Science.gov

Sample records for oil field california

  1. Landslide oil field, San Joaquin Valley, California

    SciTech Connect

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  2. Assessment of remaining recoverable oil in selected major oil fields of the San Joaquin Basin, California

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of volumes of technically recoverable, conventional oil that could eventually be added to reserves in nine selected major oil fields in the San Joaquin Basin in central California. The mean total volume of potential oil reserves that might be added in the nine fields using improved oil-recovery technologies was estimated to be about 6.5 billion barrels of oil.

  3. Growth history of oil reserves in major California oil fields during the twentieth century

    USGS Publications Warehouse

    Tennyson, M.E.

    2005-01-01

    Oil reserves in 12 of California's 52 giant fields (fields with estimated recovery > 100 million barrels of oil) have continued to appreciate well past the age range at which most fields cease to show significant increases in ultimate recovery. Most of these fields were discovered between 1890 and 1920 and grew to volumes greater than 500 million barrels in their first two decades. Growth of reserves in these fields accelerated in th e1950s and 1960s and is mostly explained by application of secondary and tertiary recovery technicques, primarily waterflooding and thermal recovery. The remaining three-fourths of California's giant fields show a pattern of growth in which fields cease to grow significantly by 20-30 years following recovery. virtually all of these fields have estimated ultimate recoveries less than about 500 million barrels and most are in the 100-200 million barrel range. Three of six offshore giant fields, all discovered between 1966 and 1981, have shown decreases in their estimated ultimate sizes within about the first decade after production began, presumably because production volumes ailed to match initial projections. The data suggest that: 1. Only fields that attain an estimated ultimate size of several hundred million barrels shortly after discovery and have geologic characterisics that make them suceptible to advanced recovery techniques are likely to show substantial late growth. 2. Offshore fields are less likely to show significant growth, probably because projections based on modern seismic reflection and reservoir test data are unlikely to underestimate the volume of oil in the field. 3. Secondary and tertiary recovery programs rather than field extensions or new pool discoveries are responsible for most of the significant growth of reserves in California. 4. field size data collected ove rmany decades provide a more comprehensive context for inferring reasons for reserve appreciation than shorter data series such as the Oil and Gas

  4. Remaining recoverable petroleum in giant oil fields of the Los Angeles Basin, southern California

    USGS Publications Warehouse

    Gautier, Donald L.; Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Klett, Timothy R.

    2012-01-01

    Using a probabilistic geology-based methodology, a team of U.S. Geological Survey (USGS) scientists recently assessed the remaining recoverable oil in 10 oil fields of the Los Angeles Basin in southern California. The results of the assessment suggest that between 1.4 and 5.6 billion barrels of additional oil could be recovered from those fields with existing technology.

  5. Particulate emission reductions from road paving in California oil fields

    SciTech Connect

    Cowherd, C.

    1982-06-01

    Calculation of road dust emissions before and after paving shows that paving is an effective measure for reducing road dust emissions in Kern County oil fields. Control efficiency values for particles smaller than 10 ..mu..m aerodynamic diameter averaged about 70 percent for paving with coldmix asphalt and 95 percent for paving with hot-mix asphalt. These control efficiencies are about the same for other particle size fractions up to 30 ..mu..m aerodynamic diameter. The higher efficiency associated with hot-mix asphalt reflects the substantially lower quantities of surface road dust found on hot-mix roads in comparison to cold-mix roads in Kern County. The emission reductions achievable by paving a given road depend on the VMT as well as the type of asphalt pavement used. VMT increases with increasing traffic count and length of the road segment. Emission reductions also depend on the texture (silt content) of the surface before paving and on the traffic characteristics, i.e., vehicle speed, vehicle weight and number of wheels per vehicle.

  6. Potential CO2 Sequestration in Oil Field Reservoirs: Baseline Mineralogy and Natural Diagenesis, Kern County, California

    NASA Astrophysics Data System (ADS)

    Horton, R. A.; Kaess, A. B.; Nguyen, D. T.; Caffee, S. E.; Olabise, O. E.

    2015-12-01

    Depleted oil fields have been suggested as potential sites for sequestration of CO2 generated from the burning of hydrocarbons. However, to be effective for removing CO2 from the atmosphere, the injected CO2 must remain within the reservoir. The role of atmospheric CO2 in rock weathering is well known and a growing body of experimental work indicates that under reservoir conditions supercritical CO2 also reacts with sedimentary rocks. In order to predict the behavior of injected CO2 in a given reservoir, detailed knowledge of the mineralogy is required. In addition, post-injection monitoring may include analyzing core samples to examine interactions between reservoir rocks and the CO2. Thus, documentation of the natural diagenetic processes within the reservoir is necessary so that changes caused by reactions with CO2 can be recognized. Kern County, California has been a major petroleum producing area for over a century and has three oil fields that have been identified as potential sites for CO2 sequestration. Two of these, Rio Bravo-Greeley and McKittrick, have no previously published mineralogic studies. Samples from these (and nearby Wasco) oil fields were studied using transmitted-light petrography and scanning electron microscopy. At Rio Bravo-Greeley-Wasco, Kreyenhagen (Eocene) and Vedder (Oligocene) sandstones are mainly arkosic arenites with only small amounts of volcanic rock fragments. Detrital feldspars exhibit wide compositional ranges (up to Or75Ab25 & Ab50An50). Diagenesis has greatly altered the rocks. There are significant amounts of relatively pure authigenic K-feldspar and albite. Small amounts of authigenic quartz, calcite, dolomite, ankerite, kaolinite, illite/smectite, chlorite, zeolite, and pyrite are present. Plagioclase has been preferentially dissolved, with andesine more susceptible than oligoclase. Al3+ has been exported from the sandstones. At McKittrick, Temblor sandstones (Oligocene-Miocene) contain up to 33% volcanic rock fragments

  7. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect

    Reid, S.A.; Thompson, T.W. ); McJannet, G.S. )

    1996-01-01

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  8. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect

    Reid, S.A.; Thompson, T.W.; McJannet, G.S.

    1996-12-31

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  9. Local and Global Impacts of Carbon Capture and Storage Combined with Enhanced Oil Recovery in Four Depleted Oil Fields, Kern County, California

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Jordan, P. D.; Goodell, J. A.; Harrington, K.; Jameson, S.

    2015-12-01

    Depleted oil reservoirs are attractive targets for geologic carbon storage (GCS) because they possess proven trapping mechanisms and large amounts of data pertaining to production and reservoir geometry. In addition, CO2 enhanced oil recovery (EOR) can improve recovery of the remaining oil at recovery factors of 6 to 20% of original oil in place in appropriate reservoirs. CO2 EOR increases the attractiveness of depleted oil and gas reservoirs as a starting point for CCS because the CO2 becomes a commodity that can be purchased by field operators for EOR purposes thereby offsetting the costs of CO2 capture at the power plant. In California, Kern County contains the largest oil reservoirs and produces 76% of California's oil. Most of the production at depths suitable for CCS combined with CO2 EOR comes from three reservoirs: the Vedder and Temblor formations and the Stevens Sandstone of the Monterey Formation. These formations were evaluated for GCS and CO2 EOR potential at the North and South Coles Levee (Stevens Sandstone), Greeley (Vedder) and McKittrick (Temblor) fields. CO2 EOR could be expected to produce an additional 150 million bbls of oil. The total storage space created by pre- and post-EOR fluid production for all three reservoirs is approximately 104 million metric tons (MMT). Large fixed sources in California produce 156 MMT/yr of CO2, and sources in Kern County produce 26 MMT/yr (WESTCARB, 2012). Therefore, the fields could store about four years of local large fixed source emissions and about two thirds of statewide emissions. However, from a global perspective, burning the additional oil produced by CO2 EOR would generate an additional 65 MMT of CO2 if not captured. This would result in a net reduction of greenhouse gas of only 39 MMT rather than the full 104 MMT. If the water produced along with the oil recovered during CO2 EOR operations is not reinjected into the reservoir, the storage space could be much higher.

  10. Hydraulic Fracturing of 403 Shallow Diatomite Wells in South Belridge Oil Field, Kern County, California, in 2014

    NASA Astrophysics Data System (ADS)

    Wynne, D. B.; Agusiegbe, V.

    2015-12-01

    We examine all 403 Hydraulic Fracture (HF) jobs performed by Aera Energy, LLC, in the South Belridge oil field, Kern County, CA in 2014. HFs in the South Belridge oil field are atypical amongst North American plays because the reservoir is shallow and produced via vertical wells. Our data set constitutes 88% of all HF jobs performed in CA oil fields in calendar-2014. The South Belridge field produces 11% of California's oil and the shallow HFs performed here differ from most HFs performed elsewhere. We discuss fracture modeling and methods and summary statistics, and modelled dimensions of fractures and their relationships to depth and reservoir properties. The 403 HFs were made in the diatomite-dominated Reef Ridge member of the Monterey Formation. The HFs began at an average depth of 1047 feet below ground (ft TVD) and extended an average of 626 ft vertically downward. The deepest initiation of HF was at 2380 ft and the shallowest cessation was at 639 ft TVD. The average HF was performed using 1488 BBL (62,496 gallons) of water. The HFs were performed in no more than 6 stages and nearly all were completed within one day. We (1) compare metrics of the South Belridge sample group with recent, larger "all-CA" and nationwide samples; and (2) conclude that if relationships of reservoir properties, well completion and HF are well understood, shallow diatomite HF may be optimized to enhance production while minimizing environmental impact.

  11. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect

    Milton, J.D. ); Edwards, E.B. ); Heck, R.G. )

    1996-01-01

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  12. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect

    Milton, J.D.; Edwards, E.B.; Heck, R.G.

    1996-12-31

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  13. The Petrology and Diagenetic History of the Phacoides Sandstone, Temblor Formation at the McKittrick Oil Field, California

    NASA Astrophysics Data System (ADS)

    Kaess, A. B.; Horton, R. A.

    2015-12-01

    The McKittrick oil field is located near the western edge of the San Joaquin Basin, California. The oil field is currently in production with 480 wells producing from the Tulare, San Joaquin, Reef Ridge, Monterey, Temblor, Tumey, and Kreyenhagen formations. Within the Temblor Formation production is mainly from the Miocene Carneros and the Phacoides sandstones. Eighty-two samples from the Phacoides sandstone (2403 - 3045 m below surface) were obtained from the California Well Sample Repository to characterize and understand the diagenetic history and its influence on its reservoir properties. Petrographic thin sections were analyzed by quantitative optical petrography, energy dispersive X-ray spectrometry, and imaging with back-scatter electron and cathodoluminescence. The Phacoides sandstone consists of fine to very coarse, poorly to well-sorted, arkosic arenites, and wackes with detrital framework grains including sub-angular quartz, K-feldspar (microcline and orthoclase), plagioclase, and lithic fragments. Ba-free, Ba-rich, and perthitic K-feldspars are present. Accessory minerals include glauconite, biotite, muscovite, magnetite, titanomagnetite, sphene, zircon, apatite, corundum, and rutile. Diagenetic alteration includes: (1) compaction, (2) mineral dissolution, (3) albitization of feldspars, alteration of biotite to pyrite and chlorite, replacement of framework grains by calcite, (4) alteration of volcanic rock fragments, (5) cementation by kaolinite, calcite and dolomite, and (6) precipitation of K-feldspar and quartz overgrowths. Early-formed fractures were healed by authigenic quartz, albite, and K-feldspars. Precipitation of carbonates and clays, rearranging of broken grains, and formation of pseudomatrix reduced primary porosity. Secondary porosity is common and formed initially by the dissolution of plagioclase (excluding albite) and volcanic fragments, and later by dissolution of calcite, dolomite, and detrital K-feldspars. Hydrocarbon emplacement was

  14. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    USGS Publications Warehouse

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.; ,

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data

  15. Accord near for offshore California oil shipments

    SciTech Connect

    Not Available

    1993-02-15

    There are faint glimmers of hope again for offshore California operators. After more than a decade of often bitter strife over offshore oil and gas development and transportation issues, state officials and oil producers may be moving toward compromise solutions. One such solution may be forthcoming on offshore development. But the real change came with the turnabout of the California Coastal Commission (CCC), which last month approved a permit for interim tankering of crude from Point Arguello oil field in the Santa Barbara Channel to Los Angeles. The dispute over how to ship offshore California crude to market has dragged on since before Point Arguelo development plans were unveiled. The project's status has become a flashpoint in the U.S. debate over resource use and environmental concerns. The controversy flared anew in the wake of the 1989 Exxon Valdez tanker spill off Alaska, when CCC voided a Santa Barbara County permit for interim tankering, a move project operator Chevron Corp. linked to the Exxon Valdez accident. Faced with litigation, the state's economic devastation, and acrimonious debate over transporting California crude, Gov. Pete Wilson and other agencies approved the CCC permit. But there's a catch: A permanent pipeline must be built to handle full production within 3 years. The paper discusses permit concerns, the turnaround decision, the anger of environmental groups, and pipeline proposals.

  16. Geospatial Analysis of Oil and Gas Wells in California

    NASA Astrophysics Data System (ADS)

    Riqueros, N. S.; Kang, M.; Jackson, R. B.

    2015-12-01

    California currently ranks third in oil production by U.S. state and more than 200,000 wells have been drilled in the state. Oil and gas wells provide a potential pathway for subsurface migration, leading to groundwater contamination and emissions of methane and other fluids to the atmosphere. Here we compile available public databases on oil and gas wells from the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources, the U.S. Geological Survey, and other state and federal sources. We perform geospatial analysis at the county and field levels to characterize depths, producing formations, spud/completion/abandonment dates, land cover, population, and land ownership of active, idle, buried, abandoned, and plugged wells in California. The compiled database is designed to serve as a quantitative platform for developing field-based groundwater and air emission monitoring plans.

  17. Estimated oil and gas reserves, Southern California outer continental shelf

    USGS Publications Warehouse

    Ballantyne, R.S.

    1983-01-01

    Remaining recoverable reserves of oil* and gas in the Outer Continental Shelf off Southern California are estimated to be 968 million barrels of oil and 1,851 billion cubic feet of gas as of December 31, 1982. These reserves are attributed to 14 fields. Original recoverable reserves from these fields are estimated at 1,217 million barrels of oil and 1,983 billion cubic feet of gas. The estimates for both the remaining and the original recoverable reserves of oil and gas are higher than the corresponding estimates for December 31, 1981. Reserve estimates for 12 fields were based on volumetric reservoir studies. Decline-curve and volumetric analyses were used for the remaining two fields. Six fields were on production at year's end and a gas field is scheduled to commence production in 1983. *The term 'oil' as used in this report includes crude oil, condensate, and gas-plant liquids.

  18. Potential for Carbon Dioxide Sequestration and Enhanced Oil Recovery in the Vedder Formation, Greeley Field, San Joaquin Valley, California.

    NASA Astrophysics Data System (ADS)

    Jameson, S.

    2015-12-01

    Most scientists agree that greenhouse gases (GHG) such as carbon dioxide (CO2), Methane (CH4), and nitrous oxide (N2O) are major contributors to the global warming trend and climate change. One effort to mitigate anthropogenic sourced CO2 is through carbon capture and sequestration. Depleted oil and gas reservoirs due to their known trapping capability, in-place infrastructure, and proximity to carbon emission sources are good candidates for possible CO2 storage. The Vedder formation is one of three reservoirs identified in the San Joaquin Basin that meets standards for possible storage. An analysis of net fluid production data (produced minus injected) from discovery to the present is used to determine the reservoir volume available for CO2 storage. Data regarding reservoir pressure response to injection and production of fluids include final shut-in pressures from drill stem test, static bottom-hole pressure measurements from well completion histories, and idle well fluid level measurements for recent pressure data. Proprietary experimental pressure, volume and temperature data (PVT), gas oil ratios (GOR), well by well permeability, porosity, and oil gravity, and relative permeability and perforation intervals are used to create static and dynamic multiphase fluid flow models. All data collected was logged and entered into excel spreadsheets and mapping software to create subsurface structure, reservoir thickness and pressure maps, cross sections, production/injection charts on a well-by-well basis, and both static and dynamic flow models. This data is used to determine storage capacity and the amount of pressure variance within the field to determine how the reservoir will react to CO2 injection and to gain insight into the subsurface fluid movement of CO2. Results indicate a homogenous field with a storage capacity of approximately 26 Million Metric Tons of CO2. Analysis of production by stream and pressure change through time indicates a strong water drive

  19. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  20. Baja California: Field Study

    ERIC Educational Resources Information Center

    Frey, John; Stewart, Jack

    1974-01-01

    Describes how to plan and execute an extended field trip which provides first hand observation of biological and cultural systems. Socialization of the participants was achieved through common planning and goal achievement. (BR)

  1. Abandoned Texas oil fields

    SciTech Connect

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  2. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  3. Preliminary results of field mapping of methane plumes offshore of Coal Oil Point, California with a RESON 7125 multibeam sonar in water-column mode

    NASA Astrophysics Data System (ADS)

    Finlayson, D. P.; Hatcher, G.; Lorenson, T. D.; Greinert, J.; Maillard, E.; Weirathmueller, M.; Leifer, I.

    2010-12-01

    From June 17 - 23 2010, the U. S. Geological Survey (USGS) in collaboration with the Bureau of Ocean Energy Management Regulation and Enforcement(BOEMRE), the Royal Netherlands Institute for Sea Research (NIOZ) , RESON Inc. and the University of California, Santa Barbara(UCSB) conducted a comprehensive marine-seep gas-plume mapping study offshore of Coal Oil Point, California. The ultimate goal of the experiment is to quantify the amount of methane emitted from natural seeps using multibeam sonar, with results calibrated using field measurements of aqueous and atmospheric methane in the seep fields. Success will lead to better estimates of natural marine methane contributions to the global methane budget. We mapped selected seeps, some twice, with a pole-mounted RESON 7125 multibeam with a 10-degree forward rake. Other equipment included a Benthos Stingray ROV equipped with high-definition video cameras and in situ gas sampling apparatus, Niskin bottles for water column sampling of dissolved methane, and a Picarro G1301 cavity ringdown spectrometer for mapping atmospheric methane concentrations. This paper focuses primarily on the data reduction and data visualization strategies employed while processing the more than 1.2 TB of raw water column data collected by the multibeam system over several high-output oil and gas seep areas. Water depths ranged from about 30 to 80m. Turnkey software solutions for processing these data are currently unavailable so most of the processing code was developed in-house by the USGS. The main challenge in processing the sonar water-column data is ray-tracing the large volume of data, with each ping containing more than 4500 times as many samples as a conventional multibeam ping. We employed two strategies to make processing tractable on conventional workstations: (1) decimate the raw data based on desired output resolution before ray-tracing; and (2) design the ray-tracing program to run in parallel on multi-core workstations

  4. Video camera log used for water isolation in the Main Body B pool, Elk Hills field, Kern Co., California -- Water and oil identification

    SciTech Connect

    Starcher, M.G.; Murphy, J.R.; Alexander, P.D.; Whittaker, J.L.

    1995-12-31

    The Main Body B reservoir in the Elk Hills Field is a peripherally waterflooded, +400 ft thick series of layered, turbidite Stevens sands. Permeability variation between layers adversely affects the vertical sweep, resulting in production from lower permeability oil sands dominated by production from higher permeability sands. This paper discusses the unique use of various tools to identify water zones to isolate and oil zones to stimulate. Tools used to identify water and oil entry are discussed with respect to their capabilities of identifying oil and water entry into the wellbore.

  5. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect

    Not Available

    1987-01-01

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  6. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  7. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  8. EPA OIL FIELD SOLUTION

    EPA Pesticide Factsheets

    Technical product bulletin: aka HYDRO-CLEAN, GLOBAL ENVIRONMENTAL CLEANER, AWAN PRA, this surface washing agent for oil spill cleanups is sprayed full strength on oiled rocky surfaces at shorelines, mangroves, and seagrasses. Allow at least 30 minute soak.

  9. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J. )

    1996-01-01

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  10. Coupling geostatistics to detailed reservoir description allows better visualization and more accurate characterization/simulation of turbidite reservoirs: Elk Hills oil field, California

    SciTech Connect

    Allan, M.E.; Wilson, M.L.; Wightman, J.

    1996-12-31

    The Elk Hills giant oilfield, located in the southern San Joaquin Valley of California, has produced 1.1 billion barrels of oil from Miocene and shallow Pliocene reservoirs. 65% of the current 64,000 BOPD production is from the pressure-supported, deeper Miocene turbidite sands. In the turbidite sands of the 31 S structure, large porosity & permeability variations in the Main Body B and Western 31 S sands cause problems with the efficiency of the waterflooding. These variations have now been quantified and visualized using geostatistics. The end result is a more detailed reservoir characterization for simulation. Traditional reservoir descriptions based on marker correlations, cross-sections and mapping do not provide enough detail to capture the short-scale stratigraphic heterogeneity needed for adequate reservoir simulation. These deterministic descriptions are inadequate to tie with production data as the thinly bedded sand/shale sequences blur into a falsely homogenous picture. By studying the variability of the geologic & petrophysical data vertically within each wellbore and spatially from well to well, a geostatistical reservoir description has been developed. It captures the natural variability of the sands and shales that was lacking from earlier work. These geostatistical studies allow the geologic and petrophysical characteristics to be considered in a probabilistic model. The end-product is a reservoir description that captures the variability of the reservoir sequences and can be used as a more realistic starting point for history matching and reservoir simulation.

  11. Model of fluvial deposition for control of oil migration and entrapment in upper Eocene to Oligocene Sespe Formation, West Montalvo field, Ventura County, California

    SciTech Connect

    Sadler, R.K.

    1988-03-01

    The Sespe Formation consists of continental red beds deposited during the tectonism that resulted as the Pacific-Farallon spreading ridge approached the North American plate. The Sespe at West Montalvo field is over 7000 ft thick and consists predominantly of fine to medium-grained sandstones interbedded with siltstone and mudstone deposited in the central part of the Oligocene basin. Oil production was established in 1951 from the upper 2000 ft, known as the Colonia zone. The Colonia zone has been subdivided into six sandstone packages 350-600 ft thick, based on a model of laterally migrating fluvial systems that created local intraformational unconformities. These systems had unique depositional characteristics that can be inferred from well-log analysis and related to facies described in outcrops surrounding the Ventura basin. These characteristics include sandstone to shale ratios, relative bed thicknesses, lateral continuity of sandstone and shale interbeds, and whether the sandstone beds exhibit normal or reverse grading, or have sharp bases and tops. The fluvial environments include small braided distributary streams, larger trunk streams, and broad shallow braided streams. All of the sandstone packages contain oil-bearing beds, but the package in which the sediments were apparently deposited in a system of broad, shallow braided streams is the most oil-prone. These sandstones are relatively thin, have sharp bases and tops, and are laterally continuous across parts of the field. The rapid sedimentation and the cut-and-fill processes of braided streams may have created interconnecting fluid pathways that allowed the migration and updip accumulation of oil.

  12. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  13. California State Waters Map Series: offshore of Coal Oil Point, California

    USGS Publications Warehouse

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Dieter, Bryan E.; Conrad, James E.; Lorenson, T.D.; Krigsman, Lisa M.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Finlayson, David P.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Leifer, Ira; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Hostettler, Frances D.; Peters, Kenneth E.; Kvenvolden, Keith A.; Rosenbauer, Robert J.; Fong, Grace; Johnson, Samuel Y.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Coal Oil Point map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.0 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The cities of Goleta and Isla Vista, the main population centers in the map area, are in the western part of a contiguous urban area that extends eastward through Santa Barbara to Carpinteria. This urban area is on the south flank of the east-west-trending Santa Ynez Mountains, on coalescing alluvial fans and uplifted marine terraces underlain by folded and

  14. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  15. Chronic oiling of marine birds in California by natural petroleum seeps, shipwrecks, and other sources.

    PubMed

    Henkel, Laird A; Nevins, Hannahrose; Martin, Marida; Sugarman, Susan; Harvey, James T; Ziccardi, Michael H

    2014-02-15

    We assessed temporal and spatial patterns of chronic oiling of seabirds in California during 2005-2010, using data on: (1) live oiled birds reported to the Oiled Wildlife Care Network (OWCN) from throughout the state, and (2) dead oiled birds found during systematic monthly beached-bird surveys in central California. A mean of 245 (± 141 SD) live miscellaneous oiled birds (not associated with known oil spills) were reported to the OWCN per year, and 0.1 oiled dead birds km(-1) per month were found on beach surveys in central California. Chemical fingerprinting of oiled feathers from a subset of these birds (n=101) indicated that 89% of samples tested were likely from natural petroleum seeps off southern and central California. There was a pronounced peak during late winter in the number of oiled birds reported in southern California, which we theorize may be related to large storm waves disturbing underwater seeps.

  16. Preliminary results from exploratory sampling of wells for the California oil, gas, and groundwater program, 2014–15

    USGS Publications Warehouse

    McMahon, Peter B.; Kulongoski, Justin T.; Wright, Michael T.; Land, Michael T.; Landon, Matthew K.; Cozzarelli, Isabelle M.; Vengosh, Avner; Aiken, George R.

    2016-08-03

    This report evaluates the utility of the chemical, isotopic, and groundwater-age tracers for assessing sources of salinity, methane, and petroleum hydrocarbons in groundwater overlying or near several California oil fields. Tracers of dissolved organic carbon inoil-field-formation water are also discussed. Tracer data for samples collected from 51 water wells and 4 oil wells are examined.

  17. The use of wireline pressure measurements to refine reservoir description, Main Body B waterflood, Elk Hills oil field, Kern County, California

    SciTech Connect

    Wilson, M. ); Love, C. ); Fishburn, M. ); Humphrey, M. )

    1991-02-01

    The Main Body B, one of five large Stevens sand reservoirs at Elk Hills, occupies the eastern half of the 31S anticline. Early in the production history of this reservoir, the Elk Hills unit initiated peripheral water injection to maintain reservoir pressure. Water injection has proceeded at a rate approximately equal to the voidage created by oil and gas production and has moved water upstructure creating an oil bank. Bechtel Petroleum Operations Inc., the current unit operator, drills five to ten new wells each year to fully exploit this oil bank. In 1985, the unit added wireline pressure measurements to the open-hole logging programs of these infill wells for the purpose of evaluating the net effect of injection into and production from the Main Body B reservoir. A typical well provides the opportunity to obtain 8-10 pressures from the Main Body B. To date, the Unit has measured wireline pressures in more than two dozen wells. The wireline measurements have shown a broader than expected range of formation pressures (1,600 {plus minus} psi to 4,200 {plus minus} psi). The pressures show that this is a layered reservoir with little vertical pressure communication between some of the layers. In some parts of the reservoir, wireline pressures indicate horizontal continuity of the layers between wells and in other areas pressure differences between adjacent wells may indicate faults or cementation barriers. Permeabilities calculated from the sampling drawdown are the same order of magnitude as brine permeabilities obtained from core and show that higher-pressured layers of the reservoir have lower permeability. These observations fundamentally alter performance evaluation of the Main Body B waterflood.

  18. Reactivation of an idle lease to increase heavy oil recovery through application of conventional steam drive technology in a low dip slope and basin reservoir in the Midway-Sunset field, San Jaoquin Basin, California. Annual report, June 13, 1995--June 13, 1996

    SciTech Connect

    Deo, M.; Jenkins, C.; Sprinkel, D.; Swain, R.; Wydrinski, R.; Schamel, S.

    1998-09-01

    This project reactivates ARCO`s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  19. Lumber spill in central California waters: implications for oil spills and sea otters

    SciTech Connect

    VanBlaricom, G.R.; Jameson, R.J.

    1982-03-19

    A large quantity of lumber was spilled in the ocean off central California during the winter of 1978, and it spread through most of the range of the threatened California sea otter population within 4 weeks. The movement rates of lumber were similar to those of oil slicks observed elsewhere. These observations indicate that a major oil spill could expose significant numbers of California sea otters to oil contamination.

  20. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  1. Reverse osmosis process successfully converts oil field brine into freshwater

    SciTech Connect

    Tao, F.T.; Curtice, S.; Hobbs, R.D.; Sides, J.L.; Wieser, J.D. ); Dyke, C.A.; Tuohey, D. ); Pilger, P.F. )

    1993-09-20

    A state-of-the-art process in the San Ardo oil field converted produced brine into freshwater. The conversion process used chemical clarification, softening, filtration, and reverse osmosis (RO). After extensive testing resolved RO membrane fouling problems, the pilot plant successfully handled water with about 7,000 mg/l. of total dissolved solids, 250 mg/l. silica, and 170 mg/l. soluble oil. The treated water complies with the stringent California drinking water standard. The paper describes water reclamation, the San Ardo process, stability, reverse osmosis membrane fouling, membranes at high pH, water quality, and costs.

  2. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S[sub O] relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect

    Beacom, E.K.; Kornreich, I.S. )

    1996-01-01

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1[1/2]-2[1/2] ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  3. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S{sub O} relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect

    Beacom, E.K.; Kornreich, I.S.

    1996-12-31

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1{1/2}-2{1/2} ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  4. A Guide to the Baja California Field Studies Program.

    ERIC Educational Resources Information Center

    Mercade, Jose A.

    Since 1974, Glendale Community College (GCC) has offered a variety of biology, social science, and language classes at a field station located on the Baja California peninsula, Republic of Mexico. This guide to GCC's Baja California Field Studies Program (BCFSP) provides manuals, forms, job descriptions, contracts with participating organizations,…

  5. Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point, California.

    PubMed

    Del Sontro, Tonya S; Leifer, Ira; Luyendyk, Bruce P; Broitman, Bernardo R

    2007-09-01

    A new field method for tar quantification was used at Coal Oil Point (COP), California to study the mechanisms transporting oil/tar from the nearby COP natural marine hydrocarbon seep field. This method segregates tar pieces into six size classes and assigns them an average mass based on laboratory or direct field measurements. Tar accumulation on the 19,927m(2) survey area was well resolved spatially by recording tar mass along twelve transects segmented into 4-m(2) blocks and then integrating over the survey area. A seasonal trend was apparent in total tar in which summer accumulations were an order of magnitude higher than winter accumulations. Based on multiple regression analyses between environmental data and tar accumulation, 34% of tar variability is explained by a combination of onshore advection via wind and low swell height inhibiting slick dispersion.

  6. Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra

    2007-01-01

    In 2003, the U.S. Geological Survey (USGS) completed an assessment of the oil and gas resource potential of the San Joaquin Basin Province of California. The assessment is based on the geologic elements of each Total Petroleum System defined in the province, including hydrocarbon source rocks (source-rock type and maturation and hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five total petroleum systems and ten assessment units within these systems. Undiscovered oil and gas resources were quantitatively estimated for the ten assessment units. In addition, the potential was estimated for further growth of reserves in existing oil fields of the San Joaquin Basin.

  7. Ecology of Oil/Gas Platforms Offshore California

    SciTech Connect

    Allen, M.J.; Cowen, R.K.; Kauwling, R.J.; Mitchell, C.T.

    1987-02-01

    The report summarizes the ecology of fishes and attached epifauna that associate with offshore oil and gas platforms of California and an evaluation of actual and potential use of the platforms for mariculture. The attached invertebrate biota in the upper 35 m of the water column is dominated by bay (Mytilus edulis) or California (M. californianus) mussels, depending upon location and/or age of the structure, with other mollusks, barnacles and polychaetes being of secondary importance. The attached community may take up to five years to fully develop. The fish fauna at shallow (less than 45 m of water), nearshore platforms is dominated by surfperches and rockfishes; major species in this assemblage are about equally divided between those with relatively large mouths (which consume large organisms such as crabs and small fish) and those with relatively small mouths (which graze on small epifauna and planktonic organisms). The fish fauna may take two years to attain a relatively stable community structure. The fish fauna at nearshore platforms is similar to that at natural reefs and oil islands in the area, but is more diverse among common species. As opposed to these other structures, platforms lack fish which associated with algae.

  8. Evaluating alternatives for decommissioning California's offshore oil and gas platforms.

    PubMed

    Bernstein, Brock B

    2015-10-01

    This paper introduces a series of 6 additional papers in this issue that describe an in-depth analysis of options for decommissioning oil and gas platforms offshore southern California. Although current leases require lessees in both state and federal waters to completely remove all production facilities and restore the seafloor to its pre-platform condition, other options have emerged since these leases were signed. Laws and regulations in other jurisdictions (particularly in federal waters) have evolved to allow a number of other uses such as aquaculture, alternative energy production, and artificial reefing. In response, the California Natural Resources Agency initiated an effort to investigate the issues associated with these and other decommissioning alternatives. The papers in this series are the result of the second phase in this process, a broad investigation of the engineering, economic, and environmental costs and benefits of the most feasible and likely options. In addition to the project's final report, the authors produced an interactive mathematical decision model, PLATFORM, that enables users to explore the implications of different decommissioning projects and options, as well as the effects of different approaches to valuing the associated costs and benefits.

  9. Classroom in the Oil Fields.

    ERIC Educational Resources Information Center

    Hammond, Jeanne

    1980-01-01

    Describes a petroleum production program created in Bradford, Pennsylvania, by oil company executives and local educators to answer the need of the regional oil industry for trained manpower. Discusses the need for the program, the search for qualified teachers, funding, and how one student feels about the program. (CT)

  10. Laboratory batch experiments and geochemical modelling of water-rock-supercritical CO2 reactions in Southern San Joaquin Valley, California oil field sediments: Implications for future carbon capture and sequestration projects.

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.

    2015-12-01

    Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.

  11. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  12. Field performance of a premium heating oil

    SciTech Connect

    Santa, T.; Jetter, S.M.

    1996-07-01

    As part of our ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel, Inc., conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. Fuel related, unscheduled service calls were monitored in this test area, as well as in a similar baseline area that did not receive the premium heating oil. Overall, the premium fuel provided a 45% reduction in the occurrence of fuel related, unscheduled service calls as compared to the baseline area. Within this population, there was a reduction of 38% in systems with 275 gallon tanks, and 55% in systems that had >275 gallon tanks showing that the additive is effective in the various configurations of residential oil heat systems. In addition, photographic documentation collected at two accounts supported this improvement by clearly showing that the equipment remained cleaner with the premium heating oil than with regular heating oil. Based on these results, a full marketing trial of this new product has been initiated by Mobil and Santa Fuel, Inc., during the 1995-1996 heating season.

  13. Biomarker chemistry and flux quantification methods for natural petroleum seeps and produced oils, offshore southern California

    USGS Publications Warehouse

    Lorenson, T.D.; Leifer, Ira; Wong, Florence L.; Rosenbauer, Robert J.; Campbell, Pamela L.; Lam, Angela; Hostettler, Frances D.; Greinert, Jens; Finlayson, David P.; Bradley, Eliza S.; Luyendyk, Bruce P.

    2011-01-01

    Sustained, natural oil seepage from the seafloor is common off southern California, and is of great interest to resource managers, who are tasked with distinguishing natural from anthropogenic oil sources. The major purpose of this study was to build upon the work previously funded by the Bureau of Ocean Energy Management (BOEM) and the U.S. Geological Survey (USGS) that has refined the oil-fingerprinting process to enable differentiation of the highly similar Monterey Formation oils from Outer Continental Shelf (OCS) production and adjacent natural seeps. In these initial studies, biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic-matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs mainly from coastal California. The analysis resulted in a predictive model of oil source families that could be applied to samples of unknown origin.

  14. Methanogenic Oil Degradation in the Dagang Oil Field

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans Hermann; Krüger, Martin

    2014-05-01

    Anaerobic biodegradation is one of the main in situ oil transformation processes in subsurface oil reservoirs. Recent studies have provided evidence of biodegradation of residual oil constituents under methanogenic conditions. Methane, like other biogenic gases, may contribute to reduce the viscosity of oil and enhance its flow characteristics (making it more available) but it can also be used as a energy source. So the aim of the present study was to provide reliable information on in situ biotransformation of oil under methanogenic conditions, and to assess the feasibility of implementing a MEOR strategy at this site. For this reason, chemical and isotopic analyses of injection and production fluids of the Dagang oil field (Hebei province, China) were performed. Microbial abundances were assessed by qPCR, and clone libraries were performed to study the diversity. In addition, microcosms with either oil or 13C-labelled hydrocarbons were inoculated with injection or production waters to characterize microbial processes in vitro. Geochemical and isotopic data were consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation: GC-MS profiles of petroleum samples were nearly devoid of n-alkanes, linear alkylbenzenes, and alkyltoluenes, and light PAH, confirming that Dagang oil is mostly highly weathered. In addition, carbon and hydrogen isotopic signatures of methane (δ13CCH4 and δDCH4, respectively), and the bulk isotopic discrimination (Δδ13C) between methane and CO2 (between 32 and 65 ) were in accordance with previously reported values for methane formation during hydrocarbon degradation. Furthermore, methane-producing Archaea and hydrocarbon-degrading Bacteria were abundant in produced oil-water samples. On the other hand, our laboratory degradation experiments revealed that autochthonous microbiota are capable of significantly degrade oil within several months, with biodegradation patterns resembling those

  15. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  16. Innovative technologies for managing oil field waste.

    SciTech Connect

    Veil, J. A.; Environmental Assessment

    2003-09-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  17. Executive Summary -- assessment of undiscovered oil and gas resources of the San Joaquin Basin Province of California, 2003: Chapter 1 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Gautier, Donald L.; Scheirer, Allegra Hosford; Tennyson, Marilyn E.; Peters, Kenneth E.; Magoon, Leslie B.; Lillis, Paul G.; Charpentier, Ronald R.; Cook, Troy A.; French, Christopher D.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2007-01-01

    In 2003, the U.S. Geological Survey (USGS) completed an assessment of the oil and gas resource potential of the San Joaquin Basin Province of California (fig. 1.1). The assessment is based on the geologic elements of each Total Petroleum System defined in the province, including hydrocarbon source rocks (source-rock type and maturation and hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five total petroleum systems and ten assessment units within these systems. Undiscovered oil and gas resources were quantitatively estimated for the ten assessment units (table 1.1). In addition, the potential was estimated for further growth of reserves in existing oil fields of the San Joaquin Basin.

  18. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions

    NASA Astrophysics Data System (ADS)

    Hornafius, J. Scott; Quigley, Derek; Luyendyk, Bruce P.

    1999-09-01

    We used 50 kHz sonar data to estimate natural hydrocarbon emission rates from the 18 km2 marine seep field offshore from Coal Oil Point, Santa Barbara, California. The hydrocarbon gas emission rate is 1.7 ± 0.3 × 105 m3 d-1 (including gas captured by a subsea seep containment device) and the associated oil emission rate is 1.6 ± 0.2 × 104 Ld-1 (100 barrels d-1). The nonmethane hydrocarbon emission rate from the gas seepage is 35±7 td-1 and a large source of air pollution in Santa Barbara County. Our estimate is equal to twice the emission rate from all the on-road vehicle traffic in the county. Our estimated methane emission rate for the Coal Oil Point seeps (80±12 td-1) is 4 times higher than previous estimates. The most intense areas of seepage correspond to structural culminations along anticlinal axes. Seep locations are mostly unchanged from those documented in 1946, 1953, and 1973. An exception is the seepage field that once existed near offshore oil platform Holly. A reduction in seepage within a 1 km radius around this offshore platform is correlated with reduced reservoir pressure beneath the natural seeps due to oil production. Our findings suggest that global emissions of methane from natural marine seepage have been underestimated and may be decreasing because of oil production.

  19. Apparatus for performing oil field laser operations

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2017-01-03

    A system, apparatus and methods for delivering high power laser energy to perform laser operations in oil fields and to form a borehole deep into the earth using laser energy. A laser downhole assembly for the delivery of high power laser energy to surfaces and areas in a borehole, which assembly may have laser optics and a fluid path.

  20. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  1. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect

    Schamel, S.

    2001-01-09

    The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

  2. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect

    Schamel, Steven; Deo, Milind; Deets, Mike

    2002-02-21

    The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

  3. Recent Trends in Water Use and Production for California Oil Production.

    PubMed

    Tiedeman, Kate; Yeh, Sonia; Scanlon, Bridget R; Teter, Jacob; Mishra, Gouri Shankar

    2016-07-19

    Recent droughts and concerns about water use for petroleum extraction renew the need to inventory water use for oil production. We quantified water volumes used and produced by conventional oil production and hydraulic fracturing (HF) in California. Despite a 25% decrease in conventional oil production from 1999 to 2012, total water use increased by 30% though much of that increase was derived from reuse of produced water. Produced water volumes increased by 50%, with increasing amounts disposed in unlined evaporation ponds or released to surface water. Overall freshwater use (constituting 1.2% of the state's nonagricultural water consumption) increased by 46% during this period due to increased freshwater-intensive tertiary oil production. HF has been practiced in California for more than 30 years, accounting for 1% of total oil production in 2012 from mostly directional and vertical wells. Water use intensity for HF wells in California averaged at 3.5 vol water/vol oil production in 2012 and 2.4 vol/vol in 2013, higher than the range from literature estimates and net water use intensity of conventional production (1.2 vol/vol in 2012). Increasing water use and disposal for oil production have important implications for water management and have potentially adverse health, environmental, and ecological impacts.

  4. Venezuelan oil field revival bids won

    SciTech Connect

    Not Available

    1992-06-29

    This paper reports that four private sector companies or combines will operate inactive oil fields in Venezuela under state owned Petroleos de Venezuela's marginal field reactivation program. The award of operating contract to winning bidders marks the first time private companies will be allowed to produce crude oil in Venezuela since nationalization of the industry in 1976. Winning bidders have committed a total of $720 million in investments to the program during the 1990s. Current plans call for drilling 670 appraisals and development wells, conducting 250 workovers and well repairs, and conducting about 2,9000 line km of seismic surveys. Venezuela's energy ministry is targeting a production level of 90,000 b/d by the end of the decade from the reactivated fields.

  5. Reserve growth of the world's giant oil fields

    USGS Publications Warehouse

    Klett, T.R.; Schmoker, J.W.

    2005-01-01

    Analysis of estimated total recoverable oil volume (field size) of 186 well-known giant oil fields of the world (>0.5 billion bbl of oil, discovered prior to 1981), exclusive of the United States and Canada, demonstrates general increases in field sizes through time. Field sizes were analyzed as a group and within subgroups of the Organization of Petroleum Exporting Countries (OPEC) and non-OPEC countries. From 1981 through 1996, the estimated volume of oil in the 186 fields for which adequate data were available increased from 617 billion to 777 billion bbl of oil (26%). Processes other than new field discoveries added an estimated 160 billion bbl of oil to known reserves in this subset of the world's oil fields. Although methods for estimating field sizes vary among countries, estimated sizes of the giant oil fields of the world increased, probably for many of the same reasons that estimated sizes of oil fields in the United States increased over the same time period. Estimated volumes in OPEC fields increased from a total of 550 billion to 668 billion bbl of oil and volumes in non-OPEC fields increased from 67 billion to 109 billion bbl of oil. In terms of percent change, non-OPEC field sizes increased more than OPEC field sizes (63% versus 22%). The changes in estimated total recoverable oil volumes that occurred within three 5-year increments between 1981 and 1996 were all positive. Between 1981 and 1986, the increase in estimated total recoverable oil volume within the 186 giant oil fields was 11 billion bbl of oil; between 1986 and 1991, the increase was 120 billion bbl of oil; and between 1991 and 1996, the increase was 29 billion bbl of oil. Fields in both OPEC and non-OPEC countries followed trends of substantial reserve growth.

  6. Variability of surface temperature in agricultural fields of central California

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Millard, J. P.; Goettelman, R. C.

    1982-01-01

    In an attempt to evaluate the relationship between hand-held infrared thermometers and aircraft thermal scanners in near-level terrain and to quantify the variability of surface temperatures within individual fields, ground-based and aircraft thermal sensor measurements were made along a 50-km transect on 3 May 1979 and a 20-km transect on 7 August 1980. These comparisons were made on fields near Davis, California. Agreement was within 1 C for fields covered with vegetation and 3.6 C for bare, dry fields. The variability within fields was larger for bare, dry fields than for vegetatively covered fields. In 1980, with improvements in the collection of ground truth data, the agreement was within 1 C for a variety of fields.

  7. Uncertainty of oil field GHG emissions resulting from information gaps: a Monte Carlo approach.

    PubMed

    Vafi, Kourosh; Brandt, Adam R

    2014-09-02

    Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. We study the effect of incomplete information on estimates of GHG emissions from oil production operations. Data from California oil fields are used to generate probability distributions for eight oil field parameters previously found to affect GHG emissions. We use Monte Carlo (MC) analysis on three example oil fields to assess the change in uncertainty associated with learning of information. Single factor uncertainties are most sensitive to ignorance about water-oil ratio (WOR) and steam-oil ratio (SOR), resulting in distributions with coefficients of variation (CV) of 0.1-0.9 and 0.5, respectively. Using a combinatorial uncertainty analysis, we find that only a small number of variables need to be learned to greatly improve on the accuracy of MC mean. At most, three pieces of data are required to reduce bias in MC mean to less than 5% (absolute). However, the parameters of key importance in reducing uncertainty depend on oil field characteristics and on the metric of uncertainty applied. Bias in MC mean can remain after multiple pieces of information are learned, if key pieces of information are left unknown.

  8. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1983-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  9. Predicting pavement distress in oil field areas

    SciTech Connect

    Mason, J.M.; Scullion, T.; Stampley, B.E.

    1984-05-01

    A study on oil field traffic characteristics was performed and a procedure was developed for assessing current and future effects of oil field truck traffic on surface-treated (stage construction type) pavements. A computer program calculates several types of pavement distress and serviceability parameters to evaluate pavement performance under various axle load repetitions. Stepwise regression analysis of 132 surface-treated pavement sections led to the development of individual distress equations for rutting, raveling, flushing, alligator cracking, patching, longitudinal and transverse cracking, and failures (potholes). The versatility of the program provides a means of anticipating early pavement failures due to increased axle load repetitions. The program also provides the basic framework for computing the effects of other ''special-use'' truck traffic demands.

  10. 76 FR 66080 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease CACA 52030, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease CACA 52030, California AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Under the provisions of the Mineral Lands Leasing Act of 1920, as amended, the Bureau of Land Management (BLM) received a petition...

  11. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  13. Oil and gas field code master list, 1993

    SciTech Connect

    Not Available

    1993-12-16

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  14. Some factors affecting the oil-spill risk to sea otters in California. Final report

    SciTech Connect

    Tinney, R.T.

    1984-10-01

    Sea otters in California, with their limited range and numbers, are exposed to the threat of oil spills from a number of sources including offshore oil and gas development, transportation of crude oil and refined products, and the bunker fuel of vessels transiting the otter range. This report explores some of the direct and indirect ways otters may be affected by oil spills, including hypothermia, pneumonia, toxic effects, and destruction of preferred prey. The report also examines the possibility of mitigating the effects of oil spills through spill containment and cleanup, otter capture, cleaning and rehabilitation, and otter relocation. The report concludes with a description of the amount of shoreline affected by some major spills in various parts of the world.

  15. Gullfaks oil field - From challenge to success

    SciTech Connect

    Carlsen, H.; Nygaard, O. )

    1990-09-01

    The giant Gullfaks oil field was discovered in 1978. The field contains oil reserves in excess of 1.3 billion bbl. The field is located in the northeastern past of Block 34/10 in the Norwegian sector of the North Sea. Gullfaks represents the shallowest structural element of the Tampen Spur and was formed during the Late Jurassic to Early Cretaceous as a sloping high with a westerly structural dip gradually decreasing toward the east. The major north-south-striking faults, with easterly sloping fault planes, divided the field into several rotated fault blocks. Central and eastern parts of the structure have been eroded by the Early Cretaceous transgression. The reservoir sandstones are comprised of the Middle Jurassic to Early Cretaceous as a sloping high with a westerly structural dip gradually decreasing toward the east. The major north-south-striking faults, with easterly sloping fault planes, divided the field into several rotated fault blocks. Central and eastern parts of the structure have been eroded by the Early Cretaceous transgression. The reservoir sandstones are comprised of the Middle Jurassic delta-deposited Brent Group, the Lower Jurassic shallow-marine sandstones of the Cook Formation, and the Lower Jurassic shallow-marine sandstones of the Cook Formation, and the Lower Jurassic fluvial channel and delta-plain deposits of the Statfjord Formation. The presence of gas in the post-Jurassic section and a variable water depth have complicated seismic interpretation. However, the improved quality of the 1985 three dimensional seismic survey and deliberate deepening of the development wells have resulted in a more accurate and complete structural interpretation. The Brent reserves in the western part of the field currently are being developed by the Gullfaks A and B platforms. The eastern part of the field is developed by a third platform, Gulflaks C. Water injection is the major drive mechanism maintaining reservoir pressure above the bubble point.

