Sample records for oil processing conditions

  1. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    PubMed

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial production of high quality tomato seed oil. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  2. Geometric parameters determination of the installation for oil-contaminated soils decontamination in Russia, the Siberian region and the Arctic zones climatic conditions with reagent encapsulating

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Kholkin, E. G.

    2018-01-01

    The article presents the procedure for determining the basic geometrical setting parameters for the oil-contaminated soils decontamination with reagent encapsulation method. An installation is considered for the operational elimination of the emergency consequences accompanied with oil spills, and the installation is adapted to winter conditions. In the installations exothermic process thermal energy of chemical neutralization of oil-contaminated soils released during the decontamination is used to thaw frozen subsequent portions of oil-contaminated soil. Installation for oil-contaminated soil decontamination as compared with other units has an important advantage, and it is, if necessary (e.g., in winter) in using the heat energy released at each decontamination process stage of oil-contaminated soil, in normal conditions the heat is dispersed into the environment. In addition, the short-term forced carbon dioxide delivery at the decontamination process final stage to a high concentration directly into the installation allows replacing the long process of microcapsule shells formation and hardening that occur in natural conditions in the open air.

  3. Jet fuels from synthetic crudes

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; Gallagher, J. P.

    1977-01-01

    An investigation was conducted to determine the technical problems in the conversion of a significant portion of a barrel of either a shale oil or a coal synthetic crude oil into a suitable aviation turbine fuel. Three syncrudes were used, one from shale and two from coal, chosen as representative of typical crudes from future commercial production. The material was used to produce jet fuels of varying specifications by distillation, hydrotreating, and hydrocracking. Attention is given to process requirements, hydrotreating process conditions, the methods used to analyze the final products, the conditions for shale oil processing, and the coal liquid processing conditions. The results of the investigation show that jet fuels of defined specifications can be made from oil shale and coal syncrudes using readily available commercial processes.

  4. Experiment on the Effects of Storage Duration of Biodiesel produced from Crude Palm Oil, Waste Cooking oil and Jatropha

    NASA Astrophysics Data System (ADS)

    Nanihar, Nadiarulah; Khalid, Amir; Mustaffa, Norrizal; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Sunar, Norshuhaila Mohamed

    2017-10-01

    Biodiesel based on vegetable oil is an alternative that had various advantage in term of sustainability and environmental attractive compare to others conventional diesel. Biodiesel is product of any fat or oil that derived from any organic sources through a refinery process called transesterification process. This research investigates the effects of storage duration and variant ambient condition on the biodiesel properties and characteristics. In this study, there are three types of blending which is 5vol% blends ( 5vol% plant oil 95vol% diesel), 10vol% blending (10vol% plant oil and 90vol% diesel) and 15vol% blending (15vol% plant oil and 85vol% diesel) each called CPO5 (crude palm oil 5vol%), CPO10 (crude palm oil 10vol%),CPO15 (crude palm oil 15vol%), JO5 (jatropha oil 5vol%), JO10 (jatropha oil 10vol%),and JO15 (jatropha oil 15vol%) respectively. Biodiesel samples were stored at indoor condition and outdoor condition for a 3 months period. The fuel properties such as acid value, viscosity, density, water content and flash point are observed with the laboratory instrument. Flash point value and water content increased under both of indoor and outdoor condition and a steady data for viscosity and density. However, acid value at indoor condition nearly constant but increased dramatically for outdoor condition over the time.

  5. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Zhang, Shuang; Qi, Dongming; Zhang, Dong; Vance, George F.; Zhao, Hongting

    2017-02-01

    Emulsified oil wastewaters, arisen from oil industry and oil spill accidents, cause severe environmental and ecological problems. In this study, a series of pH-sensitive magnetic nanomaterials (MNPs) were synthesized and characterized for their evaluation in separation of emulsified oil from aqueous environments. A coprecipitation method was used to produce Fe3O4 magnetic nanoparticles that were coated in a 2-step process with first silica to form a surface for anchoring an (3-aminopropyl)triethoxysilane (APTES) molecular layer. Detailed studies were conducted on effects of MNPs dosage, APTES anchoring density (DA) and pH on oil-water separation performance of the synthetic MNPs. Results showed that, under both acidic and neutral conditions, MNPs with high DA exhibited enhanced oil-water separation performance, while under alkaline condition, the oil-water separation process was minimal. Alkaline conditions allowed the MNPs to be recycled up to 9 cycles without showing any significant decrease in oil-water separation efficiency. An examination of the oil-water separation mechanism found that electrostatic interaction and interfacial activity both played important roles in oil-water separation. In conclusion, pH-sensitive MNPs can be easily synthesized and recycled, providing a promising, cost-effective and environmentally-friendly process for the efficient treatment of emulsified oil wastewater.

  6. Effect of processing conditions on oil point pressure of moringa oleifera seed.

    PubMed

    Aviara, N A; Musa, W B; Owolarafe, O K; Ogunsina, B S; Oluwole, F A

    2015-07-01

    Seed oil expression is an important economic venture in rural Nigeria. The traditional techniques of carrying out the operation is not only energy sapping and time consuming but also wasteful. In order to reduce the tedium involved in the expression of oil from moringa oleifera seed and develop efficient equipment for carrying out the operation, the oil point pressure of the seed was determined under different processing conditions using a laboratory press. The processing conditions employed were moisture content (4.78, 6.00, 8.00 and 10.00 % wet basis), heating temperature (50, 70, 85 and 100 °C) and heating time (15, 20, 25 and 30 min). Results showed that the oil point pressure increased with increase in seed moisture content, but decreased with increase in heating temperature and heating time within the above ranges. Highest oil point pressure value of 1.1239 MPa was obtained at the processing conditions of 10.00 % moisture content, 50 °C heating temperature and 15 min heating time. The lowest oil point pressure obtained was 0.3164 MPa and it occurred at the moisture content of 4.78 %, heating temperature of 100 °C and heating time of 30 min. Analysis of Variance (ANOVA) showed that all the processing variables and their interactions had significant effect on the oil point pressure of moringa oleifera seed at 1 % level of significance. This was further demonstrated using Response Surface Methodology (RSM). Tukey's test and Duncan's Multiple Range Analysis successfully separated the means and a multiple regression equation was used to express the relationship existing between the oil point pressure of moringa oleifera seed and its moisture content, processing temperature, heating time and their interactions. The model yielded coefficients that enabled the oil point pressure of the seed to be predicted with very high coefficient of determination.

  7. Production and Characterization of Ethyl Ester from Crude Jatropha curcas Oil having High Free Fatty Acid Content

    NASA Astrophysics Data System (ADS)

    Kumar, Rajneesh; Dixit, Anoop; Singh, Shashi Kumar; Singh, Gursahib; Sachdeva, Monica

    2015-09-01

    The two step process was carried out to produce biodiesel from crude Jatropha curcas oil. The pretreatment process was carried out to reduce the free fatty acid content by (≤2 %) acid catalyzed esterification. The optimum reaction conditions for esterification were reported to be 5 % H2SO4, 20 % ethanol and 1 h reaction time at temperature of 65 °C. The pretreatment process reduced the free fatty acid of oil from 7 to 1.85 %. In second process, alkali catalysed transesterification of pretreated oil was carried and the effects of the varying concentrations of KOH and ethanol: oil ratios on percent ester recovery were investigated. The optimum reaction conditions for transesterification were reported to be 3 % KOH (w/v of oil) and 30 % (v/v) ethanol: oil ratio and reaction time 2 h at 65 °C. The maximum percent recovery of ethyl ester was reported to be 60.33 %.

  8. Process concept of retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnai, O.

    1984-06-01

    A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

  9. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Tomato seeds resulting from tomato processing by-product have not been effectively utilized as value-added products. This study investigated the kinetics of oil extraction from tomato seeds and sought to optimize the oil extraction conditions. The oil was extracted by using hexane as solvent for 0 t...

  10. Purification of trona ores by conditioning with an oil-in-water emulsion

    DOEpatents

    Miller, J. D.; Wang, Xuming; Li, Minhua

    2009-04-14

    The present invention is a trona concentrate and a process for floating gangue material from trona ore that comprises forming an emulsion, conditioning the trona ore at a high solids content in a saturated trona suspension, and then floating and removing the gangue material. The process for separating trona from gangue materials in trona ore can include emulsifying an oil in an aqueous solution to form an oil-in-water emulsion. A saturated trona suspension having a high solids content can also be formed having trona of a desired particle size. The undissolved trona in the saturated suspension can be conditioned by mixing the saturated suspension and the oil-in-water emulsion to form a conditioning solid suspension of trona and gangue material. A gas can be injected through the conditioning solid suspension to float the gangue material. Thus, the floated gangue material can be readily separated from the trona to form a purified trona concentrate without requirements of additional heat or other expensive processing steps.

  11. [Study on two preparation methods for beta-CD inclusion compound of four traditional Chinese medicine volatile oils].

    PubMed

    Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin

    2012-04-01

    To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.

  12. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    NASA Astrophysics Data System (ADS)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  13. Cleaning oil refining drainage waters out of emulsified oil products with thermic treated cedar nut shell

    NASA Astrophysics Data System (ADS)

    Pyatanova, P. A.; Adeeva, L. N.

    2017-08-01

    It was elaborated the ability of the sorbent produced by thermic treatment of cedar nut shell to destruct model and real first kind (direct) emulsions in static and dynamic conditions. In static conditions optimal ratio sorbent-emulsion with the original concentration of oil products 800 mg/l was in the range of 2.0 g per 100 ml of emulsion which corresponds to the level of treatment 94.9%. The time of emulsion destruction was 40 minutes. This sorbent is highly active in dynamic processes of oil-contaminated water treatment, the level of treatment 96.0% is being achieved. Full dynamic sorptive capacity of the sorbent is 0.85 g/g. Sorbent based on the thermic treated cedar nut shell can be elaborated as sorptive filter element of local treatment facilities of oil refining and petrochemical processes. After the treatment with this sorbent of drainage waters of oil refinery in dynamic conditions the concentration of oil products became less than mpc on oil products for waste waters coming to biological treatment.

  14. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  15. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  16. Optimization of the degumming process for camellia oil by the use of phospholipase C in pilot-scale system.

    PubMed

    Jiang, Xiaofei; Chang, Ming; Jin, Qingzhe; Wang, Xingguo

    2015-06-01

    In present study, phospholipase C (PLC) was applied in camellia oil degumming and the response surface method (RSM) was used to determine the optimum degumming conditions (reaction time, reaction temperature and enzyme dosage) for this enzyme. The optimum conditions for the minimum residual phosphorus content (15.14 mg/kg) and maximum yield of camellia oil (98.2 %) were obtained at reaction temperature 53 ºC, reaction time 2.2 h, PLC dosage 400 mg/kg and pH 5.4. The application of phospholipase A (PLA) - assisted degumming process could further reduce the residual phosphorus content of camellia oil (6.84 mg/kg) to make the oil suitable for physical refining while maintaining the maximal oil yield (98.2 %). These results indicate that PLC degumming process in combination with PLA treatment can be a commercially viable alternative for traditional degumming process. Study on the quality changes of degummed oils showed that the oxidative stability of camellia oil was slightly deceased after the enzymatic treatment, thus more attention should be paid to the oxidative stability in the further application.

  17. Study on distribution of reservoir endogenous microbe and oil displacement mechanism.

    PubMed

    Yue, Ming; Zhu, Weiyao; Song, Zhiyong; Long, Yunqian; Song, Hongqing

    2017-02-01

    In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can't sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.

  18. Optimization process condition for deacidification of palm oil by liquid-liquid extraction using NADES (Natural Deep Eutectic Solvent)

    NASA Astrophysics Data System (ADS)

    Israyandi, Zahrina, Ida; Mulia, Kamarza

    2017-03-01

    One of many steps in palm oil refining process is deacidification which aims to separate free fatty acids and other compounds from the oil. The deacidification process was using a green solvent, known as NADES, that consisted of betaine monohydrate and propionic acid at molar ratio of 1:8. In this study, the process conditions were optimized using the response surface method (RSM) through central composite design in order to predict the maximum distribution coefficient of palmitic acid. The obtained regression equation of the basic model for optimization was: y = 0.717 + 0.003x1 + 0.043 x2 + 0.148x3 - 0.005 x1x1 - 0.030 x2x2 + 0.047 x3x3 - 0.008 x1x2 + 0.008 x1x3 + 0.033 x2x3. The independent variables are x1 ≡ temperature (40, 60, 80 °C), x2≡ amount of palmitic acid in the palm oil (2, 5, 8 %) and x3 ≡ mass ratios of oil to NADES (1:2, 1:1, 2:1). The optimum process condition found was temperature of 62.3°C, palmitic acid content of 8%, and NADES to palm oil mass ratio of 1:2, resulting in the maximum distribution coefficient of 0.96.

  19. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production

    PubMed Central

    Patel, Vinay R.; Dumancas, Gerard G.; Kasi Viswanath, Lakshmi C.; Maples, Randall; Subong, Bryan John J.

    2016-01-01

    Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production. PMID:27656091

  20. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production.

    PubMed

    Patel, Vinay R; Dumancas, Gerard G; Kasi Viswanath, Lakshmi C; Maples, Randall; Subong, Bryan John J

    2016-01-01

    Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production.

  1. Modification of oil palm wood using acetylation and impregnation process

    NASA Astrophysics Data System (ADS)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  2. Influence of pH on dynamics of microbial enhanced oil recovery processes using biosurfactant producing Pseudomonas putida: Mathematical modelling and numerical simulation.

    PubMed

    Sivasankar, P; Suresh Kumar, G

    2017-01-01

    In present work, the influence of reservoir pH conditions on dynamics of microbial enhanced oil recovery (MEOR) processes using Pseudomonas putida was analysed numerically from the developed mathematical model for MEOR processes. Further, a new strategy to improve the MEOR performance has also been proposed. It is concluded from present study that by reversing the reservoir pH from highly acidic to low alkaline condition (pH 5-8), flow and mobility of displaced oil, displacement efficiency, and original oil in place (OOIP) recovered gets significantly enhanced, resulting from improved interfacial tension (IFT) reduction by biosurfactants. At pH 8, maximum of 26.1% of OOIP was recovered with higher displacement efficiency. The present study introduces a new strategy to increase the recovery efficiency of MEOR technique by characterizing the biosurfactants for IFT min /IFT max values for different pH conditions and subsequently, reversing the reservoir pH conditions at which the IFT min /IFT max value is minimum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  4. Evaluation of sensor arrays for engine oils using artificial oil alteration

    NASA Astrophysics Data System (ADS)

    Sen, Sedat; Schneidhofer, Christoph; Dörr, Nicole; Vellekoop, Michael J.

    2011-06-01

    With respect to varying operation conditions, only sensors directly installed in the engine can detect the current oil condition hence enabling to get the right time for the oil change. Usually, only one parameter is not sufficient to obtain reliable information about the current oil condition. For this reason, appropriate sensor principles were evaluated for the design of sensor arrays for the measurement of critical lubricant parameters. In this contribution, we report on the development of a sensor array for engine oils using laboratory analyses of used engine oils for the correlation with sensor signals. The sensor array comprises the measurement of conductivity, permittivity, viscosity and temperature as well as oil corrosiveness as a consequence of acidification of the lubricant. As a key method, rapid evaluation of the sensors was done by short term simulation of entire oil change intervals based on artificial oil alteration. Thereby, the compatibility of the sensor array to the lubricant and the oil deterioration during the artificial alteration process was observed by the sensors and confirmed by additional laboratory analyses of oil samples take.

  5. Improved extraction of avocado oil by application of sono-physical processes.

    PubMed

    Martínez-Padilla, Laura Patricia; Franke, Lisa; Xu, Xin-Qing; Juliano, Pablo

    2018-01-01

    Ultrasound treatment is known to increase the oil extractability in olive and palm oil processes. This work examined the effect of ultrasound conditioning of avocado puree on oil extractability and quality, at low (18+40kHz) and high (2MHz) frequencies, at litre-scale. Other ultrasound parameters evaluated included high frequency effect (0.4, 0.6, and 2MHz; 5min; 90kJ/kg) and sonication time (2.5-10min at 2MHz), without malaxation. Finally, a megasonic post-malaxation intervention was assessed at selected malaxation times (15, 30, and 60min). Both low and high frequency ultrasound treatments of the non-malaxed avocado puree improved extractability by 15-24% additional oil recovery, with the highest extractability achieved after 2MHz treatments, depending on the fruit maturity and oil content. There was no preferential improvement on oil extractability observed across high frequencies, even though extractability increased with sonication time. Ultrasound treatment also showed a positive effect after puree malaxation. Oils obtained from sonicated purees showed peroxide and free fatty acid values below the industrial specification levels and an increase in total phenolic compounds after 2MHz treatment. High frequency ultrasound conditioning of avocado puree can enhance oil separation and potentially decrease the malaxation time in industrial processes without impacting on oil quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.

    PubMed

    Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki

    2012-01-01

    Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.

  7. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  8. Effect of household and commercial processing on acetamiprid, azoxystrobin and methidathion residues during crude rapeseed oil production.

    PubMed

    Jiang, Yaping; Shibamoto, Takayuki; Li, Yanjie; Pan, Canping

    2013-01-01

    Rape crops with residues of acetamiprid, azoxystrobin and methidathion incurred from field trials were used to evaluate the effect of household and commercial crude rapeseed oil processing on the transfer of pesticide residues. The pesticides were applied at exaggerated dosage to quantify residue levels in processed samples. The processing procedure was conducted as closely as possible to the actual conditions in practice. The conditioning step removed at least 30% of pesticides, while azoxystrobin and methidathion were concentrated by at least 15% at the single pressing step. The residue level of methidathion was concentrated with a processing factor (PF) of 1.07, while azoxystrobin and acetamiprid decreased with PFs of 0.67 and 0.04, respectively, after all processing procedures. The overall magnitudes of acetamiprid, azoxystrobin and methidathion in rapeseed oil and meal were all decreased after processing compared with the magnitude of those in raw rapeseed.

  9. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  11. Optimization of the Supercritical Carbon Dioxide Separation of Bergapten from Bergamot Essential Oil.

    PubMed

    Sicari, Vincenzo

    2018-01-01

    The possibility of following traditional cold-press extraction with the post process continuous separation of bergapten from bergamot essential oil was investigated. A fractionation tower was used in an experiment in which cold-pressed bergamot oil was extracted in a continuous countercurrent process by supercritical carbon dioxide under different conditions. Bergapten is fairly soluble in CO2 in its supercritical phase, in particular at a density of 277.90 kg⋅m-3, corresponding to a pressure of 8 MPa and temperature of 40°C. Under these conditions, an extract with 0.198% bergapten was obtained, a figure slightly below the percentage of bergapten contained in cold-pressed oil (0.21%). However, at densities below 200 kg⋅m-3, the amount of bergapten in the extracted oil was negligible. Of all tested conditions for separation, the best was found to be at a pressure of 8 MPa and temperature of 70°C, conditions under which bergapten was not detected. The results of the experiment showed that bergapten, and the non-volatile fraction in general, was extracted only in small quantities and was not extracted at all with at a CO2 pressure of 8 MPa.

  12. Influence of Climate, Variety and Production Process on Tocopherols, Plastochromanol-8 and Pigments in Flaxseed Oil

    PubMed Central

    Škevin, Dubravka; Kraljić, Klara; Pospišil, Milan; Neđeral, Sandra; Blekić, Monika

    2015-01-01

    Summary The objective of this study is to compare the influence of genotype, environmental conditions and processing methods after maturation and harvesting of four varieties of flaxseed (Altess, Biltstar, Niagara and Oliwin) on the levels of tocochromanols, carotenoids and chlorophyll in flaxseed oil. Samples were produced by cold pressing of dry seeds and seeds heated for 30 min at 60 °C. Temperature, sunshine and rainfall were primary environmental conditions included. Grand mean of mass fraction of γ-tocopherol was (522±29), of plastochromanol-8 (305±2) and total tocochromanols (831±3) mg per kg of oil. The highest levels of these compounds and strongest antioxidant activity were found in cold- -pressed oil of Biltstar variety. During seed maturation, levels of γ-tocopherol and plastochromanol-8 increased with average temperature and total sunshine and decreased with total rainfall. Fifth week after flowering was identified as the maturation period with best climate conditions to achieve optimal tocochromanol content. Grand mean of mass fraction of carotenoids expressed as β-carotene was (1.83±0.01) and of chlorophyll expressed as pheophytin a (0.43±0.10) mg per kg of oil. Altess variety had the highest levels of pigments. Antioxidant activity decreased with the increase of chlorophyll, while correlations with carotenoids were not determined. Generally, oil obtained by cold pressing had higher levels of tocochromanols and lower levels of pigments but similar antioxidant activity to the oil after seed conditioning. The results of this study contribute to identifying the flaxseed variety that is the best for oil production with the highest antioxidant activity and nutritive value, and provide better understanding of tocochromanol biosynthesis depending on different climate conditions. PMID:27904385

  13. Has the use of talc an effect on yield and extra virgin olive oil quality?

    PubMed

    Caponio, Francesco; Squeo, Giacomo; Difonzo, Graziana; Pasqualone, Antonella; Summo, Carmine; Paradiso, Vito Michele

    2016-08-01

    The maximization of both extraction yield and extra virgin olive oil quality during olive processing are the main objectives of the olive oil industry. As regards extraction yield, it can be improved by both acting on time/temperature of malaxation and using physical coadjuvants. It is well known that, generally, increasing temperature of malaxation gives an increase in oil extraction yield due to a reduction in oily phase viscosity; however, high malaxation temperature can compromise the nutritional and health values of extra virgin olive oil, leading to undesirable effects such as accelerated oxidative process and loss of volatile compounds responsible for oil flavor and fragrance. The addition of physical coadjuvants in olive oil processing during the malaxation phase, not excluded by EC regulations owing to its exclusively physical action, is well known to promote the breakdown of oil/water emulsions and consequently make oil extraction easier, thus increasing the yield. Among physical coadjuvants, micronized natural talc is used for olive oil processing above all for Spanish and Italian olive cultivars. The quality of extra virgin olive oil depends on numerous variables such as olive cultivar, ripeness degree and quality, machines utilized for processing, oil storage conditions, etc. However, the coadjuvants utilized in olive processing can also influence virgin olive oil characteristics. The literature highlights an increase in oil yield by micronized natural talc addition during olive processing, whereas no clear trend was observed as regards the chemical, nutritional and sensory characteristics of extra virgin olive oil. Although an increase in oil stability was reported, no effect of talc was found on the evolution of virgin olive oil quality indices during storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOEpatents

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  15. MORICE--new technology for mechanical oil recovery in ice infested waters.

    PubMed

    Jensen, Hans V; Mullin, Joseph V

    2003-01-01

    Mechanical oil recovery in ice infested waters (MORICE) was initiated in 1995 to develop technology for the recovery of oil spills in ice. It has been a multinational effort involving Norwegian, Canadian, American and German organizations and researchers. Through a stepwise approach with the development organized in six separate phases, laboratory tests and field experiments have been conducted to study various ideas and concepts, and to refine the ideas that were considered to have the best potential for removing oil in ice. Put together in one unit, these concepts included ice processing equipment and two alternative oil recovery units installed on a work platform. In January 2002, the final oil and ice testing with MORICE concepts was conducted at the Ohmsett test facility in Leonardo, New Jersey. The unit has been referred to as a harbor version to indicate the size and operating conditions, but the concepts could be scaled up to increase the capacity of oil and ice processing. For heavier ice conditions it would also be necessary to increase the overall strength.

  16. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    PubMed

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low emissions of nitrogen oxides are developed.

  18. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  19. Hydrothermal processing of duckweed: effect of reaction conditions on product distribution and composition.

    PubMed

    Duan, Peigao; Chang, Zhoufan; Xu, Yuping; Bai, Xiujun; Wang, Feng; Zhang, Lei

    2013-05-01

    Influences of operating conditions such as temperature (270-380 °C), time (10-120 min), reactor loading (0.5-5.5 g), and K2CO3 loading (0-50 wt.%) on the product (e.g. crude bio-oil, water soluble, gas and solid residue) distribution from the hydrothermal processing of duckweed were determined. Of the four variables, temperature and K2CO3 loading were always the most influential factors to the relative amount of each component. The presence of K2CO3 is unfavorable for the production of bio-oil and gas. Hydrothermal processing duckweed produces a bio-oil that is enriched in carbon and hydrogen and has reduced levels of O compared with the original duckweed feedstock. The higher heating values of the bio-oil were estimated within the range of 32-36 MJ/kg. Major bio-oil constituents include ketones and their alkylated derivatives, alcohols, heterocyclic nitrogen-containing compounds, saturated fatty acids and hydrocarbons. The gaseous products were mainly CO2 and H2, with lesser amounts of CH4 and CO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Citrus essential oils and their influence on the anaerobic digestion process: an overview.

    PubMed

    Ruiz, B; Flotats, X

    2014-11-01

    Citrus waste accounts for more than half of the whole fruit when processed for juice extraction. Among valorisation possibilities, anaerobic digestion for methane generation appears to be the most technically feasible and environmentally friendly alternative. However, citrus essential oils can inhibit this biological process. In this paper, the characteristics of citrus essential oils, as well as the mechanisms of their antimicrobial effects and potential adaptation mechanisms are reviewed. Previous studies of anaerobic digestion of citrus waste under different conditions are presented; however, some controversy exists regarding the limiting dosage of limonene for a stable process (24-192 mg of citrus essential oil per liter of digester and day). Successful strategies to avoid process inhibition by citrus essential oils are based either on recovery or removal of the limonene, by extraction or fungal pre-treatment respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Impact of extraneous proteins on the gastrointestinal fate of sunflower seed (Helianthus annuus) oil bodies: a simulated gastrointestinal tract study.

    PubMed

    Makkhun, Sakunkhun; Khosla, Amit; Foster, Tim; McClements, David Julian; Grundy, Myriam M L; Gray, David A

    2015-01-01

    In this study, we examined the physicochemical nature of sunflower seed oil bodies (in the absence and presence of added protein) exposed to gastrointestinal conditions in vitro: crude oil bodies (COB); washed oil bodies (WOB); whey protein isolate-enriched oil bodies (WOB-WPI); and, sodium caseinate enriched-oil bodies (WOB-SC). All oil body emulsions were passed through an in vitro digestion model that mimicked the stomach and duodenal environments, and their physicochemical properties were measured before, during, and after digestion. Oil bodies had a positive charge under gastric conditions because the pH was below the isoelectric point of the adsorbed protein layer, but they had a negative charge under duodenal conditions which was attributed to changes in interfacial composition resulting from adsorption of bile salts. Oil bodies were highly susceptible to flocculation and coalescence in both gastric and duodenal conditions. SDS-PAGE analysis indicated degradation of oleosin proteins (ca. 18-21 kDa) to a greater or lesser extent (dependent on the emulsion) during the gastric phase in all emulsions tested; there is evidence that some oleosin remained intact in the crude oil body preparation during this phase of the digestion process. Measurements of protein displacement from the surface of COBs during direct exposure to bile salts, without inclusion of a gastric phase, indicated the removal of intact oleosin from native oil bodies.

  2. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    PubMed

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  3. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery

    PubMed Central

    Zhao, Jin

    2017-01-01

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25–40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle–surfactant hybrid flooding process. PMID:29308190

  4. Multifunctional two-stage riser fluid catalytic cracking process.

    PubMed

    Zhang, Jinhong; Shan, Honghong; Chen, Xiaobo; Li, Chunyi; Yang, Chaohe

    This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.

  5. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions

    NASA Astrophysics Data System (ADS)

    Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze

    2015-03-01

    In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.

  6. Coal liquefaction process solvent characterization and evaluation: Progress report, 1 April--30 June 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winschel, R. A.; Robbins, G. A.; Burke, F. P.

    1986-11-01

    Conoco Coal Research Division is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. A set of thirty-one process oils from the Hydrocarbon Research, Inc. (HRI) Catalytic Two-Stage Liquefaction (CTSL) bench unitmore » was analyzed to provide information on process performance. The Fourier-Transform infrared (FTIR) spectroscopic method for the determination of phenolics in cola liquids was further verified. A set of four tetahydrofuran-soluble products from Purdue Research Foundation's reactions of coal/potassium/crown ether, analyzed by GC/MS and FTIR, were found to consist primarily of paraffins (excluding contaminants). Characterization data (elemental analyses, /sup 1/H-NMR and phenolic concentrations) were obtained on a set of twenty-seven two-stage liquefaction oils. Two activities were begun but not completed. First, analyses were started on oils from Wilsonville Run 250 (close- coupled ITSL). Also, a carbon isotopic method is being examined for utility in determining the relative proportion of coal and petroleum products in coprocessing oils.« less

  7. Steam distillation extraction of ginger essential oil: Study of the effect of steam flow rate and time process

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-01-01

    In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.

  8. Enzymatic conversion of waste cooking oils into alternative fuel--biodiesel.

    PubMed

    Chen, Guanyi; Ying, Ming; Li, Weizhun

    2006-01-01

    Production of biodiesel from pure oils through chemical conversion may not be applicable to waste oils/fats. Therefore, enzymatic conversion using immobilized lipase based on Rhizopus orzyae is considered in this article. This article studies this technological process, focusing on optimization of several process parameters, including the molar ratio of methanol to waste oils, biocatalyst load, and adding method, reaction temperature, and water content. The results indicate that methanol/oils ratio of 4, immobilized lipase/oils of 30 wt% and 40 degrees C are suitable for waste oils under 1 atm. The irreversible inactivation of the lipase is presumed and a stepwise addition of methanol to reduce inactivation of immobilized lipases is proposed. Under the optimum conditions the yield of methyl esters is around 88-90%.

  9. Processes for liquefying carbonaceous feedstocks and related compositions

    DOEpatents

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  10. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    NASA Astrophysics Data System (ADS)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  11. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  12. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  13. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  14. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  15. Optimization of mechanical extraction conditions for producing grape seed oil

    USDA-ARS?s Scientific Manuscript database

    In the United States, over 150 thousand metric tons of dried grape seeds containing 13-19% of oil are produced every year, as a byproduct from processing of about 5.8 million metric tons of grapes. The health promoting properties of grape seed oil is due to the presence of many bioactive components ...

  16. Synthesis and analysis of jet fuel from shale oil and coal syncrudes

    NASA Technical Reports Server (NTRS)

    Gallagher, J. P.; Collins, T. A.; Nelson, T. J.; Pedersen, M. J.; Robison, M. G.; Wisinski, L. J.

    1976-01-01

    Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.

  17. Influence of processing factors on the stability of model mayonnaise with whole egg during long-term storage.

    PubMed

    Ariizumi, Masahiro; Kubo, Megumi; Handa, Akihiro; Hayakawa, Takashi; Matsumiya, Kentaro; Matsumura, Yasuki

    2017-04-01

    Mayonnaise-like oil-in-water emulsions with different stabilities-evaluated from the degree of macroscopic defects, e.g., syneresis-were prepared by different formulations and processing conditions (egg yolk weight, homogenizer speed, and vegetable oil temperature). Emulsions prepared with lower egg yolk content were destabilized for shorter periods. The long-term stability of emulsions was weakly related to initial properties, e.g., oil droplet distribution and protein coverage at the interface. Protein aggregation between oil droplets was observed and would be responsible for the instability of emulsions exhibited by the appearance defects. SDS-PAGE results for adsorbed and unadsorbed proteins at the O/W interface suggested that predominant constituents adsorbed onto the interface were egg white proteins as compared with egg yolk components when the amount of added egg yolk was low. In present condition, egg white proteins adsorbed at the O/W interface could be a bridge of neighboring oil droplets thereby causing flocculation in emulsions.

  18. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  19. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  20. Analysis of dangerous area of single berth oil tanker operations based on CFD

    NASA Astrophysics Data System (ADS)

    Shi, Lina; Zhu, Faxin; Lu, Jinshu; Wu, Wenfeng; Zhang, Min; Zheng, Hailin

    2018-04-01

    Based on the single process in the liquid cargo tanker berths in the state as the research object, we analyzed the single berth oil tanker in the process of VOCs diffusion theory, built network model of VOCs diffusion with Gambit preprocessor, set up the simulation boundary conditions and simulated the five detection point sources in specific factors under the influence of VOCs concentration change with time by using Fluent software. We analyzed the dangerous area of single berth oil tanker operations through the diffusion of VOCs, so as to ensure the safe operation of oil tanker.

  1. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.

    PubMed

    Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger

    2017-10-01

    Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. On the modeling of the 2010 Gulf of Mexico Oil Spill

    NASA Astrophysics Data System (ADS)

    Mariano, A. J.; Kourafalou, V. H.; Srinivasan, A.; Kang, H.; Halliwell, G. R.; Ryan, E. H.; Roffer, M.

    2011-09-01

    Two oil particle trajectory forecasting systems were developed and applied to the 2010 Deepwater Horizon Oil Spill in the Gulf of Mexico. Both systems use ocean current fields from high-resolution numerical ocean circulation model simulations, Lagrangian stochastic models to represent unresolved sub-grid scale variability to advect oil particles, and Monte Carlo-based schemes for representing uncertain biochemical and physical processes. The first system assumes two-dimensional particle motion at the ocean surface, the oil is in one state, and the particle removal is modeled as a Monte Carlo process parameterized by a one number removal rate. Oil particles are seeded using both initial conditions based on observations and particles released at the location of the Maconda well. The initial conditions (ICs) of oil particle location for the two-dimensional surface oil trajectory forecasts are based on a fusing of all available information including satellite-based analyses. The resulting oil map is digitized into a shape file within which a polygon filling software generates longitude and latitude with variable particle density depending on the amount of oil present in the observations for the IC. The more complex system assumes three (light, medium, heavy) states for the oil, each state has a different removal rate in the Monte Carlo process, three-dimensional particle motion, and a particle size-dependent oil mixing model. Simulations from the two-dimensional forecast system produced results that qualitatively agreed with the uncertain "truth" fields. These simulations validated the use of our Monte Carlo scheme for representing oil removal by evaporation and other weathering processes. Eulerian velocity fields for predicting particle motion from data-assimilative models produced better particle trajectory distributions than a free running model with no data assimilation. Monte Carlo simulations of the three-dimensional oil particle trajectory, whose ensembles were generated by perturbing the size of the oil particles and the fraction in a given size range that are released at depth, the two largest unknowns in this problem. 36 realizations of the model were run with only subsurface oil releases. An average of these results yields that after three months, about 25% of the oil remains in the water column and that most of the oil is below 800 m.

  3. Petroleum mineral oil refining and evaluation of cancer hazard.

    PubMed

    Mackerer, Carl R; Griffis, Larry C; Grabowski, John S; Reitman, Fred A

    2003-11-01

    Petroleum base oils (petroleum mineral oils) are manufactured from crude oils by vacuum distillation to produce several distillates and a residual oil that are then further refined. Aromatics including alkylated polycyclic aromatic compounds (PAC) are undesirable constituents of base oils because they are deleterious to product performance and are potentially carcinogenic. In modern base oil refining, aromatics are reduced by solvent extraction, catalytic hydrotreating, or hydrocracking. Chronic exposure to poorly refined base oils has the potential to cause skin cancer. A chronic mouse dermal bioassay has been the standard test for estimating carcinogenic potential of mineral oils. The level of alkylated 3-7-ring PAC in raw streams from the vacuum tower must be greatly reduced to render the base oil noncarcinogenic. The processes that can reduce PAC levels are known, but the operating conditions for the processing units (e.g., temperature, pressure, catalyst type, residence time in the unit, unit engineering design, etc.) needed to achieve adequate PAC reduction are refinery specific. Chronic dermal bioassays provide information about whether conditions applied can make a noncarcinogenic oil, but cannot be used to monitor current production for quality control or for conducting research or developing new processes since this test takes at least 78 weeks to conduct. Three short-term, non-animal assays all involving extraction of oil with dimethylsulfoxide (DMSO) have been validated for predicting potential carcinogenic activity of petroleum base oils: a modified Ames assay of a DMSO extract, a gravimetric assay (IP 346) for wt. percent of oil extracted into DMSO, and a GC-FID assay measuring 3-7-ring PAC content in a DMSO extract of oil, expressed as percent of the oil. Extraction with DMSO concentrates PAC in a manner that mimics the extraction method used in the solvent refining of noncarcinogenic oils. The three assays are described, data demonstrating the validation of the assays are shown, and test results of currently manufactured base oils are summarized to illustrate the general lack of cancer hazard for the base oils now being manufactured.

  4. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.

    PubMed

    Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao

    2012-01-17

    The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications. © 2011 American Chemical Society

  5. Fate and Prediction of Phenolic Secoiridoid Compounds throughout the Different Stages of the Virgin Olive Oil Making Process.

    PubMed

    Fregapane, Giuseppe; Salvador, M Desamparados

    2017-08-03

    The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process-crushing, malaxation and liquid-solid separation-is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties.

  6. Supercritical Carbon Dioxide Extraction of the Oak Silkworm (Antheraea pernyi) Pupal Oil: Process Optimization and Composition Determination

    PubMed Central

    Pan, Wen-Juan; Liao, Ai-Mei; Zhang, Jian-Guo; Dong, Zeng; Wei, Zhao-Jun

    2012-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of oil from oak silkworm pupae was performed in the present research. Response surface methodology (RSM) was applied to optimize the parameters of SC-CO2 extraction, including extraction pressure, temperature, time and CO2 flow rate on the yield of oak silkworm pupal oil (OSPO). The optimal extraction condition for oil yield within the experimental range of the variables researched was at 28.03 MPa, 1.83 h, 35.31 °C and 20.26 L/h as flow rate of CO2. Under this condition, the oil yield was predicted to be 26.18%. The oak silkworm pupal oil contains eight fatty acids, and is rich in unsaturated fatty acids and α-linolenic acid (ALA), accounting for 77.29% and 34.27% in the total oil respectively. PMID:22408458

  7. Effects of cocoa butter triacylglycerides and minor compounds on oil migration.

    PubMed

    Wang, Hao; Maleky, Farnaz

    2018-04-01

    In a multi-component chocolate product, oil migration, from high oil content filling into chocolate, is one of the major contributors to the product quality loss. Among various parameters influencing oil diffusivity, cocoa butter is studied intensively. Studies have shown that the rate of oil transportion in cocoa butter is affected by its composition, the way that it is crystallized, and also the storage conditions. To model and study effects of cocoa butter type and processing conditions on oil migration, five different cocoa butter samples were studied in this work. Samples' chemical compositions in addition to their structural properties were analyzed to understand and compare oil migrations in the networks. Crystallized cocoa butter samples were placed in contact with a cream as a source of liquid oil. Using Magnetic Resonance Imaging, the movement of liquid oil into samples was investigated. The effects of minor differences in the cocoa butter chemical compositions on oil migrations rate are shown clearly. The highest effective diffusion coefficient was observed in the sample with the higher unsaturated fatty acids and phospholipids content. Although shearing at 250s -1 delayed oil migration in all the samples and a significantly lower diffusion coefficient was observed in the dynamic samples, the effects of chemical composition were still dominant. This study successfully highlighted that even minor differences in cocoa butter composition affect the network mass transfer phenomenon dramatically and that it is not easy to diminish these possessions by just crystallization processes. Published by Elsevier Ltd.

  8. Standardization of domestic frying processes by an engineering approach.

    PubMed

    Franke, K; Strijowski, U

    2011-05-01

    An approach was developed to enable a better standardization of domestic frying of potato products. For this purpose, 5 domestic fryers differing in heating power and oil capacity were used. A very defined frying process using a highly standardized model product and a broad range of frying conditions was carried out in these fryers and the development of browning representing an important quality parameter was measured. Product-to-oil ratio, oil temperature, and frying time were varied. Quite different color changes were measured in the different fryers although the same frying process parameters were applied. The specific energy consumption for water evaporation (spECWE) during frying related to product amount was determined for all frying processes to define an engineering parameter for characterizing the frying process. A quasi-linear regression approach was applied to calculate this parameter from frying process settings and fryer properties. The high significance of the regression coefficients and a coefficient of determination close to unity confirmed the suitability of this approach. Based on this regression equation, curves for standard frying conditions (SFC curves) were calculated which describe the frying conditions required to obtain the same level of spECWE in the different domestic fryers. Comparison of browning results from the different fryers operated at conditions near the SFC curves confirmed the applicability of the approach. © 2011 Institute of Food Technologists®

  9. Effects of seed preparation and oil pressing on milkweed (Asclepias spp.) protein functional properties

    USDA-ARS?s Scientific Manuscript database

    The effects of seed cooking and oil processing conditions on functional properties of milkweed seed proteins were determined to identify potential value-added uses for the meal. Milkweed seeds were flaked and then cooked in the seed conditioner at 82°C for 30, 60 or 90 min. Oil was extracted by scre...

  10. Improvement of neutral oil quality in the production of sulfonate additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhurba, A.S.; Bludilin, V.M.; Antonov, V.N.

    This paper is concerned with improvement of neutral oil used as materials for sulfonation to produce additives for lubricating oils. In this article the authors analyze the basic reasons for the unsatisfactory quality of the neutral oil and attempt to define the ways in which the process technology can be improved so as to produce neutral oil with the required composition, at the same time raising the efficiency of utilization of the MSG-8 oil used as a feedstock for this process. Experimental results are presented which demonstrate the feasibility of sulfonating neutral oil in the high-speed mixer under near-optimal conditions.more » The yield of sulfonic acid approaches the theoretical yield. With the lowest contents of aromatic hydrocarbons in the original neutral oil, the aromatic hydrocarbons are almost completely converted to sulfonic acids. The yield of neutral oil is sufficiently high, and the residual content of aromatic hydrocarbons in the oil is no greater than 3%.« less

  11. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  12. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating.

    PubMed

    Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei

    2018-01-01

    The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a high value α-olefin product with high carbon utilization.

  13. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery

    PubMed Central

    Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution against the use of intensive treatment methods with lesser marsh oiling. Oiled controls (no treatment “set-asides”) are essential for judging marsh treatment effectiveness and ecological effects; we recommend their use when applying intensive treatment methods. PMID:26200349

  14. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  15. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  16. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  17. Ultrasonic-assisted Aqueous Extraction and Physicochemical Characterization of Oil from Clanis bilineata.

    PubMed

    Sun, Mingmei; Xu, Xiao; Zhang, Qiuqin; Rui, Xin; Wu, Junjun; Dong, Mingsheng

    2018-02-01

    Ultrasound-assisted aqueous extraction (UAAE) was used to extract oil from Clanis bilineata (CB), a traditional edible insect that can be reared on a large scale in China, and the physicochemical property and antioxidant capacity of the UAAE-derived oil (UAAEO) were investigated for the first time. UAAE conditions of CB oil was optimized using response surface methodology (RSM) and the highest oil yield (19.47%) was obtained under optimal conditions for ultrasonic power, extraction temperature, extraction time, and ultrasonic interval time at 400 W, 40°C, 50 min, and 2 s, respectively. Compared with Soxhlet extraction-derived oil (SEO), UAAEO had lower acid (AV), peroxide (PV) and p-anisidine values (PAV) as well as higher polyunsaturated fatty acids contents and thermal stability. Furthermore, UAAEO showed stronger antioxidant activities than those of SEO, according to DPPH radical scavenging and β-carotene bleaching tests. Therefore, UAAE is a promising process for the large-scale production of CB oil and CB has a developing potential as functional oil resource.

  18. Direct Determination of MCPD Fatty Acid Esters and Glycidyl Fatty Acid Esters in Vegetable Oils by LC–TOFMS

    PubMed Central

    Haines, Troy D.; Adlaf, Kevin J.; Pierceall, Robert M.; Lee, Inmok; Venkitasubramanian, Padmesh

    2010-01-01

    Analysis of MCPD esters and glycidyl esters in vegetable oils using the indirect method proposed by the DGF gave inconsistent results when salting out conditions were varied. Subsequent investigation showed that the method was destroying and reforming MCPD during the analysis. An LC time of flight MS method was developed for direct analysis of both MCPD esters and glycidyl esters in vegetable oils. The results of the LC–TOFMS method were compared with the DGF method. The DGF method consistently gave results that were greater than the LC–TOFMS method. The levels of MCPD esters and glycidyl esters found in a variety of vegetable oils are reported. MCPD monoesters were not found in any oil samples. MCPD diesters were found only in samples containing palm oil, and were not present in all palm oil samples. Glycidyl esters were found in a wide variety of oils. Some processing conditions that influence the concentration of MCPD esters and glycidyl esters are discussed. PMID:21350591

  19. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  20. Prooxidant effect of α-tocopherol on soybean oil. Global monitoring of its oxidation process under accelerated storage conditions by 1H nuclear magnetic resonance.

    PubMed

    Martin-Rubio, A S; Sopelana, P; Ibargoitia, M L; Guillén, María D

    2018-04-15

    The effect of adding α-tocopherol in proportions ranging from 0.002 to 5% in weight on the oxidative stability of soybean oil was studied. For the first time, the oxidation process under accelerated storage conditions including evolution of the molar percentages of the several types of oil acyl groups, and formation and evolution of various kinds of oxidation products comprising hydroperoxides, hydroxy-dienes and other alcohols, epoxides, aldehydes and keto-dienes, was followed by 1 H nuclear magnetic resonance. It is proved that, except in the lowest proportion, α-tocopherol not only exerts a prooxidant effect on soybean oil but also modifies its oxidation pathway, affecting the oxidation products generation rate, their nature, relative proportions and concentrations. It is noticeable that the highest α-tocopherol concentrations induce the generation of some toxic compounds at earlier stages of the thermoxidation process and sometimes in higher concentration, such as certain oxygenated α,β-unsaturated aldehydes and monoepoxides derived from linoleic groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A combined microwave pretreatment/solvent extraction process for the production of oil from palm fruit: optimisation, oil quality and effect of prolonged exposure.

    PubMed

    Tan, Jason Cx; Chuah, Cheng-Hock; Cheng, Sit-Foon

    2017-04-01

    Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater. A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg -1 ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres. Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. SAR processing in the cloud for oil detection in the Arctic

    NASA Astrophysics Data System (ADS)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  3. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production.

