Science.gov

Sample records for oil production wastes

  1. Biodiesel production using waste frying oil

    SciTech Connect

    Charpe, Trupti W.; Rathod, Virendra K.

    2011-01-15

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  2. Bio Gas Oil Production from Waste Lard

    PubMed Central

    Hancsók, Jenő; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al2O3 catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280–380°C, P = 20–80 bar, LHSV = 0.75–3.0 h−1 and H2/lard ratio: 600 Nm3/m3). In case of the isomerization at the favourable process parameters (T = 360–370°C, P = 40 –50 bar, LHSV = 1.0 h−1 and H2/hydrocarbon ratio: 400 Nm3/m3) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms. PMID:21403875

  3. Bio gas oil production from waste lard.

    PubMed

    Hancsók, Jeno; Baladincz, Péter; Kasza, Tamás; Kovács, Sándor; Tóth, Csaba; Varga, Zoltán

    2011-01-01

    Besides the second generations bio fuels, one of the most promising products is the bio gas oil, which is a high iso-paraffin containing fuel, which could be produced by the catalytic hydrogenation of different triglycerides. To broaden the feedstock of the bio gas oil the catalytic hydrogenation of waste lard over sulphided NiMo/Al(2)O(3) catalyst, and as the second step, the isomerization of the produced normal paraffin rich mixture (intermediate product) over Pt/SAPO-11 catalyst was investigated. It was found that both the hydrogenation and the decarboxylation/decarbonylation oxygen removing reactions took place but their ratio depended on the process parameters (T = 280-380°C, P = 20-80 bar, LHSV = 0.75-3.0  h(-1) and H(2)/lard ratio: 600  Nm(3)/m(3)). In case of the isomerization at the favourable process parameters (T = 360-370°C, P = 40-50 bar, LHSV = 1.0  h(-1) and H(2)/hydrocarbon ratio: 400  Nm(3)/m(3)) mainly mono-branching isoparaffins were obtained. The obtained products are excellent Diesel fuel blending components, which are practically free of heteroatoms.

  4. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  5. Recycling of waste engine oil for diesel production.

    PubMed

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines.

  6. Guide to oil waste-management alternatives for used oil, oily waste water, oily sludge, and other wastes resulting from the use of oil products. Final report

    SciTech Connect

    Not Available

    1988-04-01

    This report presents the results of a study of oil waste-management alternatives. The study includes regulations, established and emerging technologies, current practices, economics, and environmental impacts of oil waste management. The report focuses on methods of improving oil-waste recyclability and phasing out land disposal. The report includes recommendations for industrial oil-waste generators. It is the companion volume to 'Oil Waste Management Alternatives Symposia -- Conference Proceedings'.

  7. Biodiesel production from waste frying oils and its quality control.

    PubMed

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards.

  8. Economic assessment of biodiesel production from waste frying oils.

    PubMed

    Araujo, Victor Kraemer Wermelinger Sancho; Hamacher, Silvio; Scavarda, Luiz Felipe

    2010-06-01

    Waste frying oils (WFO) can be a good source for the production of biodiesel because this raw material is not part of the food chain, is low cost and can be used in a way that resolves environmental problems (i.e. WFO is no longer thrown into the sewage network). The goal of this article is to propose a method to evaluate the costs of biodiesel production from WFO to develop an economic assessment of this alternative. This method embraces a logistics perspective, as the cost of collection of oil from commercial producers and its delivery to biodiesel depots or plants can be relevant and is an issue that has been little explored in the academic literature. To determine the logistics cost, a mathematical programming model is proposed to solve the vehicle routing problem (VRP), which was applied in an important urban center in Brazil (Rio de Janeiro), a relevant and potential center for biodiesel production and consumption. Eighty-one biodiesel cost scenarios were compared with information on the commercialization of biodiesel in Brazil. The results obtained demonstrate the economic viability of biodiesel production from WFO in the urban center studied and the relevance of logistics in the total biodiesel production cost.

  9. Fuel oil and other products from wood wastes

    SciTech Connect

    1996-07-01

    Under a project recently funded by the Southeastern Regional Biomass Energy Program (SERBEP), Environmental Resource Services, Inc., (ERS), of Oklahoma City, Oklahoma, will build a plant to manufacture a high-grade fuel (bio-fuel) and other products from wood and other wastes. The plant will be part of a waste recycling center that ERS plans to construct at Anniston, Alabama. ERS will use a proprietary technology developed by Ensyn{trademark} Technologies of Ottawa, Canada to manufacture the bio-fuel. Ensyn`s{trademark} Rapid Thermal Process{trademark} (RPT{trademark}) is commercially available with plants in Canada, the US, Italy, and a plant in Finland under construction. The RTP{trademark} technology produces a light-weight fuel similar to Number 2 fuel oil in consistency. The bio-fuel can be more easily transported, handled, and fired than solid wood wastes. The process also does not have significant emissions and does not require a high volume of material be processed to be economical. Plants are available in the form of factory-built modules that can cost-effectively process 100 tons per day of feedstock.

  10. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    PubMed

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  11. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones.

  12. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    PubMed

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  13. Citric acid production in Yarrowia lipolytica SWJ-1b yeast when grown on waste cooking oil.

    PubMed

    Liu, Xiaoyan; Lv, Jinshun; Xu, Jiaxing; Zhang, Tong; Deng, Yuanfang; He, Jianlong

    2015-03-01

    In this study, citric acid was produced from waste cooking oil by Yarrowia lipolytica SWJ-1b. To get the maximal yield of citric acid, the compositions of the medium for citric acid production were optimized, and our results showed that extra nitrogen and magnesium rather than vitamin B1 and phosphate were needed for CA accumulation when using waste cooking oil. The results also indicated that the optimal initial concentration of the waste cooking oil in the medium for citric acid production was 80.0 g/l, and the ideal inoculation size was 1 × 10(7) cells/l of medium. We also reported that during 10-l fermentation, 31.7 g/l of citric acid, 6.5 g/l of isocitric acid, 5.9 g/l of biomass, and 42.1 g/100.0 g cell dry weight of lipid were attained from 80.0 g/l of waste cooking oil within 336 h. At the end of the fermentation, 94.6 % of the waste cooking oil was utilized by the cells of Y. lipolytica SWJ-1b, and the yield of citric acid was 0.4 g/g waste cooking oil, which suggested that waste cooking oil was a suitable carbon resource for citric acid production.

  14. Utilization of papaya waste and oil production by Chlorella protothecoides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algae derived oils have outstanding potential for use in biodiesel production. Chlorella protothecoides has been shown to accumulate lipid up to 60% of its cellular dry weight with glucose supplementation under heterotrophic growth conditions. To reduce production costs, alternative carbon feedstock...

  15. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI.

    PubMed

    Nitschke, Marcia; Costa, Siddhartha G V A O; Haddad, Renato; Gonçalves, Lireny A G; Eberlin, Marcos N; Contiero, Jonas

    2005-01-01

    Oil wastes were evaluated as alternative low-cost substrates for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. Wastes obtained from soybean, cottonseed, babassu, palm, and corn oil refinery were tested. The soybean soapstock waste was the best substrate, generating 11.7 g/L of rhamnolipids with a surface tension of 26.9 mN/m, a critical micelle concentration of 51.5 mg/L, and a production yield of 75%. The monorhamnolipid RhaC(10)C(10) predominates when P. aeruginosa LBI was cultivated on hydrophobic substrates, whereas hydrophilic carbon sources form the dirhamnolipid Rha(2)C(10)C(10) predominantly.

  16. Solid olive waste in environmental cleanup: oil recovery and carbon production for water purification.

    PubMed

    El-Hamouz, Amer; Hilal, Hikmat S; Nassar, Nashaat; Mardawi, Zahi

    2007-07-01

    A potentially-economic three-fold strategy, to use solid olive wastes in water purification, is presented. Firstly, oil remaining in solid waste (higher than 5% of waste) was recovered by the Soxhlet extraction technique, which can be useful for the soap industry. Secondly, the remaining solid was processed to yield relatively high-surface area active carbon (AC). Thirdly, the resulting carbon was employed to reversibly adsorb chromate ions from water, aiming to establish a water purification process with reusable AC. The technique used here enabled oil recovery together with the production of a clean solid, suitable for making AC. This process also has the advantage of low production cost.

  17. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    PubMed

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated.

  18. Soils and waste water purification from oil products using combined methods under the North conditions.

    PubMed

    Evdokimova, Galina A; Gershenkop, Alexander Sh; Mozgova, Natalia P; Myazin, Vladimir A; Fokina, Nadejda V

    2012-01-01

    Oil and gas production and transportation in Russia is increasingly moving to the north regions. Such regions are characterized by relatively low self-purification capacity of the natural environments from the contaminants due to slow character of the energy exchange and mass transfer processes. Off-shore field development in the Barents Sea and oil product transportation can result in contamination, as confirmed by the national and international practice of the developed oil and gas regions. The research aims at development of the soil bioremediation methods and industrial waste water purification contaminated by oil products in the north-western region of Russia. The dynamics of oil products carry-over have been investigated under the field model experiments in podzolic soils: gas condensate, diesel fuel and mazut from oil and the plants were selected for phyto-remediation of contaminated soils under high north latitudes. It is shown that soil purification from light hydrocarbons takes place during one vegetation period. In three months of the vegetation period the gas condensate was completely removed from the soil, diesel fuel - almost completely (more than 90%). Residual amounts of heavy hydrocarbons were traced, even 1.5 later. The following plants that were highly resistant to the oil product contamination were recommended for bioremediation: Phalaroides arundinacea, Festuca pratensis, Phleum pratense, Leymus arenarius. There has been developed and patented the combined method of treatment of waste water contaminated with hydrocarbons based on inorganic coagulants and local oil-oxidizing bacteria.

  19. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  20. Production and characterization of bio-oil from the pyrolysis of waste frying oil.

    PubMed

    Kraiem, Takwa; Hassen, Aida Ben; Belayouni, Habib; Jeguirim, Mejdi

    2016-09-24

    In this present work, the disposal of waste frying oil was explored. The experiment tests were performed under nitrogen (N2) atmosphere at 5 °C/min heating rate from the ambient temperature to 500 °C. In these operating conditions, the obtained pyrolitic liquid fraction was 76 wt% formed by 63.87 wt% of crude bio-oil and 12.13 wt% of aqueous fraction. The chemical characterization using FTIR, GC, and GC/MS has revealed that the bio-oil is a complex chemical mixture of linear saturated, unsaturated, and cyclic hydrocarbons and oxygenated compounds such as carboxylic acids, ketones, aldehydes, and alcohols. Moreover, the produced bio-oil can be considered as promising fuel with high calorific value (∼39 MJ/kg). However, the higher acidity (∼125 mg KOH/g sample) and viscosity (9.53 cSt at 40 °C) limit currently its direct use in engines. Therefore, although several promising results, further investigations are requested to improve the bio-oil quality in order to find an environmentally friendly issue to waste frying oil.

  1. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0(#) diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity.

  2. Pilot-scale production of biodiesel from waste fats and oils using tetramethylammonium hydroxide.

    PubMed

    Šánek, Lubomír; Pecha, Jiří; Kolomazník, Karel; Bařinová, Michaela

    2016-02-01

    Annually, a great amount of waste fats and oils not suitable for human consumption or which cannot be further treated are produced around the world. A potential way of utilizing this low-cost feedstock is its conversion into biodiesel. The majority of biodiesel production processes today are based on the utilization of inorganic alkali catalysts. However, it has been proved that an organic base - tetramethylammonium hydroxide - can be used as a very efficient transesterification catalyst. Furthermore, it can be employed for the esterification of free fatty acids - reducing even high free fatty acid contents to the required level in just one step. The work presented herein, is focused on biodiesel production from waste frying oils and animal fats using tetramethylammonium hydroxide at the pilot-plant level. The results showed that the process performance in the pilot unit - using methanol and TMAH as a catalyst, is comparable to the laboratory procedure, even when the biodiesel is produced from waste vegetable oils or animal fats with high free fatty acid content. The reaction conditions were set at: 1.5% w/w of TMAH, reaction temperature 65°C, the feedstock to methanol molar ratio to 1:6, and the reaction time to 120min. The conversion of triglycerides to FAME was approximately 98%. The cloud point of the biodiesel obtained from waste animal fat was also determined.