  16. Assessment of microorganisms from Indonesian Oil Fields

    SciTech Connect

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H.

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  17. California's American Trader oil spill: Effective interagency and public-private collaboration in environmental disaster response

    SciTech Connect

    Gellert, G.A. ); Daugherty, S.J.; Rabiee, L.; Mazur, M.; Merryman, R.E.

    1994-11-01

    The American Trader tanker oil spill off Huntington Beach, California, in 1990 triggered a large interagency and public-private response to minimize the ecological and economic impact of nearly 400,000 gallons of spilled crude oil. This paper examines the interagency collaboration of public and private organizations during this crisis. Data are presented from interviews with key participants from various agencies, as well as from an innovative quantitative health-based risk assessment that allowed rapid reopenings of 15 miles of affected beaches. Features that contributed to effective management of the emergency response are considered along with recommendations for improvements in the future.

  18. Subsidence and uplift at Heber Geothermal field, California

    SciTech Connect

    Boardman, T.S.

    1996-01-01

    Heber Geothermal field is in the Imperial Valley near the City of Heber, California, about 3 1/2 miles north of the Mexican border. The field is at the southern end of a network of irrigated agricultural fields extending across the valley floor. The Heber geothermal system is circular, producing water of moderate temperature (360{degrees}F) and low-salinity (13,000-14,000 ppm TDS). In cross section, the geothermal system resembles a lopsided mushroom. The system has three major permeability units: capping clays form 500 to 1800 feet; a high-matrix-permeability, deltaic-sandstone outflow reservoir from 1,800 to 5,500 feet; and feeder faults and fractures in indurated sediments below 5,500 feet. The deltaic sandstones were deposited by the ancestral Colorado River. As both power plants continue operating in Heber field, the need persists to monitor subsidence and uplift. The field`s subsidence bowl is not expected to expand significantly, but some small changes are expected due to pressure changes caused by production for the SIGC binary power plant. The three SIGC injection wells, located between the production areas for the two power plants, will be managed for adequate reservoir pressure support.

  19. Reserve growth in oil fields of the North Sea

    USGS Publications Warehouse

    Klett, T.R.; Gautier, D.L.

    2005-01-01

    The assessment of petroleum resources of the North Sea, as well as other areas of the world, requires a viable means to forecast the amount of growth of reserve estimates (reserve growth) for discovered fields and to predict the potential fully developed sizes of undiscovered fields. This study investigates the utility of North Sea oil field data to construct reserve-growth models. Oil fields of the North Sea provide an excellent dataset in which to examine the mechanisms, characteristics, rates and quantities of reserve growth because of the high level of capital investments, implementation of sophisticated technologies and careful data collection. Additionally, these field data are well reported and available publicly. Increases in successive annual estimat es of recoverable crude oil volumes indicate that oil fields in the North Sea, collectively and in each country, experience reserve growth. Specific patterns of reserve growth are observed among countries and primary producing reservoir-rock types. Since 1985, Norwegian oil fields had the greatest volume increase; Danish oil fields increased by the greatest percentage relative to 1985 estimates; and British oil fields experienced an increase in recoverable oil estimates for the first ten years since 1985, followed by a slight reduction. Fields producing primarily from clastic reservoirs account for the majority of the estimated recoverable oil and, therefore, these fields had the largest volumetric increase. Fields producing primarily from chalk (limestone) reservoirs increased by a greater percentage relative to 1985 estimates than did fields producing primarily from clastic reservoirs. Additionally, the largest oil fields had the greatest volumetric increases. Although different reserve-growth patterns are observed among oil fields located in different countries, the small number of fields in Denmark precludes construction of reserve-growth models for that country. However, differences in reserve

  20. Hydrothermal Alteration Minerals of the Geysers Steam Field, California and their Potential Use in Exploration

    SciTech Connect

    Moore, Diane

    1980-12-16

    Little information has been published on the hydrothermal alteration minerals occurring at depth in the Geysers steam field, California. Steiner (1958) reported the occurrence of wairakite from a well; McNitt (1964) identified pyrite, sericite, calcite, quartz, siderite, apatite and chlorite in cores of Franciscan graywacke and greenstone. Recently, Union Oil Geothermal Division furnished a set of well cores from the cap rock overlying the steam reservoir for geophysical studies (Lockner -e t -a l . , 1980). Cores of metagraywacke and greenstone from 4 wells were compared to unaltered Franciscan metagraywacke from surface exposures. Several previously unreported alteration minerals were found in the cored rocks, including epidote, tremolite-actinolite, prehnite and tourmaline. This note describes the observed alteration minerals and some of the factors that controlled their growth.

  1. Data from exploratory sampling of groundwater in selected oil and gas areas of coastal Los Angeles County and Kern and Kings Counties in southern San Joaquin Valley, 2014–15: California oil, gas, and groundwater project

    USGS Publications Warehouse

    Dillon, David B.; Davis, Tracy A.; Landon, Matthew K.; Land, Michael T.; Wright, Michael T.; Kulongoski, Justin T.

    2016-12-09

    Exploratory sampling of groundwater in coastal Los Angeles County and Kern and Kings Counties of the southern San Joaquin Valley was done by the U.S. Geological Survey from September 2014 through January 2015 as part of the California State Water Resources Control Board’s Water Quality in Areas of Oil and Gas Production Regional Groundwater Monitoring Program. The Regional Groundwater Monitoring Program was established in response to the California Senate Bill 4 of 2013 mandating that the California State Water Resources Control Board design and implement a groundwater-monitoring program to assess potential effects of well-stimulation treatments on groundwater resources in California. The U.S. Geological Survey is in cooperation with the California State Water Resources Control Board to collaboratively implement the Regional Groundwater Monitoring Program through the California Oil, Gas, and Groundwater Project.Many researchers have documented the utility of different suites of chemical tracers for evaluating the effects of oil and gas development on groundwater quality. The purpose of this exploratory sampling effort was to determine whether tracers reported in the literature could be used effectively in California. This reconnaissance effort was not designed to assess the effects of oil and gas on groundwater quality in the sampled areas. A suite of water-quality indicators and geochemical tracers were sampled at groundwater sites in selected areas that have extensive oil and gas development. Groundwater samples were collected from a total of 51 wells, including 37 monitoring wells at 17 multiple-well monitoring sites in coastal Los Angeles County and 5 monitoring wells and 9 water-production wells in southern San Joaquin Valley, primarily in Kern and Kings Counties.Groundwater samples were analyzed for field water-quality indicators; organic constituents, including volatile and semi-volatile organic compounds and dissolved organic carbon indicators; naturally

  2. Rheological properties of crude oils in Yaregskoye and Yaraktinskoye oil fields

    NASA Astrophysics Data System (ADS)

    Manzhai, V. N.; Le Grand Monkam Monkam, Clovis; Terre, D. A.

    2016-09-01

    Rotary viscometer tests of crude oil with a high content of resins and asphaltenes (Yaregskoye oil field) and crude oil with high paraffin content (Yaraktinskoye oil field) have been conducted. The typical flow curves for these oil types have been plotted. It has been detected that these oils are non-Newtonian fluids, viscosity of which is dependent on shear rate. Based on Arrhenius-Eyring equation, calculations of viscous flow activation energy and complex structural unit (CSU) sizes have been performed. It has been stated that there is a tenfold reduction in CSU size in asphaltic crude oil with the increase in shear rate in a rotary viscometer, while particle size in paraffinic crude oil does not essentially change under the same hydrodynamic conditions.

  3. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  4. Oil and Gas Field Code Master List 1990

    SciTech Connect

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  5. 76 FR 78938 - Carpinteria Offshore Field Redevelopment Project-Developmental Drilling Into the Carpinteria...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... Drilling Into the Carpinteria Offshore Field Oil and Gas Reserves, California State Waters, From Federal... jointly review a proposal to develop offshore oil and gas resources, located in California state waters... develop offshore oil and gas resources, located in California state waters, from an existing oil and...

  6. Tires fuel oil field cement manufacturing

    SciTech Connect

    Caveny, B.; Ashford, D.; Garcia, J.G.; Hammack, R.

    1998-08-31

    In a new process, waste automobile tires added to the fuel mix of gas, coal, and coke help fire kilns to produce API-quality oil field cement. Capital Cement uses this process in its cement-manufacturing plant in San Antonio, in which it also produces construction cement. The tires provide a lower-cost fuel and boost the temperature at a critical stage in the kiln burn process. Also, steel-belted tires add iron content to the mix. According to lab results, tire-burned cement slurries will perform the same as conventionally burned cement slurries. Actual field applications have proven that cement produced by burning tires performs no different than conventionally produced slurries. Capital`s plant uses both dry and wet processes, with separate kilns running both processes at the same time. Cement clinker is partially fired by waste tires in both kiln processes. The tires represent 12% of the fuel consumed by the plant, a number that is expected to increase. Capital burns about 200 tires/hr, or about 1.6 million tires/year.

  7. Microbial processes in oil fields: culprits, problems, and opportunities.

    PubMed

    Youssef, Noha; Elshahed, Mostafa S; McInerney, Michael J

    2009-01-01

    Our understanding of the phylogenetic diversity, metabolic capabilities, ecological roles, and community dynamics of oil reservoir microbial communities is far from complete. The lack of appreciation of the microbiology of oil reservoirs can lead to detrimental consequences such as souring or plugging. In contrast, knowledge of the microbiology of oil reservoirs can be used to enhance productivity and recovery efficiency. It is clear that (1) nitrate and/or nitrite addition controls H2S production, (2) oxygen injection stimulates hydrocarbon metabolism and helps mobilize crude oil, (3) injection of fermentative bacteria and carbohydrates generates large amounts of acids, gases, and solvents that increases oil recovery particularly in carbonate formations, and (4) nutrient injection stimulates microbial growth preferentially in high permeability zones and improves volumetric sweep efficiency and oil recovery. Biosurfactants significantly lower the interfacial tension between oil and water and large amounts of biosurfactant can be made in situ. However, it is still uncertain whether in situ biosurfactant production can be induced on the scale needed for economic oil recovery. Commercial microbial paraffin control technologies slow the rate of decline in oil production and extend the operational life of marginal oil fields. Microbial technologies are often applied in marginal fields where the risk of implementation is low. However, more quantitative assessments of the efficacy of microbial oil recovery will be needed before microbial oil recovery gains widespread acceptance.

  8. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  9. A field study of littoral processes in Estero Bay, California

    USGS Publications Warehouse

    Dingler, J.R.; Anima, R.J.; Molzan, D.E.; Luepke, Gretchen; Peterson, C.L.

    1982-01-01

    Estero Bay, which lies on the central California coast, has rocky headlands at both ends and sandy beaches within it. The shoreline of the bay has adjusted to be in equilibrium with the predominant wave climate, which is from the northwest. Because of its present shoreline configuration, the net southward littoral transport found along much of the California coast does not occur within Estero Bay. Instead, the sand primarily moves on- and offshore with a reversing longshore component. This sand transport pattern produces a littoral cell within Estero Bay even though there is no submarine canyon in the area. The primary sand sinks for this cell appear to be the sand spit south of Morro Rock and the entrance to Morro Bay itself, although this opinion was not experimentally verified. Field work during one summer (1978) and the following winter (1979) produced baseline data on the profile of and grain-size distribution across the littoral zone. In the offshore part of the littoral zone we also studied ripple size and type, internal structure, depth of erosion, and mineralogy. Although these data, which were collected along nine transects spaced 2 km apart, are inadequate to yield transport and energy rates, they indicate a northward decrease in wave energy within Estero Bay and a mixing of the sediments in the offshore. Box core and rod height data from grid points in seven meters of water showed that on the order of a meter of erosion occurred in the central part of the bay between the two sampling periods. Offshore, the data were incomplete, but at one station, in 17 m of water, at least 20 cm of erosion occurred.

  10. Ecological and political issues surrounding decommissioning of offshore oil facilities in the Southern California Bight

    USGS Publications Warehouse

    Schroeder, Donna M.; Love, Milton S.

    2004-01-01

    To aid legislators, resource managers, and the general public, this paper summarizes and clarifies some of the issues and options that the federal government and the state of California face in decommissioning offshore oil and gas production platforms, particularly as these relate to platform ecology. Both local marine ecology and political climate play a role in decommissioning offshore oil production platforms. Compared to the relatively supportive political climate in the Gulf of Mexico for “rigs-to-reefs” programs, conflicting social values among stakeholders in Southern California increases the need for understanding ecological impacts of various decommissioning alternatives (which range from total removal to allowing some or all of platform structure to remain in the ocean). Additional scientific needs in the decommissioning process include further assessment of platform habitat quality, estimation of regional impacts of decommissioning alternatives to marine populations, and determination of biological effects of any residual contaminants. The principal management need is a ranking of environmental priorities (e.g. species-of-interest and marine habitats). Because considerable numbers of economically important species reside near oil platforms, National Oceanic and Atmospheric Administration Fisheries should consider the consequences of decommissioning alternatives in their overall management plans. Management strategies could include designating reefed platforms as marine protected areas. The overarching conclusion from both ecological and political perspectives is that decommissioning decisions should be made on a case-by-case basis.

  11. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.

    PubMed

    Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia

    2012-10-01

    A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields.

  12. Kuwait Oil Fields as seen from STS-58

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A clear view of the northern Kuwait coast shows the southern part of Kuwait City, and the major oil fields to the south. Oil laden sands, where wells were set ablaze during the Gulf War in 1991, are visible south of Kuwait City as a dark, elongated patch surrounded by light-colored sand. Oil-stained sandbetween well sites (dots) and criss-crossing roads is gradually being covered by clean sand carried by strong, seasonal northwest winds.

  13. Environmental contamination in the oil fields of western Pennsylvania

    USGS Publications Warehouse

    Albers, P.H.; Belisle, A.A.; Swineford, D.M.; Hall, R.J.

    1985-01-01

    The effects on freshwater wildlife of chronic exposure to oil field discharges are not well known. Collections of wastewater, aquatic invertebrates, fish, salamanders, and small mammals were made in several streams in the oil fields of western Pennsylvania during 1980-81. Estimates of the petroleum content of two wastewater discharges were high (21.9 and 8.4 ppm) and one was low (0.3 ppm). Water conductivity was inversely related to aquatic invertebrate biomass. Hydrocarbons accumulated in significantly greater amounts in crayfish, fish, and small mammals from collection sites with oil extraction activity than from sites without oil extraction activity. Estimates of total petroleum in invertebrates, trout, and suckers averaged between 200 and 280 ppm for oil extraction sites and between 8 and 80 ppm for sites without oil extraction activity: Oil extraction activity did not affect metal accumulation by fish. Oil and wastewater discharges in oil fields disrupt community composition and can cause an overall reduction in stream productivity.

  14. Oil and Gas field code master list 1995

    SciTech Connect

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  15. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  17. Assessment of remaining recoverable oil in selected major oil fields of the Permian Basin, Texas and New Mexico

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of technically recoverable, conventional oil in selected oil fields in the Permian Basin in west Texas and southeastern New Mexico. The mean total volume of potential additional oil resources that might be added using improved oil-recovery technologies was estimated to be about 2.7 billion barrels of oil.

  18. Oiled seabird rescue at the J.V. Fitzgerald Marine Reserve, San Mateo County, California, 1968-1995

    USGS Publications Warehouse

    Carter, H.R.

    1997-01-01

    Records of oiled and injured seabirds at the J.V. Fitzgerald Marine Reserve, San Mateo County, California, were collated from the daily log at the Reserve for the period 1968-1995. These records serve to demonstrate that oil spills and chronic oiling have occurred frequently in this area, just south of San Francisco. Common Murres (Uria aalge) were the most frequently-oiled species rescued at the Reserve. Greater efforts should be made by wildlife rehabilitators to collate large volumes of past data (prior to the early 1990s) on oiled and injured seabirds for similar documentation of large or moderate oil spills (including undocumented or poorly-known spills), chronic oiling from small spills, and injuries from other sources.

  19. The enigma of oil and gas field growth

    SciTech Connect

    Attanasi, E.D.; Root, D.H. )

    1994-03-01

    Growth in estimates of recovery in discovered fields is an important source of annual additions to United States proven reserves. This paper examines historical field growth and presents estimates of future additions to proved reserves from fields discovered before 1992. Field-level data permitted the sample to be partitioned on the basis of recent field growth patterns into outlier and common field set, and analyzed separately. The outlier field set accounted for less than 15% of resources, yet grew proportionately six times as much as the common fields. Because the outlier field set contained large old heavy-oil fields and old low-permeability gas fields, its future growth is expected to be particularly sensitive to prices. A lower bound of a range of estimates of future growth was calculated by applying monotone growth functions computed from the common field set to all fields. Higher growth estimates were obtained by extrapolating growth of the common field set and assuming the outlier fields would maintain the same share of total growth that occurred from 1978 through 1991. By 2020, the two estimates for additions to reserves from pre-1992 fields are 23 and 32 billion bbl of oil in oil fields and 142 and 195 tcf of gas in gas fields. 20 refs., 8 figs., 3 tabs.

  20. An evaluation of known remaining oil resources in the state of California: Project on advanced oil recovery and the states. Volume 2

    SciTech Connect

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of California and the nation as a whole.

  1. Petroleum systems of the San Joaquin Basin Province, California -- geochemical characteristics of oil types: Chapter 9 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Lillis, Paul G.; Magoon, Leslie B.

    2007-01-01

    New analyses of 120 oil samples combined with 139 previously published oil analyses were used to characterize and map the distribution of oil types in the San Joaquin Basin, California. The results show that there are at least four oil types designated MM, ET, EK, and CM. Most of the oil from the basin has low to moderate sulfur content (less than 1 weight percent sulfur), although a few unaltered MM oils have as much as 1.2 weight percent sulfur. Reevaluation of source rock data from the literature indicate that the EK oil type is derived from the Eocene Kreyenhagen Formation, and the MM oil type is derived, in part, from the Miocene to Pliocene Monterey Formation and its equivalent units. The ET oil type is tentatively correlated to the Eocene Tumey formation of Atwill (1935). Previous studies suggest that the CM oil type is derived from the Late Cretaceous to Paleocene Moreno Formation. Maps of the distribution of the oil types show that the MM oil type is restricted to the southern third of the San Joaquin Basin Province. The composition of MM oils along the southern and eastern margins of the basin reflects the increased contribution of terrigenous organic matter to the marine basin near the Miocene paleoshoreline. EK oils are widely distributed along the western half of the basin, and ET oils are present in the central and west-central areas of the basin. The CM oil type has only been found in the Coalinga area in southwestern Fresno County. The oil type maps provide the basis for petroleum system maps that incorporate source rock distribution and burial history, migration pathways, and geologic relationships between hydrocarbon source and reservoir rocks. These petroleum system maps were used for the 2003 U.S. Geological Survey resource assessment of the San Joaquin Basin Province.

  2. California condor plumage and molt as field study aids

    USGS Publications Warehouse

    Wilbur, S.R.

    1975-01-01

    An analysis is made of the reliability of plumage and molt characteristics of the California condor for estimating age and identifying individual birds. Neither character seems sufficiently reliable to use in more than a general way.

  3. Field Guide for Arctic Oil Spill Behavior. Final report

    SciTech Connect

    Schulze, R.

    1984-11-01

    A Field Guide for Oil Spill Behavior was developed to provide the On-Scene Coordinator with the spill-behavior information needed to assess whether timely and adequate containment and removal actions are taken. The field guide describes arctic ice conditions, the physical properties of oil as it weathers, oil spill behavior in cold water and ice conditions, and spill retention potential for the Alaskan shore line. The guide then uses six spill scenarios to show the user how to apply spill behavior information to solve real-world problems.

  4. Families of miocene monterey crude oil, seep, and tarball samples, coastal California

    USGS Publications Warehouse

    Peters, K.E.; Hostettler, F.D.; Lorenson, T.D.; Rosenbauer, R.J.

    2008-01-01

    Biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs to better assess their origins and distributions in coastal California. These samples were used to construct a chemometric (multivariate statistical) decision tree to classify 288 additional samples. The results identify three tribes of 13C-rich oil samples inferred to originate from thermally mature equivalents of the clayey-siliceous, carbonaceous marl and lower calcareous-siliceous members of the Monterey Formation at Naples Beach near Santa Barbara. An attempt to correlate these families to rock extracts from these members in the nearby COST (continental offshore stratigraphic test) (OCS-Cal 78-164) well failed, at least in part because the rocks are thermally immature. Geochemical similarities among the oil tribes and their widespread distribution support the prograding margin model or the banktop-slope-basin model instead of the ridge-and-basin model for the deposition of the Monterey Formation. Tribe 1 contains four oil families having geochemical traits of clay-rich marine shale source rock deposited under suboxic conditions with substantial higher plant input. Tribe 2 contains four oil families with traits intermediate between tribes 1 and 3, except for abundant 28,30-bisnorhopane, indicating suboxic to anoxic marine marl source rock with hemipelagic input. Tribe 3 contains five oil families with traits of distal marine carbonate source rock deposited under anoxic conditions with pelagic but little or no higher plant input. Tribes 1 and 2 occur mainly south of Point Conception in paleogeographic settings where deep burial of the Monterey source rock favored petroleum generation from all three members or their equivalents. In this area, oil from the clayey-siliceous and carbonaceous marl members (tribes 1 and 2) may overwhelm that from the lower

  5. Velocity and Attenuation Structure of the Geysers Geothermal Field, California

    SciTech Connect

    Zucca, J. J.; Hutchings, L. J.; Kasameyer, P. W.

    1993-01-01

    The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. The resource consists of primarily dry steam which is produced from a low, porosity fractured graywacke. Over the last several years steam pressure at the Geysers has been dropping. Concern over decline of the resource has prompted research to understand its fundamental nature. A key issue is the distribution of fluid in the matrix of the reservoir rock. In this paper we interpret seismic compressional-wave velocity and attenuation data at the Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of approximately 300 earthquakes that are of magnitude 1.2 and are distributed in depth between sea level and 2.5 km. Using compressional-wave arrival times, we invert for earthquake location, origin time, and velocity along a three-dimensional grid. Using the initial pulse width of the compressional-wave, we invert for the initial pulse width associated with the source, and the one-dimensional Q structure. We find that the velocity structure correlates with known mapped geologic units, including a velocity high that is correlated with a felsite body at depth that is known from drilling. The dry steam reservoir, which is also known from drilling, is mostly correlated with low velocity. The Q increases with depth to the top of the dry steam reservoir and decreases with depth within the reservoir. The decrease of Q with depth probably indicates that the saturation of the matrix of the reservoir rock increases with depth.

  6. Largest US oil and gas fields, August 1993

    SciTech Connect

    Not Available

    1993-08-06

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  7. Rapid subsidence over oil fields measured by SAR

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.; Blom, R. G.; Goldstein, R. M.

    1998-01-01

    The Lost Hills and Belridge oil felds are in the San Joaquin Valley, California. The major oil reservoir is high porosity and low permeability diatomite. Extraction of large volumes from shallow depths causes reduction in pore pressure and subsequent compaction, forming a surface subsidence bowl. We measure this subsidence from space using interferometric analysis of SAR (Synthetic Aperture Radar) data collected by the European Space Agency Remote Sensing Satellites (ERS-1 and ERS-2). Maximum subsidence rates are as high as 40 mm in 35 days or > 400 mm/yr, measured from interferograms with time separations ranging from one day to 26 months. The 8- and 26-month interferograms contain areas where the subsidence gradient exceeds the measurement possible with ERS SAR, but shows increased detail in areas of less rapid subsidence. Synoptic mapping of subsidence distribution from satellite data powerfully complements ground-based techniques, permits measurements where access is difficult, and aids identification of underlying causes.

  8. Oil and gas field code master list 1994

    SciTech Connect

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  9. Assessment of undiscovered continuous oil and gas resources in the Monterey Formation, Los Angeles Basin Province, California, 2015

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Charpentier, Ronald R.; Klett, Timothy R.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Le, Phuong A.; Lillis, Paul G.; Marra, Kristen R.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Schenk, Christopher J.

    2016-07-08

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed technically recoverable mean resources of 13 million barrels of oil, 22 billion cubic feet of gas, and 1 million barrels of natural gas liquids in the Monterey Formation of the Los Angeles Basin Province, California.

  10. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  11. Oil and gas field code master list 1997

    SciTech Connect

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  12. California Indian Assistance Program Field Directory. A Directory of the California Indian Community.

    ERIC Educational Resources Information Center

    California State Dept. of Housing and Community Development, Sacramento. Indian Assistance Program.

    The 1978 directory of the California Indian community provides tribes, urban centers, organizations, government agencies, and individuals with a tool to improve communications. The first section contains maps of trust lands, tribal locations, terminated lands, and terminated land locations. The two indexes in the map section (one provides…

  13. Integrated modeling and field study of potential mechanisms forinduced seismicity at The Geysers Goethermal Field, California

    SciTech Connect

    Rutqvist, Jonny; Majer, Ernie; Oldenburg, Curt; Peterson, John; Vasco, Don

    2006-06-07

    In this paper, we present progress made in a study aimed atincreasing the understanding of the relative contributions of differentmechanisms that may be causing the seismicity occurring at The Geysersgeothermal field, California. The approach we take is to integrate: (1)coupled reservoir geomechanical numerical modeling, (2) data fromrecently upgraded and expanded NCPA/Calpine/LBNL seismic arrays, and (3)tens of years of archival InSAR data from monthly satellite passes. Wehave conducted a coupled reservoir geomechanical analysis to studypotential mechanisms induced by steam production. Our simulation resultscorroborate co-locations of hypocenter field observations of inducedseismicity and their correlation with steam production as reported in theliterature. Seismic and InSAR data are being collected and processed foruse in constraining the coupled reservoir geomechanicalmodel.

  14. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  15. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  16. Laboratory studies of oil spill bioremediation; toward understanding field behavior

    SciTech Connect

    Prince, R.C.; Hinton, S.M.; Elmendorf, D.L.; Lute, J.R.; Grossman, M.J.; Robbins, W.K.; Hsu, Chang S.; Richard, B.E.; Haith, C.E.; Senius, J.D.; Minak-Bernero, V.; Chianelli, R.R.; Bragg, J.R.; Douglas, G.S.

    1993-12-31

    Oil spill remediation aims to enhance the natural process of microbial hydrocarbon biodegradation. The microbial foundations have been studied throughout this century, but the focus of most of this work has been on the degradation of well defined compounds by well defined microbial species. This paper addresses laboratory studies on crude oil biodegradation by microbial consortia obtained from oiled beaches in Prince William Sound, Alaska following the spill from the Exxon Valdez. It demonstrates that oil degradation is indeed likely to be nitrogen-limited in Prince William Sound, the different molecular classes in crude oil that are subjected to biodegradation, the identification of conserved species in the oil that can be used for assessing biodegradation and bioremediation in the field, the effectiveness of fertilizers in stimulating sub-surface biodegradation, the role of the olephilic fertilizer Inipol EAP22, and the identification of the oil-degrading microorganisms in Prince William Sound. Together, these laboratory studies provided guidance and important insights into the microbial phenomena underlying the successful bioremediation of the oiled shorelines.

  17. Reserve Growth in Oil Fields of West Siberian Basin, Russia

    USGS Publications Warehouse

    Verma, Mahendra K.; Ulmishek, Gregory F.

    2006-01-01

    Although reserve (or field) growth has proven to be an important factor contributing to new reserves in mature petroleum basins, it is still a poorly understood phenomenon. Limited studies show that the magnitude of reserve growth is controlled by several major factors, including (1) the reserve booking and reporting requirements in each country, (2) improvements in reservoir characterization and simulation, (3) application of enhanced oil recovery techniques, and (4) the discovery of new and extensions of known pools in discovered fields. Various combinations of these factors can affect the estimates of proven reserves in particular fields and may dictate repeated estimations of reserves during a field's life. This study explores the reserve growth in the 42 largest oil fields in the West Siberian Basin, which contain about 55 percent of the basin's total oil reserves. The West Siberian Basin occupies a vast swampy plain between the Ural Mountains and the Yenisey River, and extends offshore into the Kara Sea; it is the richest petroleum province in Russia. About 600 oil and gas fields with original reserves of 144 billion barrels of oil (BBO) and more than 1,200 trillion cubic feet of gas (TCFG) have been discovered. The principal oil reserves and most of the oil fields are in the southern half of the basin, whereas the northern half contains mainly gas reserves. Sedimentary strata in the basin consist of Upper Triassic through Tertiary clastic rocks. Most oil is produced from Neocomian (Lower Cretaceous) marine to deltaic sandstone reservoirs, although substantial oil reserves are also in the marine Upper Jurassic and continental to paralic Lower to Middle Jurassic sequences. The majority of oil fields are in structural traps, which are gentle, platform-type anticlines with closures ranging from several tens of meters to as much as 150 meters (490 feet). Fields producing from stratigraphic traps are generally smaller except for the giant Talin field which

  18. Hydrocarbon emissions in the Bakken oil field in North Dakota

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.; Petron, G.; Miller, B.; Frost, G. J.; Peischl, J.; Kort, E. A.; Smith, M. L.; Karion, A.; Dlugokencky, E. J.; Montzka, S. A.; Sweeney, C.; Ryerson, T. B.; Tans, P. P.; Schnell, R. C.

    2014-12-01

    Within the past five years, the production of oil and natural gas in the United States from tight formations has increased rapidly due to advances in technology, such as horizontal drilling and hydraulic fracturing. With the expansion of oil and natural gas extraction operations comes the need to better quantify their emissions and potential impacts on climate forcing and air quality. The Bakken formation within the Williston Basin in North Dakota has emerged as a large contributor to the recent growth in oil production and accounts for over 10% of domestic production. Close to 30% of associated gas co-produced with the oil is flared. Very little independent information is currently available to assess the oil and gas industry emissions and their impacts on regional air quality. In May 2014, an airborne field campaign was conducted by the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory and the University of Michigan to investigate hydrocarbon emissions from operations in the oil field. Here, we present results from the analysis for methane, several non-methane hydrocarbons and combustion tracers in 72 discrete air samples collected by the aircraft on nine different flights. Samples were obtained in the boundary layer upwind and downwind of the operations and in the free troposphere. We will show results of a multiple species analysis and compare them with field campaign data from other U.S. oil and gas fields, measurements from NOAA's Global Monitoring Division long-term observing network, and available bottom-up information on emissions from oil and gas operations.

  19. California Community College Student Attitudes on Communication Career Fields.

    ERIC Educational Resources Information Center

    Rayfield, Robert E.; Pasqua, Tom

    1985-01-01

    Describes a survey of California community college students enrolled in journalism, business, and English courses, which focused on student characteristics; educational background; family members in communications careers; ethnic background; awareness of communications careers; perceptions of careers in radio-television, advertising,…

  20. Reservoir microseismicity at the Ekofisk Oil Field

    SciTech Connect

    Rutledge, J.T.; Fairbanks, T.D.; Albright, J.N.; Boade, R.R.; Dangerfield, J.; Landa, G.H.

    1994-07-01

    A triaxial, downhole geophone was deployed within the Ekofisk oil reservoir for monitoring ambient microseismicity as a test to determine if microearthquake signals generated from discrete shear failure of the reservoir rock could be detected. The results of the test were positive. During 104 hours of monitoring, 572 discrete events were recorded which have been identified as shear-failure microearthquakes. Reservoir microseismicity was detected at large distances (1000 m) from the monitor borehole and at rates (> 5 events per hour) which may allow practical characterization of the reservoir rock and overburden deformation induced by reservoir pressure changes.

  1. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    PubMed

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR.

  2. Outer continental shelf oil and gas activities in the Pacific (Southern California) and their onshore impacts: a summary report, May 1980

    USGS Publications Warehouse

    Macpherson, George S.; Bernstein, Janis

    1980-01-01

    Outer Continental Shelf (OCS) oil and gas exploration and development have been under way in the Pacific (Southern California) Region since 1966. During that time, there have been four Federal lease sales: in 1966, 1968, 1975 (Sale 35), and 1979 (Sale 48). Oil and gas production from three leases has been going on since 1968. It peaked in 1971 and now averages around 31,400 barrels of oil and 15.4 million cubic feet of gas per day. Discoveries on areas leased in the 1968 and 1975 sales have led to plans for eight new platforms to begin production in the early 1980's. Five platforms are in the eastern end of Santa Barbara Channel, one is in the western Channel, and two are in San Pedro Bay, south of Long Beach. Three rigs are doing exploratory drilling in the Region. The most recent estimates by the U.S. Geological Survey of remaining reserves for all identified fields in the Southern California Region are 695 million barrels of oil and 1,575 billion cubic feet of gas (January 1979). The USGS has also made risked estimates of economically recoverable oil and gas resources for all the leased tracts in the Region (March 1980). These risked estimates of economically recoverable resources are 394 billion barrels of oil and 1,295 billion cubic feet of gas. The USGS estimates of undiscovered recoverable resources for the entire Southern California OCS Region (January 1980) are 3,200 million barrels of oil and 3,400 billion cubic feet of gas. Because of the long history of oil and gas production in Southern California from wells onshore and in State waters, there are many existing facilities for the transportation, processing, and refining of oil and gas. Some of the expected new OCS production can be accommodated in these facilities. Four new onshore projects will be required. Two of these are under construction: (1) a 9.6-km (6-mi) onshore oil pipeline (capacity: 60,000 bpd) between Carpinteria (Santa Barbara County) and the existing Mobil-Rincon separation and treatment

  3. Alkanes in shrimp from the Buccaneer Oil Field

    SciTech Connect

    Middleditch, B.S.; Basile, B.; Chang, E.S.

    1982-07-01

    A total of 36 samples of shrimp were examined from the region of the Buccaneer oil field, eighteen of which were representatives of the commercial species Penaeus aztecus and the rest were various other species: Penaeus duorarum (pink shrimp), Trachypenaeus duorarum (sugar shrimp), Squilla empusa (mantis shrimp), and Sicyonia dorsalis (chevron shrimp). The alkanes and deuteriated alkanes were completely separated by GC, so a mass spectrometer was not required for their detection and quantitation. To confirm the identities of individual compounds, however, some samples were examined by combined gas chromatography-mass spectrometry. Results show that only thirteen of the forty shrimp collected from the region of the Buccaneer oil field contained petroleum alkanes, and the majority of these were obtained from trawls immediately adjacent to the production platforms. It appears that shrimp caught in the region of the Buccaneer oil field are not appreciably tainted with hydrocarbons discharged from the production platforms. (JMT)

  4. Cumulative impacts of oil fields on northern Alaskan landscapes

    USGS Publications Warehouse

    Walker, D.A.; Webber, P.J.; Binnian, Emily F.; Everett, K.R.; Lederer, N.D.; Nordstrand, E.A.; Walker, M.D.

    1987-01-01

    Proposed further developments on Alaska's Arctic Coastal Plain raise questions about cumulative effects on arctic tundra ecosystems of development of multiple large oil fields. Maps of historical changes to the Prudhoe Bay Oil Field show indirect impacts can lag behind planned developments by many years and the total area eventually disturbed can greatly exceed the planned area of construction. For example, in the wettest parts of the oil field (flat thaw-lake plains), flooding and thermokarst covered more than twice the area directly affected by roads and other construction activities. Protecting critical wildlife habitat is the central issue for cumulative impact analysis in northern Alaska. Comprehensive landscape planning with the use of geographic information system technology and detailed geobotanical maps can help identify and protect areas of high wildlife use.

  5. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  6. Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs

    PubMed Central

    Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

    1996-01-01

    The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere. PMID:16535321

  7. Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide

    SciTech Connect

    Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

    2008-05-15

    Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

  8. Dalhart's only Permian field gets best oil well

    SciTech Connect

    Not Available

    1992-07-20

    This paper reports that activity is picking up in Proctor Ranch oil field in the northwestern Texas panhandle, the only Permian producing field in the lightly drilled Dalhart basin. During the last 2 1/2 months, the field has a new operator and a new producing well, the best of five drilled since discovery in 1990. Corlena Oil Co., Amarillo, acquired the field from McKinney Oil Co. in May and tested its first well in early July. The 1-64 Proctor, 18 miles west of Channing, pumped at rates as high as 178 bd of oil and 6 b/d of water from Permian Wolfcamp dolomite perforations at 4,016-29 ft. Corlena plans to drill another well south of the field soon. The lease requires that the next well be spudded by early November. The field appears to be combination structural-stratigraphic trap in which the dolomite pinches out against the Bravo Domes-Oldham nose to the west.

  9. Measuring marine oil spill extent by Markov Random Fields

    NASA Astrophysics Data System (ADS)

    Moctezuma, Miguel; Parmiggiani, Flavio; Lopez Lopez, Ludwin

    2014-10-01

    The Deepwater Horizon oil spill of the Gulf of Mexico in the spring of 2010 was the largest accidental marine oil spill in the history of the petroleum industry. An immediate request, after the accident, was to detect the oil slick and to measure its extent: SAR images were the obvious tool to be employed for the task. This paper presents a processing scheme based on Markov Random Fields (MRF) theory. MRF theory describes the global information by probability terms involving local neighborhood representations of the SAR backscatter data. The random degradation introduced by speckle noise is dealt with a pre-processing stage which applies a nonlinear diffusion filter. Spatial context attributes are structured by the Bayes equation derived from a Maximum-A-Posteriori (MAP) estimation. The probability terms define an objective function of a MRF model whose goal is to detect contours and fine structures. The markovian segmentation problem is solved with a numerical optimization method. The scheme was applied to an Envisat/ASAR image over the Gulf of Mexico of May 9, 2010, when the oil spill was already fully developed. The final result was obtained with 51 recursion cycles, where, at each step, the segmentation consists of a 3-class label field (open sea and two oil slick thicknesses). Both the MRF model and the parameters of the stochastic optimization procedure will be provided, together with the area measurement of the two kinds of oil slick.

  10. Oil-field equipment in Romania. Export trade information

    SciTech Connect

    Tinis, R.

    1991-09-01

    The Industry Sector Analyses (I.S.A.) for oil field equipment contains statistical and narrative information on projected market demand, end-users, receptivity of Romanian consumers to U.S. products, the competitive situation - Romanian production, total import market, U.S. market position, foreign competition, and competitive factors, and market access - Romanian tariffs, non-tariff barriers, standards, taxes and distribution channels. The I.S.A. provides the United States industry with meaningful information regarding the Romanian market for oil field equipment.

  11. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  12. Oil platforms off California are among the most productive marine fish habitats globally

    PubMed Central

    Claisse, Jeremy T.; Pondella, Daniel J.; Love, Milton; Zahn, Laurel A.; Williams, Chelsea M.; Williams, Jonathan P.; Bull, Ann S.

    2014-01-01

    Secondary (i.e., heterotrophic or animal) production is a main pathway of energy flow through an ecosystem as it makes energy available to consumers, including humans. Its estimation can play a valuable role in the examination of linkages between ecosystem functions and services. We found that oil and gas platforms off the coast of California have the highest secondary fish production per unit area of seafloor of any marine habitat that has been studied, about an order of magnitude higher than fish communities from other marine ecosystems. Most previous estimates have come from estuarine environments, generally regarded as one of the most productive ecosystems globally. High rates of fish production on these platforms ultimately result from high levels of recruitment and the subsequent growth of primarily rockfish (genus Sebastes) larvae and pelagic juveniles to the substantial amount of complex hardscape habitat created by the platform structure distributed throughout the water column. The platforms have a high ratio of structural surface area to seafloor surface area, resulting in large amounts of habitat for juvenile and adult demersal fishes over a relatively small footprint of seafloor. Understanding the biological implications of these structures will inform policy related to the decommissioning of existing (e.g., oil and gas platforms) and implementation of emerging (e.g., wind, marine hydrokinetic) energy technologies. PMID:25313050

  13. Oil platforms off California are among the most productive marine fish habitats globally.

    PubMed

    Claisse, Jeremy T; Pondella, Daniel J; Love, Milton; Zahn, Laurel A; Williams, Chelsea M; Williams, Jonathan P; Bull, Ann S

    2014-10-28

    Secondary (i.e., heterotrophic or animal) production is a main pathway of energy flow through an ecosystem as it makes energy available to consumers, including humans. Its estimation can play a valuable role in the examination of linkages between ecosystem functions and services. We found that oil and gas platforms off the coast of California have the highest secondary fish production per unit area of seafloor of any marine habitat that has been studied, about an order of magnitude higher than fish communities from other marine ecosystems. Most previous estimates have come from estuarine environments, generally regarded as one of the most productive ecosystems globally. High rates of fish production on these platforms ultimately result from high levels of recruitment and the subsequent growth of primarily rockfish (genus Sebastes) larvae and pelagic juveniles to the substantial amount of complex hardscape habitat created by the platform structure distributed throughout the water column. The platforms have a high ratio of structural surface area to seafloor surface area, resulting in large amounts of habitat for juvenile and adult demersal fishes over a relatively small footprint of seafloor. Understanding the biological implications of these structures will inform policy related to the decommissioning of existing (e.g., oil and gas platforms) and implementation of emerging (e.g., wind, marine hydrokinetic) energy technologies.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  17. Remote sensing assessment of oil lakes and oil-polluted surfaces at the Greater Burgan oil field, Kuwait

    NASA Astrophysics Data System (ADS)

    Kwarteng, Andy Yaw

    A heinous catastrophe imposed on Kuwait's desert environment during the 1990 to 1991 Arabian Gulf War was the formation of oil lakes and oil-contaminated surfaces. Presently, the affected areas consist of oil lakes, thick light and disintegrated tarmats, black soil and vegetation. In this study, Landsat TM, Spot, colour aerial photographs and IRS-1D digital image data acquired between 1989 and 1998 were used to monitor the spatial and temporal changes of the oil lakes and polluted surfaces at the Greater Burgan oil field. The use of multisensor datasets provided the opportunity to observe the polluted areas in different wavelengths, look angles and resolutions. The images were digitally enhanced to optimize the visual outlook and improve the information content. The data documented the gradual disappearance of smaller oil lakes and soot/black soil from the surface with time. Even though some of the contaminants were obscured by sand and vegetation and not readily observed on the surface or from satellite images, the harmful chemicals still remain in the soil. Some of the contaminated areas displayed a remarkable ability to support vegetation growth during the higher than average rainfall that occurred between 1992 to 1998. The total area of oil lakes calculated from an IRS-1D panchromatic image acquired on 16 February 1998, using supervised classification applied separately to different parts, was 24.13 km 2.

  18. Spectral anomaly over Railroad Valley oil field, Nevada

    SciTech Connect

    Feldman, S.C. ); Honey, F.R. ); Ballew, G.I. )

    1990-05-01

    Oil was first discovered in Railroad Valley, south-central Nevada in 1954. Since that time, over 195 wells have been drilled and six oil fields have been found: Bacon Flat, Currant, Trap Spring, Eagle Springs, Grant Canyon and Kate Spring. Two wells in the Grant Canyon field had flows between 2,480 and 4,108 bbl/day in 1987 and may be the most prolific wells onshore in the continental US. Production in the Railroad Valley fields is from Oligocene volcanic and sedimentary rocks and Paleozoic carbonate formations. Traps are structural or structural and stratigraphic, and reservoir seals are indurated or clayey valley fill, weathered tuff, and shales in Tertiary sediments. Reservoir temperatures range between 95 and 309{degree}F. Previous workers have identified a statistically significant positive correlation between hydrocarbon microseepage and vegetation anomalies over the Railroad Valley oil fields with Landsat Multispectral Scanner (MSS) imagery. Several flight lines of high spectral and spatial resolution imagery in the visible, near infrared, shortwave infrared, and thermal infrared regions of the spectrum were flown with Geoscan's MkII Airborne Multispectral Scanner to determine if there was a mineralogical signature associated with the oil fields. The 24-channel scanner collected 8-m resolution picture elements over a swath of about 8 km. Image processing strategies were developed from a knowledge of the spectral curves of minerals in the laboratory. The results from processing Geoscans MkII data were also compared with those obtained from processing Landsat Thematic Mapper (TM) imagery over the same area. An 8 {times} 6 km carbonate and iron anomaly was detected on the processed MkII imagery over the Trap Spring oil field. This anomaly may be related to hot spring activity, reported by other workers, that has formed extensive calcite deposits along faults.

  19. A brief history of oil and gas exploration in the southern San Joaquin Valley of California: Chapter 3 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Takahashi, Kenneth I.; Gautier, Donald L.

    2007-01-01

    The Golden State got its nickname from the Sierra Nevada gold that lured so many miners and settlers to the West, but California has earned much more wealth from so-called “black gold” than from metallic gold. The San Joaquin Valley has been the principal source for most of the petroleum produced in the State during the past 145 years. In attempting to assess future additions to petroleum reserves in a mature province such as the San Joaquin Basin, it helps to be mindful of the history of resource development. In this chapter we present a brief overview of the long and colorful history of petroleum exploration and development in the San Joaquin Valley. This chapter relies heavily upon the work of William Rintoul, who wrote extensively on the history of oil and gas exploration in California and especially in the San Joaquin Valley. No report on the history of oil and gas exploration in the San Joaquin Valley would be possible without heavily referencing his publications. We also made use of publications by Susan Hodgson and a U.S. Geological Survey Web site, Natural Oil and Gas Seeps in California (http://seeps.wr.usgs.gov/seeps/index.html), for much of the material describing the use of petroleum by Native Americans in the San Joaquin Valley. Finally, we wish to acknowledge the contribution of Don Arnot, who manages the photograph collection at the West Kern Oil Museum in Taft, California. The collection consists of more than 10,000 photographs that have been scanned and preserved in digital form on CD-ROM. Many of the historical photographs used in this paper are from that collection. Finally, to clarify our terminology, we use the term “San Joaquin Valley” when we refer to the geographical or topographical feature and the term “San Joaquin Basin” when we refer to geological province and the rocks therein.

  20. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  1. Potential Exploration, Development, and Production of Oil and Gas Resources, Vandenberg Air Force Base, California

    DTIC Science & Technology

    1987-12-01

    perched groundwater basins not presently developed for water supply, saline groundwater , wastewater treatment plant effluent, produced water from oil field...supply sources are the groundwater basins within the San Antonio Basin (a 500,000-acre-foot basin beneath San Antonio Creek Valley) and the Lompoc...draw their water supply from the Lompoc Valley groundwater basin along the Santa Ynez River. The water quality of the VAFB groundwater supplies is best

  2. Onshore and offshore geologic map of the Coal Oil Point area, southern California

    USGS Publications Warehouse

    Dartnell, Pete; Conrad, James E.; Stanley, Richard G.; Guy R. Cochrane, Guy R.

    2011-01-01

    Geologic maps that span the shoreline and include both onshore and offshore areas are potentially valuable tools that can lead to a more in depth understanding of coastal environments. Such maps can contribute to the understanding of shoreline change, geologic hazards, both offshore and along-shore sediment and pollutant transport. They are also useful in assessing geologic and biologic resources. Several intermediate-scale (1:100,000) geologic maps that include both onshore and offshore areas (herein called onshore-offshore geologic maps) have been produced of areas along the California coast (see Saucedo and others, 2003; Kennedy and others, 2007; Kennedy and Tan, 2008), but few large-scale (1:24,000) maps have been produced that can address local coastal issues. A cooperative project between Federal and State agencies and universities has produced an onshore-offshore geologic map at 1:24,000 scale of the Coal Oil Point area and part of the Santa Barbara Channel, southern California (fig. 1). As part of the project, the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) hosted a workshop (May 2nd and 3rd, 2007) for producers and users of coastal map products (see list of participants) to develop a consensus on the content and format of onshore-offshore geologic maps (and accompanying GIS files) so that they have relevance for coastal-zone management. The USGS and CGS are working to develop coastal maps that combine geospatial information from offshore and onshore and serve as an important tool for addressing a broad range of coastal-zone management issues. The workshop was divided into sessions for presentations and discussion of bathymetry and topography, geology, and habitat products and needs of end users. During the workshop, participants reviewed existing maps and discussed their merits and shortcomings. This report addresses a number of items discussed in the workshop and details the onshore and offshore geologic map of the Coal Oil

  3. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    SciTech Connect

    Munoz, N.G.; Mompart, L.; Talukdar, S.C.