    PubMed

    Lei, Hanwu; Ren, Shoujie; Wang, Lu; Bu, Quan; Julson, James; Holladay, John; Ruan, Roger

    2011-05-01

    Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5-50.3 wt.% of the biomass. Biochar yields were 23.5-62.2% depending on the pyrolysis conditions. The energy content of DDGS bio-oils was 28 MJ/kg obtained at the 650°C and 8 min, which was about 66.7% of the heating value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Hanwu; Ren, Shoujie; Wang, Lu

    2011-05-01

    Microwave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syn- gas) conversion yield and establish prediction models. Bio-oil recovery was in the range of 26.5–50.3 wt.% of the biomass. Biochar yields were 23.5–62.2% depending on the pyrolysis conditions. The energy con- tent of DDGS bio-oils was 28 MJ/kg obtained atmore » the 650 oC and 8 min, which was about 66.7% of the heat- ing value of gasoline. GC/MS analysis indicated that the biooil contained a series of important and useful chemical compounds: aliphatic and aromatic hydrocarbons. At least 13% of DDGS bio-oil was the same hydrocarbon compounds found in regular unleaded gasoline.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, A.; Devenny, D.; Porcari, G.

    The activities carried out and the results obtained from a 15 tons/hour oil sands extraction pilot plant operated in Fort McMurray in Northern Alberta are described. The process is the Rio Tinto TIL Holding S.A. (RTR)/Gulf Canada Lt. Oil Sands Extraction Process. It is a modified hot water extraction process. It is used to extract bitumen from Athabasca oil sands. The test ran from July to December 1981 through ambient conditions ranging from plus 38/sup 0/C to minus 30/sup 0/C (100/sup 0/F to -22/sup 0/F). The process, the on-site facilities, the test program, an analysis of plant performance, an appraisalmore » of the process economics, and an evaluation of its potential application are described.« less

  6. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somasundaran, Prof. P.

    2002-03-04

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  7. Fate and Prediction of Phenolic Secoiridoid Compounds throughout the Different Stages of the Virgin Olive Oil Making Process

    PubMed Central

    2017-01-01

    The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process—crushing, malaxation and liquid-solid separation—is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties. PMID:28771173

  8. New boundary conditions for oil reservoirs with fracture

    NASA Astrophysics Data System (ADS)

    Andriyanova, Elena; Astafev, Vladimir

    2017-06-01

    Based on the fact that most of oil fields are on the late stage of field development, it becomes necessary to produce hard-to-extract oil, which can be obtained only by use of enhance oil recovery methods. For example many low permeable or shale formations can be developed only with application of massive hydraulic fracturing technique. In addition, modern geophysical researches show that mostly oil bearing formations are complicated with tectonic faults of different shape and permeability. These discontinuities exert essential influence on the field development process and on the well performance. For the modeling of fluid flow in the reservoir with some area of different permeability, we should determine the boundary conditions. In this article for the first time the boundary conditions for the problem of fluid filtration in the reservoir with some discontinuity are considered. This discontinuity represents thin but long area, which can be hydraulic fracturing of tectonic fault. The obtained boundary condition equations allow us to take into account pressure difference above and below the section and different values of permeability.

  9. Simulation of Oil Palm Shell Pyrolysis to Produce Bio-Oil with Self-Pyrolysis Reactor

    NASA Astrophysics Data System (ADS)

    Fika, R.; Nelwan, L. O.; Yulianto, M.

    2018-05-01

    A new self-pyrolysis reactor was designed to reduce the utilization of electric heater due to the energy saving for the production of bio-oil from oil palm shell. The yield of the bio- oil was then evaluated with the developed mathematical model by Sharma [1] with the characteristic of oil palm shell [2]. During the simulation, the temperature on the combustion chamber on the release of the bio-oil was utilized to determine the volatile composition from the combustion of the oil palm shell as fuel. The mass flow was assumed constant for three experiments. The model resulted in a significant difference between the simulated bio-oil and experiments. The bio-oil yields from the simulation were 22.01, 16.36, and 21.89 % (d.b.) meanwhile the experimental yields were 10.23, 9.82, and 8.41% (d.b.). The char yield varied from 30.7 % (d.b.) from the simulation to 40.9 % (d.b.) from the experiment. This phenomenon was due to the development of process temperature over time which was not considered as one of the influential factors in producing volatile matters on the simulation model. Meanwhile the real experiments highly relied on the process conditions (reactor type, temperature over time, gas flow). There was also possibilities of the occurrence of the gasification inside the reactor which caused the liquid yield was not as high as simulated. Further simulation model research on producing the bio-oil yield will be needed to predict the optimum condition and temperature development on the newly self-pyrolysis reactor.

  10. Geospatial Hydrochemical and Microbiological Implications on the Occurrence of Crude Oil Biodegradation and Methanogenesis

    NASA Astrophysics Data System (ADS)

    Shelton, J.; McIntosh, J. C.; Warwick, P.; McCray, J. E.

    2014-12-01

    Technologies that serve as a bridge between renewable energy and fossil fuels are needed to meet growing energy demands and to mitigate climate change. Many reservoirs contain difficult to produce residual and/or heavily biodegraded (i.e., geochemically altered) crude oil, which remains a relatively untapped resource. Production of this residual crude oil via unconventional methods, such as enhanced oil recovery (EOR), has offset some of the decline in conventional oil production. EOR is not efficient enough to recover all of the original oil in place, and some methods are not effective for very heavy crude oils. Stimulation of in-situ microorganisms to convert the residual crude oil to natural gas (i.e., microbial methane) is one promising strategy to "extract" residual and /or heavy crude oil. Although the hydrogeochemical conditions necessary for the occurrence of both crude oil biodegradation and microbial methanogenesis in various reservoirs have been studied, there are still gaps in research. Many hydrogeochemical factors have been researched individually (not as part of a multifactor or lithologically similar system) and little work has assessed the microbiological limitations of both processes. Our goal is to determine the hydrogeochemical and microbiological conditions required for maximum crude oil biodegradation and microbial methanogenesis across a lithologically similar unit. Produced water, oil, gas, and microbial biomass samples were collected from wells completed in the Paleocene—Eocene Wilcox Group in central Louisiana. Initial results indicate potential relationships between the amount of crude oil biodegradation, indicators of microbial methanogenesis, and aqueous geochemistry. For example, produced waters with the lowest salinity had the highest crude oil biodegradation, and wells exhibiting the most microbial methane generation produce waters with hydrogeochemical conditions most fit for methanogenesis to occur. In sampled wells displaying similar hydrogeochemical conditions (e.g., similar temperatures), indicators of methanogenesis, such as δ13C dissolved inorganic carbon values, are more pronounced in wells displaying oils that are more biodegraded, suggesting methanogenesis may be accelerated with greater amounts of crude oil biodegradation.

  11. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

  12. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.

    PubMed

    Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos

    2017-01-01

    The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Improving the sludge conditioning potential of moringa seed

    NASA Astrophysics Data System (ADS)

    Ademiluyi, Joel O.; Eze, Romanus M.

    1990-01-01

    In the search for a cheaper material to effectively condition sludge, oil-free moringa seed was prepared and tested. A Soxhlet apparatus was used to extract the oil from moringa seed ( Moringa oleifera). The oil-free seed (marc) has been found to have higher conditioning potential than the ordinary moringa seed. However, the traditional ferric chloride is still a better sludge conditioner than moringa seed marc. For the digested domestic sludge used, optimum conditioning dosages were found to be 0.6, 0.80, and 1.10% of the total solids for ferric chloride, marc of the moringa seed, and ordinary moringa seed, respectively. Since little or no operational material is lost in the extraction process, the moringa seed marc is a promising conditioner in place of the ordinary seed.

  14. Successful performance of a refinery with Eureka unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Y.; Takeuchi, T.; Miyabuchi, Y.

    1981-03-01

    Since starting in February, 1976, 3,400,000 Kl of vacuum residue (13,000,000 Kl of crude oil equivalent) has been successfully processed in the Eureka unit of Fuji Oil refinery complex and more than 2,500,000 Kl of cracked oil and 1,000,000 tons of pitch have been produced. The operation rate has been 94 to 98% except for the annual shutdown period for inspection. The cracked oil is easily desulfurized to make naphta, diesel oil and a large amount of gas oil (low sulfur fuel oil, 0.1 wt % sulfur). As for the desulfurization of cracked oil, the increase in H/sub 2/ consumptionmore » and the decline of catalyst life are observed. However, the operation conditions do not differ much from those for straight run fractions. Processing both hydrotreated and untreated cracked heavy oil (CHO) with FCC unit has proved to be possible. In case of untreated CHO, however, it causes a slight increase in make up catalyst and coke yield. It is demonstrated that heavy crude oils, such as Bachaquero, can effectively be processed in this system. No additional pollution problems have occurred by introducing an Eureka unit to the refinery, although it is located in the district where the most stringent environmental regulations are urged.« less

  15. Torrefaction of oil palm frond: The effect of process condition to calorific value and proximate analysis

    NASA Astrophysics Data System (ADS)

    Susanty, W.; Helwani, Z.; Zulfansyah

    2018-04-01

    Oil palm frond can be used as alternative energy source by torrefaction process. Torrefaction is a treatment process of biomass into solid fuel by heating within temperature range of 200-300°C in an inert environment. This research aims to result solid fuel through torrefaction and to study the effect of process variable interaction. Torrefaction of oil palm frond was using fixed bed horizontal reactor with operation condition of temperature (225-275 °C), time (15-45 minutes) and nitrogen flow rate (50-150 ml/min). Responses resulted were calorific value and proximate (moisture, ash, volatile matter and fixed carbon). Analysis result was processed by using Design Expert v7.0.0. Result obtained for calorific value was 17.700-19.600 kJ/kg and for the proximate were moisture range of 3-4%; ash range of 1.5-4%; volatile matter of 45-55% and fixed carbon of 37-46%. The most affecting factor signficantly towards the responses was temperature then followed by time and nitrogen flow rate.

  16. Study of jojoba oil aging by FTIR.

    PubMed

    Le Dréau, Y; Dupuy, N; Gaydou, V; Joachim, J; Kister, J

    2009-05-29

    As the jojoba oil was used in cosmetic, pharmaceutical, dietetic food, animal feeding, lubrication, polishing and bio-diesel fields, it was important to study its aging at high temperature by oxidative process. In this work a FT-MIR methodology was developed for monitoring accelerate oxidative degradation of jojoba oils. Principal component analysis (PCA) was used to differentiate various samples according to their origin and obtaining process, and to differentiate oxidative conditions applied on oils. Two spectroscopic indices were calculated to report simply the oxidation phenomenon. Results were confirmed and deepened by multivariate curve resolution-alternative least square method (MCR-ALS). It allowed identifying chemical species produced or degraded during the thermal treatment according to a SIMPLISMA pretreatment.

  17. Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils.

    PubMed

    Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J

    2014-09-01

    The influence of olive paste preparation conditions on the standard quality parameters, as well as volatile profiles of extra virgin olive oils (EVOOs) from Morisca and Manzanilla de Sevilla cultivars produced in an emerging olive growing area in north-western Spain and processed in an oil mill plant were investigated. For this purpose, two malaxation temperatures (20/30 °C), and two malaxation times (30/90 min) selected in accordance with the customs of the area producers were tested. The volatile profile of the oils underwent a substantial change in terms of odorant series when different malaxation parameters were applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Spent coffee grounds as a versatile source of green energy.

    PubMed

    Kondamudi, Narasimharao; Mohapatra, Susanta K; Misra, Mano

    2008-12-24

    The production of energy from renewable and waste materials is an attractive alternative to the conventional agricultural feed stocks such as corn and soybean. This paper describes an approach to extract oil from spent coffee grounds and to further transesterify the processed oil to convert it into biodiesel. This process yields 10-15% oil depending on the coffee species (Arabica or Robusta). The biodiesel derived from the coffee grounds (100% conversion of oil to biodiesel) was found to be stable for more than 1 month under ambient conditions. It is projected that 340 million gallons of biodiesel can be produced from the waste coffee grounds around the world. The coffee grounds after oil extraction are ideal materials for garden fertilizer, feedstock for ethanol, and as fuel pellets.

  19. Potential Exploration, Development, and Production of Oil and Gas Resources, Vandenberg Air Force Base, California

    DTIC Science & Technology

    1987-12-01

    market its acreage for leasing purposes to other oil companies once the EIS is finalized and MRMP is adopted since the permitting process will be...procedures might warrant" means that if oil and gas market conditions were such that they exceeded the assumed "most likely" volumes of oil production...year, 1986. Appropriately, there is an antique market there now. McAdam, McAdam & Smith, and Smith Hardware all proceeded Perozzi on the site. Left is

  20. Bioremediation of oil-contaminated soils by composting

    NASA Astrophysics Data System (ADS)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  1. [Microwave thermal remediation of soil contaminated with crude oil enhanced by granular activated carbon].

    PubMed

    Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi

    2009-02-15

    The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.

  2. Does phosphate enhance the natural attenuation of crude oil in groundwater under defined redox conditions?

    PubMed

    Ponsin, Violaine; Mouloubou, Olsen Raïnness; Prudent, Pascale; Höhener, Patrick

    2014-11-15

    After a crude oil spill caused by a broken pipeline in 2009 to a gravel aquifer in southern France, degradation processes under various redox conditions progressively established, but at rates that predict a long life-time of the source under natural attenuation after partial source removal. In this study, we aimed at identifying the rate-limiting factors for each redox condition, with special emphasis on phosphate as limiting nutrient. The study was conducted in laboratory microcosms assembled with material collected on site: sediments, water from monitoring wells, oil and microbial sludge. Redox conditions were promoted by adding electron acceptors (either oxygen, nitrate, limonite (FeO(OH)), cryptomelane (K(Mn(4+),Mn(2+))8O16), or sulfate). For each condition, the role of phosphate was studied by repeated additions for up to 290days. The results showed a very strong stimulation of aerobic and denitrifying rates of oil degradation by phosphate, provided that oxygen and nitrate were repeatedly supplied. Phosphate caused also a marked stimulation of methanogenic degradation, and a relatively small stimulation of metal reduction. These anaerobic processes started only after marked lag phases, and phosphate shortened the lag phase for methanogenic degradation. Degradation of aromatic and aliphatic hydrocarbons with less than 8 carbons, including benzene, was confirmed even under unstimulated conditions. It is concluded that degradation rates at the site are limited by both, availability of electron acceptors and availability of phosphate needed for promoting microbial growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High-oil-load encapsulation of medium-chain triglycerides and D-limonene mixture in modified starch by spray drying.

    PubMed

    Paramita, Vita; Furuta, Takeshi; Yoshii, Hidefumi

    2012-02-01

    Oil mixtures of medium-chain triglycerides (MCT) and D-limonene in mixing ratios from 10 to 100 wt% were encapsulated in modified starch (wall material) by spray drying to produce oil-rich powders. The oil load (mass ratio of oil mixture to wall material) of the infeed emulsion markedly influenced the properties of the infeed liquid and the characteristics of the resulting powder. The viscosity of the infeed liquid and the particle size of the powder exponentially decreased with increasing oil load, while the emulsion droplet size in the infeed liquid increased. In addition, retention of D-limonene during spray drying also decreased markedly with increasing oil load. Irrespective of the different oil loads and concentrations of the wall material, D-limonene retention was well correlated with the emulsion droplet diameter of the infeed liquid. The encapsulation efficiency of the oil mixture exhibited a maximum value (almost 100%) at an oil load between 0.5 and 1.0, before decreasing at higher oil loads. At an oil load of 2.0, the encapsulation efficiency of D-limonene was reduced to almost zero, while around 40% of the initial MCT was encapsulated in the powder. The increase in oil load also led to increased amounts of surface oil of MCT and D-limonene in the resulting powder due to the increasing emulsion droplet diameter of the infeed liquids. This study proposes the microencapsulation of medium-chain triglycerides under high-oil-load conditions by spray drying. The powders prepared by this process provide significant benefits in terms of rapid energy conversion after consumption without accumulation in the body. Important quality factors of the powder products such as the encapsulation efficiency and the amount of surface oil were examined to understand the optimum process conditions for spray drying. © 2012 Institute of Food Technologists®

  4. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  5. Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation.

    PubMed

    Nourbehesht, Newsha; Shekarchizadeh, Hajar; Soltanizadeh, Nafiseh

    2018-04-01

    Inulin, rice bran oil and rosemary essential oil were used to produce high quality emulsion filled gel (EFG) using ultrasonic radiation. Response surface methodology was used to investigate the effects of oil content, inulin content and power of ultrasound on the stability and consistency of prepared EFG. The process conditions were optimized by conducting experiments at five different levels. Second order polynomial response surface equations were developed indicating the effect of variables on EFG stability and consistency. The oil content of 18%; inulin content of 44.6%; and power of ultrasound of 256 W were found to be the optimum conditions to achieve the best EFG stability and consistency. Microstructure and rheological properties of prepared EFG were investigated. Oil oxidation as a result of using ultrasonic radiation was also investigated. The increase of oxidation products and the decrease of total phenolic compounds as well as radical scavenging activity of antioxidant compounds showed the damaging effect of ultrasound on the oil quality of EFG. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Converting solid wastes into liquid fuel using a novel methanolysis process.

    PubMed

    Xiao, Ye; He, Peng; Cheng, Wei; Liu, Jacqueline; Shan, Wenpo; Song, Hua

    2016-03-01

    Biomass fast pyrolysis followed by hydrodeoxygenation upgrading is the most popular way to produce upgraded bio-oil from biomass. This process requires large quantities of expensive hydrogen and operates under high pressure condition (70-140 atm). Therefore, a novel methanolysis (i.e., biomass pyrolysis under methane environment) process is developed in this study, which is effective in upgraded bio-oil formation at atmospheric pressure and at about 400-600°C. Instead of using pure methane, simulated biogas (60% CH4+40% CO2) was used to test the feasibility of this novel methanolysis process for the conversion of different solid wastes. The bio-oil obtained from canola straw is slightly less than that from sawdust in term of quantity, but the oil quality from canola straw is better in terms of lower acidity, lower Bromine Number, higher H/C atomic ratio and lower O/C atomic ratio. The municipal solid waste and newspaper can also obtain relatively high oil yields, but the oil qualities of them are both lower than those from sawdust and canola straw. Compared with catalysts of 5%Zn/ZSM-5 and 1%Ag/ZSM-5, the 5%Zn-1%Ag/ZSM-5 catalyst performed much better in terms of upgraded bio-oil yield as well as oil quality. During the methanolysis process, the metal silver may be used to reduce the total acid number of the oil while the metal zinc might act to decrease the bromine number of the oil. The highly dispersed Zn and Ag species on/in the catalyst benefit the achievement of better upgrading performance and make it be a very promising catalyst for bio-oil upgrading by biogas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  8. Transesterification process to manufacture ethyl ester of rape oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korus, R.A.; Hoffman, D.S.; Bam, N.

    1993-12-31

    A process for the production of the ethyl ester of winter rape [EEWR] for use as a biodiesel fuel has been studied. The essential part of the process is the transesterification of rape oil with ethanol, in the presence of a catalyst, to yield the ethyl ester of rape oil as a product and glycerin as a by-product. Experiments have been performed to determine the optimum conditions for the preparation of EEWR. The process variables were: (1) temperature, (2) catalyst, (3) rate of agitation, (4) water content of the alcohol used, and (5) the amount of excess alcohol used. Themore » optimum conditions were: (1) room temperature, (2) 0.5% sodium methoxide or 1% potassium hydroxide catalyst by weight of rapeseed oil, (3) extremely vigorous agitation with some splashing during the initial phase of the reaction and agitation was not necessary after the reaction mixture became homogeneous, (4) absolute ethanol was necessary for high conversion, and (5) 50% excess ethanol with NaOCH{sub 3} or 100% excess with KOH gave a maximum conversion. Viscosity, cloud point and pour point of the EEWR were measured. A preliminary break-even cost for the commercial production of EEWR was found to be $0.55/liter [$2.08/US gallon].« less

  9. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    NASA Astrophysics Data System (ADS)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  10. Regularities of changes in fluid composition and properties in Vankor field pools: from light to heavy oil

    NASA Astrophysics Data System (ADS)

    Goncharov, I. V.; Oblasov, N. V.

    2015-02-01

    Oil in layers Nkh 3-4, Nkh 1, Sd 9, Yak 3-7 and vYak 2-4 of the Vankor field occurs at the depth of -2,767 to -1,357 meters at strongly different temperatures: from 62 to 26 °C. Such temperature conditions contribute to oil biodegradation processes in the pool. Therefore, oils in different pools significantly differ from each other in terms of composition and properties depending on the intensity of biodegradation. At the same time, pools might embrace both oils that have practically been not exposed to biodegradation processes and significantly biodegraded oils. The most seriously altered oils are found in vYak 2-4 layer pools. They are the heaviest and the most viscous oils among the samples under study. Many typical oil components (alkanes, alkylbenzenes, naphthalenes, phenanthrenes, dibenzothiophenes) are absent in their composition. Besides, the initial distribution of hopanes in the composition of biomarkers is altered. Apart from the molecular composition of degassed oil samples, the work also studies the effect of biodegradation on the properties and the component and isotopic composition of oils, gases and formation fluid samples.

  11. Catalytic biomass pyrolysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  12. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Impact of oil on bacterial community structure in bioturbated sediments.

    PubMed

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.

  14. Electrocatalytic hydrogenation and hydrodeoxygenation of oxygenated and unsaturated organic compounds

    DOEpatents

    Jackson, James E.; Lam, Chun Ho; Saffron, Christopher M.; Miller, Dennis J.

    2018-04-24

    A process and related electrode composition are disclosed for the electrocatalytic hydrogenation and/or hydrodeoxygenation of organic substrates such as biomass-derived bio-oil components by the production of hydrogen atoms on a catalyst surface followed by the reaction of the hydrogen atoms with the organic reactants. Biomass fast pyrolysis-derived bio-oil is a liquid mixture containing hundreds of organic compounds with chemical functionalities that are corrosive to container materials and are prone to polymerization. A high surface area skeletal metal catalyst material such as Raney Nickel can be used as the cathode. Electrocatalytic hydrogenation and/or hydrodeoxygenation convert the organic substrates under mild conditions to reduce coke formation and catalyst deactivation. The process converts oxygen-containing functionalities and unsaturated bonds into chemically reduced forms with an increased hydrogen content. The process is operated at mild conditions, which enables it to be a good means for stabilizing bio-oil to a form that can be stored and transported using metal containers and pipes.

  15. Experimental and numerical investigation of the Fast-SAGD process

    NASA Astrophysics Data System (ADS)

    Shin, Hyundon

    The SAGD process has been tested in the field, and is now in a commercial stage in Western Canadian oil sands areas. The Fast-SAGD method can partly solve the drilling difficulty and reduce costs in a SAGD operation requiring paired parallel wells one above the other. This method also enhances the thermal efficiency in the reservoir. In this research, the reservoir parameters and operating conditions for the SAGD and Fast-SAGD processes are investigated by numerical simulation in the three Alberta oil sands areas. Scaled physical model experiments, which are operated by an automated process control system, are conducted under high temperature and high pressure conditions. The results of the study indicate that the shallow Athabasca-type reservoir, which is thick with high permeability (high kxh), is a good candidate for SAGD application, whereas Cold Lake- and Peace River-type reservoirs, which are thin with low permeability, are not as good candidates for conventional SAGD implementation. The simulation results indicate improved energy efficiency and productivity in most cases for the Fast-SAGD process; in those cases, the project economics were enhanced compared to the SAGD process. Both Cold Lake- and Peace River-type reservoirs are good candidates for a Fast-SAGD application rather than a conventional SAGD application. This new process demonstrates improved efficiency and lower costs for extracting heavy oil from these important reservoirs. A new economic indicator, called simple thermal efficiency parameter (STEP), was developed and validated to evaluate the performance of a SAGD project. STEP is based on cumulative steam-oil ratio (CSOR), calendar day oil rate (CDOR) and recovery factor (RF) for the time prior to the steam-oil ratio (SOR) attaining 4. STEP can be used as a financial metric quantitatively as well as qualitatively for this type of thermal project. An automated process control system was set-up and validated, and has the capability of controlling and handling steam injection processes like the steam-assisted gravity drainage process. The results of these preliminary experiments showed the overall cumulative oil production to be larger in the Fast-SAGD case, but end-point CSOR to be lower in the SAGD case. History matching results indicated that the steam quality was as low as 0.3 in the SAGD experiments, and even lower in the Fast-SAGD experiments after starting the CSS.

  16. Optimization study of Chromalaena odorata essential oil extracted using solventless extraction technique

    NASA Astrophysics Data System (ADS)

    Nasshorudin, Dalila; Ahmad, Muhammad Syarhabil; Mamat, Awang Soh; Rosli, Suraya

    2015-05-01

    Solventless extraction process of Chromalaena odorata using reduced pressure and temperature has been investigated. The percentage yield of essential oil produce was calculated for every experiment with different experimental condition. The effect of different parameters, such as temperature and extraction time on the yield was investigated using the Response Surface Methodology (RSM) through Central Composite Design (CCD). The temperature and extraction time were found to have significant effect on the yield of extract. A final essential oil yield was 0.095% could be extracted under the following optimized conditions; a temperature of 80 °C and a time of 8 hours.

  17. Novel technologies for monitoring the in-line quality of virgin olive oil during manufacturing and storage.

    PubMed

    Beltrán Ortega, Julio; Martínez Gila, Diego M; Aguilera Puerto, Daniel; Gámez García, Javier; Gómez Ortega, Juan

    2016-11-01

    The quality of virgin olive oil is related to the agronomic conditions of the olive fruits and the process variables of the production process. Nowadays, food markets demand better products in terms of safety, health and organoleptic properties with competitive prices. Innovative techniques for process control, inspection and classification have been developed in order to to achieve these requirements. This paper presents a review of the most significant sensing technologies which are increasingly used in the olive oil industry to supervise and control the virgin olive oil production process. Throughout the present work, the main research studies in the literature that employ non-invasive technologies such as infrared spectroscopy, computer vision, machine olfaction technology, electronic tongues and dielectric spectroscopy are analysed and their main results and conclusions are presented. These technologies are used on olive fruit, olive slurry and olive oil to determine parameters such as acidity, peroxide indexes, ripening indexes, organoleptic properties and minor components, among others. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Surfactant-aided recovery/in situ bioremediation for oil-contaminated sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducreaux, J.; Baviere, M.; Seabra, P.

    1995-12-31

    Bioremediation has been the most commonly used method way for in situ cleaning of soils contaminated with low-volatility petroleum products such as diesel oil. However, whatever the process (bioventing, bioleaching, etc.), it is a time-consuming technique that may be efficiency limited by both accessibility and too high concentrations of contaminants. A currently developed process aims at quickly recovering part of the residual oil in the vadose and capillary zones by surfactant flushing, then activating in situ biodegradation of the remaining oil in the presence of the same or other surfactants. The process has been tested in laboratory columns and inmore » an experimental pool, located at the Institut Franco-Allemand de Recherche sur l`Environnement (IFARE) in Strasbourg, France. Laboratory column studies were carried out to fit physico-chemical and hydraulic parameters of the process to the field conditions. The possibility of recovering more than 80% of the oil in the flushing step was shown. For the biodegradation step, forced aeration as a mode of oxygen supply, coupled with nutrient injection aided by surfactants, was tested.« less

  19. Ultrasonic Removal of Mucilage for Pressurized Liquid Extraction of Omega-3 Rich Oil from Chia Seeds (Salvia hispanica L.).

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2017-03-29

    Chia (Salvia hispanica L.) seeds contain an important amount of edible oil rich in omega-3 fatty acids. Fast and alternative extraction techniques based on polar solvents, such as ethanol or water, have become relevant for oil extraction in recent years. However, chia seeds also contain a large amount of soluble fiber or mucilage, which makes difficult an oil extraction process with polar solvents. For that reason, the aim of this study was to develop a gentle extraction method for mucilage in order to extract chia oil with polar solvents using pressurized liquids and compare with organic solvent extraction. The proposed mucilage extraction method, using an ultrasonic probe and only water, was optimized at mild conditions (50 °C and sonication 3 min) to guarantee the omega-3 oil quality. Chia oil extraction was performed using pressurized liquid extraction (PLE) with different solvents and their mixtures at five different extraction temperatures (60, 90, 120, 150, and 200 °C). Optimal PLE conditions were achieved with ethyl acetate or hexane at 90 °C in only 10 min of static extraction time (chia oil yield up to 30.93%). In addition, chia oils extracted with nonpolar and polar solvents by PLE were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid composition at different extraction conditions. Chia oil contained ∼65% of α-linolenic acid regardless of mucilage extraction method, solvent, or temperature used. Furthermore, tocopherols and tocotrienols were also analyzed by HPLC in the extracted chia oils. The mucilage removal allowed the subsequent extraction of the chia oil with polar or nonpolar solvents by PLE producing chia oil with the same fatty acid and tocopherol composition as traditional extraction.

  20. Inhaled Lavandula angustifolia essential oil inhibits consolidation of contextual- but not tone-fear conditioning in rats.

    PubMed

    Coelho, Laura Segismundo; Correa-Netto, Nelson Francisco; Masukawa, Marcia Yuriko; Lima, Ariadiny Caetano; Maluf, Samia; Linardi, Alessandra; Santos-Junior, Jair Guilherme

    2018-04-06

    Although the current treatment for anxiety is effective, it promotes a number of adverse reactions and medical interactions. Inhaled essential oils have a prominent action on the central nervous system, with minimal systemic effects, primarily because of reduced systemic bioavailability. The effects of drugs on the consolidation of fear conditioning reflects its clinical efficacy in preventing a vicious cycle of anticipatory anxiety leading to fearful cognition and anxiety symptoms. In this study, we investigated the effects of inhaled Lavandula angustifolia essential oil on the consolidation of aversive memories and its influence on c-Fos expression. Adult male Wistar rats were subjected to a fear conditioning protocol. Immediately after the training session, the rats were exposed to vaporized water or essential oil (1%, 2.5% and 5% solutions) for 4h. The next day, the rats underwent contextual- or tone-fear tests and 90min after the test they were euthanized and their brains processed for c-Fos immunohistochemistry. In the contextual-fear test, essential oil at 2.5% and 5% (but not 1%) reduced the freezing response and its respective c-Fos expression in the ventral hippocampus and amygdala. In the tone-fear test, essential oil did not reduce the freezing response during tone presentation. However, rats that inhaled essential oil at 2.5% and 5% (but not 1%) showed decreased freezing in the three minutes after tone presentation, as well as reduced c-Fos expression in the prefrontal cortex and amygdala. These results show that the inhalation of L. angustifolia essential oil inhibited the consolidation of contextual- but not tone-fear conditioning and had an anxiolytic effect in a conditioned animal model of anxiety. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Optimization of diacylglycerol production by glycerolysis of fish oil catalyzed by Lipozyme TL IM with Tween 65.

    PubMed

    Monte Blanco, S F M; Santos, J S; Feltes, M M C; Dors, G; Licodiedoff, S; Lerin, L A; de Oliveira, D; Ninow, J L; Furigo, A

    2015-12-01

    The diacylglycerols (DAG) are emulsifiers with high added value used as functional additives in food, medicine, and cosmetic industries. In glycerolysis of oils for the production of DAG, the immiscibility between the substrates (glycerol and oil phases) has to be overcome, for example, by the addition of a food grade surfactant like Tween 65. The main objective of this work was to optimize the process conditions for obtaining diacylglycerols rich in the omega-3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, through the enzymatic glycerolysis of fish oil, in systems with Tween 65 and without this surfactant, using Lipozyme TL(®) IM as biocatalyst. The experiments were performed according to predetermined conditions varying the temperature, enzyme load, the oil to glycerol molar ratio and, when added, the surfactant load. After 6 h of reaction, it was possible to produce up to 20.76 and 13.76% of diacylglycerols from fish oil in the reactions with and without Tween 65, respectively.

  2. Treatment of crude oil-contaminated water with chemically modified natural fiber

    NASA Astrophysics Data System (ADS)

    Onwuka, Jude Chinedu; Agbaji, Edith Bolanle; Ajibola, Victor Olatunji; Okibe, Friday Godwin

    2018-06-01

    The dependence of Nigerian Government on foreign technology for oil spill cleanup in its water bodies does not add local content value in the development of the Nation's economy. Acetylation of natural cellulose gives a material with high sorption capacity for oil in water. This research investigates crude oil sorption from water using acetylated and unacetylated lignocellulose. Oil palm empty fruit bunch (OPEFB) and cocoa pod (CP) were acetylated under mild conditions. The acetylated (modified) and unacetylated (unmodified) sorbents were used to sorb oil from water, and their sorption capacities and mechanisms were compared. Paired t test showed there was significant difference in the sorption capacities of modified and unmodified sorbents. Sorption of oil from water was found to be time and concentration dependent. Equilibrium studies showed that CP has higher sorption capacity than OPEFB and acetylation enhanced the crude sorption capacities of the sorbents. Crude oil sorption from water is a monolayer process that might have progressed from multilayer processes. Kinetic studies showed that sorption of crude oil by the sorbents was diffusion-controlled with the aid of physisorption and chemisorption mechanisms. Fourier transform infrared and scanning electron microscope analyses showed clear evidence of successful acetylation and oil sorption.

  3. Extent and Degree of Shoreline Oiling: Deepwater Horizon Oil Spill, Gulf of Mexico, USA

    PubMed Central

    Michel, Jacqueline; Owens, Edward H.; Zengel, Scott; Graham, Andrew; Nixon, Zachary; Allard, Teresa; Holton, William; Reimer, P. Doug; Lamarche, Alain; White, Mark; Rutherford, Nicolle; Childs, Carl; Mauseth, Gary; Challenger, Greg; Taylor, Elliott

    2013-01-01

    The oil from the 2010 Deepwater Horizon spill in the Gulf of Mexico was documented by shoreline assessment teams as stranding on 1,773 km of shoreline. Beaches comprised 50.8%, marshes 44.9%, and other shoreline types 4.3% of the oiled shoreline. Shoreline cleanup activities were authorized on 660 km, or 73.3% of oiled beaches and up to 71 km, or 8.9% of oiled marshes and associated habitats. One year after the spill began, oil remained on 847 km; two years later, oil remained on 687 km, though at much lesser degrees of oiling. For example, shorelines characterized as heavily oiled went from a maximum of 360 km, to 22.4 km one year later, and to 6.4 km two years later. Shoreline cleanup has been conducted to meet habitat-specific cleanup endpoints and will continue until all oiled shoreline segments meet endpoints. The entire shoreline cleanup program has been managed under the Shoreline Cleanup Assessment Technique (SCAT) Program, which is a systematic, objective, and inclusive process to collect data on shoreline oiling conditions and support decision making on appropriate cleanup methods and endpoints. It was a particularly valuable and effective process during such a complex spill. PMID:23776444

  4. Do Shale Pore Throats Have a Threshold Diameter for Oil Storage?

    PubMed Central

    Zou, Caineng; Jin, Xu; Zhu, Rukai; Gong, Guangming; Sun, Liang; Dai, Jinxing; Meng, Depeng; Wang, Xiaoqi; Li, Jianming; Wu, Songtao; Liu, Xiaodan; Wu, Juntao; Jiang, Lei

    2015-01-01

    In this work, a nanoporous template with a controllable channel diameter was used to simulate the oil storage ability of shale pore throats. On the basis of the wetting behaviours at the nanoscale solid-liquid interfaces, the seepage of oil in nano-channels of different diameters was examined to accurately and systematically determine the effect of the pore diameter on the oil storage capacity. The results indicated that the lower threshold for oil storage was a pore throat of 20 nm, under certain conditions. This proposed pore size threshold provides novel, evidence-based criteria for estimating the geological reserves, recoverable reserves and economically recoverable reserves of shale oil. This new understanding of shale oil processes could revolutionize the related industries. PMID:26314637

  5. Do Shale Pore Throats Have a Threshold Diameter for Oil Storage?

    PubMed

    Zou, Caineng; Jin, Xu; Zhu, Rukai; Gong, Guangming; Sun, Liang; Dai, Jinxing; Meng, Depeng; Wang, Xiaoqi; Li, Jianming; Wu, Songtao; Liu, Xiaodan; Wu, Juntao; Jiang, Lei

    2015-08-28

    In this work, a nanoporous template with a controllable channel diameter was used to simulate the oil storage ability of shale pore throats. On the basis of the wetting behaviours at the nanoscale solid-liquid interfaces, the seepage of oil in nano-channels of different diameters was examined to accurately and systematically determine the effect of the pore diameter on the oil storage capacity. The results indicated that the lower threshold for oil storage was a pore throat of 20 nm, under certain conditions. This proposed pore size threshold provides novel, evidence-based criteria for estimating the geological reserves, recoverable reserves and economically recoverable reserves of shale oil. This new understanding of shale oil processes could revolutionize the related industries.

  6. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    PubMed

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.

  7. Transformation of soil and vegetable conditions at oil production territories

    NASA Astrophysics Data System (ADS)

    Gatina, Evgeniia

    2017-04-01

    On the territory of modern oil production soil, vegetation, ecosystem conditions of the environment are significantly transformed. Researches have been conducted on the oil production territories located in a boreal coniferous forest natural zone from 2005 to 2015. Standard geobotanical and soil methods are used. Mechanical destruction of a plant cover, change of the water conditions, intake of oil products and salty waters in ecosystems, pollution of the atmosphere are considered as the major technology-related factors defining transformation of land ecosystems at operation of the oil field. Under the mechanical destruction of a plant cover the pioneer plant communities are formed. These communities are characterized by most reduced specific wealth with prevalence of types of meadow groups of plants and presence of types of wetland groups of plants. The biodiversity of biocenosis which are affected linear infrastructure facilities of oil production territories and change of the water conditions, decreases. It is observed decrease in species wealth, simplification of structure of communities. Under the salting of soils in ecosystems there is a decrease species diversity of communities to prevalence nitrophilous and meadow plant species. At the increased content of organic substances in the soils that is a consequence of intake of oil products, is characteristic increase in specific richness of communities, introduction of types of wetland and oligotrophic groups of plants in forest communities. Influence depends on distance to an influence source. In process of removal from a source of atmospheric pollution in forest communities there is a decrease in species diversity and complication of structure of community. It is caused by introduction of types of meadow groups of plants in ecotone sites of the forest communities located near a source of influence and restoration of structural features of forest communities in process of removal from an influence source. Operation of oil fields leads to introduction of the synanthropes relating to meadow and wetland groups of plants. Transformation depends on loading time. At the initial stage of operation of the oil field the synantropization of a plant cover leads to increase in species diversity. At long technogenic loading decrease in values of indexes of a biodiversity due to oppression of native species of plants is observed. Technology-related influence of oil fields is a regional factor of change of specific structure of plant communities. Modern oil production has to be followed by purposeful formation of the operated natural and technology-related ecosystems with adjustable parameters and higher stability in relation to a complex of technogenic oil-field influence.

  8. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    DOE PAGES

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2016-08-23

    Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values ofmore » 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.« less

  9. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values ofmore » 2.6, 2.1 and 2.5 respectively. Finally, these results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.« less

  10. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    PubMed Central

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013

  11. The physiological effects of oil, dispersant and dispersed oil on the bay mussel, Mytilus trossulus, in Arctic/Subarctic conditions.

    PubMed

    Counihan, Katrina L

    2018-06-01

    Increasing oil development around Alaska and other Arctic regions elevates the risk for another oil spill. Dispersants are used to mitigate the impact of an oil spill by accelerating natural degradation processes, but the reduced hydrophobicity of dispersed oil may increase its bioavailability to marine organisms. There is limited research on the effect of dispersed oil on cold water species and ecosystems. Therefore, spiked exposure tests were conducted with bay mussels (Mytilus trossulus) in seawater with non-dispersed oil, Corexit 9500 and oil dispersed with different concentrations of Corexit 9500. After three weeks of exposure, acute and chronic physiological impacts were determined. The majority of physiological responses occurred during the first seven days of exposure, with mussels exhibiting significant cytochrome P450 activity, superoxide dismutase activity and heat shock protein levels. Mussels exposed to non-dispersed oil also experienced immune suppression, reduced transcription and higher levels of mortality. After 21 days, mussels in all treatments exhibited evidence of genetic damage, tissue loss and a continued stress response. Bay mussels are useful as indicators of ecosystem health and recovery, and this study was an important step in understanding how non-dispersed oil, dispersant and dispersed oil affect the physiology of this sentinel species in Arctic/subarctic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    USDA-ARS?s Scientific Manuscript database

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  13. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2013-01-15

    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.

  15. Study on the spectrophotometric detection of free fatty acids in palm oil utilizing enzymatic reactions.

    PubMed

    Azeman, Nur Hidayah; Yusof, Nor Azah; Abdullah, Jaafar; Yunus, Robiah; Hamidon, Mohd Nizar; Hajian, Reza

    2015-07-07

    In this paper, a comprehensive study has been made on the detection of free fatty acids (FFAs) in palm oil via an optical technique based on enzymatic aminolysis reactions. FFAs in crude palm oil (CPO) were converted into fatty hydroxamic acids (FHAs) in a biphasic lipid/aqueous medium in the presence of immobilized lipase. The colored compound formed after complexation between FHA and vanadium (V) ion solution was proportional to the FFA content in the CPO samples and was analyzed using a spectrophotometric method. In order to develop a rapid detection system, the parameters involved in the aminolysis process were studied. The utilization of immobilized lipase as catalyst during the aminolysis process offers simplicity in the product isolation and the possibility of conducting the process under extreme reaction conditions. A good agreement was found between the developed method using immobilized Thermomyces lanuginose lipase as catalyst for the aminolysis process and the Malaysian Palm Oil Board (MPOB) standard titration method (R2 = 0.9453).

  16. Effects of catalysts on liquefaction of Agaricus versicolor (L.)

    NASA Astrophysics Data System (ADS)

    Durak, Halil

    2016-04-01

    Supercritical liquefaction process is used for producing energy from biomass. The common reaction conditions for supercritical liquefaction process are the 240-380 °C temperature range and 5-20 Mpa pressure values range. Agaricus versicolor (L.) was liquefied by acetone in an autoclave (75 mL) under high pressure with (aluminium oxide and calcium hydroxide) and without catalyst at 290 °C for producing bio-oil. The products of liquefaction (bio-oil) were analysed and characterized using various methods including elemental analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. GC-MS identified 27 different compounds in the bio-oils obtained at 290 °C.

  17. The use of surface layer with boron in friction pairs lubricated by engine oils

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.

  18. Mathematical Modeling of Multiphase Filtration in Porous Media with a Chemically Active Skeleton

    NASA Astrophysics Data System (ADS)

    Khramchenkov, M. G.; Khramchenkov, É. M.

    2018-01-01

    The authors propose a mathematical model of two-phase filtration that occurs under the conditions of dissolution of a porous medium. The model can be used for joint description of complex chemical-hydrogeomechanical processes that are of frequent occurrence in the oil-and-gas producing and nature conservation practice. As an example, consideration is given to the acidizing of the bottom zone of the injection well of an oil reservoir. Enclosing rocks are represented by carbonates. The phases of the process are an aqueous solution of hydrochloric acid and oil. A software product for computational experiments is developed. For the numerical experiments, use is made of the data on the wells of an actual oil field. Good agreement is obtained between the field data and the calculated data. Numerical experiments with different configurations of the permeability of an oil stratum are conducted.

  19. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOPmore » and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.« less

  20. The effect of a herbal paste and oil extract on the lipid content of canine hair fibres.

    PubMed

    Momota, Yutaka; Shimada, Kenichiro; Kadoya, Chihiro; Gin, Azusa; Kobayashi, Jun; Nakamura, Yuka; Matsubara, Takako; Sako, Toshinori

    2017-08-01

    Application of herbal paste and oil to a dog's coat and body before rinsing (often combining with shampooing) is a cosmetic therapy available in Japan. It is highly appreciated by users, who claim that the treatment makes the coat shinier, improves volume and eliminates tangles. However, there has been no scientific evaluation of such treatments. Improvement of hair condition is derived from oils such as sebum and conditioning oils because chemicals are not used. Therefore, we examined nonpolar lipids (the primary lipids in dog hair) and the botanical oils used in this therapy. Hair samples were obtained from six beagle dogs. Groups were based on different combinations of the following processes: rinsing, shampooing, herbal therapy and herbal therapy with oil extract. Analysis of lipids was performed by high performance thin layer chromatography. The processes of shampooing and herbal therapy were associated with an equivalent reduction in cholesterol ester and triglyceride (TG). However, hair treated by herbal therapy combined with oil extract had an almost three-fold higher TG content, even after shampooing. This study demonstrated that the herbal therapy was able to coat hair samples with TG that was not removed with rinsing. Further investigation is required to evaluate the possible benefits of the application of botanical products containing lipids, such as TG, on hair coat quality in dogs. © 2017 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  1. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  2. Optimizing oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide.

    PubMed

    Salea, Rinaldi; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2014-09-01

    Oil and xanthorrhizol extraction from Curcuma xanthorrhiza Roxb. rhizome by supercritical carbon dioxide was optimized using Taguchi method. The factors considered were pressure, temperature, carbon dioxide flowrate and time at levels ranging between 10-25 MPa, 35-60 °C, 10-25 g/min and 60-240 min respectively. The highest oil yield (8.0 %) was achieved at factor combination of 15 MPa, 50 °C, 20 g/min and 180 min whereas the highest xanthorrhizol content (128.3 mg/g oil) in Curcuma xanthorrhiza oil was achieved at a factor combination of 25 MPa, 50 °C, 15 g/min and 60 min. Soxhlet extraction with n-hexane and percolation with ethanol gave oil yield of 5.88 %, 11.73 % and xanthorrhizol content of 42.6 mg/g oil, 75.5 mg/g oil, respectively. The experimental oil yield and xanthorrhizol content at optimum conditions agreed favourably with values predicted by computational process. The xanthorrizol content extracted using supercritical carbon dioxide was higher than extracted using Soxhlet extraction and percolation process.