  3. Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles.

    PubMed

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-12-11

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively.

  4. Optimized Production of Biodiesel from Waste Cooking Oil by Lipase Immobilized on Magnetic Nanoparticles

    PubMed Central

    Yu, Chi-Yang; Huang, Liang-Yu; Kuan, I-Ching; Lee, Shiow-Ling

    2013-01-01

    Biodiesel, a non-toxic and biodegradable fuel, has recently become a major source of renewable alternative fuels. Utilization of lipase as a biocatalyst to produce biodiesel has advantages over common alkaline catalysts such as mild reaction conditions, easy product separation, and use of waste cooking oil as raw material. In this study, Pseudomonas cepacia lipase immobilized onto magnetic nanoparticles (MNP) was used for biodiesel production from waste cooking oil. The optimal dosage of lipase-bound MNP was 40% (w/w of oil) and there was little difference between stepwise addition of methanol at 12 h- and 24 h-intervals. Reaction temperature, substrate molar ratio (methanol/oil), and water content (w/w of oil) were optimized using response surface methodology (RSM). The optimal reaction conditions were 44.2 °C, substrate molar ratio of 5.2, and water content of 12.5%. The predicted and experimental molar conversions of fatty acid methyl esters (FAME) were 80% and 79%, respectively. PMID:24336109

  5. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.

    PubMed

    Radzuan, Mohd Nazren; Banat, Ibrahim M; Winterburn, James

    2017-02-01

    In this research we assess the feasibility of using palm oil agricultural refinery waste as a carbon source for the production of rhamnolipid biosurfactant through fermentation. The production and characterization of rhamnolipid produced by Pseudomonas aeruginosa PAO1 grown on palm fatty acid distillate (PFAD) under batch fermentation were investigated. Results show that P. aeruginosa PAO1 can grow and produce 0.43gL(-1) of rhamnolipid using PFAD as the sole carbon source. Identification of the biosurfactant product using mass spectrometry confirmed the presence of monorhamnolipid and dirhamnolipid. The rhamnolipid produced from PFAD were able to reduce surface tension to 29mNm(-1) with a critical micelle concentration (CMC) 420mgL(-1) and emulsify kerosene and sunflower oil, with an emulsion index up to 30%. Results demonstrate that PFAD could be used as a low-cost substrate for rhamnolipid production, utilizing and transforming it into a value added biosurfactant product.

  6. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  7. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  8. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  9. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst.

    PubMed

    Gurunathan, Baskar; Ravi, Aiswarya

    2015-01-01

    A novel CZO nanocomposite was synthesized and used as heterogeneous catalyst for transesterification of waste cooking oil into biodiesel using methanol as acyl acceptor. The synthesized CZO nanocomposite was characterized in FESEM with an average size of 80 nm as nanorods. The XRD patterns indicated the substitution of ZnO in the hexagonal lattice of Cu nanoparticles. The 12% (w/w) nanocatalyst concentration, 1:8 (v:v) O:M ratio, 55 °C temperature and 50 min of reaction time were found as optimum for maximum biodiesel yield of 97.71% (w/w). Hence, the use of CZO nanocomposite can be used as heterogeneous catalyst for biodiesel production from waste cooking oil.

  10. Biodiesel production via the transesterification of soybean oil using waste starfish (Asterina pectinifera).

    PubMed

    Jo, Yong Beom; Park, Sung Hoon; Jeon, Jong-Ki; Ko, Chang Hyun; Ryu, Changkook; Park, Young-Kwon

    2013-07-01

    Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.

  11. Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.

    PubMed

    Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

    2011-11-01

    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%.

  12. Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme.

    PubMed

    Razack, Sirajunnisa Abdul; Duraiarasan, Surendhiran

    2016-01-01

    In the recent scenario, consumption of petroleum fuels has increased to greater height which has led to deforestation and decline in fossil fuels. In order to tackle the perilous situation, alternative fuel has to be generated. Biofuels play a vital role in substituting the diesel fuels as they are renewable and ecofriendly. Biodiesel, often referred to as green fuel, could be a potential replacement as it could be synthesized from varied substrates, advantageous being the microalgae in several ways. The present investigation was dealt with the interesterification of waste cooking oil using immobilised lipase from mixed cultures for biodiesel production. In order to standardize the production for a scale up process, the parameters necessary for interesterification had been optimized using the statistical tool, Central Composite Design - Response Surface Methodology. The optimal conditions required to generate biodiesel were 2 g enzyme load, 1:12 oil to methyl acetate ratio, 60 h reaction time and 35 °C temperature, yielding a maximum of 93.61% biodiesel. The immobilised lipase beads remain stable without any changes in their function and structure even after 20 cycles which made this study, less cost intensive. In conclusion, the study revealed that the cooking oil, a residue of many dining centers, left as waste product, can be used as a potential raw material for the production of ecofriendly and cost effective biofuel, the biodiesel.

  13. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  14. Intensifying of the processes of mechanical separation of oil products from industrial waste water

    SciTech Connect

    Kostova, I.

    1995-11-01

    The raised requirements for discharge of industrial effluents in the Black Sea and in the rivers lead to the development of more efficient technologies for additional treatment and improving the existing facilities. Pollutants with concentrations which are several times higher than the admissible rates according to the Bulgarian Standards, are found at many places along the Black Sea Coast. This is due to the imperfect construction of the water treatment facilities and their improper maintenance. Oil products are one of the main pollutants in water basins. The negative influence which they have on the ecological balance comes from the fact that they are among the most difficulty and slowly dissociating organic substances. They have negative impact on the physical and chemical qualities of water and obstruct the self-purification process disrupting its biological life. In this paper the opportunity to intensify the processes of mechanical separation of oil products from industrial waste water is discussed.

  15. Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst.

    PubMed

    Tran, Thi Tuong Vi; Kaiprommarat, Sunanta; Kongparakul, Suwadee; Reubroycharoen, Prasert; Guan, Guoqing; Nguyen, Manh Huan; Samart, Chanatip

    2016-06-01

    The application of an environmentally benign sulfonated carbon microsphere catalyst for biodiesel production from waste cooking oil was investigated. This catalyst was prepared by the sequential hydrothermal carbonization and sulfonation of xylose. The morphology, surface area, and acid properties were analyzed. The surface area and acidity of the catalyst were 86m(2)/g and 1.38mmol/g, respectively. In addition, the presence of sulfonic acid on the carbon surface was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The catalytic activity was tested for biodiesel production from waste cooking oil via a two-step reaction to overcome reaction equilibrium. The highest biodiesel yield (89.6%) was obtained at a reaction temperature of 110°C, duration time of 4h, and catalyst loading of 10wt% under elevated pressure 2.3bar and 1.4bar for first and second step, respectively. The reusability of the catalyst was investigated and showed that the biodiesel yield decreased by 9% with each cycle; however, this catalyst is still of interest because it is an example of green chemistry, is nontoxic, and makes use of xylose waste.

  16. Measurement of enhanced radium isotopes in oil production wastes in Turkey.

    PubMed

    Parmaksız, A; Ağuş, Y; Bulgurlu, F; Bulur, E; Öncü, T; Özkök, Y Ö

    2015-03-01

    Gamma dose rates of oil production equipment and wastes were measured externally by survey meter. They were found to be between 0.2 μSv h(-1) and 25.7 μSv h(-1). Activity concentrations of radium isotopes in crude oil, scale, sludge, contaminated soil and water samples were determined by gamma spectrometric method. Activity concentrations of (224)Ra, (226)Ra and (228)Ra in samples varied from MDA to 132,000 Bq kg(-1). Radium isotopes enriched up to 14,667 times in scale samples. The highest value of (226)Ra was found to be 35,122 ± 1,983 Bq kg(-1) for sludge samples. Activity concentrations of a considerable number of samples were found to be higher than the exemption level recommended by IAEA. Measurement results revealed that oil production wastes caused soil contamination up to 70,483 Bq kg(-1). They may pose a radiological risk for workers and members of the public.

  17. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.

    PubMed

    Silveira, Erick A; Tardioli, Paulo W; Farinas, Cristiane S

    2016-06-01

    The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production.

  18. Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.

    PubMed

    Romero, M J A; Pizzi, A; Toscano, G; Busca, G; Bosio, B; Arato, E

    2016-01-01

    Deoxygenation of waste cooking vegetable oil and Jatropha curcas oil under nitrogen atmosphere was performed in batch and semi-batch experiments using CaO and treated hydrotalcite (MG70) as catalysts at 400 °C. In batch conditions a single liquid fraction (with yields greater than 80 wt.%) was produced containing a high proportion of hydrocarbons (83%). In semi-batch conditions two liquid fractions (separated by a distillation step) were obtained: a light fraction and an intermediate fraction containing amounts of hydrocarbons between 72-80% and 85-88% respectively. In order to assess the possible use of the liquid products as alternative fuels a complete chemical characterization and measurement of their properties were carried out.

  19. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.

    PubMed

    Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian

    2012-11-01

    The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation.

  20. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger

    2017-02-01

    Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy.

  1. Biodiesel production from palm oil using calcined waste animal bone as catalyst.

    PubMed

    Obadiah, Asir; Swaroopa, Gnanadurai Ajji; Kumar, Samuel Vasanth; Jeganathan, Kenthorai Raman; Ramasubbu, Alagunambi

    2012-07-01

    Waste animal bones was employed as a cost effective catalyst for the transesterification of palm oil. The catalyst was calcined at different temperatures to transform the calcium phosphate in the bones to hydroxyapatite and 800 °C was found to give the best yield of biodiesel. The catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and Fourier transform infrared spectrometry (FT-IR). Under the optimal reaction conditions of 20 wt.% of catalyst, 1:18 oil to methanol molar ratio, 200 rpm of stirring of reactants and at a temperature of 65 °C, the methyl ester conversion was 96.78% and it was achieved in 4h. The catalyst performed equally well as the laboratory-grade CaO. Animal bone is therefore a useful raw material for the production of a cheap catalyst for transesterification.

  2. Improved biogas production from food waste by co-digestion with de-oiled grease trap waste.

    PubMed

    Wu, Li-Jie; Kobayashi, Takuro; Kuramochi, Hidetoshi; Li, Yu-You; Xu, Kai-Qin

    2016-02-01

    The objective of this study was to assess the feasibility of co-digesting food waste (FW) and de-oiled grease trap waste (GTW) to improve the biogas production. A lab-scale mesophilic digester (MD), a temperature-phased anaerobic digester (TPAD) and a TPAD with recycling (TPAD-R) were synchronously operated under mono-digestion (FW) and co-digestion (FW+de-oiled GTW). Co-digestion increased the biogas yield by 19% in the MD and TPAD-R, with a biogas yield of 0.60L/g VS added. Specific methanogenic activity in the TPAD-R was much higher than that in the MD. In addition to methane, hydrogen at a yield of approximately 1mol/mol hexose was produced in the TPAD-R. Alkalinity was consumed more in the co-digestion than in mono-digestion. Co-digestion resulted in more lipid accumulation in each digester. The MD favored the degradation of lipid and conversion of long-chain fatty acids more than the TPAD and TPAD-R.

  3. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%.

