shaibah, Hassan; Aboul-Enein, Hassan
2014-12-01
To investigate, for the first time, the chemical composition of essential oil of the tubers and leaves of Jerusalem artichoke (Helianthus tuberosus L.), a species of sunflower native to eastern North America, growing in Ukraine. A hydrodistillation apparatus was used for the extraction of volatile components and then it was analysed by gas chromatography equipped with a split-splitless injector (split ratio, 1:50) and flame ionization detector (FID). The oil was analyzed under linear temperature programming applied at 4°C/min from 50°C - 340°C. Temperatures of the injector and FID detector were maintained at 280°C and 300°C, respectively. The chemical analysis of the oil was carried out using gas chromatography coupled to mass spectrometry (GC-MS), to determine the chemical composition of the volatile fraction. The essential oils content ranged from 0.00019 to 0.03486 and 0.00011 to 0.00205 (g/100g), in leaves and tubers, respectively. The qualitative and quantitative analysis led to the identification of 17 components in both species samples. The major component found in leaves and tubers was (-)-β-bisabolene with 70.7% and 63.1%, respectively. Essential oil profile of Jerusalem artichoke species showed significant differences between leaves and tubers species. Additionally, the leaves of Jerusalem artichoke are a promising source of natural β-bisabolene.
Ghfir, B; Fonvieille, J L; Dargent, R
1997-07-01
The cell walls of the growing hyphae of Aspergillus fumigatus (Fresenius) cultured in the presence or absence of the essential oil of Hyssopus officinalis were isolated and their chemical composition analysed. The presence of the essential oil led to a reduction in levels of neutral sugars, uronic acid and proteins, whereas amino sugars, lipids and phosphorus levels were increased. HPLC analysis of the neutral sugars showed that they consisted mainly of glucose, mannose and galactose, while the amino sugars consisted of glucosamine and galactosamine. The presence of the essential oil in the culture medium induced marked changes in the content of galactose and galactosamine. Cell walls were fractionated by treatment with alkali and acid. The essential oil induced similar alterations in the various fractions with a more marked effect on the major constituents. The alterations were related to changes in the structure of the cells.
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
Background: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. Methods: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Results: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Conclusion: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation. PMID:29296263
Moradi, Sara; Fazlali, Alireza; Hamedi, Hamid
2018-01-01
Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary ( Rosmarinus officinalis L. ) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min , compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.
Thomas, Adelina; Mazigo, Humphrey D; Manjurano, Alphaxard; Morona, Domenica; Kweka, Eliningaya J
2017-09-06
Mosquitoes are well-known vectors of many diseases including malaria and lymphatic filariasis. Uses of synthetic insecticides are associated with high toxicity, resistance, environmental pollution and limited alternative, effective synthetic insecticides. This study was undertaken to evaluate the larvicidal efficacy of clove and cinnamon essential oils against laboratory Anopheles gambiae (sensu stricto) and wild An. arabiensis larvae. The standard WHO guideline for larvicides evaluation was used, and the GC-MS machine was used for active compounds percentage composition analysis and structures identification. Probit regression analysis was used for LC 50 and LC 95 calculations while a t-test was used to test for significant differences between laboratory-reared and wild larvae populations in each concentration of plant extract. Mortality effect of clove and cinnamon essential oils against wild and laboratory-reared larvae had variations indicated by their LC 50 and LC 95 values. The mortality at different concentrations of cinnamon and clove post-exposure for wild and laboratory-reared larvae were dosage-dependent and were higher for cinnamon than for clove essential oils. The mortality effect following exposure to a blend of the two essential oils was higher for blends containing a greater proportion of cinnamon oil. In the chemical analysis of the active ingredients of cinnamon essential oil, the main chemical content was Eugenol, and the rarest was β-Linalool while for clove essential oil, the main chemical content was Eugenol and the rarest was Bicyclo. The essential oils showed a larvicidal effect which was concentration-dependent for both laboratory and wild collected larvae. The active ingredient compositions triggered different responses in mortality. Further research in small-scale should be conducted with concentrated extracted compounds.
Ahmad, Farah B; Zhang, Zhanying; Doherty, William O S; O'Hara, Ian M
2015-08-01
Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aysu, Tevfik
2015-09-01
Pyrolysis of Alcea pallida stems was performed in a fixed-bed tubular reactor with and without catalyst at three different temperatures. The effects of pyrolysis parameters including temperature and catalyst on the product yields were investigated. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts had different effects on product yields and composition of bio-oils. Liquid yields were increased in the presence of zinc chloride and alumina but decreased with calcium hydroxide, tincal and ulexite. The highest bio-oil yield (39.35%) by weight including aqueous phase was produced with alumina catalyst at 500 °C. The yields of bio-char, bio-oil and gas produced, as well as the compositions of the resulting bio-oils were determined by elemental analysis, TGA, FT-IR and GC-MS. 160 different compounds were identified by GC-MS in the bio-oils obtained at 500 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.
Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae).
Michaelakis, Antonios; Papachristos, Dimitrios; Kimbaris, Athanasios; Koliopoulos, George; Giatropoulos, Athanasios; Polissiou, Moschos G
2009-09-01
The aim of this study was to evaluate the toxicity of pinenes (enantiomers of alpha- and beta-) and essential oils from Greek plants of the Rutaceae family against the mosquito larvae of Culex pipiens (Diptera: Culicidae). Essential oils were isolated by hydrodistillation from fruit peel of orange (Citrus sinensis L.), lemon (Citrus limon L.), and bitter orange (Citrus aurantium L.). The chemical composition was determined by gas chromatography/mass spectrometry (GC/MS) analysis. Citrus essential oils contained in high proportion limonene and in lower quantities p-menthane molecules and pinenes. The insecticidal action of these essential oils and enantiomers of their pinenes on mosquito larvae was evaluated. Plant essential oils exhibited strong toxicity against larvae with the LC(50) values ranging from 30.1 (lemon) to 51.5 mg/L (orange) depending on Citrus species and their composition. Finally, the LC(50) value of pinenes ranging from 36.53 to 66.52 mg/L indicated an enantioselective toxicity only for the beta-pinene enantiomer.
Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.
Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam
2018-01-01
The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.
Zarrouk, Wissem; Carrasco-Pancorbo, Alegría; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Zarrouk, Mokhtar
2010-05-26
The unsaponifiable fraction of six Tunisian monovarietal virgin olive oils from the region of Medenine was evaluated within a single chromatographic run by using HPLC-APCI-tandem MS. Separation of the compounds under study was achieved by the RP-LC method, giving a reasonable analysis time and good resolution. Detection was done by an ion trap (working alternatively in MS and MS/MS modes), the fact which made our method suitable to unequivocally identify a high number of compounds belonging to different families of the unsaponifiable fraction of oil and to carry out their reliable and sensitive quantification. A great amount of qualitative information was generated in every analysis, although we focused on the quantification of sterols, tocopherols, and triterpenic dialcohols since their standards were commercially available. The limits of detections achieved were within the range of 1.21 and 10.31 microg/kg for sitostanol and beta-sitosterol, respectively. Significant differences were observed in the composition of the studied olive cultivars. Jemri Ben Guerdane oil was the richest one in terms of all of the sterols under study. alpha-Tocopherol was the main vitamin E isomer in all samples, ranging from 70.14 to 130.72 mg/kg. Principal component analysis (PCA) and cluster analysis were applied to the whole data set in order to explore the distribution of the olive cultivars according to their oil composition.
NASA Astrophysics Data System (ADS)
Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong
2018-05-01
A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.
Alizadeh Behbahani, Behrooz; Tabatabaei Yazdi, Farideh; Vasiee, Alireza; Mortazavi, Seyed Ali
2018-01-01
Oliveria decumbens as a valuable medicinal plant is extensively used in traditional medicine. clinical and standard strains causing infection resistance to antimicrobial agents, is one of the important problems in medicine. The aim of this study was to investigate the antibacterial activities and phytochemical analysis of Oliveria decumbens essential oil on the growth of some clinical and standard strains causing infection (Pseudomonas aerogenes, Escherichia coli, Streptococcus pyogenes and Staphylococcus epidermidis). Oliveria decumbens essential oil composition was identified by gas chromatography/mass spectrometry. Phytochemical analysis (alkaloids, saponins, flavone and phenolic) essential oil of the Oliveria decumbens were appraised based on qualitative methods. Several methods (disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)) were used to appraise the antibacterial activity of the Oliveria decumbens essential oil. Thymol (28.45%) was the major compound of Oliveria decumbens essential oil. The total phenolics content (TPC) of the essential oil positively correlated with antioxidant activity (AA). The TPC and AA of Oliveria decumbens essential oil was equal to 92.45 ± 0.70 μg GAE/mg and 164.45 ± 1.20 μg/ml, respectively. The MIC of Oliveria decumbens essential oil ranged from 1 to 8 mg/ml depending on the type of bacteria (clinical and standard strains). The MBC of Oliveria decumbens essential oil varied from 1 mg/ml to 16 mg/ml. The smallest inhibition zone diameter (IZD) on different Oliveria decumbens essential oil concentrations on P. aeruginosa. Results indicate that Oliveria decumbens essential oil can prove to be an important source of AA and antibacterial and may be used for the treatment of infection diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fish or n3-PUFA intake and body composition: a systematic review and meta-analysis.
Bender, N; Portmann, M; Heg, Z; Hofmann, K; Zwahlen, M; Egger, M
2014-08-01
Obesity is a major public health issue and an important contributor to the global burden of chronic disease and disability. Studies indicate that fish and omega-3 polyunsaturated fatty acids (n3-PUFA) supplements may help prevent cardiovascular and metabolic diseases. However, the effect of fish oil on body composition is still uncertain, so we performed a systematic review of randomized controlled trials and the first meta-analysis on the association between fish or fish oil intake and body composition measures. We found evidence that participants taking fish or fish oil lost 0.59 kg more body weight than controls (95% confidence interval [CI]: -0.96 to -0.21). Treatment groups lost 0.24 kg m(-2) (body mass index) more than controls (-0.40 to -0.08), and 0.49 % more body fat than controls (-0.97 to -0.01). Fish or fish oil reduced waist circumference by 0.81 cm (-1.34 to -0.28) compared with control. There was no difference for fat mass and lean body mass. Further research is needed to confirm or refute our findings and to reveal possible mechanisms by which n3-PUFAs might reduce weight. © 2014 The Authors. obesity reviews © 2014 World Obesity.
USDA-ARS?s Scientific Manuscript database
The fatty acid composition of vegetable oil is becoming increasingly critical for the ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean oil increases oxidative stability and shelf life but also results in the introduction of trans fats...
Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content.
Tena, Noelia; Aparicio, Ramón; García-González, Diego L
2009-11-11
The monitoring of frying oils by an effective and rapid method is one of the demands of food companies and small food retailers. In this work, a method based on ATR-FTIR has been developed for monitoring the oil degradation in frying procedures. The IR bands changing during frying in sunflower, soybean, and virgin olive oils have been examined in their linear relationship with the content of total polar compounds, which is a preferred parameter for frying control. The bands assigned to conjugated and isolated trans double bonds that are commonly used for the determination of trans content provided the best relationships. Then, the area covering 978-960 cm(-1) was chosen to build a model for predicting polar material content for the particular case of virgin olive oil. A virgin olive oil was heated up to 94 h, and samples collected every 2 h constituted the training set. These samples were analyzed to obtain their FTIR spectra and to determine the composition of fatty acids and the content of total polar compounds. The excellent results predicting the polar material content (adjusted R(2) 0.997) was successfully validated with an external set of samples. The analysis of the fatty acid composition confirmed the relationship between the trans content and the content of total polar compounds.
Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis.
Le Masle, Agnès; Santin, Sandra; Marlot, Léa; Chahen, Ludovic; Charon, Nadège
2018-10-31
Biomass fast pyrolysis oils contain molecules having a large variety of chemical functions and a wide range of molecular weights (from several tens to several thousand grams per mole). The good knowledge of their complex composition is essential for optimizing the conversion of bio-oils to biofuels, thereby requiring powerful separation techniques. In this work, we investigate the interest of centrifugal partition chromatography (CPC) as a first dimension for the analysis of a bio-oil. A CPC method is proposed to separate oxygen containing compounds according to their partition coefficients in the solvent system. This approach is a powerful and easy-to-use technique that enables fractionation of a bio-oil at a semi-preparative scale, without any sample loss related to adsorption on the stationary phase. Collected fractions are then injected in liquid chromatography as a second dimension of separation. Contour plot representations of the CPC × LC separation are established to discuss the potential of this approach. These representations can be used as a veritable fingerprint in the comparison of different samples or samples at different steps of a conversion process but also as a powerful tool to identify new compounds and describe the entire composition of the bio-oil. Copyright © 2018 Elsevier B.V. All rights reserved.
Antibacterial activity and composition of the essential oil of Nepeta hormozganica Jamzad from Iran.
Sonboli, A; Saadat, M H; Arman, M; Kanani, M R
2017-12-01
The composition and antibacterial activity of the essential oil of the aerial flowering parts of Nepeta hormozganica Jamzad have been studied. Analysis of the oil was conducted by GC-FID and GC-MS. Thirty-two components were characterized accounting for 99.4% of the total oil. Oxygenated monoterpenes (87.5%) were found to be the predominant group of compounds, of which 18-cineole (65.0%) and 4aα-7α-7aβ-nepetalactone (13.0%) were the main constituents. The antibacterial activity of the essential oil and its main constituents showed that all of the tested microorganisms were highly inhibited by the essential oil with inhibition zones ranged from 12 to 24 mm. The most sensitive bacteria were Staphylococcus aureus and Staphylococcus epidermidis with the lowest MIC values of 0.3 and 0.6 mg/mL, respectively. Considering sensitivity screening it is conceivable that the activity of the oil from N. hormozganica could be attributed mainly to the synergistic property of 18-cineole and nepetalactone.
Angioni, Alberto; Barra, Andrea; Arlorio, Marco; Coisson, Jean Daniel; Russo, Maria T; Pirisi, Filippo M; Satta, Maurizio; Cabras, Paolo
2003-02-12
The chemical composition of the essential oil of the Sardinian dwarf curry plant [Helichrysum italicum G. Don ssp. microphyllum (Willd) Nym] was studied. Genetic analysis suggested the presence of two chemotypes; morphological and chemical differences confirmed the presence of two chemotypes (A and B). The maximum yields were 0.18 and 0.04% (v/w) for flowering tops and stems, respectively. The concentrations of nerol and its esters (acetate and propionate), limonene, and linalool reach their highest values during the flowering stage both in flowers and in stems. Besides the essential oil, type B showed an interesting antifungal activity.
El-Zaeddi, Hussein; Martínez-Tomé, Juan; Calín-Sánchez, Ángel; Burló, Francisco; Carbonell-Barrachina, Ángel A.
2016-01-01
Volatile composition of essential oils from dill, parsley, coriander, and mint were investigated at different harvest dates to determine the most suitable harvest time for each these herbs. Hydrodistillation (HD), using a Deryng system, was used for isolating the essential oils. Isolation and identification of the volatile compounds were performed using gas chromatography-mass spectrometry (GC-MS) instrument. The results of gas chromatography-flame ionization detector (GC-FID) analysis (quantification) showed that the main components in the essential oil of dill shoots were α-phellandrene, dill ether, and β-phellandrene, and the optimal harvest date was D2 (second harvest, fourth week of February 2015). For parsley shoots, the main compounds were 1,3,8-p-menthatriene, β-phellandrene, and P1 (first harvest, third week of November 2014) was the sample with the highest essential oil. For coriander, the main compounds were E-2-dodecenal, dodecanal, and octane and the highest contents were found at C2 (second harvest, 5 February 2015); while, the main two components of mint essential oil were carvone and limonene, and the highest contents were found at M1 (first harvest, second week of December 2014). The present study was the first one reporting data on descriptive sensory analysis of aromatic herbs at this optimal harvest date according to the content of volatile compounds of their essential oils. PMID:28231136
Protein composition of oil bodies from mature Brassica napus seeds.
Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie
2009-06-01
Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.
Tozin, Luiz R S; Marques, Marcia O M; Rodrigues, Tatiane M
2015-01-01
The essential oils from leaves and inflorescences of Lippia origanoides Kunth present aromatic and medicinal potential and have been used to treat several diseases, including melanoma. In Brazil, L. origanoides is commonly found in campo cerrado and cerrado stricto sensu, physiognomies featured mainly by the differential light conditions to which short and medium-sized plants are subjected. Our aim was to investigate the glandular trichome density and the yield and chemical composition of the essential oils in leaves and inflorescences of L. origanoides from campo cerrado and cerrado stricto sensu. For glandular density analysis, leaves and inflorescences were processed according to conventional techniques for scanning electron microscopy. The essential oils of leaves and inflorescences were obtained by hydrodistillation and identified with gas chromatography. Bracts and sepals showed the highest glandular density, followed by petals and leaves. The glandular density in the abaxial leaf surface was higher in individuals from the campo cerrado. In both populations the essential oil yield was higher in inflorescences than in leaves. The chemical composition of the essential oils varied among individuals from different areas and inside a same population. Our results demonstrated the chemical plasticity of L. origanoides suggesting the importance of monitoring its popular use.
Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin.
Ribeiro, Aurislaine S; Ribeiro, Mariana S; Bertolucci, Suzan K V; Bittencourt, Wanderley J M; Carvalho, Alexandre A DE; Tostes, Wesley N; Alves, Eduardo; Pinto, José E B P
2018-04-16
The purpose of this investigation was to determine the influence of colored shade nets on the growth, anatomy and essential oil content, yield and chemical composition of Pogostemon cablin. The plants were cultivated under full sunlight, black, blue and red nets. The harvesting was performed 5 months after planting and it was followed by the analysis of plant growth parameters, leaf anatomy, essential oil content, yield and chemical composition. The plants grown under red net have produced more leaf, shoot, total dry weight and leaf area. Plants cultivated under colored nets showed differences in morphological features. Plants maintained under red net had a higher leaf blade thickness and polar and equatorial diameter of the stomata ratio. Additionally, higher yield of essential oil in the leaves was observed under red and blue colored shade net. The essential oil of the plants grown under red net showed the highest relative percentage of patchoulol (66.84%). Therefore, it is possible using colored shade nets to manipulate P. cablin growth, as well as its essential oil production with several chemical compositions. The analyses of principal components allowed observing that pogostol has negative correlation with α-guaiene and α-bulnesene. There was difference in total dry weight and patchoulol content when the patchouli is cultured under the red colored shade nets.
Rasheed, Hafiz Majid; Khan, Taous; Wahid, Fazli; Khan, Rasool; Shah, Abdul Jabbar
2015-01-01
Rosa indica L. belongs to the family Rosaceae and is locally known as gulaab. It has different traditional uses in cardiovascular and gastrointestinal disorders but there is no scientific data available in this regard. Therefore, the basic aim of this study was to explore the chemical composition and gastrointestinal and cardiovascular effects of the essential oil obtained from R. indica. The chemical composition of the essential oil was investigated using gas chromatography-mass spectrometry (GC-MS) technique. The cardiovascular and gastrointestinal effects were investigated using electrophysiological measurements. The GC-MS analysis of the essential oil showed various chemical components including acetic acid, mercaptohexyl ester, butanoic acid, 2-methyl-5-oxo-1-cyclopentene-1-yl ester, artemiseole, methyl santonilate, isosteviol, caryophyllene oxide, pentyl phenyl acetate, dihydromyrcene, 1,5-octadecadien, octadecanoic acid, ethyl ester, palmitic acid (2-phenyl-1,3-dioxolan-4-yl methyl ester), santolina epoxide, and 9-farnesene. The electrophysiological measurements revealed that essential oil was more potent against K+ (80 mM) than phenylephrine precontractions using isolated rabbit aorta preparations. In isolated rabbit jejunum preparations, it showed more potency against high K+ induced contractions than spontaneous contractions. Considering these evidences, it can be concluded that R. indica essential oil may work as a complementary and alternative medicine in gastrointestinal and cardiovascular diseases. PMID:26357519
Aboukhalid, Kaoutar; Al Faiz, Chaouki; Douaik, Ahmed; Bakha, Mohamed; Kursa, Karolina; Agacka-Mołdoch, Monika; Machon, Nathalie; Tomi, Félix; Lamiri, Abdeslam
2017-09-01
The present study aimed to evaluate the influence of environmental factors on essential oils (EOs) composition of Origanum compactum populations sampled all over the distribution area of the species in Morocco, and to determine the extent of the chemical profiles throughout the geographical distribution of the species. The chemical compositions were submitted to canonical correlation analysis and canonical discriminant analysis that indicated a significant relationship between oil components and some environmental factors. According to their chemical composition and edapho-climatic characteristics, two major groups of populations were differentiated. The first group was composed of samples growing in regions with humid climate, clayey, sandy, and alkaline soils. These samples showed high thymol, α-terpineol, linalool, and carvacryl methyl oxide content. The second group consisted of plants belonging to semi-arid climate, and growing at high altitudes and silty soils. These samples were characterized by high carvacrol, α-thujene, α-terpinene, and myrcene content. However, populations exposed to sub-humid climate, appeared less homogeneous and belong mainly either to the first or second group. A significant correlation between some edaphic factors (pH, K 2 O content, soil texture) and the EOs yield of O. compactum plants was evidenced. In spite of the correlation obtained for the oil composition with edapho-climatic factors and the variance explained by the environmental data set, the observed EO diversity might be also genetically determined. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
NASA Astrophysics Data System (ADS)
Tugiman; Ariani, F.; Taher, F.; Hasibuan, M. S.; Suprianto
2017-12-01
Palm oil processing industries are very attractive because they offer plenty products with high economic value. The CPO factory processes not only produces crude palm oil but also generates fly ash (FA) particles waste in its final process. The purpose of this investigation to analyze and increase the benefits of particles as reinforcement materials for fabricating aluminum matrix composites (AMC’s) by different casting route. Stirring, centrifugal and squeeze casting method was conducted in this study. Further, the chemical composition of FA particles, densities and mechanical properties have been analyzed. The characteristics of composite material were investigated using an Optical microscope, scanning electron microscope (SEM), hardness (Brinell), impact strength (Charpy). The pin on disc method was used to measure the wear rate. The results show that SiO2, Fe2O3, and Al2O3 are the main compounds of fly ash particles. These particles enhanced the hardness and reduce wear resistance of aluminum matrix composites. The squeeze method gives better results than stir and centrifugal casting.
Harraz, Fathalla M; Hammoda, Hala M; El Ghazouly, Maged G; Farag, Mohamed A; El-Aswad, Ahmed F; Bassam, Samar M
2015-01-01
Two essential oil-containing plants growing wildly in Egypt: Conyza linifolia (Willd.) Täckh. (Asteraceae) and Chenopodium ambrosioides L. (Chenopodiaceae) were subjected to essential oil analysis and biological investigation. The essential oils from both plants were prepared by hydrodistillation, and GC/MS was employed for volatiles profiling. This study is the first to perform GC/MS analysis of C. linifolia essential oil growing in Egypt. C. linifolia essential oil contained mainly sesquiterpenes, while that of C. ambrosioides was rich in monoterpenes. Ascaridole, previously identified as the major component of the latter, was found at much lower levels. In addition, the oils were investigated for their antimicrobial activity against two Gram positive and two Gram negative bacteria, and one fungus. The insecticidal activities of both oils, including mosquitocidal and pesticidal potentials, were also evaluated. The results of biological activities encourage further investigation of the two oils as antimicrobial and insecticidal agents of natural origin.
Daneshvand, Behnaz; Ara, Katayoun Mahdavi; Raofie, Farhad
2012-08-24
Fatty acids of Cydonia oblonga Miller cultivated in Iran were obtained by supercritical (carbon dioxide) extraction and ultrasound-assisted extraction methods. The oils were analyzed by capillary gas chromatography using mass spectrometric detections. The compounds were identified according to their retention indices and mass spectra (EI, 70eV). The experimental parameters of SFE such as pressure, temperature, modifier volume, static and dynamic extraction time were optimized using a Central Composite Design (CCD) after a 2(5) factorial design. Pressure and dynamic extraction time had significant effect on the extraction yield, while the other factors (temperature, static extraction time and modifier volume) were not identified as significant factors under the selected conditions. The results of chemometrics analysis showed the highest yield for SFE (24.32%), which was obtained at a pressure of 353bar, temperature of 35°C, modifier (methanol) volume of 150μL, and static and dynamic extraction times of 10 and 60min, respectively. Ultrasound-assisted extraction (UAE) of Fatty acids from C. oblonga Miller was optimized, using a rotatable central composite design. The optimum conditions were as follows: solvent (n-hexane) volume, 22mL; extraction time, 30min; and extraction temperature, 55°C. This resulted in a maximum oil recovery of 19.5%. The extracts with higher yield from both methods were subjected to transesterification and GC-MS analysis. The results show that the oil obtained by SFE with the optimal operating conditions allowed a fatty acid composition similar to the oil obtained by UAE in optimum condition and no significant differences were found. The major components of oil extract were Linoleic, Palmitic, Oleic, Stearic and Eicosanoic acids. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Goncharov, I. V.; Oblasov, N. V.
2015-02-01
Oil in layers Nkh 3-4, Nkh 1, Sd 9, Yak 3-7 and vYak 2-4 of the Vankor field occurs at the depth of -2,767 to -1,357 meters at strongly different temperatures: from 62 to 26 °C. Such temperature conditions contribute to oil biodegradation processes in the pool. Therefore, oils in different pools significantly differ from each other in terms of composition and properties depending on the intensity of biodegradation. At the same time, pools might embrace both oils that have practically been not exposed to biodegradation processes and significantly biodegraded oils. The most seriously altered oils are found in vYak 2-4 layer pools. They are the heaviest and the most viscous oils among the samples under study. Many typical oil components (alkanes, alkylbenzenes, naphthalenes, phenanthrenes, dibenzothiophenes) are absent in their composition. Besides, the initial distribution of hopanes in the composition of biomarkers is altered. Apart from the molecular composition of degassed oil samples, the work also studies the effect of biodegradation on the properties and the component and isotopic composition of oils, gases and formation fluid samples.
α-Linalool - a marker compound of forged/synthetic sweet basil (Ocimum basilicum L.) essential oils.
Radulović, Niko S; Blagojević, Polina D; Miltojević, Ana B
2013-10-01
Ocimum basilicum L. (sweet basil) is known to occur as several chemotypes or cultivars that differ in their essential oil composition. The surprising discovery of 3,7-dimethylocta-1,7-dien-3-ol, the rare α isomer of the well-known monoterpene alcohol β-linalool (3,7-dimethylocta-1,6-dien-3-ol), in samples of Serbian basil oil provoked an investigation of the origin of α-linalool in these samples. Three scenarios were considered, namely (a) the existence of a new natural chemotype, (b) an artefactual formation during the isolation procedure and (c) the case of a synthetic/forged oil. Noteworthy amounts (15.1-16.9%) of pure α-linalool were isolated from a commercial sample of basil oil, and detailed spectral analyses (MS, IR, (1) H and (13) C NMR) unequivocally confirmed its identity. The analysis by GC and GC/MS of an additional 20 samples of different O. basilicum oils commercially available on the Serbian market or isolated from plant material cultivated in Serbia resulted in the identification of 149 compounds. The obtained compositional data were compared using multivariate statistical analysis to reveal the possible existence of a new basil chemotype. The results of the chemical and statistical analyses give more pro arguments for the synthetic/forged oil hypothesis and suggest that α-linalool could be used as a marker compound of such O. basilicum oils. © 2013 Society of Chemical Industry.
Goettel, Wolfgang; Xia, Eric; Upchurch, Robert; Wang, Ming-Li; Chen, Pengyin; An, Yong-Qiang Charles
2014-04-23
Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.
Sarac, Zorica; Bojović, Srdjan; Nikolić, Biljana; Tešević, Vele; Ethorđević, Iris; Marin, Petar D
2013-08-01
The essential-oil variability in seven native populations belonging to different infraspecific taxa of Pinus nigra (ssp. nigra, var. gocensis, ssp. pallasiana, and var. banatica) growing wild in Serbia was analyzed. In the needles of 195 trees from seven populations, 58 essential-oil components were identified. The major components were α-pinene (43.6%) and germacrene D (29.8%), comprising together 73.4% of the total oil composition. Based on the average chemical profile of the main terpene components (with contents >5%), the studied populations were found to be the most similar to populations from central Italy and Greece (ssp. nigra). Cluster analysis showed the division of the populations into three principal groups: the first group consisted of Populations I, II, III, IV, and V (considered as ssp. nigra group), the second of Population VI (ssp. pallasiana group), and the third of Population VII, which had the most distinct oil composition (ssp. banatica group). The taxonomic implications of the essential-oil profiles of the investigated taxa of this very complex species are discussed. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Sözmen, Fazli; Uysal, Burcu; Köse, Elif Odabaş; Aktaş, Ozgür; Cinbilgel, Ilker; Oksal, Birsen S
2012-07-01
The antibacterial activity and chemical composition of the essential oils (EOs) isolated from Origanum bilgeri P.H.Davis by two different extraction methods, i.e., hydrodistillation (HD) and solvent-free microwave extraction (SFME), were examined. This endemic Origanum species had shown very good antibacterial activity. The composition of the O. bilgeri EOs obtained by SFME and HD was investigated by GC/MS analysis. The main components of the oils obtained by both methods were carvacrol (90.20-84.30%), p-cymene (3.40-5.85%), γ-terpinene (0.47-1.20%), and thymol (0.69-1.08%). The EO isolation by SFME offered many important advantages, including a higher extraction yield, a shorter extraction time, and a higher content of the active component carvacrol. The carvacrol-rich oils obtained by both HD and SFME showed a good antibacterial activity. The largest inhibition zones were observed for the O. bilgeri EO obtained by SFME. Our study suggests that O. bilgeri EO has the potential to be used as preventative against bacterial contamination in many foods, instead of the common synthetic antimicrobial products. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L
2010-04-16
The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hill, Kristina M.
Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster with increased silica content in opal-CT and quartz phase samples, implying decreased wettability to oil with increased detrital (clay) content. However, contact angle tests showed that opal-CT is more wetting to oil with increased detritus and results for oil on quartz-phase samples were inconsistent between different proxies for detritus over their very small compositional range. Water contact angle trends also showed inconsistent wetting trends compared to imbibition tests. We believe this is because the small range in bulk detrital composition between the "pure" samples used in contact angle tests was close to analytical error and because small-scale spatial compositional variability may be significant enough to effect wettability. These experiments show that compositional variables significantly affect wettability, outweighing the effect of silica phase.
Sripathi, Raju; Jayagopal, Dharani; Ravi, Subban
2018-04-01
The chemical composition and seasonal variation of the essential oil from the aerial parts of Plectranthus hadiensis grown during the rainy and summer seasons in the Western Ghats of India was analysed by GC-MS technique. The analysis of rainy season oil led to the identification of 31 compounds, representing 96.4% of the essential oil and the winter season oil led to 25 compounds, representing 95.1% of the oil. Most of the compounds were sesquiterpenes and oxygenated monoterpenes. The major components of the rainy season oil were L-fenchone (30.42%), β-farnesene (11.87%), copaene(11.10%), 2,3-dimethyl hydroquinone (10.78%), α-caryophyllene(8.41%) and piperitone oxide (3.94%) and of the summer season oil are L-fenchone (31.55%), copaene(11.93%), β-farnesene (10.45%), 1,8-naphthalenedione, 8a-ethylperhydro (10.06%), α-caryophyllene(6.36%), piperitone oxide (5.79%) and limonene(4.63%). Antibacterial activity of the essential oil of P. hadiensis was tested using zone of inhibition and minimum inhibition concentration methods. Both the oils inhibited the organisms and showed the zone of inhibition in the range of 20-35 mm with MIC values between 32 and 64 mg/dL.
Geochemistry of Israeli oil shales: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirav, M.; Ginzburg, D.
1983-01-01
The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)
Bioplastic from Chitosan and Yellow Pumpkin Starch with Castor Oil as Plasticizer
NASA Astrophysics Data System (ADS)
Hasan, M.; Rahmayani, R. F. I.; Munandar
2018-03-01
This study has been conducted on bioplastic synthesis of chitosan and yellow pumpkin starch (Cucurbita moschata) with castor oil as plasticizer. The purpose of this study is to determine the characteristics of the effect of chitosan and starch composition of pumpkins against solvent absorption, tensile strength and biodegradable. The first stage of the research is the making of bioplastic by blending yellow pumpkin starch, chitosan and castor oil. Further, it tested the absorption capacity of the solvent, tensile strength test, and biodegradable analysis. The optimum absorption capacity of the solvent is obtained on the composition of Pumpkin/Chitosan was 50/50 in H2O and C2H5OH solvent. Meanwhile the optimum absorbency in HCl and NaOH solvents is obtained by 60/40 composition. The characterization of the optimum tensile strength test was obtained on the 40/60 composition of 6.787 ± 0.274 Mpa and the fastest biodegradation test process within 5-10 days occurred in the 50/50 composition. The more chitosan content the higher the value of tensile strength test obtained, while the fastest biodegradation rate occureds in the composition of yellow pumpkin starch and chitosan balanced 50:50.
Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R
2009-08-01
The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalkreuth, W.; Macauley, G.
1984-04-01
Incident light microscopy was used to describe maturation and composition of organic material in oil shale samples from the Lower Carboniferous Albert Formation of New Brunswick. The maturation level was determined in normal (white) light by measuring vitrinite reflectance and in fluorescent light by measuring fluorescence spectral of alginite B. Results indicate low to intermediate maturation for all of the samples. Composition was determined by maceral analysis. Alginite B is the major organic component in all samples having significant oil potential. Oil yields obtained from the Fischer Assay process, and oil and gas potentials from Rock-Eval analyses correlate to themore » amounts of alginite B and bituminite determined in the samples. In some of the samples characterized by similar high concentrations of alginite B, decrease in Fischer Assay yields and oil and gas potentials is related to an increase in maturation, as expected by increase in the fluorescence parameter lambda/sub max/ and red/green quotient of alginite B. Incident light microscopy, particularly with fluorescent light, offers a valuable tool for the identification of the organic matter in oil shales and for the evaluation of their oil and gas potentials.« less
Menichini, Federica; Tundis, Rosa; Bonesi, Marco; de Cindio, Bruno; Loizzo, Monica R; Conforti, Filomena; Statti, Giancarlo A; Menabeni, Roberta; Bettini, Ruggero; Menichini, Francesco
2011-04-01
The chemical composition of the essential oil of Citrus medica L. cv. Diamante peel obtained by hydrodistillation, cold-pressing and supercritical carbon dioxide extraction techniques was determined by GC/MS analysis. Forty-six components were fully characterised. Limonene and γ-terpinene were the major components of the oils obtained by hydrodistillation (HD) and cold-pressing (CP), while citropten was the major constituent in the oil obtained by supercritical carbon dioxide extraction (SFE). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were evaluated. The essential oil obtained by hydrodistillation exerted the highest inhibitory activity against BChE (IC₅₀ value of 154.6 µg mL⁻¹) and AChE (IC₅₀ value of 171.3 µg mL⁻¹. Interestingly, the oil obtained by cold-pressing exhibited a selective inhibitory activity against AChE. The essential oils have also been evaluated for the inhibition of NO production in LPS induced RAW 264.7 macrophages. The oil obtained by hydrodistillation exerted a significant inhibition of NO production with an IC₅₀ value of 17 µg mL⁻¹ (IC₅₀ of positive control 53 µg mL⁻¹).
Effects of genetics and environment on fatty acid stability in soybean seed
USDA-ARS?s Scientific Manuscript database
Although seed oil production and composition are genetically controlled, changes of oil level and oil composition across genotypes and environments such as drought and temperature were observed. The mechanisms of how genotypes interact with environment, affecting oil production and composition, are ...
Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos; Dais, Photis
2003-09-10
A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).
Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid
2015-01-01
Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Essential oils were studied by gas chromatography coupled to mass spectrometry (GC-MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used.
Meng, Jiang; Dong, Xiao-ping; Zhou, Yi-sheng; Jiang, Zhi-hong; Leung, Kelvin Sze-Yin; Zhao, Zhong-zhen
2007-02-01
To optimize the extraction procedure of essential oil from H. cordata using the SFE-CO2 and analyze the chemical composition of the essential oil. The extraction procedure of essential oil from fresh H. cordata was optimized with the orthogonal experiment. Essential oil of fresh H. cordata was analysed by GC-MS. The optimize preparative procedure was as follow: essential oil of H. cordata was extracted at a temperature of 35 degrees C, pressure of 15,000 kPa for 20 min. 38 chemical components were identified and the relative contents were quantified. The optimum preparative procedure is reliable and can guarantee the quality of essential oil.
USDA-ARS?s Scientific Manuscript database
Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edib...
Abaidoo-Ayin, Harold K; Boakye, Prince G; Jones, Kerby C; Wyatt, Victor T; Besong, Samuel A; Lumor, Stephen E
2017-08-01
This study investigated the compositional characteristics and shelf-life of Njangsa seed oil (NSO). Oil from Njangsa had a high polyunsaturated fatty acid (PUFA) content of which alpha eleostearic acid (α-ESA), an unusual conjugated linoleic acid was the most prevalent (about 52%). Linoleic acid was also present in appreciable amounts (approximately 34%). Our investigations also indicated that the acid-catalyzed transesterification of NSO resulted in lower yields of α-ESA methyl esters, due to isomerization, a phenomenon which was not observed under basic conditions. The triacylglycerol (TAG) profile analysis showed the presence of at least 1 α-ESA fatty acid chain in more than 95% of the oil's TAGs. Shelf-life was determined by the Weibull Hazard Sensory Method, where the end of shelf-life was defined as the time at which 50% of panelists found the flavor of NSO to be unacceptable. This was determined as 21 wk. Our findings therefore support the potential commercial viability of NSO as an important source of physiologically beneficial PUFAs. © 2017 Institute of Food Technologists®.
Pratti, Drielle L A; Ramos, Alessandro C; Scherer, Rodrigo; Cruz, Zilma M A; Silva, Ary G
2015-03-01
Dengue has become the subject of public health programs worldwide. The lack of a vaccine and the high environmental risk of synthetic insecticides, arouse the interest in natural products against this vector. This study aimed to determine the chemical composition of the essential oil of ripe fruits and seeds of Schinus terebinthifolia Raddi; to evaluate the essential oil effect on mortality of Stegomyia aegypti (Linnaeus, 1792) larvae; and to characterize the structural damage suffered by larvae and their association with different contents of essential oil. Ripe fruits and seeds were crunched and their essential oil was extracted through hydrodistillation, purified, and its phytochemical analysis was carried out through High Resolution Gas Chromatography, coupled with Mass Spectrometry. This essential oil was diluted in a 10-point gradient of 86.22 - 862.20 ppm, at regular intervals of 86.22 ppm. Each point received 50 larvae and the assessments of surviving were made at 24, 48 and 72 hours after inoculation. Structural damage was assessed through measurements of thickness with exoskeleton, evaluating the integrity of the head, thorax, abdominal segments, and air siphon, using ImageJ software. Statistical data analysis was carried out through Logistic Regression and Discriminant Analysis. 56 substances were identified, corresponding to 81.67% of the essential oil composition. Larvae were dose-dependent susceptible to the essential oil; the concentration produced a significant effect on larval mortality. Among the major deformations found in the larvae, it was detected inhibition of chitin synthesis by the activity of the oil, thus reducing the deposition of cuticle layers. The essential oil caused death in exposed larvae after 72 hours, in a dose-dependent manner. It also changed the structure of exposed larvae, indicating a direct effect on larval exoskeleton. The results open up possibilities for the use of natural products as an alternative to control dipterans.