  3. Pretreatment of empty fruit bunch from oil palm for fuel ethanol production and proposed biorefinery process.

    PubMed

    Tan, Liping; Yu, Yongcheng; Li, Xuezhi; Zhao, Jian; Qu, Yinbo; Choo, Yuen May; Loh, Soh Kheang

    2013-05-01

    This study evaluates the effects of some pretreatment processes to improve the enzymatic hydrolysis of oil palm empty fruit bunch (EFB) for ethanol production. The experimental results show that the bisulfite pretreatment was practical for EFB pretreatment. Moreover, the optimum pretreatment conditions of the bisulfite pretreatment (180 °C, 30 min, 8% NaHSO3, 1% H2SO4) were identified. In the experiments, a biorefinery process of EFB was proposed to produce ethanol, xylose products, and lignosulfonates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: from laboratory studies to large-scale field experiments.

    PubMed

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-08-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool to monitor the ignitability of oil spills. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Development of provisions for oil contaminated soil neutralizing in the conditions of Siberia and the Arctic

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Kholkin, E. G.

    2017-08-01

    Siberia and the Arctic zone of the Russian Federation occupy a large area of the country and they differ from other regions in special climatic conditions, in particular, a long period of freezing temperatures and relatively poor infrastructure. The main problem of neutralizing soils contaminated with oil products in conditions of negative ambient temperature is that the contaminated soil is in a frozen state, and it prevents the normal course of neutralization process, so additional energy is required for preparing the soil. There is proposed a technology adapted to the conditions of Siberia and the Arctic for the operational elimination of emergency situations consequences accompanied with oil spills. The technology for neutralizing soils contaminated with petroleum products is based on the encapsulation of a pollutant (reagent capsulation technology) using an alkaline calcium-based reagent. Powdered building quicklime is used as a reagent, and it is a product of roasting carbonate rocks or a mixture of this product with mineral additives (calcium oxide). The encapsulated material obtained as a result of neutralizing soils contaminated with petroleum products is resistant to natural and man-made factors such as moisture, temperature fluctuations, acid rain and high pressure. Energy use from the chemical detoxification exothermic process of soils contaminated with petroleum products in combination with the forced supply of carbon dioxide to the neutralization zone during the formation of a shell from calcium carbonate on the surface of the pollutant makes it possible to neutralize soils contaminated with oil products in the extreme climatic conditions of the Arctic using reagent Encapsulation. The principle of equipment operation that allows neutralizing soils contaminated with petroleum products in the natural and climatic conditions of the Arctic using reagent capsulation technology has been described. The results of experimental studies have been presented that allow to determine the optimum quantity of the reagent necessary for effective neutralization completion of snow contaminated with engine oil and soils contaminated with petroleum products depending on the degree of pollution and the type of pollutant. The conducted studies confirm that the technology of reagent capsulation is suitable for neutralizing soils and snow contaminated with gasoline, diesel fuel and engine oil.

  6. Breakthrough Adsorption Study of Crude Oil Removal Using Buffing Dust

    NASA Astrophysics Data System (ADS)

    Setyaningsih, L. W. N.; Yuliansyah, A. T.; Prasetyo, A.; Arimanintan, S. K.; Putri, D. R.

    2018-05-01

    The utilization of leather industry solid waste as adsorbent to separate oil from water emulsions of surfactant flooding process is a solution that is relatively inexpensive. This study was conducted aiming to obtain a mathematical model that is appropriate for the adsorption process of crude oil by buffing dust in emulsion phase with a continuous adsorption method. Variations in the column adsorption experiments were carried out, such as: flow rate of feed of water-crude oil-surfactant, the concentration of crude oil in the feed, and mass of adsorbent used. Data were evaluated using three models: Adams Bohart, Thomas and Yan. Best results are obtained on the following conditions, the feed flow rate of 60 mL/minute, the crude oil concentration in feed is 1.5% volume and the mass of adsorbent used was 10 g. The values of kinetic constant and adsorption capacity obtained from Yan Model was 21.7774 mL/mg/minute and 220.9581 mg/g with the relative error obtained is 5.4424%.

  7. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    PubMed Central

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  8. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.

    PubMed

    Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-04-29

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency.

  9. Detection and Monitoring of Oil Spills Using Moderate/High-Resolution Remote Sensing Images.

    PubMed

    Li, Ying; Cui, Can; Liu, Zexi; Liu, Bingxin; Xu, Jin; Zhu, Xueyuan; Hou, Yongchao

    2017-07-01

    Current marine oil spill detection and monitoring methods using high-resolution remote sensing imagery are quite limited. This study presented a new bottom-up and top-down visual saliency model. We used Landsat 8, GF-1, MAMS, HJ-1 oil spill imagery as dataset. A simplified, graph-based visual saliency model was used to extract bottom-up saliency. It could identify the regions with high visual saliency object in the ocean. A spectral similarity match model was used to obtain top-down saliency. It could distinguish oil regions and exclude the other salient interference by spectrums. The regions of interest containing oil spills were integrated using these complementary saliency detection steps. Then, the genetic neural network was used to complete the image classification. These steps increased the speed of analysis. For the test dataset, the average running time of the entire process to detect regions of interest was 204.56 s. During image segmentation, the oil spill was extracted using a genetic neural network. The classification results showed that the method had a low false-alarm rate (high accuracy of 91.42%) and was able to increase the speed of the detection process (fast runtime of 19.88 s). The test image dataset was composed of different types of features over large areas in complicated imaging conditions. The proposed model was proved to be robust in complex sea conditions.

  10. Design and implementation of a control structure for quality products in a crude oil atmospheric distillation column.

    PubMed

    Sotelo, David; Favela-Contreras, Antonio; Sotelo, Carlos; Jiménez, Guillermo; Gallegos-Canales, Luis

    2017-11-01

    In recent years, interest for petrochemical processes has been increasing, especially in refinement area. However, the high variability in the dynamic characteristics present in the atmospheric distillation column poses a challenge to obtain quality products. To improve distillates quality in spite of the changes in the input crude oil composition, this paper details a new design of a control strategy in a conventional crude oil distillation plant defined using formal interaction analysis tools. The process dynamic and its control are simulated on Aspen HYSYS ® dynamic environment under real operating conditions. The simulation results are compared against a typical control strategy commonly used in crude oil atmospheric distillation columns. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Effect of oxidation products on service properties of motor oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhitova, T.Yu.; Polipanov, I.S.

    1995-01-01

    One of the most urgent problems in chemmotology is how to create in an engine - lube oil system a controllable tribochemical process for the purpose of stabilizing the service properties of the oil and forming protective surface structures on the engine parts in order to minimize wear. The complexity of this problem reflects the diversity of the processes taking place in the tribological system. It is impossible to elucidate the mechanism of tribochemical reactions without studying the influence of changes in the oil composition and structure on its service properties during the course of operation. If the relationships involvedmore » in this influence are defined, it will become possible to change the structure of the oil in the desired direction and to achieve the desired service properties. For our studies we selected the motor oil M-10-G{sub 2}, conforming to GOST 8581-78. Samples of this oil were drawn during test-stand evaluations of D-144 and D-144-60 tractor diesels without any oil changes these tests were conducted jointly by the Institute of Problems in Mechanical Engineering of the Russian Academy of Sciences, the Scientific-Research and Design-Technology Institute of Tractor and Combine Engines (NIKTID), and the Vladimir Tractor Plant Production Association. Tests were run for 1000 h with the standard conditions and test sequence, and for 1500 and 2300 h under conditions of a {open_quotes}constantly acting tribochemical regime{close_quotes}. Oil samples were drawn at 50-100 h intervals and tested by standard methods to determine the following physico-chemical characteristics: kinematic viscosity, acid and base numbers, ash, carbon residue, content of insoluble sludge, and content of particulate contaminant.« less

  12. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    PubMed

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  13. Full Characterization of CO2-Oil Properties On-Chip: Solubility, Diffusivity, Extraction Pressure, Miscibility, and Contact Angle.

    PubMed

    Sharbatian, Atena; Abedini, Ali; Qi, ZhenBang; Sinton, David

    2018-02-20

    Carbon capture, storage, and utilization technologies target a reduction in net CO 2 emissions to mitigate greenhouse gas effects. The largest such projects worldwide involve storing CO 2 through enhanced oil recovery-a technologically and economically feasible approach that combines both storage and oil recovery. Successful implementation relies on detailed measurements of CO 2 -oil properties at relevant reservoir conditions (P = 2.0-13.0 MPa and T = 23 and 50 °C). In this paper, we demonstrate a microfluidic method to quantify the comprehensive suite of mutual properties of a CO 2 and crude oil mixture including solubility, diffusivity, extraction pressure, minimum miscibility pressure (MMP), and contact angle. The time-lapse oil swelling/extraction in response to CO 2 exposure under stepwise increasing pressure was quantified via fluorescence microscopy, using the inherent fluorescence property of the oil. The CO 2 solubilities and diffusion coefficients were determined from the swelling process with measurements in strong agreement with previous results. The CO 2 -oil MMP was determined from the subsequent oil extraction process with measurements within 5% of previous values. In addition, the oil-CO 2 -silicon contact angle was measured throughout the process, with contact angle increasing with pressure. In contrast with conventional methods, which require days and ∼500 mL of fluid sample, the approach here provides a comprehensive suite of measurements, 100-fold faster with less than 1 μL of sample, and an opportunity to better inform large-scale CO 2 projects.

  14. Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst.

    PubMed

    Baskar, G; Aberna Ebenezer Selvakumari, I; Aiswarya, R

    2018-02-01

    In the present study, castor oil with high free fatty acid was used for biodiesel production using heterogeneous Ni doped ZnO nanocatalyst. Ni doped ZnO nanocomposite calcinated at 800 °C has shown better catalytic activity. Process parameters on heterogeneous catalysis of castor oil into biodiesel were optimized using conventional and Response Surface Methodology (RSM). RSM was found more accurate in estimating the optimum conditions with higher biodiesel yield (95.20%). The optimum conditions for transesterification was found to be oil to methanol molar ratio of 1:8, catalyst loading 11% (w/w), reaction temperature of 55 °C for 60 min of reaction time by response surface method. The reusability studies showed that the nanocatalyst can be reused efficiently for 3 cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomilla L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions.

    PubMed

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-08-27

    The chamazulene and α-(-)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(-)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011-2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L -1 ), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(-)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L -1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(-)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L -1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and α-(-)-bisabolol under normal and heat stress conditions.

  16. Flotation of oil-agglomerated coal for ash and pyrite removal -- Simultaneous grinding and agglomeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, S.; Perkson, A.; Trass, O.

    1996-12-31

    Oil agglomeration is an excellent technique for the beneficiation of fine coal. For separation of the spherical agglomerates by screening, a high level of oil must be used, however. When the subsequent separation is done by flotation, this disadvantage is eliminated. Better pyrite removal is also possible. In this paper, such a fine coal beneficiation process, also called hydrophobic flocculation-flotation (HFF), is described. It features low non-polar oil consumption, intensive mechanical energy input, and smaller agglomerates or looser flocs. This process can be simplified by grinding the coal in water with small amounts of oil added. The excess grinding energymore » is then used for agglomerating the coal. The Prince coal from Nova Scotia contained 13.3% ash and 3.3% total sulfur, 1.4% pyritic. After four stages of flotation, ash and pyrite removal were 93% and 66% respectively, with 87% combustibles recovery. The parameters affecting the HFF process, such as particle size, dosage of non-polar oil, pH value of the slurry and duration of agitation, were investigated. Simultaneous grinding and agglomeration (SGA) utilizing the Szego Mill was also explored at the very low oil levels used. The intensive agitation/preconditioning step prior to flotation was eliminated. When the other parameters established from the sequential process were used with the SGA process, virtually identical beneficiation results were obtained, but with slightly lower combustibles recovery. While further testing is required to properly optimize the SGA process conditions, significant equipment simplification and energy savings are possible.« less

  17. Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premuzic, E.T.

    1996-08-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change inmore » light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.« less

  18. The dynamic improvement methods of energy efficiency and reliability of oil production submersible electric motors

    NASA Astrophysics Data System (ADS)

    Romanov, V. S.; Goldstein, V. G.

    2018-01-01

    In the organization of production and operation of submersible electric motors (ESP), as the most essential element of electric submersible plants (ESP) in the oil industry, it is necessary to consider specific operating conditions. The submersible electric motors (SEM) as most essential element of electrosubmersible installations (EI) in oil branch accounting of operation specific conditions is necessary in the process production and operation. They are determined by the conditions under which the EPU is operated. They are defined by the EPU operation conditions. For a complete picture the current state of the SED fleet in oil production, the results of its statistical analysis are given. For a comprehensive idea of the SEM park current state the results of statistical analysis are given in oil production. Currently, assessed the performance of submersible equipment produced by major manufacturers. Currently the operational characteristics assessment of the submersible equipment released by the main producers is given. It is stated that standard equipment cannot fully ensure efficient operation with the help of serial EIs, therefore new technologies and corresponding equipment are required to be developed. It is noted that the standard equipment could not provide fully effective operation by means of serial ESP therefore new technologies development and the corresponding equipment are required.

  19. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand

    NASA Astrophysics Data System (ADS)

    Juntarasakul, O.; Maneeintr, K.

    2018-04-01

    Emulsion is normally present in oil due to the mixing occurring during oil recovery. The formation of emulsion can cause some problems in production and transportation. Viscosity and stability of emulsion play a key roles in oil transportation and separation to meet sales specification. Therefore, the aims of this research are to measure the viscosity of oil an emulsion and to evaluate the stability of emulsion of light oil from Fang oilfield in Thailand. The parameters of this study are temperature, shear rate and water cut ranging from 50 to 80 °C, 3.75 to 70 s-1 and 0 to 60%, respectively. These effects of parameters on viscosity and stability of emulsion are required for the design of the process and to increase oil production with various conditions. The results shows that viscosity decreases as temperature and shear rate increase. In contrast, viscosity becomes higher when water cut is lower. Furthermore, droplet sizes of water-in-oil emulsion at different conditions are investigated the stability of emulsion. The droplet sizes become smaller when high shear rate is applied and emulsion becomes more stable. Furthermore, correlations are developed to predict the viscosity and stability of the oil and emulsion from Thailand.

  20. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  1. A novel electroanalytical approach based on the use of a room temperature ionic liquid for the determination of olive oil acidity.

    PubMed

    Baldo, M Antonietta; Oliveri, Paolo; Simonetti, Remo; Daniele, Salvatore

    2016-12-01

    In this paper, a novel voltammetric/amperometric approach for the direct determination of free acidity (FFA, expressed as mass percentage of free oleic acid) in olive oil samples is presented. The method is based on the reduction processes occurring at a platinum microdisk electrode involving the free fatty acids present in the matrices. To overcome problems related to the low conductivity of the samples investigated, olive oils were mixed with suitable amounts of the room temperature ionic liquid (RTIL), tri-hexyl(tetradecyl)phosphonium bis (trifluoromethylsulfonyl) imide ([P 14,6,6,6 ] + [NTf 2 ] - ), which acted as a supporting electrolyte. Conditions for a reliable quantification of the acids were preliminarily investigated by performing voltammetric and chronoamperometric measurements in RTIL solutions containing oleic acid at different concentrations. Oleic acid (OA) was chosen as a model compound as it is the main component of the FFA content in olive oils. In order to establish the effect of oxygen on the electroanalytical responses, the reduction process of OA was investigated under both deoxygenated and oxygenated conditions. It was found that, in both situations, the current arising from the electrode process of OA depended linearly on the OA concentration over a wide range varying from 0.1% to 8% OA (w/w). This range includes FFA values which can be found on all categories of commercially available oil samples, including extra-virgin, virgin and lampante oils. Voltammetric and chronoamperometric experiments were also performed in oil/RTIL samples artificially acidified (extra-virgin olive oils with known addition of oleic acid) and in natural olive oils from some commercial categories. The results obtained indicated that the electrochemical procedure developed was satisfactory in terms of both sensitivity and detection limits. The reliability of the proposed approach for the detection of FFA was finally assessed by comparison of the voltammetric/chronoamperometric values with those obtained by the official method for quantification of olive oil acidity, which is an acid/base volumetric titration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil.

    PubMed

    Subroto, Erna; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2017-04-01

    A series of experiments was conducted to determine optimum conditions for supercritical carbon dioxide extraction of candlenut oil. A Taguchi experimental design with L 9 orthogonal array (four factors in three levels) was employed to evaluate the effects of pressure of 25-35 MPa, temperature of 40-60 °C, CO 2 flow rate of 10-20 g/min and particle size of 0.3-0.8 mm on oil solubility. The obtained results showed that increase in particle size, pressure and temperature improved the oil solubility. The supercritical carbon dioxide extraction at optimized parameters resulted in oil yield extraction of 61.4% at solubility of 9.6 g oil/kg CO 2 . The obtained candlenut oil from supercritical carbon dioxide extraction has better oil quality than oil which was extracted by Soxhlet extraction using n-hexane. The oil contains high unsaturated oil (linoleic acid and linolenic acid), which have many beneficial effects on human health.

  3. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.

    PubMed

    Syamsuddin, Y; Murat, M N; Hameed, B H

    2016-08-01

    The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Production of Biodiesel from Acid Oil via a Two-Step Enzymatic Transesterification.

    PubMed

    Choi, Nakyung; Lee, Jeom-Sig; Kwak, Jieun; Lee, Junsoo; Kim, In-Hwan

    2016-11-01

    A two-step enzymatic transesterification process in a solvent-free system has been developed as a novel approach to the production of biodiesel using acid oil from rice bran oil soapstock. The acid oil consisted of 53.7 wt% fatty acids, 2.4 wt% monoacylglycerols, 9.1 wt% diacylglycerols, 28.8 wt% triacylglycerols, and 6.0 wt% others. Three immobilized lipases were evaluated as potential biocatalysts, including Novozym 435 from Candida antarctica, Lipozyme RM IM from Rhizomucor miehei, and Lipozyme TL IM from Thermomyces lanuginosus. The effects of molar ratio of acid oil to ethanol, temperature, and enzyme loading were investigated to determine the optimum conditions for the transesterification with the three immobilized lipases. The optimum conditions of the three immobilized lipases were a molar ratio of 1:5 (acid oil to ethanol), the temperature range of 30-40°C, and the enzyme loading range of 5-10%. The two-step transesterification was then conducted under the optimum conditions of each lipase. The stepwise use of Novozym 435 and Lipozyme TL IM or Lipozyme RM IM and Lipozyme TL IM resulted in similar or higher levels of yield to the individual lipases. The maximum yields obtained in both stepwise uses were ca. 92%.

  5. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.

    PubMed

    Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L

    2012-07-17

    Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.

  6. Development of the Write Process for Pipeline-Ready Heavy Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee Brecher; Charles Mones; Frank Guffey

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establishmore » a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.« less

  7. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    PubMed Central

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities. PMID:23762350

  8. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  9. Microwave-assisted liquefaction of rape straw for the production of bio-oils

    Treesearch

    Xing-Yan Huang; Feng Li; Jiu-Long Xie; Cornelis F. De Hoop; Chung-Yun Hse; Jin-Qiu Qi; Hui Xiao

    2017-01-01

    The acid-catalyzed liquefaction of rape straw in methanol using microwave energy was examined. Conversion yield and energy consumption were evaluated to profile the microwave-assisted liquefaction process. Chemical components of the bio-oils from various liquefaction conditions were identified. A higher reaction temperature was found to be beneficial to obtain higher...

  10. Extraction of orange peel's essential oil by solvent-free microwave extraction

    NASA Astrophysics Data System (ADS)

    Qadariyah, Lailatul; Amelia, Prilia Dwi; Admiralia, Cininta; Bhuana, Donny S.; Mahfud, Mahfud

    2017-05-01

    Sweet orange peel (Citrus sinensis) is part of orange plant that contains essential oils. Generally, taking essential oil from orange peel is still using hydrodistillation and steam-hydrodistillation method which still needs solvent and takes a long time to produce high quality essential oil. Therefore, the objectives of this experiment are to study the process of orange peel's essential oil extraction using Solvent Free Microwave Extraction (SFME) and to study the operating condition that effect an optimum yield and quality of the essential oil. In this experiment, extraction process with SFME method goes for 60 minutes at atmospheric pressure. Variables for SFME are: variation of orange peel condition (fresh and dry), ratio orange peel mass to distiller volume (0,1; 0,2; 0,3; 0,4 g/mL), orange peel size (±0,5; ±2; ±3,5 cm width), and microwave power (100, 264, 400 Watt). Moisture content of fresh peel is 71,4% and for dry peel is 17,37% which is obtained by sun drying. The result of this experiment will be analyzed with GC-MS, SEM, density, and miscibility in ethanol 90%. The optimum result obtained from this experiment based on the number of the yield under condition of fresh orange peel is at peel mass/distiller volume 0,1 g/mL, orange peel size ±3,5 cm width, and microwave power 400 Watt, results 1,6738% yield. The result of GC-MS for fresh orange peel shows that the dominant compound is Limonene 54,140% and for dry orange peel is Limonene 59,705%. The density obtained is around 0,8282-0,8530 g/mL and miscibility in ethanol 90% is 1:5.

  11. Oil-in-water emulsification using confined impinging jets.

    PubMed

    Siddiqui, Shad W; Norton, Ian T

    2012-07-01

    A confined impinging jet mixing device has been used to investigate the continuous sunflower oil/water emulsification process under turbulent flow conditions with oil contents between 5% (v/v) and 10% (v/v). Various emulsifiers (Tween20, Span80, Whey Protein, Lecithin and Sodium Dodecylsulphate) varying in molecular weights have been studied. Mean droplet sizes varied with the emulsifiers used and smallest droplets were obtained under fully turbulent flow regime, i.e. at the highest jet flow rate and highest jet Reynolds Number conditions. Sodium Dodecylsulfate (SDS) produced droplets in the range of 3.8 μm while 6 μm droplets were obtained with Whey Protein. Similar droplet sizes were obtained under fully turbulent flow conditions (610 mL/min; Reynolds Number=13,000) for oil content varying between 5% (v/v) and 10% (v/v). To investigate the smallest droplet size possible in the device, the emulsion was passed through the geometry multiple times. Multi-pass emulsification resulted in reduction in droplet size indicating that longer residence in the flow field under high shear condition allowed for breakage of droplets as well as the time for the emulsifier to stabilize the newly formed droplets, decreasing the impact of coalescence. This was confirmed by timescale analysis of the involved process steps for the droplet data obtained via experiments. Dependence of mean droplet size on the o/w interfacial tension and peak energy dissipation was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A new model for the biodegradation kinetics of oil droplets: application to the Deepwater Horizon oil spill in the Gulf of Mexico

    PubMed Central

    2013-01-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. Existing models for oil biodegradation kinetics are mostly for dissolved oil. This work developed a new mathematical model for the biodegradation of oil droplets and applied the model to estimate the time scale for oil biodegradation under conditions relevant to the Deepwater Horizon oil spill in the Gulf of Mexico. In the model, oil is composed of droplets of various sizes following the gamma function distribution. Each oil droplet shrinks during the microbe-mediated degradation at the oil-water interface. Using our developed model, we find that the degradation of oil droplets typically goes through two stages. The first stage is characterized by microbial activity unlimited by oil-water interface with higher biodegradation rates than that of the dissolved oil. The second stage is governed by the availability of the oil-water interface, which results in much slower rates than that of soluble oil. As a result, compared to that of the dissolved oil, the degradation of oil droplets typically starts faster and then quickly slows down, ultimately reaching a smaller percentage of degraded oil in longer time. The availability of the water-oil interface plays a key role in determining the rates and extent of degradation. We find that several parameters control biodegradation rates, including size distribution of oil droplets, initial microbial concentrations, initial oil concentration and composition. Under conditions relevant to the Deepwater Horizon spill, we find that the size distribution of oil droplets (mean and coefficient of variance) is the most important parameter because it determines the availability of the oil-water interface. Smaller oil droplets with larger variance leads to faster and larger extent of degradation. The developed model will be useful for evaluating transport and fate of spilled oil, different remediation strategies, and risk assessment. PMID:24138161

  13. Optimization of ultrasound-assisted extraction of crude oil from winter melon (Benincasa hispida) seed using response surface methodology and evaluation of its antioxidant activity, total phenolic content and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2012-10-08

    In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.

  14. Embedded digital oilfield model

    NASA Astrophysics Data System (ADS)

    Korovin, Iakov S.; Boldyreff, Anton S.

    2017-10-01

    In modern hard conditions for the whole worldwide oil production industry the problem of increasing volumes of produced oil has recently become vital. This problem concerns the existing oilfields cause due to low crude oil prices the possibilities to drill new ones has almost disappeared. In this paper, we describe a novel approach of oil production enhancement, based on online procedures of all oil field data processing. The essence is that we have developed a dynamic oilfield model that allows to simultaneously handle the information, stored in tNavigator, Schlumberger ECLIPSE 100/300 and other `popular' formats in parallel. The model is developed on the basis of convolutional neural networks. An example of successful industrial experiment is depicted.

  15. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. O. Hitzman; A. K. Stepp; D. M. Dennis

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work is underway. Microbial cultures have been isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted in sand packs with natural field waters withmore » cultures and conditions representative of oil reservoirs. Field pilot studies are underway.« less

  16. Low-Cost Oil Quality Sensor Based on Changes in Complex Permittivity

    PubMed Central

    Pérez, Angel Torres; Hadfield, Mark

    2011-01-01

    Real time oil quality monitoring techniques help to protect important industry assets, minimize downtime and reduce maintenance costs. The measurement of a lubricant’s complex permittivity is an effective indicator of the oil degradation process and it can be useful in condition based maintenance (CBM) to select the most adequate oil replacement maintenance schedules. A discussion of the working principles of an oil quality sensor based on a marginal oscillator to monitor the losses of the dielectric at high frequencies (>1 MHz) is presented. An electronic design procedure is covered which results in a low cost, effective and ruggedized sensor implementation suitable for use in harsh environments. PMID:22346666

  17. Factors Governing the Germination of Sulfate-Reducing Desulfotomaculum Endospores Involved in Oil Reservoir Souring.

    NASA Astrophysics Data System (ADS)

    Sherry, A.; Bell, E.; Cueto, G.; Suarez-Suarez, A.; Pilloni, G.; Hubert, C. R.

    2015-12-01

    Reservoir souring is caused by the activity of sulfate-reducing microorganisms (SRM) in subsurface oil reservoirs, and is often induced by seawater injection during secondary oil recovery. Souring can potentially contribute to corrosion of infrastructure, health and safety hazards to the workforce, and reduction in value by increasing refining costs associated with producing the oil resource. Souring causes annual losses in the billions of dollars to the oil industry. Endospore-forming SRM, such as Desulfotomaculum spp., are often suspected culprits in reservoir souring. Endospores can survive unfavourable conditions for long periods, yet remain poised to germinate and become active if conditions become more favourable. Factors governing endospore germination are poorly understood, but are thought to include availability of nutrients, possibly metabolic by products of other anaerobic bioprocesses, and/or variations in temperature. Most research has focused on aerobic Bacillus spp., with very few studies dedicated to spore germination among anaerobes (order Clostridiales) including the sulfate-reducing Desulfotomaculum found in anoxic subsurface petroleum reservoirs. For Desulfotomaculum spores in deep hot oil reservoirs, cold seawater introduction during secondary oil recovery may create thermal viability zones for sulfate reduction near the injection wellbore. To evaluate these processes, sulfate-containing microcosms were prepared with different marine sediments as a source of spores, and amended with organic substrates in the presence or absence of oil. Incubation at 80°C for six days was followed by a down-shift in temperature to 60°C to mimic cold seawater injection into a hot reservoir. Souring did not occur at 80°C, but commenced within hours at 60°C. Microcosms were monitored for sulfate reduction and organic acids in combination with next generation sequencing of 16S rRNA genes (Ion Torrent, Illumina MiSeq). Through a combination of high-throughput microbial DNA sequencing and geochemical process analyses we show that altered conditions in oil reservoirs during seawater flooding activates dormant Desulfotomaculum endospores, which leads to reservoir souring, and provide insights on the factors governing the germination of endospores in the deep hot biosphere.

  18. Comparative analyses of different variants of standard ground for automatic control systems of technical processes of oil and gas production

    NASA Astrophysics Data System (ADS)

    Gromakov, E. I.; Gazizov, A. T.; Lukin, V. P.; Chimrov, A. V.

    2017-01-01

    The paper analyses efficiency (interference resistance) of standard TT, TN, IT networks in control links of automatic control systems (ACS) of technical processes (TP) of oil and gas production. Electromagnetic compatibility (EMC) is a standard term used to describe the interference in grounding circuits. Improved EMC of ACS TP can significantly reduce risks and costs of malfunction of equipment that could have serious consequences. It has been proved that an IT network is the best type of grounds for protection of ACS TP in real life conditions. It allows reducing the interference down to the level that is stated in standards of oil and gas companies.

  19. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    PubMed Central

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810

  20. Transfer of the epoxidation of soybean oil from batch to flow chemistry guided by cost and environmental issues.

    PubMed

    Kralisch, Dana; Streckmann, Ina; Ott, Denise; Krtschil, Ulich; Santacesaria, Elio; Di Serio, Martino; Russo, Vincenzo; De Carlo, Lucrezia; Linhart, Walter; Christian, Engelbert; Cortese, Bruno; de Croon, Mart H J M; Hessel, Volker

    2012-02-13

    The simple transfer of established chemical production processes from batch to flow chemistry does not automatically result in more sustainable ones. Detailed process understanding and the motivation to scrutinize known process conditions are necessary factors for success. Although the focus is usually "only" on intensifying transport phenomena to operate under intrinsic kinetics, there is also a large intensification potential in chemistry under harsh conditions and in the specific design of flow processes. Such an understanding and proposed processes are required at an early stage of process design because decisions on the best-suited tools and parameters required to convert green engineering concepts into practice-typically with little chance of substantial changes later-are made during this period. Herein, we present a holistic and interdisciplinary process design approach that combines the concept of novel process windows with process modeling, simulation, and simplified cost and lifecycle assessment for the deliberate development of a cost-competitive and environmentally sustainable alternative to an existing production process for epoxidized soybean oil. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Isotopic insights into microbial sulfur cycling in oil reservoirs

    PubMed Central

    Hubbard, Christopher G.; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L.; Li, Li; Ajo-Franklin, Jonathan B.; Coates, John D.; Conrad, Mark E.

    2014-01-01

    Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of −30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures. PMID:25285094

  2. Evaluation of the effects of East Indian sandalwood oil and alpha-santalol on humans after transdermal absorption.

    PubMed

    Hongratanaworakit, T; Heuberger, E; Buchbauer, G

    2004-01-01

    The aim of the study was to investigate the effects of East Indian sandalwood oil ( Santalum album, Santalaceae) and alpha-santalol on physiological parameters as well as on mental and emotional conditions in healthy human subjects after transdermal absorption. In order to exclude any olfactory stimulation, the inhalation of the fragrances was prevented by breathing masks. Eight physiological parameters, i. e., blood oxygen saturation, blood pressure, breathing rate, eye-blink rate, pulse rate, skin conductance, skin temperature, and surface electromyogram were recorded. Subjective mental and emotional condition was assessed by means of rating scales. While alpha-santalol caused significant physiological changes which are interpreted in terms of a relaxing/sedative effect, sandalwood oil provoked physiological deactivation but behavioral activation. These findings are likely to represent an uncoupling of physiological and behavioral arousal processes by sandalwood oil.

  3. [Study on effect of oil-bearing solution environment of Caryophylli Flos and other traditional Chinese medicines on system flux and oil recovery rate].

    PubMed

    Fan, Wen-Ling; Guo, Li-Wei; Lin, Ying; Shen, Jie; Cao, Gui-Ping; Zhu, Yun; Xu, Min; Yang, Lei

    2013-10-01

    The membrane enrichment process of traditional Chinese medicine volatile oil is environmental friendly and practical, with a good application prospect. In this article, oil-bearing solutions of eight traditional Chinese medicines, namely Caryophylli Flos, Schizonepetae Herba, Eupatorii Herb, Acori Talarinowii Rhizoma, Magnoliae Flos, Chrysanthemum indicum, Cyperi Rhizoma and Citri Reticulatae Pericarpium Viride, were taken as the experimental system. Under unified conditions (membrane: PVDF-14W, temperature: 40 degreeC, pressure: 0. 1 MPa, membrane surface speed: 150 r min- 1), trans-membrane was conducted for above eight oil-bearing solutions to explore the effect of their oil-bearing solution environment on system flux and oil recovery rate. The results showed that systems with smaller pH had a lower flux, without significant effect on oil recovery rate. Greater differences between the surface tension of solutions and that of pure water contributed to a lower oil recovery rate. The conductivity had no notable effect on membrane enrichment process. Systems with high turbidity had a lower flux, without remarkable effect on oil recovery rat. Heavy oils showed lower flux than light ones, but with a slightly higher oil recovery rat. Systems with higher viscosity had a lower flux than those with lower viscosity. Except for Magnoliae Flos volatile oil, all of the remaining volatile oils showed a much higher oil recovery rat than systems with high viscosity. The above results could provide data support and theoretical basis for the industrialization of membrane enrichment volatile oil technology.

  4. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  5. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    PubMed

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  6. Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation.

    PubMed

    Calero, Juan; Verdugo, Cristóbal; Luna, Diego; Sancho, Enrique D; Luna, Carlos; Posadillo, Alejandro; Bautista, Felipa M; Romero, Antonio A

    2014-12-25

    The obtaining of Ecodiesel, a biofuel applicable to diesel engines which keeps the glycerin as monoglyceride (MG), was achieved through a selective ethanolysis process of sunflower oil, by application of Lipozyme RM IM, a Rhizomucor miehei lipase immobilized on macroporous anion exchange resins. This biocatalyst that was already described in the synthesis of conventional biodiesel has also shown its efficiency in the present selective enzymatic process, after optimization of the influence of various reaction parameters. Thus, an adequate activity is obtained that is maintained throughout five successive reuses. Quantitative conversions of triglycerides (TG) with high yields to fatty acid ethyl esters (FAEE) were obtained under mild reaction conditions that correspond to the transformation of TG in a mixture of two moles of FAEE and a mole of MG, thus avoiding the glycerol production. Thus, the selective transesterification reaction of sunflower oil with absolute ethanol can be carried out under standard conditions with oil/ethanol volume ratio 12/3.5 (mL), at constant pH obtained by the addition of 50 μl of aqueous solution of 10 N NaOH, reaction temperature of 40 °C and 40 mg of Lipozyme RM IM. Under these experimental conditions six successive reactions can be efficiently carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Treesearch

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  8. Optimization of an oil leaching process to reduce the level of dioxins and dioxin-like PCBs in fishmeal.

    PubMed

    Oterhals, Åge; Kvamme, Bjørn

    2013-05-01

    Fishmeal produced from fish caught in polluted fishing areas might contain dioxins and dioxin-like polychlorinated biphenyls (PCBs) above maximum permitted levels (MPL) for use in feed. Decontamination of the fishmeal can be achieved by hexane extraction. The principal objective of this study was to optimize a more environmentally friendly alternative based on oil leaching of the moist presscake intermediate product during fishmeal manufacturing. A central composite design and response surface methodology was used to study the influence of the process variables temperature (T), presscake moisture content (MC) and leaching time (LT) on the decontamination process. A significant squared MC effect was observed, resulting in an optimum leaching rate at 27% MC. This corresponds to 5% improved dibenzo-p-dioxin/dibenzo furan (PCDD/F)-PCB toxic equivalent (TEQ) reduction compared to normal presscake (55% MC). The initial leaching rate was fast, with a TEQ reduction of 69% after only 2 min at 87 °C and 55% MC. Under the best experimental conditions (87 °C, 38% MC, 12 min LT) a TEQ reduction of 82% was achieved. Excess oil in the presscake after the leaching operation could be removed by use of a water washing step. No reduction in protein quality measured by mink digestibility could be observed. The results confirm that the oil leaching process is robust and offers easily achievable TEQ levels well below present MPLs based on process conditions normally used by the industry. Comparative effects on non-dioxin-like PCBs are expected. © 2012 Society of Chemical Industry.

  9. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    PubMed

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  10. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.

    PubMed

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Lai, Hangxian; Wang, Ping

    2016-10-03

    Lipopeptides are known as promising microbial surfactants and have been successfully used in enhancing oil recovery in extreme environmental conditions. A biosurfactant-producing strain, Bacillus atrophaeus 5-2a, was recently isolated from an oil-contaminated soil in the Ansai oilfield, Northwest China. In this study, we evaluated the crude oil removal efficiency of lipopeptide biosurfactants produced by B. atrophaeus 5-2a and their feasibility for use in microbial enhanced oil recovery. The production of biosurfactants by B. atrophaeus 5-2a was tested in culture media containing eight carbon sources and nitrogen sources. The production of a crude biosurfactant was 0.77 g L -1 and its surface tension was 26.52 ± 0.057 mN m -1 in a basal medium containing brown sugar (carbon source) and urea (nitrogen source). The biosurfactants produced by the strain 5-2a demonstrated excellent oil spreading activity and created a stable emulsion with paraffin oil. The stability of the biosurfactants was assessed under a wide range of environmental conditions, including temperature (up to 120 °C), pH (2-13), and salinity (0-50 %, w/v). The biosurfactants were found to retain surface-active properties under the extreme conditions. Additionally, the biosurfactants were successful in a test to simulate microbial enhanced oil recovery, removing 90.0 and 93.9 % of crude oil adsorbed on sand and filter paper, respectively. Fourier transform infrared spectroscopy showed that the biosurfactants were a mixture of lipopeptides, which are powerful biosurfactants commonly produced by Bacillus species. The study highlights the usefulness of optimization of carbon and nitrogen sources and their effects on the biosurfactants production and further emphasizes on the potential of lipopeptide biosurfactants produced by B. atrophaeus 5-2a for crude oil removal. The favorable properties of the lipopeptide biosurfactants make them good candidates for application in the bioremediation of oil-contaminated sites and microbial enhanced oil recovery process.

  11. Analysis of processing contaminants in edible oils. Part 2. Liquid chromatography-tandem mass spectrometry method for the direct detection of 3-monochloropropanediol and 2-monochloropropanediol diesters.

    PubMed

    MacMahon, Shaun; Begley, Timothy H; Diachenko, Gregory W

    2013-05-22

    A method was developed and validated for the detection of fatty acid diesters of 2-monochloropropanediol (2-MCPD) and 3-monochloropropanediol (3-MCPD) in edible oils. These analytes are potentially carcinogenic chemical contaminants formed during edible oil processing. After separation from oil matrices using a two-step solid-phase extraction (SPE) procedure, the target compounds are quantitated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). The first chromatographic conditions have been developed that separate intact diesters of 2-MCPD and 3-MCPD, allowing for their individual quantitation. The method has been validated for 28 3-MCPD diesters of lauric, myristic, palmitic, linolenic, linoleic, oleic, and stearic acids in coconut, olive, and palm oils, as well as 3 2-MCPD diesters, using an external calibration curve. The range of average recoveries and relative standard deviations (RSDs) across the three oil matrices at three spiking concentrations are 88-118% (2-16% RSD) with maximum limits of quantitation of 30 ng/g (ppb).

  12. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    PubMed

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Soy Sauce Residue Oil Extracted by a Novel Continuous Phase Transition Extraction under Low Temperature and Its Refining Process.

    PubMed

    Zhao, Lichao; Zhang, Yong; He, Liping; Dai, Weijie; Lai, Yingyi; Yao, Xueyi; Cao, Yong

    2014-04-09

    On the basis of previous single-factor experiments, extraction parameters of soy sauce residue (SSR) oil extracted using a self-developed continuous phase transition extraction method at low temperature was optimized using the response surface methodology. The established optimal conditions for maximum oil yield were n-butane solvent, 0.5 MPa extraction pressure, 45 °C temperature, 62 min extraction time, and 45 mesh raw material granularity. Under these conditions, the actual yield was 28.43% ± 0.17%, which is relatively close to the predicted yield. Meanwhile, isoflavone was extracted from defatted SSR using the same method, but the parameters and solvent used were altered. The new solvent was 95% (v/v) ethanol, and extraction was performed under 1.0 MPa at 60 °C for 90 min. The extracted isoflavones, with 0.18% ± 0.012% yield, mainly comprised daidzein and genistein, two kinds of aglycones. The novel continuous phase transition extraction under low temperature could provide favorable conditions for the extraction of nonpolar or strongly polar substances. The oil physicochemical properties and fatty acids compositions were analyzed. Results showed that the main drawback of the crude oil was the excess of acid value (AV, 63.9 ± 0.1 mg KOH/g) and peroxide value (POV, 9.05 ± 0.3 mmol/kg), compared with that of normal soybean oil. However, through molecular distillation, AV and POV dropped to 1.78 ± 0.12 mg KOH/g and 5.9 ± 0.08 mmol/kg, respectively. This refined oil may be used as feedstuff oil.

  14. Polydispersed O/W emulsions in porous media: segregation at low-tension conditions.

    PubMed

    Török, János; Tóth, János; Gesztesi, Gyula

    2006-03-15

    The segregation of polydispersed oil was studied in theoretical models, sand packs, and plugs from consolidated cores at low tension and atmospheric conditions. The height of the oil belt formed at the top of the porous column and its change in time were measured. The analysis of the segregation curves indicates the subsequent appearance and rise of three pseudo-phases. The primary phase, which contains the dominant fraction of oil in the system, rises with a relatively high steady state velocity. Unsteady state and decreasing velocity characterize the transitional secondary phase which is a lean emulsion left behind. The ternary phase, which follows it with a semi-steady state low velocity, is a lean emulsion of the smallest oil blobs present in low concentration. The process terminates at the segregation of the mobile oil particles in the subsequent phases where a small fraction of the total oil content remains in the porous bed, mainly from the last stage of segregation due to the entrapment in suitable microstructures. According to the postulated mechanism, the decreasing probability of the repeated coalescence in pore bodies and dispersion at the connecting pore throats are responsible for the development of the mobile phases at the sufficiently low-tension conditions. The structure of the pore network, the size-distribution of the oil droplets, the density of their population, and the length of paths affect the mechanism, properties, and behaviour of the systems.

  15. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  16. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils.

    PubMed

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed; Zouari, Nabil

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n -alkanes ( n -C12- n -C16) to longer chain n -alkanes ( n -C21- n -C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  17. Settling of virgin olive oil from horizontal screw solid bowl in static conditions.

    PubMed

    Gila, Abraham M; Bejaoui, Mohamed A; Beltrán, Gabriel; Jiménez, Antonio

    2017-08-01

    This work was aimed to study the clarification efficiency of natural decantation in settling tank on virgin olive oil obtained from a two-ways continuous process. For this purpose, the impurities content of the virgin olive oil were monitored during settling process in settling tank at two different depths. Efficiency of purging system was determined for two days. The experiments were performed at industrial scale during three crop years. During the first minutes of settling was observed an ascent of the smaller organic particles of the oil. Then, most of the virgin olive oil impurities were settled at 300 min, independently of the initial content of virgin olive oil. Finally, oil decantation showed slower rate. Higher clarification values were obtained for those decanter oils with higher impurities content, achieving clarification percentages between of 62.69 and 95.91% at 48 h of settling. The highest settling efficiency was observed for those decanter oils with initial higher impurities content. The purging system used in the settling tanks was not able to remove the most of settled impurities since a considerable amount of the impurities remained in the tank after 48 h, between 13.6 and 71.41% for the studied oils. In the tank purges was observed important oil losses. Therefore, decantation was not an efficient system for oil clarification since its settling capacity varied depending on the initial impurities content and due to the settled impurities can not be removed fully by purging system.

  18. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  19. Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert C.; Smith, Ryan; Wright, Mark

    This project is part of a collaboration effort between Iowa State University (ISU), University of Oklahoma (OK) and Pacific Northwest National Laboratory (PNNL). The purpose of this project is to stabilize bio-oil fractions and improve their suitability for insertion into petroleum refineries. Bio-oil from fast pyrolysis of biomass is a complex mixture of unstable organic compounds. These organic compounds react under standard room conditions resulting in increases in bio-oil viscosity and water content – both detrimental for bio-oil storage and transportation. This study employed fractionation and upgrading systems to improve the stability of bio-oil. The fractionation system consists of amore » series of condensers, and electrostatic precipitators designed to separate bio-oil into five fractions: soluble carbohydrates (SF1&2), clean phenolic oligomers (CPO) and middle fraction (SF3&4), light oxygenates (SF5). A two-stage upgrading process was designed to process bio-oil stage fractions into stable products that can be inserted into a refinery. In the upgrading system, heavy and middle bio-oil fractions were upgraded into stable oil via cracking and subsequent hydrodeoxygenation. The light oxygenate fraction was steam reformed to provide a portion of requisite hydrogen for hydroprocessing. Hydrotreating and hydrocracking employed hydrogen from natural gas, fuel gas and light oxygenates reforming. The finished products from this study consist of gasoline- and diesel-blend stock fuels.« less

  20. Estimation of the Heat Balance of the Liquid Hydrocarbons Evaporation Process from the Open Surface During Geotechnical Monitoring

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Yu; Zemenkov, Yu D.

    2016-10-01

    Researchers in Tyumen State Oil and Gas University (TSOGU) have conducted a complex research of the heat and mass transfer processes and thermophysical properties of hydrocarbons, taking into account their impact on the reliability and safety of the hydrocarbon transport and storage processes. It has been shown that the thermodynamic conditions on the surface and the color of oil influence the degree of temperature rise in the upper layers of oil when exposed to direct solar radiation. In order to establish the nature of solar radiation impact on the surface temperature the experimental studies were conducted in TSOGU on the hydrocarbon evaporation and the temperature change of various petroleum and petroleum products on the free surface with varying degrees of thermal insulation of the side walls and bottom of the vessel.

  1. The effect of power intensity properties of microwave modified oil palm trunk lumber

    NASA Astrophysics Data System (ADS)

    Izzati Ibrahim, Anis; Salim, Nurjannah; Roslan, Rasidi; Ashry Jusoh, Mohammad; Hashim, Rokiah

    2018-04-01

    In the decade, oil palm (Elaeis guineensis) in Malaysia is one of the conventional sources that will be rising, and the rate of biomass will considerably increase in yet to come. Presently, oil palm biomass is going through research and development and appears to be the most sustainable alternative. Investigations on oil palm biomass have been conducted to support in draw out waste of oil palm and in the meantime can help economic yield to the country. This study was expected to estimate the effect of power intensity properties of microwave modified oil palm trunk lumber. Microwave treatment of oil palm trunk samples was set of connections by using a microwave operating at 2.45 GHz with the liberated process input power intensity (600-1000W) were studied under the given condition. Impact and compression of the samples were tested. The analysis of properties of the fresh material and dry samples was employed by scanning electron microscopy. Oven drying technique also was involved as a comparison of the conventional drying process in this research. Based on the outcomes of this study, both drying methods improved the characteristics of the specimens.