  4. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca{sup 2+} - and K{sup +}-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca{sup 2+} - and K{sup +}-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca{sup 2+} systems than in the K{sup +} systems at any given ionic strength. High salt content and K{sup +} collapse the bentonite layers and limit access to and compete for adsorption sites. The K{sup +} ion is also more difficult to displace than Ca{sup 2+} from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  5. Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes

    SciTech Connect

    Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

    1992-01-01

    Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca[sup 2+] - and K[sup +]-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca[sup 2+] - and K[sup +]-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca[sup 2+] systems than in the K[sup +] systems at any given ionic strength. High salt content and K[sup +] collapse the bentonite layers and limit access to and compete for adsorption sites. The K[sup +] ion is also more difficult to displace than Ca[sup 2+] from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

  6. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control--a review.

    PubMed

    Bhatnagar, Amit; Kaczala, Fabio; Hogland, William; Marques, Marcia; Paraskeva, Christakis A; Papadakis, Vagelis G; Sillanpää, Mika

    2014-01-01

    The global olive oil production for 2010 is estimated to be 2,881,500 metric tons. The European Union countries produce 78.5% of the total olive oil, which stands for an average production of 2,136,000 tons. The worldwide consumption of olive oil increased of 78% between 1990 and 2010. The increase in olive oil production implies a proportional increase in olive mill wastes. As a consequence of such increasing trend, olive mills are facing severe environmental problems due to lack of feasible and/or cost-effective solutions to olive-mill waste management. Therefore, immediate attention is required to find a proper way of management to deal with olive mill waste materials in order to minimize environmental pollution and associated health risks. One of the interesting uses of solid wastes generated from olive mills is to convert them as inexpensive adsorbents for water pollution control. In this review paper, an extensive list of adsorbents (prepared by utilizing different types of olive mill solid waste materials) from vast literature has been compiled, and their adsorption capacities for various aquatic pollutants removal are presented. Different physicochemical methods that have been used to convert olive mill solid wastes into efficient adsorbents have also been discussed. Characterization of olive-based adsorbents and adsorption mechanisms of various aquatic pollutants on these developed olive-based adsorbents have also been discussed in detail. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.

  7. Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation.

    PubMed

    Nanou, Konstantina; Roukas, Triantafyllos

    2016-03-01

    The objective of this study was to evaluate a waste, waste cooking oil (WCO) as substrate for carotene production by Blakeslea trispora in shake flask culture. WCO was found to be a useful substrate for carotene production. B. trispora formed only pellets during fermentation. The oxidative stress in B. trispora induced by hydroperoxides and BHT as evidenced by increase of the specific activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly the production of carotenes. The highest concentration of carotenes (2021 ± 75 mg/l or 49.3 ± 0.2 mg/g dry biomass) was obtained in culture grown in WCO (50.0 g/l) supplemented with CSL (80.0 g/l) and BHT (4.0 g/l). In this case the carotenes produced consisted of β-carotene (74.2%), γ-carotene (23.2%), and lycopene (2.6%). The external addition in the above medium glucose, Span 80, yeast extract, casein acid hydrolysate, l-asparagine, thiamine. HCl, KH2PO4, and MgSO4·7H2O did not improve the production of carotenes.

  8. Conversion of Solid Organic Wastes into Oil via Boettcherisca peregrine (Diptera: Sarcophagidae) Larvae and Optimization of Parameters for Biodiesel Production

    PubMed Central

    Yang, Sen; Li, Qing; Zeng, Qinglan; Zhang, Jibin; Yu, Ziniu; Liu, Ziduo

    2012-01-01

    The feedstocks for biodiesel production are predominantly from edible oils and the high cost of the feedstocks prevents its large scale application. In this study, we evaluated the oil extracted from Boettcherisca peregrine larvae (BPL) grown on solid organic wastes for biodiesel production. The oil contents detected in the BPL converted from swine manure, fermentation residue and the degreased food waste, were 21.7%, 19.5% and 31.1%, respectively. The acid value of the oil is 19.02 mg KOH/g requiring a two-step transesterification process. The optimized process of 12∶1 methanol/oil (mol/mol) with 1.5% H2SO4 reacted at 70°C for 120 min resulted in a 90.8% conversion rate of free fatty acid (FFA) by esterification, and a 92.3% conversion rate of triglycerides into esters by alkaline transesterification. Properties of the BPL oil-based biodiesel are within the specifications of ASTM D6751, suggesting that the solid organic waste-grown BPL could be a feasible non-food feedstock for biodiesel production. PMID:23029331

  9. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.

    PubMed

    Li, Ming; Zheng, Yan; Chen, Yixin; Zhu, Xifeng

    2014-02-01

    A solid acid catalyst was prepared by sulfonating pyrolyzed rice husk with concentrated sulfuric acid, and the physical and chemical properties of the catalyst were characterized in detail. The catalyst was then used to simultaneously catalyze esterification and transesterification to produce biodiesel from waste cooking oil (WCO). In the presence of the as-prepared catalyst, the free fatty acid (FFA) conversion reached 98.17% after 3h, and the fatty acid methyl ester (FAME) yield reached 87.57% after 15 h. By contrast, the typical solid acid catalyst Amberlyst-15 obtained only 95.25% and 45.17% FFA conversion and FAME yield, respectively. Thus, the prepared catalyst had a high catalytic activity for simultaneous esterification and transesterification. In addition, the catalyst had excellent stability, thereby having potential use as a heterogeneous catalyst for biodiesel production from WCO with a high FFA content.

  10. Waste oil reduction: GKN

    SciTech Connect

    Hunt, G.

    1995-08-01

    This report details the steps required to establish a waste oil management program. Such a program can reduce operational costs, cut wastewater treatment costs and produce a better quality wastewater effluent through such means as: reducing the volume of oils used; segregating oils at the source of generation for recovery and reuse; and reducing the quality of oily wastewater generated. It discusses the metal-working fluid recovery options available for such a program, namely settling, filtration, hydrocyclone, and centrifugation. Included are source lists for vendors of oil skimmer equipment and coolant recovery systems.

  11. Hydrothermal liquefaction of separated dairy manure for production of bio-oils with simultaneous waste treatment.

    PubMed

    Theegala, Chandra S; Midgett, Jason S

    2012-03-01

    A bench scale hydrothermal liquefaction (HTL) system was tested using dairy manure to explore biooil production and waste treatment potential. Carbon monoxide was used as the process gas and sodium carbonate (Na(2)CO(3)) as catalyst. At a 350°C process temperature, the HTL unit produced 3.45 g (± 0.21) of acetone soluble oil fractions (ASF), with an average Higher Heating Value of 32.16 (± 0.23) MJ kg(-1). A maximum ASF yield of 4.8 g was produced at a process temperature of 350°C and 1g of catalyst. The best ASF yield corresponded to 67.6% of energy contained in the raw manure. GC-MS analysis of ASF indicated that the highest quantities of phenolic compounds were formed when 1g catalyst was used. Chemical Oxygen Demand (COD) reduction in the dischargeable slurry was as high as 75%. The results point to an alternative dairy waste treatment technology with a potential to generate transportable biooils.

  12. Life cycle assessment of hydrogenated biodiesel production from waste cooking oil using the catalytic cracking and hydrogenation method.

    PubMed

    Yano, Junya; Aoki, Tatsuki; Nakamura, Kazuo; Yamada, Kazuo; Sakai, Shin-ichi

    2015-04-01

    There is a worldwide trend towards stricter control of diesel exhaust emissions, however presently, there are technical impediments to the use of FAME (fatty acid methyl esters)-type biodiesel fuel (BDF). Although hydrogenated biodiesel (HBD) is anticipated as a new diesel fuel, the environmental performance of HBD and its utilization system have not been adequately clarified. Especially when waste cooking oil is used as feedstock, not only biofuel production but also the treatment of waste cooking oil is an important function for society. A life cycle assessment (LCA), including uncertainty analysis, was conducted to determine the environmental benefits (global warming, fossil fuel consumption, urban air pollution, and acidification) of HBD produced from waste cooking oil via catalytic cracking and hydrogenation, compared with fossil-derived diesel fuel or FAME-type BDF. Combined functional unit including "treatment of waste cooking oil" and "running diesel vehicle for household waste collection" was established in the context of Kyoto city, Japan. The calculation utilized characterization, damage, and integration factors identified by LIME2, which was based on an endpoint modeling method. The results show that if diesel vehicles that comply with the new Japanese long-term emissions gas standard are commonly used in the future, the benefit of FAME-type BDF will be relatively limited. Furthermore, the scenario that introduced HBD was most effective in reducing total environmental impact, meaning that a shift from FAME-type BDF to HBD would be more beneficial.

  13. Recent patents in olive oil industry: New technologies for the recovery of phenols compounds from olive oil, olive oil industrial by-products and waste waters.

    PubMed

    Sabatini, N

    2010-06-01

    Olive oil is the major source of mono-unsaturated fatty acids in the Mediterranean basin. It has been demonstrated that several olive components play an important role in human health. Among these components, polyphenols play a very important role. They are responsible for olive oil stability and sensory attributes. Moreover, they have pharmacological properties, are natural antioxidants and inhibit the proliferation of many pathogen microorganisms. Studies in vitro have demonstrated that hydroxytyrosol scavenges free radicals, inhibits human low-density lipoprotein (LDL) oxidation which is a process involved in the pathogenesis of the atherosclerosis, inhibits platelet aggregation and discloses anticancer activity on cancer cells by means of pro-apoptotic mechanisms. It has also been demonstrated that hydroxytyrosol acts in vitro against both Gram-positive and Gram-negative bacteria, which are involved in many infections of respiratory and intestinal tracts. In this review, the most recent patents developed to improve technologies for recovering of antioxidant compounds of olive oil, olive oil industrial by products and waste-waters have been presented.

  14. Evaluation of radiation hazard potential of TENORM waste from oil and natural gas production.

    PubMed

    Hilal, M A; Attallah, M F; Mohamed, Gehan Y; Fayez-Hassan, M

    2014-10-01

    In this study, a potential radiation hazard from TENORM sludge wastes generated during exploration and extraction processes of oil and gas was evaluated. The activity concentration of natural radionuclides (238)U, (226)Ra and (232)Th were determined in TENORM sludge waste. It was found that sludge waste from oil and gas industry is one of the major sources of (226)Ra in the environment. Therefore, some preliminary chemical treatment of sludge waste using Triton X-100 was also investigated to reduce the radioactivity content as well as the risk of radiation hazard from TENORM wastes. The activity concentrations of (226)Ra and (228)Ra in petroleum sludge materials before and after chemical treatment were measured using gamma-ray spectrometry. The average values of the activity concentrations of (226)Ra and (228)Ra measured in the original samples were found as 8908 Bq kg(-1) and 933 Bq kg(-1), respectively. After chemical treatment of TENORM samples, the average values of the activity concentrations of (226)Ra and (228)Ra measured in the samples were found as 7835 Bq kg(-1) and 574 Bq kg(-1), respectively. Activity concentration index, internal index, absorbed gamma dose rate and the corresponding effective dose rate were estimated for untreated and treated samples.

  15. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48.