Essential-Oil Variability in Natural Populations of Pinus mugo Turra from the Julian Alps.
Bojović, Srdjan; Jurc, Maja; Ristić, Mihailo; Popović, Zorica; Matić, Rada; Vidaković, Vera; Stefanović, Milena; Jurc, Dušan
2016-02-01
The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra) from the Julian Alps were investigated by GC-FID and GC/MS analyses. In total, 54 of the 57 detected essential-oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ-car-3-ene, β-phellandrene, α-pinene, β-myrcene, and β-pinene and the sesquiterpene β-caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal-component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Lei, Hong; Wei, Qiaonian; Wang, Qing; Su, Anxiang; Xue, Mei; Liu, Qin; Hu, Qiuhui
2017-04-01
To explore a novel kind of anti-bacterial composite material having the excellent antibacterial ability, stability and specific-targeting capability, palygorskite (PGS) was used as the carrier of ginger essential oil (GEO) and a novel kind of composite GEO-PGS was prepared by ion exchange process. The characterization and the antibacterial activity of GEO-PGS was investigated in this study. Results of FTIR, XPS, XRD,TG analysis and SEM observation demonstrated the combination of GEO and PGS, GEO was absorbed on the surface of PGS, and the content of GEO in the composite was estimated to be 18.66%. Results of minimal inhibitory concentration (MIC) analysis, growth curve and Gram staining analysis of Staphylococci aureus and Escherichia coli exposed to GEO-PGS showed that GEO-PGS had much higher antibacterial activity than GEO, and GEO-PGS had the specific-targeting antibacterial capability. Moreover, GEO-PGS showed the characteristics of thermo-stability, acidity and alkalinity-resistance in exerting its anti-bacteria activity. In conclusion, the novel composite GEO-PGS combined the bacteria-absorbent activity of PGS and the antibacterial activity of GEO, suggesting the great potential application of GEO-PGS as the novel composite substance with high antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Hanana, Mohsen; Mezghenni, Hajer; Ben Ayed, Rayda; Ben Dhiab, Ali; Jarradi, Slim; Jamoussi, Bassem; Hamrouni, Lamia
2018-06-15
Argan oil is traditionally produced by cold pressing in South-western Morocco where rural population uses it as edible oil as well as for its therapeutic properties which give them in counterpart valuable income. Given the economical interest of this oil, several attempts of fraudulency have been registered in the world global market leading to loss of authenticity. Our purpose is to launch a program of Tunisian Argan oil valorization since trees from this species have been introduced sixty years ago in Tunisia. The first step was thus to characterize the physicochemical properties and determine the chemical composition of Tunisian Argan oil in order to assess its quality. Physicochemical parameters of oil quality were determined according to the international standard protocols. Fatty acid content analysis of Argan oils was performed by gas chromatography coupled to mass spectrophotometry. A comparative study was realized among Tunisian, Moroccan and Algerian samples differing also by their extraction procedure. The impact of geographical localisation on the fatty acids composition was studied by statistical and modeling Bayesian analyses. Physicochemical parameters analysis showed interestingly that Tunisian Argan oil could be classified as extra virgin oil. Argan oil is mainly composed by unsaturated fatty acids (80%), mainly oleic and linoleic acid (linoleic acid was positively influenced by the geographical localization (r = 0.899, p = 0.038) and the P/S index (r = 0.987, p = 0.002)) followed by saturated fatty acids (20%) with other beneficial compounds from the unsaponifiable fraction like polyphenols and carotenoids. Together with fatty acid content, these minor components are likely to be responsible for its nutraceutical properties and beneficial effects. Tunisian Argan oil displayed valuable qualitative parameters proving its competitiveness in comparison with Moroccan and Algerian oils, and could be therefore considered as extra virgin edible oil for nutraceutical purposes as well as for cosmetic use.
Spangenberg, Jorge E
2016-09-06
|The carbon, hydrogen and oxygen stable isotope composition (δ 13 C, δ 2 H, and δ 18 O values) of plants and their products is linked to photosynthetic fractionation, environmental factors and agricultural practices. Therefore, they contribute to determining the purity of commercial vegetable oils and may provide information on their geographical origin. Maize, olive, sunflower, groundnut, soybean and rice oils differing in sites of growth in the southern and northern hemispheres were characterized by bulk oil stable isotope ratios (δ 13 C bulk , δ 2 H bulk , and δ 18 O bulk values), fatty acids (FAs) concentrations and δ 13 C FA values using elemental analysis/isotope ratio mass spectrometry, gas chromatography/mass spectrometry, gas chromatography/flame ionization detection and gas chromatography/combustion/isotope ratio mass spectrometry. Principal component analysis was applied to examine the inherent structure of the data. The δ 13 C bulk values of maize oils (-18.4 to -14.9 ‰) are typical for C 4 plants, and those of olive (-30.2 to -28.2 ‰), sunflower (-30.2 to -29.2 ‰), groundnut (-29.3 ‰), soybean (-30.6 ‰), and rice (-34.5 ‰) oils are typical for C 3 plants. The δ 2 H bulk values vary from -161 to -132‰ for maize oils and -171 to -109 ‰ for C 3 oils. The δ 18 O bulk values of all oils vary between 15.2 and 38.9 ‰. The major δ 13 C FA differences (>5 ‰) within plant species render the inter-C 3 -species comparison difficult. These differences are explained in terms of variations in the lipid biosynthetic pathways and blend of vegetable oils of different FA composition and δ 13 C FA values. The samples from the southern hemisphere are generally enriched in 13 C compared with those from the northern hemisphere. Differences between the southern and northern hemispheres were observed in δ 2 H (p < 0.001) and δ 18 O bulk (p = 0.129) values for all C 3 oils, and in δ 13 C 18:1 (p = 0.026) and δ 18 O bulk (p = 0.160) values for maize oils. The results of this study show that combining bulk and molecular stable isotope ratios, fatty acid compositions and their statistical analysis helps the characterization of the geographic origin of oils. This methodology can be used to detect and source impurities in valuable vegetable oils commercialized worldwide. This article is protected by copyright. All rights reserved.
Chemical composition of fat and oil products
USDA-ARS?s Scientific Manuscript database
Fats and oils are an important dietary component, and contribute to the nutritional and sensory quality of foods. This chapter focuses on the chemical composition of fats and oils, and how these compositions affect the functional properties of fats and oils in foods. The focus will remain on the mos...
USDA-ARS?s Scientific Manuscript database
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...
NASA Astrophysics Data System (ADS)
Kasmin, Hasimah; Lazim, Azwan Mat; Awang, Roila
2015-09-01
Palm oil contains about 45% of saturated palmitic acid and 39% of mono-unsaturated oleic acid. Investigations made in the past to trace the fatty acid composition in palm revealed that ripeness of fresh fruit bunch (FFB) affect oil composition. However, there is no evidence that processing operations affect oil composition, although different stage of processing does affect the quality of oil extracted. An improved method for sterilizing the oil palm fruits by dry heating, followed by oil extraction has been studied. This method eliminates the use of water, thus, increasing the extraction of lipid soluble. The objective of this study is to determine the possibility production of palm oil with different fatty acid composition (FAC) as well as the changes in quality from conventional milling. The unripe and ripe FFB were collected, sterilized and extracted using different method of solvent extraction. Preliminary data have shown that variation in FAC will also alter the physical and chemical properties of the oil extracted.
Lillis, Paul G.
2004-01-01
Bulk oil composition is an important economic consideration of a petroleum resource assessment. Geological and geochemical interpretations from previous North Slope studies combined with recently acquired geochemical data are used to predict representative oil gravity (?API) and sulfur content (wt.% S) of the oil types for the 2002 U.S. Geological Survey resource assessment of the National Petroleum Reserve of Alaska (NPRA). The oil types are named after their respective source rock units and include Kuna-Lisburne, Shublik-Otuk, Kingak-Blankenship, and Pebble-GRZ-Torok. The composition of the oil (24?API, 1.6 wt.% S) in the South Barrow 12 well was selected as representative of Kuna-Lisburne oil. The average gravity and sulfur values (23?API and 1.6 wt.% S, respectively) of the Kuparuk field were selected to be representative of Shublik-Otuk oil type. The composition of the oil (39?API, 0.3 wt.% S) from the Alpine field discovery well (ARCO Bergschrund 1) was selected to be representative of Kingak-Blankenship oil. The oil composition (37?API, 0.1 wt.% S) of Tarn field was considered representative of the Pebble-GRZ-Torok oil type in NPRA.
Morshedloo, Mohammad Reza; Quassinti, Luana; Bramucci, Massimo; Lupidi, Giulio; Maggi, Filippo
2017-12-01
Magnolia grandiflora (Magnoliaceae) is an evergreen tree with fragrant and showy flowers native to southeastern USA but widely cultivated all over the world and used in cosmetics industry in treatment of skin diseases. Here, we report on the chemical analysis of the essential oil obtained from flowers of plants cultivated in Iran, together with the evaluation of its antioxidant and cytotoxic activities. The essential oil composition was dominated by bioactive sesquiterpenes, namely β-elemene, bicyclogermacrene, germacrene D and (E)-caryophyllene. The oil exhibited moderate radical scavenging activity towards the [Formula: see text] radical, and mild non-selective inhibitory effects against A375, MDA-MB 231 and T98 G tumour cell lines. The latter were influenced by the presence of the anticancer β-elemene. These results provided new insights for potential application of M. grandiflora volatile oil in the pharmaceutical and cosmetics industry where only the non-volatile magnolol and honokiol have hitherto been fully exploited.
2012-01-01
Background Pelargonium graveolens (P. graveolens) L. is an aromatic and medicinal plant belonging to the geraniacea family. Results The chemical compositions of the essential oil as well as the in vitro antimicrobial activities were investigated. The GC-MS analysis of the essential oil revealed 42 compounds. Linallol L, Citronellol, Geraniol, 6-Octen-1-ol, 3,7-dimethyl, formate and Selinene were identified as the major components. The tested oil and organic extracts exhibited a promising antimicrobial effect against a panel of microorganisms with diameter inhibition zones ranging from 12 to 34 mm and MICs values from 0.039 to10 mg/ml. The investigation of the phenolic content showed that EtOAc, MeOH and water extracts had the highest phenolic contents. Conclusion Overall, results presented here suggest that the essential oil and organic extracts of P. graveolens possesses antimicrobial and properties, and is therefore a potential source of active ingredients for food and pharmaceutical industry. PMID:23216669
Soro, Lêniféré Chantal; Munier, Sylvie; Pelissier, Yves; Grosmaire, Lidwine; Yada, Rickey; Kitts, David; Ocho-Anin Atchibri, Anin Louise; Guzman, Caroline; Boudard, Frédéric; Menut, Chantal; Robinson, Jean Charles; Poucheret, Patrick
2016-12-24
Lippia multiflora is a plant with nutritional and pharmaco-therapeutic properties that is native to central and occidental Africa. The potential effects of plants on health are associated with their chemical composition. Therefore, the present study aimed to identify chemical variations in essential oils of Lippia multiflora as a function of geographic origin and time of annual harvest to determine optimal chemical profiles for ethno-pharmacotherapeutic applications. Experimental plants were cultivated at Abidjan (LPA), Toumodi (LPT) and Bondoukou (LPB). Natural Lippia multiflora seeds were sourced to produce standardized plants over a period of six months. Standard plants (n=40) were re-introduced into natural plots, cultivated for 12 months and leaves were sampled monthly in a standardized fashion. Essentials oils (n=36) were then extracted from these samples by hydro-distillation according to the European Pharmacopoeia and qualitatively and quantitatively analyzed using GC/FID and GC/MS. These data were then analyzed using Principal Component Analysis (PCA). Anti-inflammatory properties were also assessed against activated macrophages in vitro. The results indicated that chemical profiles and essential oil yields vary according to the location where the plants were cultivated. One essential oil chemotype corresponded to the LPA and LPT sites and one corresponded to the LPB site. Statistical analysis of the chemical profiles and monthly evolution of the three sites over a period of one year allowed assessment of variations in composition and the subsequent choice of the optimal harvest time for ethnopharmacological applications. Anti-inflammatory activity apparently correlated with chemical profiles of essential oils and the geographic origins of the plants. The optimal harvest time was associated with the maximum yield of pharmacological compounds with the most potential interest for health. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gulotta, Alessandro; Saberi, Amir Hossein; Nicoli, Maria Cristina; McClements, David Julian
2014-02-19
Nanoemulsion-based delivery systems are finding increasing utilization to encapsulate lipophilic bioactive components in food, personal care, cosmetic, and pharmaceutical applications. In this study, a spontaneous emulsification method was used to fabricate nanoemulsions from polyunsaturated (ω-3) oils, that is, fish oil. This low-energy method relies on formation of fine oil droplets when an oil/surfactant mixture is added to an aqueous solution. The influence of surfactant-to-oil ratio (SOR), oil composition (lemon oil and MCT), and cosolvent composition (glycerol, ethanol, propylene glycol, and water) on the formation and stability of the systems was determined. Optically transparent nanoemulsions could be formed by controlling SOR, oil composition, and aqueous phase composition. The spontaneous emulsification method therefore has considerable potential for fabricating nanoemulsion-based delivery systems for incorporating polyunsatured oils into clear food, personal care, and pharmaceutical products.
Effect of vegetable oils on fatty acid composition and cholesterol content of chicken frankfurters
NASA Astrophysics Data System (ADS)
Belichovska, D.; Pejkovski, Z.; Belichovska, K.; Uzunoska, Z.; Silovska-Nikolova, A.
2017-09-01
To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.
Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation
Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam
2018-01-01
The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies. PMID:29743861
Antioxidant Potential and Oil Composition of Callistemon viminalis Leaves
Zubair, Muhammad; Hassan, Sadia; Rizwan, Komal; Rasool, Nasir; Riaz, Muhammad; Zia-Ul-Haq, M.; De Feo, Vincenzo
2013-01-01
The present study was designed to investigate the antioxidant potential and oil composition of Callistemon viminalis leaves. GC-MS analysis of the n-hexane extract revealed the presence of 40 compounds. Leaves contained appreciable levels of total phenolic contents (0.27–0.85 GAE mg/g) and total flavonoid contents (2.25–7.96 CE mg/g). DPPH radical scavenging IC50 and % inhibition of linoleic acid peroxidation were found to be in the ranges of 28.4–56.2 μg/ml and 40.1–70.2%, respectively. The haemolytic effect of the plant leaves was found in the range of 1.79–4.95%. The antioxidant activity of extracts was also studied using sunflower oil as an oxidative substrate and found that it stabilized the oil. The correlation between the results of different antioxidant assays and oxidation parameters of oil indicated that leaves' methanolic extract, exhibiting higher TPC and TFC and scavenging power, was also more potent for enhancing the oxidative stability of sunflower oil. PMID:23818824
Chemical Composition and Character Impact Odorants in Volatile Oils from Edible Mushrooms.
Usami, Atsushi; Motooka, Ryota; Nakahashi, Hiroshi; Marumoto, Shinsuke; Miyazawa, Mitsuo
2015-11-01
The aim of this study was to investigate the chemical composition and the odor-active components of volatile oils from three edible mushrooms, Pleurotus ostreatus, Pleurotus eryngii, and Pleurotus abalonus, which are well-known edible mushrooms. The volatile components in these oils were extracted by hydrodistillation and identified by GC/MS, GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). The oils contained 40, 20, and 53 components, representing 83.4, 86.0, and 90.8% of the total oils in P. ostreatus, P. eryngii, and P. abalonus, respectively. Odor evaluation of the volatile oils from the three edible mushrooms was also carried out using GC-O, AEDA, and odor activity values, by which 13, eight, and ten aroma-active components were identified in P. ostreatus, P. eryngii, and P. abalonus, respectively. The most aroma-active compounds were C8 -aliphatic compounds (oct-1-en-3-ol, octan-3-one, and octanal) and/or C9 -aliphatic aldehydes (nonanal and (2E)-non-2-enal). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Ma, Chun-hui; Yang, Lei; Zu, Yuan-gang; Liu, Ting-ting
2012-10-15
In this article, solvent-free microwave extraction (SFME) of essential oil from Schisandra chinensis (Turcz.) Baill was studied. A multivariate study based on central composite design (CCD) was used to evaluate the influence of three major variables affecting the performance of SFME. The optimum parameters were extraction time 30 min, irradiation power 385 W and moisture content of the fruits was 68%. The extraction yield of essential oil was 11 ml/kg under the optimum conditions. The antioxidant capacity of essential oils extracted by different methods were determined, and compared with traditional antioxidants. GC-MS showed the different composition of essential oil extracted by hydro-distillation (HD), steam-distillation (SD) and SFME. S. chinensis materials treated by different methods were observed by scanning electronic microscopy (SEM) and thermo-gravimetric analysis (TGA). Micrographs and thermo gravimetric loss provided more evidences to prove SFME of essential oil is more completed than HD and SD. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Junhai; Lu, Bing; Zhang, Lixiu; Li, Ting; Yan, Tingting; Li, Mengxu
2018-02-01
The Co(ReO4)2 powder was fabricated via the aqueous solution method, and mixed with MoS2 powder using ball milling technique. A certain concentration of Co(ReO4)2/MoS2 composite additive was dispersed into the poly alpha olefin base oil with the assistance of surface active agents. The load-carrying property and lubricating behavior of base oil containing a certain content of Co(ReO4)2/MoS2 composite additive at various temperatures were evaluated by four-ball test and ball-on-disc sliding friction test. The physical properties and friction-reducing mechanism of synthesized composite were ascertained by a series of characterization techniques including X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and differential thermal analysis/thermogravimetry. The four-ball test results suggested the Co(ReO4)2/MoS2 composite additive could effectively promote the load-carrying capacity of base oil, and decrease the friction coefficient as well as wear scar diameter. Ball-on-disc sliding friction test results showed that the base oil with Co(ReO4)2/MoS2 composite additive possessed lower friction coefficients than that of base oil in the whole temperature range, particularly at high temperatures. The protective layer consisted of composite additive and native oxides from superalloy substrate formed on the worn surface to prevent the direct contact between friction pair. The Co(ReO4)2/MoS2 composite played a dominant role in friction-reducing function in the protective layer at elevated temperatures, and the reason for this was that MoS2 possessed layered structure and superior adsorption capacity, and Co(ReO4)2 had experienced thermal softening with elevated temperatures and maintained shear-susceptible hexagonal structure.
Okińczyc, Piotr; Szumny, Antoni; Szperlik, Jakub; Kulma, Anna; Franiczek, Roman; Żbikowska, Beata; Krzyżanowska, Barbara; Sroka, Zbigniew
2018-05-25
In this work, we studied similarities and differences between 70% ethanol in water extract (70EE) and essential oils (EOs) obtained from propolis, black poplars ( Populus nigra L.) and aspens ( P. tremula L.) to ascertain which of these is a better indicator of the plant species used by bees to collect propolis precursors. Composition of 70EE was analyzed by UPLC-PDA-MS, while GC-MS was used to research the EOs. Principal component analyses (PCA) and calculations of Spearman's coefficient rank were used for statistical analysis. Statistical analysis exhibited correlation between chemical compositions of propolis and Populus buds' 70EE. In the case of EOs, results were less clear. Compositions of black poplars, aspens EOs and propolises have shown more variability than 70EE. Different factors such as higher instability of EOs compared to 70EE, different degradation pattern of benzyl esters to benzoic acid, differences in plant metabolism and bees' preferences may be responsible for these phenomena. Our research has therefore shown that 70EE of propolis reflected the composition of P. nigra or complex aspen⁻black poplar origin.
Satyal, Prabodh; Crouch, Rebecca A; Monzote, Lianet; Cos, Paul; Awadh Ali, Nasser A; Alhaj, Mehdi A; Setzer, William N
2016-03-01
The aerial parts of Lantana camara L. were collected from three different geographical locations: Artemisa (Cuba), Biratnagar (Nepal), and Sana'a (Yemen). The essential oils were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. A cluster analysis of 39 L. camara essential oil compositions revealed eight major chemotypes: β-caryophyllene, germacrene D, ar-curcumene/zingiberene, γ-curcumen-15-al/epi-β-bisabolol, (E)-nerolidol, davanone, eugenol/alloaromadendrene, and carvone. The sample from Cuba falls into the group dominated by (E)-nerolidol, the sample from Nepal is a davanone chemotype, and the sample from Yemen belongs to the β-caryophyllene chemotype. The chemical composition of L. camara oil plays a role in the biological activity; the β-caryophyllene and (E)-nerolidol chemotypes showed antimicrobial and cytotoxic activities. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Dixit, Sumita; Das, Mukul
2012-10-01
The susceptibility of trans-fat to the human health risk prompted the Food and Agriculture Organization (FAO) and World Health Organization (WHO) to prepare regulations or compulsory claims for trans-fatty acids (TFA) in edible oils and fats. In this study, analysis of fatty acid composition and TFA content in edible oils and fats along with the possible intake of trans-fat in Indian population was carried out. The analysis was carried out as per the Assn. of Official Analytical Chemists (AOAC) methodology and the results were statistically analyzed. The average TFA content in nonrefined mustard and refined soybean oils exceeded by 1.16- to 1.64-fold as compared to the Denmark limit of 2% TFA in fats and oils destined for human consumption. In branded/nonbranded butter and butter oil samples, average TFA limit exceeded by 4.2- to 9.5-fold whereas hydrogenated vegetable oil (HVO) samples exceeded the limit by 9.8-fold, when compared to Denmark standards. The probable TFA intake per day through different oils in Indian population were found to be less than WHO recommendation. However Punjab having highest consumption of HVO (-15 g/d) showed 1.09-fold higher TFA intake than the WHO recommendation, which is alarming and may be one of the factors for high cardiovascular disease mortality rate that needs further elucidation. Thus there is a need to prescribe TFA limit for edible oil, butter, and butter oil in India and to reduce the already proposed TFA levels in HVO to safeguard the health of consumers. The probable daily intake of trans-fatty acid (TFA) especially through hydrogenated vegetable oil (HVO) was assessed. In absence of any specification for TFA and fatty acid composition for edible oils, butter, and butter samples, a pressing need was felt to prescribe TFA limit in India. The study indicates that TFA intake through HVO consumption is higher in States like Punjab than the recommended daily intake prescribed by WHO. Hence, strategies should be adopted to either decrease the consumption of HVO or to modify the industrial processing method of HVO with less content of TFA to safeguard the health of consumers. © 2012 Institute of Food Technologists®
Mhamdi, Baya; Abbassi, Feten; Smaoui, Abderrazak; Abdelly, Chedly; Marzouk, Brahim
2016-05-01
The presentstudydescribes the biochemical evaluation of Silybum marianum seed. The analysis of essential oil composition of Silybum marianum seed by Gas Chromatography-Mass Spectrometry GC-MS showed the presence of14 volatile components with the predominance of γ-cadinene (49.8%) and α-pinene (24.5%). Whereas, the analysis of fatty acids composition, showed the predominance of linoleic (50.5%) and oleic (30.2%) acids. Silybum marainum presented also an important polyphenol contents with 29mgGAE/g DW, a good antiradical activity (CI(50)=39μg/ml) but a lower reducing power ability. Flavonoid and condensed tannin contents were about 3.39mg EC/g DW and 1.8mg EC/gDW, respectively. The main phenolic compounds identified by RP-HPLC, were silybin A (12.2%), silybin B (17.67%), isosilybin A (21.9%), isosilybin B (12.8%), silychristin (7.9%) andsilydianin (7.5%).
Velázquez-Palmero, David; Romero-Segura, Carmen; García-Rodríguez, Rosa; Hernández, María L.; Vaistij, Fabián E.; Graham, Ian A.; Pérez, Ana G.; Martínez-Rivas, José M.
2017-01-01
Phenolic composition of virgin olive oil is determined by the enzymatic and/or chemical reactions that take place during olive fruit processing. Of these enzymes, β-glucosidase activity plays a relevant role in the transformation of the phenolic glycosides present in the olive fruit, generating different secoiridoid derivatives. The main goal of the present study was to characterize olive fruit β-glucosidase genes and enzymes responsible for the phenolic composition of virgin olive oil. To achieve that, we have isolated an olive β-glucosidase gene from cultivar Picual (OepGLU), expressed in Nicotiana benthamiana leaves and purified its corresponding recombinant enzyme. Western blot analysis showed that recombinant OepGLU protein is detected by an antibody raised against the purified native olive mesocarp β-glucosidase enzyme, and exhibits a deduced molecular mass of 65.0 kDa. The recombinant OepGLU enzyme showed activity on the major olive phenolic glycosides, with the highest levels with respect to oleuropein, followed by ligstroside and demethyloleuropein. In addition, expression analysis showed that olive GLU transcript level in olive fruit is spatially and temporally regulated in a cultivar-dependent manner. Furthermore, temperature, light and water regime regulate olive GLU gene expression in olive fruit mesocarp. All these data are consistent with the involvement of OepGLU enzyme in the formation of the major phenolic compounds present in virgin olive oil. PMID:29163620
Han, Xuesheng; Beaumont, Cody; Stevens, Nicole
2017-12-01
Research on the biological effects of essential oils on human skin cells is scarce. In the current study, we primarily explored the biological activities of 10 essential oils (nine single and one blend) in a pre-inflamed human dermal fibroblast system that simulated chronic inflammation. We measured levels of proteins critical for inflammation, immune responses, and tissue-remodeling processes. The nine single oils were distilled from Citrus bergamia (bergamot), Coriandrum sativum (cilantro), Pelargonium graveolens (geranium), Helichrysum italicum (helichrysum), Pogostemon cablin (patchouli), Citrus aurantium (petitgrain), Santalum album (sandalwood), Nardostachys jatamansi (spikenard), and Cananga odorata (ylang ylang). The essential oil blend (commercial name Immortelle) is composed of oils from frankincense, Hawaiian sandalwood, lavender, myrrh, helichrysum, and rose. All the studied oils were significantly anti-proliferative against these cells. Furthermore, bergamot, cilantro, and spikenard essential oils primarily inhibited protein molecules related to inflammation, immune responses, and tissue-remodeling processes, suggesting they have anti-inflammatory and wound healing properties. Helichrysum and ylang ylang essential oils, as well as Immortelle primarily inhibited tissue remodeling-related proteins, suggesting a wound healing property. The data are consistent with the results of existing studies examining these oils in other models and suggest that the studied oils may be promising therapeutic candidates. Further research into their biological mechanisms of action is recommended. The differential effects of these essential oils suggest that they exert activities by different mechanisms or pathways, warranting further investigation. The chemical composition of these oils was analyzed using gas chromatography-mass spectrometry.
Elanchezhiyan, S Sd; Prabhu, Subbaiah Muthu; Meenakshi, Sankaran
2018-06-01
Herein, synthesized and compared the three different kinds of hybrid bio-polymeric composites viz., lanthanum embedded chitosan/gelatin (La@CS-GEL), zirconium embedded chitosan/gelatin (Zr@CS-GEL) and cerium embedded chitosan/gelatin (Ce@CS-GEL) in terms of their oil uptake efficiency. The adsorption efficiency was studied under various optimized parameters like contact time, pH, dose, initial oil concentration and temperature. The oil adsorption capacity was found to be 91, 82 and 45% for La@CS-GEL, Zr@CS-GEL and Ce@CS-GEL composites respectively. The metals were used as a bridging material to connect both CS and GEL using the hydrophilic groups to enhance the oil recovery by hydrophobic interaction. Also, the introduction of metal ions on the surface of biopolymers would modify the oil/water properties which in turn, decrease the interfacial tension between oil and water phases. The mechanism of oil uptake was explained using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), energy dispersive X-ray (EDAX) and heat of combustion. The experimental data confirmed Langmuir isotherm as the best fit for oil adsorption process. Thermodynamic parameters such as standard free energy (ΔG°), standard enthalpy (ΔH°) and standard entropy (ΔS°) indicated that the oil adsorption was spontaneous and endothermic. The oil adsorption mechanism was established based on isotherm and thermodynamic models. Copyright © 2018 Elsevier B.V. All rights reserved.
Pirmoradi, Mohammad Reza; Moghaddam, Mohammad; Farhadi, Nasrin
2013-07-01
Hydrodistilled essential oils of 21 accessions of Ocimum basilicum L. belonging to two different varieties (var. purpurascens and var. dianatnejadii) from Iran were characterized by GC-FID and GC/MS analyses. The oil yield was found to be between 0.6 and 1.1% (v/w). In total, 49 compounds, accounting for 96.6-99.7% of the oil compositions, were identified. Aromatic compounds, represented mainly by methyl chavicol (33.6-49.1%), and oxygenated monoterpenes, represented by linalool (14.4-39.3%), were the main components in all essential oils. Monoterpene hydrocarbons were present in the essential oils of all accessions of the purpurascens variety, whereas they were completely absent in those of the dianatnejadii variety, indicating that monoterpene hydrocarbons might be considered as marker constituents of the purpurascens variety. The chemotaxonomic value of the essential-oil compositions was discussed according to the results of the cluster analysis (CA). The CA showed a clear separation of the O. basilicum var. purpurascens accessions and the O. basilicum var. dianatnejadii accessions, although the data showed no major chemotype variation between the studied varieties. Indeed, the CA revealed only one principal chemotype (methyl chavicol/linalool) for both varieties. In conclusion, GC/MS analyses in combination with CA showed to be a flexible and reliable method for the characterization of the chemical profiles of different varieties of Ocimum basilicum L. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Stability of cosmetic emulsion containing different amount of hemp oil.
Kowalska, M; Ziomek, M; Żbikowska, A
2015-08-01
The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Rodkin, Mikhail; Punanova, Svetlana
2016-04-01
The goal of this research was to estimate, based on the content of Trace Elements, the level of contribution of the lower and the upper crust as well as the organic matter into ontogenesis of hydrocarbons. The analysis of degree of similarity of the main and trace element (TE) content among the upper and lower continental crust, clays, organic matter, and different caustobioliths (oil, coal, oil-and-black shales) is performed by calculating coefficients of correlation of logarithms of concentrations of a large number of different chemical elements. Different oils from a number of oil bearing provinces in Russia and from the volcanic caldera Uzon (Kamchatka, Russia) were examined. It has been shown that the content of main elements and TEs of coals and oil-and-black shales is better correlated with the chemical composition of the upper crust, while the TE content of oils correlates better with the composition of the lower continental crust. The TE content of oils correlates with the chemical content of living organisms but the correlation in the most cases is weaker than the one with the lower crust. The results of the examination of different samples from the same oil-bearing province were found to be similar. The mean results for different oil-bearing provinces can vary considerably. The results of the examination of young oil from the Uzon volcanic caldera were found to be rather specific and different from the other oils. We also suggest a set of a small number of "characteristic" elements (Cs, Rb, K, U, V, Cr and Ni), which allows to compare the degree of similarity between an oil sample and upper or lower continental crust using only a few chemical elements. Some interpretation of the results is presented.
Ornano, Luigi; Venditti, Alessandro; Ballero, Mauro; Sanna, Cinzia; Donno, Yuri; Quassinti, Luana; Bramucci, Massimo; Vitali, Luca A; Petrelli, Dezemona; Tirillini, Bruno; Papa, Fabrizio; Maggi, Filippo; Bianco, Armanodoriano
2016-08-01
The purpose of this study was to investigate the composition of the essential oil obtained from a population of Artemisia caerulescens subsp. densiflora growing in Razzoli, an island in the La Maddalena Archipelago (Sardinia, Italy). A. caerulescens sups. densiflora Viv. (Asteraceae), a wild herb, seldom studied in the Mediterranean, represents one of the many rare endemic species growing in North Sardinia. The essential oil composition was analysed by means of GC/MS analysis, which showed davana ethers as the major volatile components, accounting together for 17.5%, followed by (E)-nerolidol (4.5%), β-oplopenone (3.3%), cis-sabinene hydrate (5.2%) and terpinen-4-ol (4.7%). The oil was tested for antioxidant activity by means of DPPH test, inhibition of lipid oxidation test and hypochlorous acid test, which showed a quite interesting scavenger capacity. For the first time, we reported the cytotoxic activity of the essential oil of A. caerulescens subsp. densiflora, against three human tumour cell lines (A375, MDA-MB231 and HCT116), with IC50 values in the range 5.20-7.61 μg/mL, which deserved further studies to support its use as chemopreventive agent. Finally, the antimicrobial activity of the essential oil, displayed on a panel of human pathogens, was very low.
Chemical composition and anti-Acanthamoeba activity of Melaleuca styphelioides essential oil.
Albouchi, Ferdaous; Sifaoui, Ines; Reyes-Batlle, Maria; López-Arencibia, Atteneri; Piñero, José E; Lorenzo-Morales, Jacob; Abderrabba, Manef
2017-12-01
Acanthamoeba infections cause serious humans diseases, such as amoebic keratitis and granulomatous amoebic encephalitis. Melaleuca essential oil has been reported to be effective in treating bacterial and fungal infections. However, the anti-parasitic effects of this essential oil are not well studied. In the present study, we first characterized the composition of the essential oil, extracted from the Tunisian Melaleuca styphelioides leaves, and then tested its effect on the Acanthamoeba castellanii Neff. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the major common compounds were Caryophyllene oxide (23.42%), Spathulenol (20.5%), Isoaromadendrene epoxide (7.45%), Ledol (5.98%), α-Pinene (3.82%), Isopinocarveol (2.18%). Our data also showed that M. styphelioides essential oil inhibited the growth of Acanthamoeba with an IC 50 value of 69.03 ± 9.17 μg/ml. This work suggests M. styphelioides essential oil as a potential anti amoeba drug. Nevertheless, further studies are still needed to further verify the cytotoxicity of the studied oil on human macrophages and check its applicability to treat Acanthamoeba infections in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Song, Wenwen; Yang, Ruping; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Zhang, Shouwei; Jiang, Bingjun; Tian, Shiyan; Liu, Xiaobing; Han, Tianfu
2016-05-25
From 2010 to 2013, 763 soybean samples were collected from an extensive area of China. The correlations between seed compositions and climate data were analyzed. The contents of crude protein and water-soluble protein, total amount of protein plus oil, and most of the amino acids were positively correlated with an accumulated temperature ≥15 °C (AT15) and the mean daily temperature (MDT) but were negatively correlated with hours of sunshine (HS) and diurnal temperature range (DTR). The correlations of crude oil and most fatty acids with climate factors were opposite to those of crude protein. Crude oil content had a quadratic regression relationship with MDT, and a positive correlation between oil content and MDT was found when the daily temperature was <19.7 °C. A path analysis indicated that DTR was the main factor that directly affected soybean protein and oil contents. The study illustrated the effects of climate factors on soybean protein and oil contents and proposed agronomic practices for improving soybean quality in different regions of China. The results provide a foundation for the regionalization of high-quality soybean production in China and similar regions in the world.
2014-01-01
Background Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. Results In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. Conclusions As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality. PMID:24755115
Spectroscopic and Thermooxidative Analysis of Organic Okra Oil and Seeds from Abelmoschus esculentus
de Sousa Ferreira Soares, Geórgia; Gomes, Vinicius de Morais; dos Reis Albuquerque, Anderson; Barbosa Dantas, Manoel; Rosenhain, Raul; de Souza, Antônio Gouveia; Persunh, Darlene Camati; Gadelha, Carlos Alberto de Almeida; Costa, Maria José de Carvalho; Gadelha, Tatiane Santi
2012-01-01
With changes in human consumption from animal fats to vegetable oils, the search for seed types, often from unconventional vegetable sources has grown. Research on the chemical composition of both seed and oil for Brazilian Okra in South America is still incipient. In this study, flour and oil from organic Okra seeds (Abelmoschus esculentus L Moench), grown in northeastern Brazil were analyzed. Similar to Okra varieties from the Middle East and Central America, Brazilian Okra has significant amounts of protein (22.14%), lipids (14.01%), and high amounts of unsaturated lipids (66.32%), especially the oleic (20.38%) and linoleic acids (44.48%). Oil analysis through PDSC revealed an oxidation temperature of 175.2°C, which in combination with low amounts of peroxide, demonstrates its resistance to oxidation and favors its use for human consumption. PMID:22645459
Chemical and sensory differences between high price and low price extra virgin olive oils.
Fiorini, Dennis; Boarelli, Maria Chiara; Conti, Paolo; Alfei, Barbara; Caprioli, Giovanni; Ricciutelli, Massimo; Sagratini, Gianni; Fedeli, Donatella; Gabbianelli, Rosita; Pacetti, Deborah
2018-03-01
The aim of the study was to identify new potential chemical markers of extra virgin olive oil (EVOO) quality by using a multicomponent analysis approach. Sixty-six EVOOs were purchased from the Italian market and classified according to their price as low price EVOOs (LEVOOs) and high price EVOOs (HEVOOs) costing 3.60-5.90euro/L and 7.49-29.80euro/L respectively. Sensory and chemical parameters strictly related to olive oil quality have been investigated, like volatile substances, polar phenolic substances, antioxidant activity, fatty acid composition, and α-tocopherol. Significant differences in terms of chemical composition and sensory features have been highlighted between the two EVOOs classes investigated, proving a generally lower level of quality of LEVOOs, clearly showed also by means of principal component analysis. Among the most interesting outcomes, R ratio (free tyrosol and hydroxytyrosol over total free and bound forms), measuring the extent of secoiridoids hydrolysis, resulted to be significantly higher in LEVOOs than in HEVOOs. Other key differences were found in the volatile substances composition, in the stearic acid percentage and in p-coumaric acid content. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao
2008-06-01
As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.
Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method
Bruno, Thomas J; Allen, Samuel
2013-01-01
One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423
Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.
Bruno, Thomas J; Allen, Samuel
2013-01-01
One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC.
Huang, Jiehui; Qian, Chao; Xu, Hongjie; Huang, Yanjie
2018-01-01
The main objective of the current study was to investigate the chemical composition of the essential oil of Artemisia asiatica together with investigating the antibacterial effects it exerts on several common respiratory infection causing bacteria including Haemophilus influenzae. Its mechanism of action was studied using various state-of-the-art assays like scanning electron microscopy, DNA, RNA and protein leakage assays, growth curve assays etc. The essential oil was extracted from the leaves of A. asiatica by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass-spectrometry (GC-MS). The antibacterial activity was evaluated against 6 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane and scanning electronmicroscope (SEM). Gas chromatographic analysis of the A. asiatica essential oil led to the identification of 16 chemical constituents accounting for 97.2% of the total oil composition. The major components were found to be Piperitone, (z)-davanone, p-cymene and 1, 8-cineole. The essential oil showed maximum growth inhibition against Haemophilus influenzae with a zone of inhibition of 24.5 mm and MIC/MBC values of 1.9/4.5 mg/mL respectively. Bacteria treated with the essential oil led to a rapid decrease in the number of viable cells. On adding the essential oil of A. asiatica to the bacterial culture, the constituents of the bacterial cell got released into the medium and this cell constituent release increased with increasing doses of the essential oil. SEM showed that the bacterial cells treated with the essential oil showed damaged cell wall, deformed cell morphology and shrunken cells. Copyright © 2017. Published by Elsevier Ltd.
Effect of Fermentation on Compositional Changes of Cinnamomum osmophloeum Kaneh Leaves
NASA Astrophysics Data System (ADS)
Kurniawati, AD; Huang, TC; Kusnadi, J.