  2. Experimental research on microscopic displacement mechanism of CO2-water alternative flooding in low permeability reservoir

    NASA Astrophysics Data System (ADS)

    Han, Hongyan; Zhu, Weiyao; Long, Yunqian; Song, Hongqing; Huang, Kun

    2018-02-01

    This paper provides an experimental method to deal with the problems of low oil recovery ratio faced with water flooding utilizing the CO2/water alternate displacement technology. A series of CO2/water alternate flooding experiments were carried out under 60°C and 18.4MPa using high temperature / pressure microscopic visualization simulation system. Then, we used the image processing technique and software to analyze the proportion of remaining oil in the displacement process. The results show that CO2 can extract the lighter chemical components in the crude oil and make it easier to form miscible phase, which can reduce the viscosity and favorable mobility ratio of oil. What’s more, the displacement reduces the impact of gas channeling, which can achieve an enlarged sweeping efficiency to improve filtration ability. In addition, the CO2 dissolved in oil and water can greatly reduce the interfacial tension, which can increase the oil displacement efficiency in a large extent. Generally speaking, the recovery rate of residual oil in the micro - model can be elevated up to 15.89% ∼ 16.48% under formation condition by alternate displacement.

  3. PINCH WELD TESTING TO SUPPORT CHANGE IN MANUFACTURING OIL AT THE KCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P; David Maxwell, D

    2008-02-28

    This task supports the change from an oil mixture termed 50:50 oil (an equal parts mixture of Milpro 634 and Pennex N47) to a new oil mixture (Castrol Illocut 334). This change was necessitated by a KCP vendor no longer supplying the Pennex N47 component of the 50-50. In order to continue production of machined parts, a detailed process was followed to ensure that high quality parts could be manufactured and that the cutting oil selected would provide acceptable human performance characteristics, e.g., skin irritability, smell, etc. A prime consideration in changing the oil was that no apparent change inmore » the pinch weldability of the fill stems fabricated using the new oil and process parameters, if any, be observed. A two part approach, as detailed in the plan shown in Appendix B, was used to qualify the effect of the process on pinch weld characteristics. In the first phase, ref. 1., the weld parameter window was defined using fill stems made from 304L, 21-6-9, and 316 stainless steel. These weld conditions were then subsequently used for the Castrol Illocut 334 machined fill stems. The results of this activity are reported in this document. A follow-on task of welding in the facility was requested by one of the design agencies and this will be completed and reported separately.« less

  4. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    NASA Astrophysics Data System (ADS)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  5. Biological markers from Green River kerogen decomposition

    NASA Astrophysics Data System (ADS)

    Burnham, A. K.; Clarkson, J. E.; Singleton, M. F.; Wong, C. M.; Crawford, R. W.

    1982-07-01

    Isoprenoid and other carbon skeletons that are formed in living organisms and preserved essentially intact in ancient sediments are often called biological markers. The purpose of this paper is to develop improved methods of using isoprenoid hydrocarbons to relate petroleum or shale oil to its source rock. It is demonstrated that most, but not all, of the isoprenoid hydrocarbon structures are chemically bonded in kerogen (or to minerals) in Green River oil shale. The rate constant for thermally producing isoprenoid, cyclic, and aromatic hydrocarbons is substantially greater than for the bulk of shale oil. This may be related to the substantial quantity of CO 2 which is evolved coincident with the isoprenoid hydrocarbons but prior to substantial oil evolution. Although formation of isoprenoid alkenes is enhanced by rapid heating and high pyrolysis temperatures, the ratio of isoprenoid alkenes plus alkanes to normal alkenes plus alkanes is independent of heating rate. High-temperature laboratory pyrolysis experiments can thus be used to predict the distribution of aliphatic hydrocarbons in low temperature processes such as in situ shale oil production and perhaps petroleum formation. Finally, we demonstrate that significant variation in biological marker ratios occurs as a function of stratigraphy in the Green River formation. This information, combined with methods for measuring process yield from oil composition, enables one to relate time-dependent processing conditions to the corresponding time-dependent oil yield in a vertical modified- in situ retort even if there is a substantial and previously undetermined delay in drainage of shale oil from the retort.

  6. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  7. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  8. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    PubMed

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  9. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  10. Bio-Oil Deployment in the Home Heating Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T. A.; Trojanowski, R.; Mante, O.

    Distillate fuel oil is used in many stationary heating applications, predominantly in the Northeastern part of the United States. Total estimated non-transportation distillate use in 2014 was estimated to be 10.9 billion gallons. This study has focused on potentially displacing part of this petroleum use with biofuel derived from woody biomass. The fuel production route considered is pyrolysis which creates a liquid fuel high in oxygen, organic acids, and water. While this fuel can be used in stationary applications without significant further processing, to do so would require significant upgrades in current heating equipment. Alternatively this raw pyrolysis oil canmore » be upgraded through catalytic hydrogenation to produce a bio-oil with near-negligible oxygen, water, and acidity. The focus of this work has been exploration of such upgraded fuels. The quality of upgraded fuels is affected by process conditions and there is a cost /quality tradeoff.« less

  11. Robust and durable superhydrophobic cotton fabrics for oil/water separation.

    PubMed

    Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo

    2013-08-14

    By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.

  12. Formation of trans fatty acids during the frying of chicken fillet in corn oil.

    PubMed

    Yang, Meiyan; Yang, Ying; Nie, Shaoping; Xie, Mingyong; Chen, Feng; Luo, Pengju George

    2014-05-01

    To assess effects of heated edible oils on intake of trans fatty acids (TFAs); the formation of TFAs in cooking conditions was investigated by a frying system model, in which chicken fillet was fried in a commercial corn oil at 170 °C, for 12 frying cycles. The main TFAs detected in chicken fillet were trans C18:2 fatty acids (FAs) and trans C18:3 FAs, which exhibited no significant differences among the frying cycles. Besides, the content of trans C18:1 FAs were very low in all samples on different frying cycles. The intake of TFAs was estimated to be 0.06 g/100 g when chicken fillet fried in this process was consumed. These results suggest that an ordinary frying process upon a commercial corn oil has little impact on the daily TFAs intake.

  13. Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants

    NASA Astrophysics Data System (ADS)

    Shashidhara, Y. M.; Jayaram, S. R.

    2012-12-01

    The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.

  14. Monitoring automotive oil degradation: analytical tools and onboard sensing technologies.

    PubMed

    Mujahid, Adnan; Dickert, Franz L

    2012-09-01

    Engine oil experiences a number of thermal and oxidative phases that yield acidic products in the matrix consequently leading to degradation of the base oil. Generally, oil oxidation is a complex process and difficult to elucidate; however, the degradation pathways can be defined for almost every type of oil because they mainly depend on the mechanical status and operating conditions. The exact time of oil change is nonetheless difficult to predict, but it is of great interest from an economic and ecological point of view. In order to make a quick and accurate decision about oil changes, onboard assessment of oil quality is highly desirable. For this purpose, a variety of physical and chemical sensors have been proposed along with spectroscopic strategies. We present a critical review of all these approaches and of recent developments to analyze the exact lifetime of automotive engine oil. Apart from their potential for degradation monitoring, their limitations and future perspectives have also been investigated.

  15. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomila L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions

    PubMed Central

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-01-01

    The chamazulene and α-(−)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(−)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011–2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L−1), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(−)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L−1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(−)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L−1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and α-(−)-bisabolol under normal and heat stress conditions. PMID:28231151

  16. Processes and Parameters Controlling the Extent of Methanogenic Conditions in the Unsaturated Zone of a Crude Oil Spill Site

    NASA Astrophysics Data System (ADS)

    Molins, S.; Mayer, K.

    2007-12-01

    Gas concentrations measured in the vadose zone at a crude oil spill site near Bemidji, MN, show that a large area near the oil body is currently dominated by methanogenic conditions. Away from the oil body methane concentrations decrease as it is degraded by methanotrophic bacteria under aerobic conditions. Numerical simulations have been conducted to quantify the contributions of the relevant transport and reaction processes to the production and attenuation of methane in the vadose zone. Methane is generated in the vadose zone by anaerobic degradation of oil and is also added by fluxes from the capillary fringe and the saturated zone. Gas diffusion and advection contribute to the transport of methane in the lateral direction and towards the ground surface. Attenuation of methane concentrations occurs through aerobic oxidation in the presence of methanotrophic bacteria. Critical parameters were varied within bounds provided by field data and previous studies. Simulation results confirm that the layered sediment structure present at the site plays a significant role in explaining the observed distribution of gases in the vadose zone. The presence of a low permeability lens in the area upgradient from the source results in higher moisture contents, limiting diffusion of oxygen into the zone of methane production, and contributes to the spread of methane. Diffusion was identified as the most significant transport mechanism for gases in the vadose zone. However, field-observed zones of depleted and enriched N2 and Ar concentrations could only be explained by the development of advective fluxes induced by reactive processes (methanogenesis and methanotrophy). The zones of gas production are characterized by slightly increased total gas pressures and low concentrations of N2 and Ar, while zones of gas consumption show slightly depressed total gas pressures and high concentrations of N2 and Ar. The simulations suggest that the advective flux that develops between these zones contributes up to 15% of the total methane flux.

  17. Effect of microwave- and microwave-convection drying conditions on the total soluble phenolic content of 2-phase olive mill waste

    USDA-ARS?s Scientific Manuscript database

    The California olive oil industry produces tons of 2-phase olive mill waste (2POMW) every year as a byproduct of the olive oil milling process. 2POMW is rich in health-promoting phenolic compounds, but it is greater than 60% moisture (wet basis) in its native form and thus expensive to store and tr...

  18. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  19. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin

    PubMed Central

    2011-01-01

    Background Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated. Results The highest catalytic activity was achieved with a 96.1% esterification rate, and the catalyst can be reused three times with little deactivation under optimized conditions. Biodiesel production from Jatropha oil was studied under such conditions. It was found that 96.3% biodiesel yield from non-pretreated Jatropha oil with high-acid value (12.7 mg KOH/g) could be achieved. Conclusions The catalyst can be easily separated for reuse. This single-step process could be a potential route for biodiesel production from high-acid value oil by simplifying the procedure and reducing costs. PMID:22145867

  20. Biodiesel Production: Utilization of Loofah Sponge to Immobilize Rhizopus chinensis CGMCC #3.0232 Cells as a Whole-Cell Biocatalyst.

    PubMed

    He, Qiyang; Xia, Qianjun; Wang, Yuejiao; Li, Xun; Zhang, Yu; Hu, Bo; Wang, Fei

    2016-07-28

    Rhizopus chinensis cells immobilized on loofah (Luffa cylindrica) sponges were used to produce biodiesel via the transesterification of soybean oil. In whole-cell immobilization, loofah sponge is considered to be a superior alternative to conventional biomass carriers because of its biodegradable and renewable properties. During cell cultivation, Rhizopus chinensis mycelia can spontaneously and firmly adhere to the surface of loofah sponge particles. The optimal conditions for processing 9.65 g soybean oil at 40°C and 180 rpm using a 3:1 methanol-to-oil molar ratio were found to be 8% cell addition and 3-10% water content (depending on the oil's weight). Under optimal conditions, an over 90% methyl ester yield was achieved after the first reaction batch. The operational stability of immobilized Rhizopus chinensis cells was assayed utilizing a 1:1 methanol-to-oil molar ratio, thus resulting in a 16.5-fold increase in half-life when compared with immobilized cells of the widely studied Rhizopus oryzae. These results suggest that transesterification of vegetable oil using Rhizopus chinensis whole cells immobilized onto loofah sponge is an effective approach for biodiesel production.

  1. A method for simulating the entire leaking process and calculating the liquid leakage volume of a damaged pressurized pipeline.

    PubMed

    He, Guoxi; Liang, Yongtu; Li, Yansong; Wu, Mengyu; Sun, Liying; Xie, Cheng; Li, Feng

    2017-06-15

    The accidental leakage of long-distance pressurized oil pipelines is a major area of risk, capable of causing extensive damage to human health and environment. However, the complexity of the leaking process, with its complex boundary conditions, leads to difficulty in calculating the leakage volume. In this study, the leaking process is divided into 4 stages based on the strength of transient pressure. 3 models are established to calculate the leaking flowrate and volume. First, a negative pressure wave propagation attenuation model is applied to calculate the sizes of orifices. Second, a transient oil leaking model, consisting of continuity, momentum conservation, energy conservation and orifice flow equations, is built to calculate the leakage volume. Third, a steady-state oil leaking model is employed to calculate the leakage after valves and pumps shut down. Moreover, sensitive factors that affect the leak coefficient of orifices and volume are analyzed respectively to determine the most influential one. To validate the numerical simulation, two types of leakage test with different sizes of leakage holes were conducted from Sinopec product pipelines. More validations were carried out by applying commercial software to supplement the experimental insufficiency. Thus, the leaking process under different leaking conditions are described and analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Integrating multi-omics analyses of Nonomuraea dietziae to reveal the role of soybean oil in [(4'-OH)MeLeu]4-CsA overproduction.

    PubMed

    Liu, Huanhuan; Huang, Di; Jin, Lina; Wang, Cheng; Liang, Shaoxiong; Wen, Jianping

    2017-07-14

    Nonomuraea dietziae is a promising microorganism to mediate the region-specific monooxygenation reaction of cyclosporine A (CsA). The main product [(4'-OH)MeLeu] 4 -CsA possesses high anti-HIV/HCV and hair growth-stimulating activities while avoiding the immunosuppressive effect of CsA. However, the low conversion efficiency restricts the clinical application. In this study, the production of [(4'-OH)MeLeu] 4 -CsA was greatly improved by 55.6% from 182.8 to 284.4 mg/L when supplementing soybean oil into the production medium, which represented the highest production of [(4'-OH)MeLeu] 4 -CsA so far. To investigate the effect of soybean oil on CsA conversion, some other plant oils (corn oil and peanut oil) and the major hydrolysates of soybean oil were fed into the production medium, respectively. The results demonstrated that the plant oils, rather than the hydrolysates, could significantly improve the [(4'-OH)MeLeu] 4 -CsA production, suggesting that soybean oil might not play its role in the lipid metabolic pathway. To further unveil the mechanism of [(4'-OH)MeLeu] 4 -CsA overproduction under the soybean oil condition, a proteomic analysis based on the two-dimensional gel electrophoresis coupled with MALDI TOF/TOF mass spectrometry was implemented. The results showed that central carbon metabolism, genetic information processing and energy metabolism were significantly up-regulated under the soybean oil condition. Moreover, the gas chromatography-mass spectrometry-based metabolomic analysis indicated that soybean oil had a great effect on amino acid metabolism and tricarboxylic acid cycle. In addition, the transcription levels of cytochrome P450 hydroxylase (CYP) genes for CsA conversion were determined by RT-qPCR and the results showed that most of the CYP genes were up-regulated under the soybean oil condition. These findings indicate that soybean oil could strengthen the primary metabolism and the CYP system to enhance the mycelium growth and the monooxygenation reaction, respectively, and it will be a guidance for the further metabolic engineering of this strain.

  3. Production and characterization of hydrophobic zinc borate by using palm oil

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-11-01

    Zinc borate (ZB) was synthesized using zinc oxide, boric acid synthesized from colemanite, and reference ZB as seed. The effects of reaction parameters such as reaction time, reactant ratio, and seed ratio on its yield were examined. Then, the effects of palm oil with solvents (isopropyl alcohol (IPA), ethanol, and methanol) added to the reaction on its hydrophobicity were explored. Reactions were carried out under determined reaction conditions with magnetically and mechanically stirred systems. The produced ZB was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and measurements of contact angle identified hydrophobicity. The results showed that hydrophobic ZB was successfully produced under determined reaction conditions. The change of process parameters influenced its yield and the usage of palm oil provided hydrophobicity.

  4. GIS-mapping of environmental assessment of the territories in the region of intense activity for the oil and gas complex for achievement the goals of the Sustainable Development (on the example of Russia)

    NASA Astrophysics Data System (ADS)

    Yermolaev, Oleg

    2014-05-01

    The uniform system of complex scientific-reference ecological-geographical should act as a base for the maintenance of the Sustainable Development (SD) concept in the territories of the Russian Federation subjects or certain regions. In this case, the assessment of the ecological situation in the regions can be solved by the conjugation of the two interrelated system - the mapping and the geoinformational. The report discusses the methodological aspects of the Atlas-mapping for the purposes of SD in the regions of Russia. The Republic of Tatarstan viewed as a model territory where a large-scale oil-gas complex "Tatneft" PLC works. The company functions for more than 60 years. Oil fields occupy an area of more than 38 000 km2; placed in its territory about 40 000 oil wells, more than 55 000 km of pipelines; more than 3 billion tons of oil was extracted. Methods for to the structure and requirements for the Atlas's content were outlined. The approaches to mapping of "an ecological dominant" of SD conceptually substantiated following the pattern of a large region of Russia. Several trends of thematically mapping were suggested to be distinguished in the Atlas's structure: • The background history of oil-fields mine working; • The nature preservation technologies while oil extracting; • The assessment of natural conditions of a humans vital activity; • Unfavorable and dangerous natural processes and phenomena; • The anthropogenic effect and environmental surroundings change; • The social-economical processes and phenomena. • The medical-ecological and geochemical processes and phenomena; Within these groups the other numerous groups can distinguished. The maps of unfavorable and dangerous processes and phenomena subdivided in accordance with the types of processes - of endogenous and exogenous origin. Among the maps of the anthropogenic effects on the natural surroundings one can differentiate the maps of the influence on different nature's spheres - atmosphere, hydrosphere, lithosphere, biosphere, etc. In this way, all thematic groups brought together into four main sections: • The introduction (the maps of a general condition and social-economical state, a region's rating in Republic; • The components of natural, social-economics systems that form the conditions for the ecological situations; • The integrated maps of exertion and change of the environment; • The strategy to reach an ecological equilibrium. The following data confirm that: more than 200 electronic analytical, complex and synthetic maps; more than 1000 small rivers basins, 6000 landscapes areas, 500 anthropogenic pollutions source, etc. The extensive information, richness and diversity of the maps content, objective indices used in the maps, open the door to wide opportunities to apply different methods of cartography analysis comprising both usual visional one and the geographical constructions, cartometry statistical data treatment, respectively. The methods of mathematical-mapping and computer modeling presume to compute spatial correlations and mutual conformity of phenomena and to estimate the homogeneity of the ecological conditions, to reveal the leading factors of distribution and phenomena and processes development using the means of multidimensional statistical analysis.

  5. Transesterification of coconut oil for FAME production using ultrasound

    NASA Astrophysics Data System (ADS)

    Supriadi, Eko; Marlinda, Lenny; Prajitno, Danawati Hari; Mahfud, Mahfud

    2017-05-01

    To overcome energy crisis, the vegetable oils-derived biofuel can be chosen as an alternative to petroleum-based diesel. The transesterification of coconut oil in methanol with K/γ-Al2O3 catalyst using ultrasound-assisted to produce fatty acid methyl ester (FAME) as one of type biofuel was studied. The reaction occurred in batch reactor at a 9 : 1 molar ratio of methanol to coconut oil. The following reaction conditions were used in the catalytic test : concentration of catalyst to oil of 0.5, 1.0, 1.5, 2.0, and 2.5%, the reaction time of 10, 20, 30, 60, 90, 120, and 150 s, and the frequency ultrasonication of 20 and 40 KHz. At first, the preparation of K/γ-Al2O3 catalyst was done and followed by transesterification process. After reaction, the phase separation and purification from impurities were done. Finally, FAME was analized based on this parameters, i.e., yield, density, viscosity, and flash point. FAME yield of 93.76% was obtained at the frequency ultrasonication of 40 kHz with K/γ-Al2O3 catalyst concentration to oil of 2.5 wt.% for 150 s. It's the best conditions for FAME production by transesterification of coconut oil using ultrasound-assisted.

  6. Recent advances in petroleum microbiology.

    PubMed

    Van Hamme, Jonathan D; Singh, Ajay; Ward, Owen P

    2003-12-01

    Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H(2)S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.

  7. Recent Advances in Petroleum Microbiology

    PubMed Central

    Van Hamme, Jonathan D.; Singh, Ajay; Ward, Owen P.

    2003-01-01

    Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H2S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments. PMID:14665675

  8. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.

    PubMed

    Xu, Xingmin; Zhang, Changsen; Liu, Yonggang; Zhai, Yunpu; Zhang, Ruiqin

    2013-10-01

    Two-step catalytic hydrodeoxygenation (HDO) of fast pyrolysis oil was investigated for translating pyrolysis oil to transportation grade hydrocarbon liquid fuels. At the first mild HDO step, various organic solvents were employed to promote HDO of bio-oil to overcome coke formation using noble catalyst (Ru/C) under mild conditions (300 °C, 10 MPa). At the second deep HDO step, conventional hydrogenation setup and catalyst (NiMo/Al2O3) were used under severe conditions (400 °C, 13 MPa) for obtaining hydrocarbon fuel. Results show that the phenomenon of coke formation is effectively eliminated, and the properties of products have been significantly improved, such as oxygen content decreases from 48 to 0.5 wt% and high heating value increases from 17 to 46 MJ kg(-1). GC-MS analysis indicates that the final products include C11-C27 aliphatic hydrocarbons and aromatic hydrocarbons. In short, the fast pyrolysis oils were successfully translated to hydrocarbon liquid fuels using a two-step catalytic HDO process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment.

    PubMed

    Bao, Mu-tai; Wang, Li-na; Sun, Pei-yan; Cao, Li-xin; Zou, Jie; Li, Yi-ming

    2012-06-01

    Ochrobactrum sp. N1, Brevibacillus parabrevis N2, B. parabrevis N3 and B. parabrevis N4 were selected when preparing a mixed bacterial consortium based on the efficiency of crude oil utilization. A crude oil degradation rate of the N-series microbial consortium reached upwards of 79% at a temperature of 25 °C in a 3.0% NaCl solution in the shake flask trial. In the mesocosm experiment, a specially designed device was used to simulate the marine environment. The internal tank size was 1.5 m (L)×0.8 m (W)×0.7 m (H). The microbial growth conditions, nutrient utilization and environmental factors were thoroughly investigated. Over 51.1% of the crude oil was effectively removed from the simulated water body. The escalation process (from flask trials to the mesocosm experiment), which sought to represent removal under conditions more similar to the field, proved the high efficiency of using N-series bacteria in crude oil degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Design and preparation of plant oil-based polymers and their applications

    NASA Astrophysics Data System (ADS)

    Ahn, Byung-Jun Kollbe

    Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst with excellent product yields for epoxide ring opening of oleochemicals for a greener synthetic method of biopolyols, and excellent environmental benefits with life cycle assessment of syntheses. Those functionalized iron/iron oxide core shell nanoparticles catalysts has great potential for biomedical engineering process with the highest magnetization of Fe(0) core among all metals.

  11. Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: process optimization and the immobilized system stability.

    PubMed

    Ognjanovic, Nevena; Bezbradica, Dejan; Knezevic-Jugovic, Zorica

    2009-11-01

    The feasibility of using the commercial immobilized lipase from Candida antarctica (Novozyme 435) to synthesize biodiesel from sunflower oil in a solvent-free system has been proved. Using methanol as an acyl acceptor and the response surface methodology as an optimization technique, the optimal conditions for the transesterification has been found to be: 45 degrees C, 3% of enzyme based on oil weight, 3:1 methanol to oil molar ratio and with no added water in the system. Under these conditions, >99% of oil conversion to fatty acid methyl ester (FAME) has been achieved after 50 h of reaction, but the activity of the immobilized lipase decreased markedly over the course of repeated runs. In order to improve the enzyme stability, several alternative acyl acceptors have been tested for biodiesel production under solvent-free conditions. The use of methyl acetate seems to be of great interest, resulting in high FAME yield (95.65%) and increasing the half-life of the immobilized lipase by about 20.1 times as compared to methanol. The reaction has also been verified in the industrially feasible reaction system including both a batch stirred tank reactor and a packed bed reactor. Although satisfactory performance in the batch stirred tank reactor has been achieved, the kinetics in a packed bed reactor system seems to have a slightly better profile (93.6+/-3.75% FAME yield after 8-10 h), corresponding to the volumetric productivity of 48.5 g/(dm(3) h). The packed bed reactor has operated for up to 72 h with almost no loss in productivity, implying that the proposed process and the immobilized system could provide a promising solution for the biodiesel synthesis at the industrial scale.

  12. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of each of these. Results show that the duration; temperature; pressure; and the interactions between these significantly affect the extent of carbonation. Reactions carried out for at least 4 hours show significantly more carbonation than those under supercritical conditions for 2 hours or less. However, reacting for 24 hours does not show a significant increase in the extent of reaction, indicating that the reaction has reached equilibrium within a few hours. Maximum carbonation occurred within 4 hours, at higher temperatures and pressures of 80°C and 100 bar although results also show that there is a significant amount of carbonation achieved within 30 minutes, at 40°C and 70 bar. The magnitude of the CO2 sequestration achieved was sufficient that it could lower CO2 emissions by up to 30 kg CO2 /bbl, thereby bringing the emissions from oil shale processing in line with those from conventional oil extraction methods. The determination of optimum conditions to allow for: maximum carbonation, oil recovery and sufficient calcination, is also of importance and is currently under investigation.

  13. Intermetallic Nickel-Titanium Alloys for Oil-Lubricated Bearing Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Pepper, S. V.; Noebe, R.; Hull, D. R.; Glennon, G.

    2009-01-01

    An intermetallic nickel-titanium alloy, NITINOL 60 (60NiTi), containing 60 wt% nickel and 40 wt% titanium, is shown to be a promising candidate material for oil-lubricated rolling and sliding contact applications such as bearings and gears. NiTi alloys are well known and normally exploited for their shape memory behavior. When properly processed, however, NITINOL 60 exhibits excellent dimensional stability and useful structural properties. Processed via high temperature, high-pressure powder metallurgy techniques or other means, NITINOL 60 offers a broad combination of physical properties that make it unique among bearing materials. NITINOL 60 is hard, electrically conductive, highly corrosion resistant, less dense than steel, readily machined prior to final heat treatment, nongalling and nonmagnetic. No other bearing alloy, metallic or ceramic encompasses all of these attributes. Further, NITINOL 60 has shown remarkable tribological performance when compared to other aerospace bearing alloys under oil-lubricated conditions. Spiral orbit tribometer (SOT) tests were conducted in vacuum using NITINOL 60 balls loaded between rotating 440C stainless steel disks, lubricated with synthetic hydrocarbon oil. Under conditions considered representative of precision bearings, the performance (life and friction) equaled or exceeded that observed with silicon nitride or titanium carbide coated 440C bearing balls. Based upon this preliminary data, it appears that NITINOL 60, despite its high titanium content, is a promising candidate alloy for advanced mechanical systems requiring superior and intrinsic corrosion resistance, electrical conductivity and nonmagnetic behavior under lubricated contacting conditions.

  14. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    NASA Astrophysics Data System (ADS)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  15. Effect of Temperature and Process on Quantity and Composition of Laboratory-generated Bitumen Emissions.

    PubMed

    Bolliet, Christophe; Kriech, Anthony J; Juery, Catherine; Vaissiere, Mathieu; Brinton, Michael A; Osborn, Linda V

    2015-01-01

    In this study we investigated the impact of temperature on emissions as related to various bitumen applications and processes used in commercial products. Bitumen emissions are very complex and can be influenced in quantity and composition by differences in crude source, refining processes, application temperature, and work practices. This study provided a controlled laboratory environment to study five bitumen test materials from three European refineries; three paving grade, one used for primarily roofing and some paving applications, and one oxidized industrial specialty bitumen. Emissions were generated at temperatures between 140°C and 230°C based on typical application temperatures of each product. Emissions were characterized by aerodynamic particle size, total organic matter (TOM), simulated distillation, 40 individual PACs, and fluorescence (FL-PACs) spectroscopy. Results showed that composition of bitumen emissions is influenced by temperature under studied experimental conditions. A distinction between the oxidized bitumen with flux oil (industrial specialty bitumen) and the remaining bitumens was observed. Under typical temperatures used for paving (150°C-170°C), the TOM and PAC concentrations in the emissions were low. However, bitumen with flux oil produced significantly higher emissions at 230°C, laden with high levels of PACs. Flux oil in this bitumen mixture enhanced release of higher boiling-ranged compounds during application conditions. At 200°C and below, concentrations of 4-6 ring PACs were ≤6.51 μg/m(3) for all test materials, even when flux oil was used. Trends learned about emission temperature-process relationships from this study can be used to guide industry decisions to reduce worker exposure during processing and application of hot bitumen.

  16. Antimicrobial activity of olive oil, vinegar, and various beverages against foodborne pathogens.

    PubMed

    Medina, Eduardo; Romero, Concepción; Brenes, Manuel; De Castro, Antonio

    2007-05-01

    The survival of foodborne pathogens in aqueous extracts of olive oil, virgin olive oil, vinegar, and several beverages was evaluated. Vinegar and aqueous extracts of virgin olive oil showed the strongest bactericidal activity against all strains tested. Red and white wines also killed most strains after 5 min of contact, black and green tea extracts showed weak antimicrobial activity under these conditions, and no effect was observed for the remaining beverages (fruit juices, Coca-Cola, dairy products, coffee, and beer). The phenolic compound content of the aqueous olive oil and virgin olive oil extracts could explain their antibacterial activity, which was also confirmed in mayonnaises and salads used as food models. Virgin olive oil in mayonnaises and salads reduced the counts of inoculated Salmonella Enteritidis and Listeria monocytogenes by approximately 3 log CFU/g. Therefore, olive oil could be a hurdle component in certain processed foods and exert a protective effect against foodborne pathogens when contaminated foods are ingested.

  17. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.

  18. Pore-scale Evaluation of Immiscible Fluid Characteristics and Displacements: Comparison Between Ambient- and Supercritical-Condition Experimental Studies

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.

    2015-12-01

    The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the underlying physics of trapping and mobilization of nonwetting phase fluids.

  19. Experiment Research of Microbial Flooding Injected Capacity and Injected Volume

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Zhao, Yang; Tang, Qinghua; Xie, Ximing

    2018-01-01

    Strains of microbial enhanced oil recovery technology is the use of crude oil directly in growth and the same time the metabolites of itself, so as to enhance oil recovery. Experimental study on paper through a number of data analysis. The growth and metabolism of three kinds of oil producing bacteria in the core are determined, and the corresponding growth curve is obtained. The parameter sensitivity analysis of the microorganism flooding process by homogeneous core is studied, and the influence of injection capacity and injection volume on the oil displacement effect is studied. The same permeability, water, temperature and other conditions, microbial injection pressure has a certain degree of increase than water flooding. Injection volume depends on the actual input-output ratio, quantity is 0.3PV is more reasonable.

  20. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning, process source, reference method, refuse, residual fuel oil, solid fuel, stack, standard conditions...

  1. 40 CFR 49.129 - Rule for limiting emissions of sulfur dioxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, open burning, process source, reference method, refuse, residual fuel oil, solid fuel, stack, standard conditions...

  2. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction.

    PubMed

    Gu, Ling-Biao; Pang, Hui-Li; Lu, Ke-Ke; Liu, Hua-Min; Wang, Xue-De; Qin, Guang-Yong

    2017-04-01

    Red pepper seeds account for 450-500 g kg -1 of the total pepper weight and are often discarded as waste. In this study, process optimization and characterization of fragrant oil from roasted red pepper seed extracted by subcritical butane extraction were carried out. The optimal conditions of extraction were a temperature of 74.61 °C, a time of 68.65 min and a liquid/solid ratio of 30.24:1. The oil had a refractive index (25 °C) of 1.471, a relative density of 0.900, an acid value of 1.421 mg g -1 oil, an iodine value of 127.035 g per 100 g, a saponification value of 184.060 mg KOH g -1 , an unsaponifiable matter content of 12.400 g kg -1 , a peroxide value of 2.465 meq. O 2 kg -1 and a viscosity of 52.094 cP. The main fatty acids in the oil were linoleic acid (72.95%) followed by palmitic acid (11.43%) and oleic acid (10.00%). The oil showed desirable thermal and oxidative stability. A total of 19 volatile compounds, mostly aldehydes and alkenes, were identified from the oil. The results indicated that the method is appropriate for the preparation of fragrant red pepper seed oil, and the oil is suitable for used as edible oil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Unusual catalysts from molasses: synthesis, properties and application in obtaining biofuels from algae.

    PubMed

    Samorì, Chiara; Torri, Cristian; Fabbri, Daniele; Falini, Giuseppe; Faraloni, Cecilia; Galletti, Paola; Spera, Silvia; Tagliavini, Emilio; Torzillo, Giuseppe

    2012-08-01

    Acid catalysts were prepared by sulfonation of carbon materials obtained from the pyrolysis of sugar beet molasses, a cheap, viscous byproduct in the processing of sugar beets into sugar. Conditions for the pyrolysis of molasses (temperature and time) influenced catalyst performance; the best combination came from pyrolysis at low temperature (420 °C) for a relatively long time (8-15 h), which ensured better stability of the final material. The most effective molasses catalyst was highly active in the esterification of fatty acids with methanol (100 % yield after 3 h) and more active than common solid acidic catalysts in the transesterification of vegetable oils with 25-75 wt % of acid content (55-96 % yield after 8 h). A tandem process using a solid acid molasses catalyst and potassium hydroxide in methanol was developed to de-acidificate and transesterificate algal oils from Chlamydomonas reinhardtii, Nannochloropsis gaditana, and Phaeodactylum tricornutum, which contain high amounts of free fatty acids. The amount of catalyst required for the de-acidification step was influenced by the chemical composition of the algal oil, thus operational conditions were determined not only in relation to free fatty acids content in the oil, but according to the composition of the lipid extract of each algal species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, andmore » ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.« less

  5. Effects of sour crude oil on fatigue properties of steel plates for shipbuilding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, H.; Kobayashi, J.; Ishikawa, T.

    1994-12-31

    The concentration of diffusible hydrogen introduced into steel was measured, and fatigue crack growth tests and fatigue life tests were carried out in sour crude oil containing a high concentration of hydrogen sulfide and under electrolytic hydrogen-charging conditions in neutral solution, using a high strength steel produced by the thermo-mechanical control process (TMCP) and a mild steel which are steels for hull plates. Comparison of the results demonstrated that a very small amount of hydrogen such as that introduced into steel from sour crude oil under atmospheric pressure accelerated the fatigue crack growth in the high {Delta}K regime and shortenedmore » the fatigue life in the high stress range region, but did not shorten the fatigue life in the low stress region. The electrolytic hydrogen-charging condition appeared to be appropriate as a fatigue-crack-growth test environment to simulate sour crude oil. The deterioration of fatigue characteristics of the TMCP high strength steel was similar with that of the mild steel.« less

  6. Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production.

    PubMed

    Andrade, Thalles A; Errico, Massimiliano; Christensen, Knud V

    2017-11-01

    The identification of the influence of the reaction parameters is of paramount importance when defining a process design. In this work, non-edible castor oil was reacted with methanol to produce a possible component for biodiesel blends, using liquid enzymes as the catalyst. Temperature, alcohol-to-oil molar ratio, enzyme and added water contents were the reaction parameters evaluated in the transesterification reactions. The optimal conditions, giving the optimal final FAME yield and FFA content in the methyl ester-phase was identified. At 35°C, 6.0 methanol-to-oil molar ratio, 5wt% of enzyme and 5wt% of water contents, 94% of FAME yield and 6.1% of FFA in the final composition were obtained. The investigation was completed with the analysis of the component profiles, showing that at least 8h are necessary to reach a satisfactory FAME yield together with a minor FFA content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica.

    PubMed

    Samavati, Vahid; Adeli, Mostafa

    2014-01-30

    The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    PubMed Central

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  9. Chemical composition and functional characterisation of commercial pumpkin seed oil.

    PubMed

    Procida, Giuseppe; Stancher, Bruno; Cateni, Francesca; Zacchigna, Marina

    2013-03-30

    Pumpkin (Cucurbita pepo L.) seed oil is a common product in Slovenia, Hungary and Austria and is considered a preventive agent for various pathologies, particularly prostate diseases. These properties are related to its high content of carotenoids and liposoluble vitamins. In this study the carotenoid (lutein and zeaxanthin), vitamin E (α- and γ-tocopherol) and fatty acid contents of 12 samples of commercial pumpkin seed oil were investigated together with the composition of the volatile fraction resulting from the roasting process. The aromatic profile obtained from the commercial samples was directly related to the intensity of the roasting process of the crushed pumpkin seeds. The roasting temperature played a crucial role in the concentrations of volatile substances originating from Strecker degradation, lipid peroxidation and Maillard reaction. The findings suggest that high-temperature roasting leads to the production of an oil with intense aromatic characteristics, while mild conditions, generally employed to obtain an oil with professed therapeutic characteristics, lead to a product with minor characteristic pumpkin seed oil aroma. The nutraceutical properties of the product are confirmed by the high content of α- and γ-tocopherol and carotenoids. © 2012 Society of Chemical Industry.

  10. Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

    PubMed

    Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E

    2014-10-01

    Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Field establishment of fourwing saltbush in processed oil shale and disturbed native soil as influenced by vesicular-arbuscular mycorrhizae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, C.A.; McKell, C.M.

    1984-04-30

    Seedlings of fourwing saltbush (Atriplex canescens (Pursh) Nutt.) were inoculated with indigenous vesicular-arbuscular mycorrhizal (VAM) fungi in a containerized system and transplanted into processed oil shale and disturbed native soil in a semiarid rangeland environment in northwestern Colorado. After two growing seasons in the field, plants inoculated with VAM had greater aboveground biomass, cover, and height than noninoculated plants. Mycorrhizal plants were more effective in the uptake of water and phosphorus. Infection levels of inoculated plants were greatly reduced in processed shale (from 13.0 at outplanting to 3.8 at harvest), but functional VAM associations could be found after two growingmore » seasons. Results indicate that VAM help make processed oil shale a more tractable medium for the establishment of plants representative of later successional stages by allowing these plants to make effective use of the natural resources that are limiting under conditions of high stress. 39 references, 1 figure.« less

  12. Optimization of Machining Parameters of Milling Operation by Application of Semi-synthetic oil based Nano cutting Fluids

    NASA Astrophysics Data System (ADS)

    Giri Prasad, M. J.; Abhishek Raaj, A. S.; Rishi Kumar, R.; Gladson, Frank; M, Gautham

    2016-09-01

    The present study is concerned with resolving the problems pertaining to the conventional cutting fluids. Two samples of nano cutting fluids were prepared by dispersing 0.01 vol% of MWCNTs and a mixture of 0.01 vol% of MWCNTs and 0.01 vol% of nano ZnO in the soluble oil. The thermophysical properties such as the kinematic viscosity, density, flash point and the tribological properties of the prepared nano cutting fluid samples were experimentally investigated and were compared with those of plain soluble oil. In addition to this, a milling process was carried by varying the process parameters and by application of different samples of cutting fluids and an attempt was made to determine optimal cutting condition using the Taguchi optimization technique.

  13. Regeneration and reuse waste from an edible oil refinery.

    PubMed

    Boukerroui, Abdelhamid; Belhocine, Lydia; Ferroudj, Sonia

    2017-08-21

    A spent bleaching earth (SBE) from an edible oil refinery has been regenerated by thermal processing in oven, followed by washing with a cold solution of hydrochloric acid (1M). Optimal regeneration conditions have been controlled by decolorization tests of degummed and neutralized soybean oil. Optimal values of treatment (temperature 350°C, carbonization time 01 h, and HCl concentration 1M) gave a very efficient material. After bleaching oil by regenerated spent bleaching earth (RSBE), the chlorophyll-a and β-carotenes contained in crude edible oil and observed respectively at 430, 454, and 483 nm, value of λ max , are very much decreased. The results obtained after decolorization of edible oil by RSBE material indicate, that, during the process, the bleaching oil did not undergo any changes in the free fatty acid content. The peroxide value (PV) was reduced from 4.2 to 1.8 meq O 2 /kg, and the color has been improved (Lovibond color yellow/red: from 50/0.5 to 2.7/0.3, respectively). The RSBE material obtained was characterized by several techniques (FTIR, SEM). The results show that the heat treatment did not affect the mineral structure of RSBE, and the regenerated material recovered its porous structure.

  14. Satellite monitoring of sea surface pollution

    NASA Technical Reports Server (NTRS)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  15. Optimization of Banana Juice Fermentation for the Production of Microbial Oil †

    PubMed Central

    Vega, Esther Z.; Glatz, Bonita A.; Hammond, Earl G.

    1988-01-01

    Apiotrichum curvatum ATCC 20509 (formerly Candida curvata D), a lipid-accumulating yeast, was grown in banana juice. The optimum conditions for biomass production in shake flasks were 30°C growth temperature, efficient aeration, a juice concentration of 25%, and preliminary heat treatment at less than sterilization conditions. Under controlled conditions in a fermentor, 20% banana juice was optimum. High concentrations of yeast extract (0.3%) increased biomass production by 40% but decreased oil production by 30%. A lower yeast extract concentration (0.05%) increased biomass production by 2% and oil production by 25%. The best growth and oil production were observed when asparagine (1.4 g/liter) and mineral salts were added to the banana juice. The addition of minerals seemed to improve the utilization of carbon. Growth inhibition was observed when the fermentor was aerated with pure oxygen, even when additional nutrients were present. A fed-batch process permitted the juice concentration to be increased from 15 to 82%; biomass accumulation was three times higher than in batch fermentations. However, the cellular lipid content was only 30% of dry weight, and chemical oxygen demand reduction was slow and inefficient. PMID:16347584

  16. Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil.

    PubMed

    Abolghasemi Mahani, A; Motahari, S; Mohebbi, A

    2018-04-01

    Oil spills are the most important threat to the sea ecosystem. The present study is an attempt to investigate the effects of sol-gel parameters on seawater decontamination from crude oil by use of flexible silica aerogel. To this goal, methyltrimethoxysilane (MTMS) based silica aerogels were prepared by two-step acid-base catalyzed sol-gel process, involving ambient pressure drying (APD) method. To investigate the effects of sol-gel parameters, the aerogels were prepared under two different acidic and basic pH values (i.e. 4 and 8) and varied ethanol/MTMS molar ratios from 5 to 15. The adsorption capacity of the prepared aerogels was evaluated for two heavy and light commercial crude oils under multiple adsorption-desorption cycles. To reduce process time, desorption cycles were carried out by using roll milling for the first time. At optimum condition, silica aerogels are able to uptake heavy and light crude oils with the order of 16.7 and 13.7, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electrolysis-driven bioremediation of crude oil-contaminated marine sediments.

    PubMed

    Bellagamba, Marco; Cruz Viggi, Carolina; Ademollo, Nicoletta; Rossetti, Simona; Aulenta, Federico

    2017-09-25

    Bioremediation is an effective technology to tackle crude oil spill disasters, which takes advantage of the capacity of naturally occurring microorganisms to degrade petroleum hydrocarbons under a range of environmental conditions. The enzymatic process of breaking down oil is usually more rapid in the presence of oxygen. However, in contaminated sediments, oxygen levels are typically too low to sustain the rapid and complete biodegradation of buried hydrocarbons. Here, we explored the possibility to electrochemically manipulate the redox potential of a crude oil-contaminated marine sediment in order to establish, in situ, conditions that are conducive to contaminants biodegradation by autochthonous microbial communities. The proposed approach is based on the exploitation of low-voltage (2V) seawater electrolysis to drive oxygen generation (while minimizing chlorine evolution) on Dimensionally Stable Anodes (DSA) placed within the contaminated sediment. Results, based on a laboratory scale setup with chronically polluted sediments spiked with crude oil, showed an increased redox potential and a decreased pH in the vicinity of the anode of 'electrified' treatments, consistent with the occurrence of oxygen generation. Accordingly, hydrocarbons biodegradation was substantially accelerated (up to 3-times) compared to 'non-electrified' controls, while sulfate reduction was severely inhibited. Intermittent application of electrolysis proved to be an effective strategy to minimize the energy requirements of the process, without adversely affecting degradation performance. Taken as a whole, this study suggests that electrolysis-driven bioremediation could be a sustainable technology for the management of contaminated sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Investigation of foam flow in a 3D printed porous medium in the presence of oil.

    PubMed

    Osei-Bonsu, Kofi; Grassia, Paul; Shokri, Nima

    2017-03-15

    Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process. Copyright © 2016. Published by Elsevier Inc.

  19. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration.

    PubMed

    Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi

    2017-12-01

    Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR)

    PubMed Central

    Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature. PMID:29489897

  1. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).

    PubMed

    Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature.

  2. Sustainability Efforts of One Oil Company in Niger Delta of Nigeria

    NASA Astrophysics Data System (ADS)

    Anosike, Charles Afam

    Environmental degradation and socioeconomic dilemma continue to stigmatize oil production in the Niger Delta of Nigeria. Sustainability programs of oil companies often determine the improvement of living conditions in the region. This explanatory qualitative case study, guided by systems thinking theory and sustainable value framework, explored practitioners' perceptions of sustainability programs to identify its impact on business and the host communities. The research question was designed to address how sustainability efforts of a single oil company in the Niger Delta contributed to the business performance and the livelihood of the local people. Research data were gathered from a sample of 20 experienced sustainability practitioners of the oil company, partnering nonprofit organizations, and community leaders through face-to-face semistructured interviews. Data were segmented and categorized. The data analysis process revealed several themes regarding the challenges and shortfalls of sustainability programs in the region. The oil company's understanding of sustainability as programs and projects focused on preserving resources for future generations was not evident in practice. Findings from the study suggested the need for improved inclusiveness of people in driving sustainability projects. Inclusive sustainability should enhance the oil company's contemplation mechanism to ensure eco-saving thinking and processes, which could result in improved quality of life and business performance in the region. The research findings underscore the need for oil multinational corporations (MNCs) to use a business lens in viewing sustainability to achieve sustainable value.