    PubMed

    Gamal, Rawia F; Abdelhady, Hemmat M; Khodair, Taha A; El-Tayeb, Tarek S; Hassan, Enas A; Aboutaleb, Khadiga A

    2013-01-01

    The present study aimed at developing a strategy to improve the volumetric production of PHAs by Pseudomonas fluorescens S48 using waste frying oil (WFO) as the sole carbon source. For this purpose, several cultivations were set up to steadily improve nutrients supply to attain high cell density and high biopolymer productivity. The production of PHAs was examined in a 14 L bioreactor as one-stage batch, two-stage batch, and high-cell-density fed-batch cultures. The highest value of polymer content in one-stage bioreactor was obtained after 60 h (33.7%). Whereas, the two-stage batch culture increased the polymer content to 50.1% after 54 h. High-cell-density (0.64 g/L) at continuous feeding rate 0.55 mL/l/h of WFO recorded the highest polymer content after 54 h (55.34%). Semi-scale application (10 L working volume) increased the polymer content in one-stage batch, two-stage batch and high cell density fed-batch cultures by about 12.3%, 5.8% and 11.3%, respectively, as compared with that obtained in 2 L fermentation culture. Six different methods for biopolymer extraction were done to investigate their efficiency for optimum polymer recovery. The maximum efficiency of solvent recovery of PHA was attained by chloroform-hypochlorite dispersion extraction. Gas chromatography (GC) analysis of biopolymer produced by Pseudomonas fluorescens S48 indicated that it solely composed of 3-hydrobutyric acid (98.7%). A bioplastic film was prepared from the obtained PHB. The isolate studied shares the same identical sequence, which is nearly the complete 16S rRNA gene. The identity of this sequence to the closest pseudomonads strains is about 98-99%. It was probably closely related to support another meaningful parsiomony analysis and construction of a phylogenetic tree. The isolate is so close to Egyptian strain named EG 639838.

  16. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998

    PubMed Central

    Souza, Adriana Ferreira; Rodriguez, Dayana M.; Ribeaux, Daylin R.; Luna, Marcos A. C.; Lima e Silva, Thayse A.; Andrade, Rosileide F. Silva; Gusmão, Norma B.; Campos-Takaki, Galba M.

    2016-01-01

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227

  17. Combating oil spill problem using plastic waste

    SciTech Connect

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-15

    Highlights: • Up-cycling one type of pollution i.e. plastic waste and successfully using it to combat the other type of pollution i.e. oil spill. • Synthesized oil sorbent that has extremely high oil uptake of 90 g/g after prolonged dripping of 1 h. • Synthesized porous oil sorbent film which not only facilitates in oil sorption but also increases the affinity between sorbent and oil by means of adhesion. - Abstract: Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5–15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  18. Combating oil spill problem using plastic waste.

    PubMed

    Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon

    2015-10-01

    Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy.

  19. Biodiesel fuel production from waste cooking oil by the inclusion complex of heteropoly acid with bridged bis-cyclodextrin.

    PubMed

    Zou, Changjun; Zhao, Pinwen; Shi, Lihong; Huang, Shaobing; Luo, Pingya

    2013-10-01

    The inclusion complex of Cs2.5H0.5PW12O40 with bridged bis-cyclodextrin (CsPW/B) is prepared as a highly efficient catalyst for the direct production of biodiesel via the transesterification of waste cooking oil. CsPW/B is characterized by X-ray diffraction, and the biodiesel is analyzed by Gas Chromatography-Mass Spectrometer. The conversion rate of waste cooking oil is up to 94.2% under the optimum experimental conditions that are methanol/oil molar ratio of 9:1, catalyst dosage of 3 wt%, temperature of 65 °C and reaction time of 180 min. The physical properties of biodiesel sample satisfy the requirement of ASTM D6751 standards. The novel CsPW/B catalyst used for the transesterification can lead to 96.9% fatty acid methyl esters and 86.5% of the biodiesel product can serve as the ideal substitute for diesel fuel, indicating its excellent potential application in biodiesel production.

  20. Process for preparing lubricating oil from used waste lubricating oil

    DOEpatents

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  1. Enzyme-assisted hydrothermal treatment of food waste for co-production of hydrochar and bio-oil.

    PubMed

    Kaushik, Rajni; Parshetti, Ganesh K; Liu, Zhengang; Balasubramanian, Rajasekhar

    2014-09-01

    Food waste was subjected to enzymatic hydrolysis prior to hydrothermal treatment to produce hydrochars and bio-oil. Pre-treatment of food waste with an enzyme ratio of 1:2:1 (carbohydrase:protease:lipase) proved to be effective in converting food waste to the two products with improved yields. The carbon contents and calorific values ranged from 43.7% to 65.4% and 17.4 to 26.9 MJ/kg for the hydrochars obtained with the enzyme-assisted pre-treatment, respectively while they varied from 38.2% to 53.5% and 15.0 to 21.7 MJ/kg, respectively for the hydrochars obtained with no pre-treatment. Moreover, the formation of carbonaceous microspheres with low concentrations of inorganic elements and diverse surface functional groups was observed in the case of enzyme-assisted food waste hydrochars. The enzymatic pre-treatment also facilitated the formation of the bio-oil with a narrow distribution of organic compounds and with the highest yield obtained at 350 °C.

  2. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  3. An exergy based assessment of the production and conversion of switchgrass, equine waste and forest residue to bio-oil using fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resource efficiency of biofuel production via biomass pyrolysis is evaluated using exergy as an assessment metric. Three feedstocks, important to various sectors of US agriculture, switchgrass, forest residue and equine waste are considered for conversion to bio-oil (pyrolysis oil) via fast pyro...

  4. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    PubMed

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards.

  5. Techno-economic evaluation of biodiesel production from waste cooking oil--a case study of Hong Kong.

    PubMed

    Karmee, Sanjib Kumar; Patria, Raffel Dharma; Lin, Carol Sze Ki

    2015-02-18

    Fossil fuel shortage is a major challenge worldwide. Therefore, research is currently underway to investigate potential renewable energy sources. Biodiesel is one of the major renewable energy sources that can be obtained from oils and fats by transesterification. However, biodiesel obtained from vegetable oils as feedstock is expensive. Thus, an alternative and inexpensive feedstock such as waste cooking oil (WCO) can be used as feedstock for biodiesel production. In this project, techno-economic analyses were performed on the biodiesel production in Hong Kong using WCO as a feedstock. Three different catalysts such as acid, base, and lipase were evaluated for the biodiesel production from WCO. These economic analyses were then compared to determine the most cost-effective method for the biodiesel production. The internal rate of return (IRR) sensitivity analyses on the WCO price and biodiesel price variation are performed. Acid was found to be the most cost-effective catalyst for the biodiesel production; whereas, lipase was the most expensive catalyst for biodiesel production. In the IRR sensitivity analyses, the acid catalyst can also acquire acceptable IRR despite the variation of the WCO and biodiesel prices.

  6. CO2 mineral sequestration in oil-shale wastes from Estonian power production.

    PubMed

    Uibu, Mai; Uus, Mati; Kuusik, Rein

    2009-02-01

    In the Republic of Estonia, local low-grade carbonaceous fossil fuel--Estonian oil-shale--is used as a primary energy source. Combustion of oil-shale is characterized by a high specific carbon emission factor (CEF). In Estonia, the power sector is the largest CO(2) emitter and is also a source of huge amounts of waste ash. Oil-shale has been burned by pulverized firing (PF) since 1959 and in circulating fluidized-bed combustors (CFBCs) since 2004-2005. Depending on the combustion technology, the ash contains a total of up to 30% free Ca-Mg oxides. In consequence, some amount of emitted CO(2) is bound by alkaline transportation water and by the ash during hydraulic transportation and open-air deposition. The goal of this study was to investigate the possibility of improving the extent of CO(2) capture using additional chemical and technological means, in particular the treatment of aqueous ash suspensions with model flue gases containing 10-15% CO(2). The results indicated that both types of ash (PF and CFBC) could be used as sorbents for CO(2) mineral sequestration. The amount of CO(2) captured averaged 60-65% of the carbonaceous CO(2) and 10-11% of the total CO(2) emissions.

  7. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  8. Impact of milling, enzyme addition, and steam explosion on the solid waste biomethanation of an olive oil production plant.

    PubMed

    Donoso-Bravo, Andres; Ortega-Martinez, E; Ruiz-Filippi, G

    2016-02-01

    Anaerobic digestion is a consolidated bioprocess which can be further enhanced by incorporating an upstream pretreatment unit. The olive oil production produces a large amount of solid waste which needs to be properly managed and disposed. Three different pretreatment techniques were evaluated in regard to their impact on the anaerobic biodegradability: manual milling of olive pomace (OP), enzyme maceration, direct enzyme addition, and thermal hydrolysis of two-phase olive mill waste. The Gompertz equation was used to obtain parameters for comparison purposes. A substrate/inoculum ratio 0.5 was found to be the best to be used in anaerobic batch test with olive pomace as substrate. Mechanical pretreatment of OP by milling increases the methane production rate while keeping the maximum methane yield. The enzymatic pretreatment showed different results depending on the chosen pretreatment strategies. After the enzymatic maceration pretreatment, a methane production of 274 ml CH4 g VS added (-1) was achieved, which represents an improvement of 32 and 71 % compared to the blank and control, respectively. The direct enzyme addition pretreatment showed no improvement in both the rate and the maximum methane production. Steam explosion showed no improvement on the anaerobic degradability of two-phase olive mill waste; however, thermal hydrolysis with no rapid depressurization enhanced notoriously both the maximum rate (50 %) and methane yield (70 %).

  9. Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides.

    PubMed

    Wen, Zhenzhong; Yu, Xinhai; Tu, Shan-Tung; Yan, Jinyue; Dahlquist, Erik

    2010-12-01

    Mixed oxides of TiO(2)-MgO obtained by the sol-gel method were used to convert waste cooking oil into biodiesel. Titanium improved the stability of the catalyst because of the defects induced by the substitution of Ti ions for Mg ions in the magnesia lattice. The best catalyst was determined to be MT-1-923, which is comprised of an Mg/Ti molar ratio of 1 and calcined at 923 K, based on an assessment of the activity and stability of the catalyst. The main reaction parameters, including methanol/oil molar ratio, catalyst amount, and temperature, were investigated. The catalytic activity of MT-1-923 decreased slowly in the reuse process. After regeneration, the activity of MT-1-923 slightly increased compared with that of the fresh catalyst due to an increase in the specific surface area and average pore diameter. The mixed oxides catalyst, TiO(2)-MgO, showed good potential in large-scale biodiesel production from waste cooking oil.

  10. [The possibility of using the mycelial wastes from the production of antifungal antibiotics as additives to lubricating oils].

    PubMed

    Belakhov, V V; Shenin, Iu D

    1997-01-01

    Antiwear and antitear properties of mycelial waste from production of antifungal antibiotics i.e. levorin, nystatin, mycoheptin, amphotericin B and griseofulvin were studied. It was shown that the waste mycelium from griseofulvin production had the best antiwear and antitear characteristics due to a higher percentage of phosphorus and sulphur in it as compared to the mycelial waste from production of the other antibiotics.

  11. Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions.

    PubMed

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2011-10-01

    The feasibility of using synthetic kitchen waste (KW) and fat, oil, and grease (FOG) as co-substrates in the anaerobic digestion of waste activated sludge (WAS) was investigated using two series of biochemical methane potential (BMP) tests. Ranges of ideal substrate to inoculum (S/I) ratio were determined for the FOG (0.25-0.75) and KW (0.80-1.26) as single substrates in the first experiment. The second experiment, which estimated the methane production performances of FOG and KW as co-substrates for WAS co-digestion, was conducted based on the optimal parameters selected from the results of the first experiment. Results indicated that co-digestions with FOG and KW enhanced methane production from 117±2.02 mL/gTVS (with only WAS) to 418±13.7 mL/gTVS and 324±4.11 mL/gTVS, respectively. FOG exhibited more biogas production than KW as co-substrate. Non-linear regression results showed that co-substrate addition shortened the lag phases of organic biodegradation from 81.8 (with only WAS) to 28.3 h with FOG and 3.90 h with KW.

  12. Lipase from marine strain using cooked sunflower oil waste: production optimization and application for hydrolysis and thermodynamic studies.