    1996-08-01

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  4. Giant oil fields of the Gulf Coast area

    SciTech Connect

    Haeberle, F.R.

    1993-09-01

    The 134 giant fields in the Gulf Coastal area contain 29% of the total giant-field reserves. Cumulative production is 32% of the giant-field cumulative total and 20% of the United States cumulative production. Eighty-nine of the giant fields are offshore with 22% of the reserves, 11 fields are in east Texas with 24% of the reserves, and 1 field is in Florida with 1% of the reserves. In 106 of the giant fields the primary producing interval is Cenozoic with 65% of the reserves, and in 28 giant fields the producing interval is Mesozoic with 35% of the reserves. The primary producing interval is Mesozoic with 35% of the reserves. The primary producing interval in 124 giant fields consists of clastics with 91% of the reserves, in 7 fields the primary lithology is carbonates with 6% of the reserves, and in 3 giant fields the lithology is mixed clastics and carbonates. A total of 127 fields are in structural traps with all of the reserves, 4 fields are stratigraphic traps (3%) with 18% of the reserves, and 3 fields are combination traps with 1% of the reserves. Over 50 of the giant oil fields in structural traps are salt domes. The most prevalent types of giant fields in the Gulf Coastal area are onshore structural traps with Cenozoic clastics as the primary producing intervals.

  5. Stratigraphy of Citronelle Oil Field, AL: Perspectives from Enhanced Oil Recovery and Potential CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Pashin, J. C.; Kopaska-Merkel, D. C.; Esposito, R. A.

    2008-12-01

    The Citronelle Dome is a giant salt-cored anticline in the eastern Mississippi Interior Salt Basin of south Alabama. The dome forms an elliptical structural closure containing multiple opportunities for enhanced oil recovery (EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle Oil Field, which is on the crest of the dome, has produced more than 168 MMbbl of 42° gravity oil from marginal marine sandstone in the Lower Cretaceous Donovan Sand. Recently, EOR field tests have begun in the northeastern part of the oil field. Citronelle Unit B-19-10 #2 well (Alabama State Oil and Gas Board Permit No. 3232) will serve as the CO2 injector for the first field test. CO2 will be injected into the Upper Donovan 14-1 and 16-2 sandstone units. All well logs in the 4-square-mile area surrounding the test site have been digitized and used to construct a network of nineteen stratigraphic cross sections correlating Sands 12 through 20A in the Upper Donovan. Detailed study of Citronelle cores has shown that depositional environments in the Donovan Sand differed significantly from the earlier model that has guided past development of the Citronelle Field. The cross sections demonstrate the extreme facies heterogeneity of the Upper Donovan, and this heterogeneity is well expressed within the five-spot well pattern where the field test will be conducted. Many other features bearing on the performance of the CO2 injection test have been discovered. Of particular interest is the 16-2 sand, which is interpreted as a composite of two tiers of channel fills. Pay strata are typically developed in the lower tier, and this is where CO2 will be injected. The upper tier is highly heterogeneous and is interpreted to contain sandstone fills of variable reservoir quality, as well as mudstone plugs.

  6. The Plate Boundary Observatory Student Field Assistant Program in Southern California

    NASA Astrophysics Data System (ADS)

    Seider, E. L.

    2007-12-01

    Each summer, UNAVCO hires students as part of the Plate Boundary Observatory (PBO) Student Field Assistant Program. PBO, the geodetic component of the NSF-funded EarthScope project, involves the reconnaissance, permitting, installation, documentation, and maintenance of 880 permanent GPS stations in five years. During the summer 2007, nine students from around the US and Puerto Rico were hired to assist PBO engineers during the busy summer field season. From June to September, students worked closely with PBO field engineers to install and maintain permanent GPS stations in all regions of PBO, including Alaska. The PBO Student Field Assistant Program provides students with professional hands-on field experience as well as continuing education in the geosciences. It also gives students a glimpse into the increasing technologies available to the science community, the scope of geophysical research utilizing these technologies, and the field techniques necessary to complete this research. Students in the PBO Field Assistant Program are involved in all aspects of GPS support, including in-warehouse preparation and in-field installations and maintenance. Students are taught practical skills such as drilling, wiring, welding, hardware configuration, documentation, and proper field safety procedures needed to construct permanent GPS stations. These real world experiences provide the students with technical and professional skills that are not always available to them in a classroom, and will benefit them greatly in their future studies and careers. The 2007 summer field season in Southern California consisted of over 35 GPS permanent station installations. To date, the Southern California region of PBO has installed over 190 GPS stations. This poster presentation will highlight the experiences gained by the Southern California student field assistants, while supporting PBO- Southern California GPS installations in the Mohave Desert and the Inyo National Forest.

  7. Ozone formation along the California-Mexican border region during Cal-Mex 2010 field campaign

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bei, Naifang; Zavala, Miguel; Molina, Luisa T.

    2014-05-01

    The purpose of this study is to evaluate the ozone (O3) formation along the California-Mexico border region using the WRF-CHEM model in association with the Cal-Mex 2010 field campaign. Four two-day episodes in 2010 are chosen based on plume transport patterns: 1) May 15-16 (plume north), 2) May 29-30 (plume southwest), 3) June 4-5 (plume east), and 4) June 13-14 (plume southeast). Generally, the predicted O3 spatial patterns and temporal variations agree well with the observations at the ambient monitoring sites in the San Diego-Tijuana region, but in the Calexico-Mexicali region, the model frequently underestimates the observation. In the San Diego-Tijuana region, the morning anthropogenic precursor emissions in the urbanized coastal plain are carried inland and mixed with the local biogenic emissions during transport, causing the high O3 level over the mountain region. Biogenic emissions enhance the O3 concentrations by up to 40 ppb over the mountain region in the afternoon. The factor separation approach is used to evaluate the contributions of trans-boundary transport of emissions from California and Baja California to the O3 level in the California-Mexico border region. The Baja California emissions play a minor role in the O3 formation in the San Diego region and do not seem to contribute to the O3 exceedances in the region, but have large potential to cause O3 exceedances in the Calexico region. The California emissions can considerably enhance the O3 level in the Tijuana region. Generally, the California emissions play a more important role than the Baja California emissions on O3 formation in the border region (within 40 km to the California-Mexico border). On average, the O3 concentrations in the border region are decreased by 2-4 ppb in the afternoon due to the interactions of emissions from California and Baja California. Further studies need to be conducted to improve the sea breeze simulations in the border region for evaluating O3 formation.

  8. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  9. Bird use of fields treated postharvest with two types of flooding in Tulare Basin, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Skalos, Daniel A.; Farinha, Melissa A.

    2012-01-01

    We surveyed birds on grain and non-grain fields in the Tulare Basin of California treated post-harvest with two types of flooding that varied in duration and depth of water applied (Flooded-type fields [FLD]: 1 week; Irrigated-type fields [IRG]: 1 week) flooding increased waterbird use of grain fields in the Tulare Basin more than in the northern Central Valley. Thus, even though water costs are high in the Tulare Basin, if net benefit to waterbirds is considered, management programs that increase availability of FLD-type fields (especially grain) in the Tulare Basin may be a cost-effective option to help meet waterbird habitat conservation goals in the Central Valley of California.

  10. Bird mortality in oil field wastewater disposal facilities.

    PubMed

    Ramirez, Pedro

    2010-11-01

    Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980's. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife.

  11. Bird Mortality in Oil Field Wastewater Disposal Facilities

    NASA Astrophysics Data System (ADS)

    Ramirez, Pedro

    2010-11-01

    Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980’s. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife.

  12. Toxicology of oil field pollutants in cattle: a review.

    PubMed

    Coppock, R W; Mostrom, M S; Khan, A A; Semalulu, S S

    1995-12-01

    Cattle are poisoned by petroleum and substances used in drilling and operating oil and gas wells. The most common reported route of exposure for non-gaseous material is oral. Exposures occur when the petroleum or chemicals used in oil and gas field activities are available to cattle and when water and feed-stuffs are contaminated. Cattle, as a leisure activity, explore and ingest crude oil. Based on morbidity patterns in cattle herds, the amount of toxic substance ingested is variable. When water and feedstuffs are contaminated, a larger number in a herd generally are affected. Cattle have been poisoned by a wide variety of chemical mixtures. For substances high in volatile hydrocarbons, the lung is a target organ. Hydrocarbons also target the kidney, liver and brain. Exposure-linked abortions have been reported in cattle. Diethylene glycol targets the brain, liver and kidney. The reported threshold dose of unweathered oil for cattle ranges from 2.5 to 5.0 ml/kg bw, and the reported threshold dose for weathered oil is 8.0 ml/kg.

  13. The University of California Institute of Environmental Stress Marathon Field Studies

    ERIC Educational Resources Information Center

    Maron, Michael B.

    2014-01-01

    In 1973, the Institute of Environmental Stress of the University of California-Santa Barbara, under the direction of Steven M. Horvath, began a series of field and laboratory studies of marathon runners during competition. As one of Horvath's graduate students, many of these studies became part of my doctoral dissertation. The rationale for…

  14. Geology and geochemistry of crude oils, Bolivar Coastal Fields, Venezuela

    SciTech Connect

    Bockmeulen, M.; Barker, C.; Dickey, P.A.

    1983-02-01

    The Bolivar Coastal Fields (BCF) are located on the eastern margin of Lake Maracaibo, Venezuela. They form the largest oil field outside of the Middle East and contain oil which is mostly heavy with a gravity less than 22/sup 0/ API. Lake Maracaibo is now in an intermontane basin enclosed on three sides by the Andes Mountains. The area has a complex history and tectonic movement continues today. In the Cretaceous, the area was part of the platform of a large geosyncline, but by the Eocene it was near a coast where a series of large sandy deltas was deposited, with terrestrial sediments on the south and thick marine shales on the north. At this time, conditions for oil generation in the shales and migration to the sands were established, but the subsequent Oligocene faulting, uplift, and erosion may have allowed meteoric water to penetrate into reservoirs. During the Miocene and Pliocene, the basin was tilted first west and then south, and filled with continental sediments from the rising Andes. Tilting is still continuing and oil is moving up along the Oligocene unconformity, forming surface seeps.

  15. Monitoring Microseismicity in a Carbonate Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Lazki, A.; Al-Hashmi, S.; Al-Toubi, K.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Kindy, F.; Ibi, O.

    2006-12-01

    Microseismicity was monitored continuously for 2003 and 2004 years using shallow downhole seismic network in a carbonate oil field in Northern Oman. A total of 406 microearthquake events were analyzed to assess events location relative to producing horizons. The depth of the microearthquakes ranges from 0 to 2.95 km below the ground surface. The events location is confined to the carbonate reservoir boundary and temporally correlates well with the gas production, total fluid productions and water injection for the 2003 year. There is no temporal correlation between oil production and seismic activity for the 2003. Direct month to month temporal correlation is not apparent between any of oil, gas, fluid productions/water injections and the microseismic activity for the 2004 year. However, a strong temporal correlation between gas production and the number of events and an improved correlation between the oil production and the number of events were obtained when applying a time lag of one month. The focal plane solutions for the largest events in the 2003 indicate normal faulting with extensional stress is in the NW-SE directions. The spatial and temporal distribution of seismic events in the carbonate field fit the characteristics of reservoir induced seismicity and the triggering mechanism can be explained by the Mohr envelope criterion. This indicates that the reservoir layers are critically stressed and the pore pressure is changing at variable rate.

  16. Confirmatory Survey of the Fuel Oil Tank Area - Humboldt Bay Power Plant, Eureka, California

    SciTech Connect

    ADAMS, WADE C

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  17. Using Oil and Gas Well Log Records to Understand Possible Connections Between Wastewater Injection Zones and Usable Groundwater Aquifers in California

    NASA Astrophysics Data System (ADS)

    Shimabukuro, D.; Haugen, E. A.; Battistella, C.; Treguboff, E. W.; Kale, J. M.

    2015-12-01

    Although the disposal of produced water in wastewater injection wells has been occurring in California for decades, it is not clear whether injected fluids may be migrating into usable groundwater aquifers. One problem is the poor characterization of federally-protected (<10,000 ppm TDS) water in the state. Another is the lack of publically-accessible information about the hydrological properties of confining strata adjacent to injection zones. In effort to better understand these two problems, we have begun studying the archived oil and gas well records collected by the California Division of Oil, Gas, and Geothermal Resources (DOGGR). These scanned records contain two useful sources of information. First, geophysical well logs, such those measuring resistivity and porosity, can be used to determine aquifer salinity. This allows a three-dimensional understanding of the distribution of protected groundwater. Second, driller's logs contain lithological descriptions at depth. These lithologies can be used to construct a three-dimensional texture model, which can then be used in a groundwater flow model. A large number of undergraduate researchers at CSU Sacramento and CSU Long Beach have been collecting information on well records in the Ventura Basin and the Southern San Joaquin Valley. Each well record is examined with basic metadata entered into an online database in an effort to identify appropriate geophysical well logs and driller's logs. High-quality driller's logs are coded and used to create three-dimensional framework models for each well field. The geophysical logs are digitized and will be used to determine aquifer salinity. In addition, we are using information from the DOGGR well records to investigate wellbore integrity, waste disposal and waterflood injection volumes, and the possibility of induced seismicity. This project is part of the broader effort of the California State Water Resources Control Board to implement Senate Bill 4.

  18. Niger delta oil production, reserves, field sizes assessed

    SciTech Connect

    Thomas, D.

    1995-11-13

    The article presents tables and figures showing the reserve estimates and production histories of the 252 fields in the Niger delta, then makes forecasts of the likelihood of discoveries above a given size. The paper discusses oil reserves, development programs, drilling and 3D seismic surveying, secondary and tertiary EOR, reserve incentives, production facilities, capital spending required, Nigerian export blends, and the trend in these blends.

  19. Surface reclamation of the Big Lake oil field

    SciTech Connect

    Weathers, M.L. ); Moore, K.R. ); Ford, D.L. ); Curlee, C.K. )

    1994-03-01

    Since the discovery of 1 Santa Rita in 1923, millions of barrels of salt water have been produced along with 135 million bbl of oil from the Big Lake oil field in Reagan County, Texas. Until the early 1960s, the accepted disposal method for the produced water was surface discharge to a large evaporation pond north of the field. Produced water was allowed to flow from wells to the pond via natural topographic drainage. This practice resulted in 2000 ac of eroded, barren landscape, characterized by highly saline soils incapable of supporting vegetation. In 1989, the University of Texas System, the U.S. Soil Conservation Service, and Marathon Oil Company, which acquired Big Lake field in 1962, initiated an experimental project to reclaim the affected land and restore rangeland productivity. An underground drainage system, consisting of 125,000 ft of buried drainage conduit and eight collection sumps, was installed over 205 ac of the affected area. Earthen terraces were constructed to capture and hold rain water to facilitate downward percolation and leaching of salts from the soil profile. Salts leached from the soil are captured by the drainage system and pumped to injection wells for disposal. The excellent revegetation that has occurred over the test area after three years of operations is encouraging and has shown the need for expanding and enhancing the existing system with supplemental water from fresh water wells, application of soil-amending agents, additional terracing, and selective planting with salt-tolerant species.

  20. Assessment of past, present, and future risks of oil spills in and near the present sea otter range in California. Final report

    SciTech Connect

    Tinney, R.T. Jr

    1983-06-01

    In 1977 the U.S. Fish and Wildlife Service listed the Sea Otter in California as a threatened species, primarily because of the potential risk posed to the population by oil spills. This report examines the extent of the oil spill risk as it existed in 1977, as it exists now, and as it is expected to exist in 1988. Included are risk-related factors such as offshore oil exploration, development, production, and transportation, oil spill response capability, coastwise transportation of crude oil and refined products, and improved offshore technology.

  1. Review of mineral estate of the United States at Naval Petroleum Reserve No. 2, Buena Vista Hills Field, Kern County, California

    SciTech Connect

    1996-08-09

    The purpose of this report is to present this Consultant`s findings regarding the nature and extent of the mineral estate of the United States at National Petroleum Reserve No. 2 (NPR-2), Buena Vista Hills Field, Kern County, California. Determination of the mineral estate is a necessary prerequisite to this Consultant`s calculation of estimated future cash flows attributable to said estate, which calculations are presented in the accompanying report entitled ``Phase II Final Report, Study of Alternatives for Future Operations of the Naval Petroleum and Oil Shale Reserves, NPR-2, California.`` This Report contains a discussion of the leases in effect at NPR-2 and subsequent contracts affecting such leases. This Report also summarizes discrepancies found between the current royalty calculation procedures utilized at NPR-2 and those procedures required under applicable agreements and regulations. Recommendations for maximizing the government`s income stream at NPR-2 are discussed in the concluding section of this Report.

  2. Plans for first oil production revived in two Sudanese fields

    SciTech Connect

    Not Available

    1993-05-03

    A Vancouver, British Columbia, independent and its Sudanese partner have filed a development plan with the government of Sudan to produce an initial 40,000 b/d from Heglig and Unity oil fields in Sudan. Arakis Energy Corp., and the private Sudanese company State Petroleum Corp. (SPC) want to begin the first commercial hydrocarbon production in the destitute, war torn country. They are picking up where Chevron Corp. left off after years of grappling with an ambitious, costly - and ultimately futile - effort to export crude-oil from Sudan. After finding almost 300 million bbl of oil in Sudan during the early 1980s, Chevron scuttled a $2 billion project to export 50,000 b/d of Sudanese crude in 1986. It drilled 90 wells and sank more than $1 billion into the project. But it dropped the plan, citing the 1986 collapse of oil prices and concerns over security after repeated guerrilla attacks delayed work. The paper details the project.

  3. Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Bunch, T. E.

    1976-01-01

    Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field.

  4. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  5. Greater Burgan of Kuwait: world's second largest oil field

    SciTech Connect

    Youash, Y.Y.

    1989-03-01

    Greater Burgan (Main burgan, Magwa, and Ahmadi) field is located in the Arabian Platform geologic province and the stable shelf tectonic environment of the Mesopotamian geosyncline, a sedimentary basin extending from the Arabian shield on the west to the complexly folded and faulted Zagros Mountains on the east. The structural development in Cretaceous time represents a major anticlinorium bounded by a basin to the west and a synclinorium to the east. Greater Burgan is located within this anticlinorium. The field consists of three dome structures 25 km wide and 65 km long with gentle dips of only few degrees. Faults have little throw and did not contribute to the trapping mechanism. The structural deformation may have been caused by halokinetic movements and most likely by basement block faulting that may have started in the Paleozoic. Greater Burgan was discovered in 1938. All production during the last 40 years has been by its natural pressure. Although natural gas injection has been carried out for some time, no waterflooding has been initiated yet. Recoverable reserves of the field are 87 billion bbl of oil. During the last 5 years giant reserves have been added in this field from the deeper strata of Jurassic age. Several deep wells have been drilled to the Permian for the purpose of discovering gas. So far, no Permian gas has been found in Kuwait. The Permian is 25,000 ft deep, and it is unlikely gas will be found there in the future. However, the potential of the Jurassic reservoirs will be a major target in the future. Also, there is a great possibility of discovering oil in stratigraphic traps, as several producing strata in the nearby fields pinch out on the flanks of this giant structure. Enhanced oil recovery should add significant reserves in the future.

  6. Environmental contaminants in oil field produced waters discharged into wetlands

    SciTech Connect

    Ramirez, P. Jr.

    1994-12-31

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 {mu}g/g, followed by Custer Lake, 1.104 {mu}g/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake`s closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons.

  7. Potential for oil mining at Elk Basin oil field, Wyoming-Montana

    SciTech Connect

    Ayler, M.F.; Brechtel, C.

    1987-08-01

    By using the teachings of two US Patents, 4,458,945 and 4,595,239, it is possible to place mine workings below the Frontier sands of the Elk basin field, drill upward safely into the reservoir, and produce by gravity added to any present drive system. The patents describe equipment and a way of drilling upward with all cuttings and fluids flowing into a closed pipeline system for surface discharge. A final casing can be cemented into place and the well completed, again with all production into a closed pipeline. This system would permit field pressure control and maintenance with gravity drainage. Wells could be placed on one-acre spacing or less, thus producing much of the oil normally lost between surface wells. An analysis will be presented of probable mining costs for development of the Elk basin oil field on one-acre spacing. Petroleum engineers will then be able to estimate for themselves which method has the most profit potential and maximum recovery - the present systems or oil recovery by mining.

  8. Well blowout rates in California Oil and Gas District 4--Update and Trends

    SciTech Connect

    Jordan, Preston D.; Benson, Sally M.

    2009-10-01

    Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

  9. Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters

    PubMed Central

    Beeder, Janiche; Nilsen, Roald Kåre; Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1994-01-01

    A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75°C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 μm wide. The temperature for growth was between 60 and 85°C with an optimum of 76°C. Lactate, pyruvate, and valerate plus H2 were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO2. The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO2 via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F420 was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85°C and contribute to hydrogen sulfide formation in this environment. Images PMID:16349231

  10. Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide.

    PubMed

    Li, Dongmei; Midgley, David J; Ross, Jason P; Oytam, Yalchin; Abell, Guy C J; Volk, Herbert; Daud, Wan Ata Wan; Hendry, Philip

    2012-06-01

    Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.

  11. MENTOR-BASED EFFORT TO ADVANCE IMPLEMENTATION OF PREFERRED MANAGEMENT PRACTICES (PMPS) FOR OIL PRODUCERS IN SOUTH MIDCONTINENT (OKLAHOMA/ARKANSAS) AND WEST COAST (CALIFORNIA) REGIONS

    SciTech Connect

    Donald F. Duttlinger; E. Lance Cole

    2004-12-01

    The Petroleum Technology Transfer Council (PTTC) and cooperating Regional Lead Organizations (RLOs) in its South Midcontinent (Oklahoma Geological Survey, Norman, Oklahoma) and West Coast (University of Southern California, Los Angeles, California) regions conducted a ''Mentor-Based Effort to Advance Implementation of Preferred Management Practices (PMPs) For Oil Producers'' (DE-FC26-01BC15272) under an award in Phase I of Department of Energy's (DOE's) PUMP (Preferred Upstream Management Practices) program. The project's objective was to enable producers in California, Oklahoma and Arkansas to increase oil production, moderating or potentially reversing production declines and extending the life of marginal wells in the near term. PTTC identified the primary constraints inhibiting oil production through surveys and PUMPer direct contacts in both regions. The leading common constraint was excess produced water and associated factors. Approaches for addressing this common constraint were tailored for each region. For Oklahoma and Arkansas, the South Midcontinent Region developed a concise manual titled ''Produced Water And Associated Issues'' that led to multiple workshops across the region, plus workshops in several other regions. In California, the West Coast Region leveraged PUMP funding to receive an award from the California Energy Commission for $300,000 to systematically evaluate water control solutions for the California geological environment. Products include still-developing remedial action templates to help producers identify underlying causes of excess water production and screen appropriate solutions. Limited field demonstrations are being implemented to build producer confidence in water control technologies. Minor leverage was also gained by providing technology transfer support to a Global Energy Partners project that demonstrated affordable approaches for reducing power consumption. PTTC leveraged PUMP project results nationally through expanding

  12. Tests of Oil Recovery Devices in Broken Ice Fields. Phase I.

    DTIC Science & Technology

    conducted with both devices in broken fresh water ice and salt water ice, with No. 2 diesel oil and a crude oil selected to closely match the...properties of Prudhoe Bay crude oil , at temperatures of +25F and +15F. These tests demonstrated that with minor hardware modifications and the proper...operating procedures, both devices will successfully recover crude oil and No. 2 diesel oil spilled in a broken ice field of moderate icepiece size.

  13. Generating capacity of the Heber geothermal field, California

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1983-12-01

    Using numerical simulation techniques and the radial model developed for the study of the natural state of the Heber field (Lippmann and Bodvarsson, 1983b), the response of this geothermal system to exploitation is analyzed. In this study the generation rate in the field is allowed to build up over a period of 10 years; after that, 30 years of constant power production is assumed. Full (100%) injection of the spent brines is considered, the fluids being injected 2250 m (near injection) or 4250 m (far injection) from the center of the system. The study shows that a maximum of 6000 kg/s (equivalent to approximately 300 MW/sub e/) of fluids may be produced for the near injection case, but only 3000 kg/s (equivalent to approximately 150 MW/sub e/) for the far injection case. The results indicate that the possible extraction rates (generating capacity) generally are limited by the pressure drop in the reservoir. The average temperature of the produced fluids will decline 10 to 18/sup 0/C over the 40-year period.

  14. Biodegradation of clomazone in a California rice field soil: carbon allocation and community effects.

    PubMed

    Tomco, Patrick L; Holmes, William E; Tjeerdema, Ronald S

    2013-03-20

    Degradation pathways for the herbicide clomazone in a California rice field soil were characterized via pulse-labeling of anaerobic (flooded) and aerobic (moist) soil microcosms. Clomazone-derived (13)C in the major C pools of a rice ecosystem and soil phospholipid fatty acid (PLFA) profiles were analyzed over time to determine if (1) the compound accumulates in the microbial biomass, (2) it affects temporal microbial population dynamics, and (3) it is either preferentially metabolized or cometabolized. In anaerobic microcosms, the compound was rapidly biotransformed to ring-open clomazone, upon which it persisted in the aqueous phase, whereas aerobic microcosms degraded it slower but a greater percentage was mineralized. Anaerobic biomass decreased after clomazone was added, and aerobic actinomycete abundance differed between treatments and controls. Additionally, PLFA and (13)C PLFA were statistically similar between treatment and controls. Thus, microbial cometabolism is likely to be the dominant degrading mechanism governing clomazone fate in California rice fields.

  15. Digital tabulation of stratigraphic data from oil and gas wells in Cuyama Valley and surrounding areas, central California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Bova, Shiera C.; Langenheim, V.E.; Shumaker, Lauren E.; Scheirer, Daniel S.

    2013-01-01

    Stratigraphic information from 391 oil and gas exploration wells from Cuyama Valley, California, and surrounding areas are herein compiled in digital form from reports that were released originally in paper form. The Cuyama Basin is located within the southeasternmost part of the Coast Ranges and north of the western Transverse Ranges, west of the San Andreas fault. Knowledge of the location and elevation of stratigraphic tops of formations throughout the basin is a first step toward understanding depositional trends and the structural evolution of the basin through time, and helps in understanding the slip history and partitioning of slip on San Andreas and related faults.

  16. Premium performance heating oil - Part 2, Field trial results

    SciTech Connect

    Jetter, S.M.; Hoskin, D.; McClintock, W.R.

    1996-07-01

    Limited field trial results of a heating oil additive package developed to minimize unscheduled maintenance indicate that it achieves its goal of keeping heating oil systems cleaner. The multifunctional additive package was developed to provide improved fuel oxidation stability, improved corrosion protection, and dispersency. This combination of performance benefits was chosen because we believed it would retard the formation of sludge, as well as allow sludge already present to be carried through the system without fouling the fuel system components (dispersency should keep sludge particles small so they pass through the filtering system). Since many unscheduled maintenance calls are linked to fouling of the fuel filtering system, the overall goal of this technology is to reduce these maintenance calls. Photographic evidence shows that the additive package not only reduces the amount of sludge formed, but even removes existing sludge from filters and pump strainers. This {open_quotes}clean-up{close_quotes} performance is provided trouble free: we found no indication that nozzle/burner performance was impaired by dispersing sludge from filters and pump strainers. Qualitative assessments from specific accounts that used the premium heating oil also show marked reductions in unscheduled maintenance.

  17. Seismotectonics of the Cerro Prieto Geothermal Field, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Rebollar, C. J.; Reyes, L. M.; Quintanar, L.; Arellano, J. F.

    2002-12-01

    We studied the background seismic activity in the Cerro Prieto geothermal field (CPGF) using a network of 21 digital stations. Earthquakes are located below the exploitation area of the CPGF, between 3 and 12 km depth, within the basement. Earthquakes follow roughly a N30°E trend perpendicular to the Cerro Prieto fault. This activity is located on a horst-like structure below the geothermal field and coincides with the zone of maximum subsidence in the CPGF. Two earthquake swarms occurred along the SE-NW strike of the Cerro Prieto fault and in the neighborhood of the Cerro Prieto volcano. Magnitudes range from -0.3 to 2.5. A Vp/Vs=1.91 ratio of the activity below the volcano suggests a water-saturated medium and/or a partial-melt medium. We calculated 76 focal mechanisms of individual events. On June 1 and September 10, 1999, two earthquakes of Mw 5.2 and 5.3 occurred in the basement at depths of 7.4 and 3.8 km below the CPGF. Maximum peak accelerations above the hypocenter ranged from 128.0 to 432.0 cm/s2. Waveform modeling results in a fault geometries given by strike=236°, dip=60°, rake=-58° (normal) and strike=10°, dip=90°, rake=159° (right lateral strike-slip) for the June and September events. Observed triangular source time function of 0.7 seconds and a double source with a total duration of 1.9 seconds for the June and September events were used to calculate the synthetics seismograms. Static stress drops and seismic moments for the June and September events are: Δ\\sigma=82.5 MPa (825 bars), Mo= 7.65x1016 Nm (7.65x1023 dyne-cm) and Δ\\sigma=31.3 MPa (313 bars) and Mo=1.27x1017 Nm (1.27x1024 dyne-cm). These stress drops are typical of continental events rather than stress drops of events originated in spreading centers. We concluded from the focal mechanisms of the background seismicity and June and September 1999 events, that a complex stress environment exits in the CPGF due to the continual thinning of the crust in the Cerro Prieto basin.

  18. Geochemistry of oil-field water from the North Slope

    SciTech Connect

    Kharaka, Y.K.; Carothers, W.W.

    1989-01-01

    Knowledge of the chemical composition of oil-field water is important in understanding the origin and migration of petroleum as well as the water mineral reactions that affect the porosity and permeability of the reservoir rocks. This knowledge is essential in interpreting electric logs and in determining potential pollution, corrosion, and disposal problems of water produced with oil and gas. Finally, the chemical composition of water is an important factor in determining the conditions (temperature, pressure) for the formation of clathrates. This chapter reports detailed chemical analyses of seven formation-water samples from wells within the NPRA and one surface-and two formation-water samples from the Prudhoe Bay oil field. The authors also report {delta}D and {delta}{sup 18}O values for eight of the water samples as well as analyses for gases from six wells. The formation-water samples were obtained from depths ranging from about 700 to 2800 m and from reservoir rocks ranging in age from Mississippian (Lisburne Group) to Triassic. The reservoir rocks are sandstone except for sample 79-AK-5, which was obtained from a limestone interbedded with sandstone. Generally, the pre-Cretaceous sandstone reservoir rocks on the North Slope have a similar mineral composition. Van de Kamp (1979) gave the following description of these sandstones: Quartz (usually monocrystalline) and chert are the major components; carbonate and clay are variable. Carbonate occurs as detrital grains and as cement, siderite being the most common type. Siderite can form as much as 30 percent of the rock. Clay occurs as a common matrix, generally making up less than 10 percent of the rock. Accessory minerals include pyrite, plagioclase, microcline, glauconite, zircon, sphene, tourmaline, and muscovite.

  19. C[sub 7] chemistry of biodegraded Monterey oils from the southwestern margin of the Los Angeles Basin, California

    SciTech Connect

    Kornacki, A.S. ); Mango, F.D. )

    1996-01-01

    Biodegraded Monterey oils in the Los Angeles Basin can be differentiated from unaltered Monterey oils by utilizing new C[sub 7] parameters supplemented with standard geochemical data, such as gas-liquid chromatograms and biological markers. Unaltered oils occur below c. 4000 ft in the Wilmington, Sunset Beach, and Seal Beach fields. These medium-gravity crudes (>25[degrees]API) exhibit high C[sub 7] primary test sum values (0.90-1.00), and contain relatively low concentrations of sulfur (0.3-1.0 wt%). Most of these oils were generated at low temperatures (1 10-115[degrees]C). Heavier crudes in relatively shallow pay zones at the Wilmington and Huntington Beach fields are transformed oils that have undergone various degrees of biodegradation and water washing. The residual biodegraded oils, which contain 1.2-1.9 wt% sulfur, have lower C[sub 7] primary test sum values that range from 0.51 to 0.88, and exhibit disturbed (elevated) C[sub 7] oil-generation temperatures. As expected, the transformed crudes contain low concentrations of the aromatic gasoline-range compounds benzene and toluene (which are relatively soluble in water), and they also are depleted in the normal alkanes and (in cases of severe biodegradation) the isoprenoid isoalkanes and steranes. Furthermore, the values of several other C[sub 7] parameters -- such as ratios between [open quote]gem[close quote] and [open quote]non-gem[close quote] structural configurations of C[sub 7] compounds (e.g., 2,3-DMP/2,2-DMP; 1,2-DMCP/1,1-DMCP) -- demonstrate the degree to which bacteria preferentially metabolize certain gasoline-range compounds in petroleum. These effects must be considered when C[sub 7] source parameters (such as selectivity ratios) are used to perform oil-oil and oil-source rock correlations.

  20. C{sub 7} chemistry of biodegraded Monterey oils from the southwestern margin of the Los Angeles Basin, California

    SciTech Connect

    Kornacki, A.S.; Mango, F.D.

    1996-12-31

    Biodegraded Monterey oils in the Los Angeles Basin can be differentiated from unaltered Monterey oils by utilizing new C{sub 7} parameters supplemented with standard geochemical data, such as gas-liquid chromatograms and biological markers. Unaltered oils occur below c. 4000 ft in the Wilmington, Sunset Beach, and Seal Beach fields. These medium-gravity crudes (>25{degrees}API) exhibit high C{sub 7} primary test sum values (0.90-1.00), and contain relatively low concentrations of sulfur (0.3-1.0 wt%). Most of these oils were generated at low temperatures (1 10-115{degrees}C). Heavier crudes in relatively shallow pay zones at the Wilmington and Huntington Beach fields are transformed oils that have undergone various degrees of biodegradation and water washing. The residual biodegraded oils, which contain 1.2-1.9 wt% sulfur, have lower C{sub 7} primary test sum values that range from 0.51 to 0.88, and exhibit disturbed (elevated) C{sub 7} oil-generation temperatures. As expected, the transformed crudes contain low concentrations of the aromatic gasoline-range compounds benzene and toluene (which are relatively soluble in water), and they also are depleted in the normal alkanes and (in cases of severe biodegradation) the isoprenoid isoalkanes and steranes. Furthermore, the values of several other C{sub 7} parameters -- such as ratios between {open_quote}gem{close_quote} and {open_quote}non-gem{close_quote} structural configurations of C{sub 7} compounds (e.g., 2,3-DMP/2,2-DMP; 1,2-DMCP/1,1-DMCP) -- demonstrate the degree to which bacteria preferentially metabolize certain gasoline-range compounds in petroleum. These effects must be considered when C{sub 7} source parameters (such as selectivity ratios) are used to perform oil-oil and oil-source rock correlations.

  1. Field testing the prototype BNL fan-atomized oil burner

    SciTech Connect

    McDonald, R.; Celebi, Y.

    1995-04-01

    BNL has developed a new oil burner design referred to as the Fan Atomized burner System. The primary objective of the field study was to evaluate and demonstrate the reliable operation of the Fan Atomized Burner. The secondary objective was to establish and validate the ability of a low firing rate burner (0.3-0.4 gph) to fully satisfy the heating and domestic hot water load demands of an average household in a climate zone with over 5,000 heating-degree-days. The field activity was also used to evaluate the practicality of side-wall venting with the Fan Atomized Burner with a low stack temperature (300F) and illustrate the potential for very high efficiency with an integrated heating system approach based on the Fan Atomized Burner.

  2. The value of offshore field experiments in oil spill technology development for Norwegian waters.

    PubMed

    Faksness, Liv-Guri; Brandvik, Per Johan; Daling, Per S; Singsaas, Ivar; Sørstrøm, Stein Erik

    2016-10-15

    The blowout on the Ekofisk field in the North Sea in 1977 initiated R&D efforts in Norway focusing on improving oil spill contingency in general and more specifically on weathering processes and modeling drift and spreading of oil spills. Since 1978, approximately 40 experimental oil spills have been performed under controlled conditions in open and ice covered waters in Norway. The importance of these experimental oil spills for understanding oil spill behavior, development of oil spill and response models, and response technologies are discussed here. The large progress within oil spill R&D in Norway since the Ekofisk blowout has been possible through a combination of laboratory testing, basin studies, and experimental oil spills. However, it is the authors' recommendation that experimental oil spills still play an important role as a final validation for the extensive R&D presently going on in Norway, e.g. deep-water releases of oil and gas.

  3. Well log interpretation of certain geothermal fields in the Imperial Valley, California

    SciTech Connect

    Ershaghi, I.; Abdassah, D.

    1984-03-01

    This study reviews the wireline log responses of some geothermal fields in the Imperial Valley, California. The fields under study include the Heber, the East Mesa, the Brawley, and the Westmoreland. The well logs used in the study did not include all the wireline surveys obtained by the operators. The selected well logs obtained under special arrangements with the operators were chosen to maintain the anonymity of specific well locations but are only representative of each area. Analysis of the well logs indicates that on an individual field basis, the well logs are excellent for correlation purposes. The presence of extremely saline fluids in some fields precludes the monitoring of Q/sub v/ (cation exchange capacity per unit volume) profile for detection of hydrothermally altered zones. The producing sections in all the fields are characterized by low porosity and high resistivity.

  4. University of California, San Diego (UCSD) Sky Imager Cloud Position Study Field Campaign Report

    SciTech Connect

    Kleissl, J.; Urquhart, B.; Ghonima, M.; Dahlin, E.; Nguyen, A.; Kurtz, B.; Chow, C. W.; Mejia, F. A.

    2016-04-01

    During the University of California, San Diego (UCSD) Sky Imager Cloud Position Study, two University of California, San Diego Sky Imagers (USI) (Figure 1) were deployed the U.S. Department of Energy(DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains SGP) research facility. The UCSD Sky Imagers were placed 1.7 km apart to allow for stereographic determination of the cloud height for clouds over approximately 1.5 km. Images with a 180-degree field of view were captured from both systems during daylight hours every 30 seconds beginning on March 11, 2013 and ending on November 4, 2013. The spatial resolution of the images was 1,748 × 1,748, and the intensity resolution was 16 bits using a high-dynamic-range capture process. The cameras use a fisheye lens, so the images are distorted following an equisolid angle projection.

  5. Low-field NMR determinations of the properties of heavy oils and water-in-oil emulsions.

    PubMed

    LaTorraca, G A; Dunn, K J; Webber, P R; Carlson, R M

    1998-01-01

    Low-field (< 50 mT) nuclear magnetic resonance (NMR) well-logging measurements are beginning to be used to obtain estimates of oil viscosity in situ. To build an interpretive capability, we made laboratory T1 and T2 relaxation measurements on a suite of high-density, high-viscosity crude oils. These measurements were also used to estimate oil viscosity and water fraction from T1 and T2 measurements on stable, water-in-oil emulsions. High-density, high-viscosity oils have components that relax faster than can be measured by nuclear magnetic resonance logging tools. This requires corrections to T2 logging measurements for accurate estimates of oil saturation and porosity.

  6. Oil geochemistry study; Blocks III and IV Bachaquedro Field, Lake Maracaibo, Venezuela

    SciTech Connect

    Patterson, B.A.; Villarroel, H.G. de; Rondon, L.

    1996-08-01

    Blocks III and IV Bachaquero, Field, located on the east side of Lake Maracaibo, comprise an area of 40 square kilometers. In 1956 the discovery well penetrated oil saturated sands in a south dipping homoclinal structure. In 1958 production reached a maximum of 245,000 barrels per day of moderate gravity oil from three Miocene age Lagunillas Formation sands, designated as L, M, and N. The Bachaquero Field has experienced production problems including high gas-oil ratios from M and N sands to the north, high water cuts in all three sands to the south, and low production rates in the southeast. In addition, the vertical and lateral continuity of the oil pools are unknown. High resolution gas chromatography and analysis of biological markers was employed in order to resolve the continuity of the oil pools, determine genetic origin of the oils, and shed light on erratic production. Oil in the L sands are vertically discontinuous from oil in the M+N sands. The two oil pools appear laterally continuous within the study area, indicating absence of fault barriers. Well VLD 311, open to both L and M sands, produces a mix of oils, but with a strong contribution from the M sand. Bachaquero Field reservoirs were charged with oil from two different facies of the Upper Cretaceous La Luna or perhaps from La Luna and Colon source rocks as the stratigraphically younger L sands contain less mature oil with a stronger terrigenous imprint than oil the M and N sands.

  7. Tukau Field: Finding new oil in matured and complex field after 20 years of production

    SciTech Connect

    Shariff, M.D.; Ridza, M.; Majid, P.

    1996-12-31

    The Tukau Field is located some 30 km offshore Sarawak, Malaysia. in water depth of about 160 ft. The field, discovered by TK-2 in 1966 found 235 ft net oil sand and 16 ft wet gas sand. After further seismic data acquisition and interpretation, six (6) appraisal wells were drilled from 1973 to 1975 before the field could be commercially developed. The Tukau structure is a structurally complex feature formed as a domal anticlinal uplift, located along the Tukau I Bakau / Baram trend. It is dissected at the shallow level by normal synthetic and antithetic faults. These fault system divide the field into seven (7) fault blocks. The major hydrocarbon accumulations are between 2400 ftss and 7500 ftss and the main prospective sequence consists of fine to very fine grained sand of the upper cycle V of late Miocene age and deposited in a deltaic, fluviomarine, coastal to near shore environment. Development drilling commenced in 1975 with a total of 23 wells. To date a total of nine (9) rounds of development activities were carried out resulting in 55 wells being drilled and nine (9) well jackets installed. In 1975, based on the seismic and well data. the field is estimated to contain some 300 MMSTB of oil. Following subsequent field reviews Incorporating some 50 odd well data and seismic reinterpretation in 1987. the field STOIIP increased to 500 MMST. 3D seismic was acquired in 1992 and field review carried out In 1995 resulted In some development potential and appraisal / exploration opportunities. The appraisal well drilled in October 1995, increased the field STOIIP by some 50 MMSTB. Preliminary evaluation based on geological, engineering and economic information indicated that Tukau field will be further developed with additional well jacket and this will boost the field production by about 50%.

  8. A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California

    USGS Publications Warehouse

    Harden, J.W.

    1982-01-01

    A soil development index has been developed in order to quantitatively measure the degree of soil profile development. This index, which combines eight soil field properties with soil thickness, is designed from field descriptions of the Merced River chronosequence in central California. These eight properties are: clay films, texture plus wet consistence, rubification (color hue and chroma), structure, dry consistence, moist consistence, color value, and pH. Other properties described in the field can be added when more soils are studied. Most of the properties change systematically within the 3 m.y. age span of the Merced River chronosequence. The absence of properties on occasion does not significantly affect the index. Individual quantified field properties, as well as the integrated index, are examined and compared as functions of soil depth and age. ?? 1982.

  9. Oil field waste disposal in salt caverns: An information website

    SciTech Connect

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  10. Indexes of pumps for oil field pumping units

    SciTech Connect

    Ibragimov, E.S.

    1995-07-01

    As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

  11. Chemically bonded phosphate ceramic sealant formulations for oil field applications

    SciTech Connect

    Wagh, Arun S.; Jeong, Seung-Young; McDaniel, Richard

    2008-10-21

    A sealant for an oil or geothermal well capable of setting within about 3 to about 6 hours at temperatures less than about 250.degree. F. for shallow wells less than about 10,000 feet and deep wells greater than about 10,000 feet having MgO present in the range of from about 9.9 to about 14.5%, KH.sub.2PO.sub.4 present in the range of from about 29.7 to about 27.2%, class C fly ash present in the range of from about 19.8 to about 36.3%, class F fly ash present in the range of from about 19.8 to about 0%, boric acid or borax present in the range of from about 0.39 to about 1.45%, and water present in the range of from about 20.3 to about 21.86% by weight of the sealant.A method of sealing wells is disclosed as are compositions for very high temperature wells is disclosed as is a composition for treating oil field wastes.

  12. Geochemical Specific Characters of the Oil and the Origin of the Oil and Gas Fields

    NASA Astrophysics Data System (ADS)

    Gottikh, Rimma; Pisotskiy, Bogdan; Plotnikova, Irina

    2010-05-01

    and porous rocks. The high metal content of carbonaceous substances and their compositional variations governed by homogenisation temperatures of the inclusions suggest that they are not the products of the decomposition of oil fields. The constant presence of uranium in the fluid and its differentiation products allows the tracing of the systems' migration ways from the crystalline basement to oil-saturated reservoir zones of the sedimentary cover The known geochemical properties of bitumen and oil - high platinum content, specific distributions of rare earth elements, that are not characteristic of the upper crust formations, as well as 143Nd/144Nd and 87Sr/86Sr isotopic compounds, which are out of balance with the organic matter of sedimentary rocks - suggest that hydrocarbons are accumulated in the presence of cooling high-alkalinity mafite-ultramafite intrusions. This logically corresponds to the distribution of seismic anomalies and magnetic and gravity fields in the consolidated crust below the various petroleum fields (for example, South Tatarstan and Nepsky arches of the Romashkino and Verkhne-Chonskoye oil fields). The acquired geochemical and thermodynamic characteristics of the reduced fluids and their differentiation products from the crystalline basement and the sedimentary cover of the southern Siberian and eastern East European platforms indicate that these were formed outside of the sedimentary cover and that the migration was directed upwards. The analysis of the magmatic evolution on platforms reveals its alkaline trend due to the impeded degassing of magmatic sources at depth and the inflow of new doses of alkaline fluids or melts into them. Further evolution of the zones of partial melting of the substratum led, in the authors' view, to the generation of oil-forming fluids and their transportation into the Earth's upper crust. Their interaction with the surrounding rocks in turn led to the formation of oil accumulations. Thus, oil is the product

  13. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China

    PubMed Central

    Liang, Yuting; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Wu, Liyou; Zhang, Xu; Li, Guanghe; Zhou, Jizhong

    2011-01-01

    To compare microbial functional diversity in different oil-contaminated fields and to know the effects of oil contaminant and environmental factors, soil samples were taken from typical oil-contaminated fields located in five geographic regions of China. GeoChip, a high-throughput functional gene array, was used to evaluate the microbial functional genes involved in contaminant degradation and in other major biogeochemical/metabolic processes. Our results indicated that the overall microbial community structures were distinct in each oil-contaminated field, and samples were clustered by geographic locations. The organic contaminant degradation genes were most abundant in all samples and presented a similar pattern under oil contaminant stress among the five fields. In addition, alkane and aromatic hydrocarbon degradation genes such as monooxygenase and dioxygenase were detected in high abundance in the oil-contaminated fields. Canonical correspondence analysis indicated that the microbial functional patterns were highly correlated to the local environmental variables, such as oil contaminant concentration, nitrogen and phosphorus contents, salt and pH. Finally, a total of 59% of microbial community variation from GeoChip data can be explained by oil contamination, geographic location and soil geochemical parameters. This study provided insights into the in situ microbial functional structures in oil-contaminated fields and discerned the linkages between microbial communities and environmental variables, which is important to the application of bioremediation in oil-contaminated sites. PMID:20861922

  14. Alkanes in benthic organisms from the Buccaneer oil field

    SciTech Connect

    Middleditch, B.S.; Basile, B.

    1980-06-01

    About 200 g per day of alkanes are present in brine discharged from each of two production platforms in the Buccaneer oil field in the NW Gulf of Mexico. These alkanes disperse rapidly in the water column, so that seawater concentrations of petroleum alkanes in this region are generally very low. They can be taken up to some extent by plankton, fish, and barnacles, but the petroleum alkane concentrations in these organisms are also relatively low. The largest pool of petroleum alkanes is in the surficial sediments, where concentrations of up to 25 ppM are observed, with concentration gradients extending more than 20 m from the production platforms. Organisms are examined which are exposed to these sediments and, for comparison, other specimens from control sites around structures from which there are no discharges.