  3. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    PubMed

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  4. The development of the super-biodiesel production continuously from Sunan pecan oil through the process of reactive distillation

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti

    2016-06-01

    In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, et.al. (2008). The manufactured reactive distillation consisted of packing distillation columns equipped with a reboiler and condenser, with the prototype made of stainless steel material equipped with sigh glass. The filling column expands the contact of liquid-vapor phase so that the two reactants between methanol and oil would be converted into methyl ester and glycerol. The initial results of the study indicated that the relatively good condition is reached at the peak temperature and the base of the column of 62°C and 71°C with NaOH 2% of methanol weight as the catalyst at the feed ratio of methanol and the sunan pecan oil 4:1. The result of the performance test of the diesel engine indicated that the efficiency of the biodiesel fuel was achieved relatively good at 1.7% with 2500 rpm engine speed.

  5. Economics and siting of Fischer-Tropsch coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, J.P. Jr.; Ferreira, J.P.; Benefiel, J.

    The capital intensity and low conversion efficiency of Fischer-Tropsch synthesis makes it noncompetitive with conventional petroleum in the midterm (e.g., 5 to 10 years) under normal economic conditions. However, if crude oil prices rise to higher levels (e.g., $25 to $30/bbl), coal liquefaction processes may prove to be economical. It appears that several other processes under development may become economically attractive before Fischer-Tropsch, although Fischer-Tropsch is the only proven commercially feasible venture at present. The above statement is subject, however, to the successful demonstration and commercialization of these alternative processes. Fischer-Tropsch, as a commercially proven process, may be called uponmore » as a backup should petroleum shortages ensue, world oil prices continue to increase dramatically, and alternate coal liquefaction processes fail to fully develop.« less

  6. Cosmetic Cleansing Oil Absorption by Soft Contact Lenses in Dry and Wet Conditions.

    PubMed

    Tsukiyama, Junko; Miyamoto, Yuko; Kodama, Aya; Fukuda, Masahiko; Shimomura, Yoshikazu

    2017-09-01

    Previous reports showed that cosmetic cleansing oil for removing makeup, which contains mineral oil and surfactant, can deform some silicone hydrogel contact lenses (SHCLs) when applied directly to the lenses, although plasma-coated SHCLs (lotrafilcon A and B) were not affected. In the present study, we investigated hydrogel lenses and SHCLs in both wet and dry conditions. Several brands of hydrogel and SHCLs were immersed in a cleansing oil solution containing Sudan Black B for 5 min under wet and dry conditions. The lenses under the wet condition were simply picked up from the saline, whereas those under the dry condition were blotted with paper wipes. After immersing, the excess solution remaining on the lenses was removed by finger rubbing with a multipurpose solution. The lenses were then examined using a stereomicroscope, and their mean brightness was measured and compared. The cosmetic cleansing oil was not absorbed by the hydrogel lenses under wet or dry conditions. However, four of seven brands of SHCLs absorbed the cosmetic cleansing oil under both conditions (dry and wet), whereas asmofilcon A absorbed it only under the dry condition. Lotrafilcon B and delefilcon A did not absorb cleansing oil even under the dry condition. Hydrogel lenses resist cosmetic cleansing oil. However, SHCLs have different degrees of resistance depending on the lens material. Some SHCLs absorbed cosmetic cleansing oil more under dry conditions than under wet conditions.

  7. Biogeochemistry of anaerobic crude oil biodegradation

    NASA Astrophysics Data System (ADS)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  8. Biodiesel production methods of rubber seed oil: a review

    NASA Astrophysics Data System (ADS)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  9. Characteristics of rapeseed oil cake using nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Sokołowska, Z.; Bowanko, G.; Boguta, P.; Tys, J.; Skiba, K.

    2013-09-01

    Adsorption of nitrogen on the rapeseed oil cake and rapeseed oil cake with wheat meal extrudates was investigated. The results are presented as adsorption-desorption isotherms. The Brunauer-Emmet and Teller equation was used to analyse the experimental sorption data. To obtain estimates of the surface area and surface fractal dimension, the sorption isotherms were analyzed using the Brunauer-Emmet and Teller and Frenkel-Halsey-Hill equations. Mesopore analysis was carried out using the Dollimore and Heal method. The properties and surface characteristic of rapeseed oil cake extrudates are related to different basic properties of particular samples and duration of the extrusion process. Extrusion conditions lead to essential differences in particular products. For all kinds of rapeseed oil cakes the amount of adsorbed nitrogen was different, but for the rapeseed oil cake extrudates a large amount of adsorbed nitrogenwas observed. The average surface area of the rapeseed oil cake extrudates was about 6.5-7.0 m2 g-1, whereas it was equal to about 4.0-6.0 m2 g-1 for rapeseed oil cake with the wheat meal extrudates. In the case of non-extruded rapeseed oil cake and wheat meal, the dominant group included ca. 2 and 5 nmpores. The values of surface fractal dimension suggested that the surface of the extrudates was more homogenous than that of the raw material. Duration of the extrusion process to 80 s resulted in a decrease in the specific surface area, surface fractal dimension, and porosity of the extrudates.

  10. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].

    PubMed

    Wu, Yan; Xiao, Xin-yu; Ge, Fa-huan

    2012-02-01

    To study the extraction conditions of Sapindus mukorossi oil by Supercritical CO2 Extraction and identify its components. Optimized SFE-CO2 Extraction by response surface methodology and used GC-MS to analysie Sapindus mukorossi oil compounds. Established the model of an equation for the extraction rate of Sapindus mukorossi oil by Supercritical CO2 Extraction, and the optimal parameters for the Supercritical CO2 Extraction determined by the equation were: the extraction pressure was 30 MPa, temperature was 40 degrees C; The separation I pressure was 14 MPa, temperature was 45 degrees C; The separation II pressure was 6 MPa, temperature was 40 degrees C; The extraction time was 60 min and the extraction rate of Sapindus mukorossi oil of 17.58%. 22 main compounds of Sapindus mukorossi oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 86.59%. This process is reliable, safe and with simple operation, and can be used for the extraction of Sapindus mukorossi oil.

  11. Thermoliquefaction of palm oil fiber (Elaeis sp.) using supercritical ethanol.

    PubMed

    Oliveira, Aline L P C; Almeida, Priscila S; Campos, Maria C V; Franceschi, Elton; Dariva, Cláudio; Borges, Gustavo R

    2017-04-01

    Thermoliquefaction of palm oil fiber was investigated using supercritical ethanol as solvent. A semi-continuous laboratory scale unit was developed to investigate the effects of temperature (300-500°C), heating rate (10-30°C.min -1 ) and cracking time (10-30min) on the conversion of biomass in bio-oil. The main advantage of the proposed process is that a pure solvent is pumping through the reactor that contains the biomass, dispensing the use of biomass slurries. The yield of bio-oil ranged from 56% to 84%, depending on the experimental conditions. It was observed that an increase in working temperature led to an increase in the bio-oil production. Cracking time and heating rate variation had not shown a considerable effect on the conversion of biomass. The chemical profiles of bio-oil determined by GC/MS, indicate that at low temperature mainly sugar derivatives are produced, while at higher temperatures alcohols and phenolic are the majority compounds of the bio-oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biodiesel production using waste frying oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpe, Trupti W.; Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction tomore » select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.« less

  13. Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization

    NASA Astrophysics Data System (ADS)

    Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi

    2018-03-01

    This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.

  14. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    PubMed

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Carotene location in processed food samples measured by cryo In-SEM Raman.

    PubMed

    Lopez-Sanchez, Patricia; Schumm, Stephan; Pudney, Paul D A; Hazekamp, Johan

    2011-09-21

    Cryo In-SEM Raman has been used for the first time to localise carotene compounds in a food matrix. Raman spectra of lycopene and β-carotene have been obtained from sampling oil droplets and plant cell structures visualised with cryo-SEM in tomato and carrot based emulsions containing 5% oil. It was possible to identify the carotenoids in both the oil droplets and the cell walls. Furthermore our results gave some indication that the carotenoids were in the non-crystalline state. It has been suggested that a higher amount of carotenes solubilised into the oil phase of the food matrix would lead to a higher bioaccessibility, thus understanding the effect of processing conditions on micronutrients distribution in a food matrix might help the design of plant based food products with a better nutritional quality. This shows improved structural characterisation of the cryo-SEM with the molecular sensitivity of Raman spectroscopy as a promising approach for complex biological problems.

  16. Impacts of oil sands process water on fen plants: implications for plant selection in required reclamation projects.

    PubMed

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D

    2012-08-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Controls on the distribution of alkylphenols and BTEX in oilfield waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, J.D.; Aplin, A.C.; Larter, S.R.

    1996-10-01

    Controls on the abundance of alkylphenols and BTEX in oilfield waters are poorly understood, but are important because these species are the main dissolved pollutants in produced waters and may also be used as indicators of both the proximity and migration range of petroleum. Using (1) measurements of alkyl phenols and BTEX in oilfield waters and associated petroleums, and (b) oil/water partition coefficients under subsurface conditions we conclude that: (1) The distribution of alkylphenols and BTEX in formation waters are controlled by partition equilibrium with petroleum. Phenol and benzene typically account for 50% of total phenols and total BTEX respectively.more » (2) The concentrations of alkylphenols and BTEX in produced waters equilibriated with oil in reservoirs or in separator systems vary predictably as a function of pressure, temperature and salinity. This suggests that oil/water partition is the primary control influencing the distribution of alkylphenols and BTEX in oilfield waters and that other processes such as hydrolysis processes at the oil-water contact are secondary.« less

  18. Fabrication of durable copper plating superhydrophobic surface with improved corrosion resistance and oil-water separation properties

    NASA Astrophysics Data System (ADS)

    Zhao, Yichao; Xiao, Xinyan; Ye, Zhihao; Ji, Qiang; Xie, Wei

    2018-02-01

    A mechanical durable superhydrophobic copper-plated stainless steel mesh was successfully fabricated by an electrodeposition process and 1-octadecanethiol modification. The as-prepared superhydrophobic mesh displays water contact angle of 153° and shows excellent anti-corrosion and water-oil separation properties in the condition of 0.1 A/cm2 current density for 35 s. In comparison with bare stainless steel mesh, the corrosion current of the as-prepared superhydrophobic mesh is close to 1/6 of the former. Meanwhile, the as-prepared superhydrophobic mesh could continuously separate oil from oil-water mixtures. The separation efficiency of continuous separation is as high as 96% and shows less than 1% decrease after ten cycles.

  19. Controlled microfluidic emulsification of oil in a clay nanofluid: Role of salt for Pickering stabilization

    NASA Astrophysics Data System (ADS)

    Gholamipour-Shirazi, A.; Carvalho, M. S.; Fossum, J. O.

    2016-07-01

    Research on emulsions is driven by their widespread use in different industries, such as food, cosmetic, pharmaceutical and oil recovery. Emulsions are stabilized by suitable surfactants, polymers, solid particles or a combination of them. Microfluidic emulsification is the process of droplet formation out of two or more liquids under strictly controlled conditions, without pre-emulsification step. Microfluidic technology offers a powerful tool for investigating the properties of emulsions themselves. In this work stable oil in water emulsions were formed with hydrophilic Laponite RD® nanoparticles adsorbed at the interface of the oil phase and aqueous clay nanofluid in a T junction microfluidic chip. Emulsion stability up to at least 40 days could be observed.

  20. Modeling and Multiresponse Optimization for Anaerobic Codigestion of Oil Refinery Wastewater and Chicken Manure by Using Artificial Neural Network and the Taguchi Method

    PubMed Central

    Hemmat, Abbas; Kafashan, Jalal; Huang, Hongying

    2017-01-01

    To study the optimum process conditions for pretreatments and anaerobic codigestion of oil refinery wastewater (ORWW) with chicken manure, L9 (34) Taguchi's orthogonal array was applied. The biogas production (BGP), biomethane content (BMP), and chemical oxygen demand solubilization (CODS) in stabilization rate were evaluated as the process outputs. The optimum conditions were obtained by using Design Expert software (Version 7.0.0). The results indicated that the optimum conditions could be achieved with 44% ORWW, 36°C temperature, 30 min sonication, and 6% TS in the digester. The optimum BGP, BMP, and CODS removal rates by using the optimum conditions were 294.76 mL/gVS, 151.95 mL/gVS, and 70.22%, respectively, as concluded by the experimental results. In addition, the artificial neural network (ANN) technique was implemented to develop an ANN model for predicting BGP yield and BMP content. The Levenberg-Marquardt algorithm was utilized to train ANN, and the architecture of 9-19-2 for the ANN model was obtained. PMID:29441352

  1. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves.

    PubMed

    Siaut, Magali; Cuiné, Stéphan; Cagnon, Caroline; Fessler, Boris; Nguyen, Mai; Carrier, Patrick; Beyly, Audrey; Beisson, Fred; Triantaphylidès, Christian; Li-Beisson, Yonghua; Peltier, Gilles

    2011-01-21

    When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields.

  2. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    PubMed Central

    2011-01-01

    Background When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a ~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields. PMID:21255402

  3. Development of advanced image analysis techniques for the in situ characterization of multiphase dispersions occurring in bioreactors.

    PubMed

    Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel

    2005-03-30

    Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase.

  4. Innovations in the development of healthier chicken sausages formulated with different lipid sources.

    PubMed

    Andrés, S C; Zaritzky, N E; Califano, A N

    2009-08-01

    Long-chain polyunsaturated n-3 fatty acids are critical nutrients for human health and the fortification of foods with these fatty acids is an important emerging area from the commercial and academic point of view. Development, characterization, and changes during refrigerated vacuum storage of low-fat chicken sausages formulated with preemulsified squid oil were examined and compared with those formulated with beef tallow. Physicochemical analysis and process yield after heat treatment were determined; the heat-treated sausages were evaluated by purge loss, color, texture, microstructure by SEM, microbial counts, fatty acid profile, lipid oxidation, and sensory analysis during refrigerated vacuum storage. Process yield of both formulations was higher than 97% and purge losses during storage were lower than 7%. Purge losses of oil-formulated sausages were lower than those with beef tallow. Sausages with squid oil resulted in higher lightness, lower redness and yellowness, and lower texture profile analysis parameters than the formulation prepared with beef tallow. Microstructure of both formulations was similar, except for the fat droplets that microscopic observations showed in the sausages made with beef tallow. Low lipid oxidation was detected in formulation with squid oil due to the the combination of ingredients and storage conditions. Microbial counts of both products were less than 5 log cfu/g at the end of 90 d of storage. The sausage formulated with squid oil presented more than 30 and 40 g/100 g of monounsaturated and polyunsaturated fatty acids, respectively. Docosahexaenoic acid was the predominant polyunsaturated fatty acid, followed by eicosapentaenoic acid and linoleic acid. Both products showed safe sanitary conditions, good sensory acceptability, and presented very good stability and quality attributes, but sausages formulated with squid oil showed a better fatty acid profile according to nutritional criteria.

  5. Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils

    PubMed Central

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-01-01

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required. PMID:24970178

  6. Lipases immobilization for effective synthesis of biodiesel starting from coffee waste oils.

    PubMed

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-08-13

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required.

  7. Removal of Emulsified Oil from Water by Fruiting Bodies of Macro-Fungus (Auricularia polytricha)

    PubMed Central

    Yang, Xunan; Guo, Mengting; Wu, Yinghai; Wu, Qunhe; Zhang, Renduo

    2014-01-01

    The aim of this study was to investigate the feasibility of utilizing the fruiting bodies of a jelly macro-fungus Auricularia polytricha as adsorbents to remove emulsified oil from water. The effects of several factors, including temperature, initial pH, agitation speed, and adsorbent dosage, were taken into account. Results showed that the optimized conditions for adsorption of A. polytricha were a temperature of 35°C, pH of 7.5, and agitation speed of 100 rpm. The adsorption kinetics were characterized by the pseudo-first order model, which showed the adsorption to be a fast physical process. The Langmuir-Freundlich isotherm described the adsorption very well and predicted the maximum adsorption capacity of 398 mg g−1, under optimized conditions. As illustrated by scanning electron micrographs, the oil particles were adsorbed onto the hairs covering the bottom surface and could be desorbed by normal temperature volatilization. The material could be used as an emulsified oil adsorbent at least three times, retaining more than 95% of the maximum adsorption capacity. The results demonstrated that the fruiting bodies of A. polytricha can be a useful adsorbent to remove emulsified oil from water. PMID:24743498

  8. Dissipative Properties of EHD Lubricant Film

    NASA Astrophysics Data System (ADS)

    Fedorov, S. V.

    2018-01-01

    For the case of the failure of the lubricant film at hydrodynamic lubrication a common thermodynamic theory of strength is considered. According to this theory the failure occurs when the internal energy density (potential and thermal components) in the volume of material reaches a constant for a given material. A special case of this theory is considered when only the density of heat (kinetic) component of internal energy is taken into account. Temperature condition determines the limit state for liquid lubricants - mineral oils. When analyzing the regularities of friction at EHD lubrication the state and properties of the oil film at the condition of irregular and hydrostatic compression. The original structural model of oil film at EHD lubrication in the form of the rotary oscillating cells with elastic interactions to each other is proposed. It is similar to the Rayleigh-Benard cells and corresponds to the cellular hypothesis of J. Gibbs for the case of equilibrium and reversible process. It is quite possible that the size of the cells have an order of about nano level. The oil film dissipates energy in the direction of relative motion of bodies. This oil film has the highest dissipative properties.

  9. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  10. Optimization of the isolation and quantitation of kahweol and cafestol in green coffee oil.

    PubMed

    Chartier, Agnes; Beaumesnil, Mathieu; de Oliveira, Alessandra Lopes; Elfakir, Claire; Bostyn, Stephane

    2013-12-15

    Kahweol and cafestol are two diterpenes that exist mainly as esters of fatty acids in green coffee oil. To recover them under their free form they have to be either saponified or trans-esterified. These two compounds are well known to be sensitive to heat, and reagents, therefore experimental conditions used in the transesterification reaction are critical. In this paper, a Doehlert experimental design plan is used to optimize the transesterification conditions using some key variables such as the temperature of the reaction, the reagent base concentration and the duration of the reaction. Therefore, the optimal parameters determined from the Doehlert design are equal to 70 °C, temperature of the reaction; 1.25 mol L(-1) concentration of the reagent base; and 60 min reaction time. The contour plots show that the extracted quantity of kahweol and cafestol can depend greatly from the experimental conditions. After transesterification, the free form of the diterpernes is extracted from the lipid fraction using liquid-liquid extraction and analyzed using GC-FID without prior derivatization. The amount of kahweol and cafestol obtained from green coffee oil obtained by cold mechanical press of Catuai coffee bean is equal to 33.2±2.2 and 24.3±2.4 g kg(-1)oil, respectively. In an attempt to streamline the process, the transesterification reaction is performed in an in-flow chemistry reactor using the optimal conditions obtained with the Doehlert experimental design. The amount of kahweol and cafestol obtained from the same green coffee oil is equal to 43.5 and 30.072 g kg(-1)oil, respectively. Results are slightly higher compared to the ones obtained with the batch procedure. This can be explained by a better mixing of the coffee oil with the reagents and a faster transesterification reaction. © 2013 Elsevier B.V. All rights reserved.

  11. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2010-06-01

    The application of waste frying oil (WFO) mixed with rapeseed oil as a feedstock for the effective production of fatty acid methyl esters (FAME) in a lipase-catalyzed process was investigated. The response surface methodology (RSM) was used to optimize the interaction of four variables: the percentage of WFO in the mixed feedstock, the methanol-to-oil ratio, the dosage of Novozym 435 as a catalyst and the temperature. Furthermore, the addition of methanol to the reaction mixture in a second step after 8 h was shown to effectively diminish enzyme inhibition. Using this technique, the model predicted the optimal conditions that would reach 100% FAME, including a methanol-to-oil molar ratio of 3.8:1, 100% (wt) WFO, 15% (wt) Novozym 435 and incubation at 44.5 degrees C for 12 h with agitation at 200 rpm, and verification experiments confirmed the validity of the model. According to the model, the addition of WFO increased FAME production yield, which is largely due to its higher contents of monoacylglycerols, diacylglycerols and free fatty acids (in comparison to rapeseed oil), which are more available substrates for the enzymatic catalysis. Therefore, the replacement of rapeseed oil with WFO in Novozym 435-catalyzed processes could diminish biodiesel production costs since it is a less expensive feedstock that increases the production yield and could be a potential alternative for FAME production on an industrial scale. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less

  13. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    USGS Publications Warehouse

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  15. Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin) Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction.

    PubMed

    Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi

    2017-10-22

    The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.

  16. Best conditions for biodegradation of diesel oil by chemometric tools.

    PubMed

    Kaczorek, Ewa; Bielicka-Daszkiewicz, Katarzyna; Héberger, Károly; Kemény, Sándor; Olszanowski, Andrzej; Voelkel, Adam

    2014-01-01

    Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7). Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for "lower" alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane.

  17. Mixed convection heat transfer: an experimental study on Cu/heat transfer oil nanofluids inside annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, Ali Akbar; Aberoumand, Hossein; Jafarimoghaddam, Amin; Aberoumand, Sadegh

    2017-09-01

    The heat transfer and flow characteristics of Cu-heat transfer oil nanofluid during mixed convection through horizontal annular tubes under uniform heat flux as boundary condition are investigated experimentally. Data were acquired at low Reynolds number ranged from about 26 to 252. The applied nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. Pure heat transfer oil and nanofluids with nanoparticles weight concentrations of 0.12, 0.36 and 0.72% were used as the working fluids. Based on these results, Effects of nanoparticles concentration, heat flux and free convection on the thermal field development are studied under buoyancy assisted flow condition for Grashof number, Richardson number between 2820 and 12,686, and 0.1-10, respectively. Results show that Nusselt number increases with an increase of nanoparticles weight concentrations from 0 to 0.72% under certain Richardson numbers.

  18. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  19. An early approach for the evaluation of repair processes in fish after exposure to sediment contaminated by an oil spill.

    PubMed

    Salamanca, Maria J; Jimenez-Tenorio, Natalia; Reguera, Diana F; Morales-Caselles, Carmen; Delvalls, T Angel

    2008-12-01

    A chronic bioassay was carried out under laboratory conditions using juvenile Solea senegalensis to determine the toxicity of contaminants from an oil spill(Prestige). Also, the repair processes in fish affected by contaminants due to oil exposure were evaluated. Over 30 days individuals were exposed to clean sediment (control) and to sediment contaminated by a mixture of polyaromatic hydrocarbons (PAHs) and other substances. The physicochemical parameters of the tanks (salinity, temperature, pH and dissolved oxygen) were controlled during the exposure period. Clean sediment from the Bay of Cadiz (Spain) was used as negative control and was mixed with fuel oil to prepare the dilution (0.5% w:w dry-weight). After the exposure period, fish were labeled and transferred to "clean tanks" (tanks without sediment) in order to study the recovery and the repair processes in the exposed organisms. A biomarker of exposure (ethoxyresorufin-O-deethylase activity - EROD activity) and a biomarker of effect (histopathology) were analyzed during the exposure and recovery period. After 10, 20 and 30 days of exposure, individuals showed significant induction (P < 0.05) of the EROD activity and also presented diverse histopathological damages. The analysis of both the biomarkers of exposure and effect, after the 5th and 10th day of recovery in the "clean tank", enabled a first evaluation of the repair process of the induced damages due to the fuel oil exposure. After the recovery phase, control individuals showed a more significant decrease (P < 0.05) of the alteration of the measured biomarkers than in the oil-exposed fish. While in the oil-exposed fish the EROD activity showed some recovery, the histopathological damages did hardly improve. According to our results, tissue repair processes probably need longer recovery periods to observe significant improvement of the affected organs. This will be further investigated in the future.

  20. Production and Characterization of Biodiesel from Tung Oil

    NASA Astrophysics Data System (ADS)

    Park, Ji-Yeon; Kim, Deog-Keun; Wang, Zhong-Ming; Lu, Pengmei; Park, Soon-Chul; Lee, Jin-Suk

    The feasibility of biodiesel production from tung oil was investigated. The esterification reaction of the free fatty acids of rung oil was performed using Amberlyst-15. Optimal molar ratio of methanol to oil was determined to be 7.5:1, and Amberlyst-15 was 20.8wt% of oil by response surface methodology. Under these reaction conditions, the acid value of rung oil was reduced to 0.72mg KOH/g. In the range of the molar equivalents of methanol to oil under 5, the esterification was strongly affected by the amount of methanol but not the catalyst. When the molar ratio of methanol to oil was 4.1:1 and Amberlyst-15 was 29.8wt% of the oil, the acid value decreased to 0.85mg KOH/g. After the transesterification reaction of pretreated rung oil, the purity of rung biodiesel was 90.2wt%. The high viscosity of crude rung oil decreased to 9.8mm2/s at 40 °C. Because of the presence of eleostearic acid, which is a main component of tung oil, the oxidation stability as determined by the Rancimat method was very low, 0.5h, but the cold filter plugging point, -11 °C, was good. The distillation process did not improve the fatty acid methyl ester content and the viscosity.

  1. Production and characterization of biodiesel from tung oil.

    PubMed

    Park, Ji-Yeon; Kim, Deog-Keun; Wang, Zhong-Ming; Lu, Pengmei; Park, Soon-Chul; Lee, Jin-Suk

    2008-03-01

    The feasibility of biodiesel production from tung oil was investigated. The esterification reaction of the free fatty acids of tung oil was performed using Amberlyst-15. Optimal molar ratio of methanol to oil was determined to be 7.5:1, and Amberlyst-15 was 20.8 wt% of oil by response surface methodology. Under these reaction conditions, the acid value of tung oil was reduced to 0.72 mg KOH/g. In the range of the molar equivalents of methanol to oil under 5, the esterification was strongly affected by the amount of methanol but not the catalyst. When the molar ratio of methanol to oil was 4.1:1 and Amberlyst-15 was 29.8 wt% of the oil, the acid value decreased to 0.85 mg KOH/g. After the transesterification reaction of pretreated tung oil, the purity of tung biodiesel was 90.2 wt%. The high viscosity of crude tung oil decreased to 9.8mm(2)/s at 40 degrees C. Because of the presence of eleostearic acid, which is a main component of tung oil, the oxidation stability as determined by the Rancimat method was very low, 0.5h, but the cold filter plugging point, -11 degrees C, was good. The distillation process did not improve the fatty acid methyl ester content and the viscosity.

  2. Process Evaluation - Steam Reforming of Diesel Fuel Oil

    DTIC Science & Technology

    1980-02-15

    Table 9. HIDROGEN CONVERSION RELATIVE TO TEMPERATURE, SPACE, VELOCITY, AND H20/C RATIO Oil Feed, Gas Product ,Run No. Temperature, *F H2,O/C Ratio igram...steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test...79-C-0048. Hydrogen-rich gas was produced over a wide range of reaction conditions. This product gas contained small amounts of ethylene and !nzene

  3. 77 FR 61026 - Olive Oil: Conditions of Competition Between U.S. and Major Foreign Supplier Industries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-537] Olive Oil: Conditions of Competition... Commission (Commission) instituted investigation No. 332-537, Olive Oil: Conditions of Competition between U..., the report will include the following-- 1. An overview of the commercial olive oil industry in the...

  4. Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments

    PubMed Central

    Chen, Yuning; Liu, Na; Cao, Yingze; Lin, Xin; Xu, Liangxin; Zhang, Weifeng; Wei, Yen; Feng, Lin

    2016-01-01

    A superhydrophilic and underwater superoleophobic surface is fabricated by simply coating silica nanospheres onto a glass fiber membrane through a sol-gel process. Such membrane has a complex framework with micro and nano structures covering and presents a high efficiency (more than 98%) of oil-in-water emulsion separation under harsh environments including strong acidic and concentrated salty conditions. This membrane also possesses outstanding stability since no obvious decline in efficiency is observed after different kinds of oil-in-water emulsions separation, which provides it candidate for comprehensive applicability. PMID:27597570

  5. Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil.

    PubMed

    Mater, L; Sperb, R M; Madureira, L A S; Rosin, A P; Correa, A X R; Radetski, C M

    2006-08-25

    In this study sequential steps were used to treat and immobilize oil constituents of an oil sludge-contaminated soil. Initially, the contaminated soil was oxidized by a Fenton type reaction (13 wt% for H(2)O(2); 10mM for Fe(2+)). The oxidative treatment period of 80 h was carried out under three different pH conditions: 20 h at pH 6.5, 20 h at pH 4.5, and 40 h at pH 3.0. The oxidized contaminated sample (3 kg) was stabilized and solidified for 2h with clay (1 kg) and lime (2 kg). Finally, this mixture was solidified by sand (2 kg) and Portland cement (4 kg). In order to evaluate the efficiency of different processes to treat and immobilize oil contaminants of the oil sludge-contaminated soil, leachability and solubility tests were performed and extracts were analyzed according to the current Brazilian waste regulations. Results showed that the Fenton oxidative process was partially efficient in degrading the oil contaminants in the soil, since residual concentrations were found for the PAH and BTEX compounds. Leachability tests showed that clay-lime stabilization/solidification followed by Portland cement stabilization/solidification was efficient in immobilizing the recalcitrant and hazardous constituents of the contaminated soil. These two steps stabilization/solidification processes are necessary to enhance environmental protection (minimal leachability) and to render final product economically profitable. The treated waste is safe enough to be used on environmental applications, like roadbeds blocks.

  6. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil

    PubMed Central

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation. PMID:28496464

  7. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design

    PubMed Central

    Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin

    2016-01-01

    The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165

  8. Potential of vetiver (vetiveria zizanioides (L.) Nash) for phytoremediation of petroleum hydrocarbon-contaminated soils in Venezuela.

    PubMed

    Brandt, Regine; Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen; Broll, Gabriele

    2006-01-01

    Venezuela is one of the largest oil producers in the world. For the rehabilitation of oil-contaminated sites, phytoremediation represents a promising technology whereby plants are used to enhance biodegradation processes in soil. A greenhouse study was conducted to determine the tolerance of vetiver (Vetiveria zizanioides (L.) Nash) to a Venezuelan heavy crude oil in soil. Additionally, the plant's potential for stimulating the biodegradation processes of petroleum hydrocarbons was tested under the application of two fertilizer levels. In the presence of contaminants, biomass and plant height were significantly reduced. As for fertilization, the lower fertilizer level led to higher biomass production. The specific root surface area was reduced under the effects of petroleum. However, vetiver was found to tolerate crude-oil contamination in a concentration of 5% (w/w). Concerning total oil and grease content in soil, no significant decrease under the influence of vetiver was detected when compared to the unplanted control. Thus, there was no evidence of vetiver enhancing the biodegradation of crude oil in soil under the conditions of this trial. However, uses of vetiver grass in relation to petroleum-contaminated soils are promising for amelioration of slightly polluted sites, to allow other species to get established and for erosion control.

  9. Using ß-cyclodextrin and Arabic Gum as Wall Materials for Encapsulation of Saffron Essential Oil.

    PubMed

    Atefi, Mohsen; Nayebzadeh, Kooshan; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-01-01

    Saffron essential oil has a pleasant aroma and medicinal activities. However, it is sensible into the environmental condition. Therefore, it should be protected against unwanted changes during storage or processing. Encapsulation is introduced as a process by which liable materials are protected from unwanted changes. In the present study, different ratios (0:100, 25:75, 50:50, 75:25, and 100:0) of ß-cyclodextrin (ß-CD) and arabic gum (GA) were used as wall martial for encapsulation saffron essential oil. In order to calculate of loading capacity (LC) and encapsulation efficiency (EE), and release (RE), safranal was determined as indicator of saffron essential oil using GC. According to the results, the highest LC and EE were related to the mixture of ß-CD/GA at a 75:25 ratio. In contrast, the lowest encapsulate hygroscopicity (EH) and RE were observed when only ß-CD was applied as wall material (P≤0.05). Comparing the differential scanning calorimetry (DSC) thermograms of the control and encapsulate of ß-CD/GA (75:25) confirmed encapsulation of saffron essential oil. Scanning electron microscopy (SEM) images with high magnifications showed the rhombic structure that partially coated by GA. The mixture of ß-CD/GA at a 75:25 ratio can be recommended for saffron essential oil encapsulation.

  10. New microwave-integrated Soxhlet extraction. An advantageous tool for the extraction of lipids from food products.

    PubMed

    Virot, Matthieu; Tomao, Valérie; Colnagui, Giulio; Visinoni, Franco; Chemat, Farid

    2007-12-07

    A new process of Soxhlet extraction assisted by microwave was designed and developed. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. A second-order central composite design (CCD) has been used to investigate the performance of the new device. The results provided by analysis of variance and Pareto chart, indicated that the extraction time was the most important factor followed by the leaching time. The response surface methodology allowed us to determine optimal conditions for olive oil extraction: 13 min of extraction time, 17 min of leaching time, and 720 W of irradiation power. The proposed process is suitable for lipids determination from food. Microwave-integrated Soxhlet (MIS) extraction has been compared with a conventional technique, Soxhlet extraction, for the extraction of oil from olives (Aglandau, Vaucluse, France). The oils extracted by MIS for 32 min were quantitatively (yield) and qualitatively (fatty acid composition) similar to those obtained by conventional Soxhlet extraction for 8 h. MIS is a green technology and appears as a good alternative for the extraction of fat and oils from food products.

  11. Assessing the effects of different dielectrics on environmentally conscious powder-mixed EDM of difficult-to-machine material (WC-Co)

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep; Sharma, Rajiv Kumar

    2016-12-01

    Electrical discharge machining (EDM) is a well-known nontraditional manufacturing process to machine the difficult-to-machine (DTM) materials which have unique hardness properties. Researchers have successfully performed hybridization to improve this process by incorporating powders into the EDM process known as powder-mixed EDM process. This process drastically improves process efficiency by increasing material removal rate, micro-hardness, as well as reducing the tool wear rate and surface roughness. EDM also has some input parameters, including pulse-on time, dielectric levels and its type, current setting, flushing pressure, and so on, which have a significant effect on EDM performance. However, despite their positive influence, investigating the effects of these parameters on environmental conditions is necessary. Most studies demonstrate the use of kerosene oil as dielectric fluid. Nevertheless, in this work, the authors highlight the findings with respect to three different dielectric fluids, including kerosene oil, EDM oil, and distilled water using one-variable-at-a-time approach for machining as well as environmental aspects. The hazard and operability analysis is employed to identify the inherent safety factors associated with powder-mixed EDM of WC-Co.

  12. The feasibility study of crude palm oil transesterification at 30 °C operation.

    PubMed

    Sim, Jia Huey; Kamaruddin, Azlina Harun; Bhatia, Subhash

    2010-12-01

    The objective of this research is to investigate the potential of transesterification of crude palm oil (CPO) to biodiesel at 30 degrees C. The mass transfer limitations problem crucial at 30 degrees C due to the viscosity of CPO has been addressed. The process parameters that are closely related to mass transfer effects like enzyme loading, agitation speed and reaction time were optimized. An optimum methanol to oil substrate molar ratio at 6.5:1 was observed and maintained throughout the experiments. The optimum operating condition for the transesterification process was found at 6.67 wt% of enzyme loading and at 150 rpm of agitation speed. The corresponding initial reaction and FAME yield obtained at 6 h were 89.29% FAME yield/hr and 85.01%, respectively. The 85% FAME yield obtained at 30 degrees C operation of CPO transesterification shows that the process is potentially feasible for the biodiesel synthesis. 2010 Elsevier Ltd. All rights reserved.

  13. Optimisation of flavour ester biosynthesis in an aqueous system of coconut cream and fusel oil catalysed by lipase.

    PubMed

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan

    2012-12-15

    Coconut cream and fusel oil, two low-cost natural substances, were used as starting materials for the biosynthesis of flavour-active octanoic acid esters (ethyl-, butyl-, isobutyl- and (iso)amyl octanoate) using lipase Palatase as the biocatalyst. The Taguchi design method was used for the first time to optimize the biosynthesis of esters by a lipase in an aqueous system of coconut cream and fusel oil. Temperature, time and enzyme amount were found to be statistically significant factors and the optimal conditions were determined to be as follows: temperature 30°C, fusel oil concentration 9% (v/w), reaction time 24h, pH 6.2 and enzyme amount 0.26 g. Under the optimised conditions, a yield of 14.25mg/g (based on cream weight) and signal-to-noise (S/N) ratio of 23.07 dB were obtained. The results indicate that the Taguchi design method was an efficient and systematic approach to the optimisation of lipase-catalysed biological processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A green recyclable SO(3)H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step.

    PubMed

    Prabhavathi Devi, B L A; Vijai Kumar Reddy, T; Vijaya Lakshmi, K; Prasad, R B N

    2014-02-01

    Simultaneous esterification and transesterification method is employed for the preparation of biodiesel from 7.5% free fatty acid (FFA) containing karanja (Pongamia glabra) oil using water resistant and reusable carbon-based solid acid catalyst derived from glycerol in a single step. The optimum reaction parameters for obtaining biodiesel in >99% yield by simultaneous esterification and transesterification are: methanol (1:45 mole ratio of oil), catalyst 20wt.% of oil, temperature 160°C and reaction time of 4h. After the reaction, the catalyst was easily recovered by filtration and reused for five times with out any deactivation under optimized conditions. This single-step process could be a potential route for biodiesel production from high FFA containing oils by simplifying the procedure and reducing costs and effluent generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu; Lei, Hanwu; Ren, Shoujie

    Microwave assisted catalytic pyrolysis was investigated to convert Douglas fir pellets to bio-oils by a ZSM-5 Zeolite catalyst. A central composite experimental design (CCD) was used to optimize the catalytic pyrolysis process. The effects of reaction time, temperature and catalyst to biomass ratio on the bio-oil, syngas, and biochar yields were determined. GC/MS analysis results showed that the bio-oil contained a series of important and useful chemical compounds. Phenols, guaiacols, and aromatic hydrocarbons were the most abundant compounds which were about 50-82 % in bio-oil depending on the pyrolysis conditions. Comparison between the bio-oils from microwave pyrolysis with and withoutmore » catalyst showed that the catalyst increased the content of aromatic hydrocarbons and phenols. A reaction pathway was proposed for microwave assisted catalyst pyrolysis of Douglas fir pellets.« less

  16. Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Puneeth, S. B.; Kim, Young Ho; Goel, Sanket

    2017-02-01

    As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.

  17. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.

    PubMed

    Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle

    2010-12-15

    Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid

    2013-01-01

    A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The ultrasound-assisted aqueous extraction of rice bran oil.

    PubMed

    Khoei, Maryam; Chekin, Fereshteh

    2016-03-01

    In this work, aqueous extraction of rice bran oil was done without and with ultrasound pretreatment. Key factors controlling the extraction and optimal operating conditions were identified. The highest extraction efficiency was found at pH=12, temperature of 45°C, agitation speed of 800rpm and agitation time of 15min, ultrasound treatment time of 70min and ultrasound treatment temperature of 25°C. Moreover, extraction yields were compared to ultrasound-assisted aqueous extraction and Soxhlet extraction. The results showed that the yield of rice bran oil at ultrasound-assisted aqueous extraction was close to the yield of oil extracted by hexane Soxhlet extraction. This result implied that the yield of rice bran oil was significantly influenced by ultrasound. With regard to quality, the oil extracted by ultrasound-assisted aqueous process had a lower content of free fatty acid and lower color imparting components than the hexane-extracted oil. Also, effect of parboiling of paddy on hexane and ultrasound-assisted aqueous extraction was studied. Both extraction methods gives higher percentage of oil from par boiled rice bran compared with raw rice bran. This may be due to the fact that parboiling releases the oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.O. Hitzman; A.K. Stepp; D.M. Dennis

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions and technologies for improving oil production. The goal was to identify and utilize indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. Experimental laboratory work in model sandpack cores was conducted using microbial cultures isolated from produced water samples. Comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents were conducted inmore » sand packs with natural field waters using cultures and conditions representative of oil reservoirs. Increased oil recovery in multiple model sandpack systems was achieved and the technology and results were verified by successful field studies. Direct application of the research results has lead to the development of a feasible, practical, successful, and cost-effective technology which increases oil recovery. This technology is now being commercialized and applied in numerous field projects to increase oil recovery. Two field applications of the developed technology reported production increases of 21% and 24% in oil recovery.« less

  1. Screening of biodiesel production from waste tuna oil (Thunnus sp.), seaweed Kappaphycus alvarezii and Gracilaria sp.

    NASA Astrophysics Data System (ADS)

    Alamsjah, Mochammad Amin; Abdillah, Annur Ahadi; Mustikawati, Hutami; Atari, Suci Dwi Purnawa

    2017-09-01

    Biodiesel has several advantages over solar. Compared to solar, biodiesel has more eco-friendly characteristic and produces lower greenhouse gas emissions. Biodiesel that is made from animal fats can be produced from fish oil, while other alternative sources from vegetable oils are seaweed Kappaphycus alvarezii and Gracilaria sp. Waste tuna oil (Thunnus sp.) in Indonesia is commonly a side product of tuna canning industries known as tuna precook oil; on the other hand, seaweed Gracilaria sp. and Kappaphycus alvarezii are commonly found in Indonesia's seas. Seaweed waste that was used in the present study was 100 kg and in wet condition, and the waste oil was 10 liter. The seaweed was extracted with soxhletation method that used n-hexane as the solvent. To produce biodiesel, trans esterification was performed on the seaweed oil that was obtained from the soxhletation process and waste tuna oil. Biodiesel manufactured from seaweed K. alvarezii obtained the best score in flash point, freezing point, and viscosity test. However, according to level of manufacturing efficiency, biodiesel from waste tuna oil is more efficient and relatively easier compared to biodiesel from waste K. alvarezii and Gracilaria sp.

  2. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gasmore » produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.« less

  3. Development and optimization of an efficient qPCR system for olive authentication in edible oils.

    PubMed

    Alonso-Rebollo, Alba; Ramos-Gómez, Sonia; Busto, María D; Ortega, Natividad

    2017-10-01

    The applicability of qPCR in olive-oil authentication depends on the DNA obtained from the oils and the amplification primers. Therefore, four olive-specific amplification systems based on the trnL gene were designed (A-, B-, C- and D-trnL systems). The qPCR conditions, primer concentration and annealing temperature, were optimized. The systems were tested for efficiency and sensitivity to select the most suitable for olive oil authentication. The selected system (D-trnL) demonstrated specificity toward olive in contrast to other oleaginous species (canola, soybean, sunflower, maize, peanut and coconut) and showed high sensitivity in a broad linear dynamic range (LOD and LOQ: 500ng - 0.0625pg). This qPCR system enabled detection, with high sensitivity and specificity, of olive DNA isolated from oils processed in different ways, establishing it as an efficient method for the authentication of olive oil regardless of its category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.

    PubMed

    Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi

    2016-01-01

    Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.

  5. Influence of crude oil cracking on distribution of hydrocarbons in the Earth's interior (experimental data)

    NASA Astrophysics Data System (ADS)

    Balitsky, V. S.; Balitskaya, L. V.; Penteley, S. V.; Novikova, M. A.

    2012-02-01

    The compositions and phase conditions of water-hydrocarbon fluids in synthetic quartz inclusions were studied by the methods of microthermometry, local IR spectroscopy, and gas-liquid chromatography. Synthetic quartz was grown in near-neutral fluoride, low-alkali bicarbonate, and alkali carbonate solutions with crude oil and its major fractions. The crystals with fluid inclusions were grown under thermal gradient conditions at relatively low temperatures (240-280°C) and pressures (6-45 MPa). After the study, the inclusions of grown crystals were subject to thermal processing in autoclaves at 350-380°C and 80-125 MPa. As a result, the initial water-hydrocarbon inclusions underwent significant changes. Hydrocarbon gases, largely methane and residual solid bitumens, appeared in their composition; the gasoline-kerosene fraction content increased substantially in liquid hydrocarbons (HCs). These changes are caused, first of all, by crude oil cracking, which is manifested already at 330°C and attains its maximum activity at 350-500°C (pressure of saturated vapor and higher). In natural conditions with increase in depths and, thus, the thermobaric parameters, this process is inevitable. According to the obtained experimental data, this very phenomenon and the existence of real thermal and baric gradients in the Earth's interior provide for the formation of vertical zoning in the distribution of hydrocarbon deposits of different types.

  6. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.« less

  7. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design.

    PubMed

    Mnif, Inès; Sahnoun, Rihab; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2014-01-01

    Low solubility of certain hydrophobic soil contaminants limits remediation process. Surface-active compounds can improve the solubility and removal of hydrophobic compounds from contaminated soils and, consequently, their biodegradation. Hence, this paper aims to study desorption efficiency of oil from soil of SPB1 lipopeptide biosurfactant. The effect of different physicochemical parameters on desorption potency was assessed. Taguchi experimental design method was applied in order to enhance the desorption capacity and establish the best washing parameters. Mobilization potency was compared to those of chemical surfactants under the newly defined conditions. Better desorption capacity was obtained using 0.1% biosurfacatnt solution and the mobilization potency shows great tolerance to acidic and alkaline pH values and salinity. Results show an optimum value of oil removal from diesel-contaminated soil of about 87%. The optimum washing conditions for surfactant solution volume, biosurfactant concentration, agitation speed, temperature, and time were found to be 12 ml/g of soil, 0.1% biosurfactant, 200 rpm, 30 °C, and 24 h, respectively. The obtained results were compared to those of SDS and Tween 80 at the optimal conditions described above, and the study reveals an effectiveness of SPB1 biosurfactant comparable to the reported chemical emulsifiers. (1) The obtained findings suggest (a) the competence of Bacillus subtilis biosurfactant in promoting diesel desorption from soil towards chemical surfactants and (b) the applicability of this method in decontaminating crude oil-contaminated soil and, therefore, improving bioavailability of hydrophobic compounds. (2) The obtained findings also suggest the adequacy of Taguchi design in promoting process efficiency. Our findings suggest that preoptimized desorption process using microbial-derived emulsifier can contribute significantly to enhancement of hydrophobic pollutants' bioavailability. This study can be complemented with the investigation of potential role in improving the biodegradation of the diesel adsorbed to the soil.