    PubMed

    Ramani, K; Saranya, P; Jain, S Chandan; Sekaran, G

    2013-03-01

    The marine strain Pseudomonas otitidis was isolated to hydrolyze the cooked sunflower oil (CSO) followed by the production of lipase. The optimum culture conditions for the maximum lipase production were determined using Plackett-Burman design and response surface methodology. The maximum lipase production, 1,980 U/ml was achieved at the optimum culture conditions. After purification, an 8.4-fold purity of lipase with specific activity of 5,647 U/mg protein and molecular mass of 39 kDa was obtained. The purified lipase was stable at pH 5.0-9.0 and temperature 30-80 °C. Ca(2+) and Triton X-100 showed stimulatory effect on the lipase activity. The purified lipase was highly stable in the non-polar solvents. The functional groups of the lipase were determined by Fourier transform-infrared (FT-IR) spectroscopy. The purified lipase showed higher hydrolytic activity towards CSO over the other cooked oil wastes. About 92.3 % of the CSO hydrolysis was observed by the lipase at the optimum time 3 h, pH 7.5 and temperature 35 °C. The hydrolysis of CSO obeyed pseudo first order rate kinetic model. The thermodynamic properties of the lipase hydrolysis were studied using the classical Van't Hoff equation. The hydrolysis of CSO was confirmed by FT-IR studies.

  13. Melt crystallization for refinement of triolein and palmitic acid mixture as a model waste oil for biodiesel fuel production

    NASA Astrophysics Data System (ADS)

    Fukui, Keisuke; Maeda, Kouji; Kuramochi, Hidetoshi

    2013-06-01

    Melt crystallization using an annular vessel with two circular cylinders was applied to produce high-quality vegetable oil from waste oil. The inner cylinder was cooled at a constant rate and rotated, and the outer cylinder was heated at a constant temperature. The melt was solidified on the inner cylinder surface. The binary system of triolein and palmitic acid was used as the model waste oil. We measured the distribution coefficient of triolein. Suitable operation conditions were proposed to attain a high yield and a high purity of triolein from waste oil. The distribution coefficient correlated well with the theoretical equation derived on the basis of the "local lever rule" at the interface of the crystal layer and melt [1].

  14. Conversion of waste produced by the deodorization of palm oil as feedstock for the production of biodiesel using a catalyst prepared from waste material.

    PubMed

    do Nascimento, Luís Adriano S; Angélica, Rômulo S; da Costa, Carlos E F; Zamian, José R; da Rocha Filho, Geraldo N

    2011-09-01

    The distillate produced by deodorization of palm oil (DDPO) is a waste that corresponds to 4% of the product formed in this process. DDPO is 83% free of fatty acids (FFA), making it a good material for biodiesel production. In this paper, a catalyst prepared from a waste material, Amazon flint kaolin, was used for the esterification of DDPO with methanol. Leached metakaolin treated at 950°C and activated with 4M sulfuric acid (labeled as MF9S4) offered maximum esterification activity (92.8%) at 160°C with a DDPO:methanol molar ratio of 1:60 and a 4-h reaction time. The influences of reaction parameters, such as the molar ratio of the reactants, alcohol chain length, temperature, time and the presence of glycerides and unsaponifiable matter, have also been investigated. Based on the catalytic results, esterification of DDPO using MF9S4 can be a cheaper alternative for production of sustainable fuels.

  15. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    PubMed

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry.

  16. Catalytic pyrolysis of model compounds and waste cooking oil for production of light olefins over La/ZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Li, F. W.; Ding, S. L.; Li, L.; Gao, C.; Zhong, Z.; Wang, S. X.; Li, Z. X.

    2016-08-01

    Waste cooking oil (WCO) and its model compounds (oleic acid and methyl laurate) are catalytically pyrolyzed in a fixed-bed reactor over La modified ZSM-5 catalysts (La/ZSM-5) aiming for production of C2-C4 light olefins. The LaO content in catalysts was set at 0, 2, 6, 10 and 14 wt%. The gas and liquid products are analyzed. The La/ZSM-5 catalyst with 6% LaO showed higher selectivity to light olefins when WCO and methyl laurate were pyrolyzed, and olefin content was 26% for WCO and 21% for methyl laurate. The catalyst with 10% LaO showed high selectivity to light olefins (28.5%) when oleic acid was pyrolyzed. The liquid products from WCO and model compounds mainly contain esters and aromatic hydrocarbons. More esters were observed in liquid products from methyl laurate and WCO pyrolysis, indicating that it is more difficult to pyrolyze esters and WCO than oleic acid. The coked catalysts were analyzed by temperature-programmed oxidation. The result shows that graphite is the main component of coke. The conversion of WCO to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals.

  17. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials.

  18. Sequential chemical treatment of radium species in TENORM waste sludge produced from oil and natural gas production.

    PubMed

    El Afifi, E M; Awwad, N S; Hilal, M A

    2009-01-30

    This paper is dedicated to the treatment of sludge occurring in frame of the Egyptian produced from oil and gas production. The activity levels of three radium isotopes: Ra-226 (of U-series), Ra-228 and Ra-224 (of Th-series) in the solid TENORM waste (sludge) were first evaluated and followed by a sequential treatment for all radium species (fractions) presented in TENORM. The sequential treatment was carried out based on two approaches 'A' and 'B' using different chemical solutions. The results obtained indicate that the activity levels of all radium isotopes (Ra-226, Ra-228 and Ra-224) of the environmental interest in the TENORM waste sludge were elevated with regard to exemption levels established by IAEA [International Atomic Energy Agency (IAEA), International basic safety standards for the protection against ionizing radiation and for the safety of radiation sources. GOV/2715/Vienna, 1994]. Each approach of the sequential treatment was performed through four steps using different chemical solutions to reduce the activity concentration of radium in a large extent. Most of the leached radium was found as an oxidizable Ra species. The actual removal % leached using approach B was relatively efficient compared to A. It is observed that the actual removal percentages (%) of Ra-226, Ra-228 and Ra-224 using approach A are 78+/-2.8, 64.8+/-4.1 and 76.4+/-5.2%, respectively. Whereas in approach A, the overall removal % of Ra-226, Ra-228 and Ra-228 was increased to approximately 91+/-3.5, 87+/-4.1 and 90+/-6.2%, respectively.

  19. Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.

    PubMed

    Zaafouri, Kaouther; Ben Hassen Trabelsi, Aida; Krichah, Samah; Ouerghi, Aymen; Aydi, Abdelkarim; Claumann, Carlos Alberto; André Wüst, Zibetti; Naoui, Silm; Bergaoui, Latifa; Hamdi, Moktar

    2016-05-01

    Energy recovery from lignocellulosic solid marine wastes, Posidonia oceanica wastes (POW) with slow pyrolysis responds to the growing trend of alternative energies as well as waste management. Physicochemical, thermogravimetric (TG/DTG) and spectroscopic (FTIR) characterizations of POW were performed. POW were first converted by pyrolysis at different temperatures (450°C, 500°C, 550°C and 600°C) using a fixed-bed reactor. The obtained products (bio-oil, syngas and bio char) were analyzed. Since the bio-oil yield obtained from POW pyrolysis is low (2wt.%), waste frying oil (WFO) was added as a co-substrate in order to improve of biofuels production. The co-pyrolysis gave a better yield of liquid organic fraction (37wt.%) as well as syngas (CH4,H2…) with a calorific value around 20MJ/kg. The stoichiometric models of both pyrolysis and co-pyrolysis reactions were performed according to the biomass formula: CαHβOγNδSε. The thermal kinetic decomposition of solids was validated through linearized Arrhenius model.

  20. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    PubMed

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d.

  1. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Ramli, Siti Fatihah; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert

    2016-10-01

    This review of literature published in 2015 focuses on waste related to chemical and allied products. The topics cover the waste management, physicochemical treatment, aerobic granular, aerobic waste treatment, anaerobic granular, anaerobic waste treatment, chemical waste, chemical wastewater, fertilizer waste, fertilizer wastewater, pesticide wastewater, pharmaceutical wastewater, ozonation. cosmetics waste, groundwater remediation, nutrient removal, nitrification denitrification, membrane biological reactor, and pesticide waste.

  2. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.

    PubMed

    Ben Hassen-Trabelsi, A; Kraiem, T; Naoui, S; Belayouni, H

    2014-01-01

    Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC-MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds...etc.), carboxylic acids, aldehydes, ketones, esters,...etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  3. Evaluating biomethane production from anaerobic mono- and co-digestion of food waste and floatable oil (FO) skimmed from food waste.

    PubMed

    Meng, Ying; Li, Sang; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin

    2015-06-01

    Batch anaerobic digestion was employed to investigate the performance of the floatable oil (FO) skimmed from food waste (FW) and the effect of different FO concentrations (5, 10, 20, 30, 40 and 50g/L) on biomethane production and system stability. FO and FO+FW were mono-digested and co-digested. The results showed that FO and FO+FW could be well anaerobically converted to biomethane in appropriate loads. For the mono-digestions of FO, the biomethane yield, TS and VS reduction achieved 607.7-846.9mL/g, 69.7-89% and 84.5-92.8%, respectively, when FO concentration was 5-40g/L. But the mono-digestion appeared instability when FO concentration was 50g/L. For the co-digestions of FW+FO, TS and VS reductions reached 70.7-86.1% and 87.5-91.4%, respectively, when FO concentration was 5-30g/L. However, the inhibition occurred when FO concentrations increased to 40-50g/L. The maximal FO loads of 40g/L and 30g/L were hence suggested for efficient mono-digestions and co-digestions of FO and FO+FW.

  4. Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production.

    PubMed

    Kostić, Milan D; Veličković, Ana V; Joković, Nataša M; Stamenković, Olivera S; Veljković, Vlada B

    2016-02-01

    This study reports on the use of oil obtained from waste plum stones as a low-cost feedstock for biodiesel production. Because of high free fatty acid (FFA) level (15.8%), the oil was processed through the two-step process including esterification of FFA and methanolysis of the esterified oil catalyzed by H2SO4 and CaO, respectively. Esterification was optimized by response surface methodology combined with a central composite design. The second-order polynomial equation predicted the lowest acid value of 0.53mgKOH/g under the following optimal reaction conditions: the methanol:oil molar ratio of 8.5:1, the catalyst amount of 2% and the reaction temperature of 45°C. The predicted acid value agreed with the experimental acid value (0.47mgKOH/g). The kinetics of FFA esterification was described by the irreversible pseudo first-order reaction rate law. The apparent kinetic constant was correlated with the initial methanol and catalyst concentrations and reaction temperature. The activation energy of the esterification reaction slightly decreased from 13.23 to 11.55kJ/mol with increasing the catalyst concentration from 0.049 to 0.172mol/dm(3). In the second step, the esterified oil reacted with methanol (methanol:oil molar ratio of 9:1) in the presence of CaO (5% to the oil mass) at 60°C. The properties of the obtained biodiesel were within the EN 14214 standard limits. Hence, waste plum stones might be valuable raw material for obtaining fatty oil for the use as alternative feedstock in biodiesel production.

  5. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.

    PubMed

    Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B

    2017-02-01

    This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor.

  6. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.

    PubMed

    Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko

    2013-05-01

    An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil.

  7. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    USGS Publications Warehouse

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some

  8. Oil palm waste and synthetic zeolite: an alternative soil-less growth substrate for lettuce production as a waste management practice.

    PubMed

    Jayasinghe, Guttila Y; Tokashiki, Yoshihiro; Kitou, Makato; Kinjo, Kazutoshi

    2008-12-01

    A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP were the highest, which showed increased values compared with that of PL by 11.56, 9.77, 3.48, 17.35 and 16.53%, respectively. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP showed increased percentages compared with that of PE by 12.12, 11.37, 3.74, 23.66 and 17.50%, respectively. In addition, the growth and yield parameters of lettuce grown in the 1 : 3 mixing ratio and the OP did not show any significant difference with PL and PE but differed from the 1 : 10 mixing ratio. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to

  9. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-09-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  10. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-01-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  11. Application of a chitosan-immobilized Talaromyces thermophilus lipase to a batch biodiesel production from waste frying oils.