2017-04-01
Cinnamomum osmophloeum Kaneh is known as “indigenous cinnamon” with the chemical constituents of its leave’s essential oil are similar to the famous C. cassia inner bark oil. Its oil has long been used as a medicinal plant. Fermentation is one of the processes in tea production, which could change the compound’s composition. This research aims to study the compositional changes of C. osmophloeum leaves during fermentation compared to unfermented leaves and commercial tea leaves. The main bioactive secondary metabolites in C. osmophloeum leaves extract are two flavonol glycosides. Both of this glycosides changed into aglycone during fermentation. By using HPLC and LC-MS analysis the major components and their derivative were identified. The retention time of kaempferol aglycone was 35.21 minute and the concentration showed increased from 0.46 to 46.8 µg. mL-1 after fermentation. There are 3 major groups lactic acid bacteria isolated from fermented C. osmophloeum Kaneh leaves, Bacillus coagulans, Lactobacillus plantarum, and Pediococcus pentosaceus, which it plays the key role during the compositional changes of glycosides into aglycone.
Feriotto, Giordana; Marchetti, Nicola; Costa, Valentina; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo
2018-02-01
New drugs would be beneficial to fight resistant HIV strains, in particular those capable of interfering with essential viral functions other than those targeted by highly active antiretroviral therapy drugs. Despite the central role played by Tat protein in HIV transcription, a search for vegetable extracts able to hamper this important viral function was never carried out. In this work, we evaluated the chemical composition and possible interference of essential oil from Thymus vulgaris, Cananga odorata, Cymbopogon citratus, and Rosmarinus officinalis with the Tat/TAR-RNA interaction and with Tat-induced HIV-1 LTR transcription. GC/MS Analysis demonstrated the biodiversity of herbal species translated into essential oils composed of different blends of terpenes. In all of them, 4 - 6 constituents represent from 81.63% to 95.19% of the total terpenes. Essential oils of Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis were active in interfering with Tat functions, encouraging further studies to identify single terpenes responsible for the antiviral activity. In view of the quite different composition of these essential oils, we concluded that their interference on Tat function depends on specific terpene or a characteristic blend. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
El Bouzidi, Laila; Abbad, Abdelaziz; Hassani, Lahcen; Fattarsi, Karine; Leach, David; Markouk, Mohammed; Legendre, Laurent; Bekkouche, Khalid
2012-03-01
The essential oils of leaves and flowers of the wild and cultivated Moroccan Achillea ageratum L., a rare and threatened medicinal species, were examined by GC/MS, and their chemical compositions were compared. At least nine components were identified in both wild and cultivated A. ageratum oils, representing more than 95% of the oils. Artemisyl acetate (62.34-78.79%), yomogi alcohol (4.89-12.40%), santolina alcohol (4.86-11.77%), and artemisia alcohol (3.36-7.04%) were the major compounds. Terpene-alcohol proportion was higher in wild A. ageratum than in cultivated A. ageratum. The antibacterial analysis showed that both oils presented high activity against all the studied Gram-positive strains in a range of MIC values from 2.55 to 7.02 mg/ml, but they appeared not effective against the tested Gram-negative ones (MIC values 20.40-41.10 mg/ml). They also exhibited remarkable antifungal activities against Candida species with MIC values ranging from 5.83 to 8.42 mg/ml. From these results, it was concluded that domestication of this threatened medicinal species using clonal propagation did not significantly affect its chemical composition and consequently its antimicrobial properties. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid
2015-01-01
Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123
Liu, Hua-Min; Feng, Bing; Sun, Run-Cang
2011-10-12
In this study, cornstalk was pretreated by an acid-chlorite delignification procedure to enhance the conversion of cornstalk to bio-oil in hot-compressed water liquefaction. The effects of the pretreatment conditions on the compositional and structural changes of the cornstalk and bio-oil yield were investigated. It was found that acid-chlorite pretreatment changed the main components and physical structures of cornstalk and effectively enhanced the bio-oil yield. Shorter residence time favored production of the total bio-oil products, whereas longer time led to cracking of the products. A high water loading was found to be favorable for high yields of total bio-oil and water-soluble oil. GC-MS analysis showed that the water-soluble oil and heavy oil were the complicated products of C(5-10) and C(8-11) organic compounds.
Bolger, Zara; Brunton, Nigel P; Monahan, Frank J
2017-10-18
Vitamin E and omega-3 fatty acids can be incorporated into meat products at levels supporting health claims of "protecting against oxidative stress" and "maintaining normal blood cholesterol levels", respectively. Chicken sausages were formulated to contain vitamin E (12 mg per 100 g) and flaxseed oil (2 g per 100 g) using different oil incorporation methods. The formulations were: (1) control (no oil); (2) oil; (3) emulsified oil; (4) freeze-dried encapsulated oil; (5) freeze-dried encapsulated oil with cross-linker genipin; (6) spray-dried encapsulated oil. α-Linolenic acid and α-tocopherol were retained in all fortified formulations at levels to meet nutrient and health claims but emulsification or encapsulation had no additional benefit in retention following cooking or on product quality as measured by proximate composition, lipid oxidation, colour, microbial analysis, cook loss and texture profile analysis. While the addition of flaxseed oil had a negative effect on consumer acceptance of flavour (although not when emulsified), overall acceptance of the chicken sausages was only reduced significantly (p ≤ 0.05) when oil was encapsulated.
Palazhy, Sabitha; Kamath, Prakash; Rajesh, P C; Vaidyanathan, Kannan; Nair, Shiv K; Vasudevan, D M
2012-12-01
Coconut oil, which is rich in medium-chain saturated fatty acids, is the principal cooking medium of the people of Kerala, India. Replacement of saturated fat with polyunsaturated fat is effective in reducing serum cholesterol levels. However, the effect of substituting coconut oil with sunflower oil on the fatty acid composition of plaque has not been thoroughly investigated. We therefore evaluated and compared the fatty acid composition of plasma and plaque among subjects consuming coconut oil or sunflower oil as the cooking medium. Endarterectomy samples and plasma samples were obtained from subjects who underwent coronary artery bypass grafts (n = 71). The subjects were grouped based on the type of oil they were using as their cooking medium (coconut oil or sunflower oil). The fatty acid composition in the plaques and the plasma was determined by HPLC and the data were analyzed statistically. Sunflower oil consumers had elevated concentrations of linoleic acid (p = 0.001) in plasma, while coconut oil users had higher myristic acid levels (p = 0.011) in plasma. Medium-chain fatty acids did not differ significantly between the two groups in the plasma. Medium-chain fatty acids were detected in the plaques in both groups of subjects. In contrast to previous reports, long-chain saturated fatty acids dominated the lipid content of plaque in this population, and the fatty acid composition of plaque was not significantly different between the two groups. No correlation between fatty acids of plasma and plaque was observed in either group. A change in cooking medium, although it altered the plasma fatty acid composition, was not reflected in the plaque composition.
De Feo, Vincenzo; Bruno, Maurizio; Tahiri, Bochra; Napolitano, Francesco; Senatore, Felice
2003-06-18
The chemical composition of essential oils from aerial parts of Thymus spinulosus Ten. (Lamiaceae) is reported. Four oils from plants growing in different environmental conditions were characterized by GC and GC-MS methods; the oils seem to indicate a new chemotype in the genus Thymus. Influences of soil and altitude characteristics on the essential oil composition are discussed. The oils showed antibacterial activity against Gram-positive (Staphylococcus aureus, Streptococcus faecalis, Bacillus subtilis, and Bacillus cereus) and Gram-negative (Proteus mirabilis, Escherichia coli, Salmonella typhimuium Ty2, and Pseudomonas aeruginosa) bacteria.
Hydrothermal Liquefaction Biocrude Compositions Compared to Petroleum Crude and Shale Oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvis, Jacqueline M.; Billing, Justin M.; Hallen, Richard T.
We provide a direct and detailed comparison of the chemical composition of petroleum crude oil (from the Gulf of Mexico), shale oil, and three biocrudes (i.e., clean pine, microalgae Chlorella sp., and sewage sludge feedstocks) generated by hydrothermal liquefaction (HTL). Ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals that HTL biocrudes are compositionally more similar to shale oil than petroleum crude oil and that only a few heteroatom classes (e.g., N1, N2, N1O1, and O1) are common to organic sediment- and biomass-derived oils. All HTL biocrudes contain a diverse range of oxygen-containing compounds when compared tomore » either petroleum crude or shale oil. Overall, petroleum crude and shale oil are compositionally dissimilar to HTL oils, and >85% of the elemental compositions identified within the positive-ion electrospray (ESI) mass spectra of the HTL biocrudes were not present in either the petroleum crude or shale oil (>43% for negative-ion ESI). Direct comparison of the heteroatom classes that are common to both organic sedimentand biomass-derived oils shows that HTL biocrudes generally contain species with both smaller core structures and a lower degree of alkylation relative to either the petroleum crude or the shale oil. Three-dimensional plots of carbon number versus molecular double bond equivalents (with observed abundance as the third dimension) for abundant molecular classes reveal the specific relationship of the composition of HTL biocrudes to petroleum and shale oils to inform the possible incorporation of these oils into refinery operations as a partial amendment to conventional petroleum feeds.« less
Rampazzo, Valéria; Ribeiro, Leomara Floriano; Santos, Poliana Macedo; Ferreira, Maresa Custódio Molinari; Bona, Evandro; Maciel, Giselle Maria; Haminiuk, Charles Windson Isidoro
2018-04-01
The effect of heating in twenty-four different oil samples was evaluated via iodine value (IV), gas chromatography (GC) and mid-infrared (MIR) analyses. Common components and specific weights analysis (CCSWA) was applied to distribute the samples according to their most relevant characteristics, thereby revealing the influence of heating on composition. Instrumental analysis indicated a high amount of beneficial fatty acids, such as alpha-linolenic acid, in less exploited oils such as chia oil. This oil can present nutritional damage when subjected to high temperatures and is thus less recommended for frying. Conversely, oils containing high amounts of linoleic acid, such as almond and nut oils, as well as those containing equivalent amounts of alpha-linolenic and linoleic acids, such as golden flaxseed and flaxseed oils, displayed greater resistance to temperature. The 3008/cm band exhibited greater intensity in oils with a higher degree of unsaturation, such as chia and linseed oils, a phenomenon mainly influenced by the presence of linoleic and alpha-linolenic fatty acids. After heating, there was a decrease in the intensity of this band. The main parameter discriminating the tested oil samples based on CCSWA was the degree of unsaturation. Overall, the employed statistical method was effective in analyzing the data obtained via the applied techniques, revealing the influence of each assessed parameter. Copyright © 2018 Elsevier B.V. All rights reserved.
Phenolic profile and effect of growing area on Pistacia lentiscus seed oil.
Mezni, Faten; Slama, Awatef; Ksouri, Riadh; Hamdaoui, Ghaith; Khouja, Mohamed Larbi; Khaldi, Abdelhamid
2018-08-15
In this investigation, we aimed to study, for the first time, the phenolic composition of Pistacia lentiscus seed oils from different growing areas. Extraction of the phenolic fraction from oils was done by methanol/water. Phenolic profiles were determined using chromatographic analysis by High Performance Liquid Chromatography (HPLC-DAD/MSD) and its quantification was done using an internal standard which is unidentified in the studied oil (syringic acid). Forty phenolic compounds were quantified and only eighteen of them were identified. The eight studied oils showed different phenolic profiles. The total phenols amount varied from 538.03 mg/kg oil in Jbel Masour oils to 4260.57 mg/kg oil in oils from Kef Erraai. The highest amount of secoiridoids was reached by Bouchoucha oil containing 366.71 mg/kg oil of Oleuropein aglycon. Oils from Kef Erraai locality contained the highest concentrations in flavonols (377.44 mg/kg oil) and in phenolic acids (2762.67 mg/kg oil). Copyright © 2018 Elsevier Ltd. All rights reserved.
Muhammad, Syahidah Akmal; Seow, Eng-Keng; Mohd Omar, A K; Rodhi, Ainolsyakira Mohd; Mat Hassan, Hasnuri; Lalung, Japareng; Lee, Sze-Chi; Ibrahim, Baharudin
2018-01-01
A total of 33 crude palm oil samples were randomly collected from different regions in Malaysia. Stable carbon isotopic composition (δ 13 C) was determined using Flash 2000 elemental analyzer while hydrogen and oxygen isotopic compositions (δ 2 H and δ 18 O) were analyzed by Thermo Finnigan TC/EA, wherein both instruments were coupled to an isotope ratio mass spectrometer. The bulk δ 2 H, δ 18 O and δ 13 C of the samples were analyzed by Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA) and Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA). Unsupervised HCA and PCA methods have demonstrated that crude palm oil samples were grouped into clusters according to respective state. A predictive model was constructed by supervised OPLS-DA with good predictive power of 52.60%. Robustness of the predictive model was validated with overall accuracy of 71.43%. Blind test samples were correctly assigned to their respective cluster except for samples from southern region. δ 18 O was proposed as the promising discriminatory marker for discerning crude palm oil samples obtained from different regions. Stable isotopes profile was proven to be useful for origin traceability of crude palm oil samples at a narrower geographical area, i.e. based on regions in Malaysia. Predictive power and accuracy of the predictive model was expected to improve with the increase in sample size. Conclusively, the results in this study has fulfilled the main objective of this work where the simple approach of combining stable isotope analysis with chemometrics can be used to discriminate crude palm oil samples obtained from different regions in Malaysia. Overall, this study shows the feasibility of this approach to be used as a traceability assessment of crude palm oils. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Yin, Ailing; Han, Zhifeng; Shen, Jie; Guo, Liwei; Cao, Guiping
2011-10-01
To study on the separation from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride by ultrafiltration and acetoacetate extraction methods respectively, and the comparison of the oil yields and chemical compositions. Essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride was separated by ultrafiltration and acetoacetate extraction methods respectively, and the chemical compositions were analyzed and compared by GC-MS. Ultrafiltration method could enrich essential oil more and its chemical compositions were more similar to the essential oil prepared by steam distillation method. Ultrafiltration method is a good medium to separate essential oil from essential oil-in-water emulsion of Citri Reticulatae Pericarpium Viride.
Yangui, Islem; Zouaoui Boutiti, Meriem; Boussaid, Mohamed; Messaoud, Chokri
2017-07-01
The chemical composition of five Eucalyptus species and five Myrtus communis L. populations was investigated using GC/MS and GC-FID. For Eucalyptus essential oils, 32 compounds, representing 88.56 - 96.83% of the total oil according to species, were identified. The main compounds were 1,8-cineole, α-pinene, p-cymene, γ-gurjunene, α-aromadendrene, and β-phellandrene. For Myrtle essential oils, 26 compounds, representing 93.13 - 98.91% of the total oil were identified. α-Pinene, 1,8-cineole, linalool, and myrtenyl acetate were found to be the major compounds. Principal component analysis (PCA) showed chemical differentiation between Eucalyptus species and between Myrtle populations. Biscogniauxia mediterranea, the causative agent of charcoal canker, was identified according to its morphological and molecular characteristics. Essential oils of the investigated Eucalyptus species and Myrtle populations were tested for their antifungal capacity against this fungus. The antifungal activity varied according to the essential oil composition. Biscogniauxia mediterranea exhibited powerful resistance to some essential oils including them of Eucalyptus lehmannii and Eucalyptus sideroxylon but it was very sensitive to Eucalyptus camaldulensis oil (IC 50 = 3.83 mg/ml) and M. communis oil from Zaghouan (IC 50 = 1 mg/ml). This sensitivity was found to be correlated to some essential oil compounds such as p-cymene, carvacrol, cuminaldehyde, and linalool. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Sanyal, Anushree; Decocq, Guillaume
2016-09-09
Studies of the biogeographic distribution of seed oil content in plants are fundamental to understanding the mechanisms of adaptive evolution in plants as seed oil is the primary energy source needed for germination and establishment of plants. However, seed oil content as an adaptive trait in plants is poorly understood. Here, we examine the adaptive nature of seed oil content in 168 angiosperm families occurring in different biomes across the world. We also explore the role of multiple seed traits like seed oil content and composition in plant adaptation in a phylogenetic and nonphylogenetic context. It was observed that the seed oil content in tropical plants (28.4 %) was significantly higher than the temperate plants (24.6 %). A significant relationship between oil content and latitude was observed in three families Papaveraceae, Sapindaceae and Sapotaceae indicating that selective forces correlated with latitude influence seed oil content. Evaluation of the response of seed oil content and composition to latitude and the correlation between seed oil content and composition showed that multiple seed traits, seed oil content and composition contribute towards plant adaptation. Investigation of the presence or absence of phylogenetic signals across 168 angiosperm families in 62 clades revealed that members of seven clades evolved to have high or low seed oil content independently as they did not share a common evolutionary path. The study provides us an insight into the biogeographical distribution and the adaptive role of seed oil content in plants. The study indicates that multiple seed traits like seed oil content and the fatty acid composition of the seed oils determine the fitness of the plants and validate the adaptive hypothesis that seed oil quantity and quality are crucial to plant adaptation.
Validation of a sampling plan to generate food composition data.
Sammán, N C; Gimenez, M A; Bassett, N; Lobo, M O; Marcoleri, M E
2016-02-15
A methodology to develop systematic plans for food sampling was proposed. Long life whole and skimmed milk, and sunflower oil were selected to validate the methodology in Argentina. Fatty acid profile in all foods, proximal composition, and calcium's content in milk were determined with AOAC methods. The number of samples (n) was calculated applying Cochran's formula with variation coefficients ⩽12% and an estimate error (r) maximum permissible ⩽5% for calcium content in milks and unsaturated fatty acids in oil. n were 9, 11 and 21 for long life whole and skimmed milk, and sunflower oil respectively. Sample units were randomly collected from production sites and sent to labs. Calculated r with experimental data was ⩽10%, indicating high accuracy in the determination of analyte content of greater variability and reliability of the proposed sampling plan. The methodology is an adequate and useful tool to develop sampling plans for food composition analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ochoa, Aitor; Aramburu, Borja; Ibáñez, María; Valle, Beatriz; Bilbao, Javier; Gayubo, Ana G; Castaño, Pedro
2014-09-01
This work analyses the composition, morphology, and thermal behavior of the carbonaceous materials deposited during the thermal treatment of bio-oil (thermal pyrolytic lignin-TPL). The bio-oil was obtained by flash pyrolysis of lignocellulosic biomass (pine sawdust), and the TPLs were obtained in the 400-700 °C range. The TPLs were characterized by performing elemental analysis; (13)C NMR, Raman, FTIR, and X-ray photoelectron spectroscopy; SEM; and temperature-programmed oxidation analyzed by differential thermogravimetry and differential scanning calorimetry. The results are compared to a commercial lignin (CL). The TPLs have lower oxygen and hydrogen contents and a greater aromaticity and structural order than the CL material. Based on these features, different valorization routes are proposed: the TPL obtained at 500 °C is suitable for use as a fuel, and the TPL obtained at 700 °C has a suitable morphology and composition for use as an adsorbent or catalyst support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bajpai, Vivek K; Al-Reza, Sharif M; Choi, Ung Kyu; Lee, Jong Hwi; Kang, Sun Chul
2009-08-01
The aims of this study were to analyze the chemical composition of leaf essential oil of Metasequioa glyptostroboides Miki, and to test the efficacy of oil and extracts (hexane, chloroform, ethyl acetate and methanol) against food spoilage and food-borne pathogenic bacteria and their antioxidant activity. The GC-MS analysis revealed 49 compounds representing 94.62% of the total oil containing 2-butaneone (30.6%), cyclopentane (15.1%), beta-myrcene (13.29%), cyclobutane (7.67%), furan (3%), valeramide (2.81%), borneol (1.2%), beta-farnesene (1.67%), thymol (1.44%) and alpha-pinene (1.46%) as major components. The oil (1000 microg/disc), and extracts (1500 microg/disc) exhibited promising antibacterial effect as a diameter of zones of inhibition (10-18 and 7-13 mm), respectively. MIC values of oil and the extracts were ranged 125-2000 and 250 to <2000 microg/ml, respectively. Also the oil had strong antibacterial effect on the viable counts. Scanning electron microscopic study demonstrated potential detrimental effect of the oil on the morphology of S. aureus KCTC1916. The free radical scavenging activities of the oil and ethyl acetate extract were found to be 11.32 and 19.12 microg/ml, respectively. Also the ethyl acetate extract revealed the highest phenolic contents (85.17 mg/g of dry wt) as compared to the other extracts.
Pinto, Zeneida Teixeira; Sánchez, Félix Fernández; dos Santos, Arith Ramos; Amaral, Ana Claudia Fernandes; Ferreira, José Luiz Pinto; Escalona-Arranz, Julio César; Queiroz, Margareth Maria de Carvalho
2015-01-01
Essential oil of Cymbopogon citratus collected from Brazil and Cuba was tested to a chemical characterization and then was tested on the post-embryonic development of Musca domestica. The chemical composition analysis by GC-MS of the oils from Brazil/Cuba allowed the identification of 13 and 12 major constituents respectively; nine of them common to both. In the both oils, the main components were the isomers geranial and neral, which together form the compound citral. This corresponds to a total of 97.92%/Brazil and 97.69%/Cuba of the compounds identified. The monoterpene myrcene, observed only in the sample of Cuba, presented a large relative abundance (6.52%). The essential oil of C. citratus (Brazil/Cuba) was dissolved in DMSO and tested at concentrations of 5, 10, 25, 50, 75 and 100% and citral was prepared by mixing 16.8 mg with 960 µL DMSO. Both essential oils and monoterpene citral were applied topically to newly-hatched larvae (1µL/larva). The results showed a lethal concentration (LC50) of 4.25 and 3.24% for the Brazilian and Cuban essential oils, respectively. Mortalities of larval and newly-hatched larvae to adult periods were dose-dependent for the two both oils as for monoterpene citral, reaching 90%. Both essential oils and citral caused morphological changes in adult specimens.
Letchamo, Wudeneh; Ward, William; Heard, Brooks; Heard, Denise
2004-06-16
The essential oil content and the composition of subterranean parts of two valerian (Valeriana officinalis, L.) cultivars Select and Anthose, from certified commercial organic fields, were determined by hydrodistillation, followed by gas chromatography (GC) and GC/mass spectrometry analysis. Eight and fourteen month old cv. Select had 0.67 and 0.87% essential oil, while similar aged cv. Anthose contained 0.97 and 1.1% essential oil. Forty-three and fifty-three components from cv. Select and cv. Anthose oils were detected, respectively. The oil composition significantly varied due to the cultivar type, plant age, and/or harvesting time. The major components for cv. Select were valerenal, bornyl acetate, 15-acetoxy valeranone, valerenic acid, and camphene, while cv. Anthose had valerenal, (-)-bornyl acetate, alpha-humulene, camphene, 15-acetoxy valeranone, and valerenic acid. With further aging of the plants, the valerenal, valerenic acid, and alpha-humulene contents increased. The oil of cv. Select had a strong antimicrobial effect against Aspergillus niger, Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae, while cv. Anthose showed low or no activity against all test microbes, including Pseudomonas aeruginosa, suggesting that the inhibitory activity of valerian oil depends on the cultivar and its developmental stage. The oil profile of our cultivars did not match the literature proposed chemotype profiles.
Kokaly, Raymond F.; Couvillion, Brady; Holloway, JoAnn M.; Roberts, Dar A.; Ustin, Susan L.; Peterson, Seth H.; Khanna, Shruti; Piazza, Sarai C.
2013-01-01
We applied a spectroscopic analysis to Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data collected from low and medium altitudes during and after the Deepwater Horizon oil spill to delineate the distribution of oil-damaged canopies in the marshes of Barataria Bay, Louisiana. Spectral feature analysis compared the AVIRIS data to reference spectra of oiled marsh by using absorption features centered near 1.7 and 2.3 μm, which arise from CH bonds in oil. AVIRIS-derived maps of oiled shorelines from the individual dates of July 31, September 14, and October 4, 2010, were 89.3%, 89.8%, and 90.6% accurate, respectively. A composite map at 3.5 m grid spacing, accumulated from the three dates, was 93.4% accurate in detecting oiled shorelines. The composite map had 100% accuracy for detecting damaged plant canopy in oiled areas that extended more than 1.2 m into the marsh. Spatial resampling of the AVIRIS data to 30 m reduced the accuracy to 73.6% overall. However, detection accuracy remained high for oiled canopies that extended more than 4 m into the marsh (23 of 28 field reference points with oil were detected). Spectral resampling of the 3.5 m AVIRIS data to Landsat Enhanced Thematic Mapper (ETM) spectral response greatly reduced the detection of oil spectral signatures. With spatial resampling of simulated Landsat ETM data to 30 m, oil signatures were not detected. Overall, ~ 40 km of coastline, marsh comprised mainly of Spartina alterniflora and Juncus roemerianus, were found to be oiled in narrow zones at the shorelines. Zones of oiled canopies reached on average 11 m into the marsh, with a maximum reach of 21 m. The field and airborne data showed that, in many areas, weathered oil persisted in the marsh from the first field survey, July 10, to the latest airborne survey, October 4, 2010. The results demonstrate the applicability of high spatial resolution imaging spectrometer data to identifying contaminants in the environment for use in evaluating ecosystem disturbance and response.
Zheljazkov, Valtcho D; Astatkie, Tess; Schlegel, Vicki
2014-01-01
Coriander (Coriandrum sativum L.) is a major essential oil crop grown throughout the world. Coriander essential oil is extracted from coriander fruits via hydrodistillation, with the industry using 180-240 min of distillation time (DT), but the optimum DT for maximizing essential oil yield, composition of constituents, and antioxidant activities are not known. This research was conducted to determine the effect of DT on coriander oil yield, composition, and bioactivity. The results show that essential oil yield at the shorter DT was low and generally increased with increasing DT with the maximum yields achieved at DT between 40 and 160 min. The concentrations of the low-boiling point essential oil constituents: α-pinene, camphene, β-pinene, myrcene, para-cymene, limonene, and γ-terpinene were higher at shorter DT (< 2.5 min) and decreased with increasing DT; but the trend reversed for the high-boiling point constituents: geraniol and geranyl-acetate. The concentration of the major essential oil constituent, linalool, was 51% at DT 1.15 min, and increased steadily to 68% with increasing DT. In conclusion, 40 min DT is sufficient to maximize yield of essential oil; and different DT can be used to obtain essential oil with differential composition. Its antioxidant capacity was affected by the DT, with 20 and 240 min DT showing higher antioxidant activity. Comparisons of coriander essential oil composition must consider the length of the DT.
Schipilliti, Luisa; Tranchida, Peter Quinto; Sciarrone, Danilo; Russo, Marina; Dugo, Paola; Dugo, Giovanni; Mondello, Luigi
2010-03-01
Cold-pressed mandarin essential oils are products of great economic importance in many parts of the world and are used in perfumery, as well as in food products. Reconstituted mandarin oils are easy to find on the market; useful information on essential oil authenticity, quality, extraction technique, geographic origin and biogenesis can be attained through high-resolution GC of the volatile fraction, or enantioselective GC, using different chiral stationary phases. Stable isotope ratio analysis has gained considerable interest for the unveiling of citrus oil adulteration, detecting small differences in the isotopic carbon composition and providing plenty of information concerning the discrimination among products of different geographical origin and the adulteration of natural essential oils with synthetic or natural compounds. In the present research, the authenticity of several mandarin essential oils was assessed through the employment of GC hyphenated to isotope ratio MS, conventional GC flame ionization detector, enantioselective GC and HPLC. Commercial mandarin oils and industrial natural (declared as such) mandarin essential oils, characterized by different harvest periods and geographic origins, were subjected to analysis. The results attained were compared with those of genuine cold-pressed Italian mandarin oils, obtained during the 2008-2009 harvest season.
Vetvicka, Vaclav; Vetvickova, Jana
2016-12-01
Thymus species are popular spices and contain volatile oils as main chemical constituents. Recently, plant-derived essential oils are gaining significant attention due to their significant biological activities. Seven different thymus-derived essential oils were compared in our study. First, we focused on their chemical composition, which was followed up by testing their effects on phagocytosis, cytokine production, chemotaxis, edema inhibition, and liver protection. We found limited biological activities among tested oils, with no correlation between composition and biological effects. Similarly, no oils were effective in every reaction. Based on our data, the tested biological use of these essential oils is questionable.
Mota, Ana S; Martins, M Rosário; Arantes, Sílvia; Lopes, Violeta R; Bettencourt, Eliseu; Pombal, Sofia; Gomes, Arlindo C; Silva, Lúcia A
2015-04-01
The aim of this study was to investigate the chemical composition and antimicrobial activity of essential oils obtained by hydrodistillation from fruits of six fennel accessions collected from wild populations occurring in the centre and south of Portugal. Composition of essential oils was established by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The obtained yields of the essential oils were found to vary greatly in the range of 1.1 to 2.9% (v/w) and the chemical composition varied with the region of collection. A total of 16 compounds were identified. The main compounds were fenchone (16.9 - 34.7%), estragole (2.5 - 66.0%) and trans-anethole (7.9 - 77.7%). The percentages of these three main compounds were used to determine the relationship between the different oil samples and to group them into four different chemotypes: anethole/fenchone; anethole; estragole and anethole/estragole. Antifungal activity of essential oils was evaluated against six food spoilage fungi: Aspergillus niger, A. japonicus, A. oryzae, Fusarium oxysporum, Rhizophus oryzae and R. stolonifer. Antibacterial activity was assessed against three Gram-positive strains: Enterococcus faecalis ATCC 29212, Staphylococcus epidermidis ATCC 12228 and S. aureus ATCC 28213; and against six Gram-negative strains: Escherichia coli ATCC 25922; Morganella morganii LFG 08; Proteus mirabilis LFG 04; Salmonella enteritidis LFG 05; S. entiritidis serovar typhimurium LFG 06 and Pseudomonas aeruginosa ATCC 27853 by the disc diffusion agar method; the minimal inhibitory concentration (MIC) was determined using the broth macro-dilution method. The MIC values varied from 62.5 (E. coli ATCC 25922) to 2000 µmL (P. aeruginosa ATCC 27853).
Anti-inflammatory activity of animal oils from the Peruvian Amazon.
Schmeda-Hirschmann, Guillermo; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Vargas-Arana, Gabriel; Lima, Beatriz; Feresin, Gabriela E
2014-10-28
Animal oils and fats from the fishes Electrophorus electricus and Potamotrygon motoro, the reptiles Boa constrictor, Chelonoidis denticulata (Geochelone denticulata) and Melanosuchus niger and the riverine dolphin Inia geoffrensis are used as anti-inflammatory agents in the Peruvian Amazon. The aim of the study was to assess the topic anti-inflammatory effect of the oils/fats as well as to evaluate its antimicrobial activity and fatty acid composition. The oils/fats were purchased from a traditional store at the Iquitos market of Belen, Peru. The topic anti-inflammatory effect was evaluated by the mice ear edema induced by arachidonic acid (AA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) at the dose of 3mg oil/ear. Indomethacine and nimesulide were used as reference anti-inflammatory drugs. The application resembles the traditional topical use of the oils. The antimicrobial effect of the oils/fats was assessed by the microdilution test against reference strains of Escherichia coli, Staphylococcus aureus and Salmonella enteritidis. The fatty acid composition of the oils/fats (as methyl esters) was determined by GC and GC-MS analysis after saponification. All oils/fats showed topic anti-inflammatory activity, with better effect in the TPA-induced mice ear edema assay. The most active drugs were Potamotrygon motoro, Melanosuchus niger and Geochelone denticulata. In the AA-induced assay, the best activity was found for Potamotrygon motoro and Electrophorus electricus oil. The oil of Electrophorus electricus also showed a weak antimicrobial effect with MIC values of 250 µg/mL against Escherichia coli ATCC 25922 and Salmonella enteritidis-MI. The main fatty acids in the oils were oleic, palmitic and linoleic acids. Topical application of all the oils/fats investigated showed anti-inflammatory activity in the mice ear edema assay. The effect can be related with the identity and composition of the fatty acids in the samples. This study gives support to the traditional use of animal oils/fats as ant-inflammatory agents in the Peruvian Amazon. However, new alternative should be encouraged due to the conservation status of several of the animal sources of the crude drugs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2011-01-01
Background Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. Results From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. Conclusion The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition. PMID:21492485
Natarajan, Purushothaman; Parani, Madasamy
2011-04-15
Jatropha curcas L. is an important non-edible oilseed crop with promising future in biodiesel production. However, factors like oil yield, oil composition, toxic compounds in oil cake, pests and diseases limit its commercial potential. Well established genetic engineering methods using cloned genes could be used to address these limitations. Earlier, 10,983 unigenes from Sanger sequencing of ESTs, and 3,484 unique assembled transcripts from 454 pyrosequencing of uncloned cDNAs were reported. In order to expedite the process of gene discovery, we have undertaken 454 pyrosequencing of normalized cDNAs prepared from roots, mature leaves, flowers, developing seeds, and embryos of J. curcas. From 383,918 raw reads, we obtained 381,957 quality-filtered and trimmed reads that are suitable for the assembly of transcript sequences. De novo contig assembly of these reads generated 17,457 assembled transcripts (contigs) and 54,002 singletons. Average length of the assembled transcripts was 916 bp. About 30% of the transcripts were longer than 1000 bases, and the size of the longest transcript was 7,173 bases. BLASTX analysis revealed that 2,589 of these transcripts are full-length. The assembled transcripts were validated by RT-PCR analysis of 28 transcripts. The results showed that the transcripts were correctly assembled and represent actively expressed genes. KEGG pathway mapping showed that 2,320 transcripts are related to major biochemical pathways including the oil biosynthesis pathway. Overall, the current study reports 14,327 new assembled transcripts which included 2589 full-length transcripts and 27 transcripts that are directly involved in oil biosynthesis. The large number of transcripts reported in the current study together with existing ESTs and transcript sequences will serve as an invaluable genetic resource for crop improvement in jatropha. Sequence information of those genes that are involved in oil biosynthesis could be used for metabolic engineering of jatropha to increase oil content, and to modify oil composition.
De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice
2013-12-04
This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.
Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt. The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, publishedmore » work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degrees} C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3--5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).« less
Bou, Diego Dinis; Lago, João Henrique G; Figueiredo, Carlos R; Matsuo, Alisson L; Guadagnin, Rafael C; Soares, Marisi G; Sartorelli, Patricia
2013-08-08
Casearia sylvestris (Salicaceae), popularly known as "guaçatonga", is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ) and fully hydrogenated a-zingiberene (THZ) derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65 mg/mL) was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.
Siebert, Diogo Alexandre; Tenfen, Adrielli; Yamanaka, Celina Noriko; de Cordova, Caio Maurício Mendes; Scharf, Dilamara Riva; Simionatto, Edésio Luiz; Alberton, Michele Debiasi
2015-02-01
This study describes the seasonal composition and the antibacterial, antioxidant and anticholinesterase activity of the essential oil from Eugenia brasiliensis leaves. Analysis by using GC allowed the identification of 40 compounds. It was observed that the monoterpenes varied more (42%) than the sesquiterpenes (14%), and that the monoterpene hydrocarbons suffered the greatest variation throughout the year (64%). Major compounds were spathulenol in the spring (16.02 ± 0.44%) and summer (18.17 ± 0.41%), τ-cadinol in the autumn (12.83 ± 0.03%) and α-pinene (15.94 ± 0.58%) in the winter. Essential oils were tested for their antibacterial activity, and the best result was obtained from the autumn oil, with MIC = 500 μg mL(- 1) against Staphylococcus saprophyticus and Pseudomonas aeruginosa. Antioxidant activity was evaluated using DPPH, lipid peroxidation and iron-reducing power assays, as well as the anticholinesterase activity. Both tests showed a weak performance of the essential oils.
Usami, Atsushi; Motooka, Ryota; Takagi, Ayumi; Nakahashi, Hiroshi; Okuno, Yoshiharu; Miyazawa, Mitsuo
2014-01-01
The chemical composition of the volatile oil extracted from the aerial parts of Brassica rapa cv. "yukina" was analyzed using GC-MS, GC-PFPD, and GC-O. A total of 50 compounds were identified. The most prominent constituents were (E)-1,5-heptadiene (40.27%), 3-methyl-3-butenenitrile (25.97%) and 3-phenylpropanenitrile (12.41%). With regard to aroma compounds, 12 compounds were identified by GC-O analysis. The main aroma-active compounds were dimethyl tetrasulfide (sulphury-cabbage, FD = 64), 3-phenylpropanenitrile (nutty, FD = 64), 3-methylindole (pungent, FD = 64), and methional (potato, FD = 32). The antioxidant activity of the aroma-active compounds of the oil was determined using an oxygen radical absorbance capacity (ORAC) assay using fluorescein as the fluorescent probe. The ORAC values were found to be 785 ± 67 trolox equivalents (μmol TE/g) for B. rapa cv. "yukina" oil. The results obtained showed that the volatile oil extracted from the aerial parts is a good dietary source of antioxidants.
Tose, Lilian V; Murgu, Michael; Vaz, Boniek G; Romão, Wanderson
2017-11-01
Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min -1 , and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M] +• , and protonated cations, [M + H] + , with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Tose, Lilian V.; Murgu, Michael; Vaz, Boniek G.; Romão, Wanderson
2017-08-01
Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min-1, and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M]+•, and protonated cations, [M + H]+, with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. [Figure not available: see fulltext.
Analysis of fractionation in corn-to-ethanol plants
NASA Astrophysics Data System (ADS)
Nelson, Camille
As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.
Li, Xiaodan; Li, Jinwei; Wang, Yong; Cao, Peirang; Liu, Yuanfa
2017-12-15
The effects of frying oils' fatty acids profile on the formation of polar components and their retention in French fries and corresponding deep-fried oils were investigated in the present study, using oils with different fatty acids composition. Our analysis showed that the total polar compounds (TPCs) content in French fries was only slightly lower than that in deep-fried oils, indicating that there was no significant difference considering the amounts of TPCs in French fries and deep-fried oils. Our further analysis showed that different polar components in TPCs distributed differently in deep-fried oils and oils extracted from French fries. Specifically, the level of oligomeric and dimeric triacylglycerols was higher in French fries while oxidized triacylglycerols and diacylglycerols content was higher in deep-fried oils. The different retention of TPCs components in French fries may be explained by their interactions with carbohydrates, which are shown to enhance with the increase of hydrophobic property. Chemometric analysis showed that no correlation between the polar compounds level and saturated fatty acids profile was observed. Meanwhile, the polar compounds content was highly correlated with the formation of trans-C18:1, and a highly positive association between polar compounds and C18:2 content was also observed in palm oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drought and heat stress effects on soybean fatty acid composition and oil stability
USDA-ARS?s Scientific Manuscript database
Previous studies have shown that oil concentration and fatty acid profile (composition) change with genotype, environment (mainly heat and drought), and geographical location. The changes in fatty acid composition under these conditions affect fatty acid stability, creating a challenge to oil proces...
Mahboubi, M; Kazempour, N
2011-01-01
Background and Objectives The aim of this study was to evaluate the chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oils against different kinds of microorganisms in vitro. Material and Methods The antimicrobial activity was evaluated by micro broth dilution assay and the chemical composition of essential oils was analyzed by GC and GC/MS. Results Thymol, p-cymene, γ-terpinene and carvacrol were the main components of S. hortensis oil while thymol, γ-terpinene, and o-cymene were the major components of T. copticum oil. Two essential oils exhibited strong antimicrobial activity but the antimicrobial activity of T. copticum oil was higher than that of S. hortensis oil. Conclusion Thymol as a main component of oils plays an important role in antimicrobial activity. PMID:22530088
NASA Astrophysics Data System (ADS)
Diego, M. C. R.; Purwanto, Y. A.; Sutrisno; Budiastra, I. W.