  15. Magnetotelluric signature of anticlines in Iran's Sehqanat oil field

    NASA Astrophysics Data System (ADS)

    Mansoori, Isa; Oskooi, Behrooz; Pedersen, Laust B.

    2015-07-01

    The magnetotelluric (MT) method has proved to be an effective tool in hydrocarbon exploration especially in areas with geological structures/formations where seismic reflection provides neither good quality data nor images. The Sehqanat oil field located in the sedimentary zone of Zagros in SW of Iran is a typical example. It is covered by the high velocity and heterogeneous formation of Gachsaran, which is exposed at the surface and has a thickness varying from 500 m to more than 2 km in the region. Gachsaran is composed mainly of salt and evaporites overlying, as a cap rock, the Asmari limestone formation which is the main reservoir in all oil fields of Iran along the Zagros range. The main geological interface which is targeted to be imaged with the MT method is the contact between the highly conductive evaporites of the Gachsaran formation and the underlying more resistive carbonates of the Asmari formation. MT data at more than 600 stations along five parallel SW-NE profiles crossing the main geological trend of the study area and transient electromagnetic data over 400 stations to be used for static shift corrections of the MT data were available. Dimensionality and strike analysis of the MT data show dominant two-dimensional (2-D) conditions in almost all sites and periods. The 2-D resistivity models resolved the boundary between Gachsaran and Asmari formations as a transition zone from highly conductive to resistive structures. The Sehqanat anticline has also been delineated throughout the 2-D resistivity sections as a resistive dome-shaped body located in the middle part of the MT profiles. There is a considerable correlation between the 2-D resistivity models and the adjacent 2-D reflection seismic sections so that a more reliable interpretation on the hydrocarbon trap of the Sehqanat anticline can be obtained.

  16. The origin of bajaites from the San Borja Volcanic Field in Baja California Norte, Mexico

    NASA Astrophysics Data System (ADS)

    Bibbins, M.; Castillo, P.; Negrete-Aranda, R.; Canon-Tapia, E.; Alva-Valdivia, L. M.; Garcia-Amador, B. I.

    2014-12-01

    Baja California is a peninsula in western Mexico that was formed through a dynamic tectonic history of convergence, rifting and strike slip motion. At approximately 13 Ma, subduction along the northwestern coast of Mexico stopped, subsequently the Gulf of California opened and strike slip faults formed parallel to the ancient trench. After subduction ended, arc-related magmatism continued as the Baja peninsula was forming until about 2 Ma. The lavas erupting in the peninsula have variable compositions including calc-alkalic and tholeiitic arc basalts and bajaites. The term bajaite is a collective term for the high magnesian andesites and basaltic andesites in Baja California that have adakitic characteristics. Adakites, on the other hand, are arc lavas characterized by high silica content and Sr/Y and La/Yb ratios; these are generally believed to have formed through melting of subducted basaltic crust. The origin of bajaite is controversial. It has been proposed as product of melting of either subducted basaltic crust primarily because of its adakitic characteristics (Saunders et al, 1987) or metasomatized mantle wedge because of its arc lava-like geochemical features (Castillo, 2008); it has also been proposed as a mixture of differentiated and mafic arc lavas (Streck et al, 2007). The composition of bajaite is similar to that of the bulk continental crust and, thus, its true origin can shed light on the mechanism for continental growth. In this study, we use geochemical techniques to resolve some of the controversies surrounding the origin of bajaite. We analyze the petrographic, major element, trace element, and Sr-Nd-Pb isotopic compositions of bajaites from the San Borja Volcanic Field in Baja California Norte, Mexico to better constrain their petrogenetic history and origin.

  17. Final report study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-2, California

    SciTech Connect

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 2 (NPR-2) in Kern County, California. The report that follows is the Phase II Final Report for that study. Additional details are provided in the Addendum (the Phase I Property Description and Fact Finding Report). The key property elements that positively affect the estimated value of NPR-2 include the following: royalty income from producing oil and gas leases, rental income from non-producing oil and gas leases, income from grazing or leasing of grazing rights, potential income from oil and gas leasing on exploratory (or nonprospective) acreage, potential value of trading surface real estate as ranch land for sheep grazing (10,044 acres), and town lots for residential or commercial development (16.7 acres). Key elements that negatively impact the estimated value include: environmental assessment costs, operating budgets, and lease sale expenses.

  18. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  19. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  20. Rice available to waterfowl in harvested fields in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, M.R.; Sharp, D.E.; Gilmer, D.S.; Mulvaney, W.R.

    1989-01-01

    Rice fields in the Sacramento Valley, California were sampled in 1985 and 1986 to determine the weight of rice seed remaining in the fields immediately after harvest and again after the fields were burned. No significant differences were found between years (P>0.05). The pooled mean was 388 kg/ha in harvested fields and 276 kg/ha in burned fields. These values are less than estimates previously available. The values for harvested fields both years were no different (P>0.05) than values obtained by the U.S. Department of Agriculture (USDA). Surveys of rice fields in December both years showed that most fields were left either harvested (26-32%) or burned (37-40%) through the winter. Fields flooded for duck hunting made up 15% of the total. The proportion of fields plowed by December increased from 14% in 1985 to 22% in 1986. Sixty-three percent of all fields that had been flooded for hunting were drained within two weeks after the end of the hunting season. Harvest yield field size levee type (contour, lasered), straw status (spread, windrowed), harvest date, and rice variety did not affect the quantity of seeds remaining after harvest (P>0.05). One harvester model, the Hardy Harvester, left more rice in fields than did others we tested (P<0.001). Specific management programs are recommended to mitigate annual variation in rice seed availability to waterfowl caused by differences in total hectares grown (15% less in 1986) and in the proportion of fields burned and plowed.

  1. PVTX characteristics of oil inclusions from Asmari formation in Kuh-e-Mond heavy oil field in Iran

    NASA Astrophysics Data System (ADS)

    Shariatinia, Zeinab; Haghighi, Manouchehr; Shafiei, Ali; Feiznia, Sadat; Zendehboudi, Sohrab

    2015-04-01

    Incorporating PVT properties and compositional evolution of oil inclusions into reservoir engineering simulator protocols can enhance understanding of oil accumulation, reservoir charge history, and migration events. Microthermometry and volumetric analysis have proven to be useful tools in compositional reconstitution and PT studies of oil inclusions and were used to determine composition, thermodynamic conditions, physical properties, and gas-to-oil ratios of heavy oil samples from Asmari carbonate reservoir in Kuh-e-Mond heavy oil field in Iran. PVT properties were predicted using a PVT black-oil model, and an acceptable agreement was observed between the experiments and the simulations. Homogenization temperatures were determined using microthermometry techniques in dolomite and calcite cements of the Asmari Formation, as well. Based on the homogenization temperature data, the undersaturated hydrocarbon mixture prior to formation of the gas cap migrated with a higher gas-to-oil ratio from a source rock. According to the oil inclusion data, the onset of carbonate cementation occurred at temperatures above 45 °C and that cementation was progressive through burial diagenesis. PVT black-oil simulator results showed that the reservoir pressure and temperature were set at 100 bar and 54 °C during the initial stages of oil migration. Compositional modeling implies that primary and secondary cracking in source rocks were responsible for retention of heavy components and migration of miscible three-phase flow during hydrocarbon evolution. The PT evolution of the petroleum inclusions indicates changes in thermodynamic properties and mobility due to phenomena such as cracking, mixing, or/and transport at various stages of oil migration.

  2. Natural Offshore Oil Seepage and Related Tarball Accumulation on the California Coastline - Santa Barbara Channel and the Southern Santa Maria Basin: Source Identification and Inventory

    USGS Publications Warehouse

    Lorenson, T.D.; Hostettler, Frances D.; Rosenbauer, Robert J.; Peters, Kenneth E.; Dougherty, Jennifer A.; Kvenvolden, Keith A.; Gutmacher, Christina E.; Wong, Florence L.; Normark, William R.

    2009-01-01

    Oil spillage from natural sources is very common in the waters of southern California. Active oil extraction and shipping is occurring concurrently within the region and it is of great interest to resource managers to be able to distinguish between natural seepage and anthropogenic oil spillage. The major goal of this study was to establish the geologic setting, sources, and ultimate dispersal of natural oil seeps in the offshore southern Santa Maria Basin and Santa Barbara Basins. Our surveys focused on likely areas of hydrocarbon seepage that are known to occur between Point Arguello and Ventura, California. Our approach was to 1) document the locations and geochemically fingerprint natural seep oils or tar; 2) geochemically fingerprint coastal tar residues and potential tar sources in this region, both onshore and offshore; 3) establish chemical correlations between offshore active seeps and coastal residues thus linking seep sources to oil residues; 4) measure the rate of natural seepage of individual seeps and attempt to assess regional natural oil and gas seepage rates; and 5) interpret the petroleum system history for the natural seeps. To document the location of sub-sea oil seeps, we first looked into previous studies within and near our survey area. We measured the concentration of methane gas in the water column in areas of reported seepage and found numerous gas plumes and measured high concentrations of methane in the water column. The result of this work showed that the seeps were widely distributed between Point Conception east to the vicinity of Coal Oil Point, and that they by in large occur within the 3-mile limit of California State waters. Subsequent cruises used sidescan and high resolution seismic to map the seafloor, from just south of Point Arguello, east to near Gaviota, California. The results of the methane survey guided the exploration of the area west of Point Conception east to Gaviota using a combination of seismic instruments. The

  3. Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry

    USGS Publications Warehouse

    Massonnet, D.; Holzer, T.; Vadon, H.

    1997-01-01

    Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.

  4. 76 FR 22422 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease CACA 49187, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... Bureau of Land Management Notice of Proposed Reinstatement of Terminated Oil and Gas Lease CACA 49187... terminated oil and gas leases. SUMMARY: Under the provisions of 30 U.S.C. 188(d) and (e), and 43 CFR 3108.2-3... gas lease CACA 49187 from Gasco Production Co. The petition was filed on time and was accompanied...

  5. Leakage diffusion of underwater crude oil in wind fields.

    PubMed

    Chen, Liqiong; Liu, Qi; Li, Yunyun; Lu, Rui; Wu, Shijuan; Li, Xin; Hou, Tao

    2016-01-01

    Leakage of underwater crude oil pipes causes severe pollution to soil and water, and results in great economic loss. To predict the diffusion area of spilled oil before it reaches the water's surface and to reduce the time required for emergency response, numerical simulations were conducted on underwater spilled oil diffusion of bare crude oil pipes using FLUENT software. The influences of water-surface wind speed, leakage hole diameter, water velocity, and initial leakage velocity on oil diffusion were analyzed. The results revealed the following: (1) with wind blowing on the surface of the water, the vertical displacement of spilled oil jet-flow was affected by the combined action of water flow and wind, making it difficult for a high-speed jet-flow to form. A horizontal oil flow mostly moved in the direction of the bottom water, and frontier oil droplets dispersed quickly; (2) during the diffusion of spilled oil in water, the maximum horizontal displacement mostly increased linearly, while the maximum vertical displacement initially increased quickly and then slowed; (3) the greater the initial velocity and leakage hole diameter, the higher the oil jet-flow and the wider the diffusion area; the higher the water flow rate and water-surface wind speed, the smaller the vertical displacement of spilled oil. The existence of water-surface wind had no obvious influence on the horizontal displacement of underwater spilled oil.

  6. Lake-bottom sediment composition for the assessment of ecological state of West Siberian oil fields

    NASA Astrophysics Data System (ADS)

    Krasnoyarova, N. A.; Russkikh, I. V.; Strel'nikova, E. B.

    2016-11-01

    The paper presents research findings on the oil composition of Fedorovskoe and Nivagal'skoe, Nizhnevartovskoe and Samotlorskoe (Khanty-Mansi Autonomous Okrug), Verkhtarskoe (Novosibirsk region) fields and also the organic components of bottom sediments of Vachlor, Dolgoe, and Balman Lakes. A comparison is given for hydrocarbon composition in bituminous components of lake-bottom sediments and nearby oil fields. The contribution of crude oils to the organic composition of bottom sediments of Vachlor and Balman Lakes is studied in this paper.

  7. Cleaning method of the oil field wastewater treatment by UF process.

    PubMed

    Wang, J R; Xu, C

    2001-07-01

    This article introduces experiments and researches of polysulphone ultrafiltration membrane's effect on oil field polluted water and approaches renewing oil field polluted water and approaches renewing of membrane's flux by different detergents and cleaning method. Good result has been achieved by doing experiments and the renewal rate of membrane is over 90%.

  8. Evaluation of the potential end use of oils produced by the ROPE copyright process from California tar sand

    SciTech Connect

    Thomas, K.P.; Harnsberger, P.M.

    1989-12-01

    The oil products produced by the rope process from Process Development Unit (PDU) run SPR-111 were evaluated for potential end use. This run was a five-day test using Arroyo Grande tar sand from California as the feed to the PDU. The distillate from knockout {number sign}2 was hydrotreated to produce a series of process intermediates. One of the intermediates was evaluated as a feedstock for the production of transportation fuels. The heavy product oil was distilled to produce a residue that was evaluated as an asphalt. Analysis of a selected process intermediate shows that it is not suitable for the production of gasoline or for use as a gasoline-blending feedstock. The process intermediate was not suitable for the production of aviation turbine fuels because of a high concentration of alkanes. However, the presence of alkanes does make the oil valuable as a feedstock for the production of diesel fuel. The heavy oil product as received from the PDU is not suitable for the production of an asphaltic material because it contains a large amount of very fine solid material. However, after filtration and distillation, the application of ASTM D-3381 specification tests to the +410{degree}C residue shows that all of the requirements are met except for the trichloroethylene solubility requirement. This value is below specification because a small amount of mineral matter was not removed during the filtrations process. Also, the residue had a very high aging index. Results from successive freeze-thaw cycling also show that the residue is comparable to petroleum asphalts when it is coated on the same appropriate aggregate. 14 refs., 8 figs., 8 tabs.

  9. Determinants of field edge habitat restoration on farms in California's Sacramento Valley.

    PubMed

    Garbach, Kelly; Long, Rachael Freeman

    2017-03-15

    Degradation and loss of biodiversity and ecosystem services pose major challenges in simplified agricultural landscapes. Consequently, best management practices to create or restore habitat areas on field edges and other marginal areas have received a great deal of recent attention and policy support. Despite this, remarkably little is known about how landholders (farmers and landowners) learn about field edge management practices and which factors facilitate, or hinder, adoption of field edge plantings. We surveyed 109 landholders in California's Sacramento Valley to determine drivers of adoption of field edge plantings. The results show the important influence of landholders' communication networks, which included two key roles: agencies that provide technical support and fellow landholders. The networks of landholders that adopted field edge plantings included both fellow landholders and agencies, whereas networks of non-adopters included either landholders or agencies. This pattern documents that social learning through peer-to-peer information exchange can serve as a complementary and reinforcing pathway with technical learning that is stimulated by traditional outreach and extension programs. Landholder experience with benefits and concerns associated with field edge plantings were also significant predictors of adoption. Our results suggest that technical learning, stimulated by outreach and extension, may provide critical and necessary support for broad-scale adoption of field-edge plantings, but that this alone may not be sufficient. Instead, outreach and extension efforts may need to be strategically expanded to incorporate peer-to-peer communication, which can provide critical information on benefits and concerns.

  10. Changes in types and area of postharvest flooded fields available to waterbirds in Tulare Basin, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Skalos, Daniel A.; Farinha, Melissa A.

    2013-01-01

    Conservation efforts to restore historic waterbird distribution and abundance in the Central Valley of California require information on current and historic areas of waterbird habitat. To provide this information, we mapped the area of agricultural fields in the vicinity of the historic Tulare Lake Bed in the Tulare Basin, California, that were treated postharvest with two different flooding regimes that varied in depth and duration of water applied (, 1 cm to 1.5 m water for longer than 1 wk [FLD]; , 1 to 15 cm water for 1 wk or less [IRG]) during August–March 1991–1994 and 2005–2006. We compared our results with published estimates for 1976–1980 and 1981–1987. Area and crops treated postharvest with FLD or IRG flooding differed among years and months. Overall for August through March, weekly area of FLD fields averaged 1,671 ha in 1976–1980 but declined to about half that in later years; the decline was most severe during January–March. Cotton was primarily treated with IRG flooding and comprised 47–95% of the total IRG field area. Other crops were primarily treated with FLD flooding; tomato replaced safflower in 2005–2006. These documented declines since the 1970s in area of FLD fields and changes in crops being flooded postharvest reduce the carrying capacity of the Tulare Basin for waterbirds, a situation that will need to be reversed for restoration of historic waterbird distribution in the Central Valley to be viable. If maintaining agricultural production is a priority and agricultural drainage waters can be disposed of safely, then increasing the extent of FLD grain fields would provide the most benefit for wintering waterbirds; otherwise, restoring and providing adequate water supplies to managed wetlands would most benefit waterbirds

  11. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field: Integrated oil inclusion and experimental results

    NASA Astrophysics Data System (ADS)

    Bourdet, Julien; Burruss, Robert C.; Chou, I.-Ming; Kempton, Richard; Liu, Keyu; Hung, Nguyen Viet

    2014-10-01

    In the Phuong Dong gas condensate field, Cuu Long Basin, Vietnam, hydrocarbon inclusions in quartz trapped a variety of petroleum fluids in the gas zone. Based on the attributes of the oil inclusion assemblages (fluorescence colour of the oil, bubble size, presence of bitumen), the presence of a palaeo-oil column is inferred prior to migration of gas into the reservoir. When a palaeo-oil column is displaced by gas, a residual volume fraction of oil remains in pores. If the gas does not completely mix with the oil, molecular partitioning between the residual oil and the new gas charge may change the composition and properties of the residual oil (gas stripping or gas washing). To simulate this phenomenon in the laboratory, we sealed small amounts of crude oil (42 and 30 °API) and excess pure gas (methane, ethane, or propane) in fused silica capillary capsules (FSCCs), with and without water. These mixtures were characterized with the same methods used to characterize the fluid inclusions, heating and cooling stage microscopy, fluorescence spectroscopy, synchrotron FT-IR, and Raman spectroscopy. At room temperature, mixtures of ethane and propane with the 30 °API oil formed a new immiscible fluorescent liquid phase with colour that is visually more blue than the initial oil. The fluorescence of the original oil phase shifted to yellow or disappeared with formation of semi-solid residues. The blue-shift of the fluorescence of the immiscible phases and strong CH stretching bands in FT-IR spectra are consistent with stripping of hydrocarbon molecules from the oil. In experiments in FSCCs with water solid residues are common. At elevated temperature, reproducing geologic reservoir conditions, the fluorescence changes and therefore the molecular fractionation are enhanced. However, the precipitation of solid residues is responsible of more complex changes. Mixing experiments with the 42 °API oil do not form a new immiscible hydrocarbon liquid although the fluorescence

  12. Basement reservoir in Zeit Bay oil field, Gulf of Suez

    SciTech Connect

    Zahran, I.; Askary, S.

    1988-01-01

    Fractured basement, one of the most important reservoirs of Zeit Bay field, contains nearly one-third of oil in place of the field. The flow rates per well vary from 700 to 9,000 BOPD. Due to its well-established production potential, 60% of the wells for the development of the field were drilled down to basement. The Zeit Bay basement consist of granitic rocks of pegmatitic to coarse porphyritic texture and has equal proportions of alkali feldspars. Dykes of various compositions are present, traversing the granite at different intervals. Dykes include aplite, microsyenite, diabase and lamprophyre. The last two pertain to the post-granitic dykes of later Proterozoic age. The main granitic luton is related to one of the final stages of the tectonic-magmatic cycle of the Arabo-Nubian sheild. The Zeit Bay area was a significant paleohigh until the Miocene, hence its structural picture is very complicated due to the impact of different tectonic movements from the late Precambrian to Cenozoic. The resulting structural elements were carefully investigated and statistically analyzed to decipher the influence of various tectonic events. The presence of high porosity in some intervals and low porosity in others could be tied to the presence of new fractures and the nature of cementing minerals. The relation of mineralized fractures and their depths lead to zonation of porous layers in the granitic pluton. Diagenetic processes on the granitic body and the alternation/resedimentation of the diagenetic products controlled the magnitude and amplitude of the porosity layers.

  13. Basement reservoir in Zeit Bay oil field, Gulf of Suez

    SciTech Connect

    Zahran, I.; Askary, S.

    1988-02-01

    Fractured basement, one of the most important reservoirs of Zeit Bay field, contains nearly one-third of oil in place of the field. The flow rates per well vary from 700 to 9,000 BOPD. Due to its well-established production potential, 60% of the wells for the development of the field were drilled down to basement. The Zeit Bay basement consists of granitic rocks of pegmatitic to coarse porphyritic texture and has equal proportions of alkali feldspars. Dykes of various compositions are present, traversing the granite at different intervals. Dykes include aplite, microsyenite, diabase and lamprophyre. The last two pertain to the post-granitic dykes of late Proterozoic age. The main granitic pluton is related to one of the final stages of the tectonic-magmatic cycle of the Arabo-Nubian shield. The Zeit Bay area was a significant paleohigh until the Miocene, hence its structural picture is very complicated due to the impact of different tectonic movements from the late Precambrian to Cenozoic. The resulting structural elements were carefully investigated and statistically analyzed to decipher the influence of various tectonic events. The presence of high porosity in some intervals and low porosity in others could be tied to the presence of new fractures and the nature of cementing minerals. The relation of mineralized fractures and their depths lead to zonation of porous layers in the granitic pluton. Diagenetic processes on the granitic body and the alteration/resedimentation of the diagenetic products controlled the magnitude and amplitude of the porosity layers. A model has been constructed to illustrate the changes in the primary rock texture and structure with sequential diagenetic processes, taking into consideration the fracture distribution and their opening affinities as related to their depths.

  14. Geologic field-trip guide to Lassen Volcanic National Park and vicinity, California

    USGS Publications Warehouse

    Muffler, L. J. Patrick; Clynne, Michael A.

    2015-07-22

    This geologic field-trip guide provides an overview of Quaternary volcanism in and around Lassen Volcanic National Park in northern California. The guide begins with a comprehensive overview of the geologic framework and the stratigraphic terminology of the Lassen region, based primarily on the “Geologic map of Lassen Volcanic National Park and vicinity” (Clynne and Muffler, 2010). The geologic overview is then followed by detailed road logs describing the volcanic features that can readily be seen in the park and its periphery. Twenty-one designated stops provide detailed explanations of important volcanic features. The guide also includes mileage logs along the highways leading into the park from the major nearby communities. The field-trip guide is intended to be a flexible document that can be adapted to the needs of a visitor approaching the park from any direction.

  15. Field Procedures Manual: Shady Rest, California, and Sulphur Springs, New Mexico

    SciTech Connect

    Goff, S.

    1988-12-01

    This Field Procedures Manual is the comprehensive operations guide to be used to curate samples obtained from the Shady Rest site at Mammoth, California, and the Sulphur Springs site at Valles caldera, New Mexico (VC-2A). These sites are diamond drilling projects in small-diameter holes that will produce continuous core. Fluid samples will also be of primary importance at both of these sites. Detailed core and fluid handling procedures are therefore the major focus of this manual. The manual provides a comprehensive operations guide for the well-site geoscientists working at the Department of Energy/Office of Basic Energy Science (DOE/OBES) Continental Scientific Drilling Program (CSDP)/Thermal Regimes drill sites. These procedures modify and improve those in previous DOE/OBES field manuals. 1 ref., 7 figs.

  16. The Impact of Injection on Seismicity at The Geyses, CaliforniaGeothermal Field

    SciTech Connect

    Majer, Ernest L.; Peterson, John E.

    2006-09-25

    Water injection into geothermal systems has often become arequired strategy to extended and sustain production of geothermalresources. To reduce a trend of declining pressures and increasingnon-condensable gas concentrations in steam produced from The Geysers,operators have been injecting steam condensate, local rain and streamwaters, and most recently treated wastewater piped to the field fromneighboring communities. If geothermal energy is to provide a significantincrease in energy in the United States (US Department of Energy (DOE)goal is 40,000 megawatts by 2040), injection must play a larger role inthe overall strategy, i.e., enhanced geothermal systems, (EGS). Presentedin this paper are the results of monitoring microseismicity during anincrease in injection at The Geysers field in California using data froma high-density digital microearthquake array. Although seismicity hasincreased due to increased injection it has been found to be somewhatpredicable, thus implying that intelligent injection control may be ableto control large increases in seismicity.

  17. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields

    SciTech Connect

    Vaganova, N. A.; Filimonov, M. Yu.

    2015-11-30

    A mathematical model, numerical algorithm and program code for simulation and long-term forecasting of changes in permafrost as a result of operation of a multiple well pad of northern oil and gas field are presented. In the model the most significant climatic and physical factors are taken into account such as solar radiation, determined by specific geographical location, heterogeneous structure of frozen soil, thermal stabilization of soil, possible insulation of the objects, seasonal fluctuations in air temperature, and freezing and thawing of the upper soil layer. Results of computing are presented.

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-06

    to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil

  19. Copper removal from oil-field brine by coprecipitation.

    PubMed

    Khosravi, Jafar; Alamdari, Abdolmohammad

    2009-07-30

    The present study aims at investigation of copper removal from oil-field brine by coprecipitation process. The produced brine containing heavy metals is usually returned to the reservoir for water flooding or is discarded to the surroundings. Therefore, surface waters or underground waters may be polluted due to probable contact to these discarded waters. Removal experiments were carried out at room temperature in a bench-scale crystallizer equipped with a draft tube. In order to gain an insight into the influence of soluble compounds in the industrial natural brine on the precipitation process, some comparative experiments were performed both on a sample of natural brine and on a synthetic simulated brine in the absence of natural impurities. A metal removal practice by coprecipitation of copper through CaCO(3) precipitates induced by reaction of Na(2)CO(3) and CaCl(2) reduced the copper concentration (Cu(2+)) from 0.27 ppm in the synthetic brine to 0.06 ppm. This removal of 78% required only 1g of precipitate per 0.15 mg copper metal. Analysis of the experimental results suggested that about 5% of the copper removal from the synthetic brine was through the mechanism of incorporation into the crystal lattice, and around 95% was through the adsorption on the crystal faces.

  20. Case history -- Reddell Oil Field -- Evangeline Parish, Louisiana

    SciTech Connect

    Austin, C.T.

    1996-12-31

    The purpose of this paper is to give the gravity meter credit as the main geophysical method used in the discovery of the Reddell Oil Field in Evangeline Parish, Louisiana. LL&E provided me with gravity data to use in the calculation of a salt model of the Reddell Salt Dome. The purpose of the study was to define the structure so the truncation of three (3) prospective sands in the Wilcox, Lower Eocene could be determined. The interpretation of the Reeddell Dome was complicated by the influence of the nearby Pine Prairie Salt Dome and both had to be modeled. A regional gravity was removed from the Bouguer gravity to give a Residual Gravity Map representing the gravity response to the salt domes. Gamma-gamma density logs were used to determine the density of the sediments and the contrasting densities between the sediments and the consistent salt density. Another input for the computer modeling program was a reference surface; in this case the top of the Louann salt, Lower Jurassic. The digital data are gridded with a square grid that is appropriate for the gravity control. The reference surface becomes a series of prisms whose height is a variable. The modeling program uses an iterative procedure to develop a salt structure whose computed gravity matches the input gravity. The domes were successfully modeled from the gravity and a discovery well was drilled at the Reddell Dome. This dome was later developed along with the Pine Prairie Dome.

  1. Case history -- Reddell Oil Field -- Evangeline Parish, Louisiana

    SciTech Connect

    Austin, C.T. )

    1996-01-01

    The purpose of this paper is to give the gravity meter credit as the main geophysical method used in the discovery of the Reddell Oil Field in Evangeline Parish, Louisiana. LL E provided me with gravity data to use in the calculation of a salt model of the Reddell Salt Dome. The purpose of the study was to define the structure so the truncation of three (3) prospective sands in the Wilcox, Lower Eocene could be determined. The interpretation of the Reeddell Dome was complicated by the influence of the nearby Pine Prairie Salt Dome and both had to be modeled. A regional gravity was removed from the Bouguer gravity to give a Residual Gravity Map representing the gravity response to the salt domes. Gamma-gamma density logs were used to determine the density of the sediments and the contrasting densities between the sediments and the consistent salt density. Another input for the computer modeling program was a reference surface; in this case the top of the Louann salt, Lower Jurassic. The digital data are gridded with a square grid that is appropriate for the gravity control. The reference surface becomes a series of prisms whose height is a variable. The modeling program uses an iterative procedure to develop a salt structure whose computed gravity matches the input gravity. The domes were successfully modeled from the gravity and a discovery well was drilled at the Reddell Dome. This dome was later developed along with the Pine Prairie Dome.

  2. Microseismic monitoring of the Chaveroo oil field, New Mexico

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.; Fairbanks, T.D.; Murphy, M.B.; Roberts, P.M.

    1990-01-01

    Induced microseismicity was monitored in the Chaveroo oil field in southeastern New Mexico during a pressurized stimulation of a well being prepared as an injector for a waterflood operation. In addition, the microseismicity was monitored for 5 weeks following the stimulation while the area was under normal waterflood production. Little seismicity was detected during the 5.5 hour stimulation in which three thousand barrels of water were injected into the reservoir at pressures ranging from 96 to 257 bars in excess of hydrostatic pressure. Intermittent monitoring over the 5-week period indicated detectable seismicity occurred during waterflood production. Monitoring during the 5 weeks, however, was not complete enough to draw general conclusions on temporal variations of observed microseismicity. Seventy-three good quality events recorded over a cumulative 24 hours of intermittent monitoring were located using the hodogram technique. Events were detected at distances up to 1700 m from the monitor well but most occurred within 900 m. The map of microearthquake locations indicated that events occurred in the vicinity of producing wells and away from injection wells. The first half of the sequence of mappable events occurred along linear trends, but the pattern became more scattered during the later half of the sequence. The lack of seismicity during the pressurized injection and the increased seismicity levels occurring away from injection wells during waterflood production, suggest seismicity is not induced by Mohr-Coulomb failure. 6 refs., 6 figs.

  3. Driving mechanism for plunger pumps in oil field installations

    SciTech Connect

    Gazarov, R.E.; Zaslavskii, Yu.V.

    1995-07-01

    Mobile oil field pumping installations of up to 1600 kW power at a pressure up to 140 MPa are widely used in hydraulic fracturing of beds, acid treatment of the near-face zone, cementation of wells, and other flushing and pressure operations. Equipment in these installations, which include high-pressure plunger pumps of high unit capacity, are mounted on mobile bases of limited lifting capacity (KrAZ automobile chassis, T-130 tractors, etc.). Very strict demands are made on the reliability, durability, and mass/size characteristics of the pumps and on all the equipment of the mobile installations. In modern pumps, an axial load of up to 100 tons or more, which is transmitted to the crankshaft, acts on each plunger. The engine of the installation rotates the crankshaft through a multiple-speed transmission and the transmission shaft of the pump. The forces acting on the elements of the driving part of a pump with a connecting rod - crank drive and a single-reduction tooth gear are described.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross

  5. Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996

    SciTech Connect

    Hara, S.

    1996-08-05

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  6. Field investigation of duct system performance in California light commercial buildings

    SciTech Connect

    Delp, W.W.; Matson, N.E.; Tschudy, E.

    1997-12-09

    This paper discusses field measurements of duct system performance in fifteen systems located in eight northern California buildings. Light commercial buildings, one- and two-story with package roof-top HVAC units, make up approximately 50% of the non-residential building stock in the U.S. Despite this fact little is known about the performance of these package roof-top units and their associated ductwork. These simple systems use similar duct materials and construction techniques as residential systems (which are known to be quite leaky). This paper discusses a study to characterize the buildings, quantify the duct leakage, and analyze the performance of the ductwork in these types of buildings. The study tested fifteen systems in eight different buildings located in northern California. All of these buildings had the ducts located in the cavity between the drop ceiling and the roof deck. In 50% of these buildings, this cavity was functionally outside the building`s air and thermal barriers. The effective leakage area of the ducts in this study was approximately 2.6 times that in residential buildings. This paper looks at the thermal analysis of the ducts, from the viewpoint of efficiency and thermal comfort. This includes the length of a cycle, and whether the fan is always on or if it cycles with the cooling equipment. 66% of the systems had frequent on cycles of less than 10 minutes, resulting in non-steady-state operation.

  7. Economic evaluation on CO₂-EOR of onshore oil fields in China

    DOE PAGES

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; ...

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economicmore » method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.« less

  8. Economic evaluation on CO₂-EOR of onshore oil fields in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Dahowski, Robert T.; Davidson, Casie L.; Liu, Shengnan; Zha, Yongjin

    2015-06-01

    Carbon dioxide enhanced oil recovery (CO₂-EOR) and sequestration in depleted oil reservoirs is a plausible option for utilizing anthropogenic CO₂ to increase oil production while storing CO₂ underground. Evaluation of the storage resources and cost of potential CO₂-EOR projects is an essential step before the commencement of large-scale deployment of such activities. In this paper, a hybrid techno-economic evaluation method, including a performance model and cost model for onshore CO₂-EOR projects, has been developed based on previous studies. Total 296 onshore oil fields, accounting for about 70% of total mature onshore oil fields in China, were evaluated by the techno-economic method. The key findings of this study are summarized as follows: (1) deterministic analysis shows there are approximately 1.1 billion tons (7.7 billion barrels) of incremental crude oil and 2.2 billion tons CO₂ storage resource for onshore CO₂-EOR at net positive revenue within the Chinese oil fields reviewed under the given operating strategy and economic assumptions. (2) Sensitivity study highlights that the cumulative oil production and cumulative CO₂ storage resource are very sensitive to crude oil price, CO₂ cost, project lifetime, discount rate and tax policy. High oil price, short project lifetime, low discount rate, low CO₂ cost, and low tax policy can greatly increase the net income of the oil enterprise, incremental oil recovery and CO₂ storage resource. (3) From this techno-economic evaluation, the major barriers to large-scale deployment of CO₂-EOR include complex geological conditions, low API of crude oil, high tax policy, and lack of incentives for the CO₂-EOR project.

  9. Estimating magnetic fields of homes near transmission lines in the California Power Line Study.

    PubMed

    Vergara, Ximena P; Kavet, Robert; Crespi, Catherine M; Hooper, Chris; Silva, J Michael; Kheifets, Leeka

    2015-07-01

    The California Power Line Study is a case-control study investigating the relation between residences near transmission lines and risk of childhood leukemia. It includes 5788 childhood leukemia cases and 5788 matched primary controls born between 1986 and 2007. We describe the methodology for estimating magnetic fields at study residences as well as for characterizing sources of uncertainty in these estimates. Birth residences of study subjects were geocoded and their distances to transmission lines were ascertained. 302 residences were deemed sufficiently close to transmission lines to have non-zero magnetic fields attributable to the lines. These residences were visited and detailed data, describing the physical configuration and dimensions of the lines contributing to the magnetic field at the residence, were collected. Phasing, loading, and directional load flow data for years of birth and diagnosis for each subject as well as for the day of site visit were obtained from utilities when available; when yearly average load for a particular year was not available, extrapolated values based on expert knowledge and prediction models were obtained. These data were used to estimate the magnetic fields at the center, closest and farthest point of each residence. We found good correlation between calculated fields and spot measurements of fields taken on site during visits. Our modeling strategies yielded similar calculated field estimates, and they were in high agreement with utility extrapolations. Phasing was known for over 90% of the lines. Important sources of uncertainty included a lack of information on the precise location of residences located within apartment buildings or other complexes. Our findings suggest that we were able to achieve high specificity in exposure assessment, which is essential for examining the association between distance to or magnetic fields from power lines and childhood leukemia risk.

  10. Upgrading of heavy oil from the San Joaquin Valley of California by aqueous pyrolysis

    SciTech Connect

    Reynolds, J.G.; Murray, A.M.; Nuxoll, E.V.; Fox, G.A.

    1995-10-01

    Midway Sunset crude oil and well-head oil were treated at elevated temperatures in a closed system with the presence of water. Mild to moderate upgrading, as measured by increase in API gravity, was observed at 400{degrees}C or above. Reduced pressure operation exhibited upgrading activity comparable to upgrading under normal aqueous pyrolysis conditions. Reduced pressure operation was obtained by the use of specific blending methods, a surfactant, and the proper amount of water. The use of additives provided additional upgrading. The best of the minimum set tested was Co(II) 2-ethylhexanoate. Fe(III) 2-ethylhexanoate also showed some activity under certain conditions.

  11. INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS

    SciTech Connect

    G.P. Willhite; D.W. Green; C.S. McCool

    2003-05-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in

  12. IMPROVED APPROACHES TO DESIGN OF POLYMER GEL TREATMENTS IN MATURE OIL FIELDS: FIELD DEMONSTRATION IN DICKMAN FIELD, NESS COUNTY, KANSAS

    SciTech Connect

    Ronald Fowler

    2004-11-30

    This report describes the results of the one-year project entitled ''Improved Approaches to Design of Polymer Gel Treatments in Mature Oil Fields: Field Demonstration in Dickman Field, Ness County, Kansas''. The project was a 12-month collaboration of Grand Mesa Operating Company (a small independent), TIORCO Inc. (a company focused on improved recovery technology) and the University of Kansas. The study undertook tasks to determine an optimum polymer gel treatment design in Mississippian reservoirs, demonstrate application, and evaluate the success of the program. The project investigated geologic and engineering parameters and cost-effective technologies required for design and implementation of effective polymer gel treatment programs in the Mississippian reservoir in the Midcontinent. The majority of Mississippian production in Kansas occurs at or near the top of the Mississippian section just below the regional sub-Pennsylvanian unconformity and karst surface. Dickman Field with the extremely high water cuts and low recovery factors is typical of Mississippian reservoirs. Producibility problems in these reservoirs include inadequate reservoir characterization, drilling and completion design problems, and most significantly extremely high water cuts and low recovery factors that place continued operations at or near their economic limits. Geologic, geophysical and engineering data were integrated to provide a technical foundation for candidate selection and treatment design. Data includes core, engineering data, and 3D seismic data. Based on technical and economic considerations a well was selected for gel-polymer treatment (Grand Mesa Operating Company Tilley No.2). The treatment was not successful due to the small amount of polymer that could be injected. Data from the initial well and other candidates in the demonstration area was analyzed using geologic, geophysical and engineering data. Based on the results of the treatment and the integrated reservoir

  13. Water issues associated with heavy oil production.

    SciTech Connect

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  14. Connecting Anthropogenic Seismicity Rates To Operational Parameters At The Salton Sea Geothermal Field, Southern California (Invited)

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Lajoie, L. J.

    2013-12-01

    Geothermal power is generated at several major volcanic fields in California. As efforts to monitor seismicity increase, methods to understand the anthropogenic component need to improve. Ideally, induced earthquake rate should be forecast based on publicly-reported volumes of fluid injection or other operational parameters. At the flash facilities in the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. However, for recent years net fluid volume (extracted-injected) is better correlated with seismicity. After correcting for the variable aftershock rate using an Epidemic-Type Aftershock Sequence model (ETAS), we fit the background earthquake rate with a linear combination of injection and net production rate that allows us to track the secular evolution of the field. The number of earthquakes per fluid volume injected decreases gradually over time. In the Salton Sea Geothermal Field, the new analysis of induced seismicity provides a template for future evaluation of hazard directly based on measureable, controllable operational quantities. The interactions of these anthropogenic events with the larger-scale tectonic and volcanic systems remains to be investigated. Results of the linear model of seismicity based on a combination of net production and injection. (a) Example of observed seismicity rate and model prediction using the reported fluid data and the best-fit linear model. (b) Number of earthquakes triggered per net volume of fluid extracted or total fluid injection.

  15. Long-term Evolution of Seismicity Rates in California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Trugman, D. T.; Shearer, P. M.; Borsa, A. A.; Fialko, Y. A.

    2015-12-01

    The temporal evolution of seismicity rates within geothermal fields provides important observational constraints on the ways in which rocks respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two primary components: (1) the interaction seismicity rate due to earthquake-earthquake triggering, and (2) the time-varying background seismicity rate controlled by other time-dependent stresses, including anthropogenic forcing. We parameterize our seismicity model using an Epidemic-Type Aftershock Sequence (ETAS) framework with a background seismicity rate that varies smoothly with time. We apply our methodology to study long-term changes in seismicity rates at the Geysers and Salton Sea geothermal fields in California. At the Geysers, we find that the background seismicity rate is highly correlated with fluid injection. Seismicity at the Geysers has experienced a rate increase of approximately 50% since year 2000 and exhibits strong seasonal fluctuations, both of which can be explained by changes in fluid injection following the completion of the Santa Rosa pipeline. At the Salton Sea, the background seismicity rate has remained relatively stable since 1990, with short-term fluctuations that are not obviously modulated by fluid fluxes related to the operation of the geothermal field. The differences in the field-wide seismicity responses of the Geysers and Salton Sea to geothermal plant operation may reflect differences in in-situ reservoir conditions and local tectonics, indicating that induced seismicity may not be solely a function of fluid injection and withdrawal.

  16. Morphology and Mixing of Black Carbon Particles Collected in Central California During the CARES Field Study

    SciTech Connect

    Moffet, Ryan; O'Brien, Rachel; Alpert, Peter A.; Kelly, Stephen T.; Pham, Don Q.; Gilles, Mary K.; Knopf, Daniel A.; Laskin, Alexander

    2016-11-23

    Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California central valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using Scanning Transmission X-ray Microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of the particles. Based on the observation of thick coatings and more convex BC inclusion morphology, the contribution of fresh BC emissions at the urban site was relatively small. These measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.

  17. Mercury in freshwater fish and clams from the Cerro Prieto geothermal field of Baja California, Mexico

    SciTech Connect

    Gutierrez-Galindo, E.A.; Munoz, G.F.; Flores, A.A.

    1988-08-01

    Several reports have expressed concern about the potential toxicity hazards and environmental contamination of mercury emissions from geothermal fields in Hawaii, New Zealand, Iceland, California and Mexico. Inorganic mercury discharged from the sources may accumulate in the sediments of rivers or lakes and, after microbiological methylation may become concentrated in the edible tissue of fish. This study involves assessment of geothermal mercury pollution arising from Cerro Prieto. For this purpose the fish Tilapia mossambica and the clam Corbicula fluminea were collected from the freshwater courses of the Mexicali Valley. Reports indicated that in 1982, 13 t of T. mossambica were destinated for human consumption. A further aim was to provide base line data and information relevant to the level of mercury contamination for the Mexicali Valley.

  18. On the origin of oil-field water in the Biyang Depression of China

    NASA Astrophysics Data System (ADS)

    Fu, Yong; Zhan, Hongbin

    2009-09-01

    We have surveyed groundwater samples collected from oil and gas reservoirs in the Biyang Depression of China and quantitatively analyzed the chemical features of those samples using the proportional coefficients. Three different proportional coefficients, namely the de-calcium-magnesium, the boron-calcium-magnesium, and the chloration coefficients have been calculated. These three coefficients reflect the strength of de-calcium-magnesium reaction, the trace elements concentrations, and the degree of diagenesis of the oil-field water, respectively. The concentrations of calcium and magnesium ions are found to be very low in the groundwater of the Biyang Depression. The concentration of anion in the oil-field groundwater changes greatly with the salinity of groundwater in the Biyang Depression. In low salinity oil field, bicarbonate is generally the dominating anion; but when salinity increases, sulfate gradually replaces bicarbonate to become the dominating anion. However, in high salinity oil field, chloride is the dominating anion. Bromine, iodine, and boron are found to be relatively rich in oil-field water of Biyang Depression. The results show that extensive dolomite deposited near the center of the depression was resulted from de-calcium-magnesium reaction, and the degree of diagenesis of the oil-field water and concentrations of trace elements increase with buried depth in the reservoir.

  19. Geology and geothermal origin of Grant Canyon and Bacon Flat Oil Fields, Railroad Valley, Nevada

    SciTech Connect

    Hulen, J.B. ); Goff, F. ); Ross, J.R. ); Bortz, L.C. ); Bereskin, S.R. )

    1994-04-01

    Eastern Nevada's Grant Canyon and Bacon Flat oil fields show strong evidence of formation in a still-active, moderate-temperature geothermal system. Modern manifestations of this system include unusually elevated oil-reservoir temperature at shallow depth, 116-122[degrees]C at 1.1-1.6 km, and dilute Na-HCO[sub 3]Cl thermal waters directly associated with hot oil. Hydrogen and oxygen isotopic compositions indicate that these thermal waters are meteoric in origin, but were probably recharged prior to the Holocene (before 10 ka). The waters apparently ascended to oil-reservoir elevations after deep heating in response to the normal regional thermal gradient; there is no evidence for a modern magmatic heat source. The beginning of oil-reservoir evolution at both fields is recorded by late-stage, fracture-filling quartz in the vuggy, brecciated, Paleozoic dolostone reservoir rocks. Oil and aqueous solutions were trapped as fluid inclusions in the quartz at temperatures comparable to those now prevailing in the reservoirs. Present day and fluid-inclusion temperatures define essentially coincident isothermal profiles through and beneath the oil-reservoir interval, a phenomenon consistent with near-constant convective heat transfer since inception of the geothermal system. Some basin and range oil fields have arisen as valuable byproducts of actively circulating geothermal systems and blending this concept into current exploration stratigies could hasten discovery of the 100 mbbl fields many geologists believe remain to be found in this region. 100 refs., 13 figs., 5 tabs.

  20. Survey of potential geopressured resource areas in California. Final report

    SciTech Connect

    Sanyal, S.K.; Robertson-Tait, A.; Kraemer, M.; Buening, N.

    1993-03-01

    This paper presents the initial results of a survey of the occurrence and characteristics of geopressured fluid resources in California using the publicly- available database involving more than 150,000 oil and gas wells drilled in the State. Of the 975 documented on-shore oil and gas pools studied, about 42% were identified as potentially geopressured. Geothermal gradients in California oil and gas fields lie within the normal range of 1 F to 2 F per 100 feet. Except for the Los Angeles Basin, there was no evidence of higher temperatures or temperature gradients in geopressured pools.

  1. University Differences in the Graduation of Minorities in STEM Fields: Evidence from California. CEP Discussion Paper No. 1223

    ERIC Educational Resources Information Center

    Arcidiacono, Peter; Aucejo, Esteban; Hotz, V. Joseph

    2013-01-01

    The low number of college graduates with science degrees--particularly among underrepresented minorities--is of growing concern. We examine differences across universities in graduating students in different fields. Using student-level data on the University of California system during a period in which racial preferences were in place, we show…

  2. The Validity and Utility of the California Family Risk Assessment under Practice Conditions in the Field: A Prospective Study

    ERIC Educational Resources Information Center

    Johnson, Will L.

    2011-01-01

    Objective: Analysis of the validity and implementation of a child maltreatment actuarial risk assessment model, the California Family Risk Assessment (CFRA). Questions addressed: (1) Is there evidence of the validity of the CFRA under field operating conditions? (2) Do actuarial risk assessment results influence child welfare workers' service…

  3. Enhancement of the TORIS data base of Appalachian basin oil fields. Final report

    SciTech Connect

    1996-01-31

    The Tertiary Oil Recovery Information System, or TORIS, was developed by the Department of Energy in the early 1980s with a goal of accounting for 70% of the nation`s original oil in place (OOIP). More than 3,700 oil reservoirs were included in TORIS, but coverage in the Appalachian basin was poor. This TORIS enhancement project has two main objectives: to increase the coverage of oil fields in the Appalachian basin; and to evaluate data for reservoirs currently in TORIS, and to add, change or delete data as necessary. Both of these objectives have been accomplished. The geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia have identified 113 fields in the Appalachian basin to be included in TORIS that collectively contained 80% of the original oil in place in the basin. Furthermore, data in TORIS at the outset of the project was checked and additional data were added to the original 20 TORIS oil fields. This final report is organized into four main sections: reservoir selection; evaluation of data already in TORIS; industry assistance; and data base creation and validation. Throughout the report the terms pool and reservoir may be used in reference to a single zone of oil accumulation and production within a field. Thus, a field is composed of one or more pools at various stratigraphic levels. These pools or reservoirs also are referred to as pay sands that may be individually named sandstones within a formation or group.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2000-12-06

    either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current thermal operations in the Wilmington Field are economical with low oil prices due to the availability of inexpensive steam from an existing 50 MMBTU/hr steam generator that can utilize non-commercial low Btu produced gas. Such favorable terms for obtaining steam are not expected to be available in the future.