    PubMed

    Romdhane, Ines Belhaj-Ben; Romdhane, Zamen Ben; Bouzid, Maha; Gargouri, Ali; Belghith, Hafedh

    2013-12-01

    Waste frying oil, which not only harms people's health but also causes environmental pollution, can be a good alternative to partially substitute petroleum diesel through transesterification reaction. This oil contained 8.8 % of free fatty acids, which cause a problem in a base-catalyzed process. In this study, synthesis of biodiesel was efficiently catalyzed by the covalently immobilized Talaromyces thermophilus lipase and allowed bioconversion yield up to 92 % after 24 h of reaction time. The optimal molar ratio was four to six parts of methanol to one part of oil with a biocatalyst loaded of 25 wt.% of oil. Further, experiments revealed that T. thermophilus lipase, immobilized by a multipoint covalent liaison onto activated chitosan via a short spacer (glutaraldehyde), was sufficiently tolerant to methanol. In fact, using the stepwise addition of methanol, no significant difference was observed from the one-step whole addition at the start of reaction. The batch biodiesel synthesis was performed in a fixed bed reactor with a lipase loaded of 10 g. The bioconversion yield of 98 % was attained after a 5-h reaction time. The bioreactor was operated successfully for almost 150 h without any changes in the initial conversion yield. Most of the chemical and physical properties of the produced biodiesel meet the European and USA standard specifications of biodiesel fuels.

  12. Reuse of Waste Oil at Army Installations.

    DTIC Science & Technology

    1982-09-01

    corrosiveness, provide teclinical assistance to States wh-Inch have to address economic and institutiotial problems with The hazardous waste regulations were...subpart d of 40 CFR Part 261. the Hazardous Waste Regulations . A facility emitting over 1000 kg per CERL’s analyses of waste oil storage tank...listed as a hazardous Wastte Piursuant to Section (S)(2J. Public Law Q6-.4, (UPA. waste in the Hazardous Waste Regulations . However. January. 1981). 14

  13. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  14. Innovative technologies for managing oil field waste.

    SciTech Connect

    Veil, J. A.; Environmental Assessment

    2003-09-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  15. Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst.

    PubMed

    Ramachandran, Kasirajan; Sivakumar, Pandian; Suganya, Tamilarasan; Renganathan, Sahadevan

    2011-08-01

    Al(HSO(4))(3) heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl(3). This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220°C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO(3)H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751.

  16. Utilization of agro-resources by radiation treatment -production of animal feed and mushroom from oil palm wastes

    NASA Astrophysics Data System (ADS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji; Awang, Mat Rasol; Hamdini, Hassan; Saitoh, Hideharu

    1993-10-01

    The production of animal feeds and mushrooms from oil palm cellulosic wasres by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EFB) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13 % and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30°C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran.

  17. Conversion of organic wastes to oil by reductive formylation

    SciTech Connect

    Youngquist, G.R.; Partch, R.; Donaruma, L.G.

    1980-01-01

    Conversion of various solid organic waste to oil by reduction in the presence of CO, Na/sub 2/CO/sub 3/, or NaO/sub 2/CH was studied in laboratory-scale batch and continuous reactors. Data on the effect of operating conditions on product yield and quality are presented for a variety of starting materials, including sewage and industrial waste- treatment sludges. The reaction mechanisms, based on model-compared experiments are discussed. Results for cracking of the product oils to lower molecular weight hydrocarbons are also described.

  18. Waste form product characteristics

    SciTech Connect

    Taylor, L.L.; Shikashio, R.

    1995-01-01

    The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

  19. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation.

    PubMed

    Moftah, Omar Ali Saied; Grbavčić, Sanja; Zuža, Milena; Luković, Nevena; Bezbradica, Dejan; Knežević-Jugović, Zorica

    2012-01-01

    Olive oil cake is a by-product from the olive oil processing industry and can be used for the lipase and protease production by Candida utilis in solid state fermentation. Different carbon and nitrogen sources were evaluated, and the results showed that the supplementation of the substrate with maltose and starch as carbon sources and yeast extract as a nitrogen source significantly increased the lipase production. The best results were obtained with maltose, whereas rather low lipase and protease activities were found with glucose and oleic acid. Response surface methodology and a five-level-three-factor central composite rotatable design were used to evaluate the effects of the initial moisture content, inoculum size and fermentation time on both lipase and protease activity levels. A lipase activity value of ≈25 U g(-1) and a protease activity value of 110 U g(-1) were obtained under the optimized fermentation conditions. An alkaline treatment of the substrate appeared to be efficient, leading to increases of 39% and 133% in the lipase and protease production, respectively. The results showed that the olive cake could be a good source for enzyme production by solid state fermentation.

  20. [Research on specific indicators of waste oil].

    PubMed

    He, Wen-xuan; Hong, Gui-shui; Fang, Run; Cai, Xian-chun; Huang, Sheng

    2015-01-01

    Because both refined "waste oil" and the third category "waste oil" known as frying old oil experience a longer history at temperature higher than 200 °C compared to the vegetable oil. In this study, the relative change rates of content of conjugated fatty acid glycerides, content of tans-fatty acid glycerides and unsaturation were investigated after being at high temperature for several hours by using FTIR-ATR in order to find out specific targets for "waste oil". The results show that (1) Starting from 160 °C, the contents of conjugated fatty acids glycerides and trans-fatty acid glycerids in the vegetable oils increase but unsaturation decreases with heating temperature and heating time increasing. (2) When heating temperature reaches 200 °C or more, the heating time up to four hours or longer, the three indicators(conjugated fatty glycerids, trans-fatty acid glycerids and unsaturation) of six kinds of vegetable oils have substantial changes. (3) The content of linoleic acid in the vegetable oil has some contributions to the change amplitude of contents of conjugated fatty acid glycerides, and the content of oleic acid in the vegetable oil has some contributions to the change amplitude of content of trans-fatty acid glycerides. (4) In addition, during the warranty period change amplitudes of three indicators are relative small compared with the case of after being at high temperature for several hours. Unsaturation decrease and content of conjugated fatty acid glycerides increase with storage-time increasing. However, unlike the case of after being at high temperature for several hours, the content of trans-fatty acid glycerids decreases with storage-time increasing. Experimental results show that three index value and its variation can be used as specific indicators for refined "waste oil" and "waste oil".

  1. Continuous flow through a microwave oven for the large-scale production of biodiesel from waste cooking oil.

    PubMed

    Tangy, Alex; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2017-01-01

    This report presents a method for producing large quantities of biodiesel from waste cooking oil (WCO). Preliminary studies on optimization of the WCO transesterification process in a continuous-flow microwave reactor are carried out using commercial SrO as a catalyst. The SrO catalyst can be separated and reused for five reaction cycles without loss in activity. Challenges like mass flow and pressure drop constraints need to be surmounted. SrO nanoparticles deposited on millimeter-sized (3-6mm) silica beads (41wt% SrO/SiO2) are prepared and evaluated as a substitute for the SrO catalyst. A WCO conversion value to biodiesel as high as 99.2wt% was achieved with the reactor packed with 15g of 41wt% SrO/SiO2 catalyst in 8.2min with 820mL of feed. Excellent performance of the fixed-bed catalyst without loss in activity for a lifetime of 24.6min converting a feed of 2.46L to FAME was observed.

  2. Catalytic transformation of waste polymers to fuel oil.

    PubMed

    Keane, Mark A

    2009-01-01

    Waste not, want not: The increase in waste polymer generation, which continues to exceed recycle, represents a critical environmental burden. However, plastic waste may be viewed as a potential resource and, with the correct treatment, can serve as hydrocarbon raw material or as fuel oil, as described in this Minireview.Effective waste management must address waste reduction, reuse, recovery, and recycle. The consumption of plastics continues to grow, and, while plastic recycle has seen a significant increase since the early 1990s, consumption still far exceeds recycle. However, waste plastic can be viewed as a potential resource and can serve, with the correct treatment, as hydrocarbon raw material or as fuel oil. This Minireview considers the role of catalysis in waste polymer reprocessing and provides a critical overview of the existing waste plastic treatment technologies. Thermal pyrolysis results in a random scissioning of the polymer chains, generating products with varying molecular weights. Catalytic degradation provides control over the product composition/distribution and serves to lower significantly the degradation temperature. Incineration of waste PVC is very energy demanding and can result in the formation of toxic chloro emissions. The efficacy of a catalytic transformation of PVC is also discussed.

  3. Chemical Waste and Allied Products.

    PubMed

    Hung, Yung-Tse; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian; Kamaruddin, Mohamad Anuar; Yeh, Ruth Yu-Li; Liu, Lian-Huey; Huhnke, Christopher Robert; Fu, Yen-Pei

    2015-10-01

    This review of literature published in 2014 focuses on waste related to chemical and allied products. The topics cover the waste management practices, hospital waste, pesticide waste, chemical wastewater, pesticide wastewater and pharmaceutical wastewater. The other topics include aerobic treatment, anaerobic treatment, sorption and ozonation.

  4. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  5. Recycling of waste tyre rubber into oil absorbent.

    PubMed

    Wu, B; Zhou, M H

    2009-01-01

    The abundant and indiscriminant disposal of waste tyres has caused both health and environmental problems. In this work, we provide a new way to dispose off waste tyres by reusing the waste tyre rubber (WTR) for oil absorptive material production. To investigate this feasibility, a series of absorbents were prepared by graft copolymerization-blending method, using waste tyre rubber and 4-tert-butylstyrene (tBS) as monomers. Divinylbenzene (DVB) and benzoyl peroxide (BPO) were employed as crosslinker and initiator, respectively. The existence of graft-blends (WTR-g-tBS) was determined by FTIR spectrometry and verified using thin-layer chromatography (TLC). In addition, the thermal properties of WTR-g-tBS were confirmed by a thermogravimetric analyzer (TGA). Oil absorbency of the grafted-blends increased with increases in either feed ratio of WTR to tBS or DVB concentration. This absorbency reached a maximum of 24.0gg(-1) as the feed ratio and DVB concentration were 60/40 and 1wt%, respectively, after which it decreased. At other ratios and concentrations the absorbency decreased. The gel fraction of grafted-blends increased with increasing concentration of DVB. Oil-absorption processes in pure toluene and crude oil diluted with toluene were found to adhere to first-order absorption kinetics. Furthermore, the oil-absorption rate in diluted crude oil was observed to be lower than pure toluene.

  6. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Ding, Kuan; Xue, Zeyu

    2016-07-01

    In this paper, HZSM-5 catalyst was modified by pre-coked to cover the strong external acid sites by methanol to olefins reaction, and the modified catalysts were then applied to conduct the catalyst fast pyrolysis of mushroom waste for upgraded bio-fuel production. Experiment results showed that the strong external acid sites and specific surface area decreased with pre-coked percentage increasing from 0% to 5.4%. Carbon yields of hydrocarbons increased at first and then decreased with a maximum value of 53.47%. While the obtained oxygenates presented an opposite variation tendency, and the minimum values could be reached when pre-coked percentage was 2.7%. Among the achieved hydrocarbons, toluene and p-xylene were found to be the main products, and the selectivity of p-xylene increased at first and then decreased with a maximum value of 34.22% when the pre-coked percentage was 1.3%, and the selectivity of toluene showed the opposite tendency with a minimum value of 25.47%.