2018-05-01
Research related to the non-destructive method of near-infrared (NIR) spectroscopy in aromatic oil is still in development in Indonesia. The objectives of the study were to determine the characteristics of the near-infrared spectra of patchouli oil and classify it based on its origin. The samples were selected from seven different places in Indonesia (Bogor and Garut from West Java, Aceh, and Jambi from Sumatra and Konawe, Masamba and Kolaka from Sulawesi Island). The spectral data of patchouli oil was obtained by FT-NIR spectrometer at the wavelength of 1000-2500 nm, and after that, the samples were subjected to composition analysis using Gas Chromatography-Mass Spectrometry. The transmittance and absorbance spectra were analyzed and then principal component analysis (PCA) was carried out. Discriminant analysis (DA) of the principal component was developed to classify patchouli oil based on its origin. The result shows that the data of both spectra (transmittance and absorbance spectra) by the PC analysis give a similar result for discriminating the seven types of patchouli oil due to their distribution and behavior. The DA of the three principal component in both data processed spectra could classify patchouli oil accurately. This result exposed that NIR spectroscopy can be successfully used as a correct method to classify patchouli oil based on its origin.
Camin, Federica; Pavone, Anita; Bontempo, Luana; Wehrens, Ron; Paolini, Mauro; Faberi, Angelo; Marianella, Rosa Maria; Capitani, Donatella; Vista, Silvia; Mannina, Luisa
2016-04-01
Isotope Ratio Mass Spectrometry (IRMS), (1)H Nuclear Magnetic Resonance ((1)H NMR), conventional chemical analysis and chemometric elaboration were used to assess quality and to define and confirm the geographical origin of 177 Italian PDO (Protected Denomination of Origin) olive oils and 86 samples imported from Tunisia. Italian olive oils were richer in squalene and unsaturated fatty acids, whereas Tunisian olive oils showed higher δ(18)O, δ(2)H, linoleic acid, saturated fatty acids β-sitosterol, sn-1 and 3 diglyceride values. Furthermore, all the Tunisian samples imported were of poor quality, with a K232 and/or acidity values above the limits established for extra virgin olive oils. By combining isotopic composition with (1)H NMR data using a multivariate statistical approach, a statistical model able to discriminate olive oil from Italy and those imported from Tunisia was obtained, with an optimal differentiation ability arriving at around 98%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Andrade, Milene Aparecida; Cardoso, Maria das Graças; de Andrade, Juliana; Silva, Lucilene Fernandes; Teixeira, Maria Luisa; Resende, Juliana Maria Valério; Figueiredo, Ana Cristina da Silva; Barroso, José Gonçalves
2013-01-01
The objectives of this study were to chemically characterize and evaluate the antioxidant activity of essential oils Cinnamodendron dinisii Schwacke (pepper) and Siparuna guianensis Aublet (negramina). The essential oil was isolated by hydrodistillation using a Clevenger modified apparatus, and the identification and quantification of constituents, through GC/MS and GC-FID analysis. The antioxidant activity was evaluated using β-carotene/linoleic acid system and the DPPH radical sequestering method. In chromatographic analysis, the majority constituents found in the essential oil of C. dinisii were bicyclic monoterpenes, α-pinene (35.41%), β-pinene (17.81%), sabinene (12.01%) and sesquiterpene bicyclogermacrene (7.59%). In the essential oil of the fresh leaves of Siparuna guianensis Aublet, acyclic monoterpene, β-myrcene (13.14%), and sesquiterpenes, germacrene-D (8.68%) and bicyclogermacrene (16.71%) were identified. The antioxidant activity was low by the β-carotene/linoleic acid test and was not evidenced by the DPPH test, for both oils evaluated. PMID:26784471
Azadmard-Damirchi, Sodeif
2010-01-01
Adulteration of virgin olive oil with less expensive oils such as hazelnut oil is a serious problem for quality control of olive oil. Detection of the presence of hazelnut oil in olive oil at low percentages (<20%) is limited with current official standard methods. In this review, various classes of phytosterols in these two oils are assessed as possible markers to detect adulterated olive oil. The composition of 4-desmethyl- and 4-monomethylsterols is similar in both oils, but the 4,4'-dimethylsterols differ. Lupeol and an unknown (lupane skeleton) compound from 4,4'-dimethylsterols are exclusively present in hazelnut oil and can be used as markers via GC-MS monitoring to detect adulteration at levels as low as 2%. The phytosterol classes need to be separated and enriched by a preparative method prior to analysis by GC or GC/MS; these SPE and TLC methods are also described in this review.
Laboratory Analytical Procedures | Bioenergy | NREL
analytical procedures (LAPs) to provide validated methods for biofuels and pyrolysis bio-oils research . Biomass Compositional Analysis These lab procedures provide tested and accepted methods for performing
Kunz, Matthew Ross; Ottaway, Joshua; Kalivas, John H; Georgiou, Constantinos A; Mousdis, George A
2011-02-23
Detecting and quantifying extra virgin olive adulteration is of great importance to the olive oil industry. Many spectroscopic methods in conjunction with multivariate analysis have been used to solve these issues. However, successes to date are limited as calibration models are built to a specific set of geographical regions, growing seasons, cultivars, and oil extraction methods (the composite primary condition). Samples from new geographical regions, growing seasons, etc. (secondary conditions) are not always correctly predicted by the primary model due to different olive oil and/or adulterant compositions stemming from secondary conditions not matching the primary conditions. Three Tikhonov regularization (TR) variants are used in this paper to allow adulterant (sunflower oil) concentration predictions in samples from geographical regions not part of the original primary calibration domain. Of the three TR variants, ridge regression with an additional 2-norm penalty provides the smallest validation sample prediction errors. Although the paper reports on using TR for model updating to predict adulterant oil concentration, the methods should also be applicable to updating models distinguishing adulterated samples from pure extra virgin olive oil. Additionally, the approaches are general and can be used with other spectroscopic methods and adulterants as well as with other agriculture products.
Krist, Sabine; Stuebiger, Gerald; Unterweger, Heidrun; Bandion, Franz; Buchbauer, Gerhard
2005-10-19
Poppy seed oil (Oleum Papaveris Seminis) is used for culinary and pharmaceutical purposes, as well as for making soaps, paints, and varnishes. Astonishingly, hardly anything was yet known about the volatile compounds of this promising comestible. Likewise, there are no current published data about the triglyceride (TAG) composition of poppy seed oils available. In this investigation solid-phase microextraction (SPME) with DVB/Carboxen/PDMS Stable-Flex fiber was applied to the study of volatile compounds of several seed oil samples from Papaver somniferum L. (Papaveraceae). 1-Pentanol (3.3-4.9%), 1-hexanal (10.9-30.9%), 1-hexanol (5.3-33.7%), 2-pentylfuran (7.2-10.0%), and caproic acid (2.9-11.5%) could be identified as the main volatile compounds in all examined poppy seed oil samples. Furthermore, the TAG composition of these oils was analyzed by MALDI-ReTOF- and ESI-IT-MS/MS. The predominant TAG components were found to be composed of linoleic, oleic, and palmitic acid, comprising approximately 70% of the oils. TAG patterns of the different poppy varieties were found to be very homogeneous, showing also no significant differences in terms of the applied pressing method of the plant seeds.
Yun, Jung-Mi; Surh, Jeonghee
2012-01-01
This study was designed to investigate whether the fatty acid composition could make a significant contribution to the oxidation stability of vegetable oils marketed in Korea. Ten kinds, 97 items of vegetable oils that were produced in either an industrialized or a traditional way were collected and analyzed for their fatty acid compositions and lipid oxidation products, in the absence or presence of oxidative stress. Peroxidability index (PI) calculations based on the fatty acid composition ranged from 7.10 to 111.87 with the lowest value found in olive oils and the highest in perilla oils. In the absence of induced oxidative stress, malondialdehyde (MDA), the secondary lipid oxidation product, was generated more in the oils with higher PI (r=0.890), while the tendency was not observed when the oils were subjected to an oxidation-accelerating system. In the presence of the oxidative stress, the perilla oils produced in an industrialized manner generated appreciably higher amounts of MDA than those produced in a traditional way, although both types of oils presented similar PIs. The results implicate that the fatty acid compositions could be a predictor for the oxidation stability of the vegetable oils at the early stage of oil oxidation, but not for those at a later stage of oxidation. PMID:24471078
Orav, Anne; Stulova, Irina; Kailas, Tiiu; Müürisepp, Mati
2004-05-05
The qualitative and quantitative composition of the essential oil from black, green, and white pepper was determined by using a simultaneous distillation and extraction micromethod for oil isolation and gas chromatography (GC)/flame ionization detection (FID) and GC/mass spectrometry (MS) analysis techniques. The most abundant compounds in pepper oils were (E)-beta-caryophyllene (1.4-70.4%), limonene (2.9-38.4%), beta-pinene (0.7-25.6%), Delta-3-carene (1.7-19.0%), sabinene (0-12.2%), alpha-pinene (0.3-10.4%), eugenol (0.1-41.0%), terpinen-4-ol (0-13.2%), hedycaryol (0-9.1%), beta-eudesmol (0-9.7%), and caryophyllene oxide (0.1-7.2%). Green pepper corn obtained by a sublimation drying method gave more oil (12.1 mg/g) and a much higher content of monoterpenes (84.2%) in the oil than air-dried green pepper corn (0.8 mg/g and 26.8%, respectively). The oil from ground black pepper contained more monoterpenes and less sesquiterprnes and oxygenated terpenoids as compared to green and white pepper oils. After 1 year of storage of pepper samples in a glass vessel at room temperature, the amount of the oils isolated decreased, the content of terpenes decreased, and the amount of oxygenated terpenoids increased. Differently from other pepper samples, 1 year storage of green pepper corn raised the oil amount more than twice of both drying methods.
Ghimire, Bimal Kumar; Yoo, Ji Hye; Yu, Chang Yeon; Chung, Ill-Min
2017-07-01
To investigate the composition of volatile compounds in the different accessions of Perilla frutescens (P. frutescens) collected from various habitats of China and Japan. In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography-mass spectrometry (GC-MS) analysis. Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone (PK) type, perilla ketone, myristicin (PM) type, perilla ketone, unknown (PU) type, perilla ketone, beta-caryophyllene, myristicine (PB) type, perilla ketone, myristicin, unknown (PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene (PEMB) type, and the perilla ketone, limonene, beta-cryophyllene, myristicin (L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Huang, Rongfu; Chen, Yuan; Meshref, Mohamed N A; Chelme-Ayala, Pamela; Dong, Shimiao; Ibrahim, Mohamed D; Wang, Chengjin; Klamerth, Nikolaus; Hughes, Sarah A; Headley, John V; Peru, Kerry M; Brown, Christine; Mahaffey, Ashley; Gamal El-Din, Mohamed
2018-01-01
This work reports the monitoring and assessment of naphthenic acids (NAs) in oil sands process-affected water (OSPW), Pleistocene channel aquifer groundwater (PLCA), and oil sands basal aquifer groundwater (OSBA) from an active oil sands development in Alberta, Canada, using ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) analysis with internal standard (ISTD) and external standard (ESTD) calibration methods and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for compositional analysis. PLCA was collected at 45-51 m depth and OSBA was collected at 67-144 m depth. Results of O x -NA concentrations follow an order as OSPW > OSBA > PLCA, indicating that occurrences of NAs in OSBA were likely related to natural bitumen deposits instead of OSPW. Liquid-liquid extraction (LLE) was applied to avoid the matrix effect for the ESTD method. Reduced LLE efficiency accounted for the divergence of the ISTD and ESTD calibrated results for oxidized NAs. Principle component analysis results of O 2 and O 4 species could be employed for differentiation of water types, while classical NAs with C13-15 and Z (-4)-(-6) and aromatic O 2 -NAs with C16-18 and Z (-14)-(-16) could be measured as marker compounds to characterize water sources and potential temporal variations of samples, respectively. FTICR-MS results revealed that compositions of NA species varied greatly among OSPW, PLCA, and OSBA, because of NA transfer and transformation processes. This work contributed to the understanding of the concentration and composition of NAs in various types of water, and provided a useful combination of analytical and statistical tools for monitoring studies, in support of future safe discharge of treated OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rachitha, P.; Krupashree, K.; Jayashree, G. V.; Gopalan, Natarajan; Khanum, Farhath
2017-01-01
Objective: The aim of this study is to determine the phytochemical composition, antifungal activity of Mentha piperita essential oil (MPE) against Fusarium sporotrichioides. Methods: The phytochemical composition was conducted by gas chromatography mass spectrometry (GC MS) analysis and mycelia growth inhibition was determined by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), the morphological characterization was observed by scanning electron microscopy. Finally, the membrane permeability was determined by the release of extracellular constituents, pH, and total lipid content. Result: In GC MS analysis, 22 metabolites were identified such as menthol, l menthone, pulegone, piperitone, caryophyllene, menthol acetate, etc. The antifungal activity against targeted pathogen, with MIC and MFC 500 μg/mL and 1000 μg/mL, respectively. The MPE altered the morphology of F. sporotrichoides hyphae with the loss of cytoplasm content and contorted the mycelia. The increasing concentration of MPE showed increase in membrane permeability of F. sporotrichoides as evidenced by the release of extracellular constituents and pH with the disruption of cell membrane indicating decrease in lipid content of F. sporotrichoides. Conclusion: The observed results showed that MPE exhibited promising new antifungal agent against Fusarium sporotrichioides. SUMMARY F. sporotrichioides, filamentous fungi contaminate to corn and corn--based productsF. sporotrichioides mainly responsible for the production of T-2 toxinPhytochemical composition was conducted by gas chromatography--mass spectrometry analysisMentha piperita essential oil (MPE) is commonly known as peppermintThe F. sporotrichioides growth was inhibited by MPE (minimum inhibitory concentration, minimum fungicidal concentration)Morphological observation by scanning electron microscope. Abbreviations Used: Cfu: Colony forming unit; DMSO: Dimethyl sulfoxide, °C: Degree celsius; F. Sporotrichoides: Fusarium sporotrichioides; EOs: Essential oils; M: Molar, g: Gram/gravity, mg: Milligram; μg: Microgram, ml: Milliliter; mm: Millimeter, min: Minutes; M. piperita: Mentha piperita, MIC: Minimum inhibitory concentration; MFC: Minimum fungicidal concentration; MAE: Mentha arvensis essential oil; Na2SO4: Sodium sulfate; pH: Potential Hydrogen; PDB: Potato Dextrose Broth; SEM: Scanning electron microscope PMID:28250658
Using stable isotope analysis to discriminate gasoline on the basis of its origin.
Heo, Su-Young; Shin, Woo-Jin; Lee, Sin-Woo; Bong, Yeon-Sik; Lee, Kwang-Sik
2012-03-15
Leakage of gasoline and diesel from underground tanks has led to a severe environmental problem in many countries. Tracing the production origin of gasoline and diesel is required to enable the development of dispute resolution and appropriate remediation strategies for the oil-contaminated sites. We investigated the bulk and compound-specific isotopic compositions of gasoline produced by four oil companies in South Korea: S-Oil, SK, GS and Hyundai. The relative abundance of several compounds in gasoline was determined by the peak height of the major ion (m/z 44). The δ(13)C(Bulk) and δD(Bulk) values of gasoline produced by S-Oil were significantly different from those of SK, GS and Hyundai. In particular, the compound-specific isotopic value (δ(13)C(CSIA)) of methyl tert-butyl ether (MTBE) in S-Oil gasoline was significantly lower than that of gasoline produced by other oil companies. The abundance of several compounds in gasoline, such as n-pentane, MTBE, n-hexane, toluene, ethylbenzene and o-xylene, differed widely among gasoline from different oil companies. This study shows that gasoline can be forensically discriminated according to the oil company responsible for its manufacture using stable isotope analysis combined with multivariate statistical analysis. Copyright © 2012 John Wiley & Sons, Ltd.
Utilizing biotechnology in producing fats and oils with various nutritional properties.
Flickinger, Brent D
2007-01-01
The role of dietary fat in health and wellness continues to evolve. In today's environment, trans fatty acids and obesity are issues that are impacted by dietary fat. In response to new information in these areas, changes in the amount and composition of edible fats and oils have occurred and are occurring. These compositional changes include variation in fatty acid composition and innovation in fat structure. Soybean, canola, and sunflower are examples of oilseeds with varied fatty acid composition, including mid-oleic, high-oleic, and low-linolenic traits. These trait-enhanced oils are aimed to displace partially hydrogenated vegetable oils primarily in frying applications. Examples of oils with innovation in fat structure include enzyme interesterified (EIE) fats and oils and diacylglycerol oil. EIE fats are a commercial edible fat innovation, where a lipase is used to modify the fat structure of a blend of hard fat and liquid oil. EIE fats are aimed to displace partially hydrogenated vegetable oils in baking and spread applications. Diacylglycerol and medium-chain triglyceride (MCT)-based oils are commercial edible oil innovations. Diacylglycerol and MCT-based oils are aimed for individuals looking to store less of these fats as body fat when they are used in place of traditional cooking and salad oils.
Hernandes, Camila; Taleb-Contini, Silvia H; Bartolomeu, Ana Carolina D; Bertoni, Bianca W; França, Suzelei C; Pereira, Ana Maria S
2014-09-01
Reports on the chemical and pharmacological profile of the essential oil of Schinus weinmannifolius do not exist, although other Schinus species have been widely investigated for their biological activities. This work aimed to evaluate the chemical composition and antimicrobial activity of the essential oil of S. weinmannifolius collected in the spring and winter. The essential oils were extracted by hydrodistillation, analyzed by GC/MS and submitted to microdilution tests, to determine the minimum inhibitory concentration. The oils displayed different chemical composition and antimicrobial action. Bicyclogermacrene and limonene predominated in the oils extracted in the winter and spring, respectively, whereas only the latter oil exhibited antifungal activity.
Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha
2013-11-21
Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.
Essential Oils Composition and Antimicrobial Activity of Six Conifers Harvested in Lebanon.
Fahed, Layal; Khoury, Madona; Stien, Didier; Ouaini, Naïm; Eparvier, Véronique; El Beyrouthy, Marc
2017-02-01
The chemical composition and antimicrobial activity of the essential oils (EOs) of six conifers harvested in Lebanon, Abies cilicica, Cupressus sempervirens, Juniperus excelsa, Juniperus oxycedrus, Cedrus libani and Cupressus macrocarpa gold crest, were investigated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. A principal components analysis based on Pearson correlation between essential oils chemical analyses was also conducted. The minimum inhibitory concentrations (MICs) of these essentials oils were determined against a range of bacteria and fungi responsible for cutaneous infections in human, using the broth microdilution technique. The EOs showed the most interesting bioactivity on the dermatophytes species (MIC values 32 - 64 μg/ml). Each of the major compounds of C. macrocarpa as well as an artificial reconstructed EO were tested on Trichophyton rubrum showing a contribution of the minor components to the overall activity. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Neff, Jerry M; Durell, Gregory S
2012-04-01
An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development do not appear to be causing an increase in petroleum hydrocarbon contamination of the Beaufort Sea food web. Copyright © 2011 SETAC.
NASA Astrophysics Data System (ADS)
Manuhara, G. J.; Mentari, G. P.; Khasanah, L. U.; Utami, R.
2018-03-01
Ginger (Zingiber officinale var Amarum) is widely used as raw material for essential oil production in Indonesia and contain high functional compounds. After producing essential oil, distillation leave less valuable spent ginger. This research was conducted to determine the bioactive compounds remained in aqueous extract of the spent ginger. The extracts were produced at various combination of temperature (55, 75, 95°C) and duration (15, 30, 45 minutes). The extract composition was observed using Gas Chromatography - Mass Spectrometry analysis. The temperature and time of maceration extraction affected the content of compounds in spent ginger aqueous extracts. The extracts contained four largest components of α-curcumene, α-zingiberene, β-sesquiphellandrene and β-bisabolene. The aqueous extracts from spent ginger contained the compounds which may contribute to distinctive flavor of ginger and also bioactive function.
Li, Zhi-Jian; Njateng, Guy S S; He, Wen-Jia; Zhang, Hong-Xia; Gu, Jian-Long; Chen, Shan-Na; Du, Zhi-Zhi
2013-11-01
The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)-dec-2-enal (52.0%), (E)-dodec-2-enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)-dec-2-enal presented a lower antifungal activity than the essential oil. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Mothana, Ramzi A.; Al-Said, Mansour S.; Al-Yahya, Mohammed A.; Al-Rehaily, Adnan J.; Khaled, Jamal M.
2013-01-01
Leucas virgata Balf.f. (Lamiaceae) was collected from the Island Soqotra (Yemen) and its essential oil was obtained by hydrodistillation. The chemical composition of the oil was investigated by GC and GC-MS. Moreover, the essential oil was evaluated for its antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria, and one yeast species by using broth micro-dilution assay for minimum inhibitory concentrations (MIC) and antioxidant activity by measuring the scavenging activity of the DPPH radical. The investigation led to the identification of 43 constituents, representing 93.9% of the total oil. The essential oil of L. virgata was characterized by a high content of oxygenated monoterpenes (50.8%). Camphor (20.5%) exo-fenchol (3.4%), fenchon (5.4%), and borneol (3.1%) were identified as the main components. Oxygenated sesquiterpenes were found as the second major group of compounds (21.0%). β-Eudesmol (6.1%) and caryophyllene oxide (5.1%) were the major compounds among oxygenated sesquiterpenes. The results of the antimicrobial assay showed that the oil exhibited a great antibacterial activity against the tested S. aureus, B. subtilis, and E. coli. No activity was found against P. aeruginosa and C. albicans. Moreover, the DPPH-radical scavenging assay exhibited only a moderate antioxidant activity (31%) for the oil at the highest concentration tested (1 mg/mL). PMID:24284402
Carneiro, Nárgella S; Alves, Cassia C F; Alves, José M; Egea, Mariana B; Martins, Carlos H G; Silva, Thayná S; Bretanha, Lizandra C; Balleste, Maira P; Micke, Gustavo A; Silveira, Eduardo V; Miranda, Mayker L D
2017-01-01
Many essential oils (EOs) of different plant species possess interesting antimicrobial effects on buccal bacteria and antioxidant properties. Eugenia klotzschiana Berg (pêra-do-cerrado, in Portuguese) is a species of Myrtaceae with restricted distribution in the Cerrado. The essential oils were extracted through the hydrodistillation technique using a modified Clevenger apparatus (2 hours) and chemically characterized by GC-MS. The major compounds were α-copaene (10.6 %) found in oil from leaves in natura, β-bisabolene (17.4 %) in the essential oil from dry leaves and α-(E)-bergamotene (29.9 %) in oil from flowers. The antioxidant activity of essential oils showed similarities in both methods under analysis (DPPH and ABTS˙+) and the results suggested moderate to high antioxidant activity. The antibacterial activity was evaluated by determining minimum inhibitory concentrations (MICs), using the microdilution method. MIC values below 400 µg/mL were obtained against Streptococcus salivarius (200 µg/mL), S. mutans (50 µg/mL), S. mitis (200 µg/mL) and Prevotella nigrescens (50 µg/mL). This is the first report of the chemical composition and antibacterial and antioxidant activities of the essential oils of E. klotzschiana. These results suggest that E. klotzschiana, a Brazilian plant, provide initial evidence of a new and alternative source of substances with medicinal interest.
Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.
2015-06-01
This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.
Detection of oil spills using 13.3 GHz radar scatterometer
NASA Technical Reports Server (NTRS)
Krishen, K.
1972-01-01
The results of an analysis of 13.3-GHz single polarized scatterometer data collected during NASA/MSC Mission 135, flown on March 16, 1970 are reported. Data were gathered over a crude oil spill on the Gulf of Mexico off the Mississippi Delta. With the aid of RC-8 camera photographs, the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles decreased by 5 db to 10 db in the presence of the oil spill. This was attributed to oil's damping of small gravity and capillary waves. The composite scattering theory and the scatterometer acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected using high frequency radar systems.
Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang
2016-08-16
The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations.
NASA Astrophysics Data System (ADS)
Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang
2016-08-01
The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations.
Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang
2016-01-01
The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations. PMID:27526784
Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin
2014-09-01
Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.
Kumar, Dharmesh; Sukapaka, Mahesh; Babu, G D Kiran; Padwad, Yogendra
2015-01-01
Plant-based traditional system of medicine continues to play an important role in healthcare. In order to find new potent source of bioactive molecules, we studied the cytotoxic activity of the essential oils from the flowers and leaves of Callistemon citrinus. This is the first report on anticancer potential of essential oils of C. citrinus. Cytotoxicity of essential oil was evaluated using sulfo-rhodamine B (SRB) assay against human lung carcinoma (A549), rat glioma (C-6), human colon cancer (Colo-205) and human cervical cancer (SiHa) cells. Apoptosis induction was evaluated by caspase-3/7 activity which was further confirmed by western blotting. Percentage cell apoptosis was determined by Annexin V based dead cell assay followed by DNA content as cell cycle analysis against A549 and C-6 cells. While 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to check the toxicity against normal human peripheral blood mononuclear cells (PBMCs), the immunomodulatory activity on mouse splenocytes was evaluated using SRB assay. The GC and GC-MS analysis of these essential oils revealed high content of α-pinene (32.3%), limonene (13.1%) and α-terpineol (14.6%) in leaf sample, whereas the flower oil was dominated by 1,8-cineole (36.6%) followed by α-pinene (29.7%). The leaf oil contained higher amount of monoterpene hydrocarbons (52.1%) and sesquiterpenoids (14%) as compared to flower oil (44.6% and 1.2%, respectively). However, the flower oil was predominant in oxygenated monoterpenes (43.5%). Although both leaf and flower oils showed highest cytotoxicity on A549 cells (61.4%±5.0 and 66.7%±2.2, respectively), only 100 μg/mL flower oil was significantly active against C-6 cells (69.1%±3.1). Interestingly, no toxicity was recorded on normal cells. Higher concentration of 1,8-cineole and/or synergistic effect of the overall composition were probably responsible for the efficacy of flower and leaf oils against the tested cells. These oils may form potential source of natural anti-cancer compounds and play important role in human health.
Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid
2015-04-15
Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr.
de Almeida, Macia C S; Souza, Luciana G S; Ferreira, Daniele A; Monte, Francisco J Q; Braz-Filho, Raimundo; de Lemos, Telma L G
2015-10-01
Bauhinia pentandrais popularly known as "mororó" and inhabits the Caatinga and Savannah biomes. This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil.
Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A
2011-02-01
Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.
Servili, Maurizio; Selvaggini, Roberto; Taticchi, Agnese; Esposto, Sonia; Montedoro, GianFrancesco
2003-12-31
The operative conditions of malaxation such as temperature and time of exposure of olive pastes to air contact (TEOPAC) affect volatile and phenolic composition of virgin olive oil (VOO) and, as a consequence, its sensory and healthy qualities. In this paper, optimal temperature and TEOPAC during malaxation were studied, in lab scale, in two Italian cultivars using phenolic compounds, volatile composition, and sensory analysis of VOO as markers. The optimal temperature and TEOPAC, selected by response surface modeling,were cultivar-dependent being 30 min of TEOPAC at the lowest temperature investigated (22 degrees C) and 0 min of TEOPAC at 26 degrees C for Frantoio and Moraiolo cultivars, respectively.
Development and characterization of soy-based epoxy resins and pultruded FRP composites
NASA Astrophysics Data System (ADS)
Zhu, Jiang
This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.
Karapandzova, Marija; Stefkova, Gjose; Cvetkovikj, Ivana; Trajkovska-Dokik, Elena; Kaftandzieva, Ana; Kulevanova, Svetlana
2014-11-01
The chemical composition and antimicrobial activity of the essential oils isolated from twigs with needles (T+N) and from twigs without needles (T-N) from wild Pinus peuce Griseb. (Pinaceae), from three different locations in R. Macedonia, were investigated. Essential oil yields of T+N ranged from 7.5 mL/kg to 12.5 mL/kg and for T-N from 13.8 mL/kg to 17.3 mL/kg. GC/FID/MS analysis of the essential oils revealed eighty-four components, representing 93.7-95.7% and 91.2-92.0% of the T+N and T-N oils, respectively. The major components in T+N and T-N oils were monoterpenes: α-pinene (23.8-39.9%, 21.2-23.3%), camphene (2.2-5.5%, 0.7-2.0%), β-pinene (10.1-17.1%, 8.2-16.4%), myrcene (1.2-1.41%, 1.6-2.5%), limonene+β-phellandrene (6.8-14.0%, 8.8-23.6%) and bornyl acetate (2.3-6.9%, 1.1-3.4%), followed by the sesquiterpenes: trans-(E)-caryophyllene (3.6-4.3%, 3.2-7.3%), germacrene D (7.1-9.5%, 5.0-10.3%) and δ-cadinene (2.1-3.1%, 3.3-4.2%, respectively). Antimicrobial screening of the essential oils was made by disk diffusion and broth dilution methods against 13 bacterial isolates of Gram-positive and Gram-negative bacteria and one strain of Candida albicans. T-N essential oils showed antimicrobial activity toward Streptococcus pneumoniae, Staphylococcus aureus, S. epidermidis and Candida albicans as well as Streptococcus agalactiae, Acinetobacter spp. and Haemophilus influenzae. The antimicrobial activity of T+N essential oils was greater, especially against Streptococcus agalactiae, S. pyogenes, Enterococcus and Candida albicans, followed by Haemophilus influenzae, Acinetobacter spp., Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and S. epidermidis. Minimal inhibitory concentrations (MICs) of all tested essential oils ranged from 15-125 μL/mL. Summarizing the obtained results, the antimicrobial activity of Pinus peuce T+N and T-N essential oils collected from different localities in R. Macedonia varied considerably. These alterations in the antimicrobial activity can be attributed to the differences in the quantitative composition and percentage amounts of the components present in the respective essential oils, although it was evident that there were no differences in the qualitative composition of the essential oils, regardless of the locality of collection, or the type of plant material (T+N or T-N).
Ben Brahim, Samia; Kelebek, Hasim; Ammar, Sonda; Abichou, Mounir; Bouaziz, Mohamed
2017-08-15
In this work, the phenolic composition of four rare cultivars grown under the same agronomical and environmental conditions was studied. This is to test the effects of cultivars and ripening index essentially on phenolic composition in olive oils as well as tocopherols composition, organoleptic profiling and oxidative properties. Furthermore, some agronomical traits were determined in which a general increase in the size of the fruit and oil contents were recorded for all cultivars. The phenolic fractions were identified and quantified using liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MS/MS) in multiple reaction monitoring mode (MRM). A total of 13 phenolic compounds belonging to different chemical families were determined. Qualitative and quantitative differences in phenolic composition were observed among cultivars and also among sampling times. On the contrary to the agronomical traits, a general decrease (p<0.05) of total phenolic compounds was observed during maturation. Likewise, a decrease in tocopherols concentrations and oxidative properties was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd
2018-04-01
This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.
Jurevičiūtė, Rūta; Ložienė, Kristina; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio
2018-02-02
Distillation time can both to optimise the production and to engineer the composition of essential oil in essential oil bearing plants. Purpose of this study was to evaluate the effect of duration of hydrodistillation on composition of essential oil of Thymus × citriodorus, the natural source of commercially important geraniol and citral, a component with valuable biological properties. Essential oils were isolated by hydrodistillation at different distillation times and analysed by GC/MS analytical methods. Increase in percentage of essential oil during all hydrodistillation time gradient was uneven. Elongation of hydrodistillation time decreased percentages of monoterpenes but increased percentages of sesquiterpenes in essential oil. Results showed that the hydrodistillation of essential oil from lemon thyme longer than 60 min is useless.
Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.
Wang, Zhangxin; Hou, Deyin; Lin, Shihong
2016-04-05
In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.
Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity
USDA-ARS?s Scientific Manuscript database
Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...
Sun, Weimin; Li, Jiwei; Jiang, Lei; Sun, Zhilei; Fu, Meiyan; Peng, Xiaotong
2015-10-01
Successful bioremediation of oil pollution is based on a comprehensive understanding of the in situ physicochemical conditions and indigenous microbial communities as well as the interaction between microorganisms and geochemical variables. Nineteen oil-contaminated soil samples and five uncontaminated controls were taken from six major oilfields across different geoclimatic regions in China to investigate the spatial distribution of the microbial ecosystem. Microbial community analysis revealed remarkable variation in microbial diversity between oil-contaminated soils taken from different oilfields. Canonical correspondence analysis (CCA) further demonstrated that a suite of in situ geochemical parameters, including soil moisture and sulfate concentrations, were among the factors that influenced the overall microbial community structure and composition. Phylogenetic analysis indicated that the vast majority of sequences were related to the genera Arthrobacter, Dietzia, Pseudomonas, Rhodococcus, and Marinobacter, many of which contain known oil-degrading or oil-emulsifying species. Remarkably, a number of archaeal genera including Halalkalicoccus, Natronomonas, Haloterrigena, and Natrinema were found in relatively high abundance in some of the oil-contaminated soil samples, indicating that these Euryarchaeota may play an important ecological role in some oil-contaminated soils. This study offers a direct and reliable reference of the diversity of the microbial community in various oil-contaminated soils and may influence strategies for in situ bioremediation of oil pollution.
Lee, Jeong-Ho; Lee, Byung-Kyu; Kim, Jong-Hee; Lee, Sang Hee; Hong, Soon-Kwang
2009-04-01
The chemical compositions, and antibacterial and antifungal effects of essential oils extracted from three coniferous species, Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa, were investigated. Gas chromatography mass analysis of the essential oils revealed that the major components and the percentage of each essential oil were 16.66% beta-phellandrene and 14.85% alpha-pinene in P. densiflora; 31.45% kaur-16-ene and 11.06% sabinene in C. japonica; and 18.75% bicyclo [2, 2, 1] heptan-2-ol and 17.41% 2-carene in Ch. obtusa. The antimicrobial assay by agar disc diffusion method showed that 2.2 microg of Ch. obtusa oil inhibited most effectively the growth of Escherichia coli ATCC 33312 and Klebsiella oxytoca ATCC 10031, whereas the C. japonica oil gave weak antimicrobial activity. The minimal inhibitory concentration (MIC) values for bacterial strains were in the range of 5.45-21.8 mg/ml depending on essential oils, but most Gram-negative bacteria were resistant even at 21.8 mg oil/ml. P. densiflora oil showed the most effective antifungal activity and the MIC values for Cryptococcus neoformans B42419 and Candida glabrata YFCC 062CCM 11658 were as low as 0.545 and 2.18 mg/ml, respectively. Cryp. neoformans B42419 was the most sensitive to all essential oils in the range of 0.545-2.18 mg/ml. Our data clearly showed that the essential oils from the three conifers had effective antimicrobial activity, especially against fungi.
Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed
2016-01-01
Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL-1 and 125.00 µg mL-1, respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes. PMID:27226881
Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed
2016-01-01
Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes.
Mirnaghi, Fatemeh S; Soucy, Nicholas; Hollebone, Bruce P; Brown, Carl E
2018-05-19
The characterization of spilled petroleum products in an oil spill is necessary for identifying the spill source, selection of clean-up strategies, and evaluating potential environmental and ecological impacts. Existing standard methods for the chemical characterization of spilled oils are time-consuming due to the lengthy sample preparation for analysis. The main objective of this study is the development of a rapid screening method for the fingerprinting of spilled petroleum products using excitation/emission matrix (EEM) fluorescence spectroscopy, thereby delivering a preliminary evaluation of the petroleum products within hours after a spill. In addition, the developed model can be used for monitoring the changes of aromatic compositions of known spilled oils over time. This study involves establishing a fingerprinting model based on the composition of polycyclic and heterocyclic aromatic hydrocarbons (PAH and HAHs, respectively) of 130 petroleum products at different states of evaporative weathering. The screening model was developed using parallel factor analysis (PARAFAC) of a large EEM dataset. The significant fluorescing components for each sample class were determined. After which, through principal component analysis (PCA), the variation of scores of their modeled factors was discriminated based on the different classes of petroleum products. This model was then validated using gas chromatography-mass spectrometry (GC-MS) analysis. The rapid fingerprinting and the identification of unknown and new spilled oils occurs through matching the spilled product with the products of the developed model. Finally, it was shown that HAH compounds in asphaltene and resins contribute to ≥4-ring PAHs compounds in petroleum products. Copyright © 2018. Published by Elsevier Ltd.
Jones, Peter J. H.; MacKay, Dylan. S.; Senanayake, Vijitha K.; Pu, Shuaihua; Jenkins, David J. A.; Connelly, Philip W.; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M.; West, Sheila G.; Liu, Xiaoran; Fleming, Jennifer A.; Hantgan, Roy R.; Rudel, Lawrence L.
2015-01-01
Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets; 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p=0.0005 and p=0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p=0.0243) and DHA-enriched high oleic canola oil (p=0.0249), although high-oleic canola oil had the lowest binding at baseline (p=0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. PMID:25528432
Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.
Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng
2013-11-01
Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.
Effects of cocoa butter triacylglycerides and minor compounds on oil migration.
Wang, Hao; Maleky, Farnaz
2018-04-01
In a multi-component chocolate product, oil migration, from high oil content filling into chocolate, is one of the major contributors to the product quality loss. Among various parameters influencing oil diffusivity, cocoa butter is studied intensively. Studies have shown that the rate of oil transportion in cocoa butter is affected by its composition, the way that it is crystallized, and also the storage conditions. To model and study effects of cocoa butter type and processing conditions on oil migration, five different cocoa butter samples were studied in this work. Samples' chemical compositions in addition to their structural properties were analyzed to understand and compare oil migrations in the networks. Crystallized cocoa butter samples were placed in contact with a cream as a source of liquid oil. Using Magnetic Resonance Imaging, the movement of liquid oil into samples was investigated. The effects of minor differences in the cocoa butter chemical compositions on oil migrations rate are shown clearly. The highest effective diffusion coefficient was observed in the sample with the higher unsaturated fatty acids and phospholipids content. Although shearing at 250s -1 delayed oil migration in all the samples and a significantly lower diffusion coefficient was observed in the dynamic samples, the effects of chemical composition were still dominant. This study successfully highlighted that even minor differences in cocoa butter composition affect the network mass transfer phenomenon dramatically and that it is not easy to diminish these possessions by just crystallization processes. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
Groat oil content and composition are important determinants of oat quality. We investigated these traits in a population of 146 recombinant inbred lines from a cross between 'Dal' (high oil) and 'Exeter' (low oil). A linkage map consisting of 475 DArT markers spanning 1271.8 cM across 40 linkage gr...
Chemical composition and biological activity of haplophyllum tuberculatum juss. essential oil
USDA-ARS?s Scientific Manuscript database
The essential oil of Haplophyllum tuberculatum was prepared by hydrodistillation of the fresh flowering aerial parts of the plant collected from Saudi Arabia. The oil was subsequently analyzed by GC and GC-MS. Thirty seven compounds, accounting for 96.4 % of the oil composition were identified. The ...