  5. Redistribution of mobile surface charges of an oil droplet in water in applied electric field.

    PubMed

    Li, Mengqi; Li, Dongqing

    2016-10-01

    Most researches on oil droplets immersed in aqueous solutions assume that the surface charges of oil droplets are, similar to that of solid particles, immobile and distributed uniformly under external electric field. However, the surface charges at the liquid-liquid interface are mobile and will redistribute under external electric field. This paper studies the redistribution of surface charges on an oil droplet under the influence of the external electrical field. Analytical expressions of the local zeta potential on the surface of an oil droplet after the charge redistribution in a uniform electrical field were derived. The effects of the initial zeta potential, droplet radius and strength of applied electric field on the surface charge redistribution were studied. In analogy to the mobile surface charges, the redistribution of Al2O3-passivated aluminum nanoparticles on the oil droplet surface was observed under applied electrical field. Experimental results showed that these nanoparticles moved and accumulated towards one side of the oil droplet under electric field. The redistribution of the nanoparticles is in qualitative agreement with the redistribution model of the mobile surface charges developed in this work.

  6. Characterization of dispersion, attenuation, and anisotropy at the Buena Vista Hills field, California

    USGS Publications Warehouse

    Hackert, C.L.; Parra, J.O.; Brown, R.L.; Collier, H.A.

    2001-01-01

    We create a log of intrinsic dispersion and attenuation for the Antelope Shale formation of the Buena Vista Hills field, San Joaquin Valley, California. High dispersion (or low Q) values correlate with thin sand and carbonate beds within the Antelope Shale. These beds are at least ten times as permeable as the host shale formation, so this effect provides a possible avenue for seismic prediction of permeability. The dispersion log is formed through comparison of crosswell seismic velocities (measured at approximately 1 kHz) and sonic log velocities (measured at approximately 10 kHz). In order to provide a proper basis for comparison, the sonic log must first be adjusted for field anisotropy, scaling effects, and resolution of measurement. We estimate a local shale anisotropy of about 20% based on correlations generated from published measurements of other shale fields. We apply resolution enhancement to capture the thin sand and carbonate beds, and windowed Backus averaging to match the measurement scales. A modeling study verifies the technique, and shows that beds of thickness greater than 30 cm have a measurement signature. The actual resolution is on the order of the crosswell Fresnel length, or about 7 m for the model study.

  7. Chemometric differentiation of crude oil families in the San Joaquin Basin, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Coutrot, Delphine; Nouvelle, Xavier; Ramos, L. Scott; Rohrback, Brian G.; Magoon, Leslie B.; Zumberge, John E.

    2013-01-01

    Chemometric analyses of geochemical data for 165 crude oil samples from the San Joaquin Basin identify genetically distinct oil families and their inferred source rocks and provide insight into migration pathways, reservoir compartments, and filling histories. In the first part of the study, 17 source-related biomarker and stable carbon-isotope ratios were evaluated using a chemometric decision tree (CDT) to identify families. In the second part, ascendant hierarchical clustering was applied to terpane mass chromatograms for the samples to compare with the CDT results. The results from the two methods are remarkably similar despite differing data input and assumptions. Recognized source rocks for the oil families include the (1) Eocene Kreyenhagen Formation, (2) Eocene Tumey Formation, (3–4) upper and lower parts of the Miocene Monterey Formation (Buttonwillow depocenter), and (5–6) upper and lower parts of the Miocene Monterey Formation (Tejon depocenter). Ascendant hierarchical clustering identifies 22 oil families in the basin as corroborated by independent data, such as carbon-isotope ratios, sample location, reservoir unit, and thermal maturity maps from a three-dimensional basin and petroleum system model. Five families originated from the Eocene Kreyenhagen Formation source rock, and three families came from the overlying Eocene Tumey Formation. Fourteen families migrated from the upper and lower parts of the Miocene Monterey Formation source rocks within the Buttonwillow and Tejon depocenters north and south of the Bakersfield arch. The Eocene and Miocene families show little cross-stratigraphic migration because of seals within and between the source rocks. The data do not exclude the possibility that some families described as originating from the Monterey Formation actually came from source rock in the Temblor Formation.

  8. 37. SAR2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SAR-2, SHOWING OIL CIRCUIT BREAKERS (ABOVE) AND GENERATOR FIELD COIL CONTROL RHEOSTATS (BELOW). SCE negative no. 10331, November 1, 1923. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  9. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  10. Preliminary compilation of data for selected oil test wells in Northern California

    USGS Publications Warehouse

    Brabb, Earl E.; Powell, Charles L.; Brocher, Thomas M.

    2001-01-01

    Oil test wells can provide information on the depth, age, inclination, porosity, permeability, density, faulting, folding, and organic content of geologic formations mapped at the surface, or on units not recognized in surface outcrops. Formation density, as expressed in sonic and density logs commonly obtained when wells are drilled, has become increasingly important in making a crustal-scale 3-D seismic velocity model for the San Francisco Bay region. This model will be used for the calculation of realistic strong-ground motion synthetic seismograms (Brocher and others, 1997), and to determine the geometry of the basement surface beneath Tertiary basins (Jachens and others, 1997). The availability of this density and other information for oil test wells has, until recently, been restricted for competitive reasons, but several petroleum companies have recently made these data available. Accordingly, we began in 1992 to obtain these data to help prepare new geologic maps and geophysical models for the San Francisco Bay region, and to share the information with the public. This report contains brief descriptions of information and materials available for 1,550 oil exploration and production wells in the following counties: Alameda (42), Butte (31), Colusa (103), Contra Costa (102), Glenn (103), Humboldt (33), Marin (6), Mendocino (2), Merced (33), Monterey (172), Napa (5), Placer (2), Sacramento (72), San Benito (51), San Joaquin (164), San Mateo (73), Santa Clara (8), Santa Cruz (23), Shasta (3), Siskiyou (1), Solano (251), Sonoma (10), Stanislaus (29), Sutter (59), Tehama (59), and Yolo (113).

  11. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  12. The space-time structure of oil and gas field growth in a complex depositional system

    USGS Publications Warehouse

    Drew, L.J.; Mast, R.F.; Schuenemeyer, J.H.

    1994-01-01

    Shortly after the discovery of an oil and gas field, an initial estimate is usually made of the ultimate recovery of the field. With the passage of time, this initial estimate is almost always revised upward. The phenomenon of the growth of the expected ultimate recovery of a field, which is known as "field growth," is important to resource assessment analysts for several reasons. First, field growth is the source of a large part of future additions to the inventory of proved reserves of crude oil and natural gas in most petroliferous areas of the world. Second, field growth introduces a large negative bias in the forecast of the future rates of discovery of oil and gas fields made by discovery process models. In this study, the growth in estimated ultimate recovery of oil and gas in fields made up of sandstone reservoirs formed in a complex depositional environment (Frio strand plain exploration play) is examined. The results presented here show how the growth of oil and gas fields is tied directly to the architectural element of the shoreline processes and tectonics that caused the deposition of the individual sand bodies hosting the producible hydrocarbon. ?? 1994 Oxford University Press.

  13. The analysis of repeated failures of pipelines in Kal'chinskoe oil field

    NASA Astrophysics Data System (ADS)

    Shavlov, E. N.; Brusnik, O. V.; Lukjanov, V. G.

    2016-09-01

    The paper presents the chemical analysis of oilfield water and hydraulic analysis of the liquid flow in Kal'chinskoe oil field pipeline that allow detecting the causes of the internal corrosion processes. The inhibitor protection is suggested to reduce the corrosion rate in the pipelines of Kal'chinskoe oil field. Based on the analysis of the pipeline failures, it is suggested to replace steel pipes by fiberglass pipes.

  14. Field performance of a laser fluorosensor for the detection of oil spills

    NASA Astrophysics Data System (ADS)

    Oneil, R. A.; Buja-Bijunas, L.; Rayner, D. M.

    1980-03-01

    An airborne laser fluorosensor is described that was designed to detect and identify targets by means of the characteristic fluorescence emission spectrum. The first field trials of the sensor over marine oil and dye spills are reported. A correlation technique has been developed that, when applied to the data collected during these field trials, clearly differentiated among dye, the two crude oils, and the general fluorescence background of ocean water.

  15. Field study - Steinle Ranch, an intermediate depth oil field, shows significant benefit from bauxite proppants

    SciTech Connect

    Kohlhaas, C.A.

    1982-01-01

    The Steinle Ranch field initially was developed in the mid-1970s. Wells were drilled, cased, perforated, and treated by chemical injection with lease-crude or condensate carriers to restore oil saturation to the formation, which is suspected to be hydrophobic. Stimulation by hydraulic fracturing of 4 wells was attempted from 1975 through 1977 with mixed results and no particular success. These treatments used sand and glass beads for proppant. A fifth hydraulic fracture treatment, in which sintered bauxite was used as the proppant was very successful. As a result, all wells in the field have been fractured. This program, in a mature field in late stages of depletion, at intermediate depth (10,600 ft), has been very successful; ca 940,000 bbl of additional reserves have resulted for a total cost of ca $2,000,000, a return on investment of 9.4:1. Comparing these reserves to estimated reserves if the wells had been propped with sand shows a 23:1 return by the incremental reserves on the incremental cost of the bauxite.

  16. De-convoluting mixed crude oil in Prudhoe Bay Field, North Slope, Alaska

    USGS Publications Warehouse

    Peters, K.E.; Scott, Ramos L.; Zumberge, J.E.; Valin, Z.C.; Bird, K.J.

    2008-01-01

    Seventy-four crude oil samples from the Barrow arch on the North Slope of Alaska were studied to assess the relative volumetric contributions from different source rocks to the giant Prudhoe Bay Field. We applied alternating least squares to concentration data (ALS-C) for 46 biomarkers in the range C19-C35 to de-convolute mixtures of oil generated from carbonate rich Triassic Shublik Formation and clay rich Jurassic Kingak Shale and Cretaceous Hue Shale-gamma ray zone (Hue-GRZ) source rocks. ALS-C results for 23 oil samples from the prolific Ivishak Formation reservoir of the Prudhoe Bay Field indicate approximately equal contributions from Shublik Formation and Hue-GRZ source rocks (37% each), less from the Kingak Shale (26%), and little or no contribution from other source rocks. These results differ from published interpretations that most oil in the Prudhoe Bay Field originated from the Shublik Formation source rock. With few exceptions, the relative contribution of oil from the Shublik Formation decreases, while that from the Hue-GRZ increases in reservoirs along the Barrow arch from Point Barrow in the northwest to Point Thomson in the southeast (???250 miles or 400 km). The Shublik contribution also decreases to a lesser degree between fault blocks within the Ivishak pool from west to east across the Prudhoe Bay Field. ALS-C provides a robust means to calculate the relative amounts of two or more oil types in a mixture. Furthermore, ALS-C does not require that pure end member oils be identified prior to analysis or that laboratory mixtures of these oils be prepared to evaluate mixing. ALS-C of biomarkers reliably de-convolutes mixtures because the concentrations of compounds in mixtures vary as linear functions of the amount of each oil type. ALS of biomarker ratios (ALS-R) cannot be used to de-convolute mixtures because compound ratios vary as nonlinear functions of the amount of each oil type.

  17. Changing of the guard in domestic oil production

    SciTech Connect

    Schmidt, R.H.

    1984-04-01

    Unless there are major new oil discoveries in the Eleventh Federal Reserve District, California and Alaska will threaten the region's domination of domestic oil production. Despite price deregulation, production has declined since 1971 because of depleting reserves and the low prospects for major discoveries. The loss of oil sales may be offset by an increase in the sale of oil field equipment to world markets. 2 figures.

  18. Waste-Oil Boiler Firing Demonstration at Naval Weapon Center China Lake, California.

    DTIC Science & Technology

    1980-06-01

    necessary. Visual observations were also made of the stack gas. For waste oil concentrations > 50 %, visible white smoke was noted. Because of this color, the...14- 41 W u e Ad 4) w 03 -H4c W .- 4 cc) V15 CIt 30 25 20 15 01 10 030 50 + 75 X 88 5 -0 100o 01 10 20 30 40 so 60 70 Nozzle Pressure (psig) Figure 3...Langley AFB VA; MAC/DET (Col. P. Thompson) Scott, IL: SAMSO/MNND. Norton AFB CA; Samso. Vandenburg, AFB, CA; Stinfo Library, Offutt NE; (LT Acero ). McGuire

  19. The discovery and development of the El Dorado (Kansas) oil field

    USGS Publications Warehouse

    Skelton, L.H.

    1997-01-01

    Pioneers named El Dorado, Kansas, in 1857 for the beauty of the site and the promise of future riches but not until 58 years later was black rather than mythical yellow gold discovered when the Stapleton No. 1 oil well came in on October 5, 1915. El Dorado's leaders were envious when nearby towns found huge gas fields and thrived. John Donley, an El Dorado barber, had tried to find either gas or oil in 1878 at a nearby site selected by a spiritualist. He staked out a townsite, spudded a well and drilled 200 feet before running out of money. Wells in 1879 and 1882 produced only brine. In June, 1914, chafed over discovery of oil in nearby Augusta, El Dorado city fathers contracted with Erasmus Haworth, soon to retire from his position as State Geologist, to perform a geological study of the area. His field work outlined the El Dorado Anticline, which unsuccessfully was drilled first in August, 1915. On abandonment, the Wichita Natural Gas Company purchased the lease and drilled the Stapleton No. 1 oil well. More success followed and by 1918, the El Dorado produced 29 million barrels, almost 9% of the nation's oil. Entrepreneurs came and prospered: the Cities Service Oil Company, A.L. Derby, Jack Vickers, and Bill Skelly all became familiar names in Midcontinent oil marketing. Earlier giant fields had hurt the price of crude oil but the El Dorado came in as both World War I and the rapid popularization of motor transport made a market for both light and heavy ends of the refinery stream. The giant gas field never materialized as hoped but in late 1995, the El Dorado Field produced its 300 millionth barrel of oil.

  20. Volumetric calculations in an oil field: The basis method

    USGS Publications Warehouse

    Olea, R.A.; Pawlowsky, V.; Davis, J.C.

    1993-01-01

    The basis method for estimating oil reserves in place is compared to a traditional procedure that uses ordinary kriging. In the basis method, auxiliary variables that sum to the net thickness of pay are estimated by cokriging. In theory, the procedure should be more powerful because it makes full use of the cross-correlation between variables and forces the original variables to honor interval constraints. However, at least in our case study, the practical advantages of cokriging for estimating oil in place are marginal. ?? 1993.

  1. Laboratory measurements of reservoir rock from the Geysers geothermal field, California

    USGS Publications Warehouse

    Lockner, D.A.; Summers, R.; Moore, D.; Byerlee, J.D.

    1982-01-01

    Rock samples taken from two outcrops, as well as rare cores from three well bores at the Geysers geothermal field, California, were tested at temperatures and pressures similar to those found in the geothermal field. Both intact and 30?? sawcut cylinders were deformed at confining pressures of 200-1000 bars, pore pressure of 30 bars and temperatures of 150?? and 240??C. Thin-section and X-ray analysis revealed that some borehole samples had undergone extensive alteration and recrystallization. Constant strain rate tests of 10-4 and 10-6 per sec gave a coefficient of friction of 0.68. Due to the highly fractured nature of the rocks taken from the production zone, intact samples were rarely 50% stronger than the frictional strength. This result suggests that the Geysers reservoir can support shear stresses only as large as its frictional shear strength. Velocity of p-waves (6.2 km/sec) was measured on one sample. Acoustic emission and sliding on a sawcut were related to changes in pore pressure. b-values computed from the acoustic emissions generated during fluid injection were typically about 0.55. An unusually high b-value (approximately 1.3) observed during sudden injection of water into the sample may have been related to thermal cracking. ?? 1982.

  2. Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California

    USGS Publications Warehouse

    Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.

    1998-01-01

    Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.

  3. Petroleum, oil field waters, and authigenic mineral assemblages - Are they in metastable equilibrium in hydrocarbon reservoirs?

    NASA Astrophysics Data System (ADS)

    Helgeson, Harold C.; Knox, Annette M.; Owens, Christine E.; Shock, Everett L.

    1993-07-01

    The hypothesis that although the presence of carboxylic acids and carboxylate anions in oil field waters is commonly attributed to the thermal maturation of kerogen or bacterial degradation of hydrocarbons during water-washing of petroleum in relatively shallow reservoirs, they may have also been produced in deeper reservoirs by the hydrolysis of hydrocarbons in petroleum at the oil-water interface is tested. Calculations were carried out to determine the distribution of species with the minimum Gibbs free energy in overpressured oil field waters in the Texas Gulf Coast assuming metastable equilibrium among calcite, albite, and a representative spectrum of organic and inorganic aqueous species at reservoir temperatures and pressures. The hypothesis that homogeneous equilibrium obtains among carboxylate and carbonate species in oil field waters is confirmed.

  4. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  5. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  6. Repellency of aerosol and cream products containing fennel oil to mosquitoes under laboratory and field conditions.

    PubMed

    Kim, Soon-Il; Chang, Kyu-Sik; Yang, Young-Cheol; Kim, Byung-Seok; Ahn, Young-Joon

    2004-11-01

    The repellency of fennel (Foeniculum vulgare Miller)-containing products (5% aerosol and 8% cream) against mosquitoes was compared with those of citronella oil, geranium oil and deet, as well as three commercial repellents, Baby Keeper cream containing IR3535, MeiMei cream containing citronella and geranium oils, and Repellan S aerosol containing 19% N,N-diethyl-m-toluamide (deet) under laboratory and field conditions. In a laboratory study with female Aedes aegypti (L), fennel oil exhibited good repellency in a release-in-cage test and repellency in skin and patch tests of the oil was comparable with those of citronella and geranium oils. In paddy field tests with five human volunteers, 5% and 8% fennel oil-containing aerosol and cream produced 84% and 70% repellency, respectively, at 90 min after exposure, whereas Baby Keeper cream and MeiMei cream gave 71% and 57% repellency at 90 min after exposure, respectively, and Repellan S aerosol gave 89% repellency at 210 min. The species and ratio of mosquitoes collected were the genera Culex (44.1%), Anopheles (42.2%), Aedes (7.8%) and Armigeres (5.9%). Fennel oil-containing products could be useful for protection from humans and domestic animals from vector-borne diseases and nuisance caused by mosquitoes.

  7. Anaerobic thermophilic bacteria isolated from a Venezuelan oil field and its potential use in microbial improved oil recovery

    SciTech Connect

    Trebbau, G.; Fernandez, B.; Marin, A.

    1995-12-31

    The objective of this work is to determine the ability of indigenous bacteria from a Venezuelan oil field to grow under reservoir conditions inside a porous media, and to produce metabolites capable of recovering residual crude oil. For this purpose, samples of formation waters from a central-eastern Venezuelan oil reservoir were enriched with different carbon sources and a mineral basal media. Formation water was used as a source of trace metals. The enrichments obtained were incubated at reservoir temperature (71{degrees}C), reservoir pressure (1,200 psi), and under anaerobic conditions for both outside and inside porous media (Berea core). Growth and metabolic activity was followed outside porous media by measuring absorbance at 660 nm, increases in pressure, and decreases in pH. Inside porous media bacterial activity was determined by visual examination of the produced waters (gas bubbles and bacterial cells). All the carbohydrates tested outside porous media showed good growth at reservoir conditions. The pH was lowered, gases such as CO{sub 2} and CH{sub 4} were identified by GC. Surface tension was lowered in some enrichments by 30% when compared to controls. Growth was decreased inside porous media, but gases were produced and helped displace oil. In addition, 10% residual oil was recovered from the Berea core. Mathematical modeling was applied to the laboratory coreflood experiment to evaluate the reproducibility of the results obtained.

  8. An overview of giant oil and gas fields of the decade: 1978-1988

    SciTech Connect

    Halbouty, M.T. )

    1990-09-01

    Scientific studies and projections of future world energy demand indicate that although alternate-energy fuel sources must be actively pursued and developed, there must be adequate petroleum supplies to bridge the gap. For the international petroleum industry, the years covered by this conference, 1978-1988, were complex. They were years of boom and bust. The world's energy consciousness was boosted sharply by the effects of the 1979 Iranian revolution and the resulting embargo that sent world oil prices to record heights. Global petroleum exploration soon surged, leading to the industry's all-time drilling high in 1981. Then came the oil price collapse in 1985, and the following years were characterized by falling oil prices and drastic budget cuts for exploration and development. Although exploration dropped sharply, there was a steady flow of giant oil and gas field discoveries. Using the giant field designation criteria of 500 million bbl of oil recoverable for fields in Asiatic Russia, North Africa, and the Middle East; 100 million bbl of oil recoverable for the fields in the remainder of the world; and 3 tcf and 1 tcf of gas reserves recoverable for the same areas, respectively, it is estimated that at least 182 oil and gas fields containing an estimated 140 billion BOE were discovered in 46 countries during the years covered by this conference. Today, exploration is slowly gaining momentum in all types of petroleum provinces-intensely explored, partially explored, moderately explored, and essentially unexplored - and as long as exploration continues in whatever area of the world, there will always be opportunities to find giant oil and gas fields.

  9. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  10. Oil, gas field growth projections: Wishful thinking or reality?

    USGS Publications Warehouse

    Attanasi, E.D.; Mast, R.F.; Root, D.H.

    1999-01-01

    The observed `field growth' for the period from 1992 through 1996 with the US Geological Survey's (USGS) predicted field growth for the same period are compared. Known field recovery of field size is defined as the sum of past cumulative field production and the field's proved reserves. Proved reserves are estimated quantities of hydrocarbons which geologic and engineering data demonstrate with reasonable certainty to recoverable from known fields under existing economic and operating conditions. Proved reserve estimates calculated with this definition are typically conservative. The modeling approach used by the USGS to characterize `field growth phenomena' is statistical rather that geologic in nature.

  11. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field

    PubMed Central

    Mand, Jaspreet; Park, Hyung S.; Okoro, Chuma; Lomans, Bart P.; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2016-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  12. Field evaluation of essential oils for reducing attraction by the Japanese beetle (Coleoptera: Scarabaeidae).

    PubMed

    Youssef, Nadeer N; Oliver, Jason B; Ranger, Christopher M; Reding, Michael E; Moyseenko, James J; Klein, Michael G; Pappas, Robert S

    2009-08-01

    Forty-one plant essential oils were tested under field conditions for the ability to reduce the attraction of adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), to attractant-baited or nonbaited traps. Treatments applied to a yellow and green Japanese beetle trap included a nonbaited trap, essential oil alone, a Japanese beetle commercial attractant (phenethyl proprionate:eugenol:geraniol, 3:7:3 by volume) (PEG), and an essential oil plus PEG attractant. Eight of the 41 oils reduced attractiveness of the PEG attractant to the Japanese beetle. When tested singly, wintergreen and peppermint oils were the two most effective essential oils at reducing attractiveness of the PEG attractant by 4.2x and 3.5x, respectively. Anise, bergamont mint, cedarleaf, dalmation sage, tarragon, and wormwood oils also reduced attraction of the Japanese beetle to the PEG attractant. The combination of wintergreen oil with ginger, peppermint, or ginger and citronella oils reduced attractiveness of the PEG attractant by 4.7x to 3.1x. Seventeen of the 41 essential oils also reduced attraction to the nonbaited yellow and green traps, resulting in 2.0x to 11.0x reductions in trap counts relative to nonbaited traps. Camphor, coffee, geranium, grapefruit, elemi, and citronella oils increased attractiveness of nonbaited traps by 2.1x to 7.9x when tested singly, but none were more attractive than the PEG attractant. Results from this study identified several plant essential oils that act as semiochemical disruptants against the Japanese beetle.

  13. Sunflower diseases remain rare in California seed production fields compared to North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of United States sunflower production is in eight Midwestern states, but hybrid planting seed is almost exclusively produced in California. Due to the lack of summer rains and furrow irrigation, California-produced seed is relatively disease free and thus it regularly meets phytosanita...

  14. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F.

    1996-12-31

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  15. Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California

    SciTech Connect

    Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F. )

    1996-01-01

    New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

  16. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  17. South American oil and gas fields: Reasons for their presence and distribution

    SciTech Connect

    Pratsch, J.C. )

    1993-02-01

    South American oil and gas fields occur in geographic clusters. Their concentration in relatively small producing areas depends on the present location of the hydrocarbon generating depocenter and results from the basinal oil and gas migration history. By defining both, existing field locations can be explained and new field occurrences can be predicted, including those in overthrust plays. One-and two-stage hydrocarbon migration processes exist: In one-stage migration oil and gas migrate directly from the generating source beds into reservoirs, like in Maturin Basin or Maranon Basin fields. In two-stage migration oil and gas first migrate into a primary reservoir level, from there during a second migration phase into a (commonly younger) secondary reservoir level. Here, the original source beds may be over-mature or even metamorphosed today; examples here are the Maturin, Llanos and Oriente Basins, possibly offshore Trinidad. Definition of generating depocenters is the task of regional exploration. Oil and gas migration analysis is one result of semi-detailed structural mapping using gravity, magnetic, seismic reflection and geochemical data. Oil and gas exploration in two-stage migration basins are especially challenging, like in the Austral Basin of southern Argentina and Chile or possibly in the Parana Basin.

  18. Petroleum geology of Giant oil and gas fields in Turpan Basin Xinjiang China

    SciTech Connect

    Boliang, Hu; Jiajing, Yang,

    1995-08-01

    Turpan Basin is the smallest and the last development basin in three big basins of Xinjiang autonomous region, P.R. China. Since April, 1989, the Shanshan oilfield was discovered, the Oinling, Wenjisang, Midang, Baka, Qiudong and North Putaogou fields were discovered. In 1994, the crude oil productivity of Turpan Basin was a Million tons, with an estimated output of 3 million tons per year by 1995; obviously a key oil productive base in the west basins of China, Tarim, Jungar, Chaidam, Hexi, Erduos and Sichuan Basins. The Turpan Basin is an intermontane basin in a eugeosyncline foldbelt of the north Tianshan Mountains. The oil and gas was produced from the payzone of the Xishanyao, Sanjianfang and Qiketai Formatiosn of the Middle Jurassic series. The geochemical characteristics of the crude oil and gas indicate they derive from the Middle to Lower Jurassic coal series, in which contains the best oil-prone source rocks in the basin.

  19. A Field Guide for Arctic Oil Spill Behavior.

    DTIC Science & Technology

    1984-11-01

    are called ice is easily deformed. As movement cracks, leads or polynyas depending decreases in the shorefast Ice, so 1-9 I does rafting, but In an...Ocean Resources Engineering, January 1980. 11. Peterson, Hanne K., Fate and Effect of Bunker C Oil Spilled by the USNS Potomac In Melville Bay, Greenland...with using any conventional it is likely to be streaming out spill response methods. As a result, Into polynyas and leads. This probably even so much as

  20. Livestock poisoning from oil field drilling fluids, muds and additives.

    PubMed

    Edwards, W C; Gregory, D G

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  1. Livestock poisoning from oil field drilling fluids, muds and additives

    SciTech Connect

    Edwards, W.C.; Gregory, D.G. )

    1991-10-01

    The use and potential toxicity of various components of oil well drilling fluids, muds and additives are presented. Many components are extremely caustic resulting in rumenitis. Solvent and petroleum hydrocarbon components may cause aspiration pneumonia and rumen dysfunction. Some additives cause methemoglobinemia. The most frequently encountered heavy metals are lead, chromium, arsenic, lithium and copper. Considerations for investigating livestock poisoning cases and several typical cases are reviewed.

  2. Morphology and mixing of black carbon particles collected in central California during the CARES field study

    DOE PAGES

    Moffet, Ryan C.; O'Brien, Rachel E.; Alpert, Peter A.; ...

    2016-11-23

    Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance ofmore » highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. Furthermore, these measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.« less

  3. Morphology and mixing of black carbon particles collected in central California during the CARES field study

    SciTech Connect

    Moffet, Ryan C.; O'Brien, Rachel E.; Alpert, Peter A.; Kelly, Stephen T.; Pham, Don Q.; Gilles, Mary K.; Knopf, Daniel A.; Laskin, Alexander

    2016-11-23

    Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance of highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. Furthermore, these measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.

  4. Morphology and mixing of black carbon particles collected in central California during the CARES field study

    NASA Astrophysics Data System (ADS)

    Moffet, Ryan C.; O'Brien, Rachel E.; Alpert, Peter A.; Kelly, Stephen T.; Pham, Don Q.; Gilles, Mary K.; Knopf, Daniel A.; Laskin, Alexander

    2016-11-01

    Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance of highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. These measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes.

  5. Imaging the subsurface stratigraphy in the Ubehebe hydrovolcanic field (Death Valley, California) using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Russell, J. K.

    2000-02-01

    Ground penetrating radar (GPR) surveys were carried out to collect subsurface images of the basaltic base surge deposits in the Ubehebe hydrovolcanic field, Death Valley National Park, California. Antennae with frequencies of 50, 100 and 200 MHz were used. This technique allowed the collection of useful geologic data, for example, the lower stratigraphic boundary of the pyroclastic deposits can be imaged and their thickness can be estimated. Different radar responses were also obtained from base surge deposits and underlying sedimentary rocks, which enable their recognition where no outcrops are available. Furthermore, GPR data confirmed the presence of small, eroded craters, which are partially filled by alluvium. In this case, an unconformity between the overlying, horizontally bedded alluvium and the underlying bowl-shaped base surge deposits can be recognized within the crater and the thickness of the alluvium estimated. Common mid-point (CMP) surveys suggested subsurface velocities of the electromagnetic waves in the upper part of these deposits between 0.095-0.1 m/ns.

  6. Horizontal and Vertical Distribution of Longidorus africanus in a Bermudagrass Field in the Imperial Valley, California

    PubMed Central

    Ploeg, Antoon T.

    1998-01-01

    The horizontal and vertical distribution of the needle nematode Longidorus africanus was studied in a bermudagrass field in the Imperial Valley in southern California. A geostatistical method involving the use of semi-variograms was used to quantify the relationship between sampling distance and variation in L. africanus population levels. Semi-variance between nematode numbers from different samples was very low when samples were taken close together, increased with sampling distances up to ca. 15 m, and fluctuated around a sill value at distances greater than 15 m. At very large sampling distances the semi-variance increased further. It was concluded that patches with fairly similar numbers of L. africanus were elongated and up to 15 m long. Seasonal fluctuations over a 2-year period, in total numbers of L. africanus extracted from three depths, were large and highly correlated with soil temperature. Population densities were greatest during the summer months and lowest during the winter. Averaged over the 2-year period, L. africanus population densities increased with increasing depth. Chances for detecting this nematode are greatest in summer at depths of 60 to 90 cm. PMID:19274252

  7. Intelligent fiber sensing system for the oil field area

    NASA Astrophysics Data System (ADS)

    Sun, Wenju; Ma, Linping

    2010-08-01

    Optical Fiber strain sensor using fiber Bragg grating are poised to play a major role in structural health from military to civil engineering. Fiber Bragg Grating sensor is a practical type of fiber optic sensors. Its measurement is encoded with the wavelength of the optical signal reflected from fiber Bragg grating. The method of measuring the absolute optical wavelength is a critical component of the fiber optic sensing system. To reliably detect very small changes in the environment at the sensor, the interrogation system must provide accurate and repeatable wavelength measurements. Energy sources are increasingly scarce in the world. Getting oil from the oil-wells has become more and more difficult. Therefore, new technology to monitor the oil-well condition has become extremely important. The traditional electrical sensor system is no longer useful because of the down-hole's high temperature and high pressure environment. The optical fiber sensing system is the first choice to monitor this condition. This system will reduce the cost and increase the productivity. In the high pressure and high temperature environment, the traditional packed fiber grating pressure-temperature sensor will be no longer reliability. We have to find a new fiber grating temperature-pressure sensor element and the interrogation system. In this work we use the very narrow bandwidth birefringent fiber grating as the sensing element. We obtain the interrogation system has 0.1 pm resolution.

  8. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  9. The intellectual information system for management of geological and technical arrangements during oil field exploitation

    NASA Astrophysics Data System (ADS)

    Markov, N. G.; Vasilyeva, E. E.; Evsyutkin, I. V.

    2017-01-01

    The intellectual information system for management of geological and technical arrangements during oil fields exploitation is developed. Service-oriented architecture of its software is a distinctive feature of the system. The results of the cluster analysis of real field data received by means of this system are shown.

  10. Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside.

    PubMed

    Han, Mei; Ji, Guodong; Ni, Jinren

    2009-07-01

    Weathered crude oil contaminated soils (COCSs), which are much more difficult to remediate than those freshly contaminated, are widespread especially at the sites of oil fields and industries. Surfactant enhanced ex situ soil washing could be used to remediate COCSs, but surfactant toxicity becomes one of the major concerns. In this study, a class of green surfactants, alkyl polyglucosides (APGs), were tested in washing the field weathered COCS with relatively high oil concentration (123 mgg(-1) dry soil) from Jilin Oilfield, Northeastern China. APG1214, characterized with longer alkyl chain, was more effective than APG0810 in crude oil removal. Adding inorganic sodium salts into APG1214 solution further improved the crude oil removal efficiency (CORE). Washing parameters (temperature, washing time, agitation speed and solution/soil ratio) were investigated and further optimized integratedly with an orthogonal design. At the optimum conditions, the CORE reached 97%. GC/MS analysis showed that the proportion of small n-alkanes (C(16)-C(23)) in residual crude oil gradually increased, which was helpful to interpret the oil removal mechanism. Moreover, eminent effect on removal of large n-alkanes was achieved from the synergy between APG1214 and inorganic salts, which was opposite to the effect when they were added separately. This study demonstrated a promising way to remediate COCS with ecologically compatible surfactant and provided guidelines for its practical application.

  11. Simulation of phase separation with large component ratio for oil-in-water emulsion in ultrasound field.

    PubMed

    Wang, Heping; Li, Xiaoguang; Li, Yanggui; Geng, Xingguo

    2017-05-01

    This paper presents an exploration for separation of oil-in-water and coalescence of oil droplets in ultrasound field via lattice Boltzmann method. Simulations were conducted by the ultrasound traveling and standing waves to enhance oil separation and trap oil droplets. The focus was to the effect of ultrasound irradiation on oil-in-water emulsion properties in the standing wave field, such as oil drop radius, morphology and growth kinetics of phase separation. Ultrasound fields were applied to irradiate the oil-in-water emulsion for getting flocculation of the oil droplets in 420kHz case, and larger dispersed oil droplets and continuous phases in 2MHz and 10MHz cases, respectively. The separated phases started to rise along the direction of sound propagation after several periods. The rising rate of the flocks was significantly greater in ultrasound case than that of oil droplets in the original emulsion, indicating that ultrasound irradiation caused a rapid increase of oil droplet quantity in the progress of the separation. The separation degree was also significantly improved with increasing frequency or irradiation time. The dataset was rearranged for growth kinetics of ultrasonic phase separation in a plot by spherically averaged structure factor and the ratio of oil and emulsion phases. The analyses recovered the two different temporal regimes: the spinodal decomposition and domain growth stages, which further quantified the morphology results. These numerical results provide guidance for setting the optimum condition for the separation of oil-in-water emulsion in the ultrasound field.

  12. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    NASA Astrophysics Data System (ADS)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  13. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  14. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics.

    PubMed

    Zhu, Wenran; Wang, Xin; Chen, Lihua

    2017-02-01

    (1)H low-field nuclear magnetic resonance (LF-NMR) and chemometrics were employed to screen the quality changes of peanut oil (PEO) adulterated with soybean oil (SO), rapeseed oil (RO), or palm oil (PAO) in ratios ranging from 0% to 100%. Significant differences in the LF-NMR parameters, single component relaxation time (T2W), and peak area proportion (S21 and S22), were detected between pure and adulterated peanut oil samples. As the ratio of adulteration increased, the T2W, S21, and S22 changed linearly; however, the multicomponent relaxation times (T21 and T22) changed slightly. The established principal component analysis or discriminant analysis models can correctly differentiate authentic PEO from fake and adulterated samples with at least 10% of SO, RO, or PAO. The binary blends of oils can be clearly classified by discriminant analysis when the adulteration ratio is above 30%, illustrating possible applications in screening the oil species in peanut oil blends.

  15. Proposed operating strategy for a field mis oil shale retorting experiment (RBOSC Retort O)

    SciTech Connect

    Braun, R.L.; Campbell, J.H.; McKenzie, D.R.; Raley, J.H.; Gregg, M.L.

    1980-01-01

    A possible operating strategy for a field scale retort (similar to Retort 0) proposed by the Rio Blanco Oil Shale Company (RBOSC)) is discussed. This retorting strategy was developed based on model calculations, pilot retort experiments, and laboratory work carried out at LLL. From these calculations a set of operating conditions are derived that appear to give the best overall retort performance. A performance monitoring strategy is being developed based solely on the exit gas and oil composition.

  16. The effect of thermotropic oil-displacing compound thickened Ninka on reservoir microflora and the composition of oil in Usinskoe oil field

    NASA Astrophysics Data System (ADS)

    Ovsyannikova, V. S.; Shcherbakova, A. G.; Guseva, Y. Z.; Altunina, L. K.; Chuykina, D. I.

    2016-11-01

    The work presents results of the study of the impact of thermotropic sol-forming compound thickened NINKA on enhanced oil recovery, stimulation of oil production, on the composition of crude oil, and on oil reservoir microflora sampled from reservoir fluids in the testing and reference areas of Usinskoe field. In vitro, the compound in the concentrations of 0.1-0.5% has a stimulating effect on the microflora, which is more pronounced in a low-mineralized environment. In reservoir conditions, after the injection of the compound, along with the appearance of nitrogen-containing components of the compound and products of its hydrolysis in the wellstream, some wells showed a significant increase in the number of heterotrophic and denitrifying microflora, which is indicative of a stimulating effect of the compound. The change in the composition of oil from these producing wells is due to the desorption of polar and high-molecular components and, to a lesser extent, to the redistribution of filtration flows.

  17. The University of California Institute of Environmental Stress marathon field studies.

    PubMed

    Maron, Michael B

    2014-03-01

    In 1973, the Institute of Environmental Stress of the University of California-Santa Barbara, under the direction of Steven M. Horvath, began a series of field and laboratory studies of marathon runners during competition. As one of Horvath's graduate students, many of these studies became part of my doctoral dissertation. The rationale for studying runners under race conditions was based on my belief as a marathoner that runners would push themselves much harder while competing than under simulated conditions in the laboratory. Horvath's ready support of the studies likely had its roots in his graduate training at the Harvard Fatigue Laboratory, a laboratory well known for its field studies of individuals working in extreme environments. This report describes the studies of 1973-1975, focusing on how the measurements were made and detailing the learning experiences of a new graduate student. In 1973, blood chemistry and fluid shifts were studied in six runners before and for 3 days after a race. This was the first modern study to systematically examine the recovery process. In 1974, oxygen consumption was measured every 3 mi. in two runners during the race. In 1975, rectal temperature and five skin temperatures were evaluated in the same two runners every 1.4 mi. of the race. The latter two studies were the first to make such measurements under race conditions. The Institute of Environmental Stress marathon studies demonstrated the possibility of making measurements during competition without disrupting performance, enhanced our understanding of human exercise capacity under competitive conditions, and provided new insight into the postrace recovery process.

  18. Preliminary isostatic gravity map of the Sonoma volcanic field and vicinity, Sonoma and Napa Counties, California

    USGS Publications Warehouse

    Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.

    2006-01-01

    This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.

  19. Crustal velocity field near the big bend of California's San Andreas fault

    USGS Publications Warehouse

    Snay, R.A.; Cline, M.W.; Philipp, C.R.; Jackson, D.D.; Feng, Y.; Shen, Z.-K.; Lisowski, M.

    1996-01-01

    We use geodetic data spanning the 1920-1992 interval to estimate the horizontal velocity field near the big bend segment of California's San Andreas fault (SAF). More specifically, we estimate a horizontal velocity vector for each node of a two-dimensional grid that has a 15-min-by-15-min mesh and that extends between latitudes 34.0??N and 36.0??N and longitudes 117.5??W and 120.5??W. For this estimation process, we apply bilinear interpolation to transfer crustal deformation information from geodetic sites to the grid nodes. The data include over a half century of triangulation measurements, over two decades of repeated electronic distance measurements, a decade of repeated very long baseline interferometry measurements, and several years of Global Positioning System measurements. Magnitudes for our estimated velocity vectors have formal standard errors ranging from 0.7 to 6.8 mm/yr. Our derived velocity field shows that (1) relative motion associated with the SAF exceeds 30 mm/yr and is distributed on the Earth's surface across a band (> 100 km wide) that is roughly centered on this fault; (2) when velocities are expressed relative to a fixed North America plate, the motion within our primary study region has a mean orientation of N44??W ?? 2?? and the surface trace of the SAF is congruent in shape to nearby contours of constant speed yet this trace is oriented between 5?? and 10?? counterclockwise relative to these contours; and (3) large strain rates (shear rates > 150 nrad/yr and/or areal dilatation rates < -150 nstr/yr) exist near the Garlock fault, near the White Wolf fault, and in the Ventura basin.

  20. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  1. New information on disposal of oil field wastes in salt caverns

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  2. Isolation and characterization of Klebsiella oxytoca strain degrading crude oil from a Tunisian off-shore oil field.

    PubMed

    Chamkha, Mohamed; Trabelsi, Yosra; Mnif, Sami; Sayadi, Sami

    2011-12-01

    A facultatively anaerobic, Gram-negative, mesophilic, moderately halotolerant, non-motile, and non-sporulated bacterium, designated strain BSC5 was isolated from an off-shore "Sercina" oil field, located near the Kerkennah island, Tunisia. Yeast extract was not required for growth. Phenotypic characteristics and phylogenetic analysis of the 16S rRNA gene sequence of strain BSC5 revealed that it was related to members of the genus Klebsiella, being most closely related to the type strain of K. oxytoca (99% sequence similarity). Strain BSC5 was capable of using aerobically the crude oil as substrate growth. The growth of strain BSC5 on crude oil was followed by measuring the OD(600 nm) and by enumeration of viable cells at different culture's time. GC-MS analysis showed that strain BSC5 was capable of degrading a wide range of aliphatic hydrocarbons from C(13) to C(30) . The biodegradation rate for n -alkanes reached 44% and 75%, after 20 and 45 days of incubation, respectively. Addition of the synthetic surfactant, Tween 80, accelerated the crude oil degradation. The biodegradation rate for n -alkanes reached 61% and 98%, after 20 and 45 days of incubation, respectively. Moreover, three aromatic compounds, p -hydroxybenzoate, protocatechuate and gentisate, were metabolized completely by strain BSC5 after 24 h, under aerobic conditions.

  3. Observed oil and gas field size distributions: A consequence of the discovery process and prices of oil and gas

    USGS Publications Warehouse

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-01-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions. ?? 1988 International Association for Mathematical Geology.

  4. Observed oil and gas field size distributions: a consequence of the discovery process and prices of oil and gas

    SciTech Connect

    Drew, L.J.; Attanasi, E.D.; Schuenemeyer, J.H.

    1988-11-01

    If observed oil and gas field size distributions are obtained by random samplings, the fitted distributions should approximate that of the parent population of oil and gas fields. However, empirical evidence strongly suggests that larger fields tend to be discovered earlier in the discovery process than they would be by random sampling. Economic factors also can limit the number of small fields that are developed and reported. This paper examines observed size distributions in state and federal waters of offshore Texas. Results of the analysis demonstrate how the shape of the observable size distributions change with significant hydrocarbon price changes. Comparison of state and federal observed size distributions in the offshore area shows how production cost differences also affect the shape of the observed size distribution. Methods for modifying the discovery rate estimation procedures when economic factors significantly affect the discovery sequence are presented. A primary conclusion of the analysis is that, because hydrocarbon price changes can significantly affect the observed discovery size distribution, one should not be confident about inferring the form and specific parameters of the parent field size distribution from the observed distributions.

  5. Undergraduate Field Courses in Volcanology at the University of California, Davis

    NASA Astrophysics Data System (ADS)

    Schiffman, P.

    2002-05-01

    At U.C. Davis, undergraduate Geology majors have two opportunities to participate in extended field courses in volcanology: (1) all majors spend one week in a volcanology module during their six-week, "capstone" Summer Field Geology (GEL 110) course, and (2) all majors may enroll in a two-week, Introductory Volcanology course (GEL 138) offered each summer at Kilauea Volcano. The former course is required of all majors in order to fulfill their B.S. degree requirements, whereas the latter fulfills upper division elective units for either the B.A. or B.S. degree in Geology. The volcanology module in GEL 110 is based at U.C.'s White Mountain Research Station in Bishop, California and includes four separate exercises: (1) mapping patterns of consolidation of tephra at the Black Point tuff cone in order to understand the processes of palagonitization, (2) contouring graphic mean and sorting for tephra collected from the Red Cones cinder cone to understand Strombolian processes, (3) measuring a stratigraphic section of the Bishop Tuff in the lower Owens River Gorge to differentiate cooling units in ignimbrites, and (4) mapping the relationships amongst pumice units and obsidian at the Glass Mountain flow to understand evolution of silicic flows. Most exercises require laboratory measurements for grain size or density (Mayfield and Schiffman, 1998). GEL 138, based at the Kilauea Military Camp, includes a daily schedule of morning lectures and afternoon field excursions and exercises. Exercises include: (1) measuring a stratigraphic section of the Keanakako'i Ash Member to interpret pre-1790 periods of hydrovolcanism, (2) measuring and contouring ground temperatures in the Steaming Bluffs thermal area (3) conducting granulometric measurements of tephra from the Nanawale sand hills to understand the genesis of littoral cones, (4) mapping of soil pH around the perimeter of Kilauea Caldera to illuminate climatic effects (i.e.,vog and wind patterns) on the summit region, and

  6. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone. Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to

  7. Genomic and genotoxic responses to controlled weathered-oil exposures confirm and extend field studies on impacts of the Deepwater Horizon oil spill on native killifish.

    PubMed

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼ 10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA.

  8. Genomic and Genotoxic Responses to Controlled Weathered-Oil Exposures Confirm and Extend Field Studies on Impacts of the Deepwater Horizon Oil Spill on Native Killifish

    PubMed Central

    Pilcher, Whitney; Miles, Scott; Tang, Song; Mayer, Greg; Whitehead, Andrew

    2014-01-01

    To understand the ecotoxicological impacts of the Deepwater Horizon oil spill, field studies provide a context for ecological realism but laboratory-based studies offer power for connecting biological effects with specific causes. As a complement to field studies, we characterized genome-wide gene expression responses of Gulf killifish (Fundulus grandis) to oil-contaminated waters in controlled laboratory exposures. Transcriptional responses to the highest concentrations of oiled water in the laboratory were predictive of field-observed responses that coincided with the timing and location of major oiling. The transcriptional response to the low concentration (∼10-fold lower than the high concentration) was distinct from the high concentration and was not predictive of major oiling in the field. The high concentration response was characterized by activation of the molecular signaling pathway that facilitates oil metabolism and oil toxicity. The high concentration also induced DNA damage. The low concentration invoked expression of genes that may support a compensatory response, including genes associated with regulation of transcription, cell cycle progression, RNA processing, DNA damage, and apoptosis. We conclude that the gene expression response detected in the field was a robust indicator of exposure to the toxic components of contaminating oil, that animals in the field were exposed to relatively high concentrations that are especially damaging to early life stages, and that such exposures can damage DNA. PMID:25208076

  9. Arctic National Wildlife Refuge: oil field or wilderness

    SciTech Connect

    Spitler, A.