  8. Desolventizing of Jatropha curcas oil from azeotropes of solvents using ceramic membranes.

    PubMed

    Carniel, Naira; Zabot, Giovani L; Paliga, Marshall; Mignoni, Marcelo L; Mazutti, Marcio A; Priamo, Wagner L; Oliveira, J V; Di Luccio, Marco; Tres, Marcus V

    2017-12-01

    The separation of Jatropha curcas oil from azeotropes of ethyl alcohol-n-hexane and isopropyl alcohol-n-hexane using ceramic membranes with different cutoffs (5, 10 and 20 kDa) is presented. The mass ratios of oil:azeotropes (O:S) studied were 1:3 for feeding pressures of 0.1, 0.2 and 0.3 MPa, and 1:1 for the feeding pressure of 0.1 MPa. Isopropyl alcohol was the best solvent for the membranes conditioning to permeate n-hexane (240 kg/m 2  h). In the separation of J. curcas oil and azeotropes of solvents, both membranes showed oil retention and total flux decreases with time. Overall, the lowest decrease in the retentions was reached in the 5 kDa membrane, while the lowest decrease in the total flux was reached in the 20 kDa. In the separation of oil and ethyl alcohol-n-hexane azeotrope, the best retention at 60 min of the process was equal to 17.3 wt% in the 20 kDa membrane at 0.3 MPa and O:S ratio equalled to 1:3. In this condition, the total permeate flux was 17.5 kg/m 2  h. Different retentions and permeabilities are provided when changing the O:S ratio, the feeding pressure and the molecular weight cutoff of membranes.

  9. Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank.

    PubMed

    Trudel, Ken; Belore, Randy C; Mullin, Joseph V; Guarino, Alan

    2010-09-01

    This study determined the limiting oil viscosity for chemical dispersion of oil spills under simulated sea conditions in the large outdoor wave tank at the US National Oil Spill Response Test Facility in New Jersey. Dispersant effectiveness tests were completed using crude oils with viscosities ranging from 67 to 40,100 cP at test temperature. Tests produced an effectiveness-viscosity curve with three phases when oil was treated with Corexit 9500 at a dispersant-to-oil ratio of 1:20. The oil viscosity that limited chemical dispersion under simulated at-sea conditions was in the range of 18,690 cP to 33,400 cP. Visual observations and measurements of oil concentrations and droplet size distributions in the water under treated and control slicks correlated well with direct measurements of effectiveness. The dispersant effectiveness versus oil viscosity relationship under simulated at sea conditions at Ohmsett was most similar to those from similar tests made using the Institut Francais du Pétrole and Exxon Dispersant Effectiveness (EXDET) test methods. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-03-04

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.

  11. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption.

    PubMed

    Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka

    2011-11-30

    Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  14. Effect of electrode materials on the space charge distribution of an Al2O3 nano-modified transformer oil under impulse voltage conditions

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Liu, Mengna; Sima, Wenxia; Jin, Yang

    2017-11-01

    The combined effect mechanism of electrode materials and Al2O3 nanoparticles on the insulating characteristics of transformer oil was investigated. Impulse breakdown tests of pure transformer oil and Al2O3 nano-modified transformer oil of varying concentrations with different electrode materials (brass, aluminum and stainless steel) showed that the breakdown voltage of Al2O3 nano-modified transformer oil is higher than that of pure transformer oil and there is a there is an optimum concentration for Al2O3 nanoparticles when the breakdown voltage reaches the maximum. In addition, the breakdown voltage was highest with the brass electrode, followed by that with stainless steel and then aluminum, irrespective of the concentration of nanoparticles in the transformer oil. This is explained by the charge injection patterns from different electrode materials according to the results of space charge measurements in pure and nano-modified transformer oil using the Kerr electro-optic system. The test results indicate that there are electrode-dependent differences in the charge injection patterns and quantities and then the electric field distortion, which leads to the difference breakdown strength in result. As for the nano-modified transformer oil, due to the Al2O3 nanoparticle’s ability of shielding space charges of different polarities and the charge injection patterns of different electrodes, these two factors have different effects on the electric field distribution and breakdown process of transformer oil between different electrode materials. This paper provides a feasible approach to exploring the mechanism of the effect of the electrode material and nanoparticles on the breakdown strength of liquid dielectrics and analyzing the breakdown process using the space charge distribution.

  15. Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants.

    PubMed

    Suganthi, S Hepziba; Murshid, Shabnam; Sriram, Sriswarna; Ramani, K

    2018-08-15

    Petroleum hydrocarbon removal from tank bottom oil sludge is a major issue due to its properties. Conventional physicochemical treatment techniques are less effective. Though the bioremediation is considered for the hydrocarbon removal from tank bottom oil sludge, the efficiency is low and time taking due to the low yield of biocatalysts and biosurfactants. The focal theme of the present investigation is to modify the process by introducing the intermittent inoculation for the enhanced biodegradation of hydrocarbons in the tank bottom oil sludge by maintaining a constant level of biocatalysts such as oxidoreductase, catalase, and lipase as well as biosurfactants. In addition, the heavy metal removal was also addressed. The microbial consortia comprising Shewanalla chilikensis, Bacillus firmus, and Halomonas hamiltonii was used for the biodegradation of oil sludge. One variable at a time approach was used for the optimum of culture conditions. The bacterial consortia degraded the oil sludge by producing biocatalysts such as lipase (80 U/ml), catalase (46 U/ml), oxidoreductase (68 U/ml) along with the production of lipoprotein biosurfactant (152 mg/g of oil sludge) constantly and achieved 96% reduction of total petroleum hydrocarbon. The crude enzymes were characterized by FT-IR and the biosurfactant was characterized by surface tension reduction, emulsification index, FT-IR, TLC, and SDS-PAGE. GC-MS and NMR also revealed that the hydrocarbons present in the oil sludge were effectively degraded by the microbial consortia. The ICP-OES result indicated that the microbial consortium is also effective in removing the heavy metals. Hence, bioremediation using the hydrocarbonoclastic microbial consortium can be considered as an environmentally friendly process for disposal of tank bottom oil sludge from petroleum oil refining industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Evaluation of the effect of process variables on the fatty acid profile of single cell oil produced by Mortierella using solid-state fermentation.

    PubMed

    Asadi, Seyedeh Zeinab; Khosravi-Darani, Kianoush; Nikoopour, Houshang; Bakhoda, Hossein

    2015-03-01

    This article reviews some of the aspects of single cell oil (SCO) production using solid-state fermentation (SSF) by fungi of the genus Mortierella. This article provides an overview of the advantages of SSF for SCO formation by the aforementioned fungus and demonstrates that the content of the polyunsaturated fatty acids (PUFA) depend on the type of fermentation media and culture conditions. Process variables that influence lipid accumulation by Mortierella spp. and the profile of the fatty acids are discussed, including incubation temperature, time, aeration, growth phase of the mycelium, particle size of the substrate, carbon to nitrogen ratio, initial moisture content and pH as well as supplementation of the substrate with nitrogen and oil. Finally, the article highlights future research trends for the scaled-up production of PUFAs in SSF.

  17. Fate and transport of petroleum hydrocarbons in the subsurface near Cass Lake, Minnesota

    USGS Publications Warehouse

    Drennan, Dina M.; Bekins, Barbara A.; Warren, Ean; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Herkelrath, William N.; Delin, Geoffrey N.; Rosenbauer, Robert J.; Campbell, Pamela L.

    2010-01-01

    The U.S. Geological Survey (USGS) investigated the natural attenuation of subsurface petroleum hydrocarbons leaked over an unknown number of years from an oil pipeline under the Enbridge Energy Limited Partnership South Cass Lake Pumping Station, in Cass Lake, Minnesota. Three weeks of field work conducted between May 2007 and July 2008 delineated a dissolved plume of aromatic hydrocarbons and characterized the biodegradation processes of the petroleum. Field activities included installing monitoring wells, collecting sediment cores, sampling water from wells, and measuring water-table elevations. Geochemical measurements included concentrations of constituents in both spilled and pipeline oil, dissolved alkylbenzenes and redox constituents, sediment bioavailable iron, and aquifer microbial populations. Groundwater in this area flows east-southeast at approximately 26 meters per year. Results from the oil analyses indicate a high degree of biodegradation, characterized by nearly complete absence of n-alkanes. Cass Lake oil samples were more degraded than two oil samples collected in 2008 from the similarly contaminated USGS Bemidji, Minnesota, research site 40 kilometers away. Based on 19 ratios developed for comparing oil sources, the conclusion is that the oils at the two sites appear to be from the same hydrocarbon source. In the Cass Lake groundwater plume, benzene concentrations decrease by three orders of magnitude within 150 meters (m) downgradient from the oil body floating on the water table (between well MW-10 and USGS-4 well nest). The depths of the highest benzene concentrations increase with distance downgradient from the oil, a condition typical of plumes in shallow, unconfined aquifers. Background groundwater, which is nearly saturated with oxygen, becomes almost entirely anaerobic in the plume. As at the Bemidji site, the most important biodegradation processes are anaerobic and dominated by iron reduction. The similarity between the Cass Lake and Bemidji benzene degradation rates, redox conditions, and aquifer material all support a hypothesis that the Cass Lake plume, like the Bemidji plume, is decades old. As concentrations of alkylbenzenes in the oil decrease over time, the benzene concentrations in the groundwater plume will also decrease and the plume is expected to shrink. The Fox Creek wetland, about 250 m south of the Cass Lake site, is the nearest receptor to the south.

  18. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.

  19. [The antibacterial activity of oregano essential oil (Origanum heracleoticum L.) against clinical strains of Escherichia coli and Pseudomonas aeruginosa].

    PubMed

    Sienkiewicz, Monika; Wasiela, Małgorzata; Głowacka, Anna

    2012-01-01

    The aim of this study was to investigate the antibacterial properties of oregano (Origanum heracleoticum L.) essential oil against clinical strains of Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of oregano essential oil was investigate against 2 tested and 20 clinical bacterial strains of Escherichia coli and 20 clinical strains o Pseudomonas aeruginosa come from patients with different clinical conditions. The agar dilution method was used for microbial growth inhibition at various concentrations ofoil. Susceptibility testing to antibiotics was carried out using disc-diffusion method. The results of experiments showed that the tested oil was active against all of the clinical strains from both genus of bacteria, but strains of Escherichia coli were more sensitive to tested oil. Essential oil from Origanum heracleoticum L. inhibited the growth of Escherichia coli and Pseudomonas aeruginosa clinical strains with different patters of resistance. The obtained outcomes will enable further investigations using oregano essential oil obtained from Origanum heracleoticum L. as alternative antibacterial remedies enhancing healing process in bacterial infections and as an effective means for the prevention of antibiotic-resistant strain development.

  20. Minimising hydrogen sulphide generation during steam assisted production of heavy oil

    PubMed Central

    Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.

    2015-01-01

    The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product. PMID:25670085

  1. Minimising hydrogen sulphide generation during steam assisted production of heavy oil

    NASA Astrophysics Data System (ADS)

    Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.

    2015-02-01

    The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.

  2. Minimising hydrogen sulphide generation during steam assisted production of heavy oil.

    PubMed

    Montgomery, Wren; Sephton, Mark A; Watson, Jonathan S; Zeng, Huang; Rees, Andrew C

    2015-02-11

    The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.

  3. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. Copyright © 2016. Published by Elsevier B.V.

  4. Impacts, recovery rates, and treatment options for spilled oil in marshes.

    PubMed

    Michel, Jacqueline; Rutherford, Nicolle

    2014-05-15

    In a review of the literature on impacts of spilled oil on marshes, 32 oil spills and field experiments were identified with sufficient data to generate recovery curves and identify influencing factors controlling the rate of recovery. For many spills, recovery occurred within 1-2 growing seasons, even in the absence of any treatment. Recovery was longest for spills with the following conditions: Cold climate; sheltered settings; thick oil on the marsh surface; light refined products with heavy loading; oils that formed persistent thick residues; and intensive treatment. Recovery was shortest for spills with the following conditions: Warm climate; light to heavy oiling of the vegetation only; medium crude oils; and less-intensive treatment. Recommendations are made for treatment based on the following oiling conditions: Free-floating oil on the water in the marsh; thicker oil (>0.5 cm) on marsh surface; thinner oil (<0.5 cm) on marsh surface; heavy oil loading on vegetation; and light to moderate oil loading on vegetation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis).

    PubMed

    Agila, Amal; Barringer, Sheryl

    2012-04-01

    Microwave, oven, and oil roasting of almonds were used to promote almond flavor and color formation. Raw pasteurized almonds were roasted in a microwave for 1 to 3 min, in an oven at 177 °C for 5, 10, 15, and 20 min; and at 135 and 163 °C for 20 min, and in oil at 135, 163, and 177 °C for 5 min and 177 °C for 10 min. Volatile compounds were quantified in the headspace of ground almonds, both raw and roasted, by selected ion flow tube mass spectrometry. Strong correlations were found between L value, chroma, and 5-(hydroxy methyl)-2- furfural; and were independent of roasting method. Raw almonds had lower concentrations of most volatiles than roasted almonds. Conditions that produced color equivalent to commercial samples were 2 min in the microwave, 5 min at 177 °C in the oven, and 5 min at 135 °C in oil. Microwave heating produced higher levels of most volatiles than oven and oil roasting at commercial color. Sensory evaluation indicated that microwave-roasted almonds had the strongest aroma and were the most preferred. Oil-roasted almonds showed significantly lower levels of volatiles than other methods, likely due to loss of these volatiles into the oil. Alcohols such as benzyl alcohols and strecker aldehydes including benzaldehyde and methional were at higher concentrations than other volatiles in roasted almonds. The oxidation of lipids to form alkanals such as nonanal and degradation of sugars to form furan type compounds was also observed. The Maillard reaction contributed to the formation of more of the total volatiles in almonds than the lipid oxidation reaction. The level of 5-(hydroxy methyl)-2- furfural (HMF), color, volatile profile, and sensory perception can be used to develop the best roasting method, time, and temperature for almonds. The rate of color development and the production of volatiles differ under different roasting conditions. Based on the color, volatile, and sensory assessments of the 3 almonds, the use of microwave technology as a process for roasting almonds reduces processing time and leads to an almond product with better flavor than oven or oil roasting. © 2012 Institute of Food Technologists®

  6. Oil persistence on beaches in Prince William Sound - a review of SCAT surveys conducted from 1989 to 2002.

    PubMed

    Taylor, Elliott; Reimer, Doug

    2008-03-01

    In 2002, 13 years after the Exxon Valdez oil spill (EVOS), 39 selected sites in Prince William Sound (PWS) were re-surveyed following established shoreline cleanup assessment team (SCAT) field observation procedures to document surface and sub-surface oiling conditions in shoreline sediments and to compare results with those from previous Shoreline Cleanup Assessment Team (SCAT) surveys and other surveys in PWS. The selected sites are locations where EVOS oil persisted in 1992, at the time the Federal and State On-Scene Coordinators determined that the cleanup was complete and that further cleanup activities would provide no net environmental benefit. These sites had been included in a 2001 NOAA survey of shoreline oiling conditions and account for 88% of the sub-surface oil residues (SSO) oil documented by that study. The 2002 field survey found isolated occurrences of residual EVOS surface oil residues (SO) in the form of weathered asphalt pavement at 15 of the 39 sites. This residual SO typically consisted of asphalt in mixed sand/gravel substrate, located within a wave shadow effect created by boulders or bedrock in the upper intertidal to supratidal zone. Residual SO, expressed as a continuous oil cover, was less than 200 m(2) within the approximately 111,120 m(2) surveyed. A total of 1182 pits were dug at locations where SSO residues were present in 1992. Six of the 39 sites and 815 (68%) of the pits contained no residual SSO. Eighty-three percent of pits with SSO residues were found primarily in middle to upper intertidal locations. SSO residues commonly occurred in a discontinuous approximately 3 cm thick band 5-10 cm below the boulder/cobble or pebble/gravel veneer. The SO and SSO occurrences in the 2002 survey closely match the locations where they were found in 1992 and earlier surveys; however, in 2002 residual SSO patches are more discontinuous and thinner than they were in the earlier surveys. These sites are biased toward SSO persistence; those that have SSO residues represent less than 0.5% of the originally oiled shorelines in PWS. Despite evidence of continued oil weathering, both at the surface and in the sub-surface, it is clear that the natural cleaning processes at these particular locations are slow. The slow weathering rates are a consequence of the oil residue being incorporated in finer sediments (fine sand, silt, mix) and isolated from active weathering processes as boulders and outcrops, shallow bedrock asperities, or boulder-armoring create wave shadows and limit effective physical action on shorelines.

  7. Perfluoropolyalkylether Oil Degradation: Inference of FeF3 Formation on Steel Surfaces under Boundary Conditions

    DTIC Science & Technology

    1985-08-01

    REPORT SD-TR-85-37 O,-) Lfl Perfluoropolyalkylether Oil Degradation: Inference of FeF 3 Formation on Steel Surfaces I under Boundary Conditions DAVID...S. TYPE OF REPORT & PERIOD COVERED PERFLUOROPOLYALKYLETHER OIL DEGRADATION: INFERENCE OF FeF3 FORMATION ON STEELSURFACES UNDER BOUNDARY CONDITIONS 0...number) Boundary conditions Oil Degradation Perfluoropolyalkylether FeF3 Wear test Lubrication .... 440C 20. ABSTRACT (Contlnue o 0 ,systes sI . I

  8. Review of behaviour of oil in freezing environments.

    PubMed

    Fingas, M F; Hollebone, B P

    2003-01-01

    The current knowledge of the physical fate and behaviour of crude oil and petroleum products spilled in Arctic situations is reviewed. The fate and final deposition of oil in marine conditions is presented as based on the extant literature. Spreading models were evaluated for oil on ice, under ice, in snow, in brash ice, and between blocks of ice. Models of oil transport under sheet and broken ice were considered, both for sea and river conditions. The ability of ice sheets to trap oil is discussed in relation to oil storage capacity. The effects of oil on a growing ice sheet were examined, both in terms of ice formation and the thermal effects of oil inclusions in ice. The migration of oil through ice was reviewed, focussing primarily on the movement through brine channels. The effects of oil on the surface of ice were considered, with emphasis on the effects of surface pools on ice melt. Similar consideration was given to the effects of oil on snow on the surface of ice. The few quantitative studies of oil in open and dynamic ice conditions are reviewed. Observations of intentional small-scale spills in leads and ice fields are reviewed and compared with observations from real spills. The conditions under which "oil pumping" from leads occurs were quantified. The most common ultimate fate of oil in an ice field is to be released onto the water surface.

  9. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  10. Environmental Conditions in northern Gulf of Mexico Estuaries: before and after the BP Oil Spill

    EPA Science Inventory

    This presentation provides a summary of ecological condition and sediment chemistry data for northern Gulf of Mexico estuaries that were exposed to oil and oil-related contaminants from the BP Oil Spill.

  11. Effect of leachability on environmental risk assessment for naturally occurring radioactive materials in petroleum oil fields.

    PubMed

    Rajaretnam, G; Spitz, H B

    2000-02-01

    Elevated concentrations of naturally occurring radioactive material (NORM), including 238U, 232Th, and their progeny found in underground geologic deposits, are often encountered during crude oil recovery. Radium, the predominant radionuclide brought to the surface with the crude oil and produced water, co-precipitates with barium in the form of complex compounds of sulfates, carbonates, and silicates found in sludge and scale. These NORM deposits are highly stable and very insoluble under ambient conditions at the earth's surface. However, the co-precipitated radium matrix is not thermodynamically stable at reducing conditions which may enable a fraction of the radium to eventually be released to the environment. Although the fate of radium in uranium mill tailings has been studied extensively, the leachability of radium from crude oil NORM deposits exposed to acid-rain and other aging processes is generally unknown. The leachability of radium from NORM contaminated soil collected at a contaminated oil field in eastern Kentucky was determined using extraction fluids having wide range of pH reflecting different extreme environmental conditions. The average 226Ra concentration in the samples of soil subjected to leachability testing was 32.56 Bq g(-1) +/- 0.34 Bq g(-1). The average leaching potential of 226Ra observed in these NORM contaminated soil samples was 1.3% +/- 0.46% and was independent of the extraction fluid. Risk assessment calculations using the family farm scenario show that the annual dose to a person living and working on this NORM contaminated soil is mainly due to external gamma exposure and radon inhalation. However, waterborne pathways make a non-negligible contribution to the dose for the actual resident families living on farmland with the type of residual NORM contamination due to crude oil recovery operations.

  12. Conversion of Agricultural Streams and Food-Processing By-Products to Value-Added Compounds Using Filamentous Fungi.

    PubMed

    Chan, Lauryn G; Cohen, Joshua L; de Moura Bell, Juliana Maria Leite Nobrega

    2018-03-25

    The design of new food products and increased agricultural activities have produced a diversity of waste streams or by-products that contain a high load of organic matter. The underutilization of these streams presents a serious threat to the environment and to the financial viability of the agricultural sector and the food industry. Oleaginous microorganisms, such as yeast and microalgae, have been used to convert the organic matter present in many agricultural waste streams into an oil-rich biomass. Filamentous fungi are promising oleaginous microorganisms because of their high lipid accumulation potential and simple biomass recovery, the latter being related to their pellet-like growth morphology in submerged cultivation. This review highlights the use of oleaginous filamentous fungi to convert food by-products into value-added components, including the effect of cultivation conditions on biomass yield and composition. Special attention is given to downstream processing for the commercial production of fungal oil. Also discussed are innovative techniques to optimize the biomass oil yield and to minimize the challenges associated with biomass harvesting and oil extraction at industrial scale.

  13. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    PubMed

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-04-01

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.

  14. Retrofitting hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and bio-oil production encompassing biorefinery.

    PubMed

    Sarkar, Omprakash; Agarwal, Manu; Naresh Kumar, A; Venkata Mohan, S

    2015-02-01

    Algal biomass grown hetrotrophically in domestic wastewater was evaluated as pyrolytic feedstock for harnessing biogas, bio-oil and bio-char. Freshly harvested microalgae (MA) and lipid extracted microalgae (LEMA) were pyrolysed in packed bed reactor in the presence and absence of sand as additive. MA (without sand additive) depicted higher biogas (420 ml/g; 800 °C; 3 h) and bio-oil (0.70 ml/g; 500 °C; 3 h). Sand addition enhanced biogas production (210 ml/g; 600 °C; 2 h) in LEMA operation. The composition of bio-gas and bio-oil was found to depend on the nature of feedstock as well as the process conditions viz., pyrolytic-temperature, retention time and presence of additive. Sand additive improved the H2 composition while pyrolytic temperature increment caused a decline in CO2 fraction. Bio-char productivity increased with increasing temperature specifically with LEMA. Integration of thermo-chemical process with microalgae cultivation showed to yield multiple resources and accounts for environmental sustainability in the bio-refinery framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, J.M.; Owens, E.H.; Stoker, S.W.

    1995-12-31

    Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurfacemore » oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m{sup 2} to about 12,000 m{sup 2}. Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs.« less

  16. Statistical analysis and modeling of pelletized cultivation of Mucor circinelloides for microbial lipid accumulation.

    PubMed

    Xia, Chunjie; Wei, Wei; Hu, Bo

    2014-04-01

    Microbial oil accumulation via oleaginous fungi has some potential benefits because filamentous fungi can form pellets during cell growth and these pellets are easier to harvest from the culture broth than individual cells. This research studied the effect of various culture conditions on the pelletized cell growth of Mucor circinelloides and its lipid accumulation. The results showed that cell pelletization was positively correlated to biomass accumulation; however, pellet size was negatively correlated to the oil content of the fungal biomass, possibly due to the mass transfer barriers generated by the pellet structure. How to control the size of the pellet is the key to the success of the pelletized microbial oil accumulation process.

  17. A practical approach to the degradation of polychlorinated biphenyls in transformer oil.

    PubMed

    Wu, Wenhai; Xu, Jie; Zhao, Hongmei; Zhang, Qing; Liao, Shijian

    2005-08-01

    A practical and efficient disposal method for hydrodechlorination of polychlorinated biphenyls (PCBs) in transformer oil is reported. Transformer oil containing PCBs was treated by nanometric sodium hydride (nano-NaH) and transition metal catalysts. High destruction and removal efficiency (89.8%) can be attained by nano-NaH alone under mild conditions. The process exhibits apparent characteristics of a first order reaction. The reductive ability of nano-NaH was enhanced by the addition of transition metal catalysts. In the presence of TiCl4, 99.9% PCBs was hydrodechlorinated. The complex reducing reagents, Ni(OAc)2+i-PrONa, show extra hydrodechlorinating activity for di-chlorinated biphenyls.

  18. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology.

    PubMed

    Salema, Arshad Adam; Afzal, Muhammad T; Bennamoun, Lyes

    2017-06-01

    Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Integration of Remote-Sensing Detection Techniques into the Operational Decision-Making of Marine Oil Spills

    NASA Astrophysics Data System (ADS)

    Garron, J.; Trainor, S.

    2017-12-01

    Remotely-sensed data collected from satellites, airplanes and unmanned aerial systems can be used in marine oil spills to identify the overall footprint, estimate fate and transport, and to identify resources at risk. Mandates for the use of best available technology exists for addressing marine oil spills under the jurisdiction of the USCG (33 CFR 155.1050), though clear pathways to familiarization of these technologies during a marine oil spill, or more importantly, between marine oil spills, does not. Similarly, remote-sensing scientists continue to experiment with highly tuned oil detection, fate and transport techniques that can benefit decision-making during a marine oil spill response, but the process of translating these prototypical tools to operational information remains undefined, leading most researchers to describe the "potential" of these new tools in an operational setting rather than their actual use, and decision-makers relying on traditional field observational methods. Arctic marine oil spills are no different in their mandates and the remote-sensing research undertaken, but are unique via the dark, cold, remote, infrastructure-free environment in which they can occur. These conditions increase the reliance of decision-makers in an Arctic oil spill on remotely-sensed data and tools for their manipulation. In the absence of another large-scale oil spill in the US, and limited literature on the subject, this study was undertaken to understand how remotely-sensed data and tools are being used in the Incident Command System of a marine oil spill now, with an emphasis on Arctic implementation. Interviews, oil spill scenario/drill observations and marine oil spill after action reports were collected and analyzed to determine the current state of remote-sensing data use for decision-making during a marine oil spill, and to define a set of recommendations for the process of integrating new remote-sensing tools and information in future oil spill responses. Using automated synthetic aperture radar analyses of oil spills in a common operational picture as a scientific case study, this presentation is a demonstration of how landscape-level scientific data can be integrated into Arctic planning and operational decision-making.

  20. Comparison of the frying performance of olive oil and palm superolein.

    PubMed

    Romano, Raffaele; Giordano, Anella; Vitiello, Simona; Grottaglie, Laura Le; Musso, Salvatore Spagna

    2012-05-01

    Deep-fat frying is an important method of food preparation in which foods are immersed in hot oil. Repeated use of frying oils is a common practice, and in the presence of atmospheric oxygen it produces various undesirable reactions in used oils. Stable frying oils usually require low linolenic acid (LnA < 3%), increased oleic acid (OA > 40%), and decreased linoleic acid (LA < 50%). The aim of this study was to establish the behavior of palm superolein (PSO) (OA 45%; LA 12.5%; LnA 0.2%) and olive oil (OO) during repeated, discontinuous deep frying of French fries. The behavior of the oils under controlled heating conditions was also studied by maintaining all of the process variables the same as those in deep frying, except that there was no food in the oil. The PSO selected to be tested in this study may represent an alternative to OO as a frying medium. Although PSO presented a faster increase in some oxidation indices, such as free fatty acid and total polar compounds, for other indicators, PSO showed better behavior than OO (less formation of C8:0 and lower peroxide value). © 2012 Institute of Food Technologists®

  1. 25 CFR 225.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS... other associated energy found in geothermal formations; and (4) Any by-product derived therefrom. In the... temperature and pressure conditions. Geothermal resources means: (1) All products of geothermal processes...

  2. 25 CFR 225.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS... other associated energy found in geothermal formations; and (4) Any by-product derived therefrom. In the... temperature and pressure conditions. Geothermal resources means: (1) All products of geothermal processes...

  3. Base Oil-Extreme Pressure Additive Synergy in Lubricants

    USDA-ARS?s Scientific Manuscript database

    Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...

  4. Oil removal of spent hydrotreating catalyst CoMo/Al2O3 via a facile method with enhanced metal recovery.

    PubMed

    Yang, Yue; Xu, Shengming; Li, Zhen; Wang, Jianlong; Zhao, Zhongwei; Xu, Zhenghe

    2016-11-15

    Deoiling process is a key issue for recovering metal values from spent hydrotreating catalysts. The oils can be removed with organic solvents, but the industrialized application of this method is greatly hampered by the high cost and complex processes. Despite the roasting method is simple and low-cost, it generates hardest-to-recycle impurities (CoMoO4 or NiMoO4) and enormous toxic gases. In this study, a novel and facile approach to remove oils from the spent hydrotreating catalysts is developed. Firstly, surface properties of spent catalysts are characterized to reveal the possibility of oil removal. And then, oils are removed with water solution under the conditions of 90°C, 0.1wt% SDS, 2.0wt% NaOH and 10ml/gL/S ratio for 4h. Finally, thermal treatment and leaching tests are carried out to further explore the advantages of oil removal. The results show that no hardest-to-recycle impurity CoMoO4 is found in XPS spectra of thermally treated samples after deoiling and molybdenum is leached completely with sodium carbonate solution. It means that the proposed deoiling method can not only remove oils simply and without enormous harmful gases generating, but also avoid the generation of detrimental impurity and promote recycling of valuable metals from spent hydrotreating catalysts. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Dietary Fat Feeding Alters Lipid Peroxidation in Surfactant-like Particles Secreted by Rat Small Intestine.

    PubMed

    Turan, Aasma; Mahmood, Akhtar; Alpers, David H

    2009-04-01

    Long-term feeding of fish oil (n-3) and corn oil (n-6) markedly enhances levels of lipid peroxidation within isolated rat enterocytes. The effect is 10-fold greater at the villus tip than in the crypt region, correlating with the distribution of deleterious oxidative systems (glutathione reductase) in the tip and beneficial systems (superoxide dismutase) at the base of the villus. Because of this vertical gradient of peroxidation, the process was thought to play a role in apoptosis of enterocytes at the villus tip. Surfactant-like particles (SLPs) are membranes secreted by the enterocyte and a component of these membranes is directed to the intestinal surface overlying villus tips. One suggested role for SLPs has been to protect the mucosal surface from the harsh luminal conditions that might enhance apoptotic loss of enterocytes. The hypothesis to be tested was whether SLP lipids, like those in enterocytes, were also peroxidized, although they were external to the cellular processes that seem to oxidize enterocyte lipids, or whether SLP were immune to these biological processes. Feeding with groundnut oil (n-9) was compared with fish oil (n-3) and corn oil (predominantly n-6) to determine whether oils with various lipid composition would affect peroxidation in both SLP and enterocytes. After an overnight fast, Wistar rats were fed 2 mL of dietary oil by gavage. Five hours later SLPs and underlying microvillus membranes (MVM) were isolated and analyzed for generation of thiobarbituric acid reactive substances (TBARS) and for hydrolase activities, at baseline and after addition of an Fe +2 /ascorbate system to induce peroxidation. In vitro lipid peroxidation using the Fe 2+ /ascorbate system produced greater peroxidation than in MVM. Intestinal alkaline phosphatase (IAP), sucrase and lactase activities were decreased in SLPs, but were unaltered in MVM except for IAP. The activities of maltase, trehalase, Leucine aminopeptidase and γ-glutamyltranspeptidase, were unaffected both in SLPs and MVM under these conditions. SLPs are more susceptible to oxidative damage than are the underlying MVMs. This may reflect results of a hostile luminal environment. It is not clear whether SLPs are acting as a lipid 'sink' to protect the MVM from greater oxidation, or are providing an initial stimulus for apoptosis of villus tip enterocytes, or both.

  6. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation.

    PubMed

    Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie

    2016-06-02

    Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery.

  7. Corrosion Challenges for the Oil and Gas Industry in the State of Qatar

    NASA Astrophysics Data System (ADS)

    Johnsen, Roy

    In Qatar oil and gas has been produced from onshore fields in more than 70 years, while the first offshore field delivered its first crude oil in 1965. Due to the atmospheric conditions in Qatar with periodically high humidity, high chloride content, dust/sand combined with the temperature variations, external corrosion is a big treat to the installations and connecting infrastructure. Internal corrosion in tubing, piping and process systems is also a challenge due to high H2S content in the hydrocarbon mixture and exposure to corrosive aquifer water. To avoid corrosion different type of mitigations like application of coating, chemical treatment and material selection are important elements. This presentation will review the experiences with corrosion challenges for oil & gas installations in Qatar including some examples of corrosion failures that have been seen.

  8. Data on calcium oxide and cow bone catalysts used for soybean biodiesel production.

    PubMed

    Ayodeji, Ayoola A; Blessing, Igho E; Sunday, Fayomi O

    2018-06-01

    Biodiesel was produced from soybean oil using calcium oxide and cow bone as heterogeneous catalysts, through transesterification process. The soybean oil used was characterized using gas chromatography mass spectrometer (GCMS) and the cow bone catalyst produced was characterized X-ray fluorescence (XRF) spectrometer. The effects of the variation of methanol/oil mole ratio, catalyst concentration and reaction temperature on biodiesel yield during the transesterification of soybean oil were investigated. Reaction time of 3 h and stirring rate of 500 rpm were kept constant. Using Response Optimizer (Minitab 17), the optimum conditions for biodiesel production were established. It was observed that the calcination of cow bone catalyst enhanced its conversion to apatite-CaOH. Also, the results obtained showed that the performance trends of calcined cow bone catalyst and the conventional CaO catalyst were similar.

  9. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  10. Dominierende Prozesse bei der thermischen In-situ-Sanierung (TISS) kontaminierter Geringleiter

    NASA Astrophysics Data System (ADS)

    Hiester, Uwe; Bieber, Laura

    2017-09-01

    Contaminants such as chlorinated, aromatic or polycyclic aromatic hydrocarbons (CHC, BTEX, PAH) or mineral oil hydrocarbons (TPH) constitute a prevalent threat to water resources. The significant storage capacity of low permeable soils (aquitards) leads to their long-term contamination. In situ thermal remediation (ISTR) proved to work successfully in treating these soils. Thus, the area of ISTR application grew continuously over the past 10 years. The dominating processes during the remediation can vary considerably, depending on hydrogeological and geological boundary conditions and the contamination itself. This article summarizes the application for in-situ thermal remediation (ISTR) in low permeable soils and aquitards for soil and groundwater treatment. Dominating remediation processes during volatile organic compound (VOC) and residual oil phase recovery are presented. The processes are illustrated by project examples.

  11. Impact of Moderate Heat, Carvacrol, and Thymol Treatments on the Viability, Injury, and Stress Response of Listeria monocytogenes

    PubMed Central

    Guevara, L.; Antolinos, V.; Palop, A.; Periago, P. M.

    2015-01-01

    The microbial safety and stability of minimally processed foods are based on the application of combined preservative factors. Since microorganisms are able to develop adaptive networks to survive under conditions of stress, food safety may be affected, and therefore understanding of stress adaptive mechanisms plays a key role in designing safe food processing conditions. In the present study, the viability and the sublethal injury of Listeria monocytogenes exposed to moderate heat (55°C) and/or essential oil compounds (carvacrol and thymol, 0.3 mM) treatments were studied. Synergistic effects were obtained when combining mild heat (55°C) with one or both essential oil compounds, leading to inactivation kinetics values three to four times lower than when using heat alone. All the treatments applied caused some injury in the population. The injury levels ranged from around 20% of the surviving population under the mildest conditions to more than 99.99% under the most stringent conditions. Protein extracts of cells exposed to these treatments were analysed by two-dimensional gel electrophoresis. The results obtained revealed that stressed cells exhibited differential protein expression to control cells. The proteins upregulated under these stressing conditions were implicated, among other functions, in stress response, metabolism, and protein refolding. PMID:26539510

  12. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    PubMed

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  13. Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production.

    PubMed

    Kostić, Milan D; Veličković, Ana V; Joković, Nataša M; Stamenković, Olivera S; Veljković, Vlada B

    2016-02-01

    This study reports on the use of oil obtained from waste plum stones as a low-cost feedstock for biodiesel production. Because of high free fatty acid (FFA) level (15.8%), the oil was processed through the two-step process including esterification of FFA and methanolysis of the esterified oil catalyzed by H2SO4 and CaO, respectively. Esterification was optimized by response surface methodology combined with a central composite design. The second-order polynomial equation predicted the lowest acid value of 0.53mgKOH/g under the following optimal reaction conditions: the methanol:oil molar ratio of 8.5:1, the catalyst amount of 2% and the reaction temperature of 45°C. The predicted acid value agreed with the experimental acid value (0.47mgKOH/g). The kinetics of FFA esterification was described by the irreversible pseudo first-order reaction rate law. The apparent kinetic constant was correlated with the initial methanol and catalyst concentrations and reaction temperature. The activation energy of the esterification reaction slightly decreased from 13.23 to 11.55kJ/mol with increasing the catalyst concentration from 0.049 to 0.172mol/dm(3). In the second step, the esterified oil reacted with methanol (methanol:oil molar ratio of 9:1) in the presence of CaO (5% to the oil mass) at 60°C. The properties of the obtained biodiesel were within the EN 14214 standard limits. Hence, waste plum stones might be valuable raw material for obtaining fatty oil for the use as alternative feedstock in biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. An Oil/Water disperser device for use in an oil content Monitor/Control system

    NASA Astrophysics Data System (ADS)

    Kempel, F. D.

    1985-07-01

    This patent application discloses an oil content monitor/control unit system, including an oil/water disperser device, which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermine in-port or at-sea oil concentration lmits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than predetermine in-port or at-sea limits, it is discharged overboard. The oil/water disperser device is configured to break up any oil present in the processed effluent into uniform droplets for more accurate sensing of the oil present in the processed effluent into uniform droplets for more accurate sensing of the oil-in-water concentration level thereof. The oil/water disperser device has a flow-actuated variable orifice configured into a spring-loaded polyethylene plunger which provides the uniform distribution of oil droplets.

  15. Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations

    NASA Astrophysics Data System (ADS)

    Bekins, Barbara A.; Cozzarelli, Isabelle M.; Godsy, E. Michael; Warren, Ean; Essaid, Hedeff I.; Tuccillo, Mary Ellen

    2001-12-01

    A multidisciplinary study of a crude-oil contaminated aquifer shows that the distribution of microbial physiologic types is strongly controlled by the aquifer properties and crude oil location. The microbial populations of four physiologic types were analyzed together with permeability, pore-water chemistry, nonaqueous oil content, and extractable sediment iron. Microbial data from three vertical profiles through the anaerobic portion of the contaminated aquifer clearly show areas that have progressed from iron-reduction to methanogenesis. These locations contain lower numbers of iron reducers, and increased numbers of fermenters with detectable methanogens. Methanogenic conditions exist both in the area contaminated by nonaqueous oil and also below the oil where high hydrocarbon concentrations correspond to local increases in aquifer permeability. The results indicate that high contaminant flux either from local dissolution or by advective transport plays a key role in determining which areas first become methanogenic. Other factors besides flux that are important include the sediment Fe(II) content and proximity to the water table. In locations near a seasonally oscillating water table, methanogenic conditions exist only below the lowest typical water table elevation. During 20 years since the oil spill occurred, a laterally continuous methanogenic zone has developed along a narrow horizon extending from the source area to 50-60 m downgradient. A companion paper [J. Contam. Hydrol. 53, 369-386] documents how the growth of the methanogenic zone results in expansion of the aquifer volume contaminated with the highest concentrations of benzene, toluene, ethylbenzene, and xylenes.

  16. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST software, with new detection, filtering and classification algorithms. Particularly, dedicated filtering algorithm development based on Wavelet filtering was exploited for the improvement of oil spill detection and classification. In this work we present the functionalities of the developed software and the main results in support of the developed algorithm validity.

  17. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.

    PubMed

    Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B

    2017-02-01

    This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Contamination by oil crude extraction - Refinement and their effects on human health.

    PubMed

    Ramirez, Maria Isabel; Arevalo, Ana Paulina; Sotomayor, Santiago; Bailon-Moscoso, Natalia

    2017-12-01

    The harmful effects of oil on various species of flora and fauna have been studied extensively; however, few studies have studied the effects of oil exposure on human health. The objective of this research was to collect information on the acute health effects and serious psychological symptoms of the possible consequences of such exposure to crude oil. Some studies focused on the composition of different chemicals used in the extraction process, and wastes generated proved to be highly harmful to human health. Thus, studies have shown that individuals who live near oil fields or wells - or who take part in activities of cleaning oil spills - have presented health conditions, such as irritation to the skin, eyes, mucous membranes, kidney damage, liver, reproductive, among others. In Ecuador, this reality is not different from other countries, and some studies have shown increased diseases related with oil crude and oil spills, like skin irritation, throat, liver, lung, infertility, and abortions, and it has been linked to childhood leukemia. Other studies suggest a direct relationship between DNA damage because of oil resulting in a genetic instability of the main enzymes of cellular metabolism as well as a relationship with some cancers, such as leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of blend ratio of PP/kapok blend nonwoven fabrics on oil sorption capacity.

    PubMed

    Lee, Young-Hee; Kim, Ji-Soo; Kim, Do-Hyung; Shin, Min-Seung; Jung, Young-Jin; Lee, Dong-Jin; Kim, Han-Do

    2013-01-01

    More research and development on novel oil sorbent materials is needed to protect the environmental pollution. New nonwoven fabrics (pads) of polypropylene (PP)/kapok blends (blend ratio: 100/0, 75/25, 50/50, 25/75 and 10/90) were prepared by needle punching process at a fixed (optimized) condition (punch density: 50 punches/cm2 and depth: 4mm). This study focused on the effect of blend ratio of PP/kapok nonwoven fabrics on oil sorption capacities to find the best blend ratio having the highest synergy effect. The PP/kapok blend (50/50) sample has the lowest bulk density and showed the best oil absorption capacity. The oil sorption capacity of PP/kapok blend (50/50) nonwoven fabric for kerosene/soybean oil [21.09/27.01 (g oil/g sorbent)] was 1.5-2 times higher than those of commercial PP pad oil sorbents. The highest synergy effect of PP/kapok blend (50/50) was ascribed to the lowest bulk density of PP/kapok blend (50/50), which might be due to the highest morphologically incompatibility between PP fibre and kapok. These results suggest that the PP/kapok blend (50/50) having the highest synergy effect has a high potential as a new high-performance oil sorbent material.

  20. Oil-spill risk analysis: Cook inlet outer continental shelf lease sale 149. Volume 2: Conditional risk contour maps of seasonal conditional probabilities. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.R.; Marshall, C.F.; Anderson, C.M.

    1994-08-01

    The Federal Government has proposed to offer Outer Continental Shelf (OCS) lands in Cook Inlet for oil and gas leasing. Because oil spills may occur from activities associated with offshore oil production, the Minerals Management Service conducts a formal risk assessment. In evaluating the significance of accidental oil spills, it is important to remember that the occurrence of such spills is fundamentally probabilistic. The effects of oil spills that could occur during oil and gas production must be considered. This report summarizes results of an oil-spill risk analysis conducted for the proposed Cook Inlet OCS Lease Sale 149. The objectivemore » of this analysis was to estimate relative risks associated with oil and gas production for the proposed lease sale. To aid the analysis, conditional risk contour maps of seasonal conditional probabilities of spill contact were generated for each environmental resource or land segment in the study area. This aspect is discussed in this volume of the two volume report.« less

  1. Supercritical fluid extraction of grape seeds: extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells.

    PubMed

    Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema

    2015-08-01

    Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.

  2. Best conditions for biodegradation of diesel oil by chemometric tools

    PubMed Central

    Kaczorek, Ewa; Bielicka-Daszkiewicz, Katarzyna; Héberger, Károly; Kemény, Sándor; Olszanowski, Andrzej; Voelkel, Adam

    2014-01-01

    Diesel oil biodegradation by different bacteria-yeast-rhamnolipids consortia was tested. Chromatographic analysis of post-biodegradation residue was completed with chemometric tools (ANOVA, and a novel ranking procedure based on the sum of ranking differences). These tools were used in the selection of the most effective systems. The best results of aliphatic fractions of diesel oil biodegradation were observed for a yeast consortia with Aeromonas hydrophila KR4. For these systems the positive effect of rhamnolipids on hydrocarbon biodegradation was observed. However, rhamnolipids addition did not always have a positive influence on the biodegradation process (e.g. in case of yeast consortia with Stenotrophomonas maltophila KR7). Moreover, particular differences in the degradation pattern were observed for lower and higher alkanes than in the case with C22. Normally, the best conditions for “lower” alkanes are Aeromonas hydrophila KR4 + emulsifier independently from yeasts and e.g. Pseudomonas stutzeri KR7 for C24 alkane. PMID:24948922

  3. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    NASA Astrophysics Data System (ADS)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  4. [Factors of work environment and employment of workers in production of fuels and solvents at the oil refinery].

    PubMed

    Chebotarev, P A; Kharlashova, N V

    2012-01-01

    Factors of the industrial environment and labor activity of workers of manufacture propellants and solvents at the oil refining enterprise. Working conditions of workers at all installations of manufacture No 1 JSC "Naftan" of Novopolotsk of Byelorussia (production of fuels and solvents). Hygienic evaluation of working conditions of persons working in the production of fuels and solvents at the oil refinery. Sanitary description of the production with hygienic analysis of project design and technological documentation, qualitative and quantitative characteristics of conventional methods in the work environment and working process of employees in the workplace for the main modes of operation of the equipment. The working environment of refineries is influenced by a number of simultaneously acting factors, which have different material nature and characteristics of the action on the human body, the workers in production of fuels and solvents at the refinery, are exposed to a variety of hazardous and dangerous factors of production, a chemical factor is prevalent, of course.

  5. 30 CFR 206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production into marketable condition and to market production? 206.106 Section 206.106 Mineral Resources... Federal Oil § 206.106 What are my responsibilities to place production into marketable condition and to market production? You must place oil in marketable condition and market the oil for the mutual benefit...