Diurnal effects on spearmint oil yields and composition
USDA-ARS?s Scientific Manuscript database
‘Native’ spearmint (Mentha spicata L.) is one of the two spearmint species grown commercially in the United States and other countries for essential oil production. The two major constituents of spearmint oil are carvone and limonene. It is not known if the essential oil yield (content) and composit...
Activity antifungal of the essential oils; aqueous and ethanol extracts from Citrus aurantium L.
Metoui, N; Gargouri, S; Amri, I; Fezzani, T; Jamoussi, B; Hamrouni, L
2015-01-01
Our study is about the essential oil of Citrus aurantium L. in Tunisia and its plant extract. The yield of this essential oil is 0, 56% but the yield of the extract of plant was 17.1% for the aqueous extract ant 18.3% for the ethanolic extract. The analysis of chemical composition by using GC and GC/MS showed the essential oil of C. aurantium L. species to be rich in monoterpenes such as α-terpineol, lianolyl acetate, linalool and limonene. The antifungal activity of this oil showed us an inhibition of the germination of mushrooms, in the same way we could note that the biologic activities are generally assigned to the chemotypes high content in oxygenated monoterpene.
NASA Astrophysics Data System (ADS)
Zheng, Huang; Kong, Shaofei; Xing, Xinli; Mao, Yao; Hu, Tianpeng; Ding, Yang; Li, Gang; Liu, Dantong; Li, Shuanglin; Qi, Shihua
2018-04-01
Oil and natural gas are important for energy supply around the world. The exploring, drilling, transportation and processing in oil and gas regions can release a lot of volatile organic compounds (VOCs). To understand the VOC levels, compositions and sources in such regions, an oil and gas station in northwest China was chosen as the research site and 57 VOCs designated as the photochemical precursors were continuously measured for an entire year (September 2014-August 2015) using an online monitoring system. The average concentration of total VOCs was 297 ± 372 ppbv and the main contributor was alkanes, accounting for 87.5 % of the total VOCs. According to the propylene-equivalent concentration and maximum incremental reactivity methods, alkanes were identified as the most important VOC groups for the ozone formation potential. Positive matrix factorization (PMF) analysis showed that the annual average contributions from natural gas, fuel evaporation, combustion sources, oil refining processes and asphalt (anthropogenic and natural sources) to the total VOCs were 62.6 ± 3.04, 21.5 ± .99, 10.9 ± 1.57, 3.8 ± 0.50 and 1.3 ± 0.69 %, respectively. The five identified VOC sources exhibited various diurnal patterns due to their different emission patterns and the impact of meteorological parameters. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models based on backward trajectory analysis indicated that the five identified sources had similar geographic origins. Raster analysis based on CWT analysis indicated that the local emissions contributed 48.4-74.6 % to the total VOCs. Based on the high-resolution observation data, this study clearly described and analyzed the temporal variation in VOC emission characteristics at a typical oil and gas field, which exhibited different VOC levels, compositions and origins compared with those in urban and industrial areas.
Osorio, Maria Teresa; Haughey, Simon A; Elliott, Christopher T; Koidis, Anastasios
2015-12-15
European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preparation and oil absorption properties of magnetic melamine sponge
NASA Astrophysics Data System (ADS)
Lei, LUO; Jia-qi, HU; Na, LV
2017-12-01
The magnetic melamine sponge (MS-Fe3O4) with magnetic response and high hydrophobicity was fabricated by two-step method. First, the magnetic nano-particles were fixed on the skeleton of melamine sponge (MS) using 3-hydroxytyramine hydrochloride and 1-dodecanethiol, then hydrophobicity modified with octadecyltrichlorosilane (OTS). The structures and chemical compositions of MS and MS-Fe3O4 were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wettability of the sample was obtained by using contact angle analysis system. MS-Fe3O4 endowed with outstanding selectivity and excellent oil absorption capacities, which can be widely used in absorbing various sorts of oil. The oil absorption capacities for crude oil, diesel oil, lubricating oil, soybean oil and peanut oil were 71g/g, 51g/g, 62g/g, 54g/g, 57g/g. In addition, MS-Fe3O4 showed excellent recyclability which can be forecasted as an ideal candidate for oil-water separation.
Trans-fatty acids in cooking oils in Bogota, Colombia: changes in the food supply from 2008 to 2013.
Moynihan, Meghan; Villamor, Eduardo; Marin, Constanza; Mora-Plazas, Mercedes; Campos, Hannia; Baylin, Ana
2015-12-01
Long-chain n-3 fatty acid intake in Colombia is low because fish consumption is limited. Vegetable oils with high n-3 fatty acid content are recommended, but their concentrations of trans fats were high in previous studies. Thus, regular monitoring of the fatty acid composition of vegetable oils is required. Our objective was to quantify the fatty acid composition in commercially available oils in Bogota, Colombia and determine if composition changed from 2008 to 2013. Cross-sectional study. We obtained samples of all commercially available oils reported in a survey of low- and middle-income families with a child participating in the Bogota School Children Cohort. Bogota, Colombia. Not applicable. Sunflower oil had the highest trans-fatty acid content (2.18%). Canola oil had the lowest proportion of trans-fatty acids (0.40%) and the highest n-3 fatty acid content (9.37%). In terms of percentage reduction from 2008 to 2013 in 18:1 and 18:2 trans-fatty acids, canola oil had 89% and 65% reduction, mixed oils had 44% and 48% reduction, and sunflower oil had 25% and 51 % reduction, respectively. Soyabean oil became widely available in 2013. The content of trans-fatty acids decreased in all oils from 2008 to 2013, suggesting a voluntary reduction by industry. We believe that regular monitoring of the fatty acid composition of oils is warranted.
GC-MS analysis of clove (Syzygium aromaticum) bud essential oil from Java and Manado
NASA Astrophysics Data System (ADS)
Amelia, B.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U.; Sulistyoningrum, A. S.; Haib, J.
2017-07-01
The largest clove production contributors in Indonesia are mostly coming from Java and Manado. Different flavor among clove origins is caused by chemical constituents in clove oil. Unfortunately, scientific research and publications about flavor in clove from Indonesia's origin are still limited. The objective of this research is to determine significant differences of constituents in terms of flavor in clove oil originated from Java and Manado. The essential oils were isolated from cut clove bud samples by steam distillation method. The chemical constituents of clove bud oil were analyzed by using gas chromatography-mass spectrometry (GC-MS). Constituents were then identified by comparing the results of the chromatogram and reference retention time using Wiley mass spectra library (Wiley W9N11). Thirty-six and thirty-four chemical constituents were identified based on GC-MS from clove oil collected from Java and Manado, respectively. Major classes of compounds are sesquiterpenes, phenyl propanoid, oxygenated sesquiterpenes, and esters. Different compositions in major constituents were found between both origins. Clove Java contained eugenol (55.60 %), eugenyl acetate (20.54 %), caryophyllene (14.84 %), and α-humulene (2.75 %). While, in clove Manado, the composition were eugenol (74.64 %), caryophyllene (12.79 %), eugenyl acetate (8.70 %), and α-humulene (1.53 %). Moreover, minor constituents β-elemene (0.04 %), α-cadinene (0.05 %) and ledol (0.06 %) were existed only in clove Java, while clove Manado had some unique minor constituents which were not found in clove Java, i.e. β-gurjunene (0.04 %), γ-cadinene %), and humulene oxide (0.05 %). In conclusion, both clove oils from Java and Manado contained same major chemical constituents but different in their composition. In addition, some minor constituents existed only in specific origin.
Chemical composition of the essential oil and fixed oil Bauhinia pentandra (Bong.) D. Dietr
de Almeida, Macia C. S.; Souza, Luciana G. S.; Ferreira, Daniele A.; Monte, Francisco J. Q.; Braz-Filho, Raimundo; de Lemos, Telma L. G.
2015-01-01
Background: Bauhinia pentandrais popularly known as “mororó” and inhabits the Caatinga and Savannah biomes. Objective: This paper reports the chemical composition of the essential and fatty oils of the leaves from B. pentandra. Materials and Methods: The essential oil was obtained by hydrodistillation and the fixed oil by extraction with hexane, followed by saponification with KOH/MeOH, and methylation using MeOH/HCl. The constituents were analyzed by gas chromatography-mass spectrometry. Results: The major constituent of the essential oil was the phytol (58.78% ±8.51%), and of the fatty oil were palmitic (29.03%), stearic (28.58%) and linolenic (10.53%) acids. Conclusion: Of the compounds identified in the essential oil, three are first reported in this species, and this is the first record of the chemical composition of the fixed oil. PMID:26664026
Roasting pumpkin seeds and changes in the composition and oxidative stability of cold-pressed oils.
Raczyk, Marianna; Siger, Aleksander; Radziejewska-Kubzdela, Elżbieta; Ratusz, Katarzyna; Rudzińska, Magdalena
2017-01-01
Pumpkin seed oil is valuable oil for its distinctive taste and aroma, as well as supposed health- promoting properties. The aim of this study was to investigate how roasting pumpkin seeds influences the physicochemical properties of cold-pressed oils. The fatty acid composition, content of phytosterols, carotenoids and tocopherols, oxidative stability and colour were determined in oils after cold pressing and storage for 3 months using GC-FID, GCxGC-ToFMS, HPLC, Rancimat and spectrophotometric methods. The results of this study indicate that the seed-roasting and storage process have no effect on the fatty acid composition of pumpkin seed oils, but does affect phytosterols and tocopherols. The carotenoid content decreased after storage. The colour of the roasted oil was darker and changed significantly during storage. Pumpkin oil obtained from roasted seeds shows better physicochemical properties and oxidative stability than oil from unroasted seeds.
Oyemitan, Idris A; Elusiyan, Christianah A; Onifade, Ayoola O; Akanmu, Moses A; Oyedeji, Adebola O; McDonald, Armando G
2017-01-01
Curcuma longa (turmeric) is commonly used as spice and also used to treat fever, cough and febrile convulsions in Nigeria. This study determined the chemical composition of the essential oil of C. longa and evaluated its neuropharmacological activity in mice. Essential oil of C. longa (EOCL) fresh rhizome was obtained by hydrodistillation and its chemical composition determined by GC-MS. Acute toxicity (LD 50 ) profile of the essential oil was determined orally (p.o.) and intraperitoneally (i.p.); and the EOCL (50-200 mg/kg, i.p.) was evaluated for its behavioural, anxiolytic, sedative and anticonvulsant activities using appropriate models in Albino mice (Vom Strain, Jos, Nigeria). Analysis of the oil showed the presence of 23 compounds with turmerone (35.9%) being the major component. The LD 50 values obtained for the mice were 2154 mg/kg, p.o., and 693 mg/kg, i.p. The EOCL (50-200 mg/kg, i.p.) caused significant (p < 0.01) inhibition of rearing {F (4,20) = 9} and locomotor {F (3,16) = 42} activity; decreased head dips in hole board {F (4,20) = 4}; increased the time spent in the open arms of the elevated pus maze {F (4,20) = 9}; prolonged total sleeping time {F (4,20) = 21} induced by ketamine injection, and protected mice against pentylenetetrazol-induced convulsions. The major component of the essential oil of this C. longa species was turmerone; the oil was slightly toxic orally but moderately toxic intraperitoneally in mice; exhibited significant anxiolytic, sedative and anticonvulsant activities in mice.
Essential-Oil Variability in a Collection of Ocimum basilicum L. (Basil) Cultivars.
Maggio, Antonella; Roscigno, Graziana; Bruno, Maurizio; De Falco, Enrica; Senatore, Felice
2016-10-01
Ocimum basilicum L. (Lamiaceae) is an aromatic plant of great tradition in the Mediterranean area. Its economic importance is growing up determining an expansion of cultivation. This paper evaluated the morphological traits, the chemical profiles, and antibacterial activity of 21 cultivars of basil belonging to 'Genovese', 'Napoletano', and 'Purple basil' types. The cultivars were characterized by different growth rate and morphological traits. The chemical composition of the oils analyzed by GC and GC/MS analysis, supported by the PCA analysis, underlined the strong influence of chemotype. It is noteworthy that estragole, never present in Genovese and purple basil types, occurred in Napoletano type. The high presence of eugenol, methyl eugenol, and linalool in the majority of cultivars, belonging both to Genovese and to Napoletano types was registered. Of great interest resulted the composition of the purple basil 'Opal'. All the samples tested exhibited similar antibiotic profiles with moderate antibacterial activity. The results enhanced the importance of determination of essential-oil profile in the selection of cultivars characterized by diverse morphological traits and are useful for different purposes. © 2016 Wiley-VHCA AG, Zürich.
Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M
2003-04-01
The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.
Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.
2012-01-01
Background Medicinal plants are used for the treatment of different diseases in almost all cultures. Teucrium species grow wildly at different geographical locations around the world. Teucrium stocksianum is used in folk medicine for the treatment of diarrhea, cough, jaundice and abdominal pain. Scientific study on Teucrium stocksianum shows that it possesses anthelmintic, cytotoxic and antispasmodic activity. The aim of our present study is to identify the chemical composition and antinociceptive potential of the essential oil extracted from Teucrium stocksianum bioss. Method Essential oil (EO) from the aerial parts of Teucrium stocksianum were extracted by hydrodistillation process. The qualitative and quantitative composition of essential oil was determined with Gas chromatography/Mass spectrometer. Antinociceptive activity was determined by acetic acid induced writhing method. Percent inhibition of writhes of the test concentration was determined by comparing it with that of control. Tween-80 emulsion 2.5% (5 ml/kg b.w) was used as a control while Diclofenic sodium 50 mg/kg (b.w) was used as a standard drug. Results The chromatogram of the essential oil of Teucrium stocksianum shows differences both qualitatively and quantatively from essential oil composition reported in other countries. Hydrodistillation of Teucrium stocksianum yielded 0.4% (v/w), pale yellowish oil on dry basis. A total of 26 chemicals were identified by GC-MS accounting for 90.28% of the oil. The major components of essential oil were δ-cadinene (12.92%), α-pinene (10.3%), myrcene (8.64%), β-caryophyllene (8.23%), germacrene D (5.18%) and limonene (2.36%). Essential oil of Teucrium stocksianum has shown outstanding antinociceptive activity. It has been observed that increase in percent writhe inhibition (PWI) occurred from 20-80 mg/kg (b.w) and maximum writhe inhibition has been noted at a concentration of 80 mg/kg (b.w), but PWI decreased at 160 mg/kg, which may be due to some toxic effect of higher dose. ED50 value for Teucrium stocksianum was calculated as 31.5 ± 1.72415 mg/kg (b.w). Conclusion Our results indicate that there is a lot of variation in the composition of essential oil of Teucrium stocksianum boiss, which may be due to different climatic and experimental conditions. Secondly, the essential oil possesses strong antinociceptive activity and could be used in analgesic preparations especially for topical use. PMID:23217213
Kasparaviciene, Giedre; Savickas, Arunas; Kalveniene, Zenona; Velziene, Saule; Kubiliene, Loreta; Bernatoniene, Jurga
2016-01-01
The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavenging method spectrophotometrically. Physical properties of lipsticks melting point were determined in a glass tube; the hardness was investigated with texture analyzer. Sensory analysis was performed with untrained volunteers. The optimized mixture of sea buckthorn oil and grapeseed oil mixture ratio 13.96 : 6.18 showed the highest antioxidative activity (70 ± 0.84%) and was chosen for lipstick formulation. According to the sensory and instrumental analysis results, optimal ingredients amounts for the lipstick were calculated: 57.67% mixture of oils, 19.58% beeswax, and 22.75% cocoa butter. Experimentally designed and optimized lipstick formulation had good physical properties and high scored sensory evaluation. Correlation analysis showed a significant relationship between sensory and instrumental evaluations.
Kasparaviciene, Giedre; Savickas, Arunas; Kalveniene, Zenona; Velziene, Saule; Kubiliene, Loreta
2016-01-01
The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavenging method spectrophotometrically. Physical properties of lipsticks melting point were determined in a glass tube; the hardness was investigated with texture analyzer. Sensory analysis was performed with untrained volunteers. The optimized mixture of sea buckthorn oil and grapeseed oil mixture ratio 13.96 : 6.18 showed the highest antioxidative activity (70 ± 0.84%) and was chosen for lipstick formulation. According to the sensory and instrumental analysis results, optimal ingredients amounts for the lipstick were calculated: 57.67% mixture of oils, 19.58% beeswax, and 22.75% cocoa butter. Experimentally designed and optimized lipstick formulation had good physical properties and high scored sensory evaluation. Correlation analysis showed a significant relationship between sensory and instrumental evaluations. PMID:27994631
Złotek, Urszula; Michalak-Majewska, Monika; Szymanowska, Urszula
2016-12-15
The effect of elicitation with jasmonic acid (JA) on the plant yield, the production and composition of essential oils of lettuce leaf basil was evaluated. JA-elicitation slightly affected the yield of plants and significantly increased the amount of essential oils produced by basil - the highest oil yield (0.78±0.005mL/100gdw) was achieved in plants elicited with 100μM JA. The application of the tested elicitor also influenced the chemical composition of basil essential oils - 100μM JA increased the linalool, eugenol, and limonene levels, while 1μM JA caused the highest increase in the methyl eugenol content. Essential oils from JA-elicited basil (especially 1μM and 100μM) exhibited more effective antioxidant and anti-inflammatory potential; therefore, this inducer may be a very useful biochemical tool for improving production and composition of herbal essential oils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-01-01
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil. PMID:27681911
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-03-17
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil.
NASA Astrophysics Data System (ADS)
Fitri, Muhamad; Mahzan, Shahruddin
2016-11-01
In this research, the effect of fibre content, fibre size and alkali treatment to the impact resistance of the composite material have been investigated, The composite material employs oil palm fibre as the reinforcement material whereas the matrix used for the composite materials are polypropylene. The Oil Palm fibres are prepared for two conditions: alkali treated fibres and untreated fibres. The fibre sizes are varied in three sizes: 5mm, 7mm and 10mm. During the composite material preparation, the fibre contents also have been varied into 3 different percentages: 5%, 7% and 10%. The statistical approach is used to optimise the variation of specimen determined by using Taguchi method. The results were analyzed also by the Taguchi method and shows that the Oil Palm fibre content is significantly affect the impact resistance of the polymer matrix composite. However, the fibre size is moderately affecting the impact resistance, whereas the fibre treatment is insignificant to the impact resistance of the oil palm fibre reinforced polymer matrix composite.
USDA-ARS?s Scientific Manuscript database
Fennel (Foeniculum vulgare Mill.) is cultivated for its seeds and foliage, which contain essential oil. We hypothesized that the collection of fennel seed oil at different time points during the distillation process may result in fennel oil with distinct composition and bioactivity. We collected ess...
USDA-ARS?s Scientific Manuscript database
The essential oil obtained from the aerial parts of Cladanthus arabicus (L.) Cass was studied for its chemical composition, antioxidant, antimicrobial and insecticidal activities. The essential oil (EO) was analyzed by GC-MS. Sixty seven compounds representing 94.2% of the oil were identified. The m...
Variation of oil composition in vicinity of Arbuckle Mountains, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemmels, I.; Walters, C.C.
1987-08-01
Fifteen oils in an 8-county area in the vicinity of the Arbuckle Mountains were classified into 6 oil types: stable platform type, Mill Creek syncline type, Joiner City field type, Gloeocapsamorpha type, Hoover field A-type; and Fitts field type. The stable platform, Mill Creek syncline, and Joiner City field types have a common element (diminished C/sub 32/ hopane) and are thought to be derived from distinctly different facies of the Woodford Formation. The Viola Limestone oil is typical of oil generated from Ordovician rocks. The Hoover field A-type has an element of Ordovician composition and is thought to have beenmore » derived from an Arbuckle Group shale. The Fitts field oil has a unique composition and has not been assigned to a source. The variation of oil composition in the vicinity of the Arbuckle Mountains is attributed to (1) the large number of potential source rocks, (2) the variety of facies going from the stable platform into the southern Oklahoma aulacogen, and (3) biodegradation of oils in shallow reservoirs.« less
Wang, Jing; Zhou, Lianming; Yang, Peiming
2014-01-01
The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources. PMID:25493616
Sun, Zhenliang; Wang, Huiyan; Wang, Jing; Zhou, Lianming; Yang, Peiming
2014-01-01
The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources.
Bouali, Intidhar; Trabelsi, Hajer; Herchi, Wahid; Martine, Lucy; Albouchi, Ali; Bouzaien, Ghaith; Sifi, Samira; Boukhchina, Sadok; Berdeaux, Olivier
2014-12-01
Changes in 4-desmethylsterol, 4-monomethylsterol, 4,4-dimethylsterol and phytostanol composition were quantitatively and qualitatively investigated during the ripening of three varieties of Tunisian-grown pecan nuts (Mahan, Moore and Burkett). These components have many health benefits, especially in lowering LDL-cholesterol and preventing heart disease. The phytosterol composition of whole pecan kernel was quantified by Gas Chromatography-Flame Ionisation Detection (GC-FID) and identified by Gas Chromatography-Mass Spectrometry (GC-MS). Fifteen phytosterols and one phytostanol were quantified. The greatest amount of phytosterols (2852.5mg/100g of oil) was detected in Mahan variety at 20 weeks after the flowering date (WAFD). Moore had the highest level of phytostanols (7.3mg/100g of oil) at 20 WAFD. Phytosterol and phytostanol contents showed a steep decrease during pecan nut development. Results from the quantitative characterisation of pecan nut oils revealed that β-sitosterol, Δ5-avenasterol, and campesterol were the most abundant phytosterol compounds at all ripening stages. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Novriansyah, A.; Mursyidah, U.; Novrianti; Putri, S. S.; Riswati, S. S.
2018-04-01
This study provides an analysis of composite additive effect to concrete’s strength in the oil-well cementing job. The composite additive is originated from the nano-sized form of silica and charcoal from palm shell waste. The quality of the concrete will be determined from its porosity, compressive strength, and shear bond strength parameters. Those parameters must be reliable base on the most respectable standards in oil and gas industry, in this study we use the standard from American Petroleum Institute (API). Six concrete samples with different concentration will be tested to obtain these parameters. The result from the test shown a decrement trend of the porosity while the concentration is increased. In contrast, the highest values of compressive strength and shear bond strength are obtained from the sample with higher additive concentration. The optimum strength was obtained in sample with 0.02% The results become clearly proven through verification by scanning electron image where the additive has successfully fill the voids in the concrete’s sample, resulting in strength enhancement of the sample.
Bocianowski, Jan; Mikołajczyk, Katarzyna; Bartkowiak-Broda, Iwona
2012-02-01
One of the goals in oilseed rape programs is to develop genotypes producing oil with low linolenic acid content (C18:3, ≤3%). Low linolenic mutant lines of canola rapeseed were obtained via chemical mutagenesis at the Plant Breeding and Acclimatization Institute - NRI, in Poznan, Poland, and allele-specific SNP markers were designed for monitoring of two statistically important single nucleotide polymorphisms detected by SNaPshot analysis in two FAD3 desaturase genes, BnaA.FAD3 and BnaC.FAD3, respectively. Strong negative correlation between the presence of mutant alleles of the genes and linolenic acid content was revealed by analysis of variance. In this paper we present detailed characteristics of the markers by estimation of the additive and dominance effects of the FAD3 genes with respect to particular fatty acid content in seed oil, as well as by calculation of the phenotypic variation of seed oil fatty acid composition accounted by particular allele-specific marker. The obtained percentage of variation in fatty acid composition was considerable only for linolenic acid content and equaled 35.6% for BnaA.FAD3 and 39.3% for BnaC.FAD3, whereas the total percentage of variation in linolenic acid content was 53.2% when accounted for mutations in both genes simultaneously. Our results revealed high specificity of the markers for effective monitoring of the wild-type and mutated alleles of the Brassica napus FAD3 desaturase genes in the low linolenic mutant recombinants in breeding programs.
De Martino, Laura; De Feo, Vincenzo; Fratianni, Florinda; Nazzaro, Filomena
2009-12-01
The present paper reports the chemical composition, antioxidant and antibacterial activities of several essential oils and their components. Analysis showed that three oils (Carum carvi L., Verbena officinalis L. and Majorana hortensis L.) contained predominantly oxygenated monoterpenes, while others studied (Pimpinella anisum L., Foeniculum vulgare Mill.) mainly contained anethole. C. carvi, V. officinalis and M. hortensis oils exhibited the most potent antioxidant activity, due their contents of carvacrol, anethole and estragol. Antibacterial action was assessed against a range of pathogenic and useful bacteria and fungi of agro-food interest. V. officinalis and C. carvi oils proved the most effective, in particular against Bacillus cereus and Pseudomonas aeruginosa. Carvacrol proved most active against Escherichia coli, and completely inhibited the growth of Penicillium citrinum. The oils proved inactive towards some Lactobacilli strains, whereas single components showed an appreciable activity. These results may be important for use of the essential oils as natural preservatives for food products.
The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil.
Meng, Jiajia; Park, Junyeong; Tilotta, David; Park, Sunkyu
2012-05-01
Fast pyrolysis was performed on torrefied loblolly pine and the collected bio-oils were analyzed to compare the effect of the torrefaction treatment on their quality. The results of the analyses show that bio-oils produced from torrefied wood have improved oxygen-to-carbon ratios compared to those from the original wood with the penalty of a decrease in bio-oil yield. The extent of this improvement depends on the torrefaction severity. Based on the GC/MS analysis of the pyrolysis bio-oils, bio-oils produced from torrefied biomass show different compositions compared to that from the original wood. Specifically, the former becomes more concentrated in pyrolytic lignin with less water content than the latter. It was considered that torrefaction could be a potential upgrading method to improve the quality of bio-oil, which might be a useful feedstock for phenolic-based chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Detection of oil spills using a 13.3-GHz radar scatterometer.
NASA Technical Reports Server (NTRS)
Krishen, K.
1973-01-01
This paper describes the results of an analysis of 13.3-GHz single-polarized scatterometer data collected during NASA/MSC mission 135, flown on March 16, 1970. Data were gathered over a crude oil spill on the Gulf of Mexico (test site 128) off the Mississippi delta. With the aid of RC-8 camera photographs the scattering cross section was correlated with the extent of the oil spill. The scattering cross section at higher incidence angles (25 to 50 deg) decreased by 5-10 db in the presence of the oil spill. This was attributed to the damping by oil of small gravity and capillary waves. The composite scattering theory and the scatterometer-acquired data were used to obtain an expression of radar scattering over ocean surfaces with oil spills. The study demonstrates that the presence and extent of oil spills can be detected with high-frequency radar systems.
Composition and Biological Activities of Murraya paniculata (L.) Jack Essential Oil from Nepal
Dosoky, Noura S.; Satyal, Prabodh; Gautam, Tilak P.; Setzer, William N.
2016-01-01
Murraya paniculata (L.) Jack, a small tropical evergreen shrub growing in Nepal, has numerous uses in traditional medicine for treatment of abdominal pain, diarrhea, stomach ache, headache, edema, thrombosis, and blood stasis. The present study investigated the chemical composition and bioactivities of the leaf essential oil from M. paniculata from Nepal. The essential oil from leaves was obtained by hydrodistillation and a detailed chemical analysis was conducted by gas chromatography-mass spectrometry (GC-MS). The essential oil was screened for antimicrobial activity using the microbroth dilution test, for nematicidal activity against Caenorhabditis elegans, and for lethality against brine shrimp (Artemia salina). A total of 76 volatile components were identified from the essential oil. The major components were methyl palmitate (11.1%), isospathulenol (9.4%), (E,E)-geranyl linalool (5.3%), benzyl benzoate (4.2%), selin-6-en-4-ol (4.0%), β-caryophyllene (4.0%), germacrene B (3.6%), germacrene D (3.4%), and γ-elemene (3.2%). The essential oil showed no antibacterial activity, marginal antifungal activity against Aspergillus niger (MIC = 313 μg/mL), a moderate activity against A. salina (LC50 = 41 μg/mL), and a good nematicidal activity against C. elegans (LC50 = 37 μg/mL). PMID:28930117
Khani, Abbas; Rahdari, Tahere
2012-01-01
The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1–7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC50 values (lethal concentration for 50% mortality) showed that C. maculatus (LC50 = 1.34 μL/L air) was more susceptible than T. confusum (LC50 = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides. PMID:23227365
Wagacha, John M.; Dossaji, Saifuddin F.
2016-01-01
The objective of this study was to determine the chemical composition and antibacterial activity of essential oils (EOs) of Tagetes minuta against three phytopathogenic bacteria Pseudomonas savastanoi pv. phaseolicola, Xanthomonas axonopodis pv. phaseoli, and Xanthomonas axonopodis pv. manihotis. The essential oils were extracted using steam distillation method in a modified Clevenger-type apparatus while antibacterial activity of the EOs was evaluated by disc diffusion method. Gas chromatography coupled to mass spectrometry (GC/MS) was used for analysis of the chemical profile of the EOs. Twenty compounds corresponding to 96% of the total essential oils were identified with 70% and 30% of the identified components being monoterpenes and sesquiterpenes, respectively. The essential oils of T. minuta revealed promising antibacterial activities against the test pathogens with Pseudomonas savastanoi pv. phaseolicola being the most susceptible with mean inhibition zone diameters of 41.83 and 44.83 mm after 24 and 48 hours, respectively. The minimum inhibitory concentrations and minimum bactericidal concentrations of the EOs on the test bacteria were in the ranges of 24–48 mg/mL and 95–190 mg/mL, respectively. These findings provide a scientific basis for the use of T. minuta essential oils as a botanical pesticide for management of phytopathogenic bacteria. PMID:27721831
Khani, Abbas; Rahdari, Tahere
2012-01-01
The biological activity of essential oil extracted from coriander, Coriandrum sativum L. (Apiaceae), seeds against adults of Tribolium confusum Duval (Coleoptera: Tenebrionidae) and Callosobruchus maculatus F. (Coleoptera: Bruchidae) was investigated in a series of laboratory experiments. Fumigant toxicity was assessed at 27 ± 1°C and 65 ± 5% R.H., in dark condition. Dry seeds of the plant were subject to hydrodistillation using a Clevenger-type apparatus. The composition of essential oil was analyzed by gas chromatography mass spectrometry. The predominant components in the oil were linalool (57.57%) and geranyl acetate (15.09%). The mortality of 1-7-day-old adults of the insect pests increased with concentration from 43 to 357 μL/L air and with exposure time from 3 to 24 h. In the probit analysis, LC(50) values (lethal concentration for 50% mortality) showed that C. maculatus (LC(50) = 1.34 μL/L air) was more susceptible than T. confusum (LC(50) = 318.02 μL/L air) to seed essential oil of this plant. The essential oil of C. sativum can play an important role in stored grain protection and reduce the risks associated with the use of synthetic insecticides.
Moon, Hyung-In; Cho, Sang-Buem; Kim, Soo-Ki
2011-03-01
The leaves of Zingiber officinale Roscoe were extracted and the major essential oil composition and immunotoxicity effects were studied. The analyses were conducted by gas chromatography and mass spectroscopy (GC-MS) revealed that the essential oils of Z. officinale leaves. The Z. officinale essential oil yield was 0.26%, and GC/MS analysis revealed that its major constituents were Camphene (5.26%), Phellandrene (6.58%), Zingiberene (36.48%), Geranial (4.32%), β-gurjunene (2.74%), and Citronellol β-sesguiphellandrene (12.31%). The essential oil had a significant toxic effect against early fourth-stage larvae of Aedes aegypti L with an LC(50) value of 46.38 ppm and an LC(90) value of 84.32 ppm. Also, Camphene (≥95.0%), Phellandrene (≥95.0%), Zingiberene (≥95.0%), Geranial (≥95.0%), β-gurjunene (≥97.0%), and Citronellol (≥95.0%) were tested against the F21 laboratory strain of A. aegypti. Zingiberene (≥95.0%) and Citronellol (≥95.0%) have medium activity with an LC(50) value of 99.55 ppm and 141.45 ppm. This indicates that other major compounds may play a more important role in the toxicity of essential oil.
A detailed study of the volatile components of Plectranthus asirensis of Saudi Arabian origin.
Al-Saleem, Muneera S M; Khan, Merajuddin; Alkhathlan, Hamad Z
2016-10-01
Essential oil composition of Plectranthus asirensis grown in Saudi Arabia was chemically analysed for the first time by various gas chromatography techniques (GC-MS, GC-FID, Co-GC, LRI determination and database and literature searches) using two different stationary phase columns (polar and nonpolar). This analysis led to the characterisation of a total of 124 components representing 98.5% of the total oil composition. The results revealed that P. asirensis oil was mainly dominated by monoterpenoids (90.7%) in which most representative constituents were thymol (66.0 ± 0.36%), γ-terpinene (14.0 ± 0.18%), p-cymene (5.2 ± 0.06%) and β-caryophyllene (3.0 ± 0.03%). It is worth mentioning here that this is the first report on the phytochemical constituents of P. asirensis.
La Bella, Salvatore; Tuttolomondo, Teresa; Dugo, Giacomo; Ruberto, Giuseppe; Leto, Claudio; Napoli, Edoardo M; Potorti, Angela Giorgia; Fede, Maria Rita; Virga, Giuseppe; Leone, Raffaele; D'Anna, Eleonora; Licata, Mario
2015-11-01
Samples of flowers of wild Lavandula stoechas L. spp. stoechas populations were collected in three areas of Sicily (Italy) and were characterized in agronomic and chemical terms. Essential oil (EO) was extracted by hydrodistillation and analyzed by GC-FID and GC-MS. GC-FID and GC-MS analyses permitted identification of 89 compounds from the EO. The samples were separated into 3 groups using PCA (Principal Component Analysis) statistical method, with reference to the chemical composition of the EO. All three Sicilian populations of lavender were identified as the fenchone chemotype with percentage content ranged between 52.8-71.1%. The population of Partinico showed the highest dry weight of flowers per plant (221.3 g), but the lowest EO yield (0.37%). The essential oils of the three wild Sicilian populations of L. stoechas L. spp. stoechas showed a greater chemical differentiation than those obtained from other Mediterranean areas.
Yue, Xuan-Feng; Shang, Xiao; Zhang, Zhi-Juan; Zhang, Yan-Ni
2017-04-01
Essential oils from the seed, pulp, and leaf of sea buckthorn were obtained with hydrodistillation, and their phytochemical composition was analyzed through gas chromatography-mass spectrometry. Furthermore, the antibacterial activity of the oils was tested on five food-borne bacteria by spectrometry and evaluated in terms of minimum inhibitory concentration. The results indicate that the composition of all essential oils is dominated by free fatty acids, esters, and alkanes. Minimum inhibitory concentration values on each bacterium were obtained for oils from different parts. The oils from different parts exhibited nearly equal inhibitory effect on Staphylococcus aureus. The pulp oil was found to be the most effective for the rest of bacteria tested except Escherichia coli, on which seed oil shows twice the inhibitory effect to that of leaf or pulp oil. Three natural inhibitory examples were found comparable with or even better than the positive control: pulp oil on Bacillus subtilis, and pulp oil and leaf oil on Bacillus coagulans. Copyright © 2016. Published by Elsevier B.V.
Bernuci, Karine Zanoli; Iwanaga, Camila Cristina; Fernadez-Andrade, Carla Maria Mariano; Lorenzetti, Fabiana Brusco; Torres-Santos, Eduardo Caio; Faiões, Viviane Dos Santos; Gonçalves, José Eduardo; do Amaral, Wanderlei; Deschamps, Cícero; Scodro, Regiane Bertin de Lima; Cardoso, Rosilene Fressatti; Baldin, Vanessa Pietrowski; Cortez, Diógenes Aparício Garcia
2016-12-12
Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and analyzed by gas chromatography mass spectrometry (GC-MS), and a total of 68 components were identified. Principal components analysis results showed a chemical variability between species, with sesquiterpene compounds predominating in the majority of species analyzed. The composition of the essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was evaluated in peritoneal macrophages and the oils of P. rivinoides , P. arboretum , and P. aduncum exhibited the highest values, with cytotoxic concentration at 50% (CC 50 ) > 200 µg/mL. Both P. diospyrifolium and P. aduncum displayed activity against Leishmania amazonensis , and were more selective for the parasite than for the macrophages, with a selectivity index (SI) of 2.35 and >5.52, respectively. These SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides, P. cernuum , and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis H 37 Rv bacillus, with a minimum inhibitory concentration (MIC) of 125 µg/mL. These results are relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of action of these essential oils.
Wang, Cheng-Fang; Yang, Kai; You, Chun-Xue; Zhang, Wen-Juan; Guo, Shan-Shan; Geng, Zhu-Feng; Du, Shu-Shan; Wang, Yong-Yan
2015-05-04
This work aimed to investigate chemical composition of essential oils obtained from Zanthoxylum dissitum leaves and roots and their insecticidal activities against several stored product pests, namely the cigarette beetle (Lasioderma serricorne), red flour beetle (Tribolium castaneum) and black carpet beetle (Attagenus piceus). The analysis by GC-MS of the essential oils allowed the identification of 28 and 22 components, respectively. It was found that sesquiterpenoids comprised a fairly high portion of the two essential oils, with percentages of 74.0% and 80.9% in the leaves and roots, respectively. The main constituents identified in the essential oil of Z. dissitum leaves were δ-cadinol (12.8%), caryophyllene (12.7%), β-cubebene (7.9%), 4-terpineol (7.5%) and germacrene D-4-ol (5.7%), while humulene epoxide II (29.4%), caryophyllene oxide (24.0%), diepicedrene-1-oxide (10.7%) and Z,Z,Z-1,5,9,9-tetramethyl-1,4,7-cycloundecatriene (8.7%) were the major components in the essential oil of Z. dissitum roots. The insecticidal activity results indicated that the essential oil of Z. dissitum roots exhibited moderate contact toxicity against three species of storage pests, L. serricorne,T. castaneum and A. piceus, with LD50 values of 13.8, 43.7 and 96.8 µg/adult, respectively.
Kladar, Nebojša V; Anačkov, Goran T; Rat, Milica M; Srđenović, Branislava U; Grujić, Nevena N; Šefer, Emilia I; Božin, Biljana N
2015-03-01
The chemical composition and antioxidant properties of the essential oil and EtOH extract of immortelle (Helichrysum italicum (Roth) G.Don subsp. italicum, Asteraceae) collected in Montenegro were evaluated. The essential oil was characterized by GC/MS analysis, and the content of total phenolics and flavonoids in the EtOH extract was determined using the FolinCiocalteu reagent. The free-radical-scavenging capacity (RSC) of both the essential oil and the EtOH extract was assessed with the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) method. Moreover, the inhibition of hydroxyl radical ((.) OH) generation by the EtOH extract of immortelle was evaluated for the first time here. Neryl acetate (28.2%) and γ-curcumene (18.8%) were the main compounds in the essential oil, followed by neryl propionate (9.1%) and ar-curcumene (8.3%). The chemical composition of the oils of the examined and additional 16 selected Helichrysum italicum taxa described in literature were compared using principal component (PCA) and cluster (CA) analyses. The results of the statistical analyses implied the occurrence of at least four different main and three subchemotypes of essential oils. Considering the antioxidant properties, the EtOH extract of immortelle exhibited similar potential as propyl gallate and quercetin, while the essential oil exhibited relatively weak DPPH(.) -scavenging capacity. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Cho, Yunju; Ahmed, Arif; Islam, Annana; Kim, Sunghwan
2015-01-01
Because of the increasing importance of heavy and unconventional crude oil as an energy source, there is a growing need for petroleomics: the pursuit of more complete and detailed knowledge of the chemical compositions of crude oil. Crude oil has an extremely complex nature; hence, techniques with ultra-high resolving capabilities, such as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are necessary. FT-ICR MS has been successfully applied to the study of heavy and unconventional crude oils such as bitumen and shale oil. However, the analysis of crude oil with FT-ICR MS is not trivial, and it has pushed analysis to the limits of instrumental and methodological capabilities. For example, high-resolution mass spectra of crude oils may contain over 100,000 peaks that require interpretation. To visualize large data sets more effectively, data processing methods such as Kendrick mass defect analysis and statistical analyses have been developed. The successful application of FT-ICR MS to the study of crude oil has been critically dependent on key developments in FT-ICR MS instrumentation and data processing methods. This review offers an introduction to the basic principles, FT-ICR MS instrumentation development, ionization techniques, and data interpretation methods for petroleomics and is intended for readers having no prior experience in this field of study. © 2014 Wiley Periodicals, Inc.