  7. Waste oil derived biofuels in China bring brightness for global GHG mitigation.

    PubMed

    Liang, Sai; Liu, Zhu; Xu, Ming; Zhang, Tianzhu

    2013-03-01

    This study proposed a novel way for global greenhouse gas reduction through reusing China's waste oil to produce biofuels. Life cycle greenhouse gas mitigation potential of aviation bio-kerosene and biodiesel derived from China's waste oil in 2010 was equivalent to approximately 28.8% and 14.7% of mitigation achievements on fossil-based CO2 emissions by Annex B countries of the Kyoto Protocol in the period of 1990-2008, respectively. China's potential of producing biodiesel from waste oil in 2010 was equivalent to approximately 7.4% of China's fossil-based diesel usage in terms of energy. Potential of aviation bio-kerosene derived from waste oil could provide about 43.5% of China's aviation fuel demand in terms of energy. Sectors key to waste oil generation are identified from both production and consumption perspectives. Measures such as technology innovation, government supervision for waste oil collection and financial subsidies should be introduced to solve bottlenecks.

  8. Waste cooking oil as source for renewable fuel in Romania

    NASA Astrophysics Data System (ADS)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  9. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  10. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel.

  11. Method for reclaiming waste lubricating oils

    DOEpatents

    Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

  12. Waste product profile: Glass containers

    SciTech Connect

    Miller, C.

    1995-09-01

    In 1992, Waste Age initiated the Waste Product Profile series -- brief, factual listings of the solid waste management characteristics of materials in the solid waste stream. This popular series of profiles high-lighted a product, explained how it fit into integrated waste management systems, and provided current data on recycling and markets for the product. Glass containers are made from sand, limestone, soda ash, cullet (crushed bottles), and various additives, including those used to produce green, brown, and blue glass. Other glass products include flat glass, such as windows, and fiberglass products, such as insulation and glassware. These products are manufactured using different processes and different additives than container glass. This profile covers only glass containers.

  13. [Influence of impurities on waste plastics pyrolysis: products and emissions].

    PubMed

    Zhao, Lei; Wang, Zhong-Hui; Chen, De-Zhen; Ma, Xiao-Bo; Luan, Jian

    2012-01-01

    The study is aimed to evaluate the impact of impurities like food waste, paper, textile and especially soil on the pyrolysis of waste plastics. For this purpose, emissions, gas and liquid products from pyrolysis of waste plastics and impurities were studied, as well as the transfer of element N, Cl, S from the substrates to the pyrolysis products. It was found that the presence of food waste would reduce the heat value of pyrolysis oil to 27 MJ/kg and increase the moisture in the liquid products, therefore the food residue should be removed from waste plastics; and the soil, enhance the waste plastics' pyrolysis by improving the quality of gas and oil products. The presence of food residue, textile and paper leaded to higher gas emissions.

  14. Preliminary evaluation of the effectiveness of moisture removal and energy usage in pretreatment module of waste cooking oil for biodiesel production

    NASA Astrophysics Data System (ADS)

    Palanisamy, K.; Idlan, M. K.; Saifudin, N.

    2013-06-01

    Waste Cooking Oil (WCO) is a plausible low cost biodiesel feedstock but it exhibits few unfavorable parameters for conversion into biodiesel. One of the parameter is the presence of high moisture content which will inhibit or retard catalyst during the acid esterification or base transesterification causing lower purity and yield of biodiesel. This will effect the post processing and escalate production cost making WCO a not favorable biodiesel feedstock. Therefore, it is important to have an effective moisture removal method to reduce the moisture content below 0.05%wt or 500 ppm in WCO for an efficient biodiesel production. In this work, the effectiveness of moisture removal and the energy usage of a newly develop innovative pretreatment module has been evaluated and reported. Results show that the pretreatment module is able to reduce up to 85% to effectively reduce the moisture content to below 500ppm of the initial moisture content of WCO and only consume 157 Wh/l energy compared to conventional heating that consume 386 Wh/l and only remove 67.6% moisture in 2 hours.

  15. Optimization of biogas production from Sargassum sp. using a design of experiments to assess the co-digestion with glycerol and waste frying oil.

    PubMed

    Oliveira, J V; Alves, M M; Costa, J C

    2015-01-01

    A design of experiments was adopted to assess the optimal conditions for methane production from the macroalgae Sargassum sp. co-digested with glycerol (Gly) and waste frying oil (WFO). Three variables were tested: % total solids of algae (%TSSargassumsp.), co-substrate concentration (gGly/WFOL(-1)), and co-substrate type (Gly or WFO). The biochemical methane potential (BMP) of Sargassum sp. was 181±1L CH4kg(-1) COD. The co-digestion with Gly and WFO increased the BMP by 56% and 46%, respectively. The methane production rate (k), showed similar behaviour as the BMP, increasing 38% and 19% with Gly and WFO, respectively. The higher BMP (283±18L CH4kg(-1) COD) and k (65.9±2.1L CH4kg(-1) CODd(-1)) was obtained in the assay with 0.5% TS and 3.0gGlyL(-1). Co-digestion with glycerol or WFO is a promising process to enhance the BMP from the macroalgae Sargassum sp.

  16. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    PubMed

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  17. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    PubMed Central

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  18. Treatment of oil field wastes

    SciTech Connect

    Terry, E.G.; Seedall, L.K.

    1988-06-21

    An apparatus for recovery of barite and clays from spend drilling fluids is described comprising: (a) a rotary kiln having a first end higher than a second end whereby drilling fluids therein will flow from the first end to the second end, the kiln having an inlet at the first end for receiving drilling fluids and combustion air; (b) a burner connected to the first end of the kiln for supplying fire to the kiln for aiding in burning the combustible components of the drilling fluids in the kiln; (c) a fuel and pressurized air inlet connected to the burner; (d) an outlet at the second end of the kiln for removing the light weight waste; (e) means connected to the outlet for removing high weight dried waste from the kiln by gravity; (f) cyclone separator means located downstream of the kiln outlet for separation of particulates such as barite and clays; (g) secondary combustion means located downstream from the cyclone separator means for oxidation of residual pyrolized gases from oxidized carbonaceous waste from the kiln; (h) heat exchanger means for cooling the exhaust gases to substantially a 100% water saturation point with incoming combustion air to preheat the combustion air; and (i) means for removing residual oxides of sulfur from the exhaust gases prior to vending to the atmosphere.

  19. [Pollution hazard for water bodies at oil production].

    PubMed

    Zholdakova, Z I; Beliaeva, N I

    2015-01-01

    In the paper there have been summarizes the concepts of the danger of the pollution ofwater bodies in oil production (the most dangerous are reagents used in the drilling, drilling waste, oil and petrochemicals, oil biodestructors. There was shown the danger of the spread of oil pollution. New indices, presenting a hazard during drilling and oil production have been substantiated The tasks aimed to the improvement of the standards and methods of the control of the water pollution by oil, as well as of the documents regulating the conditions of environmental protection during the drilling have been conceived.

  20. The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes.

    PubMed

    Holdway, Douglas A

    2002-03-01

    A review of the acute and chronic effects of produced formation water (PFW), drilling fluids (muds) including oil-based cutting muds, water-based cutting muds, ester-based cutting muds and chemical additives, and crude oils associated with offshore oil and gas production was undertaken in relation to both temperate and tropical marine ecological processes. The main environmental effects are summarized, often in tabular form. Generally, the temporal and spatial scales of these studies, along with the large levels of inherent variation in natural environments, have precluded our ability to predict the potential long-term environmental impacts of the offshore oil and gas production industry. A series of critical questions regarding the environmental effects of the offshore oil and gas production industry that still remain unanswered are provided for future consideration.

  1. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  2. Dehydration of oil waste emulsions by means of flocculants

    SciTech Connect

    Gandurina, L.V.; Butseva, L.N.; Shtondina, V.S.

    1995-05-01

    Oil waste emulsions are formed in the course of pumping petroleum crudes and products and are collected from the surfaces of equipment in recirculating water systems and wastewater disposal facilities (oil separators, sand traps, oil traps, holding pits for accidental spills, settlers, ponds, sludge accumulators, and so on). Emulsions are also obtained in the course of cleaning equipment in crude oil desalting and dehydration units. Such emulsions are stable, structurized systems that are very resistant to dewatering by heating and settling in separator tanks. In order to break stabilized emulsions, i.e., in order to ensure complete coalescence of drops when they collide, it is not sufficient to increase the forces of mutual attraction of drops at the moment of collision; in addition, the protective shell must be either destroyed or weakened. Demulsifying agents, or surfactants, will displace the stabilizers. This report is concerned with demulsifier efficiency.

  3. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  4. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  5. Polyhydroxyalkanoate (PHA) production from waste.

    PubMed

    Rhu, D H; Lee, W H; Kim, J Y; Choi, E

    2003-01-01

    PHA (polyhydroxyalkanoate) production was attempted with SBRs from food waste. Seed microbes were collected from a sewage treatment plant with a biological nutrient removal process, and acclimated with synthetic substrate prior to the application of the fermented food waste. Laboratory SBRs were used to produce PHA with limited oxygen and nutrients. The maximum content of 51% PHA was obtained with an anaerobic/aerobic cycle with P limitation, and the yield was estimated to be about 0.05 gPHA(produced)/gCOD(applied) or 25 kg PHA/dry ton of food waste, assuming more than 40% of the PHA contents were recoverable. PHB/PHA ratios were 0.74 to 0.77 due to the higher acetate concentrations. Economical analysis seemed to suggest the PHA produced from the food waste could be an alternative material to produce the biodegradable plastic to be used for the collection bags for solid waste.

  6. Pumpling system for oil production

    SciTech Connect

    Yamato, I.; Yamata, T.

    1984-05-29

    A pumping system for oil production comprises a hydraulic unit set on the ground and adapted to send out a pressure oil, and a pump unit set in an oil well and adapted to draw up crude oil therefrom. The pump unit comprises a pump cylinder, and a plunger reciprocatingly moved in the pump cylinder. The plunger is provided with a clearance formed between the outer circumferential surface of a lower end portion thereof and the inner circumferential surface of the pump cylinder. The pressure oil supplied from the hydraulic unit is ejected from the clearance along the inner surface of the pump cylinder into a cylinder chamber.

  7. Pumping system for oil production

    SciTech Connect

    Yamato, I.; Yamata, T.

    1984-05-29

    A pumping system for oil production comprises a hydraulic unit set on the ground and adapted to send out a pressure oil, and a pump unit set in an oil well and adapted to draw up crude oil therefrom. The pump unit comprises a pump cylinder, and a plunger reciprocatingly moved in the pump cylinder. The plunger is provided with a clearance formed between the outer circumferential surface of a lower end portion thereof and the inner circumferential surface of the pump cylinder. The pressure oil supplied from the hydraulic unit is ejected from the clearance along the inner surface of the pump cylinder into a cylinder chamber.

  8. Utilization of wasted sardine oil as co-substrate with pig slurry for biogas production--a pilot experience of decentralized industrial organic waste management in a Portuguese pig farm.

    PubMed

    Ferreira, L; Duarte, E; Figueiredo, D

    2012-07-01

    This work aimed to demonstrate in a pig farm and in real conditions, the possibilities to co-digest wasted sardine oil (WSO) and pig slurry (PS) at farm scale. A biogas mobile pilot plant, was set up in the farm and operated in real conditions during 4 months. Dynamic mesophilic (35-37 °C) continuous pilot trials were performed during four different periods of time. In each period a different organic loading rate (OLR) based on the chemical oxygen demand (COD) was operated sequentially, with pig slurry (PS) (OLR = 1.6 kg COD/m(3) d(-1)) and with mixtures of WSO:PS with a volumetric composition (% v/v) of 2:98 (OLR = 3.0 kg COD/m(3) d(-1)), 3:97 (OLR = 3.7 kg COD/m(3) d(-1)) and 5:95 (OLR = 5.2 kg COD/m(3) d(-1)). Biomass adapted very fast in metabolise the WSO and biogas productivity was raised substantially for different compositions of WSO:PS. Process stability indicators pH and Total volatile fatty acids/bicarbonate alkalinity (T-VFA/BA) ratio, suggests that the co-digestion process was robust. It was concluded that WSO could be easily co-digested in farm scale biogas plants.