  6. Experimental study of oil plume stability: Parametric dependences and optimization.

    PubMed

    Li, Haoshuai; Shen, Tiantian; Bao, Mutai

    2016-10-15

    Oil plume is known to interact with density layer in spilled oil. Previous studies mainly focused on tracking oil plumes and predicting their impact on marine environment. Here, simulated experiments are presented that investigated the conditions inducing the formation of oil plume, focusing especially on the effects of oil/water volume ratio, oil/dispersant volume rate, ambient stratification and optimal conditions of oil plume on determining whether a plume will trap or escape. Scenario simulations showed that OWR influences the residence time most, dispersants dosage comes second and salinity least. The optimum residence time starts from 2387s, occurred at approximately condition (OWR, 0.1, DOR, 25.53% and salinity, 32.38). No change in the relative distribution under the more scale tank was observed, indicating these provide the time evolution of the oil plumes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of the ability of calcite, bentonite and barite to enhance oil dispersion under arctic conditions.

    PubMed

    Jézéquel, Ronan; Receveur, Justine; Nedwed, Tim; Le Floch, Stéphane

    2018-02-01

    A test program was conducted at laboratory and pilot scale to assess the ability of clays used in drilling mud (calcite, bentonite and barite) to create oil-mineral aggregates and disperse crude oil under arctic conditions. Laboratory tests were performed in order to determine the most efficient conditions (type of clay, MOR (Mineral/Oil Ratio), mixing energy) for OMA (Oil Mineral Aggregate) formation. The dispersion rates of four crude oils were assessed at two salinities. Dispersion was characterized in terms of oil concentration in the water column and median OMA size. Calcite appeared to be the best candidate at a MOR of 2:5. High mixing energy was required to initiate OMA formation and low energy was then necessary to prevent the OMAs from resurfacing. Oil dispersion using Corexit 9500 was compared with oil dispersion using mineral fines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Endurance of high molecular weight carboxymethyl cellulose in corrosive environments

    NASA Astrophysics Data System (ADS)

    Murodov, M. M.; Rahmanberdiev, G. R.; Khalikov, M. M.; Egamberdiev, E. A.; Negmatova, K. C.; Saidov, M. M.; Mahmudova, N.

    2012-07-01

    Lignin obtained from the waste cooking liquor, formed after soda pulping process, is used as an inhibitor of NaCMC thermo oxidative degradation in presence of in extreme conditions during drilling oil wells. In this paper the schematic process of obtaining NaCMC by the principle of "monoapparat" on the basis of cellulose produced by non-wood cellulose materials is presented.

  9. The application of vacuum redistillation of patchouli oil to improve patchouli alcohol compound

    NASA Astrophysics Data System (ADS)

    Asnawi, T. M.; Alam, P. N.; Husin, H.; Zaki, M.

    2018-04-01

    Patchouli oil produced by traditional distillation of patchouli leaves and stems by farmers in Aceh still has low patchouli alcohol compound. In order to increase patchouli alcohol concentration, vacuum redistillation process using packed column was introduced. This research was conducted to fractionate terpene (alpha-copinene) from oxygenated hydrocarbon (patchouli alcohol) compound. The operation condition was conducted at two variables that was dependent variable and independent variable. The dependent variable was the 30 cm height distillation packed column, by using raschig ring with 8 mm x 8 mm dimension. And the independent variable was operating temperature 130 °C and 140 °C., vacuum pressure 143,61 mbar, 121,60 mbar and 88,59 mbar and operation time 2 hours, 3 hours and 5 hours. Total of treatments applied in this works were 3 x 3 x 3 or equal to 27 treatments. Patchouli oil used in this research was obtained from Desa Teladan-Lembah Seulawah, Aceh Province. The initial patchouli alcohol compound which analyzed with GC-MS contained 16,02% before treatment applied. After vacuum redistillation process treatment applied patchouli oil concentration increase up to 34,67%. Physico-chemical test of patchouli oil after vacuum redistillation is in accordance with SNI 06-23852006 standard.

  10. Development of a supercritical fluid chromatography method with ultraviolet and mass spectrometry detection for the characterization of biomass fast pyrolysis bio oils.

    PubMed

    Crepier, Julien; Le Masle, Agnès; Charon, Nadège; Albrieux, Florian; Heinisch, Sabine

    2017-08-11

    The characterization of complex mixtures is a challenging issue for the development of innovative processes dedicated to biofuels and bio-products production. The huge number of compounds present in biomass fast pyrolysis oils combined with the large diversity of chemical functions represent a bottleneck as regards analytical technique development. For the extensive characterization of complex samples, supercritical fluid chromatography (SFC) can be alternative to usual separation techniques such as gas (GC) or liquid chromatography (LC). In this study, an approach is proposed to define the best conditions for the SFC separation of a fast pyrolysis bio-oil. This approach was based on SFC data obtained directly from the bio-oil itself instead of selecting model compounds as usually done. SFC conditions were optimized by using three specific, easy-to-use and quantitative criteria aiming at maximizing the separation power. Polar stationary phases (ethylpyridine bonded silica) associated to a mix of acetonitrile and water as polarity modifier provided the best results, with more than 120 peaks detected in SFC-UV. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  12. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method.

    PubMed

    Lee, Jong Ho; Kwon, Cheong Hoon; Kang, Jeong Won; Park, Chulhwan; Tae, Bumseok; Kim, Seung Wook

    2009-05-01

    In this study, we evaluate the effects of various reaction factors, including pressure, temperature, agitation speed, enzyme concentration, and water content to increase biodiesel production. In addition, biodiesel was produced from various oils to establish the optimal enzymatic process of biodiesel production. Optimal conditions were determined to be as follows: pressure 130 bar, temperature 45 degrees C, agitation speed 200 rpm, enzyme concentration 20%, and water contents 10%. Among the various oils used for production, olive oil showed the highest yield (65.18%) upon transesterification. However, when biodiesel was produced using a batch system, biodiesel conversion yield was not increased over 65%; therefore, a stepwise reaction was conducted to increase biodiesel production. When a reaction medium with an initial concentration of methanol of 60 mmol was used and adjusted to maintain this concentration of methanol every 1.5 h during biodiesel production, the conversion yield of biodiesel was 98.92% at 6 h. Finally, reusability was evaluated using immobilized lipase to determine if this method was applicable for industrial biodiesel production. When biodiesel was produced repeatedly, the conversion rate was maintained at over 85% after eight reuses.

  13. Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study.

    PubMed

    Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2016-11-01

    Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.

  14. Source Term Modeling for Evaluating the Potential Impacts to Groundwater of Fluids Escaping from a Depleted Oil Reservoir Used for Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Brown, Christopher F.

    2014-06-13

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Two model scenarios weremore » conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The first case consisted of 50 wt.% oil and 50 wt.% water; the second case was 90 wt.% CO2 and 10 wt.% oil. Several key organic compounds were selected for special attention in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for a typical set of oil reservoir conditions (75°C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil dissolves into the vapor phase. As the vapor phase moves up through the stratigraphic column, pressures and temperatures decrease, resulting in significant condensation of oil components. The heaviest organic components condense early in this process (at higher pressures and temperatures), while the lighter components tend to remain in the vapor phase until much lower pressures and temperatures are reached. Based on the model assumptions, the final concentrations of COI to reach an aquifer at 1,520 kPa and 25°C were quite significant for benzene and toluene, whereas the concentrations of polynuclear aromatic hydrocarbons that reach the aquifer were very small. This work demonstrates a methodology that can provide COI source term concentrations in CO2 leaking from a reservoir and entering an overlying aquifer for use in risk assessments.« less

  15. The effect of fermentation and addition of vegetable oil on resistant starch formation in wholegrain breads.

    PubMed

    Buddrick, Oliver; Jones, Oliver A H; Hughes, Jeff G; Kong, Ing; Small, Darryl M

    2015-08-01

    Resistant starch has potential health benefits but the factors affecting its formation in bread and baked products are not well studied. Here, the formation of resistant starch in wholemeal bread products was evaluated in relation to the processing conditions including fermentation time, temperature and the inclusion of palm oil as a vitamin source. The effects of each the factor were assessed using a full factorial design. The impact on final starch content of traditional sourdough fermentation of wholemeal rye bread, as well as the bulk fermentation process of wheat and wheat/oat blends of wholemeal bread, was also assessed by enzyme assay. Palm oil content was found to have a significant effect on the formation of resistant starch in all of the breads while fermentation time and temperature had no significant impact. Sourdough fermentation of rye bread was found to have a greater impact on resistant starch formation than bulk fermentation of wheat and wheat blend breads, most likely due the increased organic acid content of the sourdough process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ethanol production from lignocellulosic byproducts of olive oil extraction.

    PubMed

    Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M

    2001-01-01

    The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.

  17. Wind Turbine Gearbox Oil Filtration and Condition Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Shuangwen

    This is an invited presentation for a pre-conference workshop, titled advances and opportunities in lubrication: wind turbine, at the 2015 Society of Tribologists and Lubrication Engineers (STLE) Tribology Frontiers Conference held in Denver, CO. It gives a brief overview of wind turbine gearbox oil filtration and condition monitoring by highlighting typical industry practices and challenges. The presentation starts with an introduction by covering recent growth of global wind industry, reliability challenges, benefits of oil filtration and condition monitoring, and financial incentives to conduct wind operation and maintenance research, which includes gearbox oil filtration and condition monitoring work presented herein. Then,more » the presentation moves on to oil filtration by stressing the benefits of filtration, discussing typical main- and offline-loop practices, highlighting important factors considered when specifying a filtration system, and illustrating real-world application challenges through a cold-start example. In the next section on oil condition monitoring, a discussion on oil sample analysis, oil debris monitoring, oil cleanliness measurements and filter analysis is given based on testing results mostly obtained by and at NREL, and by pointing out a few challenges with oil sample analysis. The presentation concludes with a brief touch on future research and development (R and D) opportunities. It is hoping that the information presented can inform the STLE community to start or redirect their R and D work to help the wind industry advance.« less

  18. Vacuum distillation residue upgrading by an indigenous bacillus cereus

    PubMed Central

    2013-01-01

    Background Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. Results A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Conclusion Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils. PMID:24499629

  19. Vacuum distillation residue upgrading by an indigenous Bacillus cereus.

    PubMed

    Tabatabaee, Mitra Sadat; Mazaheri Assadi, Mahnaz

    2013-07-16

    Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  20. Biosensors for monitoring the isothermal breakdown kinetics of peanut oil heated at 180°C. Comparison with results obtained for extra virgin olive oil.

    PubMed

    Tomassetti, M; Vecchio, S; Campanella, L; Dragone, R

    2013-10-15

    The present research was devoted to studying the kinetics of the artificial rancidification of peanut oil (PO) when a sample of this oil was isothermally heated at 180°C in an air stream. The formation of radical species due to heating was evaluated using a radical index whose value was determined using a biosensor method based on a superoxide dismutase (SOD), while the increasing toxicity was monitored using a suitable toxicity measuring probe based on the Clark electrode and immobilized yeast cells. An extra virgin olive oil was isothermally rancidified under the same experimental conditions and the corresponding data were used for the purpose of comparison. Both the so-called "model-fitting" and the classical kinetic methods were applied to the isothermal process biosensor data in order to obtain the kinetic constant rate value at 180°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.

    PubMed

    Sodeifian, Gholamhossein; Sajadian, Seyed Ali; Honarvar, Bizhan

    2018-04-01

    Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.

  2. Application of LANDSAT-2 to the Management of Delaware's Marine and Wetland Resources

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Bartlett, D.; Philpot, W.; Davis, G.

    1975-01-01

    The author has identified the following significant results. The duPont waste disposal plume was observed in 12 NASA/LANDSAT satellite images during dump up to 54 hours after dump. The circulation processes at the acid waste disposal site are highly event-dominated, with the majority of the water transport occurring strong northeasters. There is a mean flow to the south alongshore. During the warm months, the ocean stratifies with warm water over cold water. During stratified conditions, the near-bottom drogues showed very little movement. LANDSAT, aircraft, and boats were used successfully to study estuarine and coastal fronts or boundaries. By capturing and holding oil slicks, frontal systems significantly influence the movement and dispersion of oil slicks in Delaware Bay. Recent oil slick tracking experiments conducted to verify a predictive oil dispersion and movement model have shown that during certain parts of the tidal cycle the oil slicks tend to line up along boundaries.

  3. Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts.

    PubMed

    Sankaranarayanan, Sivashunmugam; Antonyraj, Churchil A; Kannan, S

    2012-04-01

    Fatty acid methyl esters (FAME) were produced from edible, non-edible and used cooking oils with different fatty acid contents by transesterification with methanol using calcined layered double hydroxides (LDHs) as solid base catalysts. Among the catalysts, calcined CaAl2-LDH (hydrocalumite) showed the highest activity with >90% yield of FAME using low methanol:oil molar ratio (<6:1) at 65 °C in 5 h. The activity of the catalyst was attributed to its high basicity as supported by Hammett studies and CO(2)-TPD measurements. The catalyst was successfully reused in up to four cycles. Some of the properties such as density, viscosity, neutralization number and glycerol content of the obtained biodiesel matched well with the standard DIN values. It is concluded that a scalable heterogeneously catalyzed process for production of biodiesel in high yields from a wide variety of triglyceride oils including used oils is possible using optimized conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis.

    PubMed

    de Oliveira, Dayse A S B; Minozzo, Marcelo G; Licodiedoff, Silvana; Waszczynskyj, Nina

    2016-09-15

    In this study, the effects of chemical refining and deodorization on fatty acid profiles and physicochemical and sensory characteristics of the tuna by-product oil obtained by enzymatic hydrolysis were evaluated. Enzymatic extraction was conducted for 120 min at 60 °C and pH 6.5 using Alcalase at an enzyme-substrate ratio of 1:200 w/w. The chemical refining of crude oil consisted of degumming, neutralization, washing, drying, bleaching, and deodorization; deodorization was conducted at different temperatures and processing times. Although chemical refining was successful, temperature and chemical reagents favored the removal of polyunsaturated fatty acids (PUFA) from the oil. Aroma attributes of fishy odor, frying odor, and rancid odor predominantly contributed to the sensory evaluation of the product. Deodorization conditions of 160 °C for 1h and 200 °C for 1h were recommended for the tuna by-product oil, which is rich in PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. INNOVATIVE MIOR PROCESS UTILIZING INDIGENOUS RESERVOIR CONSTITUENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.O. Hitzman; S.A. Bailey

    This research program is directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal is to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery.This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery. Research has begun on the program and experimental laboratory work is underway. Polymer-producing cultures have been isolated frommore » produced water samples and initially characterized. Concurrently, a microcosm scale sand-packed column has been designed and developed for testing cultures of interest, including polymer-producing strains. In research that is planned to begin in future work, comparative laboratory studies demonstrating in situ production of microbial products as oil recovery agents will be conducted in sand pack and cores with synthetic and natural field waters at concentrations, flooding rates, and with cultures and conditions representative of oil reservoirs.« less

  6. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2016-11-01

    The aim of this work was to study the Microbial Enhanced Oil Recovery (MEOR) employing core field model ex-situ bioaugmenting a thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa. Thin Layer Chromatography (TLC) revealed that the biosurfactant produced was rhamnolipid type. Nuclear Magnetic Resonance analysis showed that the purified rhamnolipids comprised two principal rhamnolipid homologues, i.e., Rha-Rha-C10-C14:1 and Rha-C8-C10. The rhamnolipid was stable under wide range of temperature (4°C, 30-100°C), pH (2.0-10.0) and NaCl concentration (0-18%, w/v). Core Flood model was designed for oil recovery operations using rhamnolipid. The oil recovery enhancement over Residual Oil Saturation was 8.82% through ex-situ bioaugmentation with rhamnolipid. The thermal stability of rhamnolipid shows promising scope for its application at conditions where high temperatures prevail in oil recovery processes, whereas its halo-tolerant nature increases its application in marine environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of Methanomicrobia (mainly belonging to genera Methanosaeta and Methanoculleus). As both syntrophic Bacteria and methanogenic Archaea are abundant in Dagang, the studied areas of this oil field may have a significant potential to test the in situ conversion of oil into methane as a possible way to increase total hydrocarbon recovery.

  8. An integrated biodesulfurization process, including inoculum preparation, desulfurization and sulfate removal in a single step, for removing sulfur from oils.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangaromsuk, Jantana; Borole, Abhijeet P; Kruatrachue, Maleeya

    2008-01-01

    BACKGROUND: A single-stage reactor, in which the growth of bacterial culture, induction of desulfurizing enzymes, and desulfurization reaction are carried out in a single step, was adopted to investigate desulfurization of DBT at high cell densities. IGTS8 was used as the biocatalyst. Optimal condition for the bacterial growth and DBT desulfurization were also investigated. RESULTS: Optimization of fermentation conditions was necessary to obtain high cell densities including controlling accumulation of acetate. Under optimal operating conditions, the maximum OD600 was measured to be 26.6 at 118 h of cultivation. When biodesulfurization of DBT in model oil with a high cell densitymore » culture of IGTS8 was investigated, accumulation of sulfate was found to limit the extent of desulfurization. A sulfate removal step was added to obtain a single-stage integrated biodesulfurization process. Sulfate removal was achieved via an aqueous bleed stream and use of a separation unit to recycle the organic phase. CONCLUSION : A proof of principle of a complete system capable of biocatalyst growth, induction, desulfurization and by-product separation was demonstrated. This system enables simplification of the biodesulfurization process and has potential to lower the operating cost of the bioprocess.« less

  9. Bioremediation by composting of heavy oil refinery sludge in semiarid conditions.

    PubMed

    Marín, José A; Moreno, José L; Hernández, Teresa; García, Carlos

    2006-06-01

    The present work attempts to ascertain the efficacy of low cost technology (in our case, composting) as a bioremediation technique for reducing the hydrocarbon content of oil refinery sludge with a large total hydrocarbon content (250-300 g kg(-1)), in semiarid conditions. The oil sludge was produced in a refinery sited in SE Spain The composting system designed, which involved open air piles turned periodically over a period of 3 months, proved to be inexpensive and reliable. The influence on hydrocarbon biodegradation of adding a bulking agent (wood shavings) and inoculation of the composting piles with pig slurry (a liquid organic fertiliser which adds nutrients and microbial biomass to the pile) was also studied. The most difficult part during the composting process was maintaining a suitable level of humidity in the piles. The most effective treatment was the one in which the bulking agent was added, where the initial hydrocarbon content was reduced by 60% in 3 months, compared with the 32% reduction achieved without the bulking agent. The introduction of the organic fertiliser did not significantly improve the degree of hydrocarbon degradation (56% hydrocarbon degraded). The composting process undoubtedly led to the biodegradation of toxic compounds, as was demonstrated by ecotoxicity tests using luminescent bacteria and tests on plants in Petri dishes.

  10. Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis.

    DTIC Science & Technology

    1985-04-09

    OIL RESERVOIRS OF THE UNITED STATES Resource: Oil -in-Place State Field Name (County) (Million Bbls.) Arkansas Smackover Old (Union) 1,6U0 California...Flow Schematic for Gas Oil Feed Hydrotreater 94 14 Summary of Case Studies for Processing Bitumen from New Mexico 95 15 Summary of Case Studies for...Naphtha Hydrotreating Process Estimates 112 14 Gas Oil Hydrocracking Process Estimates 113 l! Gas Oil Hydrotreating Process Estimate 114 16 Fluid

  11. Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huamin; Lee, Suh-Jane; Olarte, Mariefel V.

    Biomass fast pyrolysis integrated with bio-oil upgrading represents a very attractive approach for converting biomass to hydrocarbon transportation fuels. However, the thermal and chemical instability of bio-oils presents significant problems when they are being upgraded, and development of effective approaches for stabilizing bio-oils is critical to the success of the technology. Catalytic hydrogenation to remove reactive species in bio-oil has been considered as one of the most efficient ways to stabilize bio-oil. This paper provides a fundamental understanding of hydrogenation of actual bio-oils over a Ru/TiO2 catalyst under conditions relevant to practical bio-oil hydrotreating processes. Bio-oil feed stocks, bio-oils hydrogenatedmore » to different extents, and catalysts have been characterized to provide insights into the chemical and physical properties of these samples and to understand the correlation of the properties with the composition of the bio-oil and catalysts. The results indicated hydrogenation of various components of the bio-oil, including sugars, aldehydes, ketones, alkenes, aromatics, and carboxylic acids, over the Ru/TiO2 catalyst and 120 to 160oC. Hydrogenation of these species significantly changed the chemical and physical properties of the bio-oil and overall improved its thermal stability, especially by reducing the carbonyl content, which represented the content of the most reactive species (i.e., sugar, aldehydes, and ketones). The change of content of each component in response to increasing hydrogen additions suggests the following bio-oil hydrogenation reaction sequence: sugar conversion to sugar alcohols, followed by ketone and aldehyde conversion to alcohols, followed by alkene and aromatic hydrogenation, and then followed by carboxylic acid hydrogenation to alcohols. Hydrogenation of bio-oil samples with different sulfur contents or inorganic material contents suggested that sulfur poisoning of the reduced Ru metal catalysts was significant during hydrogenation; however, the inorganics at low concentrations had minimal impact at short times on stream, indicating that sulfur poisoning was the primary deactivation mode for the bio-oil hydrogenation catalyst. Reducing the sulfur content in bio-oil could significantly increase the lifetime of the hydrogenation catalyst used. The knowledge gained during this work will allow rational design of more effective catalysts and processes for stabilizing and upgrading bio-oils.« less

  12. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  13. Bench-scale research in biomass liquefaction in support of the Albany, Oregon experimental facility

    NASA Astrophysics Data System (ADS)

    Elliott, D. C.

    1981-03-01

    The liquefaction of solid materials (wood, newsprint, animal manure) by beating to produce useful liquid fuels was investigated. Highlights of work performed include: (1) catalyst mechanism studies; (2) analytical reports on TR8 and TR9 product oils; (3) liquid chromatography/mass spectroscopy analysis of wood oil; (4) batch conversion tests on bottom material; (5) vapor pressure studies; and (6) product evaluation. It was confirmed that the key process parameters and the effects of varying operating conditions are in support of biomass liquefaction.

  14. Evaluation of the Sarex (trade name) 5-gpm oil-water separator, Type B. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musa, G.D.

    1986-06-01

    This report covers an investigation conducted to evaluate the operational effectiveness of the Sarex 5 GPM Oil-Water Separator, Type B. The results of this study indicate that the Sarex 5 GPM Oil-Water Separator, Type B, is an effective method for the removal of crude oil from feedwater. The Sarex 5 GPM Oil-Water Separator Type B, could be operated under field conditions. An efficient and effective oil-water separator device is imperative in certain areas of the world where crude-oil contaminated feedwater is found. The presence of crude oil in the feedwater adversely affects the performance of the reverse osmosis water-purification unitsmore » (ROWPUs) used by the Army and Marines to purify fresh, brackish, and salt water. Both the 600 GPH ROWPU and the 150,000 GPD ROWPU use multi-media and cartridge filters for the removal of suspended solids from the feedwater before they enter the reverse-osmosis membranes. Removal of the crude oil, which affixes to the filters, is accomplished by a laborious cleaning process or by replacement of the filters. Crude oil or a derived soluble oil passing the filters and entering the reverse osmosis elements would result in decreased production rate, degradation of the membrane elements, and decreased quality of product water. Thus, satisfactory operation of the ROWPU in this scenario is dependent upon an efficient and effective oil-water separator device.« less

  15. In-place burning of crude oil in broken ice: 1985 testing at OHMSETT (Oil and Hazardous Materials Simulated Environmental Test Tank)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N.K.; Diaz, A.

    1985-08-01

    In January and March of 1985, in-place oil burning tests were conducted at the U.S. Environmental Protection Agency's Oil and Hazardous Materials Simulated Environmental Test Tank. (OHMSETT) facility in Leonardo, New Jersey. In-place combustion of Prudhoe Bay and Amauligak crude oil slicks was attempted in varying ice coverages, oil conditions, and ambient conditions. An emulsion of Amauligak crude oil and water was also ignited three times and burned in 80% ice cover, removing nearly 50% of the emulsion.

  16. Box-Behnken design for investigation of microwave-assisted extraction of patchouli oil

    NASA Astrophysics Data System (ADS)

    Kusuma, Heri Septya; Mahfud, Mahfud

    2015-12-01

    Microwave-assisted extraction (MAE) technique was employed to extract the essential oil from patchouli (Pogostemon cablin). The optimal conditions for microwave-assisted extraction of patchouli oil were determined by response surface methodology. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (microwave power (A: 400-800 W), plant material to solvent ratio (B: 0.10-0.20 g mL-1) and extraction time (C: 20-60 min)) on the extraction yield of patchouli oil. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the microwave extraction of patchouli oil. The optimal extraction conditions of patchouli oil was microwave power 634.024 W, plant material to solvent ratio 0.147648 g ml-1 and extraction time 51.6174 min. The maximum patchouli oil yield was 2.80516% under these optimal conditions. Under the extraction condition, the experimental values agreed with the predicted results by analysis of variance. It indicated high fitness of the model used and the success of response surface methodology for optimizing and reflect the expected extraction condition.

  17. Practical Considerations and Challenges Involved in Surfactant Enhanced Bioremediation of Oil

    PubMed Central

    Mohanty, Sagarika; Jasmine, Jublee

    2013-01-01

    Surfactant enhanced bioremediation (SEB) of oil is an approach adopted to overcome the bioavailability constraints encountered in biotransformation of nonaqueous phase liquid (NAPL) pollutants. Fuel oils contain n-alkanes and other aliphatic hydrocarbons, monoaromatics, and polynuclear aromatic hydrocarbons (PAHs). Although hydrocarbon degrading cultures are abundant in nature, complete biodegradation of oil is rarely achieved even under favorable environmental conditions due to the structural complexity of oil and culture specificities. Moreover, the interaction among cultures in a consortium, substrate interaction effects during the degradation and ability of specific cultures to alter the bioavailability of oil invariably affect the process. Although SEB has the potential to increase the degradation rate of oil and its constituents, there are numerous challenges in the successful application of this technology. Success is dependent on the choice of appropriate surfactant type and dose since the surfactant-hydrocarbon-microorganism interaction may be unique to each scenario. Surfactants not only enhance the uptake of constituents through micellar solubilization and emulsification but can also alter microbial cell surface characteristics. Moreover, hydrocarbons partitioned in micelles may not be readily bioavailable depending on the microorganism-surfactant interactions. Surfactant toxicity and inherent biodegradability of surfactants may pose additional challenges as discussed in this review. PMID:24350261

  18. Recovery rates, enhanced oil recovery and technological limits

    PubMed Central

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-01

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR. PMID:24298076

  19. Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer.

    PubMed

    Wang, Y; Wu, H; Zong, M H

    2008-10-01

    The process of biodiesel production from corn oil catalyzed by lipozyme TL IM, an inexpensive 1,3-position specific lipase from Thermomyces lanuginosus was optimized by response surface methodology (RSM) and a central composite rotatable design (CCRD) was used to study the effects of enzyme dosage, ratio of t-butanol to oil (v/v) and ratio of methanol to oil (mol/mol) on the methyl esters (ME) yield of the methanolysis. The optimum combinations for the reaction were 25.9U/goil of enzyme, 0.58 volume ratio of t-butanol to oil and 0.5, 0.5, 2.8 molar equivalent of methanol to oil added at the reaction time of 0, 2, and 4h, respectively, by which a ME yield of 85.6%, which was very close to the predicted value of 85.0%, could be obtained after reaction for 12h. Waste oil was found to be more suitable feedstock, and could give 93.7% ME yield under the optimum conditions described above. Adding triethylamine (TEA), an acyl migration enhancer, could efficiently improve the ME yield of the methanolysis of corn oil, giving a ME yield of 92.0%.

  20. Recovery rates, enhanced oil recovery and technological limits.

    PubMed

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.

  1. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    PubMed

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Nonisothermal bioreactors in the treatment of vegetation waters from olive oil: laccase versus syringic acid as bioremediation model.

    PubMed

    Attanasio, Angelina; Diano, Nadia; Grano, Valentina; Sicuranza, Stefano; Rossi, Sergio; Bencivenga, Umberto; Fraconte, Luigi; Di Martino, Silvana; Canciglia, Paolo; Mita, Damiano Gustavo

    2005-01-01

    Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.

  3. Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase.

    PubMed

    Su, Erzheng; Wei, Dongzhi

    2014-07-09

    In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.

  4. Evaluating lubricating capacity of vegetal oils using Abbott-Firestone curve

    NASA Astrophysics Data System (ADS)

    Georgescu, C.; Cristea, G. C.; Dima, C.; Deleanu, L.

    2017-02-01

    The paper presents the change of functional parameters defined on the Abbott-Firestone curve in order to evaluate the surface quality of the balls from the four ball tester, after tests done with several vegetable oils. The tests were done using two grades of rapeseed oil (degummed and refined) and two grades of soybean oil (coarse and degummed) and a common transmission oil (T90). Test parameters were 200 N and 0.576 m/s (1500 rpm) for 60 minutes. For the refined rapeseed oil, the changes in shape of the Abbott-Firestone curves are more dramatic, these being characterized by high values of Spk (the average value for the wear scars on the three balls), thus being 40% of the sum Svk + Sk + Spk, percentage also obtained for the soybean oil, but the value Spk being lower. For the degummed soybean oil, the profile height of the wear scars are taller than those obtained after testing the coarse soybean oil, meaning that the degumming process has a negative influence on the worn surface quality and the lubricating capacity of this oil. Comparing the surface quality of the wear scars on fixed tested balls is a reliable method to point out the lubricant properties of the vegetable oils, especially if they are compared to a “classical” lubricant as a non-additivated transmission mineral oil T90. The best surface after testing was obtained for the soybean oil, followed by T90 oil and the degummed grades of the soybean oil and rapeseed oil (these three giving very close values for the functional parameters), but the refined rapeseed oil generated the poorest quality of the wear scars on the balls, under the same testing conditions.

  5. Influence of surfactants on gas-hydrate formation' kinetics in water-oil emulsion

    NASA Astrophysics Data System (ADS)

    Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.

    2018-05-01

    The kinetics of gas hydrate formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous phase. It is shown that all three types of surfactants decelerate the growth of the gas-hydrate in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of hydrate formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-hydrate formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of hydrate formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-hydrate formation in water-oil emulsion is given.

  6. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, R.J.

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted tomore » presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.« less

  7. Removal of oil palm trunk lignin in ammonium hydroxide pretreatment

    NASA Astrophysics Data System (ADS)

    Az-Zahraa, Balqis; Zakaria, Sarani; Daud, Muhammad F. B.; Jaafar, Sharifah Nabihah Syed

    2018-04-01

    Alkaline pretreatment using ammonium hydroxide, NH4OH serves as one of a process to remove lignin from lignocellulosic biomass such as oil palm trunk fiber. In this study, the effect of NH4OH pretreatment on removal of oil palm trunk lignin was investigated. The oil palm trunk fiber was dissolved in NH4OH with different concentrations (6, 8 and 10 %), different duration (3, 5 and 7 h) and temperatures (60, 80 and 100 °C). The samples were analyzed by using UV-Vis to estimate the concentration of extracted lignin. The result indicates that the optimum conditions to gain maximum extracted lignin were 8% NH4OH, 100 °C and 5 h with concentration of 64 mgL-1 while the lowest was at 6% NH4OH, 100 °C and 5 h with concentration of 62.5 mgL-1.

  8. Ultrasonic-assisted continuous methanolysis of Jatropha curcas oil in the appearance of biodiesel used as an intermediate solvent.

    PubMed

    Kumar, Gajendra; Singh, Vidhi; Kumar, Dharmendra

    2017-11-01

    A environmental friendly system for fast transesterification of Jatropha curcas oil was developed for the production of biodiesel using an ultrasonic-assisted continuous tank reactor in the presence of fatty acid methyl ester (FAMEs) used as a green (intermediate) solvent with potassium hydroxide used as a catalyst. This research provide a new biodiesel production process, the optimal condition for the reaction were established: reaction temperature 25°C oil to methanol molar ratio was 1:5, catalyst concentration 0.75wt% of oil, solvent concentration 7.5%, flow rate 241.68±0.80ml/min, ultrasonic amplitude 60% and ultrasonic cycles 0.7s, transesterification was completed within 1.09min (residence time). The purity and conversion of biodiesel was 98.75±0.50% analyzed by the reverse phase HPLC method. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures.

    PubMed

    Cheong, Ai M; Tan, Chin P; Nyam, Kar L

    2018-01-01

    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p < 0.05) on the particle sizes, polydispersity index and hence the physical stability of nanoemulsions. Homogenisation parameters at 28,000 psi for three cycles produced the most stable homogeneous nanoemulsions that were below 130 nm, below 0.16, and above -40 mV of particle size, polydispersity index, and zeta potential, respectively. Field emission scanning electron microscopy micrograph showed that the optimised nanoemulsions had a good distribution within nano-range. The optimised nanoemulsions were proved to be physically stable for up to six weeks of storage at room temperature. The results from this study also provided valuable information in producing stable kenaf seed oil nanoemulsions for the future application in food and nutraceutical industries.

  10. Pontine and Thalamic Influences on Fluid Rewards: III. Anticipatory Contrast for Sucrose and Corn Oil

    PubMed Central

    Liang, Nu-Chu; Norgren, Ralph; Grigson, Patricia S

    2011-01-01

    An anticipatory contrast effect (ACE) occurs when, across daily trials, an animal comes to respond less than normally to a first stimulus when it is followed shortly by a second, more preferred solution. Classically, ACE is studied using a low (L) concentration of saccharin or sucrose, followed by access to a higher (H) concentration of sucrose. Subjects in the control condition have two bouts of access to the weaker solution presented on the same schedule. The ACE is measured by the difference in intake of the first bout low solution between subjects in the low-low (L-L) vs. the low-high (L-H) conditions. Here we used this paradigm with sham feeding rats and determined that nutritional feedback was unnecessary for the development of ACE with two concentrations of sucrose or with two concentrations of corn oil. Next we showed that ibotenic acid lesions centered in the orosensory thalamus spared ACEs for both sucrose and corn oil. In contrast, lesions of the pontine parabrachial nuclei (PBN), the second central relay for taste in the rat, disrupted ACEs for both sucrose and corn oil. Although the sensory modalities needed for the oral detection of fats remain controversial, it appears that the PBN is involved in processing the comparison of disparate concentrations of sucrose and oil reward. PMID:21703289

  11. Changes in olive oil volatile organic compounds induced by water status and light environment in canopies of Olea europaea L. trees.

    PubMed

    Benelli, Giovanni; Caruso, Giovanni; Giunti, Giulia; Cuzzola, Angela; Saba, Alessandro; Raffaelli, Andrea; Gucci, Riccardo

    2015-09-01

    Light and water are major factors in fruit development and quality. In this study, the effect of water and light in Olea europaea trees on volatile organic compounds (VOCs) in olive oil was studied over 2 years. Mature fruits were harvested from three zones of the canopy with different light exposure (64%, 42% and 30% of incident light) of trees subjected to full, deficit or complementary irrigation. VOCs were determined by SPME GC-MS and analysed by principal component analysis followed by discriminant analysis to partition treatment effects. Fruit fresh weight and mesocarp oil content decreased in zones where intercepted light was less. Low light levels significantly slowed down fruit maturation, whereas conditions of water deficit accelerated the maturation process. The presence of cyclosativene and α-muurulene was associated with water deficit, nonanal, valencene with full irrigation; α-muurulene, (E)-2-hexanal were related to low light conditions, while trans-β-ocimene, α-copaene, (Z)-2-penten-1-ol, hexanal and nonanal to well exposed zones. The year strongly affected the VOC profile of olive oil. This is the first report on qualitative changes in VOCs induced by light environment and/or water status. This information is valuable to better understand the role of environmental factors on the sensory quality of virgin olive oil. © 2014 Society of Chemical Industry.

  12. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3.

  13. Metabolic Capabilities of the Members of the Order Halanaerobiales and Their Potential Biotechnological Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roush, Daniel W; Elias, Dwayne A; Mormile, Dr. Melanie R.

    The order Halanaerobiales contains a number of well-studied halophiles that possess great potential for biotechnological applications. The unique halophilic adaptations that these organisms utilize, such as salting-in mechanisms to increase their intercellular concentration of KCl, combined with their ability to ferment simple sugars, provides an excellent platform for biotechnological development over a wide range of salt levels and possible other extreme conditions, such as alkaline conditions. From fermented foods to oil reservoirs, members of Halanaerobiales are found in many environments. The environmental conditions many of these organisms grow are similar to industrially important processes, such as alkaline pre-treated biomass stocks,more » treatment of crude glycerol from biodiesel production, salty fermented foods, as well as bioremediation of contaminants under extreme conditions of salinity and in some cases, alkalinity. From salt stable enzymes to waste fermentations, bioremediation options, bioenergy, and microbially enhanced oil recovery (MEOR), Halanaerobiales can provide a wide spectrum of environmentally friendly solutions to current problems.« less

  14. Design features of offshore oil production platforms influence their susceptibility to biocorrosion.

    PubMed

    Duncan, Kathleen E; Davidova, Irene A; Nunn, Heather S; Stamps, Blake W; Stevenson, Bradley S; Souquet, Pierre J; Suflita, Joseph M

    2017-08-01

    Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35 S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L -1 ) levels of hydrogen sulfide and high numbers (10 7  mL -1 ) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.

  15. Zonation and assessment of frozen-ground conditions along the China-Russia Crude Oil Pipeline route from Mo’he to Daqing, Northeastern China

    NASA Astrophysics Data System (ADS)

    Jin, H.; Hao, J.; Chang, X.

    2009-12-01

    The proposed China-Russia Crude Oil Pipeline (CRCOP), 813 mm in diameter, is designed to transport 603,000 barrels of Siberian crude oil per day using conventional burial across 1,030 km of frozen-ground. About 500 boreholes, with depths of 5 to 20 m, were drilled and cored for analyses, and the frozen-ground conditions were evaluated. After detailed surveys and analyses of the permafrost conditions along the pipeline route, a conventional burial construction mode at a nominal depth of 1.5 m was adopted. This paper discusses the principles and criteria for the zonation and assessment of the frozen-ground environments and conditions of engineering geology for the design, construction, operation of the pipeline system based on an extensive and in-depth summary and analysis of the survey and exploration data. Full consideration of the characteristics of pipelining crude oil at ambient temperatures in the permafrost regions and the interactive processes between the pipeline and foundation soils were taken into account. Two zones of frozen-ground environment and conditions of engineering geology, i. e. seasonally-frozen-ground and permafrost, were defined on the basis of the regional distribution and differentiations in frozen-ground environments and conditions. Then, four subzones of the permafrost zone were classified according to the areal extent, taking into consideration the temperatures and thicknesses of permafrost, as well as changes in vegetation coverage. In the four subzones, 151 sections of engineering geology were categorized according to the ice/moisture contents of the permafrost, as well as the classes of frost-heaving and thaw-settlement potentials. These 151 sections are comprehensively summarized into four types for engineering construction and operation: good, fair, poor, and very poor, for overall conditions of engineering geology. The zonation, assessment principles and criteria have been applied in the design of the pipeline. They have also been used as the scientific bases for the construction, environmental management, operation and maintenance/contingency plans

  16. Essential oil composition and antifungal activity of Foeniculum vulgare Mill obtained by different distillation conditions.

    PubMed

    Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M

    2003-04-01

    The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.

  17. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining.

    PubMed

    Venturi, Francesca; Sanmartin, Chiara; Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-08-22

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil.

  18. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining

    PubMed Central

    Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-01-01

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil. PMID:28829365

  19. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    PubMed Central

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  20. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding

    PubMed Central

    Jackson, Matthew D.; Al-Mahrouqi, Dawoud; Vinogradov, Jan

    2016-01-01

    Laboratory experiments and field trials have shown that oil recovery from carbonate reservoirs can be increased by modifying the brine composition injected during recovery in a process termed controlled salinity water-flooding (CSW). However, CSW remains poorly understood and there is no method to predict the optimum CSW composition. This work demonstrates for the first time that improved oil recovery (IOR) during CSW is strongly correlated to changes in zeta potential at both the mineral-water and oil-water interfaces. We report experiments in which IOR during CSW occurs only when the change in brine composition induces a repulsive electrostatic force between the oil-brine and mineral-brine interfaces. The polarity of the zeta potential at both interfaces must be determined when designing the optimum CSW composition. A new experimental method is presented that allows this. Results also show for the first time that the zeta potential at the oil-water interface may be positive at conditions relevant to carbonate reservoirs. A key challenge for any model of CSW is to explain why IOR is not always observed. Here we suggest that failures using the conventional (dilution) approach to CSW may have been caused by a positively charged oil-water interface that had not been identified. PMID:27876833

  1. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    PubMed

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  2. Preparation and application of magnetic superhydrophobic polydivinylbenzene nanofibers for oil adsorption in wastewater.

    PubMed

    Zhu, Xiaobiao; Tian, Ye; Li, Feifei; Liu, Yapeng; Wang, Xiaohui; Hu, Xiang

    2018-06-01

    Superhydrophobic materials have an excellent performance in oil adsorption. In this study, a novel magnetic polydivinylbenzene (PDVB) nanofiber was synthesized by the method of cation polymerization to adsorb oil from water. The magnetic PDVB was hollow nanofiber with Fe 3 O 4 nanoparticles embedded in its structure. The synthesis condition was optimized that the ratio of divinylbenzene (DVB) to boron fluoride ethyl ether (BFEE) was 10:1 (v/v), and the Fe 3 O 4 dosage was 0.175 g/g of DVB. The material showed an excellent oil adsorption performance in wastewater, and the oil concentration could be reduced from 2000 to 92.2 mg/L within 5 min. The magnetic PDVB had relatively high adsorption capacity (12 g/g) for oil, which could be attributed to its super hydrophobicity and one-dimensional nanostructure with high crosslinking degree. The isotherm study indicated that the magnetic PDVB adsorbed oil was an asymmetric or multilayer adsorption process. The material could be regenerated by simple squeeze and maintain its adsorption capacity after it has been used for 10 recycles. In real coking wastewater, the magnetic PDVB kept a good oil adsorption performance without the interference of various pollutants, indicating a wide prospect in practical use.

  3. Development of Microalloyed Steels for The Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Henein, H.; Ivey, D. G.; Luo, J.; Wiskel, J. B.

    Microalloying, in combination with thermomechanical controlled processing (TMCP), is a cost effective method of producing steels for a wide range of applications where improved mechanical properties, namel y strength, formability and toughness coupled with weldability, are required. This paper reviews the efforts undertaken at the University of Alberta aimed at improving the above mentioned mechanical properties in microalloyed steels used in the transmission of oil and gas (i.e., pipelines). Topics that will be reviewed include the characterization of precipitates, the effect of processing conditions on precipitate evolution, and the effect of pipe forming and subsequent low temperature heat treatment on tensile behaviour and the use of Genetic Algorithm optimization of the laminar cooling system to produce a uniform through thickness microstructure.

  4. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.

    PubMed

    Wang, Ben; Liang, Weixin; Guo, Zhiguang; Liu, Weimin

    2015-01-07

    Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

  5. Spectral Variability of Oil Slicks under Different Observing Conditions: Examples from Satellite and Airborne Measurement

    NASA Astrophysics Data System (ADS)

    Sun, S.; Hu, C.

    2017-12-01

    Optical remote sensing is one of the most commonly used techniques in detecting oil in the surface ocean. This is because that oil has different optical properties from the surrounding oil-free water and oil can also modulate surface waves, thus providing a spatial contrast to facilitate delineating the oil-water boundary. Estimating oil volume or thickness from the delineated oil footprint, on the other hand, is much more difficult and currently represents a major challenge in remote sensing of oil spills. Several studies have attempted to associate reflectance spectra (magnitude and spectral shape) with oil thickness from experiments under controlled conditions, where such established relationships were used to quantify oil thickness. However, it is unclear whether or how these experiment derived relationships could be used in the real environment. Here, oil pixel spectra were extracted from several satellite sensors including Landsat, MERIS, MODIS and MISR together with airborne sensor AVIRIS that captured during the Deepwater Horizon oil spill in 2010. Same day imagery of these sensors were co-registered to compare spectra difference of oil under different observing conditions. Combining those resulted spectra with laboratory-measured oil spectra in previous study, oil's diverse spectral magnitudes and shapes were presented. Besides oil thickness, we concluded several other potential factors that may contribute significantly to the spectral response of oil slicks in the marine environment, which include sun glint strength, oil emulsification state, optical properties of oil covered water and remote sensing imagery's spatial resolution as well. And future perspectives for more accurate estimation of oil thickness are proposed.

  6. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.

    PubMed

    Chen, Ching-Lung; Huang, Chien-Chang; Ho, Kao-Chia; Hsiao, Ping-Xuan; Wu, Meng-Shan; Chang, Jo-Shu

    2015-10-01

    Although producing biodiesel from microalgae seems promising, there is still a lack of technology for the quick and cost-effective conversion of biodiesel from wet microalgae. This study was aimed to develop a novel microalgal biodiesel producing method, consisting of an open system of microwave disruption, partial dewatering (via combination of methanol treatment and low-speed centrifugation), oil extraction, and transesterification without the pre-removal of the co-solvent, using Chlamydomonas sp. JSC4 with 68.7 wt% water content as the feedstock. Direct transesterification with the disrupted wet microalgae was also conducted. The biomass content of the wet microalgae increased to 56.6 and 60.5 wt%, respectively, after microwave disruption and partial dewatering. About 96.2% oil recovery was achieved under the conditions of: extraction temperature, 45°C; hexane/methanol ratio, 3:1; extraction time, 80 min. Transesterification of the extracted oil reached 97.2% conversion within 15 min at 45°C and 6:1 solvent/methanol ratio with simultaneous Chlorophyll removal during the process. Nearly 100% biodiesel conversion was also obtained while conducting direct transesterification of the disrupted oil-bearing microalgal biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modelling Oil Droplet Breakup in a Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Philip, Rachel; Hewitt, Ian; Howell, Peter

    2017-11-01

    In a deep-sea oil spill, a broken pipe near the seabed can result in the release of a turbulent oil jet into the surrounding ocean. The jet's shearing motion will typically cause the oil to break up into smaller droplets, which are then more readily dispersed and decomposed by sea microbes. In order to understand this natural clean-up process, we develop analytical and numerical models for the drop size distribution at different locations in the jet. This involves examining and unifying disparate scales, from the macroscopic jet to the microscopic droplets. We first examine the turbulent jet and we can use its self-similarity to simplify our models. We then turn to the droplet scale, considering the rate at which drops are deformed and broken up. Droplet deformation is precipitated by the jet's turbulent mixing and shearing and thus depends on the macroscopic jet models. We combine these large and small scale models to determine the droplet size distribution, as it varies with jet location. By varying the initial conditions and parameters in these models, we obtain insights into the factors affecting this droplet breakup process and how it may be optimised.