    1987-11-01

    The second session of the 100th Congress will see continued debate over the prospect of oil and gas drilling on a 19-million-acre expanse of mountains and tundra known as the Arctic National Wildlife Refuge (ANWR). The arctic refuge, most of which lies above the Arctic Circle, is larger than any refuges in the lower 48 states. Because of its size, the area supports a broad range of linked ecosystems. Of particular concern is the 1.5-million-acre coastal plain, which may be targeted for development. The coastal plain provides a home, at least part of the year, to Alaska's porcupine caribou. The coastal plain also supports many other forms of wildlife-including the wolf, arctic fox, brown bear, polar bear, and arctic peregrine falcon, which is listed as a threatened species. The potential effects of drilling projects extend beyond loss of wildlife; they include desecration of the land itself. Although few members of Congress deny the value of protecting the amazing variety of life on the coastal plain, some insist that limited drilling could be conducted without destroying crucial habitat. Last July, the department tentatively divided some of the targeted lands among native corporations in preparation for leasing to oil companies. In response to what was felt to be an attempt to overstep congressional authority, the House passed HR 2629, banning this kind of land deal without congressional approval. In essence, the measure reiterated congressional authority provided by the Alaska National Interest Lands Conservation Act (ANILCA) of 1980. This act mandated the study of environmental threats and oil potential by the Department of Interior, while putting the ANWR coastal plain off-limits to development without an explicit congressional directive.

  10. ROLE OF SMALL OIL AND GAS FIELDS IN THE UNITED STATES.

    USGS Publications Warehouse

    Meyer, Richard F.; Fleming, Mary L.

    1985-01-01

    The actual economic size cutoff is a function of such factors as depth, water depth offshore, and accessibility to transportation infrastructure. Because of the constraint of resource availability, price is now the principal force driving drilling activity. The proportion of new-field wildcats to other exploratory wells has fallen in recent years, but success in new-field wildcats has risen to about 20%. However, only very small fields, less than 1 million BOE, are being found in large numbers. Through 1979, almost 93% of known gas fields and 94. 5% of known oil fields were small, yet they contain only 14. 5% of the ultimately recoverable gas and 12. 5% of the oil. However, small fields are less capital intensive than equivalent-capacity synthetic-fuel plants, they are extremely numerous, and they are relatively easy and inexpensive to find and put on production. Refs.

  11. Use of geochemical biomarkers in bottom sediment to track oil from a spill, San Francisco Bay, California

    USGS Publications Warehouse

    Hostettler, F.D.; Rapp, J.B.; Kvenvolden, K.A.

    1992-01-01

    In April 1988, approximately 1500 m3 of a San Joaquin Valley crude oil were accidentally released from a Shell Oil Co. refinery near Martinez, Californa. The oil flowed into Carquinez Strait and Suisun Bay in northern San Francisco Bay Sediment and oil samples were collected within a week and analysed for geochemical marker compounds in order to track the molecular signature of the oil spill in the bottom sediment. Identification of the spilled oil in the sediment was complicated by the degraded nature of the oil and the similarity of the remaining, chromatographically resolvable constituents to those already present in the sediments from anthropogenic petroleum contamination, pyrogenic sources, and urban drainage. Ratios of hopane and sterane biomarkers, and of polycyclic aromatic hydrocarbons and their alkylated derivatives best identified the oil impingement. They showed the oil impact at this early stage to be surficial only, and to be patchy even within an area of heavy oil exposure.

  12. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  13. Magnetic field observations in the near-field the 28 June 1992 Mw 7.3 Landers, California, earthquake

    USGS Publications Warehouse

    Johnston, M.J.; Mueller, R.J.; Sasai, Yoichi

    1994-01-01

    Recent reports suggest that large magnetic field changes occur prior to, and during, large earthquakes. Two continuously operating proton magnetometers, LSBM and OCHM, at distances of 17.3 and 24.2 km, respectively, from the epicenter of the 28 June 1992 Mw 7.3 Landers earthquake, recorded data through the earthquake and its aftershocks. These two stations are part of a differentially connected array of proton magnetometers that has been operated along the San Andreas fault since 1976. The instruments have a sensitivity of 0.25 nT or better and transmit data every 10 min through the GOES satellite to the USGS headquarters in Menlo Park, California. Seismomagnetic offsets of −1.2 ± 0.6 and −0.7 ± 0.7 nT were observed at these sites. In comparison, offsets of −0.3 ± 0.2 and −1.3 ± 0.2 nT were observed during the 8 July 1986 ML 5.9 North Palm Springs earthquake, which occurred directly beneath the OCHM magnetometer site. The observations are generally consistent with seismomagnetic models of the earthquake, in which fault geometry and slip have the same from as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. In these models, right-lateral rupture occurs on connected fault segments in a homogeneous medium with average magnetization of 2 A/m. The fault-slip distribution has roughly the same form as the observed surface rupture, and the total moment release is 1.1 × 1020 Nm. There is no indication of diffusion-like character to the magnetic field offsets that might indicate these effects result from fluid flow phenomena. It thus seems unlikely that these earthquake-generated offsets and those produced by the North Palm Springs earthquake were generated by electrokinetic effects. Also, there are no indications of enhanced low-frequency magnetic noise before the earthquake at frequencies below 0.001 Hz.

  14. 78 FR 47408 - Notice of Intent to Prepare an Environmental Impact Statement for Oil and Gas Leasing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... RMPs for other field offices in California with oil and gas leasing and development (Bakersfield, Palm... Bureau of Land Management Notice of Intent to Prepare an Environmental Impact Statement for Oil and Gas...) amendment to evaluate oil and gas leasing and development on public lands and Federal mineral estate in...

  15. ADVANCED RESERVOIR CHARACTERIZATION IN THE ANTELOPE SHALE TO ESTABLISH THE VIABILITY OF CO2 ENHANCED OIL RECOVERY IN CALIFORNIA'S MONTEREY FORMATION SILICEOUS SHALES

    SciTech Connect

    Pasquale R. Perri

    2003-05-15

    This report describes the evaluation, design, and implementation of a DOE funded CO{sub 2} pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO{sub 2} pilot is the Belridge Diatomite. The pilot location was selected based on geologic considerations, reservoir quality and reservoir performance during the waterflood. A CO{sub 2} pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO{sub 2} utilization rate and premature CO{sub 2} breakthrough, and overall uncertainty in the unproven CO{sub 2} flood process in the San Joaquin Valley. A summary of the design and objectives of the CO{sub 2} pilot are included along with an overview of the Lost Hills geology, discussion of pilot injection and production facilities, and discussion of new wells drilled and remedial work completed prior to commencing injection. Actual CO{sub 2} injection began on August 31, 2000 and a comprehensive pilot monitoring and surveillance program has been implemented. Since the initiation of CO{sub 2} injection, the pilot has been hampered by excessive sand production in the pilot producers due to casing damage related to subsidence and exacerbated by the injected CO{sub 2}. Therefore CO{sub 2} injection was very sporadic in 2001 and 2002 and we experienced long periods of time with no CO{sub 2} injection. As a result of the continued mechanical problems, the pilot project was terminated on January 30, 2003. This report summarizes the injection and production performance and the monitoring results through December 31, 2002 including oil geochemistry, CO{sub 2} injection tracers, crosswell electromagnetic surveys, crosswell seismic, CO{sub 2} injection profiling, cased hole resistivity, tiltmetering results, and

  16. Digital tabulation of stratigraphic data from oil and gas wells in the Santa Maria Basin and surrounding areas, central California coast

    USGS Publications Warehouse

    Sweetkind, Donald S.; Tennyson, Marilyn E.; Langenheim, V.E.; Shumaker, Lauren E.

    2010-01-01

    Stratigraphic information from 694 oil and gas exploration wells from the onshore Santa Maria basin and surrounding areas are herein compiled in digital form from reports that were released originally in paper form. The Santa Maria basin is located within the southwesternmost part of the Coast Ranges and north of the western Transverse Ranges on the central California coast. Knowledge of the location and elevation of stratigraphic tops of formations throughout the basin is a first step toward understanding depositional trends and the structural evolution of the basin through time.

  17. Applications of EOR (enhanced oil recovery) technology in field projects--1990 update

    SciTech Connect

    Pautz, J.F.; Thomas, R.D.

    1991-01-01

    Trends in the type and number of US enhanced oil recovery (EOR) projects are analyzed for the period from 1980 through 1989. The analysis is based on current literature and news media and the Department of Energy (DOE) EOR Project Data Base, which contains information on over 1,348 projects. The characteristics of the EOR projects are grouped by starting date and process type to identify trends in reservoir statistics and applications of process technologies. Twenty-two EOR projects starts were identified for 1989 and ten project starts for 1988. An obvious trend over recent years has been the decline in the number of project starts since 1981 until 1988 which corresponds to the oil price decline during that period. There was a modest recovery in 1989 of project starts, which lags the modest recovery of oil prices in 1987 that was reconfirmed in 1989. During the time frame of 1980 to 1989, there has been a gradual improvement in costs of operation for EOR technology. The perceived average cost of EOR has gone down from a $30/bbl range to low $20/bbl. These costs of operation seems to stay just at the price of oil or slightly above to result in marginal profitability. The use of polymer flooding has drastically decreased both in actual and relative numbers of project starts since the oil price drop in 1986. Production from polymer flooding is down more than 50%. Long-term plans for large, high-cost projects such as CO{sub 2} flooding in West Texas, steamflooding in California, and hydrocarbon flooding on the North Slope have continued to be implemented. EOR process technologies have been refined to be more cost effective as shown by the continued application and rising production attributable to EOR. 8 refs., 6 figs., 13 tabs.

  18. Mosquito (Diptera: Culicidae) repellency field tests of essential oils from plants traditionally used in Laos.

    PubMed

    Vongsombath, Chanda; Pålsson, Katinka; Björk, Lars; Borg-Karlson, Anna-Karin; Jaenson, Thomas G T

    2012-11-01

    Essential oils of Hyptis suaveolens (Lamiaceae), Croton roxburghii (Euphorbiaceae), and Litsea cubeba (Lauraceae) were tested in the field near Vientiane city, Lao PDR, on humans for repellent activity against mosquitoes. Landing mosquitoes were collected and later identified. The most abundant mosquitoes captured belonged to the genera Armigeres, Culex, and Aedes. All the plant oils tested at concentrations of 1.7 microg/cm(2), 3.3 microg/cm(2), and 6.3 microg/cm(2) were significantly more mosquito repellent than the negative control. Croton oil was significantly repellent against mosquitoes of the three genera at the highest (6.3 microg/cm(2)) concentration tested. Litsea oil was significantly repellent against Armigeres at all (1.7 microg/cm(2), 3.3 microg/cm(2), and 6.3 microg/cm(2)) concentrations tested. Hyptis oil was significantly repellent against Armigeres at 3.3 microg/cm(2) and 6.3 microg/cm(2) and against Culex at 1.7 microg/cm(2) and 6.3 microg/cm(2). The oils were analyzed for chemical content of volatiles, mainly terpenes. Main constituents were beta-pinene, sabinene, and 1,8-cineol from oils of the green parts of H. suaveolens; alpha-pinene, beta-pinene, and alpha-phellandrene from fresh bark of C. roxburghii; and alpha-pinene, beta-phellandrene, sabinene, and 1,8-cineol from fresh fruits of L. cubeba.

  19. Toluene depletion in produced oil contributes to souring control in a field subjected to nitrate injection.

    PubMed

    Agrawal, Akhil; Park, Hyung Soo; Nathoo, Safia; Gieg, Lisa M; Jack, Thomas R; Miner, Kirk; Ertmoed, Ryan; Benko, Aaron; Voordouw, Gerrit

    2012-01-17

    Souring in the Medicine Hat Glauconitic C field, which has a low bottom-hole temperature (30 °C), results from the presence of 0.8 mM sulfate in the injection water. Inclusion of 2 mM nitrate to decrease souring results in zones of nitrate-reduction, sulfate-reduction, and methanogenesis along the injection water flow path. Microbial community analysis by pyrosequencing indicated dominant community members in each of these zones. Nitrate breakthrough was observed in 2-PW, a major water- and sulfide-producing well, after 4 years of injection. Sulfide concentrations at four other production wells (PWs) also reached zero, causing the average sulfide concentration in 14 PWs to decrease significantly. Interestingly, oil produced by 2-PW was depleted of toluene, the preferred electron donor for nitrate reduction. 2-PW and other PWs with zero sulfide produced 95% water and 5% oil. At 2 mM nitrate and 5 mM toluene, respectively, this represents an excess of electron acceptor over electron donor. Hence, continuous nitrate injection can change the composition of produced oil and nitrate breakthrough is expected first in PWs with a low oil to water ratio, because oil from these wells is treated on average with more nitrate than is oil from PWs with a high oil to water ratio.

  20. Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Plank, Terry; Forsyth, Donald W.; Bendersky, Claire; Lee, Cin-Ty A.; Hauri, Erik H.

    2012-06-01

    Here we report the first measurements of the H2O content of magmas and mantle xenoliths from the Big Pine Volcanic Field (BPVF), California, in order to constrain the melting process in the mantle, and the role of asthenospheric and lithospheric sources in this westernmost region of the Basin and Range Province, western USA. Melt inclusions trapped in primitive olivines (Fo82-90) record surprisingly high H2O contents (1.5 to 3.0 wt.%), while lithospheric mantle xenoliths record low H2O concentrations (whole rock <75 ppm). Estimates of the oxidation state of BPVF magmas, based on V partitioning in olivine, are also high (FMQ +1.0 to +1.5). Pressures and temperatures of equilibration of the BPVF melts indicate a shift over time, from higher melting temperatures (˜1320°C) and pressures (˜2 GPa) for magmas that are >500 ka, to cooler (˜1220°C) and shallower melting (˜1 GPa) conditions in younger magmas. The estimated depth of melting correlates strongly with some trace element ratios in the magmas (e.g., Ce/Pb, Ba/La), with deeper melts having values closer to upper mantle asthenosphere values, and shallower melts having values more typical of subduction zone magmas. This geochemical stratification is consistent with seismic observations of a shallow lithosphere-asthenosphere boundary (˜55 km depth). Combined trace element and cryoscopic melting models yield self-consistent estimates for the degree of melting (˜5%) and source H2O concentration (˜1000 ppm). We suggest two possible geodynamic models to explain small-scale convection necessary for magma generation. The first is related to the Isabella seismic anomaly, either a remnant of the Farallon Plate or foundered lithosphere. The second scenario is related to slow extension of the lithosphere.

  1. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic Field, California

    USGS Publications Warehouse

    Miller, J.S.; Wooden, J.L.

    2004-01-01

    Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.

  2. Selenium and sulfur relationships in alfalfa and soil under field conditions, San Joaquin Valley, California

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1992-01-01

    Relationships between total Se and S or soluble SeO4 and SO4 in soils and tissue concentrations in alfalfa (Medicago sativa L.), under field conditions in the San Joaquin Valley of California, suggest that the rate of accumulation of Se in alfalfa may be reduced in areas where high Se and S concentrations in soils were measured. These data suggest that the balance between carbonate and sulfate minerals in soil may have a greater influence on uptake of Se by alfalfa than does the balance of SeO4 and SO4 in soil solution. Soil and alfalfa were sampled from areas representing a wide range in soil Se and S concentrations. Specific sampling locations were selected based on a previous study of Se, S, and other elements where 721 soil samples were collected to map landscape variability and distribution of elements. Six multiple-linear regression equations were developed between total and/or soluble soil chemical constituents and tissue concentrations of Se in alfalfa. We chose a regression model that accounted for 72% of the variability in alfalfa Se concentrations based on an association of elements in soil (total C, S, Se, and Sr) determined by factor analysis. To prepare a map showing the spatial distribution of estimated alfalfa Se concentrations, the model was applied to the data from the previously collected 721 soil samples. Estimated alfalfa Se concentrations in most of the study area were within a range that is predicted to produce alfalfa with neither Se deficiency nor toxicity when consumed by livestock. A few small areas are predicted to produce alfalfa that potentially would not meet minimum dietary needs of livestock.

  3. Cryogels for oil and gas field construction under the conditions of arctic zone

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Manzhay, V. N.; Fufaeva, M. S.

    2016-11-01

    The results of investigation of elastic and thermal properties of cryogels filled with used mineral oil are presented. A new chemical-biological method for oil and gas field construction in the northern regions is proposed and tested. The field experiments carried out in the territory of Yamalo-Nenets Autonomous District are described. The formation of cryotropic polymer systems occurring at shallow freezing from 0 to -3°C and the impact of crystructured soil on the viability, enzymatic activity of native soil microflora and growth of perennial herbs have been investigated. Cryogels are harmless to humans and safe for the environment.

  4. NAFTA opportunities: Oil and gas field drilling machinery and services sector

    SciTech Connect

    Not Available

    1993-01-01

    The North American Free Trade Agreement (NAFTA) significantly improves market access in Mexico and Canada for U.S. exports of oil and gas field equipment. Foreign markets account for more than 80 percent of U.S. shipments of oil and gas field machinery. Foreign markets are expected to continue their importance to this industry, in the long term. Mexico and Canada are moderate-sized markets for U.S. exports of oilfield products. In 1992, U.S. exports of this equipment amounted to about $113 million to Mexico and $11 million to Canada.

  5. Characterization of Northern California petroleum by stable carbon isotopes

    USGS Publications Warehouse

    Lillis, Paul G.; Magoon, Leslie B.; Stanley, Richard G.; McLaughlin, Robert J.; Warden, Augusta

    2001-01-01

    The purpose of this study is to characterize natural occurrences of petroleum at the surface and in the subsurface within northern California in order to define and map petroleum systems for U.S. Geological Survey energy resource assessments. Furthermore, the chemical characterization and mapping of natural petroleum occurrences could also be used to discriminate natural occurrences from accidental oil spills during the activities of extraction or transportation of petroleum. Samples include petroleum from exploratory well tests, producing fields, natural seeps, and oil-stained rocks, and condensates from gas wells. Most of the sample localities are in northern California but a few samples from central and southern California are included for comparison (table 1). Even though other analyses were performed, only stable carbon isotope (δ13C) data are presented here for brevity and because δ13C values are one of the most discriminating characteristics of California petroleum.

  6. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  7. Analysis of the ecological risk of opening new oil and gas fields

    SciTech Connect

    Anikiev, V.V.; Mansurov, M.N.; Fleishman, B.S.

    1995-01-01

    Practical recommendations that would ensure the ecological safety of opening new marine oil and gas fields should include analysis of ecological risk. Such an analysis should precede the studies of ecological safety and resolve a sequence of problems in evaluating the ecological risk, the probability and scale of accidents at the oil and gas extraction complex, and economic damage that could occur. This paper presents a method of evaluation of risks for fish populations incurred by marine extraction of oil and gas, calculates the required limit of probability of accidents excluding the possibility of degradation of flatfish populations, estimates expenses incurred by accidental oil spills, and presents data on level of pollution. 9 refs., 1 tab.

  8. Application of bio-huff-`n`-puff technology at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Yan-Fed Xue; Gang Dai; Ling Zhao

    1995-12-31

    An enriched culture 48, capable of adapting to the reservoir conditions and fermenting molasses to produce gas and acid, was used as an inoculum for bio- huff-`n`-puff tests at Fuyu oil area of Jilin oil field. The production well was injected with water containing 4-6% (v/v) molasses and inoculum, and then shut in. After 15-21 days, the well was placed back in operation. A total of 44 wells were treated, of which only two wells showed no effects. The daily oil production of treated wells increased by 33.3-733.3%. Up to the end of 1994, the oil production was increased by 204 tons per well on average. Results obtained from various types of production wells were discussed.

  9. Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China.

    PubMed

    Li, Chun-Quan; Chen, Hong-Han; Li, Si-Tian; Zhang, Xi-Ming; Chen, Han-Lin

    2004-08-01

    The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya, respectively. The critical hydrocarbon charging time was at the late Hercynian.

  10. California and Saudi Arabia: geologic contrasts

    SciTech Connect

    Alexander, R.G. Jr.

    1984-09-01

    Assessing hydrocarbon futures in unexplored basins involves geology by analogy. Through 1978, approximately 265 fields were discovered in California containing 22 billion bbl of oil, 53% being in the 10 largest fields, ranging in size from 0.6 to 2.4 billion bbl. Through 1978, about 50 fields were found in Saudi Arabia containing 206 billion bbl of oil, 78% in the 10 largest fields, ranging in size from 7 to 83 billion bbl. The contrasts in field size distribution and in the total amount of oil present are explained by the dramatically different geology and geologic histories. California's surface geology is characterized by rare Precambrian, isolated Paleozoic, and widespread Mesozoic accreted terranes and intrusions, and by highly uplifted and depressed Tertiary sedimentary prisms bounded by widespread high-angle thrusting and strike-slip and normal faulting. Numerous families of medium to small anticlines and fault traps, commonly involving moderately dipping to overturned beds, have resulted from Tertiary tectonism, which segmented California dramatically. Saudi Arabia is characterized by a broad Precambrian shield area, flanked on the east by very long, gently dipping cuestas of Paleozoic and Mesozoic sediments, with an upper thin veneer of nearly flat Tertiary strata. Most structures involving the Mesozoic and Cenozoic are large, but gentle and unfaulted, representing a passive reaction of the sediments to underlying mild basement distortion and/or movement of Cambrian salt, all occurring while the arabian plate continued to subside and tip to the northeast. The contrasts between California and Saudi Arabia oil field and geology result from contrasting plate-tectonic settings and history.

  11. Hydro geochemistry Study of Yamama formation water in southern Iraqi oil Fields, Migration,Diagensis

    NASA Astrophysics Data System (ADS)

    Ali, A. A.; SOC Team

    2013-05-01

    Yamama Formation (Lower Cretaceous) form one of the main oil reservoir in southern Iraq, the present study deals with the general physical and chemical characteristics of Yamama formation water in selected oil fields - southern Iraq. Via the collecting the available water analysis data in in selected 10 wells in southern Iraqi oil fields, Well Logs, as well as, the technical final well reports. The task of this study is to illustrate the chemical and physical variation among the study oil wells, and their relation with the depositional environment, the grading of temperature and pressure, the reason behind of over pressure phenomenon, besides the delineation of oil migration and water reservoir movement direction. The study confirms the occurrences of two types of formation water; the first one is the connate water, which is brine, hypersaline, and marine in nature reflects the possibility of hydrocarbon accumulations. And the second is mixing water reflects the mixing of original marine water with percolating meteoric water for various degree. Regarding the hydrochemical ratios, the direction of water movement and oil migration is from northeast toward west and south west starting from Messan oil Fields, moreover, the secondary migration of oil is in the same direction. The western migration of oil and water attributed to the enhancement of porosity and permeability in this direction, which in turn means the possibility of finding new stratigraphic traps in this direction mainly western of Nasiriya and Garraf areas. The relationship between depositional environment and diagenetic processes in one hand, and the sediment logical units; tidal lime granular unit revealed the occurrences of khidar al-may which extends up to Al-Managish in Kuwait and Nahar Umar - Majnoon, Nasiriya - Abu Amood, as well as the clayey units represented by isolated and semi isolated lagoonal deposits. Based on the ionic ratios in AlZubair, Nahar Umer and Al-Kifil oil fields, outer shelf

  12. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect

    Janice Gillespie

    2004-11-01

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which

  13. Microseismic Monitoring Using Surface and Borehole Seismic Stations in an Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Hashmi, S.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Toubi, K.; Al-Lazki, A.; Al-Kindy, F.

    2009-05-01

    Five shallow borehole seismic stations were installed to monitor microearthquake activities in a carbonate oil field in northern Oman since 1999. This shallow network of seismic station operated continuously until 2002 after which intermittent seismic recording took place due to lack of maintenance and failure of some stations. The objectives of the study are to determine the microseismic parameters in the oil field and to determine the spatial and temporal distribution of these events to evaluate possible triggering mechanism. Well over 400 microearthquakes per year were recorded in the first three years of operation and after that the level of seismic recording fell to less than 200 microearthquakes per year due to failure of some stations. In March 2008, temporary seismic experiment consisting of five near surface seismic stations were installed in the oil field to augment the shallow network station and to evaluate surface installment of seismic instrument to monitor microseismic activities. It has been recognized that microearthquakes data such as size, spatial, and temporal distribution provide information on the pressure waves initiated by either production of or injection of fluids into reservoirs. A total of 44 local microearthquake events were analyzed and located during the temporary seismic stations deployment using a non-linear location software that allows the use of variable accurate velocity model of the subsurface. The events location is confined to oil field reservoir boundary during the recording period and more events occurring at shallow depth. The correlation coefficient between gas production and number of events is the higher compared with the oil production or water injection. The focal plane solution for the largest event in the sequence indicates normal faulting with extensional stress consistent with the existing mapped normal faults in the oil field. Microseismic signal clearly detected by the collocated sensors of the near surface

  14. Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll- a detection

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhao, Chaofang; Ma, Youjun; Liu, Zhishen

    2014-08-01

    A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll- a (Chl- a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl- a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl- a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels ( I 495/ I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl- a concentrations in the upper layer of the ocean. A comparison of relative Chl- a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl- a in the upper layer of ocean water.

  15. [Microbial community structure analysis of unexploited oil and gas fields by PCR-DGGE].

    PubMed

    Man, Peng; Qi, Hong-Yan; Hu, Qing; Ma, An-Zhou; Bai, Zhi-Hui; Zhuang, Guo-Qiang

    2012-01-01

    Microbial communities of different depths (30, 60, 100, 150, 200cm) from the unexploited oilfield, gas field and control area were studied by PCR-DGGE and sequencing methods. The objectives of this study were to understand the microbial distribution in the regions of unexploited oil and gas fields, and to investigate the potential microbial indicators of oil and gas resources. The results showed that the Dice coefficients between different depths were very low (26-69.9). The microbial communities in the soil of 150 cm and 200 cm depth had greater richness (S > or = 19), diversity (H > or = 2.69) and evenness (E > or = 0. 90). The results of sequencing demonstrated that the bands from oilfield were mainly grouped into alpha-Proteobacteria, gamma-Proteobacteria, Actinobacteria, Acidobacteria with the predominance of gamma-Proteobacteria (75%). Most of the bands were related to oil-associated and hydrocarbon degrading bacteria, such as Methylophaga and Alcanivorax. While the gas field had alpha, beta, gamma, delta-Proteobacteria and Bacteroidetes, and gamma-Proteobacteria accounted for only 24%. More strains showed relativity to methanotrophs, such as Methylocystaceae. Thus, 150 cm and 200 cm were more suitable as the oil-gas exploration sampling depth. Methylocystaceae may act as potential indicators for gas resources, Methylophaga and Alcanivorax for oil.

  16. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    NASA Astrophysics Data System (ADS)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  17. Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami

    NASA Astrophysics Data System (ADS)

    Wilson, Rick I.; Dengler, Lori A.; Goltz, James D.; Legg, Mark R.; Miller, Kevin M.; Ritchie, Andy; Whitmore, Paul M.

    2011-07-01

    State geoscientists (geologists, geophysicists, seismologists, and engineers) in California work closely with federal, state and local government emergency managers to help prepare coastal communities for potential impacts from a tsunami before, during, and after an event. For teletsunamis, as scientific information (forecast model wave heights, first-wave arrival times, etc.) from NOAA's West Coast and Alaska Tsunami Warning Center is made available, federal- and state-level emergency managers must help convey this information in a concise, comprehensible and timely manner to local officials who ultimately determine the appropriate response activities for their jurisdictions. During the September 29, 2009 Tsunami Advisory for California, government geoscientists assisted the California Emergency Management Agency by providing technical assistance during teleconference meetings with NOAA and other state and local emergency managers prior to the arrival of the tsunami. This technical assistance included background information on anticipated tidal conditions when the tsunami was set to arrive, wave height estimates from state-modeled scenarios for areas not covered by NOAA's forecast models, and clarifying which regions of the state were at greatest risk. Over the last year, state geoscientists have started to provide additional assistance: 1) working closely with NOAA to simplify their tsunami alert messaging and expand their forecast modeling coverage; 2) creating "playbooks" containing information from existing tsunami scenarios for local emergency managers to reference during an event; and, 3) developing a state-level information "clearinghouse" and pre-tsunami field response team to assist local officials as well as observe and report tsunami effects. Activities of geoscientists were expanded during the more recent Tsunami Advisory on February 27, 2010, including deploying a geologist from the California Geological Survey as a field observer who provided

  18. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California

  19. Neutron scattering studies of crude oil viscosity reduction with electric field

    NASA Astrophysics Data System (ADS)

    Du, Enpeng

    topic. Dr. Tao with his group at Temple University, using his electro or magnetic rheological viscosity theory has developed a new technology, which utilizes electric or magnetic fields to change the rheology of complex fluids to reduce the viscosity, while keeping the temperature unchanged. After we successfully reduced the viscosity of crude oil with field and investigated the microstructure changing in various crude oil samples with SANS, we have continued to reduce the viscosity of heavy crude oil, bunker diesel, ultra low sulfur diesel, bio-diesel and crude oil and ultra low temperature with electric field treatment. Our research group developed the viscosity electrorheology theory and investigated flow rate with laboratory and field pipeline. But we never visualize this aggregation. The small angle neutron scattering experiment has confirmed the theoretical prediction that a strong electric field induces the suspended nano-particles inside crude oil to aggregate into short chains along the field direction. This aggregation breaks the symmetry, making the viscosity anisotropic: along the field direction, the viscosity is significantly reduced. The experiment enables us to determine the induced chain size and shape, verifies that the electric field works for all kinds of crude oils, paraffin-based, asphalt-based, and mix-based. The basic physics of such field induced viscosity reduction is applicable to all kinds of suspensions.

  20. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    SciTech Connect

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  1. Changes in the status of harvested rice fields in the Sacramento Valley, California: Implications for wintering waterfowl.

    USGS Publications Warehouse

    Miller, Michael R.; Garr, Jay D.; Coates, Peter S.

    2010-01-01

    Harvested rice fields provide critical foraging habitat for wintering waterfowl in North America, but their value depends upon post-harvest treatments. We visited harvested ricefields in the Sacramento Valley, California, during the winters of 2007 and 2008 (recent period) and recorded their observed status as harvested (standing or mechanically modified stubble), burned, plowed, or flooded. We compared these data with those from identical studies conducted during the 1980s (early period). We documented substantial changes in field status between periods. First, the area of flooded rice increased 4-5-fold, from about 15% to >40% of fields, because of a 3-4-fold increase in the percentage of fields flooded coupled with a 37-41% increase in the area of rice produced. Concurrently, the area of plowed fields increased from 35% of fields, burned fields declined from about 40% to 1%, and fields categorized as harvested declined from 22-54% to <15%. The increased flooding has likely increased access to food resources for wintering waterfowl, but this benefit may not be available to some goose species, and may be at least partially countered by the increase of plowed fields, especially those left dry, and the decrease of fields left as harvested.We encourage waterfowl managers to implement a rice field status survey in the Sacramento Valley and other North American rice growing regions as appropriate to support long-term monitoring programs and wetland habitat conservation planning for wintering waterfowl.

  2. Miscibility study of carbon dioxide injection to enhance oil recovery from Abu-Dhabi oil field Thani reservoire

    NASA Astrophysics Data System (ADS)

    Aljarwan, Abdulla Humaid Saif Saeed

    The subject field in this study has been recognized among the largest offshore oil fields in the world, located in the Arabian Gulf 63 kilometers to the Northwest of Abu Dhabi, producing large quantities of crude oil and associated gas from three different carbonate reservoirs, Thani-I, II and IIII since 1963. In the early 1970's peripheral water injection scheme was adopted to maintain the reservoir pressure and sustain production. Simultaneously, partial waterflooding was applied to one sector of the field, but stopped soon after implementation shadowed by poor sweep efficiency and dramatic escalation of water-cut. Furthermore, hydrocarbon miscible gas injection was implemented in the year 2000 but stopped seven years later, due to high gas oil ratio and aspheltene deposition. In light of such recovery complications, management is considering serious recovery measures to extend plateau production and meet long-term production from this field. Post initial screening phase, it became evident that CO 2 miscible injection is the most suitable way forward. Characteristics of the Thani-III reservoir are within the favorable range for both immiscible and miscible CO2 injection criteria set by Taber, Martine and Serigh. Thani-III reservoir is considered more homogenous, less fractured and with higher production potential than Thani-I and II, hence promoted to be the target of CO2 miscible gas injection. This thesis aims to study the miscibility features of CO2 miscible injecton to enhanced oil recovery from Thani-III reservoir. Comprehensive simulation model is used to determine multi contact miscibility and suitable equation of state with CO2 as a separate pseudo component using one of the industry standard simulation software. Experimental PVT data for bottom hole and separator samples including compositional analysis, differential liberation test, separator tests, constant composition expansion, viscosity measurements and swelling tests for pure CO2 were used to

  3. Programed oil generation of the Zubair Formation, Southern Iraq oil fields: Results from Petromod software modeling and geochemical analysis

    USGS Publications Warehouse

    Al-Ameri, T. K.; Pitman, J.; Naser, M.E.; Zumberge, J.; Al-Haydari, H. A.

    2011-01-01

    1D petroleum system modeling was performed on wells in each of four oil fields in South Iraq, Zubair (well Zb-47), Nahr Umr (well NR-9), West Qurna (well WQ-15 and 23), and Majnoon (well Mj-8). In each of these fields, deposition of the Zubair Formation was followed by continuous burial, reaching maximum temperatures of 100??C (equivalent to 0. 70%Ro) at depths of 3,344-3,750 m of well Zb-47 and 3,081. 5-3,420 m of well WQ-15, 120??C (equivalent to 0. 78%Ro) at depths of 3,353-3,645 m of well NR-9, and 3,391-3,691. 5 m of well Mj-8. Generation of petroleum in the Zubair Formation began in the late Tertiary, 10 million years ago. At present day, modeled transformation ratios (TR) indicate that 65% TR of its generation potential has been reached in well Zb-47, 75% TR in well NR-9 and 55-85% TR in West Qurna oil field (wells WQ-15 and WQ-23) and up to 95% TR in well Mj-8, In contrast, younger source rocks are immature to early mature (<20% TR), whereas older source rocks are mature to overmature (100% TR). Comparison of these basin modeling results, in Basrah region, are performed with Kifle oil field in Hilla region of western Euphrates River whereas the Zubair Formation is immature within temperature range of 65-70??C (0. 50%Ro equivalent) with up to 12% (TR = 12%) hydrocarbon generation efficiency and hence poor generation could be assessed in this last location. The Zubair Formation was deposited in a deltaic environment and consists of interbedded shales and porous and permeable sandstones. In Basrah region, the shales have total organic carbon of 0. 5-7. 0 wt%, Tmax 430-470??C and hydrogen indices of up to 466 with S2 = 0. 4-9. 4 of kerogen type II & III and petroleum potential of 0. 4-9. 98 of good hydrocarbon generation, which is consistent with 55-95% hydrocarbon efficiency. These generated hydrocarbons had charged (in part) the Cretaceous and Tertiary reservoirs, especially the Zubair Formation itself, in the traps formed by Alpine collision that closed the

  4. Hidden oil leg: Case study of lower D1 Miocene sandstone, Dulang field, offshore Peninsular Malaysia

    SciTech Connect

    Solomon, G.J.; Chandramohan, S.; Karra, S.; Sonrexa, K.

    1995-10-01

    The Dulang Field is located offshore east coast of Peninsular Malaysia in water depths of approximately 75 m. The field, discovered in 1981, is about 24 km by 3.5 km. After drilling 14 exploration/appraisal wells by both Carigali and its partner Esso Production Malaysia Inc., the central part of the field was developed as a unitized area in November 1990. Three 32-slot platforms have been installed in the unitized area, and development drilling is ongoing. Production commenced in March 1991 and is currently maintained at approximately 50,000 BOPD. The estimated OIIP (oil-initially-in-place) for the unitized area is in the order of 700 million barrels. There are 19 reservoir sands in Groups D and E which are of Middle-Late Miocene age. During the exploration/appraisal phase, oil and gas were encountered in the Group E and only gas in the Lower D1 reservoirs. Wireline formation pressure test data taken in the Lower D1 reservoir in these wells plotted along a common trend with a gradient of 0.06 psi/ft. The lowermost gas pressure point was only 6 m above the normal hydrostatic gradient. It was therefore concluded that an oil column, even if present, would be thin. At the time, it was understandable that the gas pressures plotted along the same trend because the hydrocarbon column of the Lower D1 reservoir was large and extended beyond the limits of the major faults, suggesting a common pool. However, during the development drilling phase, it was discovered that the Lower D1 sandstone was a major oil reservoir, with estimated oil-in-place of about 100 million barrels. Oil columns of 75 m and 40 m have been proven up in the northern and southern flanks of the field, respectively, in the Lower D1. In addition, development plans were flexible enough to be able to effectively exploit the discovery.

  5. Evaluation of electromagnetic mapping methods to delineate subsurface saline waters in the Brookhaven oil field, Mississippi

    SciTech Connect

    Smith, B.D.; Bisdorf, R.; Slack, L.J.; Mazzella, A.

    1997-10-01

    Hydrologic and geophysical studies of saline waters at the Brookhaven oil field (Mississippi) began in 1985. Past and present practices to dispose of brines produced with oil and gas poise an environmental risk to ground water resources, agriculture, and other land uses. At Brookhaven, there is an elevated total chloride content in shallow (<100m) water wells within the field. Background levels of total chloride in the region are around 20 milligrams per liter (mg/L), which is exceptionally fresh water in comparison to other oil producing areas, particularly in the western United States. Contamination in the oil field at some sites is several hundred mg/L chloride as determined from water well samples taken in the mid-1980s. The EPA funded a feasibility study that included a dc resistivity survey which showed low resistivities in one area of known saline water contamination. Detailed electrical geophysical surveys are not possible due to numerous metallic features associated with oil production. In 1988 a helicopter electromagnetic (HEM) survey of the oil field was flown under contract to the USGS as part of an EPA funded research project. An interpreted resistivity map for a depth of 30m showed low resistivities associated with clays, shales, and saline waters near some of the abandoned brine disposal pits. In 1995 water wells were re-sampled and two areas of high changes in chloride content were found. Also in 1995, a new HEM survey was flown and new dc resistivity soundings were made. Comparison of the ground and airborne survey along a profile where there has been a high change in chloride content shows good agreement for interpreted subsurface resistivities. The HEM survey shows greater detail than the ground measurements and suggests there may be local vertical migration of saline waters in areas where there has been a large increase in ground water chloride content.

  6. A new GPS velocity field for the Pacific Plate - Part 2: implications for fault slip rates in western California

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Márquez-Azúa, Bertha; Cabral-Cano, Enrique

    2014-12-01

    Lower and upper bounds for present deformation rates across faults in central California between the San Andreas Fault and Pacific coast are estimated from a new Global Positioning System (GPS) velocity field for central, western California in light of geodetic evidence presented in a companion paper for slow, but significant deformation within the Pacific Plate between young seafloor in the eastern Pacific and older seafloor elsewhere on the plate. Transects of the GPS velocity field across the San Andreas Fault between Parkfield and San Juan Buatista, where fault slip is dominated by creep and the velocity field thus reveals the off-fault deformation, show that GPS sites in westernmost California move approximately parallel to the fault at an average rate of 3.4 ± 0.4 mm yr-1 relative to the older interior of the Pacific Plate, but only 1.8 ± 0.6 mm yr-1 if the Pacific Plate frame of reference is corrected for deformation within the plate. Modelled interseismic elastic deformation from the weakly coupled creeping segment of the San Andreas Fault is an order-of-magnitude too small to explain the southeastward motions of coastal sites in western California. Similarly, models that maximize residual viscoelastic deformation from the 1857 Fort Tejon and 1906 San Francisco earthquakes mismatch both the rates and directions of GPS site motions in central California relative to the Pacific Plate. Neither thus explains the site motions southwest of the San Andreas fault, indicating that the site motions measure deformation across faults and folds outboard of the San Andreas Fault. The non-zero site velocities thus constitute strong evidence for active folding and faulting outboard from the creeping segment of the San Andreas Fault and suggest limits of 0-2 mm yr-1 for the Rinconada Fault slip rate and 1.8 ± 0.6 to 3.4 ± 0.4 mm yr-1 for the slip rates integrated across near-coastal faults such as the Hosgri, San Gregorio and San Simeon faults.

  7. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  8. Eagle Oil and Gas Company – Sheldon Dome Field NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit WY-0020338, the Eagle Oil and Gas Company is authorized to discharge from its Sheldon Dome Field wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, a tributary to the Wind River.

  9. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  10. Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump

    SciTech Connect

    Wilkie, D.I. )

    1993-09-27

    Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.

  11. A look at Bacon Flat, Grant Canyon oil fields of Railroad Valley, Nevada

    SciTech Connect

    Johnson, E.H. )

    1993-05-17

    The prolific wells at Grant Canyon, and the puzzling geology, have intrigued explorationists and promoters. Many a Nevada prospect has been touted as 'another Grand Canyon.' But what processes formed Grant Canyon, and can others be found Last August, Equitable Resources Energy Co,'s Balcron Oil Division spudded a well at Bacon Flat, a mile west of Grant Canyon. A one well field, Bacon Flat had been abandoned in 1988. But just 900 ft north of the field opener, Balcron's well tested oil at a rate or 5,400 b/d. It turns out that Bacon Flat and Grant Canyon fields have a common geological history and, in fact, share the same faulted horst. However, they formed by an unusual combination of events that may be unique to those fields. This paper describes the geologic history, well logging interpretations, structures, the Jebco C seismic line, a geologic cross section, and the author's conclusions.

  12. Aquatic Insect Emergence in Post-Harvest Flooded Agricultural Fields in the Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Moss, R. C.; Blumenshine, S.; Fleskes, J.

    2005-05-01

    California's Southern San Joaquin Valley is one of the most important waterbird areas in North America, but has suffered a disproportionate loss of wetlands when compared to other California regions. This project analyzes the habitat value of post-harvest flooded cropland by measuring the emergence of aquatic insects across multiple crop types. Aquatic insect emergence was sampled from post-harvest flooded fields of four crop types (alfalfa, corn, tomato, wheat), August-October, 2003-2004. Emergence was measured using traps deployed with a stratified random distribution to sample between and within field variation. Emergence rate and emergent biomass was significantly higher in flooded tomato fields. Results from corn fields indicate that flooding depth was correlated (r=0.095) with both diel temperature fluctuation and emergence rate. Chironomus dilutus larvae were grown in environmental chambers, under two thermal treatments with the same mean but different amplitudes (high: 15°-32°C, low: 20°-26°C) to investigate thermal fluctuation effects on survival and biomass. Larval survival (4x) and biomass (2x) were significantly greater in the low versus high temperature fluctuation treatment. This research has the potential to affect agricultural management throughout the 12,600 km2 region, increase aquatic insect production and aid in the recovery of declining bird populations.

  13. Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997

    SciTech Connect

    1998-03-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

  14. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    SciTech Connect

    Not Available

    1994-07-08

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

  15. Molecular dynamics and composition of crude oil by low-field nuclear magnetic resonance.

    PubMed

    Jia, Zijian; Xiao, Lizhi; Wang, Zhizhan; Liao, Guangzhi; Zhang, Yan; Liang, Can

    2016-08-01

    Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF-NMR) relaxation time distributions. A set of down-hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation-relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory-designed downhole NMR fluid analyzer. The LF-NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Application of electrical submersible pumps in heavy crude oil in Boscan Field

    SciTech Connect

    Bortolin, L.L.

    1995-12-31

    During recent years optimization of artificial lift methods has been applied in the oil industry, in order to evaluate the effect on oil well production and to establish a company`s optimal investment policies. Higher costs on new artificial lifting equipment and facilities for new fields have created the necessity to review the latest available technology of different lifting methods and specially that related to electrical submersible pumps (ESP). Few studies in the area of heavy crude oil production optimization using ESP as a lifting method have been published. This paper discusses the results of an ESP pilot project performed in 24 wells in Boscan field, and analyzes the performance of the equipment and its application range. The ESP equipment was installed in completions at depths ranging from 7000 to 9000 feet, with a 10{degrees}API gravity crude and bottomhole temperature of 180{degrees}F. It was concluded that despite a reduction of the pump`s efficiency, the ESP equipment does qualify as a good alternative lifting method for heavy oil production. It is also possible to obtain higher production rates. The results obtained in this pilot project, confirm that submersible pumps are an alternative method for lifting heavy crude oil from relatively deep reservoirs.

  17. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    PubMed

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control.

  18. The significance of large variations in oil properties of the Dai Hung field, Vietnam

    SciTech Connect

    Behrenbruch, P.; Du, P.Q.

    1995-10-01

    The Dai Hung Oil field, offshore Vietnam, is comprised of a complex subsurface structure containing stacked reservoir sequences typically found in many other Southeast Asian fields. Combined with areal fault compartmentalization, this situation has led to the observed, large variations in oil properties. Furthermore, the depositional environment in terms of burial history has created a unique overpressure situation which also had an affect, particularly on the crude saturation conditions of individual reservoirs. For commercial and technical reasons, this situation required a detailed analysis, both in terms of variation in crude assay and live oil properties. For whole crude properties: gravity, K factor, wax content and pour point-graphs were drawn up using a large data base of worldwide crudes against which the Dai Hung data could be validated. In case of PVT properties (bubble point and formation volume factor) existing industry correlations were examined. It could be concluded that the sweet, medium gravity and moderately waxy Dai Hung crude has whole crude properties which are comparable to other, similar crudes. The general framework of crude properties established is suitable to type other crudes, even if limited information is available. Of the existing PVT correlations tested, it was found that Standing`s correlation for the oil formation volume factor and the Kartoatmodjo-Schmidt correlation for the bubble point fitted the Dai Hung crude data the best. For the lower shrinkage Dai Hung crudes the Malaysian oil formation volume factor correlation by Omar-Todd gave the best data fit.

  19. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional

  20. Performance of methyl eugenol + matrix + toxicant combinations under field conditions in Hawaii and California for trapping Bactrocera dorsalis (Diptera: Tephritidae).

    PubMed

    Jang, Eric B; Ramsey, Amanda; Carvalho, Lori A

    2013-04-01

    The oriental fruit fly, Bactrocera dorsalis (Hendel) is a major pest of many fruit crops worldwide. Current detection programs by federal and state agencies in the United States use a grid of traps consisting of liquid methyl eugenol (lure) and naled (toxicant) applied to cotton wicks and hung inside the trap. In recent years efforts have been made to incorporate these chemicals into various solid-type matrices that could be individually packaged to reduce human exposure to the chemicals and improve handling. New solid formulations containing methyl eugenol and either naled or dichlorovinyl dimethyl phosphate toxicants were compared with the standard formulations on cotton wicks in large scale field evaluation in Hawaii. Two reduced risk toxicants (spinosad and Rynaxypyr) were also evaluated. In one test the solid lure-toxicant-matrix combinations were sent to California to be weathered under California climate conditions and then sent back to Hawaii for evaluation. The polymer matrices with lure and toxicant were found to be as attractive as baited wicks and have the same longevity of attraction regardless of being weathered in Hawaii or in California. The new ingestible toxicants were also effective, although further testing of these ingestible lure + toxicant + matrix products is necessary.

  1. Advantages and Limitations of Cluster Analysis in Interpreting Regional GPS Velocity Fields in California and Elsewhere

    NASA Astrophysics Data System (ADS)

    Thatcher, W. R.; Savage, J. C.; Simpson, R.