Jena, Sudipta; Ray, Asit; Banerjee, Anwesha; Sahoo, Ambika; Nasim, Noohi; Sahoo, Suprava; Kar, Basudeba; Patnaik, Jeetendranath; Panda, Pratap Chandra; Nayak, Sanghamitra
2017-09-01
The essential oil extracted from rhizome and leaf of Curcuma angustifolia Roxb. (Zingiberaceae) was characterised by gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis revealed the presence of 32 and 35 identified constituents, comprising 92.6% and 92% of total leaf and rhizome oil, respectively. Curzerenone (33.2%), 14-hydroxy-δ-cadinene (18.6%) and γ-eudesmol acetate (7.3%) were the main components in leaf oil. In rhizome oil, curzerenone (72.6%), camphor (3.3%) and germacrone (3.3%) were found to be the major constituents. Antioxidant capacities of oil were assessed by various methods, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and reducing power ability (RPA). Based on the results, the leaf oil showed more antioxidant potential as compared to rhizome oil and reference standards (ascorbic acid and butylated hydroxytoluene (BHT)). Thus, the leaf essential oil of C. angustifolia can be used as an alternative source of natural antioxidant.
1 H-NMR with Multivariate Analysis for Automobile Lubricant Comparison.
Kim, Siwon; Yoon, Dahye; Lee, Dong-Kye; Yoon, Changshin; Kim, Suhkmann
2017-07-01
Identification of suspected automobile-related lubricants could provide valuable information in forensic cases. We examined that automobile lubricants might exhibit the chemometric characteristics to their individual usages. To compare the degree of clustering in the plots, we co-plotted general industrial oils that were highly dissimilar with automobile lubricants in additive compositions. 1 H-NMR spectroscopy was used with multivariate statistics as a tool for grouping, clustering, and identification of automobile lubricants in laboratory conditions. We analyzed automobile lubricants including automobile engine oils, automobile transmission oils, automobile gear oils, and motorcycle oils. In contrast to the general industrial oils, automobile lubricants showed relatively high tendencies of clustering to their usages. Our pilot study demonstrated that the comparison of known and questioned samples to their usages might be possible in forensic fields. © 2017 American Academy of Forensic Sciences.
IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds
NASA Astrophysics Data System (ADS)
Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.
2011-03-01
Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.
Golmakani, Mohammad-Taghi; Moayyedi, Mahsa
2015-11-01
Dried and fresh peels of Citrus limon were subjected to microwave-assisted hydrodistillation (MAHD) and solvent-free microwave extraction (SFME), respectively. A comparison was made between MAHD and SFME with the conventional hydrodistillation (HD) method in terms of extraction kinetic, chemical composition, and antioxidant activity. Higher yield results from higher extraction rates by microwaves and could be due to a synergy of two transfer phenomena: mass and heat acting in the same way. Gas chromatography/mass spectrometry (GC/MS) analysis did not indicate any noticeable differences between the constituents of essential oils obtained by MAHD and SFME, in comparison with HD. Antioxidant analysis of the extracted essential oils indicated that microwave irradiation did not have adverse effects on the radical scavenging activity of the extracted essential oils. The results of this study suggest that MAHD and SFME can be termed as green technologies because of their less energy requirements per ml of essential oil extraction.
Yan, Lijuan; Sinkko, Hanna; Penttinen, Petri; Lindström, Kristina
2016-01-15
The widespread use of motor oil makes it a notable risk factor to cause scattered contamination in soil. The monitoring of microbial community dynamics can serve as a comprehensive tool to assess the ecological impact of contaminants and their disappearance in the ecosystem. Hence, a field study was conducted to monitor the ecological impact of used motor oil under different perennial cropping systems (fodder galega, brome grass, galega-brome grass mixture and bare fallow) in a boreal climate zone. Length heterogeneity PCR characterized a successional pattern in bacterial community following oil contamination over a four-year bioremediation period. Soil pH and electrical conductivity were associated with the shifts in bacterial community composition. Crops had no detectable effect on bacterial community composition or complexity. However, the legume fodder galega increased soil microbial biomass, expressed as soil total DNA. Oil contamination induced an abrupt change in bacterial community composition at the early stage, yet the effect did not last as long as the oil in soil. The successional variation in bacterial community composition can serve as a sensitive ecological indicator of oil contamination and remediation in situ. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Murni, V. W.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Hastuti, L. T.; Haib, J.
2017-07-01
The research about post-harvested clove is still limited especially in Indonesia, as the biggest producer of clove in the world. The present study was aimed to investigate the effect of drying process and storage on the composition of essential oil of Indonesian clove originated from Toli-Toli. The essential oil of fresh and dried clove was obtained by steam distillation and the composition of the oil was analyzed by gas chromatography-mass spectrometry (GC-MS). In all of the clove oil samples, eugenol was the major component, followed by caryophyllene and acetyleugenol. The drying method used was oven drying at 50°C until clove's moisture content reaches 13±1%. During the drying process, the content of phenylpropanoids such as eugenol, isoeugenol, and chavicol increased, while esters and monoterpenes decreased. The composition of clove oil was studied from dried clove after oven drying, then stored in the laboratory at room temperature for 4 months. There was slightly change on clove oil composition after 4 months of storage. The content of major components of clove like eugenol was higher while acetyleugenol was lower after 4 months of storage.
Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.
Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki
2012-01-01
Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.
Kirkpinar, F; Ünlü, H B; Serdaroğlu, M; Turp, G Y
2014-01-01
1. An experiment was conducted to determine the individual and combined effects of two essential oils, oregano and garlic, on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. 2. The diets were supplemented with no essential oil (control), oregano essential oil or garlic essential oil at 300 mg/kg and oregano essential oil at 150 mg/kg + garlic essential oil at 150 mg/kg. 3. Dietary oregano and garlic oil supplementation did not affect carcass yields, the relative weight of carcass parts, breast and thigh meat composition, pH or b* value of breast meat. Oregano + garlic oil supplementation significantly decreased the L* value. The a* value of breast meat in birds given a diet supplemented with oregano oil was lower than that in birds given a diet supplemented with garlic oil and oregano oil + garlic oil. The essential oil addition had no positive effect on the oxidative stability. There was no difference between the treatments in breast appearance. 4. The juiciness, flavour, oxidised flavour and acceptability of breast meat samples were affected by treatments.
Mora, Flor D; Araque, María; Rojas, Luis B; Ramirez, Rosslyn; Silva, Bladimiro; Usubillaga, Alfredo
2009-07-01
Chemical constituents of the essential oil from the leaves of Minthostachys mollis (Kunth) Griseb Vaught var. mollis collected in January 2008 at Tuñame, Trujillo State, Venezuela, were separated and identified by GC-MS analysis. The essential oil was obtained by hydrodistillation and thirteen components (98.5% of the sample) were identified by comparison with the Wiley GC-MS library data base. The two major components were pulegone (55.2%) and trans-menthone (31.5%). The essential oil showed a significant inhibitory effect against Gram-positive and Gram-negative bacteria, especially Bacillus subtilis and Salmonella typhi (4 microg/mL).
Study on high power ultraviolet laser oil detection system
NASA Astrophysics Data System (ADS)
Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou
2018-03-01
Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.
Białek, A; Białek, M; Lepionka, T; Kaszperuk, K; Banaszkiewicz, T; Tokarz, A
2018-04-23
The aim of this study was to determine whether diet modification with different doses of grapeseed oil or pomegranate seed oil will improve the nutritive value of poultry meat in terms of n-3 and n-6 fatty acids, as well as rumenic acid (cis-9, trans-11 conjugated linoleic acid) content in tissues diversified in lipid composition and roles in lipid metabolism. To evaluate the influence of applied diet modification comprehensively, two chemometric methods were used. Results of cluster analysis demonstrated that pomegranate seed oil modifies fatty acids profile in the most potent way, mainly by an increase in rumenic acid content. Principal component analysis showed that regardless of type of tissue first principal component is strongly associated with type of deposited fatty acid, while second principal component enables identification of place of deposition-type of tissue. Pomegranate seed oil seems to be a valuable feed additive in chickens' feeding. © 2018 Blackwell Verlag GmbH.
Jiang, Hao; Wang, Jin; Song, Li; Cao, Xianshuang; Yao, Xi; Tang, Feng; Yue, Yongde
2016-03-28
Interest in essential oils with pesticidal activity against insects and pests is growing. In this study, essential oils from different parts (leaves, twigs and seeds) of Cinnamomum camphora L. Presl were investigated for their chemical composition, and insecticidal and repellent activities against the cotton aphid. The essential oils, obtained by hydrodistillation, were analyzed by GC×GC-TOFMS. A total of 96 components were identified in the essential oils and the main constituents found in the leaves and twigs were camphor, eucalyptol, linalool and 3,7-dimethyl-1,3,7-octatriene. The major components found in the seeds were eucalyptol (20.90%), methyleugenol (19.98%), linalool (14.66%) and camphor (5.5%). In the contact toxicity assay, the three essential oils of leaves, twigs and seeds exhibited a strong insecticidal activity against cotton aphids with LC50 values of 245.79, 274.99 and 146.78 mg/L (after 48 h of treatment), respectively. In the repellent assay, the highest repellent rate (89.86%) was found in the seed essential oil at the concentration of 20 μL/mL after 24 h of treatment. Linalool was found to be a significant contributor to the insecticidal and repellent activities. The results indicate that the essential oils of C. camphora might have the potential to be developed into a natural insecticide or repellent for controlling cotton aphids.
Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania.
Marinas, Ioana C; Oprea, Eliza; Chifiriuc, Mariana Carmen; Badea, Irinel Adriana; Buleandra, Mihaela; Lazar, Veronica
2015-10-01
The essential oil extracted by hydrodistillation from Romanian Artemisia annua aerial parts was characterized by GC/MS analysis, which allowed the identification of 94.64% of the total oil composition. The main components were camphor (17.74%), α-pinene (9.66%), germacrene D (7.55%), 1,8-cineole (7.24%), trans-β-caryophyllene (7.02%), and artemisia ketone (6.26%). The antimicrobial activity of this essential oil was evaluated by determining the following parameters: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimal fungicidal concentration (MFC), and minimal biofilm eradication concentration (MBEC). Moreover, the soluble virulence factors were quantified with different biochemical substrates incorporated in the culture media. The reference and resistant, clinical strains proved to be susceptible to the A. annua oil, with MICs ranging from 0.51 to 16.33 mg/ml. The tested essential oil also showed good antibiofilm activity, inhibiting both the initial stage of the microbial cell adhesion to the inert substratum and the preformed mature biofilm. When used at subinhibitory concentrations, the essential oil proved to inhibit the phenotypic expression of five soluble virulence factors (hemolysins, gelatinase, DNase, lipases, and lecithinases). Briefly, the present results showed that the A. annua essential oil contained antimicrobial compounds with selective activity on Gram-positive and Gram-negative bacterial strains as well as on yeast strains and which also interfere with the expression of cell-associated and soluble virulence factors. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Comparative analysis of essential oil components of two Pinus species from Taibai Mountain in China.
Zhang, Yuan; Wang, Zhezhi
2010-08-01
Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) were used to compare between the essential oil components from needles of Pinus armandii Franch versus P. tabulaeformis Carr., growing on the same site at Taibai Mountain, China. Under optimum extraction and analysis conditions, 65 and 66 constituents each were identified in P. armandii and P. tabulaeformis, which accounted for 87.9% and 87.1%, respectively, of their oils. Based on their terpene compositions, we concluded that these species belong to a high-caryophyllene chemotype, with sesquiterpenes comprising 54.4% to 54.8% of the total contents. We also determined minor qualitative and major quantitative variations in some compounds. Compared with that from P. tabulaeformis, P. armandii oil had more gamma-muurolene (7.5%), terpinolene (5.8%), and longifolene (5.7%). In contrast, alpha-pinene (8.6%) and caryophyllene oxide (7.4%) were the dominant compounds in P. tabulaeformis.
Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M
2008-03-01
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Taamalli, Amani; Arráez Román, David; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-05-01
The present work describes a classification method of Tunisian 'Chemlali' olive oils based on their phenolic composition and geographical area. For this purpose, the data obtained by HPLC-ESI-TOF-MS from 13 samples of extra virgin olive oils, obtained from different production area throughout the country, were used for this study focusing in 23 phenolics compounds detected. The quantitative results showed a significant variability among the analysed oil samples. Factor analysis method using principal component was applied to the data in order to reduce the number of factors which explain the variability of the selected compounds. The data matrix constructed was subjected to a canonical discriminant analysis (CDA) in order to classify the oil samples. These results showed that 100% of cross-validated original group cases were correctly classified, which proves the usefulness of the selected variables. Copyright © 2011 Elsevier Ltd. All rights reserved.
Svensson, Julia; Rosenquist, Anna; Ohlsson, Lena
2011-06-28
Postprandial lipaemia varies with gender and the composition of dietary fat due to the partitioning of fatty acids between beta-oxidation and incorporation into triacylglycerols (TAGs). Increasing evidence highlights the importance of postprandial measurements to evaluate atherogenic risk. Postprandial effects of alpha-linolenic acid (ALA) in women are poorly characterized. We therefore studied the postprandial lipid response of women to an ALA-rich oil in comparison with olive oil and butter, and characterized the fatty acid composition of total lipids, TAGs, and non-esterified fatty acids (NEFAs) in plasma. A randomized crossover design (n = 19) was used to compare the postprandial effects of 3 meals containing 35 g fat. Blood samples were collected at regular intervals for 7 h. Statistical analysis was carried out with ANOVA (significant difference = P < 0.05). No significant difference was seen in incremental area under the curve (iAUC) plasma-TAG between the meals. ALA and oleic acid levels were significantly increased in plasma after ALA-rich oil and olive oil meals, respectively. Palmitic acid was significantly increased in plasma-TAG after the butter meal. The ratios of 18:2 n-6 to18:3 n-3 in plasma-TAGs, three and seven hours after the ALA-rich oil meal, were 1.5 and 2.4, respectively. The corresponding values after the olive oil meal were: 13.8 and 16.9; and after the butter meal: 9.0 and 11.6. The postprandial p-TAG and NEFA response in healthy pre-menopausal women was not significantly different after the intake of an ALA-rich oil, olive oil and butter. The ALA-rich oil significantly affected different plasma lipid fractions and improved the ratio of n-6 to n-3 fatty acids several hours postprandially.
Modification of yield and composition of essential oils by distillation time
USDA-ARS?s Scientific Manuscript database
Field and laboratory experiments were conducted to model the length of the steam distillation time (DT) on essential oil yield and oil composition of peppermint, lemongrass, and palmarosa oils. The DTs tested were 1.25, 2.5, 5, 10, 20, 40, 80, and 160 min for peppermint, and 1.25, 2.5, 5, 10, 20, 40...
USDA-ARS?s Scientific Manuscript database
A water-distilled essential oil from the aerial parts of Pimpinella cypria Boiss. (Apiaceae), an endemic species in northern Cyprus, was analyzed by GC and GC-MS. Forty-five compounds were identified in the oil and these comprised 81.7% of the total composition. The compound classes in the oil were ...
DEVELOPMENT OF A COMPOSITION DATABASE FOR SELECTED MULTICOMPONENT OILS
During any oil spill incident, the properties of the spilled oil, including its chemical composition, physical properties, and changes due to weathering, are immediately important. U.S. EPA is currently developing new models for application to environmental problems associated...
Ellis, Geoffrey S.; Said-Ahamed, Ward; Lillis, Paul G.; Shawar, Lubna; Amrani, Alon
2017-01-01
Compound-specific sulfur isotope analysis was applied to a suite of 18 crude oils generated from the Permian Phosphoria Formation in the Bighorn Basin, western USA. These oils were generated at various levels of thermal maturity and some experienced thermochemical sulfate reduction (TSR). This is the first study to examine the effects of thermal maturation on stable sulfur isotopic compositions of individual organosulfur compounds (OSCs) in crude oil. A general trend of 34S enrichment in all of the studied compounds with increasing thermal maturity was observed, with the δ34S values of alkyl-benzothiophenes (BTs) tending to be enriched in 34S relative to those of the alkyl-dibenzothiophenes (DBTs) in lower-maturity oils. As thermal maturity increases, δ34S values of both BTs and DBTs become progressively heavier, but the difference in the average δ34S value of the BTs and DBTs (Δ34S BT-DBT) decreases. Differences in the isotopic response to thermal stress exhibited by these two compound classes are considered to be the result of relative differences in their thermal stabilities. TSR-altered Bighorn Basin oils have OSCs that are generally enriched in 34S relative to non-TSR-altered oils, with the BTs being enriched in 34S relative to the DBTs, similar to the findings of previous studies. However, several oils that were previously interpreted to have been exposed to minor TSR have Δ34S BT-DBT values that do not support this interpretation. The δ34S values of the BTs and DBTs in some of these oils suggest that they did not experience TSR, but were derived from a more thermally mature source. The heaviest δ34S values observed in the OSCs are enriched in 34S by up to 10‰ relative to that of Permian anhydrite in the Bighorn Basin, suggesting that there may be an alternate or additional source of sulfate in some parts of the basin. These results indicate that the sulfur isotopic composition of OSCs in oil provides a sensitive indicator for the extent of TSR, which cannot be determined from other bulk geochemical parameters. Moreover, when combined with additional geochemical and geologic evidence, the sulfur isotopic composition of OSCs in oils can help to identify the source of sulfate for TSR alteration in petroleum reservoirs.
Chemical composition and pharmacological significance of Anethum Sowa L. Root.
Saleh-E-In, Md Moshfekus; Sultana, Nasim; Rahim, Md Matiur; Ahsan, Md Aminul; Bhuiyan, Md Nurul Huda; Hossain, Md Nur; Rahman, Md Mahbubar; Kumar Roy, Sudhangshu; Islam, Md Rabiul
2017-02-23
Medicinal herbs are used for the treatment of different ailments since antiquity. Different parts of Anethum sowa L. is used in folk medicine as a carminative for the treatment of flatulence, colic and hiccups of infants and children, antioxidant, antimicrobial and antispasmodic agent. The aim of our present study is to evaluate the chemical composition of the essential oil, proximate and elemental composition, amino acid, fatty acid profile and thermal behaviour of its root part as well as different pharmacological activities like antioxidant, antimicrobial and cytotoxicity of the root essential oil. The air-dried roots of Anethum sowa L. were subjected to hydro-distillation to yield the essential oil. The antioxidant activity of the essential oil was studied by DPPH radical scavenging activity. The antimicrobial activity was tested against four Gram-positive, six Gram-negative bacteria and four fungi species. The minimum inhibitory concentration (MIC) and Minimum bacterial concentration (MBC) for each examined microorganism were determined using the micro-dilution method. The LC 50 value of the oil was also evaluated by brine shrimp lethality assay. The subsequent proximate analysis was also done by AOAC methods. The elemental analysis of the root powder was analysed by ICP-MS, AAS and FP system. The fatty acid was extracted by hot and cold extraction method and the analyses were carried out by GC. The amino acid profile was done by the amino acid analyzer. The DTA, DTG and TG of the root powder were taken by the thermogravimetric analyzer. A total of 24 constituents was identified and quantified in the essential oil and its water extract portion by GC and GC-MS. Apiol (81.99 and 74.779%) was found the highest phenylpropanoid constituent followed by m-diaminobenzene (10.446 and 8.778%) in the essential oil and aqueous extract portion. On the other hand, β-butyrolactone (5.13%) and isobutyl acetone (3.73%) were found in the major constituents in the water extract part. The IC 50 value of the essential oil was found to be 3.07 mg/mL by DPPH radical assay methods. The LC 50 value of the brine shrimp cytotoxicity assay of the essential oil was observed at 0.81 μg/mL. The essential oil showed better activity on Gram-negative bacteria than Gram-positive bacteria and fungi. The proximate composition showed that root contained 5.29% ash, 2.01% protein, 54.09% crude fibre, 0.15% essential oil and 1.14% fatty oil for hot extract and 0.23% for cold extract on the dried basis. The palmitic (33.81 & 31.58%) and linoleic acid (30.03 & 23.79%) were the major saturated and unsaturated fatty acids in the cold and hot extracted root powder respectively. Ca (23,600 mg/kg), Mg (7620.33 mg/kg) and K (1286.15 mg/kg) were the most predominant elements followed by Ni (1187.30 mg/kg), Se (913.79 mg/kg), Li (317.84 mg/kg), Na (288.72 mg/kg) and Fe (206.88 mg/kg). The toxic elements were found to be within the permissible limit. Glutamic acid (19.37%), glycine (14.53%) and lysine (17.08%) were found as the major amino acids. The decomposition rates were obtained by TG, DTG and DTA curve of the powder sample at various temperature ranges. The results demonstrated that the root part of Anethum sowa L. is a rich source of mineral elements, essential amino acid and fatty acids. The essential oil is the highly potential as bioactive oil for pharmaceuticals and medical applications, possessing antioxidant, antimicrobial and cytotoxic activities. The thermal analysis suggested as a simple, effective and rapid method to characterize the Anethum sowa L. species as well as to assess for herbal formulation.
Essential oils from Schinus species of northwest Argentina: Composition and antifungal activity.
Sampietro, Diego A; Belizana, Maria Melina E; Baptista, Zareath P Terán; Vattuone, Marta A; Catalán, Cesar A N
2014-07-01
The composition of the essential oils from leaves (Sal) and fruits of S. areira (Saf), and fruits of S. fasciculatus (Sff) and S. gracilipes (Sgf) were analyzed by GC/MS. The major compounds identified were sabinene (26.0 +/- 0.5%), bicyclogermacrene (14.5 +/- 0.4%), and E-citral (6.7+/- 0.2%) in Sal oil, limonene (27.7 +/- 0.7%), sabinene (16.0+/- 0.5%), beta-phellandrene (14.6 +/- 0.8%) and bicyclogermacrene (8.1 +/- 0.2%) in Saf oil, sabinene (22.7 +/- 0.6%), alpha-phellandrene (18.7 +/- 0.3%), beta-phellandrene (15.7 +/- 0.4%), and bicyclogermacrene (8.1 +/- 0.2%) in Sff oil and beta-pinene (25.4 +/- 0.8%), alpha-pinene (24.7 +/- 0.7%), and sabinene (13.6 +/- 0.4%) in Sgf oil.The antifungal activity of the four oils was evaluated on strains of Fusarium verticillioides and F. graminearum, and the results compared with the effect of epoxyconazole, pyraclostrobin and thyme oil. The Sff oil had the highest antifungal activity among the Schinus oils tested, with MIC100 (F. graminearum) = 6 per thousand and MIC100 (F. verticillioides) = 12 per thousand. A principal component analysis suggests that 9 constituents (alpha-thujene, alpha-terpinene, p-cymene, gamma-terpinene, terpinolene, 1-terpineol, alpha-calacorene, alpha-phellandrene, and terpinen-4-ol) explain the higher antifungal effect of Sff. The MIC100s of Schinus oils were on average 30-60 and 8.5-17 fold lower than those obtained for thyme oil on F. verticillioides and F. graminearum, respectively. In the case of commercial fungicides, their MIC100s were three orders of magnitude lower than those of Schinus oils. The last ones showed an additive interaction when assayed in mixtures with the commecial fungicides and thyme oil. The results suggest that the doses of fungicides required for control of the Fusarium species can be reduced when they are assayed in mixtures with the Schinus oils.
Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II
2015-01-01
This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810
Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki
2015-01-01
A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions. PMID:26641276
Anwar, Sirajudheen; Crouch, Rebecca A; Awadh Ali, Nasser A; Al-Fatimi, Mohamed A; Setzer, William N; Wessjohann, Ludger
2017-09-01
The hydrodistilled essential oil obtained from the dried leaves of Myrtus communis, collected in Yemen, was analysed by GC-MS. Forty-one compounds were identified, representing 96.3% of the total oil. The major constituents of essential oil were oxygenated monoterpenoids (87.1%), linalool (29.1%), 1,8-cineole (18.4%), α-terpineol (10.8%), geraniol (7.3%) and linalyl acetate (7.4%). The essential oil was assessed for its antimicrobial activity using a disc diffusion assay and resulted in moderate to potent antibacterial and antifungal activities targeting mainly Bacillus subtilis, Staphylococcus aureus and Candida albicans. The oil moderately reduced the diphenylpicrylhydrazyl radical (IC 50 = 4.2 μL/mL or 4.1 mg/mL). In vitro cytotoxicity evaluation against HT29 (human colonic adenocarcinoma cells) showed that the essential oil exhibited a moderate antitumor effect with IC 50 of 110 ± 4 μg/mL. Hierarchical cluster analysis of M. communis has been carried out based on the chemical compositions of 99 samples reported in the literature, including Yemeni sample.
Trifan, Adriana; Aprotosoaie, Ana Clara; Spac, A; Hăncianu, Monica; Miron, Anca; Stănescu, Ursula
2011-01-01
Coriandrum sativum L. (Apiaceae) is a well known herb, native to the Mediterranean region, also intensively cultivated in Romania. The essential oil obtained from Coriandri fructus posseses antimicrobial, antioxidant and anxiolytic effects. Many parameters such as genetic and climatic factors or agronomical practices can influence the yield and composition of the volatile fraction. Plant density is an important factor for the microenvironment in coriander field. In order to study the effect of planting density on the yield of the essential oil and its composition, a bifactorial experiment was carried out on coriander plants (Sandra cultivar). The experiment was performed with three plant densities on the row (0, 15 and 20 cm); the distance between plant rows was 12.5, 25 and 50 cm, respectively. So, it resulted nine experimental variants. The essential oils obtained by hydrodistillation from fruits have been characterized using gas chromatography and mass spectroscopy analysis (GC-MS). The highest yield (7.9866 kg/ha) was obtained for the plants spaced at 20 cm in between and 25 cm row spacing. The highest content of monoterpene alcohols (50.96%) was obtained with 25 cm row spacing and plant spaced at 0 cm on the row. The main components in all oils were monoterpene alcohols (40.75% - 50.96%) and monoterpenes (32.43-38.44%). The essential oil of coriander fruits (Sandra cultivar) does not meet the requirements of the European Pharmacopoeia, especially concerning the content in linalool. Nevertheless, the high content in monoterpene alcohols and monoterpenes recommends the use of the essential oil as immunomodulatory, analgesic and antiinflammatory agent in rheumatology and also as an antibacterial and antiviral agent. Consequently, the changes in yield and composition of the essential oil of Sandra coriander should be assesed during several periods of vegetation in order to conclude on its pharmaceutical quality.
Verma, Ram S; Joshi, Neeta; Padalia, Rajendra C; Singh, Ved R; Goswami, Prakash; Kumar, Ajay; Iqbal, Hina; Verma, Rajesh K; Chanda, Debabrata; Chauhan, Amit; Saikia, Dharmendra
2017-10-01
Fish-mint (Houttuynia cordataThunb.), belonging to family Saururaceae, has long been used as food and traditional herbal medicine. The present study was framed to assess the changes occurring in the essential-oil composition of H. cordata during annual growth and to evaluate allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activities. The essential-oil content ranged from 0.06 - 0.14% and 0.08 - 0.16% in aerial parts and underground stem, respectively. The essential oils were analysed by GC-FID, GC/MS, and NMR ( 1 H and 13 C). Major constituents of aerial-parts oil was 2-undecanone (19.4 - 56.3%), myrcene (2.6 - 44.3%), ethyl decanoate (0.0 - 10.6%), ethyl dodecanoate (1.1 - 8.6%), 2-tridecanone (0.5 - 8.3%), and decanal (1.1 - 6.9%). However, major constituents of underground-stem oil were 2-undecanone (29.5 - 42.3%), myrcene (14.4 - 20.8%), sabinene (6.0 - 11.1%), 2-tridecanone (1.8 - 10.5%), β-pinene (5.3 - 10.0%), and ethyl dodecanoate (0.8 - 7.3%). Cluster analysis revealed that essential-oil composition varied substantially due to the plant parts and season of collection. The oils exhibited significant allelopathic (inhibition: 77.8 - 88.8%; LD 50 : 2.45 - 3.05 μl/plate), antibacterial (MIC: 0.52 - 2.08 μl/ml; MBC: bacteriostatic) and antifungal (MIC: 2.08 - 33.33 μl/ml; MFC: 4.16 - 33.33 μl/ml) activities. The results indicate that the essential oil from H. cordata has a significant potential to allow future exploration and exploitation as a natural antimicrobial and allelopathic agent. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
Mahmoudvand, Hossein; Kheirandish, Farnaz; Dezaki, Ebrahim Saedi; Shamsaddini, Saeedeh; Harandi, Majid Fasihi
2016-08-01
At present, various scolicidal agents have been used for inactivation of protoscoleces during hydatid cyst surgery, however, they are associated with serious adverse side effects including sclerosing colangititis (biliary tract fibrosis), liver necrosis and methaemoglobinaemia. This investigation was designed to evaluate the chemical composition and in vitro scolicidal effects of Pistacia vera (var. Fandoghi) essential oil against protoscoleces of hydatid cysts and also its toxicity in mice model. The components of the P. vera essential oil were identified by gas chromatography/mass spectroscopy (GC/MS) analysis. Protoscoleces were aseptically aspirated from sheep livers having hydatid cysts. Various concentrations of the essential oil (25-200μl/mL) were used for 5-30min. Viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining). In addition, forty male NIH mice were used to determine the acute and sub-acute toxicity of P. vera essential oil for 2 and 14 days, respectively. The main components of P. vera essential oil were limonene (26.21%), α-pinene (18.07%), α-thujene (9.31%) and α-terpinolene (9.28%). Findings of the present study demonstrated that the P. vera essential oil at the concentrations of 100 and 200μl/mL killed 100% protoscoleces after 10 and 5min of exposure, respectively. The LD50 values of intraperitoneal injection of the P. vera essential oil was 2.69ml/kg body weight, and the maximum nonfatal doses were 1.94ml/kg body weight. No significant difference (P>0.05) was observed in the clinical chemistry and hematological parameters following oral administrations of P. vera essential oil at the doses 0.1, 0.2, and 0.4ml/kg for 14 days. The obtained findings demonstrated new chemical composition and promising scolicidal activity of the P. vera with no significant toxicity which might be used as a natural scolicidal agent in hydatid cyst surgery. Copyright © 2016. Published by Elsevier Masson SAS.
Reis Simas, Daniel Luiz; Mérida-Reyes, Max Samuel; Muñoz-Wug, Manuel Alejandro; Cordeiro, Millena Santos; Giorno, Thais Biondino Sardella; Taracena, Edwin Adolfo; Oliva-Hernández, Bessie Evelyn; Martínez-Arévalo, José Vicente; Fernandes, Patricia Dias; Pérez-Sabino, Juan Francisco; Jorge Ribeiro da Silva, Antonio
2017-11-13
The composition and the antinociceptive activity of the essential oil of Stevia serrata Cav. from a population located in the west highlands of Guatemala were evaluated. A yield of 0.2% (w/w) of essential oil was obtained by hydrodistillation of the dried aerial parts of the plant. The essential oil analysed by GC-FID and GC-MS showed a high content of sesquiterpenoids, with chamazulene (60.1%) as the major component and 91.5% of the essential oil composition was identified. To evaluate antinociceptive activity in mice, the essential oil of S. serrata Cav. was administered as gavage, using three different doses. In the formalin test, the animals were pre-treated with oral doses of the essential oil before the administration of formalin. Oral administration of S. serrata Cav. essential oil produced a marked antinociceptive activity. Therefore, the plant could be domesticated as a source of essential oil rich in chamazulene for developing medicinal products.
Elhouiti, Fatiha; Tahri, Djilali; Takhi, Djalila; Ouinten, Mohamed; Barreau, Christian; Verdal-Bonnin, Marie-Noëlle; Bombarda, Isabelle; Yousfi, Mohamed
2017-12-01
The antifungal potency of the essential oils of Rhanterium adpressum was evaluated against four mycotoxigenic strains of the genus Fusarium. The essential oils were obtained, separately, by hydro-distillation of the aerial parts of R. adpressum (leaves and flowers). The parts were collected during the period of bloom (3 months) for 3 years. The GC-MS analysis revealed thirty-six compounds for the essential oils, divided into four classes of chemical compounds, with variable percentages according to the month of extraction. The monoterpene hydrocarbons form the main class in these oils. On the other hand, the highest percentages of the oxygenated compounds are observed in the samples collected during the month of May. The direct contact method was used to evaluate the antifungal activity of the essential oils. The activity can be attributed to their relatively high composition of oxygenated monoterpenes. Flowers extract showed strong inhibitory activity, with very interesting concentrations of IC50 and MIC for both tests on solid and liquid medium. The effect of these oils on the production of type B trichothecenes (TCTBs) was evaluated, showing a significant inhibitory effect on TCTBs production, for both extracts (leaves and flowers). The rates of inhibition were 66-97 and 76-100% of FX, 3-ADON and 15-ADON, respectively. The inhibition of fungal biomass and the production of TCTBs depended on the used concentration of the essential oils. These results suggest that the essential oils from R. adpressum are able to control the growth of the tested strains and their subsequent production of TCTB mycotoxins.
The Effects of Krill Oil on mTOR Signaling and Resistance Exercise: A Pilot Study
Georges, John; Sharp, Matthew H.; Lowery, Ryan P.; Wilson, Jacob M.; Purpura, Martin; Hornberger, Troy A.; Harding, Flint; Johnson, James H.; Peele, David M.
2018-01-01
Introduction Krill oil supplementation has been shown to improve postexercise immune function; however, its effect on muscle hypertrophy is currently unknown. Therefore, the aim of present study was to investigate the ability of krill oil to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods C2C12 myoblasts cells were stimulated with krill oil or soy-derived phosphatidylcholine (S-PC), and then, the ratio of P-p70-389 to total p70 was used as readout for mTOR signaling. In double-blind, placebo-controlled study, resistance trained subjects consumed either 3 g krill oil daily or placebo, and each took part in an 8-week periodized resistance training program. Body composition, maximal strength, peak power, and rate of perceived recovery were assessed collectively at the end of weeks 0 and 8. In addition, safety parameters (comprehensive metabolic panel (CMP), complete blood count (CBC), and urine analysis (UA)) and cognitive performance were measured pre- and posttesting. Results Krill oil significantly stimulated mTOR signaling in comparison to S-PC and control. No differences for markers on the CMP, CBC, or UA were observed. Krill oil significantly increased lean body mass from baseline (p=0.021, 1.4 kg, +2.1%); however, there were no statistically significant differences between groups for any measures taken. Conclusion Krill oil activates mTOR signaling. Krill oil supplementation in athletes is safe, and its effect on resistance exercise deserves further research. PMID:29854443
Fluidized-bed pyrolysis of oil shale: oil yield, composition, and kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, J H; Huss, E B; Ott, L L
1982-09-01
A quartz isothermal fluidized-bed reactor has been used to measure kinetics and oil properties relevant to surface processing of oil shale. The rate of oil formation has been described with two sequential first-order rate equations characterized by two rate constants, k/sub 1/ = 2.18 x 10/sup 10/ exp(-41.6 kcal/RT) s/sup -1/ and k/sub 2/ = 4.4 x 10/sup 6/ exp(-29.7 kcal/RT) s/sup -1/. These rate constants together with an expression for the appropriate weighting coefficients describe approximately 97/sup +/% of the total oil produced. A description is given of the results of different attempts to mathematically describe the data inmore » a manner suitable for modeling applications. Preliminary results are also presented for species-selective kinetics of methane, ethene, ethane and hydrogen, where the latter is clearly distinguished as the product of a distinct intermediate. Oil yields from Western oil shale are approximately 100% Fischer assay. Oil composition is as expected based on previous work and the higher heating rates (temperatures) inherent in fluidized-bed pyrolysis. Neither the oil yield, composition nor the kinetics varied with particle size between 0.2 and 2.0 mm within experimental error. The qualitatively expected change in oil composition due to cracking was observed over the temperature range studied (460 to 540/sup 0/C). Eastern shale exhibited significantly faster kinetics and higher oil yields than did Western shale.« less
Mahla, H R; Rathore, S S; Venkatesan, K; Sharma, R
2018-04-01
World's vegetable oil demand is increasing day by day and oil seed supply is limited to a dozen oil seed crops on commercial scale. Efforts were made to explore the potential of water melon a traditionally grown native crop of Indian arid zone having oil content over 30% and seed yield potential of 500-600 kg per hectare under rainfed conditions. An analysis was carried out to explore the suitability of watermelon [ Citrullus lanatus (Thunb.)] oil for human consumption on the basis of fatty acid (FA) composition in selected genotypes. Total oil content ranged between 10.0 and 31.0%. Eleven FA were identified in seed oil. Linoleic, stearic, palmitic and oleic acid were found as major FA while myristic, heptadecanoic, arachidic, 9-hexadecenoic and 14-eicosenoic acid was present in traces. Linoleic acid single polyunsaturated FA contributor found in the range of 43.95% (WM-44) to 55.29% (WM-18). Saturated FA content ranged between 32.24 and 37.61%. Significant genetic variation was observed for mono-unsaturated FA. Metabolic capacity to inter-conversion of FA and nutritive value of watermelon oil was described on the basis of ratio of FA group. Total phenolics, antioxidant activity, peroxide value and oxidizability were also estimated along with oxidative stability of oil. Multivariate analysis showed that, oil content has positive correlation with linoleic acid. The Euclidean based UPGMA clustering revealed that genotypes WM-18 is most suitable for trait specific breeding program for high linoleic acid ( n -6), desaturation ratio and oleic desaturation ratio with higher oil content and lowest palmitic acid.