  8. Analysis of processing contaminants in edible oils. Part 1. Liquid chromatography-tandem mass spectrometry method for the direct detection of 3-monochloropropanediol monoesters and glycidyl esters.

    PubMed

    MacMahon, Shaun; Mazzola, Eugene; Begley, Timothy H; Diachenko, Gregory W

    2013-05-22

    A new analytical method has been developed and validated for the detection of glycidyl esters (GEs) and 3-monochloropropanediol (3-MCPD) monoesters in edible oils. The target compounds represent two classes of potentially carcinogenic chemical contaminants formed during the processing of edible oils. Target analytes are separated from edible oil matrices using a two-step solid-phase extraction (SPE) procedure. The extracts are then analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). Chromatographic conditions that separate sn-1 and sn-2 monoesters of 3-MCPD have been developed for the first time. The method has been validated for GEs, sn-1 3-MCPD monoesters of lauric, myristic, linolenic, linoleic, oleic, and stearic acids, and sn-2 3-MCPD monoesters of oleic and palmitic acids in coconut, olive, and palm oils using an external calibration curve. The range of average recoveries and relative standard deviations (RSDs) across the three oil matrices at three spiking concentrations are 84-115% (3-16% RSD) for the GEs, 95-113% (1-10% RSD) for the sn-1 3-MCPD monoesters, and 76.8-103% (5.1-11.2% RSD) for the sn-2 3-MCPD monoesters, with limits of quantitation at or below 30 ng/g for the GEs, 60 ng/g for sn-1 3-MCPD monoesters, and 180 ng/g for sn-2 3-MCPD monoesters.

  9. Study on preparation method of Zanthoxylum bungeanum seeds kernel oil with zero trans-fatty acids.

    PubMed

    Liu, Tong; Yao, Shi-Yong; Yin, Zhong-Yi; Zheng, Xu-Xu; Shen, Yu

    2016-04-01

    The seed of Zanthoxylum bungeanum (Z. bungeanum) is a by-product of pepper production and rich in unsaturated fatty acid, cellulose, and protein. The seed oil obtained from traditional producing process by squeezing or extracting would be bad quality and could not be used as edible oil. In this paper, a new preparation method of Z. bungeanum seed kernel oil (ZSKO) was developed by comparing the advantages and disadvantages of alkali saponification-cold squeezing, alkali saponification-solvent extraction, and alkali saponification-supercritical fluid extraction with carbon dioxide (SFE-CO2). The results showed that the alkali saponification-cold squeezing could be the optimal preparation method of ZSKO, which contained the following steps: Z. bungeanum seed was pretreated by alkali saponification under the conditions of adding 10 %NaOH (w/w), solution temperature was 80 °C, and saponification reaction time was 45 min, and pretreated seed was separated by filtering, water washing, and overnight drying at 50 °C, then repeated squeezing was taken until no oil generated at 60 °C with 15 % moisture content, and ZSKO was attained finally using centrifuge. The produced ZSKO contained more than 90 % unsaturated fatty acids and no trans-fatty acids and be testified as a good edible oil with low-value level of acid and peroxide. It was demonstrated that the alkali saponification-cold squeezing process could be scaled up and applied to industrialized production of ZSKO.

  10. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  11. Bioreactors for oil sands process-affected water (OSPW) treatment: A critical review.

    PubMed

    Xue, Jinkai; Huang, Chunkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed

    2018-06-15

    Canada has the world's largest oil sands reservoirs. Surface mining and subsequent caustic hot water extraction of bitumen lead to an enormous quantity of tailings (volumetric ratio bitumen:water=9:1). Due to the zero-discharge approach and the persistency of the complex matrix, oil producers are storing oil sands tailings in vast ponds in Northern Alberta. Oil sands tailings are comprised of sand, clay and process-affected water (OSPW). OSPW contains an extremely complex matrix of organic contaminants (e.g., naphthenic acids (NAs), residual bitumen, and polycyclic aromatic hydrocarbons (PAHs)), which has proven to be toxic to a variety of aquatic species. Biodegradation, among a variety of examined methods, is believed to be one of the most cost effective and practical to treat OSPW. A number of studies have been published on the removal of oil sands related contaminants using biodegradation-based practices. This review focuses on the treatment of OSPW using various bioreactors, comparing bioreactor configurations, operating conditions, performance evaluation and microbial community dynamics. Effort is made to identify the governing biotic and abiotic factors in engineered biological systems receiving OSPW. Generally, biofilms and elevated suspended biomass are beneficial to the resilience and degradation performance of a bioreactor. The review therefore suggests that a hybridization of biofilms and membrane technology (to ensure higher suspended microbial biomass) is a more promising option to remove OSPW organic constituents. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A New Strategy to Refine Crude Indian Sardine Oil.

    PubMed

    Charanyaa, S; Belur, Prasanna D; Regupathi, I

    2017-05-01

    Current work aims to develop a refining process for removing phospholipids, free fatty acids (FFA), and metal ions without affecting n-3 polyunsaturated fatty acid (n-3 PUFA) esters present in the crude Indian sardine oil. Sardine oil was subjected to degumming with various acids (orthophosphoric acid, acetic acid, and lactic acid), conventional and membrane assisted deacidification using various solvents (methanol, ethanol, propanol and butanol) and bleaching with bleaching agents (GAC, activated earth and bentonite) and all the process parameters were further optimized. Degumming with 5%(w/w) ortho phosphoric acid, two stage solvent extraction with methanol at 1:1 (w/w) in each stage and bleaching with 3% (w/w) activated charcoal loading, at 80ºC for 10 minutes resulted in the reduction of phospholipid content to 5.66 ppm from 612.66 ppm, FFA to 0.56% from 5.64% with the complete removal of iron and mercury. Under these conditions, the obtained bleached oil showed an enhancement of n-3 PUFA from 16.39 % (11.19 Eicosapentaenoic acid (EPA) + 5.20 Docosahexaenoic acid (DHA)) to 17.91 % (11.81 EPA + 6.1 DHA). Replacing conventional solvent extraction with membrane deacidification using microporous, hydrophobic polytetrafluoroethylene membrane (PTFE), resulted in a lesser solvent residue (0.25% (w/w)) in the deacidified oil. In view of lack of reports on refining of n-3 PUFA rich marine oils without concomitant loss of n-3 PUFA, this report is significant.

  13. Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions.

    PubMed

    Hashtjin, Adel Mirmajidi; Abbasi, Soleiman

    2015-05-01

    The aim of the present study was to investigate the influence of emulsifying conditions on some physical and rheological properties of orange peel essential oil (OPEO) in water nanoemulsions. In this regard, using the response surface methodology, the influence of ultrasonication conditions including sonication amplitude (70-100 %), sonication time (90-150 s) and process temperature (5-45 °C) on the mean droplets diameter (Z-average value), polydispersity index (PDI), and viscosity of the OPEO nanoemulsions was evaluated. In addition, the flow behavior and stability of selected nanoemulsions was evaluated during storage (up to 3 months) at different temperatures (5, 25 and 45 °C). Based on the results of the optimization, the optimum conditions for producing OPEO nanoemulsions (Z-average value 18.16 nm) were determined as 94 % (sonication amplitude), 138 s (sonication time) and 37 °C (process temperature). Moreover, analysis of variance (ANOVA) showed high coefficients of determination values (R (2) > 0.95) for the response surface models of the energy input and Z-average. In addition, the flow behavior of produced nanoemulsions was Newtonian, and the effect of time and storage temperature as well as their interactions on the Z-average value was highly significant (P < 0.0001).

  14. Hydrocarbon activation under sulfate-reducing and methanogenic conditions proceeds by different mechanisms.

    NASA Astrophysics Data System (ADS)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Microbial degradation of alkanes typically involves their conversion to fatty acids which are then catabolised by beta-oxidation. The critical step in this process is activation of the hydrocarbon. Under oxic conditions this is catalyzed by monooxygenase enzymes with the formation of long chain alcohols. In the absence of oxygen alternative alkane activation mechanisms have been observed or proposed. Fumarate addition to alkanes to form alkyl succinates is considered a central process in anaerobic hydrocarbon degradation. Comparative studies of crude oil degradation under sulphate-reducing and methanogenic conditions revealed distinctive patterns of compound class removal and metabolite formation. Alkyl succinates derived from C7 to C26 n-alkanes and branched chain alkanes were found in abundance in sulfate-reducing systems but these were not detected during methanogenic crude oil degradation. Only one other mechanism of alkane activation has been elucidated to date. This involves addition of carbon derived from bicarbonate/CO2 to C-3 of an alkane chain to form a 2-ethylalkane with subsequent removal of the ethyl group leading to the formation of a fatty acid 1 carbon shorter than the original alkane. 2-ethylalkanes have never been detected as metabolites of anaerobic alkane degradation and were not detected in crude oil-degrading methanogenic systems. Due to the range of alkanes present in crude oil it was not possible to infer the generation of C-odd acids from C-even alkanes which is characteristic of the C-3 carboxylation mechanism. Furthermore genes homologous to alkysuccinate synthetases were not detected in the methanogenic hydrocarbon degrading community by pyrosequencing of total DNA extracted from methanogenic enrichments cultures. beta-oxidation genes were detected and intriguingly, alcohol and aldehyde dehydrogenase genes were present. This offers the possibility that alkane activation in the methanogenic system does not proceed via acid metabolites, but may be initiated by an anaerobic hydroxylation reaction. This is not unprecedented and hydroxylation of ethylbenzene has been demonstrated. However the C-H bond dissociation energy of alkanes is typically considered too high to readily permit alkane hydroxylation. It is however clear that alkane activation in these methanogenic crude oil-degrading systems involves mechanisms other than the well-known fumarate-addition reactions.

  15. Distribution and Recovery of Crude Oil in Various Types of Porous Media and Heterogeneity Configurations

    NASA Astrophysics Data System (ADS)

    Tick, G. R.; Ghosh, J.; Greenberg, R. R.; Akyol, N. H.

    2015-12-01

    A series of pore-scale experiments were conducted to understand the interfacial processes contributing to the removal of crude oil from various porous media during surfactant-induced remediation. Effects of physical heterogeneity (i.e. media uniformity) and carbonate soil content on oil recovery and distribution were evaluated through pore scale quantification techniques. Additionally, experiments were conducted to evaluate impacts of tetrachloroethene (PCE) content on crude oil distribution and recovery under these same conditions. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was likely responsible for mobilization and recovery of lighter fractions of crude oil. Corresponding increases in viscous forces were insufficient to initiate and maintain the displacement of the heavy crude oil in more homogeneous porous media systems during surfactant flushing. Interestingly, higher relative recoveries of heavy oil fractions were observed within more heterogeneous porous media indicating that wettability may be responsible for controlling mobilization in these systems. Compared to the "pure" crude oil experiments, preliminary results show that crude oil with PCE produced variability in oil distribution and recovery before and after each surfactant-flooding event. Such effects were likely influenced by viscosity and interfacial tension modifications associated with the crude-oil/solvent mixed systems.

  16. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or insufficiency of data make other technologies too expensive.

  17. Optimization of Refining Craft for Vegetable Insulating Oil

    NASA Astrophysics Data System (ADS)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Wang, Xuan; Yang, Jun; Kong, Hai-Yang; Fang, Fu-Xin; Qian, Hang; Fu, Guang-Pan

    2016-05-01

    Vegetable insulating oil because of its environmental friendliness are considered as ideal material instead of mineral oil used for the insulation and the cooling of the transformer. The main steps of traditional refining process included alkali refining, bleaching and distillation. This kind of refining process used in small doses of insulating oil refining can get satisfactory effect, but can't be applied to the large capacity reaction kettle. This paper using rapeseed oil as crude oil, and the refining process has been optimized for large capacity reaction kettle. The optimized refining process increases the acid degumming process. The alkali compound adds the sodium silicate composition in the alkali refining process, and the ratio of each component is optimized. Add the amount of activated clay and activated carbon according to 10:1 proportion in the de-colorization process, which can effectively reduce the oil acid value and dielectric loss. Using vacuum pumping gas instead of distillation process can further reduce the acid value. Compared some part of the performance parameters of refined oil products with mineral insulating oil, the dielectric loss of vegetable insulating oil is still high and some measures are needed to take to further optimize in the future.

  18. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  19. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.

    PubMed

    Vogt, E T C; Weckhuysen, B M

    2015-10-21

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials.

  20. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis

    PubMed Central

    2015-01-01

    Fluid catalytic cracking (FCC) is one of the major conversion technologies in the oil refinery industry. FCC currently produces the majority of the world's gasoline, as well as an important fraction of propylene for the polymer industry. In this critical review, we give an overview of the latest trends in this field of research. These trends include ways to make it possible to process either very heavy or very light crude oil fractions as well as to co-process biomass-based oxygenates with regular crude oil fractions, and convert these more complex feedstocks in an increasing amount of propylene and diesel-range fuels. After providing some general background of the FCC process, including a short history as well as details on the process, reactor design, chemical reactions involved and catalyst material, we will discuss several trends in FCC catalysis research by focusing on ways to improve the zeolite structure stability, propylene selectivity and the overall catalyst accessibility by (a) the addition of rare earth elements and phosphorus, (b) constructing hierarchical pores systems and (c) the introduction of new zeolite structures. In addition, we present an overview of the state-of-the-art micro-spectroscopy methods for characterizing FCC catalysts at the single particle level. These new characterization tools are able to explain the influence of the harsh FCC processing conditions (e.g. steam) and the presence of various metal poisons (e.g. V, Fe and Ni) in the crude oil feedstocks on the 3-D structure and accessibility of FCC catalyst materials. PMID:26382875

  1. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    NASA Astrophysics Data System (ADS)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  2. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.

    PubMed

    Zhang, Xuewei; Yu, Peiqiang

    2014-07-02

    Non-invasive techniques are a key to study nutrition and structure interaction. Fourier transform infrared microspectroscopy coupled with a synchrotron radiation source (SR-IMS) is a rapid, non-invasive, and non-destructive bioanalytical technique. To understand internal structure changes in relation to nutrient availability in oil seed processing is vital to find optimal processing conditions. The objective of this study was to use a synchrotron-based bioanalytical technique SR-IMS as a non-invasive and non-destructive tool to study the effects of heat-processing methods and oil seed canola type on modeled protein structure based on spectral data within intact tissue that were randomly selected and quantify the relationship between the modeled protein structure and protein nutrient supply to ruminants. The results showed that the moisture heat-related processing significantly changed (p<0.05) modeled protein structures compared to the raw canola (control) and those processing by dry heating. The moisture heating increased (p<0.05) spectral intensities of amide I, amide II, α-helices, and β-sheets but decreased (p<0.05) the ratio of modeled α-helices to β-sheet spectral intensity. There was no difference (p>0.05) in the protein spectral profile between the raw and dry-heated canola tissue and between yellow- and brown-type canola tissue. The results indicated that different heat processing methods have different impacts on the protein inherent structure. The protein intrinsic structure in canola seed tissue was more sensitive and more response to the moisture heating in comparison to the dry heating. These changes are expected to be related to the nutritive value. However, the current study is based on limited samples, and more large-scale studies are needed to confirm our findings.

  3. Effect on the use of ultrasonic cavitation for biodiesel production from crued Jatropha curcas L. seed oil with a high content of free fatty acid

    NASA Astrophysics Data System (ADS)

    Worapun, Ittipon; Pianthong, Kulachate; Thaiyasuit, Prachasanti; Thinvongpituk, Chawalit

    2010-03-01

    A typical way to produce biodiesel is the transesterification of plant oils. This is commonly carried out by treating the pre-extracted oil with an appropriate alcohol in the presence of an acidic or alkaline catalyst over one or two hours in a batch reactor.Because oils and methanol are not completely miscible. It has been widely demonstrated that low-frequency ultrasonic irradiation is an effective tool for emulsifying immiscible liquids. The objective of this research is to investigate the optimum conditions for biodiesel production from crude Jatropha curcas oil with short chain alcohols by ultrasonic cavitation (at 40 kHz frequency and 400 Watt) assisted, using two step catalyst method. Usually, the crude Jatropha curcas oil has very high free fatty acid which obstructs the transesterification reaction. As a result it provides low yield of biodiesel production. In the first step, the reaction was carried out in the presence of sulfuric acid as an acid catalyst. The product was then further transesterified with potassium hydroxide in the second step. The effects of different operating parameters such as molar ratio of reactants, catalyst quantity, and operating temperature, have been studied with the aim of process optimization. It has been observed that the mass transfer and kinetic rate enhancements were due to the increase in interfacial area and activity of the microscopic and macroscopic bubbles formed. For example, the product yield levels of more than 90% have been observed with the use of ultrasonic cavitation in about 60 minutes under room temperature operating conditions.

  4. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are able to recognize the strong correlation between the displacement mechanism and the reservoir characteristics as they effectively forecast hydrocarbon production for different types of reservoir undergoing diverse recovery processes. The artificial neuron networks are able to capture the similarities between different displacement mechanisms as same network architecture is successfully applied in both CO2 and N2 injection. The neuro-simulation application tool is built within a graphical user interface to facilitate the display of the results. The developed soft-computing tool offers an innovative approach to design a variety of efficient and feasible IOR processes by using artificial intelligence. The tool provides appropriate guidelines to the reservoir engineer, it facilitates the appraisal of diverse field development strategies for oil reservoirs, and it helps to reduce the number of scenarios evaluated with conventional reservoir simulation.

  5. Superoxide radical and UV irradiation in ultrasound assisted oxidative desulfurization (UAOD): A potential alternative for greener fuels

    NASA Astrophysics Data System (ADS)

    Chan, Ngo Yeung

    This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste stream from becoming reactive or even explosive. High energy consumption is another drawback in the UAOD process. A typical 10 minutes ultrasonication applied in the UAOD process to achieve 95% desulfurization for 20g of diesel requires 450 kJ of energy, which is equivalent to approximately 50% of the energy that can be provided by the treated diesel. This great expenditure of energy is impractical for industries to adopt. In this study, modifications of the UAOD process, including the application of superoxide and selection of catalysts, were applied to lower the oxidant dosage and to improve the applicability towards heavy-distillates such as residual oil. The results demonstrated that the new system required 80% less oxidant as compared to previous generations of UAOD process without the loss of desulfurization efficiency. The new system demonstrated its suitability towards desulfurizing commercial mid-distillates including jet fuels, marine gas oil and sour diesel. This process also demonstrated a new method to desulfurize residual oil with high desulfurization yields. The new process development has been supported by Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California. A feasibility study on UV assisted desulfurization by replacing ultrasound with UV irradiation was also conducted. The study demonstrated that the UV assisted desulfurization process consumes 90% less energy than the comparable process using ultrasonication. These process modifications demonstrated over 98% desulfurization efficiency on diesel oils and more than 75% on residual oils with significantly less oxidant and energy consumption. Also the feasibility to desulfurize commercial sour heavy oil was demonstrated. Based on the UAOD process and the commercialized modifications by Wan and Cheng, the feasible applications of superoxide and UV irradiation in the UAOD process could provide deep-desulfurization on various fuels with practical cost.

  6. Entrapment of Hydrate-coated Gas Bubbles into Oil and Separation of Gas and Hydrate-film; Seafloor Experiments with ROV

    NASA Astrophysics Data System (ADS)

    Hiruta, A.; Matsumoto, R.

    2015-12-01

    We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).

  7. Production of corn fiber gum under conditions that retain its functional components

    USDA-ARS?s Scientific Manuscript database

    Corn fiber gum (CFG) is a hemicellulose (arabinoxylan)-enriched fraction obtained by the extraction of corn bran/fiber using a mild alkaline hydrogen peroxide process. The unique polysaccharide, CFG, with its low solution viscosity has been proposed as a stabilizer for oil-in-water emulsions. We ha...

  8. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2009-05-01

    Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.

  9. Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 1. Effect of Catalyst Concentration

    NASA Astrophysics Data System (ADS)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    The hydrogenation of coal by molecular hydrogen has not been appreciable unless a catalyst has been used, especially at temperatures below 500 °C. Conversion under these conditions is essentially the result of the pyrolysis of coal, although hydrogen increases the yield of conversion due to the stabilization of radicals and other reactive species. Curtis and his co-workers has shown that highly effective and accessible catalyst are required to achieve high levels of oil production from the coprocessing of coal and heavy residua. In their work, powdered hydrotreating catalyst at high loadings an oil-soluble metal salts of organic acids as catalyst precursors achieved the highest levels of activity for coal conversion and oil production. Red mud which is iron-based catalysed has been used in several co-processing studies. It was used as an inexpensive sulphur sink for the H2S evolved to convert Fe into pyrrohotite during coal liquefaction. In this study, Elbistan Lignite (EL) processed with manure using red mud as a catalyst with the range of concentration from 3% to 12%. The main point of using red mud catalyst is to enhance oil products yield of coal liquefaction, which deals with its catalytic activity. On the other hand, red mud acts on EL liquefaction with manure as a catalyst and represents an environmental option to produce lower sulphur content oil products as well.

  10. Carbon abatement via treating the solid waste from the Australian olive industry in mobile pyrolysis units: LCA with uncertainty analysis.

    PubMed

    El Hanandeh, Ali

    2013-04-01

    The olive oil industry in Australia has been growing at a rapid rate over the past decade. It is forecast to continue growing due to the steady increase in demand for olive oil and olive products in the local and regional market. However, the olive oil extraction process generates large amounts of solid waste called olive husk which is currently underutilized. This paper uses life-cycle methodology to analyse the carbon emission reduction potential of utilizing olive husk as a feedstock in a mobile pyrolysis unit. Four scenarios, based on different combinations of pyrolysis technologies (slow versus fast) and end-use of products (land application versus energy utilization), are constructed. The performance of each scenario under conditions of uncertainty was also investigated. The results show that all scenarios result in significant carbon emission abatement. Processing olive husk in mobile fast pyrolysis units and the utilization of bio-oil and biochar as substitutes for heavy fuel oil and coal is likely to realize a carbon offset greater than 32.3 Gg CO2-eq annually in 90% of the time. Likewise, more than 3.2 Gg-C (11.8 Gg CO2-eq) per year could be sequestered in the soil in the form of fixed carbon if slow mobile pyrolysis units were used to produce biochar.

  11. Olive Oil Based Emulsions in Frozen Puff Pastry Production

    NASA Astrophysics Data System (ADS)

    Gabriele, D.; Migliori, M.; Lupi, F. R.; de Cindio, B.

    2008-07-01

    Puff pastry is an interesting food product having different industrial applications. It is obtained by laminating layers of dough and fats, mainly shortenings or margarine, having specific properties which provides required spreading characteristic and able to retain moisture into dough. To obtain these characteristics, pastry shortenings are usually saturated fats, however the current trend in food industry is mainly oriented towards unsatured fats such as olive oil, which are thought to be safer for human health. In the present work, a new product, based on olive oil, was studied as shortening replacer in puff pastry production. To ensure the desired consistency, for the rheological matching between fat and dough, a water-in-oil emulsion was produced based on olive oil, emulsifier and a hydrophilic thickener agent able to increase material structure. Obtained materials were characterized by rheological dynamic tests in linear viscoelastic conditions, aiming to setup process and material consistency, and rheological data were analyzed by using the weak gel model. Results obtained for tested emulsions were compared to theological properties of a commercial margarine, adopted as reference value for texture and stability. Obtained emulsions are characterized by interesting rheological properties strongly dependent on emulsifier characteristics and water phase composition. However a change in process temperature during fat extrusion and dough lamination seems to be necessary to match properly typical dough rheological properties.

  12. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  13. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE PAGES

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    2017-01-05

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  14. The processing of used cooking oil (yellow grease) using combination of adsorption and ultrafiltration membrane processes

    NASA Astrophysics Data System (ADS)

    Rosnelly, C. M.; Sofyana; Amalia, D.; Sarah, S.

    2018-03-01

    Yellow grease is used cooking oil whose quality has degraded due to the oxidation, polymerization, or hydrolysis process. In previous studies, yellow grease refining had been conducted either by adsorption or by using membrane. In this study, adsorption process using adsorbent from bagasse activated with H3PO4 12.5%, and ultrafiltration using Polyethersulfone (PES) membrane were combined. In adsorption stage, several variation of bagasse mass was fed into 200 ml of yellow grease and stirred for 60 minutes at 60 rpm. Yellow grease produced from adsorption with best condition was then processed using ultrafiltration membran that is PES membran with concentration by 15 wt % with transmembrane pressure variation by 0.5; 1; 1.5; 2; and 2.5 Bar. Analysis of yellow grease characteristics before refined showed its acid number, peroxide number, iodine number, and water content respectively by 2.68 mgKOH/Kg; 5.97 Meq/Kg; 51,48; and 1.29%. Characteristics of yellow grease after adsorption at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 2.55 mgKOH/Kg; 4.19 Meq/Kg; 40,02; and 0.27%. Characteristics of yellow grease after ultrafiltration at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 1.12 mgKOH/Kg; 1.8 Meq/Kg; 41,36; and 0.02%. Combination of adsorption and ultrafiltration processes for yellow grease processing showed decreasing value on the parameters of acid number, peroxide number, and water content that conforms to the SNI quality standard, but has not been able to increase the iodine number.

  15. Microbial diversity of an oil-water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments.

    PubMed

    van der Kraan, Geert M; Bruining, Johannes; Lomans, Bart P; van Loosdrecht, Mark C M; Muyzer, Gerard

    2010-03-01

    The phylogenetic diversity of Bacteria and Archaea in water retrieved from a Dutch oil field and units of the associated oil-water separation site were determined using two culture-independent methods. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments was used to scan the microbial diversity in (1) the oil-water emulsion produced, (2) two different oil-water separator tanks, (3) a wash tank and (4) a water injector. Longer 16S rRNA gene fragments were amplified, cloned and sequenced to determine the diversity in more detail. One of the questions addressed was whether the detected microorganisms could serve as indicators for the environments from which they were retrieved. It was observed that the community found in the production water resembled those reported previously in oil reservoirs, indicating that these ecosystems harbor specific microbial communities. It was shown that changes, like a decrease in temperature, cause a distinctive shift in these communities. The addition of SO(3)(2-) to the wash tank as ammonium bisulphite, used in the oil industry to scavenge oxygen, resulted in a complete community change, giving rise to an unwanted sulphate-reducing community. The fact that these changes in the community can be linked to changes in their environment might indicate that these tools can be used for the monitoring of changing conditions in oil reservoirs upon, for example, water flooding.

  16. [Preparation of Oenothera biennis Oil Solid Lipid Nanoparticles Based on Microemulsion Technique].

    PubMed

    Piao, Lin-mei; Jin, Yong; Cui, Yan-lin; Yin, Shou-yu

    2015-06-01

    To study the preparation of Oenothera biennis oil solid lipid nanoparticles and its quality evaluation. The solid lipid nanoparticles were prepared by microemulsion technique. The optimum condition was performed based on the orthogonal design to examine the entrapment efficiency, the mean diameter of the particles and so on. The optimal preparation of Oenothera biennis oil solid lipid nanoparticles was as follows: Oenothera biennis dosage 300 mg, glycerol monostearate-Oenothera biennis (2: 3), Oenothera biennis -RH/40/PEG-400 (1: 2), RH-40/PEG-400 (1: 2). The resulting nanoparticles average encapsulation efficiency was (89.89 ± 0.71)%, the average particle size was 44.43 ± 0.08 nm, and the Zeta potential was 64.72 ± 1.24 mV. The preparation process is simple, stable and feasible.

  17. Selective removal of monoterpenes from bergamot oil by inclusion in deoxycholic acid.

    PubMed

    Fantin, Giancarlo; Fogagnolo, Marco; Maietti, Silvia; Rossetti, Stefano

    2010-05-12

    A new approach for removing monoterpenes (MTs) from bergamot oil by selective inclusion in deoxycholic acid (DCA) is proposed. The inclusion process is very efficient, the included fraction being composed mainly of limonene (71.7%) and gamma-terpinene (19.8%). On the other hand, the deterpenated bergamot oil fraction showed for the linalool and linalyl acetate derivatives significant increases from 16.6 and 21.4% to 18.3 and 42.2%, respectively. The major advantages of this methodology are its simplicity, the mild conditions employed, and the quantitative recovery of both host (DCA) and guest (monoterpenes) compounds. Differential scanning calorimetry (DSC), thermal gravimetry (TG), powder X-ray diffractometry (XRPD), infrared spectroscopy (IR), and proton magnetic resonance ((1)H NMR) analysis were used to investigate and characterize the inclusion compounds.

  18. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    PubMed

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  19. Evaporation of oil-water emulsion drops when heated at high temperature

    NASA Astrophysics Data System (ADS)

    Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.

    2017-10-01

    An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.

  20. Confirmation of heavy metal ions in used lubricating oil from a passenger car using chelating self-assembled monolayer.

    PubMed

    Ko, Young Gun; Kim, Choong Hyun

    2006-09-01

    In order to prevent engine failure, the oil must be changed before it loses its protective properties. It is necessary to monitor the actual physical and chemical condition of the oil to reliably determine the optimum oil-change interval. Our study focuses on the condition of the lubricating oil in an operated car engine. Shear stress curves and viscosity curves as a function of the shear rate for fresh and used lubricating oil were examined. Metal nitrate was detected in the lubricating oil from the operated car engine through the use of a chelating self-assembled monolayer.

  1. Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

    USGS Publications Warehouse

    Attanasi, Emil D.

    2017-07-17

    IntroductionThe Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP. CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000). The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir-specific data that can be assembled and simplifying assumptions that allow assignment of default values for some reservoir parameters. These issues are discussed in the context of the CO2 Prophet EOR model, and their resolution is demonstrated with the computation of recovery-factor estimates for CO2-EOR of 143 reservoirs in the Powder River Basin Province in southeastern Montana and northeastern Wyoming.

  2. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-06-01

    Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  3. Effect of Blended Feedstock on Pyrolysis Oil Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kristin M; Gaston, Katherine R

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  4. An investigation on rapeseed oil as potential insulating liquid

    NASA Astrophysics Data System (ADS)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  5. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    PubMed

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Production and optimization of polyhydroxyalkanoates from non-edible Calophyllum inophyllum oil using Cupriavidus necator.

    PubMed

    Arumugam, A; Senthamizhan, S G; Ponnusami, V; Sudalai, S

    2018-06-01

    Polyhydroxyalkanoates (PHA) are biodegradable polymers found in the cellular masses of a wide range of bacterial species and the demand for PHA is steadily growing. In this work we have produced PHA from a low-cost substrate, Calophyllum inophyllum oil, using Cupriavidus necator. Effects of various process parameters such as Oil concentration, Nitrogen source and inoculum size on the production of PHA were studied using Response Surface Methodology. A quadratic equation was used in the model to fit the experimental data. It was found that the model could satisfactorily predict the PHA yield (R 2 =99.17%). Linear, quadratic and interaction terms used in the model were found to be statistically significant. Maximum PHA yield of 10.6gL -1 was obtained under the optimized conditions of oil concentration - 17.5%, inoculum concentration - 50mL/L and nitrogen content - 1.125gL -1 , respectively. The product obtained was characterized using FTIR and NMR to confirm that it was PHA. The results demonstrate that C. inophyllum oil, a non-edible oil, can be potentially used as a low-cost substrate for the production of PHA. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Petroleum geochemistry of oil and gas from Barbados: Implications for distribution of Cretaceous source rocks and regional petroleum prospectivity

    USGS Publications Warehouse

    Hill, R.J.; Schenk, C.J.

    2005-01-01

    Petroleum produced from the Barbados accretionary prism (at Woodbourne Field on Barbados) is interpreted as generated from Cretaceous marine shale deposited under normal salinity and dysoxic conditions rather than from a Tertiary source rock as previously proposed. Barbados oils correlate with some oils from eastern Venezuela and Trinidad that are positively correlated to extracts from Upper Cretaceous La Luna-like source rocks. Three distinct groups of Barbados oils are recognized based on thermal maturity, suggesting petroleum generation occurred at multiple levels within the Barbados accretionary prism. Biodegradation is the most significant process affecting Barbados oils resulting in increased sulfur content and decreased API gravity. Barbados gases are interpreted as thermogenic, having been co-generated with oil, and show mixing with biogenic gas is limited. Gas biodegradation occurred in two samples collected from shallow reservoirs at the Woodbourne Field. The presence of Cretaceous source rocks within the Barbados accretionary prism suggests that greater petroleum potential exists regionally, and perhaps further southeast along the passive margin of South America. Likewise, confirmation of a Cretaceous source rock indicates petroleum potential exists within the Barbados accretionary prism in reservoirs that are deeper than those from Woodbourne Field.

  8. Synthesis of biodiesel from waste cooking oil using sonochemical reactors.

    PubMed

    Hingu, Shishir M; Gogate, Parag R; Rathod, Virendra K

    2010-06-01

    Investigation into newer routes of biodiesel synthesis is a key research area especially due to the fluctuations in the conventional fuel prices and the environmental advantages of biodiesel. The present work illustrates the use of sonochemical reactors for the synthesis of biodiesel from waste cooking oil. Transesterification of used frying oil with methanol, in the presence of potassium hydroxide as a catalyst has been investigated using low frequency ultrasonic reactor (20 kHz). Effect of different operating parameters such as alcohol-oil molar ratio, catalyst concentration, temperature, power, pulse and horn position on the extent of conversion of oil have been investigated. The optimum conditions for the transesterification process have been obtained as molar ratio of alcohol to oil as 6:1, catalyst concentration of 1 wt.%, temperature as 45 degrees C and ultrasound power as 200 W with an irradiation time of 40 min. The efficacy of using ultrasound has been compared with the conventional stirring approach based on the use of a six blade turbine with diameter of 1.5 cm operating at 1000 rpm. Also the purification aspects of the final product have been investigated. (c) 2010 Elsevier B.V. All rights reserved.

  9. Influence of oil composition on the formation of fatty acid esters of 2-chloropropane-1,3-diol (2-MCPD) and 3-chloropropane-1,2-diol (3-MCPD) under conditions simulating oil refining.

    PubMed

    Ermacora, Alessia; Hrncirik, Karel

    2014-10-15

    The toxicological relevance and widespread occurrence of fatty acid esters of 2-chloropropane-1,3-diol (2-MCPD) and 3-chloropropane-1,2-diol (3-MCPD) in refined oils and fats have recently triggered an interest in the mechanism of formation and decomposition of these contaminants during oil processing. In this work, the effect of the main precursors, namely acylglycerols and chlorinated compounds, on the formation yield of MCPD esters was investigated in model systems simulating oil deodorization. The composition of the oils was modified by enzymatic hydrolysis, silica gel purification and application of various refining steps prior to deodorization (namely degumming, neutralization, bleaching). Partial acylglycerols showed greater ability, than did triacylglycerols, to form MCPD esters. However, no direct correlation was found between these two parameters, since the availability of chloride ions was the main limiting factor in the formation reaction. Polar chlorinated compounds were found to be the main chloride donors, although the presence of reactive non-polar chloride-donating species was also observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Oil content Monitor/Control system and method

    NASA Astrophysics Data System (ADS)

    Schmitt, R. F.; Gavin, J. A.; Kempel, F. D.; Waltrick, C. N.

    1985-07-01

    This patent application discloses an oil content monitor/control unit system which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermined in-port or at-sea oil concentration limits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than determined in-port or at-sea limits, it is discharged overboard.

  11. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies.

    PubMed

    Jiménez, Núria; Richnow, Hans H; Vogt, Carsten; Treude, Tina; Krüger, Martin

    2016-01-01

    Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed. © 2016 S. Karger AG, Basel.

  12. Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production.

    PubMed

    Hayyan, Adeeb; Mjalli, Farouq S; Hashim, Mohd Ali; Hayyan, Maan; AlNashef, Inas M; Al-Zahrani, Saeed M; Al-Saadi, Mohammed A

    2011-10-01

    An industrial grade acidic crude palm oil (ACPO) pre-treatment process was carried out using ethanesulfonic acid (ESA) as a catalyst in the esterification reaction. ESA was used in different dosages to reduce free fatty acid (FFA) to a minimum level for the second stage of biodiesel production via alkaline transesterification reaction. Different process operating conditions were optimized such as ESA dosage (0.25-3.5% wt/wt), methanol to ACPO molar ratio (1:1-20:1), reaction temperature (40-70 °C), and reaction time (3-150 min). This study revealed the potential use of abundant quantities of ACPO from oil palm mills for biodiesel production. The lab scale results showed the effectiveness of the pre-treatment process using ESA catalyst. Three consecutive catalyst recycling runs were achieved without significant degradation in its performance. Second and third reuse runs needed more reaction time to achieve the target level of FFA content. Esterification and transesterification using ESA and KOH respectively is proposed for biodiesel industrial scale production. The produced biodiesel meets the international standards specifications for biodiesel fuel (EN 14214 and ASTM D6751). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The potential of indigenous Paenibacillus ehimensis BS1 for recovering heavy crude oil by biotransformation to light fractions

    PubMed Central

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkadir E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2017-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a potential technology for residual heavy oil recovery. Many heavy oil fields in Oman and elsewhere have difficulty in crude oil recovery because it is expensive due to its high viscosity. Indigenous microbes are capable of improving the fluidity of heavy oil, by changing its high viscosity and producing lighter oil fractions. Many spore-forming bacteria were isolated from soil samples collected from oil fields in Oman. Among the isolates, an autochthonous spore-forming bacterium was found to enhance heavy oil recovery, which was identified by 16S rDNA sequencing as Paenibacillus ehimensis BS1. The isolate showed maximum growth at high heavy oil concentrations within four days of incubation. Biotransformation of heavy crude oil to light aliphatic and aromatic compounds and its potential in EOR was analyzed under aerobic and anaerobic reservoir conditions. The isolates were grown aerobically in Bushnell-Haas medium with 1% (w/v) heavy crude oil. The crude oil analyzed by GC-MS showed a significant biotransformation from the ninth day of incubation under aerobic conditions. The total biotransformation of heavy crude oil was 67.1% with 45.9% in aliphatic and 85.3% in aromatic fractions. Core flooding experiments were carried out by injecting the isolates in brine supplemented with Bushnell-Haas medium into Berea sandstone cores and were incubated for twelve days under oil reservoir conditions (50°C). The extra recovered oil was analyzed by GC-MS. The residual oil recovered from core flood experiments ranged between 10–13% compared to the control experiment. The GC-MS analyses of the extra recovered oil showed 38.99% biotransformation of heavy to light oil. The results also indicated the presence of 22.9% extra aliphatic compounds in the residual crude oil recovered compared to that of a control. The most abundant compound in the extra recovered crude oil was identified as 1-bromoeicosane. The investigations showed the potential of P. ehimensis BS1 in MEOR technology by the biotransformation of heavy to lighter crude oil under aerobic and reservoir conditions. Heavy oil recovery and biotransformation to lighter components are of great economic value and a few studies have been done. PMID:28196087

  14. Bioactivities of volatile components from Nepalese Artemisia species.

    PubMed

    Satyal, Prabodh; Paudel, Prajwal; Kafle, Ananad; Pokharel, Suraj K; Lamichhane, Bimala; Dosoky, Noura S; Moriarity, Debra M; Setzer, William N

    2012-12-01

    The essential oils from the leaves of Artemisia dubia, A. indica, and A. vulgaris growing wild in Nepal were obtained by hydrodistillation and analyzed by GC-MS. The major components in A. dubia oil were chrysanthenone (29.0%), coumarin (18.3%), and camphor (16.4%). A. indica oil was dominated by ascaridole (15.4%), isoascaridole (9.9%), trans-p-mentha-2,8-dien-1-ol (9.7%), and trans-verbenol (8.4%). The essential oil of Nepalese A. vulgaris was rich in alpha-thujone (30.5%), 1,8-cineole (12.4%), and camphor (10.3%). The essential oils were screened for phytotoxic activity against Lactuca sativa (lettuce) and Lolium perenne (perennial ryegrass) using both seed germination and seedling growth, and all three Artemisia oils exhibited notable allelopathic activity. A. dubia oil showed in-vitro cytotoxic activity on MCF-7 cells (100% kill at 100 microg/mL) and was also marginally antifungal against Aspergillus niger (MIC = 313 microg/mL). DFT calculations (B3LYP/6-31G*) revealed thermal decomposition of ascaridole to be energetically accessible at hydrodistillation and GC conditions, but these are spin-forbidden processes. If decomposition does occur, it likely proceeds by way of homolytic peroxide bond cleavage rather than retro-Diels-Alder elimination of molecular oxygen.

  15. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  16. Insights into oil cracking based on laboratory experiments

    USGS Publications Warehouse

    Hill, R.J.; Tang, Y.; Kaplan, I.R.

    2003-01-01

    The objectives of this pyrolysis investigation were to determine changes in (1) oil composition, (2) gas composition and (3) gas carbon isotope ratios and to compare these results with hydrocarbons in reservoirs. Laboratory cracking of a saturate-rich Devonian oil by confined, dry pyrolysis was performed at T = 350-450??C, P = 650 bars and times ranging from 24 h to 33 days. Increasing thermal stress results in the C15+ hydrocarbon fraction cracking to form C6-14 and C1-5 hydrocarbons and pyrobitumen. The C6-14 fraction continues to crack to C 1-5 gases plus pyrobitumen at higher temperatures and prolonged heating time and the ?? 13Cethane-?? 13Cpropane difference becomes greater as oil cracking progresses. There is considerable overlap in product generation and product cracking. Oil cracking products accumulate either because the rate of generation of any product is greater than the rate of removal by cracking of that product or because the product is a stable end member under the experimental conditions. Oil cracking products decrease when the amount of product generated from a reactant is less than the amount of product cracked. If pyrolysis gas compositions are representative of gases generated from oil cracking in nature, then understanding the processes that alter natural gas composition is critical. ?? 2003 Elsevier Ltd. All rights reserved.

  17. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation.

    PubMed

    Wade, Terry L; Morales-McDevitt, Maya; Bera, Gopal; Shi, Dawai; Sweet, Stephen; Wang, Binbin; Gold-Bouchot, Gerado; Quigg, Antonietta; Knap, Anthony H

    2017-10-01

    Marine oil snow (MOS) formation is a mechanism to transport oil from the ocean surface to sediments. We describe here the use of 110L mesocosms designed to mimic oceanic parameters during an oil spill including the use of chemical dispersants in order to understand the processes controlling MOS formation. These experiments were not designed to be toxicity tests but rather to illustrate mechanisms. This paper focuses on the development of protocols needed to conduct experiments under environmentally relevant conditions to examine marine snow and MOS. The experiments required the production of over 500 liters of water accommodated fraction (WAF), chemically enhanced water accommodated fraction of oil (CEWAF) as well as diluted CEWAF (DCEWAF). A redesigned baffled (170 L) recirculating tank (BRT) system was used. Two mesocosm experiments (M1 and M2) were run for several days each. In both M1 and M2, marine snow and MOS was formed in controls and all treatments respectively. Estimated oil equivalent (EOE) concentrations of CEWAF were in the high range of concentrations reported during spills and field tests, while WAF and DCEWAF concentrations were within the range of concentrations reported during oil spills. EOE decreased rapidly within days in agreement with historic data and experiments.

  18. Production of bioethanol by direct bioconversion of oil-palm industrial effluent in a stirred-tank bioreactor.

    PubMed

    Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S

    2009-06-01

    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.

  19. Refining of crude rubber seed oil as a feedstock for biofuel production.

    PubMed

    Gurdeep Singh, Haswin Kaur; Yusup, Suzana; Abdullah, Bawadi; Cheah, Kin Wai; Azmee, Fathin Nabilah; Lam, Hon Loong

    2017-12-01

    Crude rubber seed oil is a potential source for biofuel production. However it contains undesirable impurities such as peroxides and high oxidative components that not only affect the oil stability, colour and shelf-life but promote insoluble gums formation with time that could cause deposition in the combustion engines. Therefore to overcome these problems the crude rubber seed oil is refined by undergoing degumming and bleaching process. The effect of bleaching earth dosage (15-40 wt %), phosphoric acid dosage (0.5-1.0 wt %) and reaction time (20-40 min) were studied over the reduction of the peroxide value in a refined crude rubber seed oil. The analysis of variance shows that bleaching earth dosage was the most influencing factor followed by reaction time and phosphoric acid dosage. A minimum peroxide value of 0.1 milliequivalents/gram was achieved under optimized conditions of 40 wt % of bleaching earth dosage, 1.0 wt % of phosphoric acid dosage and 20 min of reaction time using Response Surface Methodology design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A comprehensive evaluation of tyrosol and hydroxytyrosol derivatives in extra virgin olive oil by microwave-assisted hydrolysis and HPLC-MS/MS.

    PubMed

    Bartella, Lucia; Mazzotti, Fabio; Napoli, Anna; Sindona, Giovanni; Di Donna, Leonardo

    2018-03-01

    A rapid and reliable method to assay the total amount of tyrosol and hydroxytyrosol derivatives in extra virgin olive oil has been developed. The methodology intends to establish the nutritional quality of this edible oil addressing recent international health claim legislations (the European Commission Regulation No. 432/2012) and changing the classification of extra virgin olive oil to the status of nutraceutical. The method is based on the use of high-performance liquid chromatography coupled with tandem mass spectrometry and labeled internal standards preceded by a fast hydrolysis reaction step performed through the aid of microwaves under acid conditions. The overall process is particularly time saving, much shorter than any methodology previously reported. The developed approach represents a mix of rapidity and accuracy whose values have been found near 100% on different fortified vegetable oils, while the RSD% values, calculated from repeatability and reproducibility experiments, are in all cases under 7%. Graphical abstract Schematic of the methodology applied to the determination of tyrosol and hydroxytyrosol ester conjugates.

Top