    2012-12-01

    Regional Global Positioning System (GPS) velocity observations are providing increasingly precise mappings of actively deforming continental lithosphere. Cluster analysis, a venerable data analysis method, offers a simple, visual exploratory tool for the initial organization and investigation of GPS velocities (Simpson et al., 2012 GRL). Here we describe the application of cluster analysis to GPS velocities from three regions, the Mojave Desert and the San Francisco Bay regions in California, and the Aegean in the eastern Mediterranean. Our goal is to illustrate the strengths and shortcomings of the method in searching for spatially coherent patterns of deformation, including evidence for and against block-like behavior in these 3 regions. The deformation fields from dense regional GPS networks can often be concisely described in terms of relatively coherent blocks bounded by active faults, although the choice of blocks, their number and size, is subjective and usually guided by the distribution of known faults. Cluster analysis applied to GPS velocities provides a completely objective method for identifying groups of observations ranging in size from 10s to 100s of km in characteristic dimension based solely on the similarities of their velocity vectors. In the three regions we have studied, statistically significant clusters are almost invariably spatially coherent, fault bounded, and coincide with elastic, geologically identified structural blocks. Often, higher order clusters that are not statistically significant are also spatially coherent, suggesting the existence of additional blocks, or defining regions of other tectonic importance (e.g. zones of localized elastic strain accumulation near locked faults). These results can be used to both formulate tentative tectonic models with testable consequences and to suggest focused new measurements in under-sampled regions. Cluster analysis applied to GPS velocities has several potential limitations, aside from the

  2. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    . Laboratory data are compared with longitudinal evolution of grain size and angularity of particles deposited by debris flows along Inyo Creek, Sierra Nevada, California. Preliminary results suggest wear rates can be scaled across drum sizes and to field conditions using non-dimensional metrics of flow dynamics including Savage, Bagnold, and Froude numbers.

  3. E and P increasing off California

    SciTech Connect

    Not Available

    1984-01-01

    Point Arguello field, a promising 1981 discovery with reserves as high as 500 million bbl, could become California's number one producing field when first oil flows in 1986. Chevron hopes to produce 160,000 b/d and 160 MMcfd. Much of the crude discovered in the offshore portion of the Santa Maria Basin is heavy, with high nitrogen, sulfur and metals content and a large volume of viscous residue. Texaco plans to install a platform 3 miles west of Chevron's platform and pipe it's oil and gas to Chevron's platform. Design studies are discussed for building a 200,000-b/d crude pipeline and a 160-MMcfd gas pipeline from the Chevron platform to shore and on to the refineries. Additional discoveries are discussed. Coming up next for California is OCS Sale 80 offering tracts from Point Conception south to the Mexican border.

  4. Implementing Common Core State Standards in California: A Report from the Field

    ERIC Educational Resources Information Center

    McLaughlin, Milbrey; Glaab, Laura; Carrasco, Isabel Hilliger

    2014-01-01

    In this report, the authors present some initial findings on the early implementation of Common Core State Standards (CCSS) in California. They report on their interviews with educators in all regions of the state, and on their views of how implementation is proceeding in their schools and districts. The authors then review some of the key…

  5. Life in Early California: A New Approach to the Outdoor Field Trip

    ERIC Educational Resources Information Center

    Falk, John H.

    1973-01-01

    Describes an outdoor educational program at the University of California Botanical Garden in which children are encouraged to handle the plants and are provided with a taped commentary. By the use of an inquiry method, children learn how the Californian Indians used many of the native plants. (JR)

  6. Dispersal forcing of a southern California river plumes, based on field and remote sensing observations

    USGS Publications Warehouse

    Warrick, Jonathan A.; Mertes, Leal A.K.; Washburn, Libe; Siegel, David A.

    2004-01-01

    River plumes are important pathways of terrestrial materials entering the sea. In southern California, rivers are known to be the dominant source of littoral, shelf and basin sediment and coastal pollution, although a basic understanding of the dynamics of these river inputs does not exist. Here we evaluate forcing parameters of a southern California river plume using ship-based hydrographic surveys and satellite remote sensing measurements to provide the first insights of river dispersal dynamics in southern California. Our results suggest that plumes of the Santa Clara River are strongly influenced by river inertia, producing jet-like structures ~10 km offshore during annual recurrence (~two-year) flood events and ~30 km during exceptional (~10-year recurrence) floods. Upwelling-favorable winds may be strong following stormwater events and can alter dispersal pathways of thse plumes. Due to similar runoff relationships and other reported satellite observations, we hypothesize that interia-dominated dispersal may be an important characteristic of the small, mountainous rivers throughout southern California.

  7. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

  8. Sisterhood in the oil field: informal support networks, gender roles and adaptation among women in the Oklahoma oil field

    SciTech Connect

    Walsh, A.C.

    1988-01-01

    The petroleum drilling industry exhibits a number of definitive characteristics, which combined with the most recent boom/bust drilling cycle, affect women in much the same manner as factors commonly associated with the eroding of women's social and economic positions within modernizing societies. Recognizing that modernization has a negative impact on women, this study focuses on strategies of adaptation employed by women associated both directly and indirectly with the petroleum drilling industry in an oil boom/bust town in western Oklahoma. Utilizing the traditional techniques of ethnographic interview and participant observation, it was shown that informal support networks formed by women enhanced women's adaptation by extending their resource base beyond the nuclear family and encouraging solidarity. Gender-based division of labor was also modified by western energy development. Boom times facilitated a rigid division of labor that gave way to a more flexible arrangement during bust times without a concomitant change in gender-based ideology. This was accounted for by differences in the rates of change for the underlying habits and values associated with the public and private sectors.

  9. An examination of the southern California field test for the systematic accumulation of the optical refraction error in geodetic leveling.

    USGS Publications Warehouse

    Castle, R.O.; Brown, B.W.; Gilmore, T.D.; Mark, R.K.; Wilson, R.C.

    1983-01-01

    Appraisals of the two levelings that formed the southern California field test for the accumulation of the atmospheric refraction error indicate that random error and systematic error unrelated to refraction competed with the systematic refraction error and severely complicate any analysis of the test results. If the fewer than one-third of the sections that met less than second-order, class I standards are dropped, the divergence virtually disappears between the presumably more refraction contaminated long-sight-length survey and the less contaminated short-sight-length survey. -Authors

  10. Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters

    PubMed Central

    Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

    1992-01-01

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

  11. Kinetics of lead and copper removal from oil-field brine by potential sorption.

    PubMed

    Nourafkan, E; Asachi, M; Marandi, R

    2014-01-01

    The present study investigates the kinetics of lead and copper removal from oil-field brine by potential sorption. A population balance equation, coupled with a mass balance equation, was used in the estimation of kinetic parameters. Metal removal was performed by potential sorption of lead and copper through CaCO3 precipitates induced by the reaction of Na2CO3 and CaCl2. The oil-field brine was selected from an oil well in Gachsaran, Iran. The crystal size distribution of the solid phase was measured by dynamic laser scattering analyzer, and the liquor phase was analyzed using atomic adsorption. The morphology of calcium carbonate particles was illustrated using scanning electron microscopy and X-ray diffraction. The results showed that the presence of copper and lead decreases the average size distribution of calcium carbonate particles by influencing the kinetic parameters. Lead and copper concentrations were reduced from 2.911 to 0.127 ppm (95.63% removal) and 0.476 to 0.025 ppm (94.74% removal), respectively, in exchange for 12 g CaCO3 consumption per 100 ml oil-field brine.

  12. Brine contamination of shallow ground water and streams in the Brookhaven Oil Field, Lincoln County, Mississippi

    USGS Publications Warehouse

    Kalkhoff, S.J.

    1986-01-01

    A hydrologic investigation to define areas of brine contamination in shallow freshwater aquifers commonly used for streams that drain the Brookhaven Oil Field, was conducted from October 1983 to September 1984. The Brookhaven Oil Field covers approximately 15 sq mi in northwestern Lincoln County, Mississippi. Since 1943, disposal of approximately 544.2 million barrels of brine pumped from the oil producing zone (lower part of the Tuscaloosa Formation) has contaminated the Citronelle aquifer, the Hattiesburg aquifers, and streams that drain the oil field. Approximately 5 sq mi of the shallow Citronelle aquifer contain water with chloride concentrations higher than normal for this area ( > 20 mg/L). Brine contamination has moved from the source laterally through the Citronelle aquifer to discharge into nearby streams and vertically into the underlying Hattiesburg aquifers. Contamination is most noticeable in Shaws Creek when streamflow originates primarily from groundwater inflow (approximately 87% of the time during the study). Additional study is required to define contaminant plumes, rates of groundwater movement and geohydrochemical reactions between the contaminant and aquifer materials. These data would allow accurate predictions of location, extent and degree of contamination in the study area. (Author 's abstract)

  13. An acoustic system for providing the two-phase liquid profile in oil field storage tanks.

    PubMed

    Meribout, Mahmoud; Al Naamany, Ahmed; Al Busaidi, Khamis

    2009-10-01

    The continuing need for in situ measurements of the emulsion layer between crude oil and water within oil field tanks has initiated experimental and theoretical investigations of candidate measurement methods. This paper describes a new low-cost and nonradioactive industrial field prototype device that provides, continuously and in real time, the vertical profile of the 2-phase liquid within oil field tank separators (i.e., percentage of water in oil at different heights of the tank, as well as the emulsion layer interfaces) using ultrasonic waves. The device, which has been installed in a vessel through an 8-in. flange, consists of a 1-D array of tens of ultrasonic transducers (28 transducers in this paper) that are activated in a time-multiplexed manner by an embedded transmitter fixed on the top of the tank. This latest version implements a feedforward neural network with back-propagation learning to determine the vertical water-cut distribution along the vessel. It also implements an expert-system-based algorithm to determine the lower and higher positions of the emulsion layer. The results obtained from the extensive experiments, which have been conducted under various conditions of temperature, indicate that the device can determine the profile of the 2-phase liquid within a relative error of +/- 3%.

  14. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE's Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES H/QA programs was conducted.

  15. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE`s Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES&H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES&H/QA programs was conducted.

  16. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner; Iraj Ershaghi

    2002-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  17. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner; Iraj Ershaghi

    2003-10-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  18. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner

    2005-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  19. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner; Iraj Ershaghi

    2002-04-30

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful redevelopment and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  20. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner; Iraj Ershaghi

    2003-07-30

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  1. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner; Iraj Ershaghi

    2003-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  2. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner

    2004-10-29

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re- injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  3. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner; Iraj Ershaghi

    2003-05-15

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  4. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner

    2004-07-30

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  5. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner

    2005-08-01

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  6. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect

    Steve Horner

    2004-04-29

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  7. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect

    Steve Horner

    2006-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the

  8. Lloydminster fireflood performance, modifications promise good recoveries. [Canadian oil fields

    SciTech Connect

    Fairfield, W.H.; White, P.D.

    1982-02-08

    Efforts to increase ultimate recovery by thermal methods began 16 years ago with steam huff-and-puff and displacement steam drive. These early efforts were not successful. The first in situ combustion drive, the Golden Lake Sparky Fireflood, was initiated 12 years ago and is the subject of this work. It consists of one 20-acre inverted five-spot pattern and two approximately 30-acre inverted seven-spots. All three patterns are currently operating, and the project shows promise of accomplishing recoveries in excess of 30%. It is currently being expanded to include two additional patterns. Field characteristics are discussed along with observations on combustion operations Sparky sands. A critique of the fireflood process is given and the oxygen fireflood - a modification to the fireflood process - is outlined. 4 refs.

  9. Ultra-low frequency magnetic field measurements in southern California during the Northridge Earthquake of 17 January 1994

    NASA Astrophysics Data System (ADS)

    Fraser-Smith, A. C.; McGill, P. R.; Helliwell, R. A.; Villard, O. G., Jr.

    Measurements of ultra-low frequency (ULF) magnetic field fluctuations by two independent monitoring systems in Southern California were in progress during January 1994 when the moderately-large M6.7 Northridge earthquake occurred on 17 January. Our two measuring systems are located at Table Mountain, on the other side of the San Gabriel mountains and at a distance of 81 km from the epicenter, and at Piñon Flat, south of Palm Springs and at a distance of 206 km from the epicenter. Both systems operated well throughout the month and without interruption due to the earthquake. As a result of the occurrence of a moderate magnetic storm on 11 January, which was followed by a period of enhanced ULF magnetic activity that persisted until after the time of the earthquake, the sensitivity of our measurements throughout California was reduced for roughly a week before the earthquake took place. Nevertheless, no large signals that could be associated with the earthquake were evident at any time, except for the usual co-seismic shaking response of the detectors. Subsequent removal of the upper atmosphere signals from the Table Mountain measurements, using the measurements from the more distant Piñon Flat location as reference, essentially left no significant residual. Thus, assuming that ULF magnetic fields were produced by the earthquake, their amplitudes were too small to produce obvious increases in the ULF background noise at 81 km from the epicenter, which is in agreement with our earlier estimate of a range of about 100 km for the ULF magnetic field fluctuations observed prior to the M7.1 Loma Prieta earthquake. These results imply that a network of conventional magnetic field detectors spaced less than 100 km apart would be required to detect ULF magnetic field fluctuations prior to earthquakes with magnitudes greater than 7. Under the same conditions, superconducting magnetic field gradiometers could offer greater sensitivity and range.

  10. Study on source apportionment of Non-Methane Hydrocarbon Compounds (NMHC) in Dagang Oil Field

    SciTech Connect

    Zhu Tan; Lin Tao; Bai Zhipeng

    1996-12-31

    To identify the sources of non-methane total hydrocarbon in atmosphere in the region of Dagang Oil Field, 35 samples were collected and 10 hydrocarbon compounds were analyzed with GC/FID. Then, the Chemical Mass Balance Receptor Model was set up and the source contributions and standard errors were determined with the effective variance weighted least squares estimation method. The sources of the non-methane total hydrocarbon in this region includes crude oil, gasoline, natural gas, liquefied petroleum gas and motor exhaust, whose contributions are 46.64%, 8.56%, 20.05%, 18.17% and 6.08% respectively. Upon these analyses, the major sources of regional non-methane total hydrocarbon are crude oil, natural gas and liquefied petroleum gas.

  11. Assessment of undiscovered continuous oil and gas resources in the Monterey Formation, San Joaquin Basin Province, California, 2015

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Charpentier, Ronald R.; Klett, Timothy R.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Lillis, Paul G.; Marra, Kristen R.; Mercier, Tracey J.; Leathers, Heidi M.; Schenk, Christopher J.; Whidden, Katherine J.

    2015-10-06

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed mean volumes of 21 million barrels of oil (MMBO), 27 billion cubic feet of gas, and 1 million barrels of natural gas liquids in two assessment units (AUs) that may contain continuous oil resources. Mean volumes of oil for the individual assessment units are 14 MMBO in the Monterey Buttonwillow AU and 7 MMBO in the Monterey Maricopa AU.

  12. Sulfate-reducing bacteria release barium and radium from naturally occurring radioactive material in oil-field barite

    USGS Publications Warehouse

    Phillips, E.J.P.; Landa, E.R.; Kraemer, T.; Zielinski, R.

    2001-01-01

    Scale and sludge deposits formed during oil production can contain elevated levels of Ra, often coprecipitated with barium sulfate (barite). The potential for sulfate-reducing bacteria to release 226 Ra and Ba (a Ra analog) from oil-field barite was evaluated. The concentration of dissolved Ba increased when samples containing pipe scale, tank sludge, or oil-field brine pond sediment were incubated with sulfate-reducing bacteria Desulfovibrio sp., Str LZKI, isolated from an oil-field brine pond. However, Ba release was not stoichiometric with sulfide production in oil-field samples, and <0.1% of the Ba was released. Potential for the release of 226Ra was demonstrated, and the 226 Ra release associated with sulfate-reducing activity was predictable from the amount of Ba released. As with Ba, only a fraction of the 226Ra expected from the amount of sulfide produced was released, and most of the Ra remained associated with the solid material.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  14. Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Marica, Florea; MacMillan, Bryce; Balcom, Bruce J.

    2016-08-01

    Magnetic resonance imaging (MRI) is a robust tool to image oil saturation distribution in rock cores during oil displacement processes. However, a lengthy measurement time for 3D measurements at low magnetic field can hinder monitoring the displacement. 1D and 2D MRI measurements are instead often undertaken to monitor the oil displacement since they are faster. However, 1D and 2D images may not completely reflect the oil distribution in heterogeneous rock cores. In this work, a high-speed 3D MRI technique, π Echo Planar Imaging (π-EPI), was employed at 0.2 T to monitor oil displacement. Centric scan interleaved sampling with view sharing in k-t space was employed to improve the temporal resolution of the π-EPI measurements. A D2O brine was employed to distinguish the hydrocarbon and water phases. A relatively homogenous glass bead pack and a heterogeneous Spynie core plug were employed to show different oil displacement behaviors. High quality 3D images were acquired with π-EPI MRI measurements. Fluid quantification with π-EPI compared favorably with FID, CPMG, 1D-DHK-SPRITE, 3D Fast Spin Echo (FSE) and 3D Conical SPRITE measurements. π-EPI greatly reduced the gradient duty cycle and improved sensitivity, compared to FSE and Conical SPRITE measurements, enabling dynamic monitoring of oil displacement processes. For core plug samples with sufficiently long lived T2, T2∗, π-EPI is an ideal method for rapid 3D saturation imaging.

  15. Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Marica, Florea; MacMillan, Bryce; Balcom, Bruce J

    2016-08-01

    Magnetic resonance imaging (MRI) is a robust tool to image oil saturation distribution in rock cores during oil displacement processes. However, a lengthy measurement time for 3D measurements at low magnetic field can hinder monitoring the displacement. 1D and 2D MRI measurements are instead often undertaken to monitor the oil displacement since they are faster. However, 1D and 2D images may not completely reflect the oil distribution in heterogeneous rock cores. In this work, a high-speed 3D MRI technique, π Echo Planar Imaging (π-EPI), was employed at 0.2T to monitor oil displacement. Centric scan interleaved sampling with view sharing in k-t space was employed to improve the temporal resolution of the π-EPI measurements. A D2O brine was employed to distinguish the hydrocarbon and water phases. A relatively homogenous glass bead pack and a heterogeneous Spynie core plug were employed to show different oil displacement behaviors. High quality 3D images were acquired with π-EPI MRI measurements. Fluid quantification with π-EPI compared favorably with FID, CPMG, 1D-DHK-SPRITE, 3D Fast Spin Echo (FSE) and 3D Conical SPRITE measurements. π-EPI greatly reduced the gradient duty cycle and improved sensitivity, compared to FSE and Conical SPRITE measurements, enabling dynamic monitoring of oil displacement processes. For core plug samples with sufficiently long lived T2, T2(∗), π-EPI is an ideal method for rapid 3D saturation imaging.

  16. Importance of the temperature field and its uncertainties in modeling ductile deformation of the southern California lithosphere

    NASA Astrophysics Data System (ADS)

    Thatcher, W. R.; Chapman, D. S.; Williams, C. F.; Hearn, E. H.

    2015-12-01

    Temperature is arguably the most important parameter controlling ductile deformation in tectonically active regions. Laboratory measurements at lower crust and upper mantle conditions define the mechanisms controlling ductile deformation and constrain quantitative rules relating stress and strain rate. Exhumed ductily deformed rocks reveal the micromechanics of deformation, supplying ground truth that can be compared with lab results. However, even if the mechanism and ductile deformation rules are accepted at face value, strain rates are exquisitely dependent on temperature. Here we critically assess observational data relevant to constraining the southern California lithospheric temperature field. Our goal is to improve estimates of the 3D temperature field and its real uncertainties and apply them to regional deformation modeling. We use a phased approach to estimating geotherms, beginning with simple 1D steady state conductive models. We identify the most important parameters and disaggregate them, separately examining the effects of varying radiogenic heat source concentration, rock type, crust and lithosphere thickness and asthenosphere solidus. We assess geotherm uncertainties by assigning realistic error bounds on all input quantities, propagate these uncertainties by Monte Carlo sampling and determine probability density functions for the geotherm. We find that although other parameter uncertainties contribute, variability in heat sources produces the largest variation in model-predicted geotherms. Because heat production depends strongly on rock type, better characterization of crustal lithology using refined seismic imaging results now becoming available beneath southern California is likely to produce the largest improvements in thermal models. Nonetheless, substantial uncertainty will remain, arguing for adoption of one or a few standard thermal models as common starting points for regional deformation modeling in southern California and elsewhere.

  17. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1997-08-08

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and

  19. Effect of flaring of natural gas in oil fields of Assam on rice cultivation.

    PubMed

    Sharma, K K; Hazarika, S; Kalita, B; Sharma, B

    2011-07-01

    Assam (India) is endowed with natural resources like oil, coal and natural gas. The crude oil, one of the most precious natural resources, is found in the districts of upper Assam. During the process of extraction of crude oil, low-pressure natural gas is burnt in the air. Most of the oil wells in upper Assam are located near rice fields and therefore, rice crop grown near the oil wells is exposed to light uninterruptedly causing grain sterility resulting significant loss in grain yield. To identify promising varieties for these areas, we studied the effect of flare on rice varieties with different photoperiod sensitivity. The high light intensity and increased light hours were the factors responsible for substantial loss in grain yield near the flare resulting from delay in flower initiation, reduction of panicle length, having less number of grains per panicle and more grain sterility. To prevent significant loss in yield, photoperiod-sensitive traditional and improved rice varieties should not be grown up to the distance of 80 and 100 m, respectively from the boundary wall of the flare pit. Modern weakly-photoperiod sensitive varieties like Ranjti and Mahsuri can be grown 40 m away from the wall while modern photoperiod insensitive variety like Jaya, can be cultivated 20 m away from the wall without significant loss in yield.

  20. The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California

    NASA Astrophysics Data System (ADS)

    Yang, Wenzheng; Hauksson, Egill

    2013-07-01

    We invert for the state of stress in the southern California crust using a catalogue of high quality earthquake focal mechanisms (1981-2010). The stress field is best resolved where seismicity rates are high and sufficient data are available to constrain the stress field across most of the region. From the stress field, we determine the maximum horizontal compressive stress (SHmax) orientations and the style of faulting across southern California. The trend of SHmax exhibits significant regional and local spatial heterogeneities. The regional trend of SHmax varies from north along the San Andreas system to NNE to the east in the Eastern California Shear Zone as well as to the west, within the Continental Borderland and the Western Transverse Ranges. The transition zones from one state of stress to the other occur over a distance of only a few kilometres, following a trend from Yucca Valley to Imperial Valley to the east, and the western edge of the Peninsular Ranges to the west. The local scale heterogeneities in the SHmax trend include NNW trends along the San Andreas Fault near Cajon Pass, Tejon Pass and the Cucapah Range, as well as NNE trends near the northern San Jacinto Fault and the Wheeler Ridge area. The style of faulting exhibits similar complexity, ranging from predominantly normal faulting in the high Sierra Nevada, to strike-slip faulting along the San Andreas system, to three consecutive bands of thrust faulting in the Wheeler Ridge area and the Western Transverse Ranges. The local variations in the style of faulting include normal faulting at the north end of the San Jacinto Fault and scattered areas of thrust faulting. The regional variations in the SHmax trends are very similar to the pattern of the GPS-measured maximum shortening axes of the surface strain rate tensor field although the strain field tends to be smoother and appears to capture some of the upper-mantle deformation field. The mean trend of SHmax departs about approximately 14° to

  1. Overgeneration from Solar Energy in California - A Field Guide to the Duck Chart

    SciTech Connect

    Denholm, Paul; Brinkman, Gregory; Jorgenson, Jennie

    2015-11-01

    In 2013, the California Independent System Operator published the "duck chart,"" which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in "overgeneration"" and curtailed renewable energy, increasing its costs and reducing its environmental benefits. This paper explores the duck chart in detail, examining how much PV might need to be curtailed if additional grid flexibility measures are not taken, and how curtailment rates can be decreased by changing grid operational practices. It finds that under business-as-usual types of assumptions and corresponding levels of grid flexibility in California, solar penetrations as low as 20 percent of annual energy could lead to marginal curtailment rates that exceed 30 percent. However, by allowing (or requiring) distributed PV and storage (including new installations that are part of the California storage mandate) to provide grid services, system flexibility could be greatly enhanced. Doing so could significantly reduce curtailment and allow much greater penetration of variable generation resources in achieving a 50 percent renewable portfolio standard. Overall, the work described in this paper points to the need to fully integrate distributed resources into grid system planning and operations to allow maximum use of the solar resource.

  2. Overgeneration from Solar Energy in California. A Field Guide to the Duck Chart

    SciTech Connect

    Denholm, Paul; O'Connell, Matthew; Brinkman, Gregory; Jorgenson, Jennie

    2015-11-01

    In 2013, the California Independent System Operator published the 'duck chart,' which shows a significant drop in mid-day net load on a spring day as solar photovoltaics (PV) are added to the system. The chart raises concerns that the conventional power system will be unable to accommodate the ramp rate and range needed to fully utilize solar energy, particularly on days characterized by the duck shape. This could result in 'overgeneration' and curtailed renewable energy, increasing its costs and reducing its environmental benefits. This paper explores the duck chart in detail, examining how much PV might need to be curtailed if additional grid flexibility measures are not taken, and how curtailment rates can be decreased by changing grid operational practices. It finds that under "business-as-usual"" types of assumptions and corresponding levels of grid flexibility in California, solar penetrations as low as 20% of annual energy could lead to marginal curtailment rates that exceed 30%. However, by allowing (or requiring) distributed PV and storage (including new installations that are part of the California storage mandate) to provide grid services, system flexibility could be greatly enhanced. Doing so could significantly reduce curtailment and allow much greater penetration of variable generation resources. Overall, the work described in this paper points to the need to fully integrate distributed resources into grid system planning and operations to allow maximum use of the solar resource.

  3. Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.

    1986-01-01

    Bed shear stress was estimated using wave and current measurements obtained with the GEOPROBE bottom-tripod system during resuspension events in Norton Sound, Alaska, and on the northern California shelf. The boundary-layer model of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808) was used to compute the bed shear stress under combined wave-generated and quasi-steady currents. Resuspension events were identified by sudden, large increases in light scattering at 1.9 m above the sea floor. The shear-stress values were used to compute the Shields parameter (??). The results for Norton Sound are in excellent agreement with the Shields threshold criterion; the data for the California shelf plot somewhat above the Shields threshold curve, though generally within the scatter envelope. Although the surface sediments in each area contain substantial fine-grained fractions (mean diameters were 0.007 cm in Norton Sound and 0.002 cm on the California shelf), the results do not indicate significant cohesion, because the sediment was entrained at bed shear-stress values close to those predicted by the modified Shields curve for cohesionless fine-grained particles. We suspect that frequent wave stirring and observed plowing of the surface sediment by benthonic animals maintain a high water content and contribute to the ease with which these materials are resuspended. ?? 1986.

  4. Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters

    PubMed Central

    Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1991-01-01

    Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

  5. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    SciTech Connect

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; del Rio, Tijana G.; Foster, Brian; Copeland, A.; Jansson, Janet K.; Pati, Amrita; Gilbert, Jack A.; Tringe, Susannah G.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-02

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of the main constituents of crude oil. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders and their metabolic capabilities may be fundamental to the ecology of the SBC oil seep.

  6. Sedimentary style and oil-gas field distribution in Western Bohai Bay

    SciTech Connect

    Hansheng Qiao )

    1994-07-01

    Western Bohai Bay is located near Tianjing City and the Yanshan Mountains. Tectonically, it is part of the Bohai Bay rift, including the Qiku, Nanpu, and Cangdong depressions. The Paleogene strata consist of three cycles in the rift. Usually, the sublacustrine fans or basalts formed at the initial stage of every cycle. The dark shales and turbidites developed at the high level of lacustrine transgression. However, the deltas or evaporates appeared at the regressive stage. The sublacustrine fans or deltas generally distribute in the marginal part of a depression, with humic type kerogen. The dark shales of deep lacustrine facies in the inner part of it contain sapropel type kerogen. The transitional zone between them is interbedded shales and sandstones, with mixed type kerogen. The oil-gas fields mainly occur in the transitional zone around the oil-generating center. The great oil-gas fields are formed in areas where the big drape anticline coincided with the sublacustrine fan-front or delta-front sandstones and were sealed by shales or evaporates. A great number of small overpressured oil reservoirs are in the mature source rocks in the depression center.

  7. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    NASA Astrophysics Data System (ADS)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  8. A laboratory and field evaluation of the CO/sub 2/ huff 'n puff process for light oil recovery

    SciTech Connect

    Monger, T.G.; Coma, J.M.

    1986-01-01

    This paper is a laboratory and field investigation of the CO/sub 2/ huff 'n puff process for the enhanced recovery of light crude oil. The results of continuous and cyclic CO/sub 2/ displacements using a 31.2 /sup 0/API (870 kg/m/sup 3/) stock tank oil in watered-out Berea cores are presented. Fourteen single-well cyclic CO/sub 2/ field tests in south Louisianan sands are examined. Laboratory results demonstrate that the CO/sub 2/ huff 'n puff process recovers waterflood residual oil. Incremental oil recovery increased with the amount of CO/sub 2/ injected, and was not benefited by operating at the minimum miscibility pressure (MMP). Maximum ultimate incremental oil recovery required a soak period and additional water influx. Incremental oil recovery continued with a second cycle of CO/sub 2/, but a third cycle showed significant decline. Recovery factors averaging less than 2 Mscf (57 m/sup 3/) of CO/sub 2/ per barrel of incremental oil were achieved in nine out of fourteen field tests. Field results suggest that in the absence of mechanical problems, initial response improved with larger space occupied by CO/sub 2/, thicker perforation interval, and lower CO/sub 2/ reservoir viscosities; while lifetime response improved with lower prior water cut. Field results confirm that the CO/sub 2/ huff 'n puff process recovers waterflood residual oil, and that a second cycle can be successful.

  9. Comparative zircon tephrochronology: correlating the Pliocene Bouse tephra, lower Colorado River trough, California, with the Lawlor Tuff of the Sonoma volcanic field, California

    NASA Astrophysics Data System (ADS)

    Harvey, J. C.

    2013-12-01

    Identification, correlation, and absolute dating of glassy volcanic ash and cryptically reworked pyroclastic deposits can be problematic. This is especially the case in strongly weathered samples where primary glass chemistry may not be preserved, or in lacustrine and fluvial environments where detrital materials can heavily bias bulk analysis or produce complex age distributions in single crystal dating approaches. These problems have frustrated numerous attempts to date a singular key ash horizon from the Mio-Pliocene Bouse Formation in southern California (fine-grained carbonate beds and clastic sediments derived from the Colorado River, deposited in the lower Colorado River Trough). Constraining the depositional age of the Bouse Formation is important for understanding the evolution of the Colorado River system, the uplift history of the Colorado Plateau, and the climate conditions involved in Colorado River evolution. Prior attempts to directly date the ash have been inconclusive. A K-Ar in glass date of 5.47 × 0.20 Ma (Shafiqullah et al., 1980) was questioned because of the potential disturbance of both the parent and daughter products of potassium decay in glass, and 40Ar/39Ar geochronology on bulk glass and bulk plagioclase separates (Spencer et al., 2000) produced discordant results. Recent glass chemistry correlation of the ash horizon to the 4.83 × 0.011 Ma Lawlor Tuff, Sonoma volcanic field, California (Sarna-Wojcicki et al., 2011), has also been contentious, because that age appears to conflict with the proposed onset of the delivery of Colorado River sediment through to the Gulf of California (Dorsey et al., 2007). To resolve the persistent age arguments, comparative zircon tephrochronology has been undertaken utilizing the single-crystal analysis capabilities of secondary ion mass spectrometry. Here, U-Pb zircon crystallization age spectra, U and Th abundances, and oxygen isotopic composition are presented which confirm the correlation of the Bouse

  10. State Emergency Response and Field Observation Activities in California (USA) during the March 11, 2011, Tohoku Tsunami

    NASA Astrophysics Data System (ADS)

    Miller, K. M.; Wilson, R. I.; Goltz, J.; Fenton, J.; Long, K.; Dengler, L.; Rosinski, A.; California Tsunami Program

    2011-12-01

    This poster will present an overview of successes and challenges observed by the authors during this major tsunami response event. The Tohoku, Japan tsunami was the most costly to affect California since the 1964 Alaskan earthquake and ensuing tsunami. The Tohoku tsunami caused at least $50 million in damage to public facilities in harbors and marinas along the coast of California, and resulted in one fatality. It was generated by a magnitude 9.0 earthquake which occurred at 9:46PM PST on Thursday, March 10, 2011 in the sea off northern Japan. The tsunami was recorded at tide gages monitored by the West Coast/Alaska Tsunami Warning Center (WCATWC), which projected tsunami surges would reach California in approximately 10 hours. At 12:51AM on March 11, 2011, based on forecasted tsunami amplitudes, the WCATWC placed the California coast north of Point Conception (Santa Barbara County) in a Tsunami Warning, and the coast south of Point Conception to the Mexican border in a Tsunami Advisory. The California Emergency Management Agency (CalEMA) activated two Regional Emergency Operation Centers (REOCs) and the State Operation Center (SOC). The California Geological Survey (CGS) deployed a field team which collected data before, during and after the event through an information clearinghouse. Conference calls were conducted hourly between the WCATWC and State Warning Center, as well as with emergency managers in the 20 coastal counties. Coordination focused on local response measures, public information messaging, assistance needs, evacuations, emergency shelters, damage, and recovery issues. In the early morning hours, some communities in low lying areas recommended evacuation for their citizens, and the fishing fleet at Crescent City evacuated to sea. The greatest damage occurred in the harbors of Crescent City and Santa Cruz. As with any emergency, there were lessons learned and important successes in managing this event. Forecasts by the WCATWC were highly accurate

  11. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California

    PubMed Central

    Hawley, Erik R.; Piao, Hailan; Scott, Nicole M.; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Glavina del Rio, Tijana; Foster, Brian; Copeland, Alex; Jansson, Janet; Pati, Amrita; Tringe, Susannah; Gilbert, Jack A.; Lorenson, Thomas D.; Hess, Matthias

    2014-01-01

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders – and their metabolic capabilities – may be fundamental to the ecology of the SBC oil seep. PMID:25197496

  12. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California.

    PubMed

    Hawley, Erik R; Piao, Hailan; Scott, Nicole M; Malfatti, Stephanie; Pagani, Ioanna; Huntemann, Marcel; Chen, Amy; Glavina Del Rio, Tijana; Foster, Brian; Copeland, Alex; Jansson, Janet; Pati, Amrita; Tringe, Susannah; Gilbert, Jack A; Lorenson, Thomas D; Hess, Matthias

    2014-06-15

    Crude oils can be major contaminants of the marine ecosystem and microorganisms play a significant role in the degradation of its main constituents. To increase our understanding of the microbial hydrocarbon degradation process in the marine ecosystem, we collected crude oil from an active seep area located in the Santa Barbara Channel (SBC) and generated a total of about 52 Gb of raw metagenomic sequence data. The assembled data comprised ~500 Mb, representing ~1.1 million genes derived primarily from chemolithoautotrophic bacteria. Members of Oceanospirillales, a bacterial order belonging to the Deltaproteobacteria, recruited less than 2% of the assembled genes within the SBC metagenome. In contrast, the microbial community associated with the oil plume that developed in the aftermath of the Deepwater Horizon (DWH) blowout in 2010, was dominated by Oceanospirillales, which comprised more than 60% of the metagenomic data generated from the DWH oil plume. This suggests that Oceanospirillales might play a less significant role in the microbially mediated hydrocarbon conversion within the SBC seep oil compared to the DWH plume oil. We hypothesize that this difference results from the SBC oil seep being mostly anaerobic, while the DWH oil plume is aerobic. Within the Archaea, the phylum Euryarchaeota, recruited more than 95% of the assembled archaeal sequences from the SBC oil seep metagenome, with more than 50% of the sequences assigned to members of the orders Methanomicrobiales and Methanosarcinales. These orders contain organisms capable of anaerobic methanogenesis and methane oxidation (AOM) and we hypothesize that these orders - and their metabolic capabilities - may be fundamental to the ecology of the SBC oil seep.

  13. Truncated shifted pareto distribution in assessing size distribution of oil and gas fields

    SciTech Connect

    Houghton, J.C.

    1988-11-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a J-shape, and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment.

  14. Jurassic Haynesville oil production unfolds in Mississippi's mature Bay Springs field

    SciTech Connect

    Sticker, E.E. )

    1992-07-13

    This paper discusses Bay Springs field in western jasper Country, Miss., about 1 mile east of the town of Bay Springs. The field was discovered in 1965 after seismic work conducted by Shell Oil Co. led to the drilling of the Shell 1 C.E. Brown in 27-2n-10e. After initial completion attempts in Jurassic Upper and Lower Smackover yielded unsatisfactory results, a completion was made in a Jurassic Lower Cotton Valley sand later to be named the Bay Springs sand. The well was officially tested through perforations at about 14,500 ft in the Bay Springs sand at a rate of 585 b/d of oil through a 10/64 in. choke with a flowing tubing pressure of 1,850 psi. The gravity of the crude was 47.5{degrees} with a GOR of 630:1.

  15. Use of the truncated shifted Pareto distribution in assessing size distribution of oil and gas fields

    USGS Publications Warehouse

    Houghton, J.C.

    1988-01-01

    The truncated shifted Pareto (TSP) distribution, a variant of the two-parameter Pareto distribution, in which one parameter is added to shift the distribution right and left and the right-hand side is truncated, is used to model size distributions of oil and gas fields for resource assessment. Assumptions about limits to the left-hand and right-hand side reduce the number of parameters to two. The TSP distribution has advantages over the more customary lognormal distribution because it has a simple analytic expression, allowing exact computation of several statistics of interest, has a "J-shape," and has more flexibility in the thickness of the right-hand tail. Oil field sizes from the Minnelusa play in the Powder River Basin, Wyoming and Montana, are used as a case study. Probability plotting procedures allow easy visualization of the fit and help the assessment. ?? 1988 International Association for Mathematical Geology.

  16. Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery - Mattoon Oil Field, Illinois. Final report

    SciTech Connect

    Baroni, M.

    1995-09-01

    Phase I results of a C0{sub 2}-assisted oil recovery demonstration project in selected Cypress Sandstone reservoirs at Mattoon Field, Illinois are reported. The design and scope of this project included C0{sub 2} injectvity testing in the Pinnell and Sawyer units, well stimulaton treatments with C0{sub 2} in the Strong unit and infill well drilling, completion and oil production. The field activities were supported by extensive C0{sub 2}-oil-water coreflood experiments, CO{sub 2} oil-phase interaction experiments, and integrated geologic modeling and reservoir simulations. The progress of the project was made public through presentations at an industry meeting and a DOEs contractors` symposium, through quarterly reports and one-to-one consultations with interested operators. Phase II of this project was not implemented. It would have been a water-alternating-gas (WAG) project of longer duration.

  17. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  18. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  19. Static Electric Field Mapping Using a Mosquito Racket and Baby Oil

    ERIC Educational Resources Information Center

    Rediansyah, Herfien; Khairurrijal; Viridi, Sparisoma

    2015-01-01

    The aim of this research was to design a simple experimental device to see electric field force lines using common components which are readily available in everyday life. A solution of baby oil was placed in a plastic container, 4.5 × 4.5 × 1 inches, with both ends of the electrodes (metal wire) immersed in the solution at a depth of 0.2 inches.…

  20. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  1. Storage of oil field-produced waters alters their chemical and microbiological characteristics.

    PubMed

    Hulecki, Jordan C; Foght, Julia M; Fedorak, Phillip M

    2010-05-01

    Many oil fields are in remote locations, and the time required for shipment of produced water samples for microbiological examination may be lengthy. No studies have reported on how storage of oil field waters can change their characteristics. Produced water samples from three Alberta oil fields were collected in sterile, industry-approved 4-l epoxy-lined steel cans, sealed with minimal headspace and stored under anoxic conditions for 14 days at either 4 degrees C or room temperature (ca. 21 degrees C). Storage resulted in significant changes in water chemistry, microbial number estimates and/or community response to amendment with nitrate. During room-temperature storage, activity and growth of sulfate-reducing bacteria (and, to a lesser extent, fermenters and methanogens) in the samples led to significant changes in sulfide, acetate and propionate concentrations as well as a significant increase in most probable number estimates, particularly of sulfate-reducing bacteria. Sulfide production during room-temperature storage was likely to be responsible for the altered response to nitrate amendment observed in microcosms containing sulfidogenic samples. Refrigerated storage suppressed sulfate reduction and growth of sulfate-reducing bacteria. However, declines in sulfide concentrations were observed in two of the three samples stored at 4 degrees C, suggesting abiotic losses of sulfide. In one of the samples stored at room temperature, nitrate amendment led to ammonification. These results demonstrate that storage of oil field water samples for 14 days, such as might occur because of lengthy transport times or delays before analysis in the laboratory, can affect microbial numbers and activity as well as water sample chemistry.

  2. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  3. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  4. Studies of the effects of experimentally produced noise associated with oil and gas exploration and development on sea otters in California. Final report

    SciTech Connect

    Riedman, M.L.

    1983-11-15

    During the winter 1983 tape-recorded industrial noises associated with offshore oil and gas operations were projected underwater at Soberanes Point, California. Seismic-exploration sounds were produced using a multiple air gun array (4000 cu. in) and a single air gun (100 cu. in) along a 10-15 km transect paralleling the coastline from Rocky Point to Yankee Point. The behavior, density, and distribution of sea otters (Enhydra lutris) within the vicinity of the sound projection area were not affected by the acoustic experiments. Foraging and diving behaviors of sea otters were normal and undisturbed. There were no movements of otters away from the sound source or out of the sound projection vicinity during either the winter or spring acoustic experiments.

  5. Hydrodynamic field study of a shallow estuarine subembayment, Sherman Lake, California

    USGS Publications Warehouse

    Ruhl, C.A.; Burau, J.R.; Oltmann, R.N.; ,

    2002-01-01

    Sherman Lake, California, has two hydrodynamically distinct regions: a tidally forced jet located along the eastern flank that creates an important hydraulic connection between the Sacramento and San Joaquin Rivers, and a relatively quiescent area in the west. The forcing mechanisms driving circulation and transport are spatially variable in Sherman Lake, a characteristic, we are finding, that is typical of shallow-water environments in the San Francisco Bay and Delta. As interest in restoring and creating tidal wetlands and other shallow-water environments in the Delta increases (CALFED, 2001), serious consideration of the heterogeneity of the physical environment must be taken when developing restoration objectives and monitoring programs.

  6. Analysis of cause and mechanism for injection-induced seismicityat the Geysers Geothermal Field, California

    SciTech Connect

    Rutqvist, Jonny; Oldenburg, Curtis

    2007-06-14

    We analyzed relative contributions to the cause andmechanism of injection-induced seismicity at The Geysers geothermalfield, California, using coupled thermal-hydrological-mechanicalmodeling. Our analysis shows that the most important cause forinjection-induced seismicity is injection-induced cooling and associatedthermal-elastic shrinkage that changes the stress state in such a waythat mechanical failure and seismicity can be induced. Specifically, thecooling shrinkage results in unloading and associated loss of shearstrength in critically shear-stressed fractures, which are thenreactivated. Thus, our analysis shows that cooling-induced shear slipalong fractures is the dominant mechanism of injection-induced seismicityat The Geysers.

  7. Depositional environments of Upper Triassic sandstones, El Borma oil field, southwestern Tunisia

    SciTech Connect

    Bentahar, H.; Ethridge, F.G. )

    1991-03-01

    El Borma oil field in southwestern Tunisia is located on the Algerian border and produces from five Upper Triassic sandstone reservoirs at depths ranging from 2,300 to 2,400 m. The 250 km{sup 2} field has recoverable reserves of 770 mm bbl of equivalent oil. Reservoir sandstones rest unconformably on south-dipping Lower Devonian clastic deposits. Silurian shale represents the major oil source rock and the field is capped by 550 m of shale, carbonate, and evaporite. Hercynian, topography below the reservoir sandstones comprises an 18 km wide, northeast-oriented paleovalley. Each of the four lower reservoir sandstones, bounded by a lower scour surface and a basal lag deposit, is commonly discontinuous and separated by lenticular shale beds. These 5 to 15 m thick sandstones display in channels flowing to the northeast. The overlying 12 m thick transgressive marine dolomitic shale contains carbonized bivalves and is capped by a paleosoil with root structures and siderite cement indicating subaerial exposure. The clay-rich and locally bioturbated uppermost reservoir sandstone was probably deposited in a tidally influenced estuary. Overall, the Upper Triassic reservoirs at El Borma consists of valley-fill estuary deposits that were formed during transgression of the sea from the northeast.

  8. Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields.

    PubMed

    Agrawal, Akhil; An, Dongshan; Cavallaro, Adriana; Voordouw, Gerrit

    2014-09-01

    Produced waters from the Barrancas and Chihuido de la Salina (CHLS) fields in Argentina had higher concentrations of sulfate than were found in the injection waters, suggesting that the formation waters in these reservoirs had a high sulfate concentration and that sulfate-reducing bacteria were inactive downhole. Incubation of produced waters with produced oil gave rapid reduction of sulfate to sulfide (souring) at 37 °C, some at 60 °C, but none at 80 °C. Alkylbenzenes and alkanes served as electron donor, especially in incubations with CHLS oil. Dilution with water to decrease the ionic strength or addition of inorganic phosphate did not increase souring at 37 or 60 °C. These results indicate that souring in these reservoirs is limited by the reservoir temperature (80 °C for the Barrancas and 65-70 °C for the CHLS field) and that souring may accelerate in surface facilities where the oil-water mixture cools. As a result, significant sulfide concentrations are present in these surface facilities. The activity and presence of chemolithotrophic Gammaproteobacteria of the genus Thiomicrospira, which represented 85% of the microbial community in a water plant in the Barrancas field, indicated reoxidation of sulfide and sulfur to sulfate. The presence of these bacteria offers potential for souring control by microbial oxidation in aboveground facilities, provided that formation of corrosive sulfur can be avoided.

  9. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  10. Abrupt physical and chemical changes during 1992-1999, Anderson Springs, SE Geyser Geothermal Field, California

    USGS Publications Warehouse

    Janik, Cathy J.; Goff, Fraser; Walter, Stephen R.; Sorey, Michael L.; Counce, Dale; Colvard, Elizabeth M.

    2000-01-01

    The Anderson Springs area is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. Patrons drank a variety of cool to hot mineral waters from improved springs, swam in various baths and pools, and hiked in the rugged hills flanking Anderson Creek and its tributaries. In the bluffs to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. By the early 1970s, the higher ridges south and west of Anderson Springs became part of the southeast sector of the greater Geysers geothermal field. Today, several electric power plants are built on these ridges, producing energy from a vapor-dominated 240 °C reservoir. Only the main hot spring at Anderson Springs has maintained a recognizable identity since the 1930s. The hot spring is actually a cluster of seeps and springs that issue from a small fault in a ravine southwest of Anderson Creek. Published and unpublished records show that the maximum temperature (Tm) of this cluster fell gradually from 63°C in 1889 to 48°C in 1992. However, Tm of the cluster climbed to 77°C in 1995 and neared boiling (98°C) in 1998. A new cluster of boiling vents and small fumaroles (Tm = 99.3°C) formed in 1998 about 30 m north of the old spring cluster. Several evergreen trees on steep slopes immediately above these vents apparently were killed by the new activity. Thermal waters at Anderson Hot Springs are mostly composed of near-surface ground waters with some added gases and condensed steam from The Geysers geothermal system. Compared to gas samples from Southeast Geysers wells, the hot spring gases are higher in CO2 and lower in H2S and NH3. As the springs increased in temperature, however, the gas composition became more like the mean composition

  11. Significant role of structural fractures in Ren-Qiu buried-block oil field, eastern China

    SciTech Connect

    Fei, Q.; Xie-Pei, W.

    1983-03-01

    Ren-qui oil field is in a buried block of Sinian (upper Proterozoic) rocks located in the Ji-zhong depression of the western Bohai Bay basin in eastern China. The main reservoir consists of Sinian dolomite rocks. It is a fault block with a large growth fault on the west side which trends north-northeast with throws of up to 1 km (0.6 mi) or more. The source rocks for the oil are Paleogene age and overlie the Sinian dolomite rocks. The structural fractures are the main factor forming the reservoir of the buried-block oil field. Three structural lines, trending northeast, north-northeast, and northwest, form the regional netted fracture system. The north-northeast growth fault controlled the structural development of the buried block. The block was raised and eroded before the Tertiary sediments were deposited. In the Eocene Epoch, the Ji-zhong depression subsided, but the deposition, faulting, and related uplift of the block happened synchronously as the block was gradually submerged. At the same time, several horizontal and vertical karst zones were formed by the karst water along the netted structural fractures. The Eocene oil source rocks lapped onto the block and so the buried block, with many developed karst fractures, was surrounded by a great thickness of source rocks. As the growth fault developed, the height of the block was increased from 400 m (1300 ft) before the Oligocene to 1300 m (4250 ft) after. As the petroleum was generated, it migrated immediately into the karst fractures of the buried block along the growth fault. The karst-fractured block reservoir has an 800-m (2600-ft) high oil-bearing closure and good connections developed between the karst fractures.