Wang, Yong-Wei; Zeng, Wei-Cai; Xu, Pei-Yu; Lan, Ya-Jia; Zhu, Rui-Xue; Zhong, Kai; Huang, Yi-Na; Gao, Hong
2012-01-01
The aim of this study was to determine the main constituents of the essential oil isolated from Fortunella crassifolia Swingle peel by hydro-distillation, and to test the efficacy of the essential oil on antimicrobial activity. Twenty-five components, representing 92.36% of the total oil, were identified by GC-MS analysis. The essential oil showed potent antimicrobial activity against both Gram-negative (E. coli and S. typhimurium) and Gram-positive (S. aureus, B. cereus, B. subtilis, L. bulgaricus, and B. laterosporus) bacteria, together with a remarkable antifungal activity against C. albicans. In a food model of beef extract, the essential oil was observed to possess an effective capacity to control the total counts of viable bacteria. Furthermore, the essential oil showed strongly detrimental effects on the growth and morphological structure of the tested bacteria. It was suggested that the essential oil from Fortunella crassifolia Swingle peel might be used as a natural food preservative against bacteria or fungus in the food industry. PMID:22489157
Silva Prado, Andriele da; Leal, Luciano Almeida; de Brito, Patrick Pascoal; de Almeida Fonseca, Antonio Luciano; Blawid, Stefan; Ceschin, Artemis Marti; Veras Mourão, Rosa Helena; da Silva Júnior, Antônio Quaresma; Antonio da Silva Filho, Demétrio; Ribeiro Junior, Luiz Antonio; Ferreira da Cunha, Wiliam
2017-07-01
We present an extensive study of the optical properties of Myrcia sylvatica essential oil with the goal of investigating the suitability of its material system for uses in organic photovoltaics. The methods of extraction, experimental analysis, and theoretical modeling are described in detail. The precise composition of the oil in our samples is determined via gas chromatography, mass spectrometry, and X-ray scattering techniques. The measurements indicate that, indeed, the material system of Myrcia sylvatica essential oil may be successfully employed for the design of organic photovoltaic devices. The optical absorption of the molecules that compose the oil are calculated using time-dependent density functional theory and used to explain the measured UV-Vis spectra of the oil. We show that it is sufficient to consider the α-bisabolol/cadalene pair, two of the main constituents of the oil, to obtain the main features of the UV-Vis spectra. This finding is of importance for future works that aim to use Myrcia sylvatica essential oil as a photovoltaic material.
Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying
2011-09-28
The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.
Aladedunye, Felix; Przybylski, Roman
2013-12-01
The influence of linoleic acid content and tocopherol isomeric composition on the frying performance of high oleic sunflower oil was evaluated during a 14-day restaurant style frying operation. At equal linoleic acid content, no significant difference was observed between high oleic sunflower oil containing only α-tocopherol and the sample containing a mixture of α-, γ-, and δ-isomers as measured by the amount of total polar components, oligomers, anisidine value, and free fatty acids. On the contrary, at similar tocopherol isomeric composition, high oleic sunflower oil containing lower amount of linoleic acid showed superior frying stability compared to the sample with a higher content of linoleic acid, suggesting that the frying performance of high oleic sunflower oil is dictated primarily by the level of linoleic acid, with the tocopherol isomeric composition of the oil having no significant influence. In all oil samples, the loss of γ-tocopherol was higher than the corresponding loss of α-tocopherol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yapi, Thierry Acafou; Boti, Jean Brice; Ahibo, Coffy Antoine; Bighelli, Ange; Castola, Vincent; Casanova, Joseph; Tomi, Félix
2012-12-01
The chemical composition of 48 essential-oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC-FID and (13) C-NMR analyses. In total, 23 components accounting for 82.5-96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β-pinene (up to 61.1%) and α-pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β-pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β-pinene, while those of Group II (10 samples) were characterized by the association of β-pinene and germacrene D. The leaves collected in the four inland forests produced β-pinene-rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Kortesniemi, Maaria; Lehto, Kirsi; Niemi, Jarmo; Yang, Baoru; Kallio, Heikki P
2014-02-15
Crop production for vegetable oil in the northern latitudes utilises oilseed rape (Brassica napus subsp. oleifera) and turnip rape (B. rapa subsp. oleifera), having similar oil compositions. The oil consists mostly of triacylglycerols, which are synthesised during seed development. In this study, we characterised the oil composition and the expression levels of genes involved in triacylglycerol biosynthesis in the developing seeds in optimal, low temperature (15 °C) and short day (12-h day length) conditions. Gene expression levels of several genes were altered during seed development. Low temperature and short day treatments increased the level of 9,12,15-octadecatrienoic acid (18:3n-3) in turnip rape and short day treatment decreased the total oil content in both species. This study gives a novel view on seed oil biosynthesis under different growth conditions, bringing together gene expression levels of the triacylglycerol biosynthesis pathway and oil composition over a time series in two related oilseed species. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ovsyannikova, Varvara S.; Shcherbakova, Anastasia G.; Altunina, Lyubov K.; Filatov, Dmitry A.
2017-12-01
The paper presents the results of laboratory experiments on the biodegradation of different oil compositions from the Usinskoye oil field in the presence of systems for enhanced oil recovery. It is shown that the oil-displacing IKhN-PRO system could be an optimal stimulating substrate to activate the biooxidation of oil with a high content of aromatic hydrocarbons, while the maximum conversion of oil with a high content of n-alkanes is observed in the presence of the oil-displacing sol-forming NINKA 3 system. A stimulating effect of the systems on the hydrocarbon-oxidizing native microflora of the oil reservoir, promoting its growth and increasing the level of oil biodegradation, could be used to enhance oil recovery, in addition to physicochemical methods.
Kumar, Dharmesh; Sukapaka, Mahesh; Babu, G. D. Kiran; Padwad, Yogendra
2015-01-01
Background Plant-based traditional system of medicine continues to play an important role in healthcare. In order to find new potent source of bioactive molecules, we studied the cytotoxic activity of the essential oils from the flowers and leaves of Callistemon citrinus. This is the first report on anticancer potential of essential oils of C. citrinus. Methods Cytotoxicity of essential oil was evaluated using sulfo-rhodamine B (SRB) assay against human lung carcinoma (A549), rat glioma (C-6), human colon cancer (Colo-205) and human cervical cancer (SiHa) cells. Apoptosis induction was evaluated by caspase-3/7 activity which was further confirmed by western blotting. Percentage cell apoptosis was determined by Annexin V based dead cell assay followed by DNA content as cell cycle analysis against A549 and C-6 cells. While 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to check the toxicity against normal human peripheral blood mononuclear cells (PBMCs), the immunomodulatory activity on mouse splenocytes was evaluated using SRB assay. Results The GC and GC-MS analysis of these essential oils revealed high content of α-pinene (32.3%), limonene (13.1%) and α-terpineol (14.6%) in leaf sample, whereas the flower oil was dominated by 1,8-cineole (36.6%) followed by α-pinene (29.7%). The leaf oil contained higher amount of monoterpene hydrocarbons (52.1%) and sesquiterpenoids (14%) as compared to flower oil (44.6% and 1.2%, respectively). However, the flower oil was predominant in oxygenated monoterpenes (43.5%). Although both leaf and flower oils showed highest cytotoxicity on A549 cells (61.4%±5.0 and 66.7%±2.2, respectively), only 100 μg/mL flower oil was significantly active against C-6 cells (69.1%±3.1). Interestingly, no toxicity was recorded on normal cells. Conclusion Higher concentration of 1,8-cineole and/or synergistic effect of the overall composition were probably responsible for the efficacy of flower and leaf oils against the tested cells. These oils may form potential source of natural anti-cancer compounds and play important role in human health. PMID:26308916
Zhou, Zhengzhen; Liu, Zhanfei; Guo, Laodong
2013-01-15
The fluorescence EEM technique, PARAFAC modeling, and hydrocarbon composition were used to characterize oil components and to examine the chemical evolution and degradation pathways of Macondo crude oil under controlled laboratory conditions. Three major fluorescent oil components were identified, with Ex/Em maxima at 226/328, 262/315, and 244/366 nm, respectively. An average degradation half-life of ∼20 d was determined for the oil components based on fluorescence EEM and hydrocarbon composition measurements, showing a dynamic chemical evolution and transformation of the oil during degradation. Dispersants appeared to change the chemical characteristics of oil, to shift the fluorescence EEM spectra, and to enhance the degradation of low-molecular-weight hydrocarbons. Photochemical degradation played a dominant role in the transformation of oil components, likely an effective degradation pathway of oil in the water column. Results from laboratory experiments should facilitate the interpretation of field-data and provide insights for understanding the fate and transport of oil components in the Gulf of Mexico. Copyright © 2012 Elsevier Ltd. All rights reserved.
Polatoğlu, Kaan; Karakoç, Ömer Cem; Demirci, Betül; Gören, Nezhun; Can Başer, Kemal Hüsnü
2015-01-01
Insecticides of the natural origin are an important alternative to the synthetic insecticides that are being employed for the preserving stored products. The volatiles obtained from T. cinerariifolium (=Pyrethrum cinerariifolium) is being used for many types of insecticidal applications; however there is a very little information on the insecticidal activity of the essential oils of other Tanacetum species. The main purpose of the present study is to determine the chemical composition of T. macrophyllum (Waldst. & Kit.) Schultz Bip. essential oils and evaluate their insecticidal activity against S. granarius as well as its other beneficial biological activities. Highest contact toxicity was observed in the leaf oil of (88.93%) against S. granarius. The flower oil showed considerable fumigant toxicity against L. minor at 10 mg/mL application concentration (61.86 %) when compared with other samples at the same concentration. The highest DPPH (2,2-Diphenyl-1-picrylhydrazyl) scavenging activity (47.7%) and phosphomolybdenum reducing activity was observed also for the flower oil of T. macrophyllum at 10 mg/mL concentration. The essential oils were analyzed by GC, GC/MS. The flower and leaf oils were characterized with γ-eudesmol 21.5%, (E)-sesquilavandulol 20.3%, copaborneol 8.5% and copaborneol 14.1%, 1,8-cineole 11%, bornyl acetate 9.6%, borneol 6.3% respectively. AHC analysis of the qualitative and quantitative data obtained from the essential oil composition of the T. macrophyllum essential oil from the present research and previous reports pointed out that two different chemotypes could be proposed with current findings which are p-methyl benzyl alcohol/ cadinene and eudesmane chemotypes.
Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min
2014-01-01
The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2', 7'-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results.
Li, Hong; Yang, Tian; Li, Fei-Yan; Yao, Yan; Sun, Zhong-Min
2014-01-01
The aim of the current research work was to study the chemical composition of the essential oil of Monarda punctata along with evaluating the essential oil and its major components for their antibacterial effects against some frequently encountered respiratory infection causing pathogens. Gas chromatographic mass spectrometric analysis revealed the presence of 13 chemical constituents with thymol (75.2%), p-cymene (6.7%), limonene (5.4), and carvacrol (3.5%) as the major constituents. The oil composition was dominated by the oxygenated monoterpenes. Antibacterial activity of the essential oil and its major constituents (thymol, p-cymene, limonene) was evaluated against Streptococcus pyogenes, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Haemophilus influenzae and Escherichia coli. The study revealed that the essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against different strains. Among the tested strains, Streptococcus pyogenes, Escherichia coli and Streptococcus pneumoniae were the most susceptible bacterial strain showing lowest MIC and MBC values. Methicillin-resistant Staphylococcus aureus was the most resistant bacterial strain to the essential oil treatment showing relatively higher MIC and MBC values. Scanning electron microscopy revealed that the essential oil induced potent and dose-dependent membrane damage in S. pyogenes and MRSA bacterial strains. The reactive oxygen species generated by the Monarda punctata essential oil were identified using 2’, 7’-dichlorofluorescein diacetate (DCFDA).This study indicated that the Monarda punctata essential oil to a great extent and thymol to a lower extent triggered a substantial increase in the ROS levels in S. pyogenes bacterial cultures which ultimately cause membrane damage as revealed by SEM results. PMID:25550774
de Oliveira, Allan Demetrius Leite; Galvao Rodrigue, Fabiola Fernandes; Douglas Melo Coutinho, Henrique; da Costa, Jose Galberto Martins; de Menezes, Irwin Rose Alencar
2014-01-01
Background: Several studies have shown that species of the genus Hyptis, have promising antimicrobial and antifungal effects. Objectives: Identify of chemical constituents of essential oil from leaves of Hyptis martiusii and evaluate its effect against bacterial strains by direct and gaseous contact. Materials and Methods: Essential oil was extracted from leaves of Hyptis martiusii Benth using hydro-distillation, and its composition was determined using gas chromatography–mass spectrometry (GC-MS). Chemical analysis showed that there was a predominance of sesquiterpenes. The leaf essential oil was screened for its minimal inhibitory concentration and modulatory effect of aminoglycoside by the direct (MIC) and gaseous (MID) micro-dilution assays for various pathogenic microorganisms. The essential oil remarkably inhibited the growth of all of the tested bacteria (MIC < 512 μg/mL) except S. aureus (SA358) multidrug resistant (MRSA) by direct contact. Results: Twenty-four compounds representing 92.13% of the essential oil of leaves were characterized; δ -3-carene (6.88%), 1, 8-cineole (7.01%), trans-caryophyllene (9.21%), Cariophyllene oxide (7.47%) and bicyclogermacrene (10.61%) were found as the major components. Modulatory aminoglycoside effect, by direct contact, was showed antagonistic relationship with antimicrobial activity. The gaseous component of the oil inhibited the bacterial growth of all of the tested bacteria in 50% and 25% of oil concentration and demonstrated synergistic interactions can be attributed to the constituting the oil compounds. Conclusions: These results show that this oil influences the activity of the antibiotic and may be used as an adjuvant in the antibiotic therapy of respiratory tract bacterial pathogens. PMID:25237640
Tsokou, Anastasia; Georgopoulou, Katerina; Melliou, Eleni; Magiatis, Prokopios; Tsitsa, Eugenia
2007-06-30
The essential oils of the fruits and the leaves of pistachio (Pistacia vera L.) were analyzed by GC and GC/MS. Fresh unripe pistachio fruits were richer in essential oil (0.5%, w/w) than the leaves (0.1%, w/w). Twenty one compounds were identified in the essential oil of the fruits and the major components were (+)-alpha-pinene (54.6%) and terpinolene (31.2%). The enantiomeric ratio of the major constituents of the essential oil of the fruits was determined using chiral GC/MS and it was found that the (+)/(-)-alpha-pinene ratio was 99.5:0.5, (+)/(-)-limonene 80:20, (+)/(-)-beta-pinene 96:4, and (+)/(-)-alpha-terpineol 0:100. Thirty three compounds were identified in the essential oil of the leaves and the major components were found to be alpha-pinene (30.0%), terpinolene (17.6%) and bornyl acetate (11.3%).
Mohajeri, Leila; Abdul Aziz, Hamidi; Ali Zahed, Mohammad; Mohajeri, Soraya; Mohamed Kutty, Shamsul Rahman; Hasnain Isa, Mohamed
2011-01-01
Central composite design (CCD) and response surface methodology (RSM) were employed to optimize four important variables, i.e. amounts of oil, bacterial inoculum, nitrogen and phosphorus, for the removal of selected n-alkanes during bioremediation of weathered crude oil in coastal sediments using laboratory bioreactors over a 60 day experimentation period. The reactors contained 1 kg soil with different oil, microorganisms and nutrients concentrations. The F Value of 26.89 and the probability value (P < 0.0001) demonstrated significance of the regression model. For crude oil concentration of 2, 16 and 30 g per kg sediments and under optimized conditions, n-alkanes removal was 97.38, 93.14 and 90.21% respectively. Natural attenuation removed 30.07, 25.92 and 23.09% n-alkanes from 2, 16 and 30 g oil/kg sediments respectively. Excessive nutrients addition was found to inhibit bioremediation.
Chemical Variability of Ivoirian Xylopia rubescens Leaf Oil.
Yapi, Thierry Acafou; Boti, Jean Brice; Tonzibo, Zanahi Félix; Ahibo, Coffy Antoine; Bighelli, Ange; Casanova, Joseph; Tomi, Félix
2017-02-01
Forty-two essential oil samples were isolated from leaves of Xylopia rubescens harvested in three forests of Southern Ivory Coast. All the samples have been submitted to GC-FID and the retention indices (RIs) of individual components have been measured on two capillary columns of different polarity. In addition, 20 oil samples, selected on the basis of their chromatographic profile, were also analyzed by 13 C-NMR and 24 components (78.0 - 92.4% of the whole compositions) have been identified. The content of the main components varied drastically from sample to sample: furanoguaia-1,4-diene (5.7 - 54.1%), furanoguaia-1,3-diene (1.1 - 10.5%), (8Z,11Z,14Z)-heptadeca-8,11,14-trien-2-one (4.3 - 16.0%), and (E)-β-caryophyllene (1.7 - 17.3%). Hierarchical cluster and principal components analysis of the 42 oil compositions allowed the distinction of two well-differentiated groups of unequal importance within the oil samples. Oil samples of the main group (Group II) contained mainly furanoguaia-1,4-diene (mean [M] = 43.1%; standard deviation [SD] = 3.2%) while furanoguaia-1,3-diene (M = 8.4%; SD = 0.9%) and (8Z,11Z,14Z)-heptadeca-8,11,14-trien-2-one (M = 7.1%; SD = 1.5%) were present at appreciable contents. The composition of Group I was dominated by furanoguaia-1,4-diene (M = 17.0%; SD = 8.5%), (8Z,11Z,14Z)-heptadeca-8,11,14-trien-2-one (M = 10.2%; SD = 2.4%) and (E)-β-caryophyllene (M = 9.5%; SD = 5.3%). © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Procida, Giuseppe; Cichelli, Angelo; Lagazio, Corrado; Conte, Lanfranco S
2016-01-15
The volatile fraction of virgin olive oil is characterised by low molecular weight compounds that vaporise at room temperature. In order to obtain an aroma profile similar to natural olfactory perception, the composition of the volatile compounds was determined by applying dynamic headspace gas chromatography, performed at room temperature, with a cryogenic trap directly connected to a gas chromatograph-mass spectrometer system. Samples were also evaluated according to European Union and International Olive Council official methods for sensory evaluation. In this paper, the composition of the volatile fraction of 25 extra virgin olive oils from different regions of Italy was analysed and some preliminary considerations on relationships between chemical composition of volatile fraction and sensory characteristics are reported. Forty-two compounds were identified by means of the particular analytical technique used. All the analysed samples, classified as extra virgin by the panel test, never present peaks whose magnitude is important enough in defected oils. The study was focused on the evaluation of volatile compounds responsible for the positive impact on olive odour properties ('green-fruity' and 'sweet') and olfactory perception. Chemometric evaluation of data, obtained through headspace analysis and the panel test evaluation, showed a correlation between chemical compounds and sensory properties. On the basis of the results, the positive attributes of virgin olive oil are divided into two separated groups: sweet types or green types. Sixteen volatile compounds with known positive impact on odour properties were extracted and identified. In particular, eight compounds seem correlated with sweet properties whereas the green sensation appears to be correlated with eight other different substances. The content of the compounds at six carbon atoms proves to be very important in defining positive attributes of extra virgin olive oils and sensory evaluation. © 2015 Society of Chemical Industry.
Niu, Jun; Chen, Yinlei; An, Jiyong; Hou, Xinyu; Cai, Jian; Wang, Jia; Zhang, Zhixiang; Lin, Shanzhi
2015-10-08
Lindera glauca fruits (LGF) with the abundance of terpenoid and oil has emerged as a novel specific material for industrial and medicinal application in China, but the complex regulatory mechanisms of carbon source partitioning into terpenoid biosynthetic pathway (TBP) and oil biosynthetic pathway (OBP) in developing LGF is still unknown. Here we perform the analysis of contents and compositions of terpenoid and oil from 7 stages of developing LGF to characterize a dramatic difference in temporal accumulative patterns. The resulting 3 crucial samples at 50, 125 and 150 days after flowering (DAF) were selected for comparative deep transcriptome analysis. By Illumina sequencing, the obtained approximately 81 million reads are assembled into 69,160 unigenes, among which 174, 71, 81 and 155 unigenes are implicated in glycolysis, pentose phosphate pathway (PPP), TBP and OBP, respectively. Integrated differential expression profiling and qRT-PCR, we specifically characterize the key enzymes and transcription factors (TFs) involved in regulating carbon allocation ratios for terpenoid or oil accumulation in developing LGF. These results contribute to our understanding of the regulatory mechanisms of carbon source partitioning between terpenoid and oil in developing LGF, and to the improvement of resource utilization and molecular breeding for L. glauca.
Relation between quality and production cost for pure biodiesel bases on the mixes of raw materials
NASA Astrophysics Data System (ADS)
Tsanaktsidis, C. G.; Spinthiropoulos, K. G.; Guliyev, Fariz; Dimitriou, D.; Euthaltsidou, K.; Tzilantonis, G. T.
2016-08-01
Nowadays biodiesel has become more attractive because it is made from renewable resources. The main ingredients of industrial biodiesel are rap oil, sun oil, fat acid, olive oil cooked. In this study we verify that, the proportion of these components sets the qualitative composition and energy efficiency of the final product. Essential we link the raw materials (rap oil, sun oil, fat acid, olive oil cooked) used in the manufacture of industrial biodiesel the proportion of mixes, with the variation of physicochemical properties of biodiesel produced. According to the quantitative analysis we notice that the physiochemical properties which alter the value for example humidity, acidity, while a large number of physicochemical properties do not change their value depending on the ratio of raw materials in each mixture. The analysis of these changes seems that the presence of fat acids is negative for the quality of the mixture. From the analysis of the cost of the final mixtures that lower cost is achieved in the mixture was 10 and the highest cost was in the mixture 3. Based on a study of the cost of the mixtures can determine a basic relation between the quality and the cost of the final product.
Wang, Ming Li; Morris, Brad; Tonnis, Brandon; Davis, Jerry; Pederson, Gary A
2012-07-04
The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.
Medbouhi, Ali; Merad, Nadjiya; Khadir, Abdelmounaim; Bendahou, Mourad; Djabou, Nassim; Costa, Jean; Muselli, Alain
2018-01-01
The chemical composition, antibacterial and antioxidant activities of the essential oil obtained from Eryngium triquetrum from Algeria were studied. The chemical composition of sample oils from 25 locations was investigated using GC-FID and GC/MS. Twenty-four components representing always more than 87% were identified in essential oils from total aerial parts of plants, stems, flowers and roots. Falcarinol is highly dominant in the essential oil from the roots (95.5%). The relative abundance of falcarinol in the aerial parts correlates with the phenological stages of the plant. Aerial parts of E. triquetrum produce an essential oil dominated by falcarinol during the early flowering stage, and then there is a decrease in falcarinol and rebalancing of octanal during the flowering stage. To our knowledge, the present study is the first report of the chemical composition of E. triquetrum essential oil. Evaluation of the antibacterial activity by means of the paper disc diffusion method and minimum inhibitory concentration assays, showed a moderate efficiency of E. triquetrum essential oil. Using the DPPH method, the interesting antioxidant activity of E. triquetrum essential oil was established. These activities could be attributed to the dominance of falcarinol. The outcome of our literature search on the occurrence of falcarinol in essential oils suggests that E. triquetrum from Algeria could be considered as a possible source of natural falcarinol. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L.
Rouis-Soussi, Lamia Sakka; Ayeb-Zakhama, Asma El; Mahjoub, Aouni; Flamini, Guido; Jannet, Hichem Ben; Harzallah-Skhiri, Fethia
2014-01-01
The chemical composition of the essential oils of different Allium nigrum L. organs and the antibacterial activity were evaluated. The study is particularly interesting because hitherto there are no reports on the antibacterial screening of this species with specific chemical composition. Therefore, essential oils from different organs (flowers, stems, leaves and bulbs) obtained separately by hydrodistillation were analyzed using gas chromatography–mass spectrometry (GC–MS). The antibacterial activity was evaluated using the disc and microdilution assays. In total, 39 compounds, representing 90.8-96.9 % of the total oil composition, were identified. The major component was hexadecanoic acid (synonym: palmitic acid) in all the A. nigrum organs oils (39.1-77.2 %). We also noted the presence of some sesquiterpenes, mainly germacrene D (12.8 %) in leaves oil) and some aliphatic compounds such as n-octadecane (30.5 %) in bulbs oil. Isopentyl isovalerate, 14-oxy-α-muurolene and germacrene D were identified for the first time in the genus Allium L. All the essential oils exhibited antimicrobial activity, especially against Enterococcus faecalis and Staphylococcus aureus. The oil obtained from the leaves exhibited an interesting antibacterial activity, with a Minimum Inhibitory Concentration (MIC) of 62.50 µg/mL against these two latter strains. The findings showed that the studied oils have antibacterial activity, and thus great potential for their application in food preservation and natural health products. PMID:26417280
Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.
2016-04-01
Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.
Zheng, Hao-Bo; Ding, Jun; Zheng, Shu-Jian; Zhu, Gang-Tian; Yuan, Bi-Feng; Feng, Yu-Qi
2016-01-01
In this study, we proposed a method to fabricate magnetic carbon nitride (CN) nanosheets by simple physical blending. Low-cost CN nanosheets prepared by urea possessed a highly π-conjugated structure; therefore the obtained composites were employed as magnetic solid-phase extraction (MSPE) sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) in edible oil samples. Moreover, sample pre-treatment time could be carried out within 10 min. Thus, a simple and cheap method for the analysis of PAHs in edible oil samples was established by coupling magnetic CN nanosheets-based MSPE with gas chromatography-mass spectrometry (GC/MS) analysis. Limits of quantitation (LOQs) for eight PAHs ranged from 0.4 to 0.9 ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 15.0%. The recoveries of PAHs for spiked soybean oil samples ranged from 91.0% to 124.1%, with RSDs of less than 10.2%. Taken together, the proposed method offers a simple and cost-effective option for the convenient analysis of PAHs in oil samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Essential oil composition and antiradical activity of the oil of Iraq plants.
Kiralan, Mustafa; Bayrak, Ali; Abdulaziz, Omar Fawzi; Ozbucak, Tuğba
2012-01-01
This study examined the antiradical activity and chemical composition of essential oils of some plants grown in Mosul, Iraq. The essential oils of myrtle and parsley seed contained α-pinene (36.08% and 22.89%, respectively) as main constituents. Trans-Anethole was the major compound found in fennel and aniseed oils (66.98% and 93.51%, respectively). The dominant constituent of celery seed oil was limonene (76.63%). Diallyl disulphide was identified as the major component in garlic oil (36.51%). Antiradical activity was higher in garlic oil (76.63%) and lower in myrtle oil (39.23%). The results may suggest that some essential oils from Iraq possess compounds with antiradical activity, and these oils can be used as natural antioxidants in food applications.
Seed oil and fatty acid composition in Capsicum spp
USDA-ARS?s Scientific Manuscript database
The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...
Constituent composition and biological activity of Nepeta manchuriensis essential oil
USDA-ARS?s Scientific Manuscript database
The essential oil present in the aerial parts of the plant Nepeta manchuriensis was prepared by steam distillation using clevenger apparatus. The chemical composition of the oil was studied by GCMS. Sabinene, elemol, selinene, 4-terpineol, menthatriene and neoisothujol are the major components and r...
NASA Astrophysics Data System (ADS)
Utama, P. S.; Saputra, E.; Khairat
2018-04-01
Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.
Ghaffari, Zahra; Rahimmalek, Mehdi; Sabzalian, Mohammad R
2018-06-01
Essential oil (EO) composition, phenolic content, and antioxidant activity were investigated in 17 P. abrotanoides populations collected from different geographical regions in Iran. The highest (3.61%) and lowest (1.25%) essential oil yields were measured in populations from Semnan Province (PSESM 2 ) and PISKS from Isfahan Province, respectively. GC/MS analysis identified camphor (4.05 - 35.94%), 1,8-cineole (7.15 - 24.34%), borneol (0 - 21.75%), and α-pinene (2.05 - 10.33%) as the main constituents of Perovskia essential oil. Cluster analysis classified the studied populations into four different groups: (I) high camphene, (II) high camphor/1,8-cineole, (III) high borneol/δ-3-carene, and (IV) high α-cadinol/trans-caryophyllene. The highest flavonoid and phenolic contents were detected in PISAK from Isfahan Province (4.09 ± 0.05 mgQE/gDW, 58.51 ± 1.63 mgGAE/gDW) and PKRGS from Khorasan Province (3.80 ± 0.002 mgQE/gDW, 66.86 ± 0.002 mgGAE/gDW). DPPH and reducing power activity model systems identified PMASA and PKRKL as the populations with the highest antioxidant activity. Finally, the data obtained represented valuable information for introducing elite populations with EO components favorable to pharmaceutical and industrial applications. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Chemical Diversity, Biological Activity, and Genetic Aspects of Three Ocotea Species from the Amazon
da Silva, Joyce Kelly; da Trindade, Rafaela; Moreira, Edith Cibelle; Maia, José Guilherme S.; Dosoky, Noura S.; Miller, Rebecca S.; Cseke, Leland J.; Setzer, William N.
2017-01-01
Ocotea species present economic importance and biological activities attributed to their essential oils (EOs) and extracts. For this reason, various strategies have been developed for their conservation. The chemical compositions of the essential oils and matK DNA sequences of O. caudata, O. cujumary, and O. caniculata were subjected to comparison with data from O. floribunda, O. veraguensis, and O. whitei, previously reported. The multivariate analysis of chemical composition classified the EOs into two main clusters. Group I was characterized by the presence of α-pinene (9.8–22.5%) and β-pinene (9.7–21.3%) and it includes O. caudata, O. whitei, and O. floribunda. In group II, the oils of O. cujumary and O. caniculata showed high similarity due amounts of β-caryophyllene (22.2% and 18.9%, respectively). The EO of O. veraguensis, rich in p-cymene (19.8%), showed minor similarity among all samples. The oils displayed promising antimicrobial and cytotoxic activities against Escherichia coli (minimum inhibitory concentration (MIC) < 19.5 µg·mL−1) and MCF-7 cells (median inhibitory concentration (IC50) ≅ 65.0 µg·mL−1), respectively. The analysis of matK gene displayed a good correlation with the main class of chemical compounds present in the EOs. However, the matK gene data did not show correlation with specific compounds. PMID:28524091
Ramírez, Jorge; Gilardoni, Gianluca; Jácome, Miriam; Montesinos, José; Rodolfi, Marinella; Guglielminetti, Maria Lidia; Cagliero, Cecila; Bicchi, Carlo; Vidari, Giovanni
2017-12-01
This study describes the GC-FID, GC/MS, GC-O, and enantioselective GC analysis of the essential oil hydrodistilled from leaves of Lepechinica mutica (Lamiaceae), collected in Ecuador. GC-FID and GC/MS analyses allowed the characterization and quantification of 79 components, representing 97.3% of the total sample. Sesquiterpene hydrocarbons (38.50%) and monoterpene hydrocarbons (30.59%) were found to be the most abundant volatiles, while oxygenated sesquiterpenes (16.20%) and oxygenated monoterpenes (2.10%) were the minor components. In order to better characterize the oil aroma, the most important odorants, from the sensorial point of view, were identified by Aroma Extract Dilution Analysis (AEDA) GC-O. They were α-Pinene, β-Phellandrene, and Dauca-5,8-diene, exhibiting the characteristic woody, herbaceus, and earthy odors, respectively. Enantioselective GC analysis of L. mutica essential oil revealed the presence of twelve couples and two enantiomerically pure chiral monoterpenoids. Their enantiomeric excesses were from a few percent units to 100%. Moreover, the essential oil exhibited moderate in vitro activity against five fungal strains, being especially effective against M. canis, which is a severe zoophilic dermatophyte causal agent of pet and human infections. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Nuez-Ortín, Waldo G.; Carter, Chris G.; Wilson, Richard; Cooke, Ira; Nichols, Peter D.
2016-01-01
Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399
Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D
2016-01-01
Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.
Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L
2015-02-01
Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Oil geochemistry of the northern Llanos Basin, Colombia. A model for migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramon, J.C.; Dzou, L.
1996-12-31
The chemical composition of 23 crude oils and one oil seep from Llanos Basin, Colombia were studied in detail by geochemical methods in order to understand their genetic relationship. A filling history model is proposed to explain the observed composition variations in Llanos Basin oils. Geochemical fingerprinting indicates that there are six families of crude oils. The biomarker compositions have been used to identify characteristics of the source rocks. The Llanos oils contain marine algal- derived {open_quotes}C30 steranes{close_quotes} (i.e., 24-n-propylcholestanes), which are diagnostic for oils generated from marine Cretaceous source rocks. A significant HC-contribution from a Tertiary source is alsomore » indicated by the presence of high concentration of the {open_quotes}flowering plant{close_quotes}-markers oleanane, bicadinanes and oleanoids. Low DBT/Phen, %sulfur values and high diasteranes concentration indicate that the source rock is clay-rich. Biomarker maturity parameters indicate a wide range of source-rock thermal maturities from early to late oil window. Heavy biodegradation has been particularly common among the first oils to fill reservoirs in central Llanos oil fields. The older altered heavy oils were mixed with a second pulse of oil explaining the wide range of oil gravities measured in the central Llanos Basin.« less
Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars.
Nawirska-Olszańska, Agnieszka; Kita, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z
2013-08-15
The objective of this study was to determine the antioxidant properties, and provide characteristics, of the oil obtained from the seeds of 12 pumpkin varieties belonging to the species Cucurbita maxima Duch. and Cucurbita pepo L. Another objective was to establish which of the two extracting agents, ethanol or methanol, is more effective. The seeds of the pumpkin varieties examined differ in chemical composition and antioxidant activity. The seeds of the cultivars belonging to the species C. maxima are characterised by a higher content of fatty acids than are the cultivars of the species C. pepo. In the seed oil, unsaturated acids are dominant (oleic and linoleic), and their proportion depends on the pumpkin variety. The highest content of unsaturated acids has been measured in the oil extracted from the seeds of the cultivar, Jet F1 (C. pepo). Antioxidant activity analysis has produced the following findings. The seeds of the pumpkin varieties that belong to the species C. pepo exhibit better antioxidant properties, regardless of the extraction solvent used. 50% ethanol is more efficient than 80% methanol when used as an extracting agent. The antioxidant activity values obtained with 50% ethanol are higher than those achieved with 80% methanol. Owing to the considerable differences in composition among the fatty acids examined, it is possible to choose the desired pumpkin variety for the intended use. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chaib, Faiza; Allali, Hocine; Bennaceur, Malika; Flamini, Guido
2017-08-01
In recent years, antimicrobial activities of essential oils have been intensively explored, mainly in researching and developing new antimicrobial agents to overcome microbial resistance. The present study investigates the chemical composition and antimicrobial activities of essential oils obtained from two Asteraceae: Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC. Chemical analysis was performed using a combination of capillary GC-FID and GC/MS analytical techniques. The major component of Asteriscus graveolens were cis-chrysanthenyl acetate (31.1%), myrtenyl acetate (15.1%), and kessane (11.5%), while for Pulicaria incisa the main components were chrysanthenone (45.3%) and 2,6-dimethylphenol (12.6%). The oils obtained from the aerial parts were tested against sixteen microbial strains by agar well diffusion technique and dilution methods and showed minimum inhibitory concentrations (MIC) in the range of 19 - 1250 μg/ml. A good antibacterial activity against a common nosocomial pathogen, Acinetobacter baumanniiATCC 19606 was observed, especially from Pulicaria incisa essential oil, with a MIC value up to 19 μg/ml. These results give significant information about the pharmacological activity of these essential oils, which suggest their benefits to human health, having the potential to be used for medical purposes. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Study on the Tribological Properties of MC Nylon Composites Filled with Hydraulic Oil
NASA Astrophysics Data System (ADS)
Yuan, S.; Li, Y.; Wen, J.; Yin, L.; Zhang, Q.
2018-03-01
Mechanical parts utilized in machinery, such as nylon slider and pulley, should have certain mechanical properties and good tribological properties, so that equipments’ stability and smoothness can be assured. A kind of MC nylon (monomer cast nylon) composites filled with hydraulic oil was studied in this paper. The addition of hydraulic oil changed nylon’s mechanical properties and tribological properties significantly, and improved the material’s toughness and coefficient of friction. The composites have excellent strength, toughness and relatively low coefficient of friction when the content of the hydraulic oil is 4wt%.
NASA Astrophysics Data System (ADS)
Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.
2017-12-01
This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.
Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.
Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain
2013-08-15
The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.
The volatile oil composition of fresh and air-dried buds of Cannabis sativa.
Ross, S A; ElSohly, M A
1996-01-01
The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.
Composition of the essential oil of Helichrysum chasmolycicum growing wild in Turkey.
Chalchat, J C; Ozcan, M M
2006-01-01
The chemical compositions of the essential oil obtained from the aerial parts of Helichrysum chasmolycicum were analyzed by gas chromatography and gas chromatography-mass spectrometry. From the 57 identified constituents, representing 66.55% of the oil, the main constituents of the oil were beta-caryophyllene (27.6%), beta-selinene (8.9%), alpha-selinene (8.4%), caryophyllene oxide (7.3%), and carvacrol (2.4%). The essential oil was almost totally characterized by sesquiterpene hydrocarbons such as beta-caryophyllene and alpha- and beta-selinene.
2012-01-01
Background A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. Results The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. Conclusions All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils. PMID:22995716
Dulf, Francisc V
2012-09-20
A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils.
USDA-ARS?s Scientific Manuscript database
The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents we...
Multicomponent composition and corresponding physical properties data of crude oils and petroleum products are needed as input to environmental fate simulations. Complete sets of such data, however, are not available in the literature due to the complexity and expense of making t...
Cetin, Bülent; Ozer, Hakan; Cakir, Ahmet; Polat, Taşkin; Dursun, Atilla; Mete, Ebru; Oztürk, Erdoğan; Ekinci, Melek
2010-02-01
The objective of this study was to determine the chemical compositions of the essential oil and hexane extract isolated from the inflorescence, leaf stems, and aerial parts of Florence fennel and the antimicrobial activities of the essential oil, hexane extract, and their major component, anethole, against a large variety of foodborne microorganisms. Gas chromatography and gas chromatography-mass spectrometry analysis showed that the essential oils obtained from inflorescence, leaf stems, and whole aerial parts contained (E)-anethole (59.28-71.69%), limonene (8.30-10.73%), apiole (trace to 9.23%), beta-fenchyl acetate (3.02-4.80%), and perillene (2.16-3.29%) as the main components. Likewise, the hexane extract of the plant sample exhibited a similar chemical composition, and it contained (E)-anethole (53.00%), limonene (27.16%), gamma-terpinene (4.09%), and perillene (3.78%). However, the hexane extract also contained less volatile components such as n-hexadecanoic acid (1.62%), methyl palmitate (1.17%), and linoleic acid (1.15%). The in vitro antimicrobial assays showed that the essential oil, anethole, and hexane extract were effective against most of the foodborne pathogenic, saprophytic, probiotic, and mycotoxigenic microorganisms tested. The results of the present study revealed that (E)-anethole, the main component of Florence fennel essential oil, is responsible for the antimicrobial activity and that the essential oils as well as the hexane extract can be used as a food preservative. This study is the first report showing the antimicrobial activities of essential oil and hexane extract of Florence fennel against probiotic bacteria.
[Chemical components from essential oil of Pandanus amaryllifolius leaves].
Chen, Xiao-Kai; Ge, Fa-Huan
2014-04-01
To analyze the chemical compositions of Pandanus amaryllifolius leaves essential oil extracted by steam distillation. The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method. 128 peaks were separated and 95 compounds were identified, which weighed 97.75%. The main chemical components of the essential oil were phytol (42.15%), squalene (16.81%), what's more pentadecanal (6.17%), pentadecanoic acid (4.49%), 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol (3.83%), phytone (2.05%) and the other 74 chemical compositions were firstly identified from the essential oil of Pandanus amaryllifolius leaves. The chemical compositions of Pandanu samaryllifolius leaves essential oil was systematically, deeply isolated and identified for the first time. This experiment has provided scientific foundation for further utilization of Pandanus amaryllifolius leaves.