  12. Distribution and origin of groundwater methane in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Carlson, Kenneth H

    2014-01-01

    Public concerns over potential environmental contamination associated with oil and gas well drilling and fracturing in the Wattenberg field in northeast Colorado are increasing. One of the issues of concern is the migration of oil, gas, or produced water to a groundwater aquifer resulting in contamination of drinking water. Since methane is the major component of natural gas and it can be dissolved and transported with groundwater, stray gas in aquifers has elicited attention. The initial step toward understanding the environmental impacts of oil and gas activities, such as well drilling and fracturing, is to determine the occurrence, where it is and where it came from. In this study, groundwater methane data that has been collected in response to a relatively new regulation in Colorado is analyzed. Dissolved methane was detected in 78% of groundwater wells with an average concentration of 4.0 mg/L and a range of 0-37.1 mg/L. Greater than 95% of the methane found in groundwater wells was classified as having a microbial origin, and there was minimal overlap between the C and H isotopic characterization of the produced gas and dissolved methane measured in the aquifer. Neither density of oil/gas wells nor distance to oil/gas wells had a significant impact on methane concentration suggesting other important factors were influencing methane generation and distribution. Thermogenic methane was detected in two aquifer wells indicating a potential contamination pathway from the producing formation, but microbial-origin gas was by far the predominant source of dissolved methane in the Wattenberg field.

  13. A laboratory and field evaluation of the CO/sub 2/ Huff 'n' Puff process for light-oil recovery

    SciTech Connect

    Monger, T.G. ); Coma, J.M.

    1988-11-01

    Cyclic CO/sub 2/ injection for enhanced recovery of light crude oil is investigated. Results from watered-out Berea corefloods and 14 field tests demonstrate that first and second cycled recover waterflood residual oil. Factors that may improve performance include larger reservoir slug volume, soak period, thicker interval, and lower prior water cut.

  14. California Cenozoic Biostratigraphy -- Paleogene: Chapter 4 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    McDougall, Kristin

    2008-01-01

    The time transgressive nature of the California benthic foraminiferal stages is in most cases the result of poor taxonomy, use of local species ranges, and a lack of understanding about the type sections. Correcting these problems allows the stages to be consistently applied and enhances their ability to identify coeval strata. Each stage is identified by the first and last appearances of selected cosmopolitan benthic foraminiferal species and of reliable local species. Although further study is needed, the stages correlate with the international time scale. The revised age interpretation of the stages suggests that the Cheneyian Stage is coeval with planktic zone P1 through P3, the Ynezian Stage is coeval with planktic zone P4, the Bulitian Stage is missing in most section but when present is coeval with zones P5 and P6a, the Penutian Stage is coeval with planktic zones P6b through early P9 (no younger than the overlap between P9 and CP11), the Ulatisian Stage is coeval with P9 (younger than CP11) through P11, the Narizian Stage is coeval with zones P12 through P15, and the Refugian Stage is coeval with zones P16 and P17.

  15. Field experiences with rotordynamic instability in high-performance turbomachinery. [oil and natural gas recovery

    NASA Technical Reports Server (NTRS)

    Doyle, H. E.

    1980-01-01

    Two field situations illustrate the consequences of rotordynamic instability in centrifugal compressors. One involves the reinjection of produced gas into a North Sea oil formation for the temporary extraction of crude. The other describes on-shore compressors used to deliver natural gas from off-shore wells. The problems which developed and the remedies attempted in each case are discussed. Instability problems resulted in lost production, extended construction periods and costs, and heavy maintenance expenditures. The need for effective methods to properly identify the problem in the field and in the compressor design stage is emphasized.

  16. Structure of pre-Caspian depression and major oil and gas fields of the region

    SciTech Connect

    Krylov, N.A. ); Avrov, V.P. ); Lisovsky, N.N.

    1991-03-01

    As a single unified depression, the pre-Caspian basin has been formed from Paleozoic to Cenozoic time. The basin is superimposed on two large pre-Permian depressions. On the Astrakhan-Aktyubinsk zone of uplifts between them is found sharply reduced Carboniferous and Devonian sections. Modern structural plan clearly displays two major structural stages: Subsalt (Paleozoic) and post (post-Kungurian). The post-salt stage is characterized by wide development of salt dome tectonics. It corresponds with its own petroliferous stage containing numerous, mostly small oil accumulations in terrigenous Mesozoic reservoirs. Large recent discoveries-Astrakhan condensate, Karachaganak and Kanazhol-Sinelnikov oil/condensate, Tengiz oil, and other fields-are associated with the Subsalt Paleozoic complex ranging from Lower Permian to the top of Upper Devonian. The Subsalt stage has its own regularities in hydrocarbon phase differentiation; large reserves concentration; dominantly productive carbonates with various reservoirs; and presence of structural, depositional, and erosional factors controlling formation of oil and gas traps. The paper describes major distributional features of the various arc-and-type Permian and Carboniferous formations, which in conjunction with Subsalt paleotemperature data and geochemistry of organic matter represents a basis for the forecast of new discoveries.

  17. Methanotrophy in a Paleoproterozoic oil field ecosystem, Zaonega Formation, Karelia, Russia.

    PubMed

    Qu, Y; Crne, A E; Lepland, A; van Zuilen, M A

    2012-11-01

    Organic carbon rich rocks in the c. 2.0 Ga Zaonega Formation (ZF), Karelia, Russia, preserve isotopic characteristics of a Paleoproterozoic ecosystem and record some of the oldest known oil generation and migration. Isotopic data derived from drill core material from the ZF show a shift in δ(13) C(org) from c. -25‰ in the lower part of the succession to c. -40‰ in the upper part. This stratigraphic shift is a primary feature and cannot be explained by oil migration, maturation effects, or metamorphic overprints. The shift toward (13) C-depleted organic matter (δ(13) C(org) < -25‰) broadly coincides with lithological evidence for the generation of oil and gas in the underlying sediments and seepage onto the sea floor. We propose that the availability of thermogenic CH(4) triggered the activity of methanotrophic organisms, resulting in the production of anomalously (13) C-depleted biomass. The stratigraphic shift in δ(13) C(org) records the change from CO(2) -fixing autotrophic biomass to biomass containing a significant contribution from methanotrophy. It has been suggested recently that this shift in δ(13) C(org) reflects global forcing and progressive oxidation of the Earth. However, the lithologic indication for local thermogenic CH(4) , sourced within the oil field, is consistent with basinal methanotrophy. This indicates that regional/basinal processes can also explain the δ(13) C(org) negative isotopic shift observed in the ZF.

  18. A field experiment to assess impact of chemically dispersed oil on Arabian Gulf corals

    SciTech Connect

    Le Gore, R.S.; Cuddeback, J.E.; Hofmann, J.E.; Marszalek, D.S.

    1983-03-01

    Field experiments were conducted on a coral reef at Jurayd Island (Saudi Arabia) in the Arabian Gulf to study the effects of chemically dispersed oil on local corals. Portions of the reef were exposed to predetermined concentrations of oil alone, dispersant alone, and oil-plus-dispersant mixtures. Areas of the reef not exposed to any of the toxicants were used as controls. Arabian Light Crude and Corexit 9527 dispersant were the test toxicants. Two series of experiments were conducted beginning in September 1981, one with a 24-hour exposure period and the other with a 5-day (120-hour) exposure period. Corals were stained for growth rate studies and extensively photographed to document any observed effects. Corals were examined for biological impacts immediately after the exposures, and then at 3-month intervals for 1 year. Water temperature, salinity, dissolved oxygen, and hydrocarbon content were recorded during the exposure periods. Coral growth appeared unaffected by exposure to the toxicants. Some Acropora species corals exposed to dispersed oil for 5 days exhibited delayed effects, which became apparent during the relatively cold winter season.

  19. A new reserve growth model for United States oil and gas fields

    USGS Publications Warehouse

    Verma, M.K.

    2005-01-01

    Reserve (or field) growth, which is an appreciation of total ultimate reserves through time, is a well-recognized phenomenon, particularly in mature petroleum provinces. The importance of forecasting reserve growth accurately in a mature petroleum province made it necessary to develop improved growth functions, and a critical review of the original Arrington method was undertaken. During a five-year (1992-1996), the original Arrington method gave 1.03% higher than the actual oil reserve growth, whereas the proposed modified method gave a value within 0.3% of the actual growth, and therefore it was accepted for the development for reserve growth models. During a five-year (1992-1996), the USGS 1995 National Assessment gave 39.3% higher oil and 33.6% lower gas than the actual growths, whereas the new model based on Modified Arrington method gave 11.9% higher oil and 29.8% lower gas than the actual growths. The new models forecast predict reserve growths of 4.2 billion barrels of oil (2.7%) and 30.2 trillion cubic feet of gas (5.4%) for the conterminous U.S. for the next five years (1997-2001). ?? 2005 International Association for Mathematical Geology.

  20. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect

    Not Available

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  1. Comparison and Field Validation of Binomial Sampling Plans for Oligonychus perseae (Acari: Tetranychidae) on Hass Avocado in Southern California.

    PubMed

    Lara, Jesus R; Hoddle, Mark S

    2015-08-01

    Oligonychus perseae Tuttle, Baker, & Abatiello is a foliar pest of 'Hass' avocados [Persea americana Miller (Lauraceae)]. The recommended action threshold is 50-100 motile mites per leaf, but this count range and other ecological factors associated with O. perseae infestations limit the application of enumerative sampling plans in the field. Consequently, a comprehensive modeling approach was implemented to compare the practical application of various binomial sampling models for decision-making of O. perseae in California. An initial set of sequential binomial sampling models were developed using three mean-proportion modeling techniques (i.e., Taylor's power law, maximum likelihood, and an empirical model) in combination with two-leaf infestation tally thresholds of either one or two mites. Model performance was evaluated using a robust mite count database consisting of >20,000 Hass avocado leaves infested with varying densities of O. perseae and collected from multiple locations. Operating characteristic and average sample number results for sequential binomial models were used as the basis to develop and validate a standardized fixed-size binomial sampling model with guidelines on sample tree and leaf selection within blocks of avocado trees. This final validated model requires a leaf sampling cost of 30 leaves and takes into account the spatial dynamics of O. perseae to make reliable mite density classifications for a 50-mite action threshold. Recommendations for implementing this fixed-size binomial sampling plan to assess densities of O. perseae in commercial California avocado orchards are discussed.

  2. Gas, water, and oil production from Wattenberg field in the Denver Basin, Colorado

    USGS Publications Warehouse

    Nelson, Philip H.; Santus, Stephen L.

    2011-01-01

    Gas, oil, and water production data were compiled from selected wells in two tight gas reservoirs-the Codell-Niobrara interval, comprised of the Codell Sandstone Member of the Carlile Shale and the Niobrara Formation; and the Dakota J interval, comprised mostly of the Muddy (J) Sandstone of the Dakota Group; both intervals are of Cretaceous age-in the Wattenberg field in the Denver Basin of Colorado. Production from each well is represented by two samples spaced five years apart, the first sample typically taken two years after production commenced, which generally was in the 1990s. For each producing interval, summary diagrams and tables of oil-versus-gas production and water-versus-gas production are shown with fluid-production rates, the change in production over five years, the water-gas and oil-gas ratios, and the fluid type. These diagrams and tables permit well-to-well and field-to-field comparisons. Fields producing water at low rates (water dissolved in gas in the reservoir) can be distinguished from fields producing water at moderate or high rates, and the water-gas ratios are quantified. The Dakota J interval produces gas on a per-well basis at roughly three times the rate of the Codell-Niobrara interval. After five years of production, gas data from the second samples show that both intervals produce gas, on average, at about one-half the rate as the first sample. Oil-gas ratios in the Codell-Niobrara interval are characteristic of a retrograde gas and are considerably higher than oil-gas ratios in the Dakota J interval, which are characteristic of a wet gas. Water production from both intervals is low, and records in many wells are discontinuous, particularly in the Codell-Niobrara interval. Water-gas ratios are broadly variable, with some of the variability possibly due to the difficulty of measuring small production rates. Most wells for which water is reported have water-gas ratios exceeding the amount that could exist dissolved in gas at reservoir

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical

  4. A Fuzzy Feed-Forward/Feedback Control System for a Three-Phase Oil Field Centrifuge.

    SciTech Connect

    Parkinson, W. J. ,; Smith, R. E.; Mortensen, F. N.; Wantuck, P. J.; Ross, Timothy J.; Jamshidi, Mohammad; Miller, N.

    2002-01-01

    A set of fuzzy controllers was designed and applied to a commercial three-phase oil field centrifuge. This centrifuge is essentially a one of a kind unit. It is used to recover oil from tank bottoms and oil field and/or refinery sludge. It is unique because it can separate oily emulsions into three separate phases, oil, water, and solids, in one operation. The centrifuge is a large but portable device. It is moved form site to site and is used to separate a large variety of waste emulsions. The centrifuge feedstock varies significantly from site to site and often varies significantly during the daily operation. In this application, fuzzy logic was used on a class of problems not easily solved by classical control techniques. The oil field centrifuge is a highly nonlinear system, with a time varying input. We have been unable to develop a physical-mathematical model of the portion of the centrifuge operation that actually separates the oil, water, and solids. For this portion of the operation we developed a fuzzy feedback control system that modeled a skilled operator's knowledge and actions as opposed to the physical model of the centrifuge itself. Because of the variable feed we had to develop a feed-forward controller that would sense and react to feed changes prior to the time that the actual change reached the centrifuge separation unit. This portion of the control system was also a fuzzy controller designed around the knowledge of a skilled operator. In addition to the combined feed-forward and feedback control systems, we developed a soft-sensor that was used to determine the value of variables needed for the feed-forward control system. These variables could not actually be measured but were calculated from the measurement of other variables. The soft-sensor was developed with a combination of a physical model of the feed system and a skilled operator's expert knowledge. Finally the entire control system is tied together with a fuzzy-SPC (Statistical Process

  5. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 12, 1996--February 11, 1997

    SciTech Connect

    Toronyi, R.M.

    1997-12-01

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  6. A fortran program for Monte Carlo simulation of oil-field discovery sequences

    USGS Publications Warehouse

    Bohling, G.C.; Davis, J.C.

    1993-01-01

    We have developed a program for performing Monte Carlo simulation of oil-field discovery histories. A synthetic parent population of fields is generated as a finite sample from a distribution of specified form. The discovery sequence then is simulated by sampling without replacement from this parent population in accordance with a probabilistic discovery process model. The program computes a chi-squared deviation between synthetic and actual discovery sequences as a function of the parameters of the discovery process model, the number of fields in the parent population, and the distributional parameters of the parent population. The program employs the three-parameter log gamma model for the distribution of field sizes and employs a two-parameter discovery process model, allowing the simulation of a wide range of scenarios. ?? 1993.

  7. Magnetic field induced modulated phases in a ferrofluid lutidine silicone oil mixture.

    PubMed

    Bugase, Jonas; Berner, Johannes; Fischer, Thomas M

    2016-10-19

    A mixture of an ester based ferrofluid with silicone oil and 2,6-lutidine is exposed to an external magnetic field. We find a region of composition of the ternary mixture, where weak magnetic fields of the order of a few kA m(-1) induce a modulated phase with a pattern characterized by equilibrium size droplets of the minority phase immersed into the extended majority phase. While the pattern resembles in many ways the pattern of immiscible magnetic fluids, the dependence of the characteristic parameters of the pattern on the magnetic field are completely different than in immiscible fluids. We theoretically explain the pattern formation as a magnetic field induced polymerization of magnetic particles into magnetic chains that goes along with a reduction of the entropy of mixing. This entropy reduction causes the Ostwald ripening of chains into mesoscopic droplets the size of which is limited by repulsive dipolar interactions between the chains.

  8. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    SciTech Connect

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  9. Olive oil pilot-production assisted by pulsed electric field: impact on extraction yield, chemical parameters and sensory properties.

    PubMed

    Puértolas, Eduardo; Martínez de Marañón, Iñigo

    2015-01-15

    The impact of the use of pulsed electric field (PEF) technology on Arroniz olive oil production in terms of extraction yield and chemical and sensory quality has been studied at pilot scale in an industrial oil mill. The application of a PEF treatment (2 kV/cm; 11.25 kJ/kg) to the olive paste significantly increased the extraction yield by 13.3%, with respect to a control. Furthermore, olive oil obtained by PEF showed total phenolic content, total phytosterols and total tocopherols significantly higher than control (11.5%, 9.9% and 15.0%, respectively). The use of PEF had no negative effects on general chemical and sensory characteristics of the olive oil, maintaining the highest quality according to EU legal standards (EVOO; extra virgin olive oil). Therefore, PEF could be an appropriate technology to improve olive oil yield and produce EVOO enriched in human-health-related compounds, such as polyphenols, phytosterols and tocopherols.

  10. Recent glacial events in the Norwegian North Sea - implications towards a better understanding of charging/leakage of oil fields and its impact oil exploration

    NASA Astrophysics Data System (ADS)

    Stoddart, Daniel

    2014-05-01

    Recent drilling and appraisal on the Southern Utsira High, Norwegian North Sea, has proved several large oil/gas discoveries, including the giant Johan Sverdrup, Edvard Grieg, Draupne, Ragnarrock and Apollo oil fields, making this a prolific petroleum area. The Southern Utsira High contains a variety of hydrocarbon density fluids found at several stratigraphic levels illustrating the compartmentalized nature of accumulations and charge history. The Southern Utsira High has been in a position to receive an oil/gas charge for a considerable period of time, with the basin towards the west most likely generating petroleum from early Eocene (50M Mabp) to its maximum present day burial depth. However, reservoir temperatures on the Southern Utsira High are just above the threshold for biodegradation (80°C). The Southern Utsira High oils are non-biodegraded suggesting that the majority of the oil charged relatively late - ca.3 million years ago to present day. The effects of the glaciation on the filling history of the Southern Utsira High are currently being assessed. It is clear that several erosional surfaces in the Pliocene can be identified, as well as glacial channels and moraine deposits, indicating that significant deposition and erosion occurred in the last five million years. Importantly, the effects of glacial rebound mean that the Southern Utsira High more than likely underwent tilting and possible leakage, not just once, but several times in the last 1 million years. The effects of tilting/leakage of geological areas on oil migration have been recognized by several authors. However, the detailed integration of geological mapping and geochemical evidence has not previously been published. The implications of a detailed assessment of tilting of a ''high' through time are; 1) opening up areas where oil migration is thought to be high risk or impossible; 2) identify possible paleo-oil columns aiding the de-risking of discovery appraisal strategies. The evidence

  11. A modified version of the Millikan oil drop experiment to test the probable existence of a new electrodynamic field

    NASA Astrophysics Data System (ADS)

    Curé, Jorge C.

    1982-10-01

    The probable existence of a new electrodynamic field is obtained by analogy with the general theory of relativity. The new field is derived from a scalar electrodynamic potential which is similar to the Edwards potential discovered experimentally in recent years. A modification of the Millikan oil drop experiment is also suggested to empirically verify the new field avoiding misinterpretations of Edwards' results.

  12. Effect of leachability on environmental risk assessment for naturally occurring radioactive materials in petroleum oil fields.

    PubMed

    Rajaretnam, G; Spitz, H B

    2000-02-01

    Elevated concentrations of naturally occurring radioactive material (NORM), including 238U, 232Th, and their progeny found in underground geologic deposits, are often encountered during crude oil recovery. Radium, the predominant radionuclide brought to the surface with the crude oil and produced water, co-precipitates with barium in the form of complex compounds of sulfates, carbonates, and silicates found in sludge and scale. These NORM deposits are highly stable and very insoluble under ambient conditions at the earth's surface. However, the co-precipitated radium matrix is not thermodynamically stable at reducing conditions which may enable a fraction of the radium to eventually be released to the environment. Although the fate of radium in uranium mill tailings has been studied extensively, the leachability of radium from crude oil NORM deposits exposed to acid-rain and other aging processes is generally unknown. The leachability of radium from NORM contaminated soil collected at a contaminated oil field in eastern Kentucky was determined using extraction fluids having wide range of pH reflecting different extreme environmental conditions. The average 226Ra concentration in the samples of soil subjected to leachability testing was 32.56 Bq g(-1) +/- 0.34 Bq g(-1). The average leaching potential of 226Ra observed in these NORM contaminated soil samples was 1.3% +/- 0.46% and was independent of the extraction fluid. Risk assessment calculations using the family farm scenario show that the annual dose to a person living and working on this NORM contaminated soil is mainly due to external gamma exposure and radon inhalation. However, waterborne pathways make a non-negligible contribution to the dose for the actual resident families living on farmland with the type of residual NORM contamination due to crude oil recovery operations.

  13. Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill.

    PubMed

    Stout, Scott A; Payne, James R; Emsbo-Mattingly, Stephen D; Baker, Gregory

    2016-04-15

    Chemical analysis of large populations of floating (n=62) and stranded (n=1174) Macondo oils collected from the northern Gulf of Mexico sea surface and shorelines during or within seven weeks of the end of the Deepwater Horizon oil spill demonstrates the range, rates, and processes affecting surface oil weathering. Oil collected immediately upon reaching the sea surface had already lost most mass below n-C8 from dissolution of soluble aliphatics, monoaromatics, and naphthalenes during the oil's ascent with further reductions extending up to n-C13 due to the onset of evaporation. With additional time, weathering of the floating and stranded oils advanced with total PAH (TPAH50) depletions averaging 69±23% for floating oils and 94±3% for stranded oils caused by the combined effects of evaporation, dissolution, and photo-oxidation, the latter of which also reduced triaromatic steroid biomarkers. Biodegradation was not evident among the coalesced floating oils studied, but had commenced in some stranded oils.

  14. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  15. Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995

    SciTech Connect

    1996-08-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

  16. Maps showing geology, oil and gas fields, and geological provinces of South America

    USGS Publications Warehouse

    Schenk, C. J.; Viger, R.J.; Anderson, C.P.

    1999-01-01

    This digitally compiled map includes geology, geologic provinces, and oil and gas fields of South America. The map is part of a worldwide series on CD-ROM by World Energy Project released of the U.S. Geological Survey . The goal of the project is to assess the undiscovered, technically recoverable oil and gas resources of the world and report these results by the year 2000. For data management purposes the world is divided into eight energy regions corresponding approximately to the economic regions of the world as defined by the U.S. Department of State. South America (Region 6) includes Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Falkland Islands, French Guiana, Guyuna, Netherlands, Netherlands Antilles, Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, and Venezuela.

  17. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  18. Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields

    USGS Publications Warehouse

    Jensenius, J.; Burruss, R.C.

    1990-01-01

    Crude oils in primary and secondary fluid inclusions in calcite from fractures in seven offshore oil fields associated with diapiric salt structures in the Danish sector of the North Sea were analyzed by capillary column gas chromatography and compared with crude oils produced from the same reservoirs. Oils from fluid inclusions in all fields show evidence of biodegradation (decreased n-C17/pristane and n-C18/phytane ratios and loss of n-C7, 2-methyl hexane, and 3-methyl hexane relative to methyl cyclohexane) and water washing (absence of benzene and depletion of toluene). Some oils in inclusions are extremely enriched in C6 and C7 cyclic alkanes suggesting that these samples contain hydrocarbons exsolved from ascending, hotter formation waters. Compared to inclusion oils the produced oils are less biodegraded, but are water washed, indicating that both types of oil interacted with large volumes of formation water. The carbon isotopic composition of the calcite host of the fluid inclusions in the Dagmar and Skjold fields is as light as -16.5%. PDB and the sulfur isotopic composition of pyrite in and adjacent to the calcite veins in the Skjold field is as light as -39.6%. CDT, indicating that biodegradation of the oils was a source of some of the carbon in the calcite and sulfate reduction was the source of sulfur for the pyrite. The evidence for microbial degradation of petroleum is consistent with present-day reservoir temperatures (65??-96??C) but is not consistent with previous estimates of the temperatures of calcite vein filling (95??-130??C) which are much higher than the temperatures of known occurrences of biodegraded oil. ?? 1990.

  19. Geological history and petroleum system of the Mittelplate oil field, Northern Germany

    NASA Astrophysics Data System (ADS)

    Grassmann, S.; Cramer, B.; Delisle, G.; Messner, J.; Winsemann, J.

    2005-12-01

    The geological history of Germany’s largest and most productive petroleum accumulation, the Mittelplate oil field in Schleswig-Holstein (Northern Germany), is reconstructed by simulating the structural and thermal evolution along a 2D cross-section. The Mittelplate field is located at the western flank of the Büsum salt dome at the transition from the Schleswig-Holstein mainland to the German North Sea Sector. Organic geochemical data confirm the Lower Jurassic Posidonia Shale to be the predominant oil source rock in the Schleswig-Holstein area. The studied section is characterized by salt walls and salt domes built up by Permian evaporites. Reconstruction of the structural and thermal evolution of the Mittelplate field by means of basin modelling reveals the dominating influence of salt dynamics on the entire petroleum system: The development of secondary rim-synclines during salt rise provided accommodation space for the deposition of the Posidonia Shale as well as the deltaic Middle Jurassic reservoir sandstones. The rise of the nearby Oldenswort salt wall controlled the timing of maturation and petroleum generation during Cenozoic times. Hydrocarbon migration from the Posidonia Shale into the reservoirs occurred up-dip from the deeper subsiding rim-syncline into the structural trap with the Middle Jurassic reservoir sandstones pinching out at the flank of the Büsum salt dome. Along the modelled 2D section the field’s recent temperature field and its complex reservoir architecture are reconstructed.

  20. Tectonic implications of space-time patterns of Cenozoic volcanism in the Palo Verde Mountain volcanic field, southeastern California

    SciTech Connect

    Murray, K.S.

    1981-01-01

    Variations in Cenozoic volcanism in the western United States are believed to correlate closely with changes in tectonic setting. A transition in volcanic association from calc-alkaline to fundamentally basaltic volcanism and subsequent crustal extension, appears to have coincided temporally with the initial collision of the East Pacific Rise with the continental margin trench off western North America, between 28 and 25 Ma. The volcanic stratigraphy of the Palo Verde Mountain volcanic field is broadly similar to other volcanic centers in southeastern California and can be divided into tripartite regional stratigraphy. A basal sequence of andesitic to rhyolitic lava flows, plugs, domes, and extensive pyroclastic deposits rests unconformably on pre-Cenozoic basement rocks. The basal sequence is intruded by cogenetic Cenozoic plutonic rocks and overlain by basaltic to rhyolitic lava flows, dikes, and a second widespread assemblage of pyroclastic deposits, cumulatively referred to as the silicic sequence. The youngest volcanic rocks of the field include olivine basalt flows and breccia which occur at scattered localities in the Palo Verde Mountains. The age, stratigraphy, and chemistry of the intermediate and basaltic composition volcanic rocks broadly supports previously cited volcanic-tectonic models, if modified to incorporate modern plate reconstruction theory. This modification results in a southeast migration of the transition to basaltic volcanism to southeastern California occurring significantly later in time than the previously cited ages of transition. Moreover, this southeast migration of the volcanic transition is coincident with the inception of Basin and Range faulting and the initiation of movement on the San Andreas fault south of the Transverse Ranges, corresponding to the southward migration of the Pacific-Cocos Ridge.

  1. Effects of smectite on the oil-expulsion efficiency of the Kreyenhagen Shale, San Joaquin Basin, California, based on hydrous-pyrolysis experiments

    USGS Publications Warehouse

    Lewan, Michael D.; Dolan, Michael P.; Curtis, John B.

    2014-01-01

    The amount of oil that maturing source rocks expel is expressed as their expulsion efficiency, which is usually stated in milligrams of expelled oil per gram of original total organic carbon (TOCO). Oil-expulsion efficiency can be determined by heating thermally immature source rocks in the presence of liquid water (i.e., hydrous pyrolysis) at temperatures between 350°C and 365°C for 72 hr. This pyrolysis method generates oil that is compositionally similar to natural crude oil and expels it by processes operative in the subsurface. Consequently, hydrous pyrolysis provides a means to determine oil-expulsion efficiencies and the rock properties that influence them. Smectite in source rocks has previously been considered to promote oil generation and expulsion and is the focus of this hydrous-pyrolysis study involving a representative sample of smectite-rich source rock from the Eocene Kreyenhagen Shale in the San Joaquin Basin of California. Smectite is the major clay mineral (31 wt. %) in this thermally immature sample, which contains 9.4 wt. % total organic carbon (TOC) comprised of type II kerogen. Compared to other immature source rocks that lack smectite as their major clay mineral, the expulsion efficiency of the Kreyenhagen Shale was significantly lower. The expulsion efficiency of the Kreyenhagen whole rock was reduced 88% compared to that of its isolated kerogen. This significant reduction is attributed to bitumen impregnating the smectite interlayers in addition to the rock matrix. Within the interlayers, much of the bitumen is converted to pyrobitumen through crosslinking instead of oil through thermal cracking. As a result, smectite does not promote oil generation but inhibits it. Bitumen impregnation of the rock matrix and smectite interlayers results in the rock pore system changing from water wet to bitumen wet. This change prevents potassium ion (K+) transfer and dissolution and precipitation reactions needed for the conversion of smectite to

  2. VSP Monitoring of CO2 Injection at the Aneth Oil Field in Utah

    NASA Astrophysics Data System (ADS)

    Huang, L.; Rutledge, J.; Zhou, R.; Denli, H.; Cheng, A.; Zhao, M.; Peron, J.

    2008-12-01

    Remotely tracking the movement of injected CO2 within a geological formation is critically important for ensuring safe and long-term geologic carbon sequestration. To study the capability of vertical seismic profiling (VSP) for remote monitoring of CO2 injection, a geophone string with 60 levels and 96 channels was cemented into a monitoring well at the Aneth oil field in Utah operated by Resolute Natural Resources and Navajo National Oil and Gas Company. The oil field is located in the Paradox Basin of southeastern Utah, and was selected by the Southwest Regional Partnership on Carbon Sequestration, supported by the U.S. Department of Energy, to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration. The geophones are placed at depths from 805 m to 1704 m, and the oil reservoir is located approximately from 1731 m to 1786 m in depth. A baseline VSP dataset with one zero-offset and seven offset source locations was acquired in October, 2007 before CO2 injection. The offsets/source locations are approximately 1 km away from the monitoring well with buried geophone string. A time-lapse VSP dataset with the same source locations was collected in July, 2008 after five months of CO2/water injection into a horizontal well adjacent to the monitoring well. The total amount of CO2 injected during the time interval between the two VSP surveys was 181,000 MCF (million cubic feet), or 10,500 tons. The time-lapse VSP data are pre-processed to balance the phase and amplitude of seismic events above the oil reservoir. We conduct wave-equation migration imaging and interferometry analysis using the pre-processed time-lapse VSP data. The results demonstrate that time-lapse VSP surveys with high-resolution migration imaging and scattering analysis can provide reliable information about CO2 migration. Both the repeatability of VSP surveys and sophisticated time-lapse data pre-processing are essential to make VSP as an effective tool for monitoring CO2 injection.

  3. Hydrologic data for the East Poplar oil field, Fort Peck Indian Reservation, Northeastern Montana

    USGS Publications Warehouse

    Thamke, J.N.; Craigg, S.D.; Mendes, T.M.

    1996-01-01

    This report presents selected hydrologic data for the East Poplar oil field, located in the south-central part of the Fort Peck Indian Reservation in northeastern Montana. Data about the occurrence, quantity, and quality of ground and surface water are presented in tabular form. The tables contain records of privately owned wells (active and abandoned), monitoring wells installed by the U.S. Geological Survey and Montana Bureau of Mines and Geology, oil wells, and brine-injection wells; lithologic descriptions of drill cuttings and well-completion data from monitoring wells; data from two aquifer tests conducted in Quaternary alluvial and glacial deposits; chemical quality of ground water; and information on the quantity and chemical quality of surface water. Records of electromagnetic geophysical measurements collected throughout an area of about 20 square miles of the study area are compiled and included on a floppy disk. Illustrations in this report contain information about study area location, site- numbering system, general physical and cultural features, and construction of monitoring wells installed by the U.S. Geological Survey. plate-sized map presents additional information about privately owned wells, monitoring wells, oil wells, brine-injections wells, surface-water data-collection sites, and area of electromagnetic data collection. The data presented in this report provide a base with which to better define and interpret the occurrence, quantity, and quality of ground and surface water in the vicinity of the Poplar River Valley in the south-central part of the Fort Peck Indian Reservation. The data can be used to help delineate the occurrence of brine and saline water in Quaternary alluvial and glacial deposits in the East Poplar oil field.

  4. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    NASA Astrophysics Data System (ADS)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  5. Estimation of a Time-Dependent Strain Rate Field in Southern California Using Continuous GPS Stations in the SCIGN Network.

    NASA Astrophysics Data System (ADS)

    Hernandez, D.; Holt, W. E.; Bennett, R. A.; Li, C.; Dimitrova, L. L.; Haines, A. J.

    2005-12-01

    Advancements in the recognition of fine-scale deformation fluctuations have prompted a great deal of attention to be focused on identifying and characterizing transient strain phenomena. We have developed a tool for recognizing strain rate transients as well as for quantifying the magnitude and style of their temporal and spatial variations. Using time-varying velocity estimates for continuous GPS station data from the Southern California Integrated GPS Network (SCIGN) for the time period between October 1999 and February 2004 [Li et al., 2005]. We determine time-averaged velocity values in 0.05 year epochs for each continuous velocity series. For each velocity field solution we determine a self-consistent model velocity gradient tensor field solution for the region using bi-cubic Bessel interpolation of the GPS velocity vectors. For each epoch solution we plot dilatation strain rates, shear strain rates, and the rotation rates. We also investigate the departures of the model strain rate field and velocity field from a master solution, obtained from a time-averaged solution for the period 1999-2004, as well as estimating the departures of the time variable velocity gradient tensor field from other master solutions, including models that incorporate plate motion constraints and Quaternary fault data. By combining the epoch solution plots, we create movies that allow us to view the spatial and temporal changes in the dilation and shear strain rate field in southern California. In the present solution several time-dependent changes are noteworthy. The Eastern California Shear Zone (ECSZ) region, immediately following the October 1999 Hector Mine earthquake, shows a significant spatial change of relatively high shear strain rate that increases from the immediate area of the earthquake to an area that almost spans the entire ECSZ from east to west. Also following the Hector Mine event, there is a strain rate corridor that extends through the Pinto Mt. fault connecting

  6. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    USGS Publications Warehouse

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field

  7. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect

    Perri, Pasquale R.

    2001-04-04

    This report describes the evaluation, design, and implementation of a DOE funded CO2 pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO2 pilot is the Belridge Diatomite. The pilot location was selected based on geology, reservoir quality and reservoir performance during the waterflood. A CO2 pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO2 utilization rate and premature CO2 breakthrough, and overall uncertainty in the unproven CO2 flood process in the San Joaquin Valley.

  8. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill.

    PubMed

    Faksness, Liv-Guri; Altin, Dag; Nordtug, Trond; Daling, Per S; Hansen, Bjørn Henrik

    2015-02-15

    Two Source oils and five field collected oil residues from the Deepwater Horizon incident were chemically characterized. Water accommodated fractions (WAFs) of the Source oils and two of the field-weathered oils were prepared to evaluate the impact of natural weathering on the chemical composition and the acute toxicity of the WAFs. Toxicity test species representing different tropic levels were used (the primary producer Skeletonema costatum (algae) and the herbivorous copepod Acartia tonsa). The results suggest that the potential for acute toxicity is higher in WAFs from non-weathered oils than WAFs from the field weathered oils. The Source oils contained a large fraction of soluble and bioavailable components (such as BTEX (benzene, toluene, ethyl benzene, xylenes) and naphthalene), whereas in the surface collected oils these components were depleted by dissolution into the water column as the oil rose to the surface and by evaporative loss after reaching the sea surface.

  9. Detailed Study of Seismic Wave Attenuation in Carbonate Rocks: Application on Abu Dhabi Oil Fields

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.; Matsushima, J.

    2015-12-01

    Seismic wave attenuation is a promising attribute for the petroleum exploration, thanks to its high sensitivity to physical properties of subsurface. It can be used to enhance the seismic imaging and improve the geophysical interpretation which is crucial for reservoir characterization. However getting an accurate attenuation profile is not an easy task, this is due to complex mechanism of this parameter, although that many studies were carried out to understand it. The degree of difficulty increases for the media composed of carbonate rocks, known to be highly heterogeneous and with complex lithology. That is why few attenuation studies were done successfully in carbonate rocks. The main objectives of this study are, Getting an accurate and high resolution attenuation profiles from several oil fields. The resolution is very important target for us, because many reservoirs in Abu Dhabi oil fields are tight.Separation between different modes of wave attenuation (scattering and intrinsic attenuations).Correlation between the attenuation profiles and other logs (Porosity, resistivity, oil saturation…), in order to establish a relationship which can be used to detect the reservoir properties from the attenuation profiles.Comparison of attenuation estimated from VSP and sonic waveforms. Provide spatial distribution of attenuation in Abu Dhabi oil fields.To reach these objectives we implemented a robust processing flow and new methodology to estimate the attenuation from the downgoing waves of the compressional VSP data and waveforms acquired from several wells drilled in Abu Dhabi. The subsurface geology of this area is primarily composed of carbonate rocks and it is known to be highly fractured which complicates more the situation, then we separated successfully the intrinsic attenuation from the scattering. The results show that the scattering is significant and cannot be ignored. We found also a very interesting correlation between the attenuation profiles and the

  10. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  11. Toxicological effects of military fog oil obscurant on Daphnia magna and Ceriodaphnia dubia in field and laboratory exposures.

    PubMed

    Cropek, Donald M; Esarey, Joan C; Conner, Cassie L; Goran, Jacob M; Smith, Thomas; Soucek, David J

    2008-08-01

    Our purpose was to determine if the acute and sub-lethal effects of fog oil, an obscurant used for military training, could be observed in realistic field exposures. To this end, we exposed Daphnia magna to oil fogs under actual release conditions at a U.S. Army training site. Guided by field investigations, acute toxicity experiments were conducted in the laboratory with the more sensitive species Ceriodaphnia dubia to test the hypothesis that dissolution of fog oil constituents into water is minimal and actual contact by organisms with the water surface is required to cause toxicity. We conducted further experiments to test the hypothesis that vaporization of fog oil alters its chemical composition and toxicity to freshwater invertebrates. In the field, daphnid mortality was minimal more than 5 m from the point of fog generation, but sub-lethal effects were more extensive. Both field and laboratory experiments suggested that physical contact with oils on the water surface was the most important factor driving toxicity. To our knowledge, this is the first attempt to evaluate toxicological endpoints with freshwater invertebrates in field exposures with fog oil.

  12. Comparison of three options for geologic sequestration of CO2 - a case study for California

    SciTech Connect

    Benson, S.M.

    2000-09-01

    Options for sequestration of CO{sub 2} are best viewed in light of the regional distribution of CO{sub 2} sources and potential sequestration sites. This study examines the distribution of carbon emissions from fossil fuel power plants in California and their proximity to three types of reservoirs that may be suitable for sequestration: (1) active or depleted oil fields, (2) active or depleted gas fields, and (3) brine formations. This paper also presents a preliminary assessment of the feasibility of sequestering CO{sub 2} generated from large fossil-fuel fired power plants in California and discusses the comparative advantages of three different types of reservoirs for this purpose. Based on a volumetric analysis of sequestration capacity and current CO{sub 2} emission rates from oil/gas fired power plants, this analysis suggests that oil reservoirs, gas fields and brine formations can all contribute significantly to sequestration in California. Together they could offer the opportunity to meet both short and long term needs. In the near term, oil and gas reservoirs are the most promising because the trapping structures have already stood the test of time and opportunities for offsetting the cost of sequestration with revenues from enhanced oil and gas production. In the long term, if the trapping mechanisms are adequately understood and deemed adequate, brine formations may provide an even larger capacity for geologic sequestration over much of California.

  13. Four-dimensional seismic analysis of the Hibernia oil field, Grand Banks, Canada

    NASA Astrophysics Data System (ADS)

    Wright, Richard James

    2004-12-01

    The seismic reflection method, traditionally a geologic structural imaging tool, is increasingly being utilized for petroleum reservoir monitoring purposes. Time-lapse, or four dimensional (4D) seismic reservoir monitoring is the process by which repeated 3D seismic surveys are acquired over a common area during the production of a petroleum reservoir in an effort to spatially image production related changes. While if successful, this seismic method can have a significant impact on an oil field's development plan, the sometimes subtle nature of the 4D seismic signals restricts the universal application of 4D seismic methods in all reservoirs and operating environments. To examine the potential use of 4D seismic on Canada's Grand Banks, this thesis conducts a 4D seismic analysis of the Hibernia oil field---the first example of 4D seismic technology on the Grand Banks. Due to a challenging environment (seismic and reservoir) at Hibernia for 4D seismic success, rock physics modeling predicts a subtle 4D seismic response for areas of both water and gas injection. To equalize the 4D seismic datasets, specialized poststack cross equalization including a volume event warping process is applied to two 3D post stack seismic datasets from the Hibernia oil field, a pre-production "legacy" survey acquired in 1991, and a 2001 survey. The cross equalization processing improves the repeatability of non-reservoir events fieldwide and enhances reservoir anomalies in some areas of the field. While the data contains a fair degree of noise, 4D seismic anomalies above the noise level can be imaged in areas of both water and gas injection. Through interpretation, some of these anomalies are shown to be consistent with modeled responses to water and gas injection. In addition, there is evidence that some of the seismic anomalies may be due to pore pressure changes in the reservoir. The results of the Hibernia 4D seismic analysis are then used as background for a feasibility analysis for

  14. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    SciTech Connect

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  15. Enhanced biodegradation of transformer oil in soils with cyclodextrin--from the laboratory to the field.

    PubMed

    Molnár, Mónika; Leitgib, Laura; Gruiz, Katalin; Fenyvesi, Eva; Szaniszló, Nikoletta; Szejtli, József; Fava, Fabio

    2005-03-01

    The use cyclodextrins for the intensification of bioremediation by improving the mobility and bioavailability of contaminants has recently been studied. In this work, the role of randomly methylated beta-cyclodextrin in the bioremediation of soils contaminated with transformer oil was studied both in bench scale bioreactors and through field experiments. The aims of this research were to (a) establish the scientific background of a cyclodextrin-based soil bioremediation technology, (b) demonstrate its feasibility and effectiveness in the field, and (c) develop an integrated methodology, consisting of a combination of physical, chemical, biological and ecotoxicological analytical methods, for efficiently monitoring the technology performances. The stepwise increasing scale of the experiments and the application of the integrated analytical methodology supported the development of a scientifically established new technology and the identification of the advantages and the limitations of its application in the field. At each phase of the study, randomly methylated beta-cyclodextrin was found to significantly enhance the bioremediation and detoxification of the transformer oil-contaminated soils employed by increasing the bioavailability of the pollutants and the activity of indigenous microorganisms.

  16. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas.

    PubMed

    Gan, Wei; Frohlich, Cliff

    2013-11-19

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast-southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006-2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957-1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change.

  17. Application of new geological modeling technology in secondary development in Daqing oil field

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Zhang, J. H.; Li, H. K.; Liu, C.

    2016-08-01

    The reconfiguration on underground geology system is one of the key techniques for secondary development in Daqing oil field. The geological modeling is the unique method to characterize new knowledge system of reservoir. The development history of maturing field is long. The structure of maturing field is complex and the distribution of oil remaining is highly scattered. The difficulty of adjustment and potential tapping is great. In viewing of demand for secondary development, the strategies and methods of geological modeling are proposed. According to the characteristics that many faults crosscut each other, the clue of fractional simulation—key horizon controlling—overall structural modeling is carried out to accurately and effectively build fine structural models. In order to approximate the real microfacies simulation effect, microfacies modeling technology of multiple iterations and geology tendency under vertical and lateral geology tendency constraint is used. And the attribute models could approximate the real parametric distribution. Moreover, in viewing of the key and potential reservoir sand, the countermeasure on configuration modeling by different stochastic simulation methods and step simulation is proposed to rapidly build geologic models. The geologic models are scientific and feasible. The above-mentioned countermeasures and methods have been used in secondary development of Daqing oilfield and the effect was well. This new technology presents directive sense.

  18. Development programs call for two concrete platforms in oil, gas fields off Norway

    SciTech Connect

    Not Available

    1991-12-23

    This paper reports on development plans for two fields off Norway that have given a boost to use of concrete for the construction of floating production facilities. Conoco Norway Inc. let a $350 million contract for construction of the world's first concrete hull, tension leg platform (TLP) to Norwegian Contractors, Stavanger. As part of a $3.5 billion project, it will be installed in the Conoco group's Heidrun oil and gas field in the Haltenbanken area of the Norwegian Sea off mid-Norway. In addition, a group led by Norsk Hydro Produksjon AS, Oslo, chose a concrete floating production platform as the basis for a $2.42 billion development of the oil province in Troll gas field in the North SEa. Also in the Norwegian North Sea, companies involved in the Sleipner gas development project agreed to seek approval for the $1.77 billion, first phase development phase of West Sleipner reserves beginning in 1996. This will use conventional production technology, although the possibility of a concrete treatment platform has not been ruled out.

  19. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas

    PubMed Central

    Gan, Wei; Frohlich, Cliff

    2013-01-01

    Between 1957 and 1982, water flooding was conducted to improve petroleum production in the Cogdell oil field north of Snyder, TX, and a contemporary analysis concluded this induced earthquakes that occurred between 1975 and 1982. The National Earthquake Information Center detected no further activity between 1983 and 2005, but between 2006 and 2011 reported 18 earthquakes having magnitudes 3 and greater. To investigate these earthquakes, we analyzed data recorded by six temporary seismograph stations deployed by the USArray program, and identified 93 well-recorded earthquakes occurring between March 2009 and December 2010. Relocation with a double-difference method shows that most earthquakes occurred within several northeast–southwest-trending linear clusters, with trends corresponding to nodal planes of regional focal mechanisms, possibly indicating the presence of previously unidentified faults. We have evaluated data concerning injection and extraction of oil, water, and gas in the Cogdell field. Water injection cannot explain the 2006–2011 earthquakes, especially as net volumes (injection minus extraction) are significantly less than in the 1957–1982 period. However, since 2004 significant volumes of gases including supercritical CO2 have been injected into the Cogdell field. The timing of gas injection suggests it may have contributed to triggering the recent seismic activity. If so, this represents an instance where gas injection has triggered earthquakes having magnitudes 3 and larger. Further modeling studies may help evaluate recent assertions suggesting significant risks accompany large-scale carbon capture and storage as a strategy for managing climate change. PMID:24191019

  20. Noble Gas geochemistry of the newly discovered hydrothermal fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin vent sites

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.

    2015-12-01

    Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical

  1. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    SciTech Connect

    Eric H. Johnson; Don E. French

    2001-06-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A

  2. Selection of flooded agricultural fields and other landscapes by female northern pintails wintering in Tulare Basin, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Jarvis, Robert L.; Gilmer, David S.

    2003-01-01

    Habitat selection and use are measures of relative importance of habitats to wildlife and necessary information for effective wildlife conservation. To measure the relative impor- tance of flooded agricultural fields and other landscapes to northern pintails (Anas acuta) wintering in Tulare Basin (TB), California, we radiotagged female pintails during late August-early October, 1991-1993 in TB and other San Joaquin Valley areas and deter- mined use and selection of these TB landscapes through March each year. Availability of landscape and field types in TB changed within and among years. Pintail use and selec- tion (based upon use-to-availability log ratios) of landscape and field types differed among seasons, years, and diel periods. Fields flooded after harvest and before planting (i.e., pre-irrigated) were the most available, used, and selected landscape type befor