Dennen, Kristen O.; Deering, Mark; Burruss, Robert A.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
This study presents high-resolution gas chromatograms of oils and molecular and isotopic analyses of oil-associated gases from 17 wells producing in the Upper Cambrian to Lower Ordovician Knox Group, the Middle and Upper Ordovician Stones River Group, and the Upper Ordovician Trenton Limestone in the Cumberland overthrust sheet. The wells are located in the Ben Hur and Rose Hill fields in Lee County, Va., and in the Swan Creek field in Hancock and Claiborne Counties, Tenn. They produce oils typical of those from source rocks that are rich in Gloeocapsomorpha prisca (G. prisca) (Assemblage A-type kerogen). The Rose Hill oils appear to come from a source that contains a higher proportion of Assemblage A-type kerogen than the Ben Hur and Swan Creek oils. Extrapolation of the δ13C compositions of oil-associated gases to possible kerogen compositions gives estimates of -23 to -24 per mil within the range of isotopic compositions of known G. prisca source material. Gases produced from the Knox Group wells in the Swan Creek field are different from those in the Middle and Upper Ordovician reservoirs and come from a source with a broader range of isotopic values. Trends in isotopic and gasoline-range compositional parameters of the oils and associated gas isotopic and molecular compositions are most likely influenced by changes in local source depositional facies.
Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumberge, J.E.; Macko, S.
1996-01-01
Two of the largest gas fields in the world, Hasi R'Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less
Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumberge, J.E.; Macko, S.
Two of the largest gas fields in the world, Hasi R`Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Shinpuku, Hideto; Yonejima, Yasunori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) during the cultivation process of Lactobacillus brevis were isolated by hydrodistillation (HD) and analyzed to determine the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 55 and 36 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were N-containing compounds, including 2,3-dimethylpyrazine (16, 37.1 %), methylpyrazine (4, 17.1 %). The important aroma-active compounds in the oils were detected by GC-Olfactometry (GC-O), and their intensity of aroma were measured by aroma extract dilution analysis (AEDA). Expressly, pyrazine compounds were determined as key aroma components; in particular, 2,5-dimethylpyrazine and 2,3-dimethylpyrazine were the most primary aroma-active compound in MAI oil. These results imply that the waste medium after incubation of L. brevis may be utilized as a source of volatile oils.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Maeba, Keisuke; Yonejima, Yasunori; Toyoda, Masanori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Enterococcus faecalis is one of the major lactic acid bacterium (LAB) species colonizing the intestines of animals and humans. The characteristic odor of the volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of E. faecalis was investigated to determine the utility of the liquid medium. In total, fifty-six and thirty-two compounds were detected in the volatile oils from the MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were 2,5-dimethylpyrazine (19.3%), phenylacetaldehyde (19.3%), and phenylethyl alcohol (9.3%). The aroma extract dilution analysis (AEDA) method was performed using gas chromatography-olfactometry (GC-O). The total number of aroma-active compounds identified in the volatile oil from MBI and MAI was thirteen compounds; in particular, 5-methyl-2-furanmethanol, phenylacetaldehyde, and phenylethyl alcohol were the most primary aroma-active compounds in MAI oil. These results imply that the industrial cultivation medium after incubation of E. faecalis may be utilized as a source of volatile oils.
Some rape/canola seed oils: fatty acid composition and tocopherols.
Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad
2016-03-01
Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (p<0.05). The oil contents of rapeseeds were found to be high compared with canola seed oils. The main fatty acids in the oils are oleic (56.80-64.92%), linoleic (17.11-20.92%) and palmitic (4.18-5.01%) acids. A few types of tocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (p<0.05). As a result, the present study shows that oil, fatty acid and tocopherol contents differ significantly among the cultivars.
NASA Astrophysics Data System (ADS)
Kandala, Chari V.; Sundaram, Jaya
2014-10-01
Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.
Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota
2013-02-01
Sea Sand Disruption Method (SSDM) is a simple and cheap sample-preparation procedure allowing the reduction of organic solvent consumption, exclusion of sample component degradation, improvement of extraction efficiency and selectivity, and elimination of additional sample clean-up and pre-concentration step before chromatographic analysis. This article deals with the possibility of SSDM application for the differentiation of essential-oils components occurring in the Scots pine (Pinus sylvestris L.) and cypress (Cupressus sempervirens L.) needles from Madrid (Spain), Laganas (Zakhyntos, Greece), Cala Morell (Menorca, Spain), Lublin (Poland), Helsinki (Finland), and Oradea (Romania). The SSDM results are related to the analogous - obtained applying two other sample preparation methods - steam distillation and Pressurized Liquid Extraction (PLE). The results presented established that the total amount and the composition of essential-oil components revealed by SSDM are equivalent or higher than those obtained by one of the most effective extraction technique, PLE. Moreover, SSDM seems to provide the most representative profile of all essential-oil components as no heat is applied. Thus, this environmentally friendly method is suggested to be used as the main extraction procedure for the differentiation of essential-oil components in conifers for scientific and industrial purposes. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.)
Yang, Xin; Song, Li-min; Xu, Qian; Li, Hong
2017-01-01
Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases. PMID:29081895
Essential Oils, Part I: Introduction.
de Groot, Anton C; Schmidt, Erich
2016-01-01
Essential oils are widely used in the flavor, food, fragrance, and cosmetic industries in many applications. Contact allergy to them is well known and has been described for 80 essential oils. The relevance of positive patch test reactions often remains unknown. Knowledge of the chemical composition of essential oils among dermatologists is suspected to be limited, as such data are published in journals not read by the dermatological community. Therefore, the authors have fully reviewed and published the literature on contact allergy to and chemical composition of essential oils. Selected topics from this publication will be presented in abbreviated form in Dermatitis starting with this issue, including I. Introduction; II. General aspects; III. Chemistry; IV. General aspects of contact allergy; V. Peppermint oil, lavender oil and lemongrass oil; VI: Sandalwood oil, ylang-ylang oil, and jasmine absolute.
Organogelator-Cellulose Composite for Practical and Eco-Friendly Marine Oil-Spill Recovery.
Prathap, Annamalai; Sureshan, Kana M
2017-08-01
Marine oil spills pose serious threats to the ecosystem and economy. There is much interest in developing sorbents that can tackle such spills. We have developed a novel sorbent by impregnating cellulose pulp with a sugar-derived oleogelator, 1,2:5,6-di-O-cyclohexylidene-mannitol. The gelator molecules mask the surface-exposed hydroxyl groups of cellulose fibrils by engaging them in H-bonding and expose their hydrophobic parts making the fibers temporarily hydrophobic (water contact angle 110°). This sorbent absorbs oil effectively, selectively and instantly from oil-water mixtures due to its hydrophobicity. Then the gelator molecules get released uniformly in the oil and later self-assemble to fibers, as evident from SEM analysis, congealing the oil within the matrix. This hierarchical entrapment of the oil by non-covalent polymeric fibers within a covalent polymer matrix makes the gel very strong (230-fold increase in the yield stress) and rigid, making it suitable for practical use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Siani, Antonio C; Tappin, Marcelo R R; Ramos, Mônica F S; Mazzei, José L; Ramos, Maria Conceição K V; De Aquino Neto, Francisco R; Frighetto, Nélson
2002-06-05
A new chemotype of the aromatic Verbenaceae species Lippia alba Mill. N. E. Br. from southeastern Brazil has recently been shown to have a high content of linalool in the leaf essential oil. Vegetative propagation of this chemotype was conducted at six different locations in Brazil, and the variation of the content and the optical purity of linalool in the oils were verified. Yields (0.6-0.9%, hydrodistillation), chemical composition, linalool content, and optical purity of the oils from all the plants were compared, using GC-FID, GC-MS, chiral chromatography, and retention index calculation. No plant exceeded the matrix in linalool content (46.5 to 90.7%), and the chemical profile of the oils was the same for all the samples. Purification of linalool to a content close to 100% was effected by vacuum distillation of the crude oil. Chiral analysis showed exclusively the presence of S-linalool in all the crude oils and in the distilled samples.
da Silva Ramos, Ryan; Rodrigues, Alex Bruno Lobato; Farias, Ana Luzia Ferreira; Simões, Ranggel Carvalho; Pinheiro, Mayara Tânia; Ferreira, Ricardo Marcelo dos Anjos; Costa Barbosa, Ledayane Mayana; Picanço Souto, Raimundo Nonato; Fernandes, João Batista
2017-01-01
The essential oil was obtained by hydrodistillation and the identification and quantification of components were achieved with the use of GC-MS analysis. The antioxidant activity was evaluated by the method of sequestration of DPPH. Essential oils were used for study the cytotoxic front larvae of Artemia salina. In the evaluation of the antimicrobial activity of essential oils, we employed the disk-diffusion method. The potential larvicide in mosquito larvae of the third stage of development of Aedes aegypti to different concentrations of essential oils was evaluated. The major compounds found in the essential oils of M. piperita were linalool (51.8%) and epoxyocimene (19.3%). The percentage of antioxidant activity was 79.9 ± 1.6%. The essential oil showed LC50 = 414.6 μg/mL front of A. saline and is considered highly toxic. It shows sensitivity and halos significant inhibition against E. coli. The essential possessed partial larvicidal efficiency against A. aegypti. PMID:28116346
Warsito, Warsito; Palungan, Maimunah Hindun; Utomo, Edy Priyo
2017-01-01
Essential oil is consisting of complex component. It is divided into major and minor component. Therefore, this study aims to examine the distribution of major and minor components on Kaffir lime oil by using fractional distillation. Fractional distillation and distributional analysis of components within fractions have been performed on kaffir lime oil ( Citrus hystrix DC .). Fractional distillation was performed by using PiloDist 104-VTU, column length of 2 m (number of plate 120), the system pressure was set on 5 and 10 mBar, while the reflux ratio varied on 10/10, 20/10 and 60/10, and the chemical composition analysis was done by using GC-MS. Chemical composition of the distillated lime oil consisted of mix-twigs and leaves that composed of 20 compounds, with five main components β-citronellal (46.40%), L-linalool (13.11%), β-citronellol (11.03%), citronelyl acetate (6.76%) and sabinen (5.91%). The optimum conditions for fractional distillation were obtained at 5 mBar pressure with reflux ratio of 10/10. Components of β -citronellal and L-linalool were distributed in the fraction-1 to fraction 9, hydrocarbon monoterpenes components were distributed only on the fraction-1 to fraction 4, while the oxygenated monoterpenes components dominated the fraction-5 to fraction-9. The highest level of β-citronellal was 84.86% (fraction-7), L-linalool 20.13% (fraction-5), sabinen 19.83% (fraction-1), and the component level of 4-terpeneol, β-citronellol and sitronelyl acetate respectively 7.16%; 12.27%; 5.22% (fraction-9).
Friedman, Mendel; Henika, Philip R; Levin, Carol E; Mandrell, Robert E
2004-09-22
We evaluated 17 plant essential oils and nine oil compounds for antibacterial activity against the foodborne pathogens Escherichia coli O157:H7 and Salmonella enterica in apple juices in a bactericidal assay in terms of % of the sample that resulted in a 50% decrease in the number of bacteria (BA(50)). The 10 compounds most active against E. coli (60 min BA(50) range in clear juice, 0.018-0.093%) were carvacrol, oregano oil, geraniol, eugenol, cinnamon leaf oil, citral, clove bud oil, lemongrass oil, cinnamon bark oil, and lemon oil. The corresponding compounds against S. enterica (BA(50) range, 0.0044-0.011%) were Melissa oil, carvacrol, oregano oil, terpeineol, geraniol, lemon oil, citral, lemongrass oil, cinnamon leaf oil, and linalool. The activity (i) was greater for S. enterica than for E. coli, (ii) increased with incubation temperature and storage time, and (iii) was not affected by the acidity of the juices. The antibacterial agents could be divided into two classes: fast-acting and slow-acting. High-performance liquid chromatography analysis showed that the bactericidal results are related to the composition of the oils. These studies provide information about new ways to protect apple juice and other foods against human pathogens.
Impacts of China’s Edible Oil Pricing Policy on Nutrition
Ng, Shu Wen; Popkin, Barry M.
2008-01-01
China’s health profile has shifted to one dominated by obesity and nutrition-related noncommunicable diseases (NR-NCDs) necessitating an examination of how economic policies can improve this situation. Edible oil consumption is responsible for much of the increase in energy density of the Chinese diet and particularly linked with the shifting burden of NR-NCDs toward the poor. Longitudinal analysis among adults in the China Health and Nutrition Survey (CHNS) covering the period 1991 to 2000 revealed that price policy effects on edible oil can influence dietary composition (particularly of the poor) and the results identify a key preventive policy need. PMID:17996345
Mozdianfard, Mohammadreza; Akhbari, Maryam; Batooli, Hossein
2012-01-01
Antioxidant activities of different extracts obtained from the aerial parts of Vitex pseudo-negundo from Kashan, central Iran, were evaluated for the first time in this study using β-carotene/linoleic acid and scavenging of free-radical (DPPH) assays. Water extract showed the highest activity in both assays. GC-MS analysis of the oil extracted by n-hexane revealed 46 compounds with trans-β-farnesene being the main component. Several new compounds, not reported in the previous literature, were identified in the essential oil of this chemo-type.
Jung, Jee-Hyun; Lee, Eun-Hee; Choi, Kwang-Min; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo
2017-06-01
Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees. Copyright © 2017 Elsevier Inc. All rights reserved.
Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan
2016-01-01
Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified. PMID:27876833
Sebokova, E; Garg, M L; Wierzbicki, A; Thomson, A B; Clandinin, M T
1990-06-01
Experiments were conducted to assess whether changing dietary fat composition altered phospholipid composition of rat testicular plasma membranes in a manner that altered receptor-mediated action of luteinizing hormone (LH)/human chorionic gonadotropin (hCG). Weanling rats were fed diets that provided high or low cholesterol intakes and that were enriched with linseed oil, fish oil or beef tallow for 4 wk. Feeding diets high in (n-3) fatty acids decreased plasma and testicular plasma membrane 20:4(n-6) content. A marked reduction of the 22:5(n-6) content and an increase in the 22:6(n-3) content of testicular plasma membrane was found only in animals fed fish oil. A decrease in binding capacity of the gonadotropin (LH/hCG) receptor in the plasma membrane, with no change in receptor affinity, was observed for animals fed either linseed oil or fish oil diets. Dietary treatments that raised plasma membrane cholesterol content and the cholesterol to phospholipid ratio in the membrane were associated with increased binding capacity of the gonadotropin receptor. Feeding diets high in 18:3(n-3) vs. those high in fish oil altered receptor-mediated adenylate cyclase activity in a manner that depended on the level of dietary cholesterol. Feeding diets high in cholesterol or fish oil increased basal and LH-stimulated testosterone synthesis relative to that in animals fed the low cholesterol diet containing linseed oil. It is concluded that changing the fat composition of the diet alters the phospholipid composition of rat testicular plasma membranes and that this change in composition influences membrane-mediated unmasking of gonadotropin receptor-mediated action in testicular tissue.
Bates, Philip D.; Browse, John
2012-01-01
The unique properties of vegetable oils from different plants utilized for food, industrial feedstocks, and fuel is dependent on the fatty acid (FA) composition of triacylglycerol (TAG). Plants can use two main pathways to produce diacylglycerol (DAG), the immediate precursor molecule to TAG synthesis: (1) De novo DAG synthesis, and (2) conversion of the membrane lipid phosphatidylcholine (PC) to DAG. The FA esterified to PC are also the substrate for FA modification (e.g., desaturation, hydroxylation, etc.), such that the FA composition of PC-derived DAG can be substantially different than that of de novo DAG. Since DAG provides two of the three FA in TAG, the relative flux of TAG synthesis from de novo DAG or PC-derived DAG can greatly affect the final oil FA composition. Here we review how the fluxes through these two alternate pathways of DAG/TAG synthesis are determined and present evidence that suggests which pathway is utilized in different plants. Additionally, we present examples of how the endogenous DAG synthesis pathway in a transgenic host plant can produce bottlenecks for engineering of plant oil FA composition, and discuss alternative strategies to overcome these bottlenecks to produce crop plants with designer vegetable oil compositions. PMID:22783267
Fatty acid profile of new promising unconventional plant oils for cosmetic use.
Bialek, A; Bialek, M; Jelinska, M; Tokarz, A
2016-08-01
Oils have been used on the cosmetic application since antiquity. With the growing interest in cosmetic formulation of strictly natural origin there has been also an increased interest in the use of alternative oils obtained from nuts, herbs, fruit and vegetable seeds. Due to lack of good scientific reports on the cosmetic plant oils available in Poland, the aim of our research was to characterize fatty acids (FA) profile and oxidative quality of selected unconventional plant oils, which are used as cosmetics or potential cosmetic ingredients. Oils were purchased from cosmetic health shops in Warsaw (Poland); FA profile was analysed by gas chromatography with flame-ionization detection. Peroxide index (PI), content of hydroperoxides (PV) and free fatty acids (AV) were also determined. Oxidative quality and FA composition of examined oils varied widely among analyzed oils. Cluster analysis revealed three clusters. Clusters S1 and S3 include only one oil (Perilla and sea buckthorn, respectively). Perilla oil is characterized by relatively small content of both saturated FA (8.5%) and monounsaturated FA (14.2%) and much higher amount of polyunsaturated FA (73.5%) whereas in sea buckthorn these proportions are opposite (saturated FA and monounsaturated FA - 33.5% and 51.0% respectively, and the lowest amount of polyunsaturated FA - 5.2%). In cluster S2 two sub-clusters were distinguished and the content of linoleic (p = 0.0015), α-linolenic (p = 0.0092) and oleic (p = 0.0015) acid caused this distinction. PI ranged from 8.9 in sea buckthorn oil to 135 in Perilla oil. Perilla oil and raspberry seed oil were also characterized by the highest PV (225 ± 14.9 mEq O/kg oil and 232 ± 13.8 mEq O/kg oil, respectively), whereas the lowest PV was determined for walnut oil (0.82 ± 0.18 mEq O/kg oil) and carrot seed oil (0.87 ± 0.21 mEq O/kg oil) oils. FA composition of cosmetic oils in combination with data concerning their oxidative quality, is very important for determining their safe and effective use. It is very important to standardize and test the FA content in commercially available oils of cosmetic use. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Popović, Višnja B; Petrović, Silvana D; Milenković, Marina T; Drobac, Milica M; Couladis, Maria A; Niketić, Marjan S
2015-01-01
The chemical composition and antimicrobial activity of essential oils of Laserpitium latifolium and L. ochridanum were investigated. The essential oils were isolated by steam distillation and characterized by GC-FID and GC/MS analyses. All essential oils were distinguished by high contents of monoterpenes, and α-pinene was the most abundant compound in the essential oils of L. latifolium underground parts and fruits (contents of 44.4 and 44.0%, resp.). The fruit essential oil was also rich in sabinene (26.8%). Regarding the L. ochridanum essential oils, the main constituents were limonene in the fruit oil (57.7%) and sabinene in the herb oil (25.9%). The antimicrobial activity of these essential oils as well as that of L. ochridanum underground parts, whose composition was reported previously, was tested by the broth-microdilution method against four Gram-positive and three Gram-negative bacteria and two Candida albicans strains. Except the L. latifolium underground-parts essential oil, the other investigated oils showed a high antimicrobial potential against Staphylococcus aureus, S. epidermidis, Micrococcus luteus, or Candida albicans (minimal inhibitory concentrations of 13.0-73.0 μg/ml), comparable to or even higher than that of thymol, which was used as reference compound. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Lopez-Reyes, Jorge Giovanny; Spadaro, Davide; Prelle, Ambra; Garibaldi, Angelo; Gullino, Maria Lodovica
2013-04-01
The antifungal activity of plant essential oils was evaluated as postharvest treatment on stone fruit against brown rot and grey mold rot of stone fruit caused by Monilinia laxa and Botrytis cinerea, respectively. The essential oils from basil (Ocimum basilicum), fennel (Foeniculum sativum), lavender (Lavandula officinalis), marjoram (Origanum majorana), oregano (Origanum vulgare), peppermint (Mentha piperita), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), savory (Satureja montana), thyme (Thymus vulgaris), and wild mint (Mentha arvensis) were tested at two different concentrations on apricots (cv. Kyoto and cv. Tonda di Costigliole), nectarines (cv. Big Top and cv. Nectaross) and plums (cv. Italia and cv. TC Sun). The volatile composition of the essential oils tested was determined by gas chromatography-mass spectrometry analysis. The treatments containing essential oils from oregano, savory, and thyme at 1% (vol/vol) controlled both B. cinerea and M. laxa growing on apricots cv. Tonda di Costigliole and plums cv. Italia and cv. TC Sun; however, the same treatments were phytotoxic for the carposphere of nectarines cv. Big Top and cv. Nectaross. Treatments with 10% (vol/vol) essential oils were highly phytotoxic, notwithstanding their efficacy against the pathogens tested. The essential oils containing as major components α-pinene, p-cymene, carvacrol, and thymol showed similar results on stone fruit, so their antimicrobial activity and the phytotoxicity produced could be based on the concentration of their principal compounds and their synergistic activity. The efficacy of the essential oil treatments on control of fungal pathogens in postharvest depended on the fruit cultivar, the composition and concentration of the essential oil applied, and the length of storage.
Mottram, Hazel R; Woodbury, Simon E; Rossell, J Barry; Evershed, Richard P
2003-01-01
Maize oil commands a premium price and is thus a target for adulteration with cheaper vegetable oils. Detection of this activity presents a particular challenge to the analyst because of the natural variability in the fatty acid composition of maize oils and because of their high sterol and tocopherol contents. This paper describes a method that allows detection of adulteration at concentrations of just 5% (m/m), based on the Mahalanobis distances of the principal component scores of the delta(13)C values of major and minor vegetable oil components. The method makes use of a database consisting of delta(13)C values and relative abundances of the major fatty acyl components of over 150 vegetable oils. The sterols and tocopherols of 16 maize oils and 6 potential adulterant oils were found to be depleted in (13)C by a constant amount relative to the bulk oil. Moreover, since maize oil contains particularly high levels of sterols and tocopherols, their delta(13)C values were not significantly altered when groundnut oil was added up to 20% (m/m) and it is possible to use the values for the minor components to predict the values that would be expected in a pure oil; therefore, comparison of the predicted values with those obtained experimentally allows adulteration to be detected. A refinement involved performing a discriminant analysis on the delta(13)C values of the bulk oil and the major fatty acids (16:0, 18:1 and 18:2) and using the Mahalanobis distances to determine the percentage of adulterant oil present. This approach may be refined further by including the delta(13)C values of the minor components in the discriminant analysis thereby increasing the sensitivity of the approach to concentrations at which adulteration would not be attractive economically. Copyright 2003 John Wiley & Sons, Ltd.
Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed
Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong
2013-01-01
Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973
Wang, Ming Li; Khera, Pawan; Pandey, Manish K; Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A; Pinnow, David; Holbrook, Corley C; Culbreath, Albert K; Varshney, Rajeev K; Guo, Baozhu
2015-01-01
Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.
Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A.; Pinnow, David; Holbrook, Corley C.; Culbreath, Albert K.; Varshney, Rajeev K.; Guo, Baozhu
2015-01-01
Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line ‘SunOleic 97R’ × low oleic line ‘NC94022’) and T-population (normal oleic line ‘Tifrunner’ × low oleic line ‘GT-C20’) were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition. PMID:25849082
Analysis of the essential oils of Alpiniae Officinarum Hance in different extraction methods
NASA Astrophysics Data System (ADS)
Yuan, Y.; Lin, L. J.; Huang, X. B.; Li, J. H.
2017-09-01
It was developed for the analysis of the essential oils of Alpiniae Officinarum Hance extracted by steam distillation (SD), ultrasonic assisted solvent extraction (UAE) and supercritical fluid extraction (SFE) via gas chromatography mass spectrometry (GC-MS) combined with retention index (RI) method. There were multiple volatile components of the oils extracted by the three above-mention methods respectively identified; meanwhile, each one was quantified by area normalization method. The results indicated that the content of 1,8-Cineole, the index constituent, by SD was similar as SFE, and higher than UAE. Although UAE was less time consuming and consumed less energy, the oil quality was poorer due to the use of organic solvents was hard to degrade. In addition, some constituents could be obtained by SFE but could not by SD. In conclusion, essential oil of different extraction methods from the same batch of materials had been proved broadly similarly, however, there were some differences in composition and component ratio. Therefore, development and utilization of different extraction methods must be selected according to the functional requirements of products.
Braun, Norbert A; Sim, Sherina; Kohlenberg, Birgit; Lawrence, Brian M
2014-09-01
Four commercial qualities of Hawaiian sandalwood oil produced from wood of Santalum paniculatum originating from the island of Hawaii ("The Big Island") were analyzed using GC and GC-MS. Main constituents of the oils were (Z)-α-santalol (34.5-40.4%) and (Z)-β-santalol (11.0-16.2%). An odor evaluation of the oils was carried out against East Indian sandalwood oil. In addition, the chemical composition of Hawaiian sandalwood oil was compared with four different Santalum species originating from East India, New Caledonia, Eastern Polynesia and Australia, respectively.
Aysu, Tevfik
2016-11-01
The catalytic pyrolysis of Cirsium arvense was performed with titania supported catalysts under the operating conditions of 500°C, 40°C/min heating rate, 100mL/min N2 flow rate in a fixed bed reactor for biofuel production. The effect of catalysts on product yields was investigated. The amount of pyrolysis products (bio-char, bio-oil, gas) and the composition of the produced bio-oils were determined by proton nuclear magnetic resonance ((1)H NMR), Fourier transform infrared spectroscopy (FT-IR), gas chromatography/mass spectrometry (GC-MS) and elemental analysis (EA) techniques. Thistle bio-oils had lower O/C and H/C molar ratios compared to feedstock. The highest bio-char and bio-oil yields of 29.32wt% and 36.71wt% were obtained in the presence of Ce/TiO2 and Ni/TiO2 catalysts respectively. GC-MS identified 97 different compounds in the bio-oils obtained from thistle pyrolysis. (1)H NMR analysis showed that the bio-oils contained ∼55-77% aliphatic and ∼6-19% aromatic structural units. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan
2017-12-01
In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed
2017-03-01
Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.
Pandini, J A; Pinto, F G S; Scur, M C; Santana, C B; Costa, W F; Temponi, L G
2018-02-01
The essential oils are extracted from plant compounds and can present activities antimicrobial and antioxidant properties. The goals of the present study were: (a) to determine the chemical composition of the essential oil of Guarea kunthiana A. Juss using the method of gas chromatography coupled to mass spectrometry (GC-MS); (b) to evaluate the antimicrobial potential of this oil using the broth microdilution method against different microorganisms: five Gram-negative bacteria, four Gram-positive bacteria and a yeast and (c) to determine the antioxidant activity of the oil using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. The GC-MS analyses allowed identifying 13 constituents, representing 96.52% of the essencial oil composition. The main compounds identified were α-zingiberene (34.48%), β-sesquiphellandrene (22.90%), and α-curcumene (16.17%). With respect to the antimicrobial activity, the essential oil was effective against all the microorganisms tested, except for the bacteria E. coli and K. pneumoniae, which were resistant to the action of the oil. From a general point of view, Gram-positive bacteria were more susceptible to the action of the essential oil than Gram-negative bacteria. The essential oil exhibited antioxidant potential.
Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo
2014-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.
Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P
2016-07-13
This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.
Meyer, Knut; Stecca, Kevin L.; Ewell-Hicks, Kim; Allen, Stephen M.; Everard, John D.
2012-01-01
This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that genes encoding cytosolic pyrophosphatase enzymes provide novel targets to improve seed composition for plant biotechnology applications. PMID:22566496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdi, A.A.; Grover, G.; Hwang, R.
1995-08-01
Organic geochemistry and its integration with geologic and reservoir engineering data is becoming increasingly utilized to assist geologists and petroleum engineers in solving production related problems. In Abqaiq Field of eastern Saudi Arabia, gas chromatographic analysis (FSCOT) of produced oils from the Arab-D and Hanifa reservoirs was used to evaluate vertical and lateral continuity within and between these reservoirs. Bulk and molecular properties of produced Arab-D oils do not vary significantly over the 70 km length and 10 km width of the reservoir. Hanifa oils, however, do reflect two compositionally distinct populations that are hot in lateral communication, compatible withmore » the occurrence of a large oil pool in the southern part of the field, and a separate, and smaller northern accumulation. The Arab-D and underlying Hanifa oil pools are separated by over 450 feet of impermeable carbonates of the Jubaila Formation, yet the Southern Hanifa pool and the Arab-D have been in pressure communication since onset of Hanifa production in 1954. Recent borehole imaging and core data from horizontal Hanifa wells confirmed the long suspected occurrence of fractures responsible for fluid transmissibility within the porous (up to 35%) but tight (<10md matrix K) Hanifa reservoir, and between the Hanifa and Arab-D. The nearly identical hydrocarbon composition of oils from the Arab-D and southern Hanifa pool provided the final confirmation of fluid communication between the two reservoirs, and extension of a Hanifa fracture-fault network via the Jubaila Formation. This work lead to acquisition of 3-D seismic to image and map the fracture-fault system. The molecular fingerprinting approach demonstrated that produced oils can be used to evaluate vertical and lateral reservoir continuity, and at Abqaiq Field confirmed, in part, the need to produce the Hanifa reservoir via horizontal wells to arrest the reservoir communication that occurs with existing vertical wells.« less
Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam.
Chuang, Ping-Hsien; Lee, Chi-Wei; Chou, Jia-Ying; Murugan, M; Shieh, Bor-Jinn; Chen, Hueih-Min
2007-01-01
Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum, and Microsporum canis. GC-MS analysis of the chemical composition of the essential oil from leaves showed a total of 44 compounds. Isolated extracts could be of use for the future development of anti-skin disease agents.
USDA-ARS?s Scientific Manuscript database
This study investigated the compositional characteristics and shelf-life of Njangsa seed oil (NSO). Oil from Njangsa had a high polyunsaturated fatty acid (PUFA) content of which alpha eleosteric acid (alpha-ESA), an unusual conjugated linoleic acid was the most prevalent (about 52%). Linoleic acid...
USDA-ARS?s Scientific Manuscript database
Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...
USDA-ARS?s Scientific Manuscript database
Date palm, Phoenix dactylifera L. (Arecaceae), grows commonly in the Arabian Peninsula and is traditionally used to treat various diseases. The aim of the present study was to identify chemical composition of the essential oil and to investigate the repellent activity. The essential oil of P. dacty...
Pinzi, S; Gandía, L M; Arzamendi, G; Ruiz, J J; Dorado, M P
2011-01-01
Presence of unreacted glycerides in biodiesel may reduce drastically its quality. This is why conversion of raw material in biodiesel through transesterification needs to readjust reaction parameter values to complete. In the present work, monitoring of glycerides transformation in biodiesel during the transesterification of vegetable oils was carried out. To check the influence of the chemical composition on glycerides conversion, selected vegetable oils covered a wide range of fatty acid composition. Reactions were carried out under alkali-transesterification in the presence of methanol. In addition, a multiple regression model was proposed. Results showed that kinetics depends on chemical and physical properties of the oils. It was found that the optimal reaction temperature depends on both length and unsaturation degree of vegetable oils fatty acid chains. Vegetable oils with higher degree of unsaturation exhibit faster monoglycerides conversion to biodiesel. It can be concluded that fatty acid composition influences reaction parameters and glycerides conversion, hence biodiesel yield and economic viability. Copyright © 2010 Elsevier Ltd. All rights reserved.
Guerfel, Mokhtar; Ben Mansour, Mohamed; Ouni, Youssef; Guido, Flamini; Boujnah, Dalenda; Zarrouk, Mokhtar
2012-01-01
The present study focused on the comparison the chemical composition of virgin olive oil samples obtained from fruits of the main Tunisian olive cultivar (Chemlali) grown in four planting densities (156, 100, 69, and 51 trees ha−1). Despite the variability in the triacylglycerols and volatile compounds composition, the quality indices (free fatty acids, peroxide value, and spectrophotometric indices K232 and K270) all of the virgin olive oils samples studied met the commercial standards. Decanal was the major constituent, accounting for about 30% of the whole volatiles. Moreover, the chemical composition of the volatile fraction of the oil from fruits of trees grown at the planting density of 156, 100, and 51 trees ha−1 was also characterised by the preeminence of 1-hexanol, while oils from fruits of trees grown at the planting density of 69 trees ha−1 had higher content of (E)-2-hexenal (20.3%). Our results confirm that planting density is a crucial parameter that may influence the quality of olive oils. PMID:22629139
Ložienė, Kristina; Švedienė, Jurgita; Paškevičius, Algimantas; Raudonienė, Vita; Sytar, Oksana; Kosyan, Anatoliy
2018-04-22
Although the nature-identical chemical compounds are cheaper, they not always repeat biological activity of plant origin natural chemical compounds, often react allergies and resistance of microorganisms. The aim of this study was to investigate effects of Juniperus communis origin α-pinene with different enantiomeric composition on bacteria, yeasts and fungi. Results showed that different enantiomeric composition of α-pinene have different activities on microorganisms: essential oil with (1S)-(-) ≈ (1R)-(+) enantiomeric composition of α-pinene influenced on some microorganisms stronger than essential oil with (1S)-(-) < (1R)-(+) enantiomeric composition of α-pinene; the pure natural α-pinene with enantiomeric composition S < R more strongly inhibited growth of investigated bacteria and Candida yeasts, α-pinene with enantiomeric composition S ≈ R - growth of Trichophyton and Aspergillus. (1S)-(-) and (1R)-(+) enantiomeric forms of α-pinene can have also different synergistic effects with other compounds of essential oil. The results of study showed that the same amount of α-pinene with different enantiomeric composition can have diverse antimicrobial potential due different specific interactions with other chemical compounds of essential oil. Therefore, it is very important to determine and present the enantiomeric composition of those plant origin compounds, which are characterized by enantiomerisation, during the course of research of biological activities of natural plant products (essential oils and other) and their isolated compounds. Copyright © 2018 Elsevier B.V. All rights reserved.
Composition of pyrolysis gas from oil shale at various stages of heating
NASA Astrophysics Data System (ADS)
Martemyanov, S. M.; Bukharkin, A. A.; Koryashov, I. A.; Ivanov, A. A.
2017-05-01
Underground, the pyrolytic conversion of an oil shale in the nearest future may become an alternative source of a fuel gas and a synthetic oil. The main scientific problem in designing this technology is to provide a methodology for determination of the optimal mode of heating the subterranean formation. Such a methodology must allow predicting the composition of the pyrolysis products and the energy consumption at a given heating rate of the subterranean formation. The paper describes the results of heating of the oil shale fragments in conditions similar to the underground. The dynamics of composition of the gaseous products of pyrolysis are presented and analyzed.
Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis
2014-06-04
The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present.
Adewuyi, Adewale; Oderinde, Rotimi Ayodele
2014-01-01
The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis (4.72 ± 0.2%), Albizia lebbeck (6.40 ± 0.60%), and Caesalpinia pulcherrima (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food.
Oderinde, Rotimi Ayodele
2014-01-01
The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis (4.72 ± 0.2%), Albizia lebbeck (6.40 ± 0.60%), and Caesalpinia pulcherrima (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625
Bouajaj, Sana; Romane, Abderrahmane; Benyamna, Abdennaji; Amri, Ismail; Hanana, Mohsen; Hamrouni, Lamia; Romdhane, Mehrez
2014-01-01
This study aimed at the determination of chemical composition of essential oil obtained by hydrodistillation, and to evaluate their phytotoxic and antifungal activities. Leaves of Ruta chalepensis L. were collected from the region of Tensift Al Haouz (High Atlas Mountains) Marrakech, Morocco. The essential oil (oil yield is 0.56%) was analysed by GC-FID and GC/MS. Twenty-two compounds were identified and accounted for 92.4% of the total oil composition. The major components were undecan-2-one (49.08%), nonan-2-one (33.15%), limonene (4.19%) and decanone (2.71%). Antifungal ability of essential oils was tested by disc agar diffusion against five plant pathogenic fungi: Fusarium proliferatum, Fusarium pseudograminearum, Fusarium culmorum, Fusarium graminearum and Fusarium polyphialidicum. The oils were also tested in vitro for herbicidal activity by determining their influence on the germination and the shoot and root growth of two weed species, Triticum durum and Phalaris canariensis L.
Viuda-Martos, Manuel; El Gendy, Abd El-Nasser G S; Sendra, Esther; Fernández-López, Juana; Abd El Razik, K A; Omer, Elsayed A; Pérez-Alvarez, Jose A
2010-08-25
The aim of this work was to (i) determine the chemical composition of the essential oils of six spices widely cultivated in Egypt (Origanum syriacum, Majorana hortensis, Rosmarinus officinalis, Cymbopogon citratus, Thymus vulgaris, and Artemisia annua); (ii) determine the antioxidant activity of the Egyptian essential oils by means of five different antioxidant tests; and (iii) determine the effectiveness of these essential oils on the inhibition of Listeria innocua CECT 910. There is a great variability in the chemical composition of essential oils obtained from the six Egyptian aromatic plants. Overall, thyme (highest percentage of inhibition of DPPH radical: 89.40%) and oregano (highest percentage of inhibition of TBARS: 85.79) essential oils presented the best antioxidant profiles, whereas marjoram, lemongrass, and artemisia were highly effective in metal chelating but had a pro-oxidative behavior by Rancimat induction test. Lemongrass essential oil showed the highest antibacterial activity against L. innocua with an inhibition zone of 49.00 mm, followed in effectiveness by thyme, marjoram, and oregano.
Bosque-Sendra, Juan M; Cuadros-Rodríguez, Luis; Ruiz-Samblás, Cristina; de la Mata, A Paulina
2012-04-29
The characterization and authentication of fats and oils is a subject of great importance for market and health aspects. Identification and quantification of triacylglycerols in fats and oils can be excellent tools for detecting changes in their composition due to the mixtures of these products. Most of the triacylglycerol species present in either fats or oils could be analyzed and identified by chromatographic methods. However, the natural variability of these samples and the possible presence of adulterants require the application of chemometric pattern recognition methods to facilitate the interpretation of the obtained data. In view of the growing interest in this topic, this paper reviews the literature of the application of exploratory and unsupervised/supervised chemometric methods on chromatographic data, using triacylglycerol composition for the characterization and authentication of several foodstuffs such as olive oil, vegetable oils, animal fats, fish oils, milk and dairy products, cocoa and coffee. Copyright © 2012 Elsevier B.V. All rights reserved.
Law, Wai Siang; Chen, Huan Wen; Balabin, Roman; Berchtold, Christian; Meier, Lukas; Zenobi, Renato
2010-04-01
Microjet sampling in combination with extractive electrospray ionization (EESI) mass spectrometry (MS) was applied to the rapid characterization and classification of extra virgin olive oil (EVOO) without any sample pretreatment. When modifying the composition of the primary ESI spray solvent, mass spectra of an identical EVOO sample showed differences. This demonstrates the capability of this technique to extract molecules with varying polarities, hence generating rich molecular information of the EVOO. Moreover, with the aid of microjet sampling, compounds of different volatilities (e.g.E-2-hexenal, trans-trans-2,4-heptadienal, tyrosol and caffeic acid) could be sampled simultaneously. EVOO data was also compared with that of other edible oils. Principal Component Analysis (PCA) was performed to discriminate EVOO and EVOO adulterated with edible oils. Microjet sampling EESI-MS was found to be a simple, rapid (less than 2 min analysis time per sample) and powerful method to obtain MS fingerprints of EVOO without requiring any complicated sample pretreatment steps.