  9. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion.

    PubMed

    Suksong, Wantanasak; Kongjan, Prawit; Prasertsan, Poonsuk; Imai, Tsuyoshi; O-Thong, Sompong

    2016-08-01

    This study investigated the improvement of biogas production from solid-state anaerobic digestion (SS-AD) of oil palm biomass by optimizing of total solids (TS) contents, feedstock to inoculum (F:I) ratios and carbon to nitrogen (C:N) ratios. Highest methane yield from EFB, OPF and OPT of 358, 280 and 324m(3)CH4ton(-1)VS, respectively, was achieved at TS content of 16%, C:N ratio of 30:1 and F:I ratio of 2:1. The main contribution to methane from biomass was the degradation of cellulose and hemicellulose. The highest methane production of 72m(3)CH4ton(-1) biomass was achieved from EFB. Bacteria community structure in SS-AD process of oil palm biomass was dominated by Ruminococcus sp. and Clostridium sp., while archaea community was dominated by Methanoculleus sp. Oil palm biomass has great potential for methane production via SS-AD.

  10. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  11. Mercury and tritium removal from DOE waste oils

    SciTech Connect

    Klasson, E.T.

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  12. Products from vegetable oils

    SciTech Connect

    Bagby, M.O.

    1995-12-01

    Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.

  13. A case study of pyrolysis of oil palm wastes in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  14. Polyhydroxyalkanoates production from waste biomass

    NASA Astrophysics Data System (ADS)

    Nor Aslan, A. K. H.; Ali, M. D. Muhd; Morad, N. A.; Tamunaidu, P.

    2016-06-01

    Polyhydroxyalkanoates (PHAs) is a group of biopolymers that are extensively researched for such purpose due to the biocompatibility with mammal tissue and similar properties with conventional plastic. However, commercialization of PHA is impended by its high total production cost, which half of it are from the cost of pure carbon source feedstock. Thus, cheap and sustainable feedstocks are preferred where waste materials from various industries are looked into. This paper will highlight recent studies done on PHA production by utilizing crop and agro waste material and review its potential as alternative feedstock.

  15. Waste valorization by biotechnological conversion into added value products.

    PubMed

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  16. University of Idaho tests engines with biodiesel from waste oil

    SciTech Connect

    Peterson, C.; Fleischman, G.

    1995-12-31

    This article reports on preliminary work at the University of Idaho that investigates the possibilities of capitalizing on Idaho`s large volumes of waste oil and potatoes-generated ethanol to produce biodiesel fuel. This fuel would be hydrogenated soy ethyl ester, MySEE for short, made through a reaction between waste oil and ethanol made from potato waste. Address for full report is given.

  17. Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst.

    PubMed

    Li, Tao; Cheng, Jun; Huang, Rui; Zhou, Junhu; Cen, Kefa

    2015-12-01

    Three types of zeolites (Meso-Y, SAPO-34, and HY) loaded with nickel were used to convert waste cooking oil to jet biofuel. Mesoporous zeolite Y exhibited a high jet range alkane selectivity of 53% and a proper jet range aromatic hydrocarbon selectivity of 13.4% in liquid fuel products. Reaction temperature was optimized to produce quality jet biofuel. Zeolite Meso-Y exhibited a high jet range alkane yield of 40.5% and a low jet range aromatic hydrocarbon yield of 11.3% from waste cooking oil at 400°C. The reaction pathway for converting waste cooking oil to jet biofuel was proposed. Experimental results showed that waste cooking oil mainly deoxygenated to heptadecane (C17H36) and pentadecane (C15H30) through the decarbonylation pathway for the first 3h. Long chain alkanes cracked into jet range alkanes (C8-C16). Cycloalkanes and aromatic hydrocarbons were produced through cyclization and dehydrogenation pathways.

  18. Use of physical processes for treatment of hazardous wastes: Removing oil from water

    SciTech Connect

    Irvin, S.R.

    1984-08-01

    In many U.S. municipal sewerage systems, oils, greases and fats are now being regarded as hazardous wastes. In this study, the authors discuss the need for complete oil removal and progression towards recycle of wastestreams. The use of ultrafiltration is recommended to clean emulsified oil streams, and also the use of absorption media to polish the ultrafiltration product water to a point where recycle is both feasible and within a reasonable economic realm.

  19. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    PubMed

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  20. Planning waste cooking oil collection systems.

    PubMed

    Ramos, Tânia Rodrigues Pereira; Gomes, Maria Isabel; Barbosa-Póvoa, Ana Paula

    2013-08-01

    This research has been motivated by a real-life problem of a waste cooking oil collection system characterized by the existence of multiple depots with an outsourced vehicle fleet, where the collection routes have to be plan. The routing problem addressed allows open routes between depots, i.e., all routes start at one depot but can end at the same or at a different one, depending on what minimizes the objective function considered. Such problem is referred as a Multi-Depot Vehicle Routing Problem with Mixed Closed and Open Inter-Depot Routes and is, in this paper, modeled through a mixed integer linear programming (MILP) formulation where capacity and duration constraints are taken into account. The model developed is applied to the real case study providing, as final results, the vehicle routes planning where a decrease of 13% on mileage and 11% on fleet hiring cost are achieved, when comparing with the current company solution.

  1. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-10

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined

  2. Household Hazardous Waste and Automotive Products: A Pennsylvania Survey.

    ERIC Educational Resources Information Center

    Shorten, Charles V.; And Others

    1995-01-01

    A significant fraction of household hazardous waste (HHW) is generated by home mechanics who use such products as motor oil, cleaners and solvents, and batteries. This survey assessed the following aspects: (1) perceptions of their health-related effects; (2) perceptions of their pollution potential; and (3) their use and disposal. (LZ)

  3. Biotechnological processes for biodiesel production using alternative oils.

    PubMed

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Navia, Rodrigo

    2010-10-01

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.

  4. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  5. Biodiesel from waste cooking oil in Mexico City.

    PubMed

    Sheinbaum, Claudia; Balam, Marco V; Robles, Guillermo; Lelo de Larrea, Sebastian; Mendoza, Roberto

    2015-08-01

    The aim of this article is to evaluate the potential use of biodiesel produced from waste cooking oil in Mexico City. The study is divided in two main areas: the analysis of a waste cooking oil collection pilot project conducted in food markets of a Mexico City region; and the exhaust emissions performance of biodiesel blends measured in buses of the Mexico City public bus transportation network (RTP). Results from the waste cooking oil collection pilot project show that oil quantities disposed depend upon the type of food served and the operational practices in a cuisine establishment. Food markets' waste cooking oil disposal rate from fresh oil is around 10%, but with a very high standard deviation. Emission tests were conducted using the Ride-Along-Vehicle-Emissions-Measuring System in two different types of buses while travelling a regular route. Results shows that the use of biodiesel blends reduces emissions only for buses that have exhaust gas recirculation systems, as analysed by repeated measure analysis of variance. The potential use in Mexico City of waste cooking oil for biodiesel is estimated to cover 2175 buses using a B10 blend.

  6. Production of bioethanol and biodiesel using instant noodle waste.

    PubMed

    Yang, Xiaoguang; Lee, Ja Hyun; Yoo, Hah Young; Shin, Hyun Yong; Thapa, Laxmi Prasad; Park, Chulhwan; Kim, Seung Wook

    2014-08-01

    Instant noodle manufacturing waste was used as feedstock to convert it into two products, bioethanol and biodiesel. The raw material was pretreated to separate it into two potential feedstocks, starch residues and palm oil, for conversion to bioethanol and biodiesel, respectively. For the production of bioethanol, starch residues were converted into glucose by α-amylase and glucoamylase. To investigate the saccharification process of the pretreated starch residues, the optimal pretreatment conditions were determined. The bioethanol conversion reached 98.5 % of the theoretical maximum by Saccharomyces cerevisiae K35 fermentation after saccharification under optimized pretreatment conditions. Moreover, palm oil, isolated from the instant noodle waste, was converted into valuable biodiesel by use of immobilized lipase (Novozym 435). The effects of four categories of alcohol, oil-to-methanol ratio, reaction time, lipase concentration and water content on the conversion process were investigated. The maximum biodiesel conversion was 95.4 %.

  7. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  8. New information on disposal of oil field wastes in salt caverns

    SciTech Connect

    Veil, J.A.

    1996-10-01

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  9. Pyrolysis of oil-plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization.

    PubMed

    Chen, Jianbiao; Fan, Xiaotian; Jiang, Bo; Mu, Lin; Yao, Pikai; Yin, Hongchao; Song, Xigeng

    2015-09-01

    Pyrolysis characteristics of four distinct oil-plant wastes were investigated using TGA and fixed-bed reactor coupled with GC. TGA experiments showed that the pyrolysis behaviors were related to biomass species and heating rates. As the heating rate increased, TG and DTG curves shifted to the higher temperatures, and the comprehensive devolatilization index obviously increased. The remaining chars from TGA experiments were higher than those obtained from the fixed-bed experiments. The crack of tars at high temperatures enhanced the formation of non-condensable gases. During the pyrolysis, C-O and CO2 were the major gases. Chars FTIR showed that the functional groups of O-H, C-H(n), C=O, C-O, and C-C gradually disappeared from 400 °C on. The kinetic parameters were calculated by Coats-Redfern approach. The results manifested that the most appropriate pyrolysis mechanisms were the order reaction models. The existence of kinetic compensation effect was evident.

  10. Water issues associated with heavy oil production.

    SciTech Connect

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  11. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    SciTech Connect

    Bedient, P.B.

    1995-01-16

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  12. Availability of triazine herbicides in aged soils amended with olive oil mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive oil extraction generates a lot of organic waste, which can potentially cause adverse environmental impacts. Application of olive oil mill waste, alperujo, to the land could be an effective way to dispose of the waste. However, addition of olive oil mill wastes can modify the binding capacity o...

  13. Metabolism of waste engine oil by Pseudomonas species.

    PubMed

    Salam, Lateef B

    2016-06-01

    Two bacterial strains phylogenetically identified as Pseudomonas aeruginosa strains RM1 and SK1 displayed extensive degradation ability on waste engine oil (SAE 40W) in batch cultures. Spectrophotometric analysis revealed the presence of various heavy metals such as lead, chromium and nickel in the waste engine oil. The rate of degradation of waste engine oil by the isolates, for the first 12 days and the last 9 days were 66.3, 31.6 mg l(-1) day(-1)  and 69.6, 40.0 mg l(-1) day(-1) for strains RM1 and SK1, respectively. Gas chromatographic (GC) analyses of residual waste engine oil, revealed that 66.58, 89.06 % and 63.40, 90.75 % of the initial concentration of the waste engine oil were degraded by strains RM1 and SK1 within 12 and 21 days. GC fingerprints of the waste engine oil after 12 days of incubation of strains RM1 and SK1 showed total disappearance of C15, C23, C24, C25 and C26 hydrocarbon fractions as well as drastic reductions of C13, C14, C16 and PAHs fractions such as C19-anthracene and C22-pyrene. At the end of 21 days incubation, total disappearance of C17-pristane, C22-pyrene, one of the C19-anthracene and significant reduction of C18-phytane (97.2 %, strain RM1; 95.1 %, strain SK1) fractions were observed. In addition, <10 % of Day 0 values of medium fraction ranges C13, and C16 were discernible after 21 days. This study has established the potentials of P. aeruginosa strains RM1 and SK1 in the degradation of aliphatic, aromatic and branched alkane components of waste engine oils.

  14. Utilization of waste cooking oil as an alternative fuel for Turkey.

    PubMed

    Arslan, Ridvan; Ulusoy, Yahya

    2017-04-03

    This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.

  15. Effects of ultrasonic and thermo-chemical pre-treatments on methane production from fat, oil and grease (FOG) and synthetic kitchen waste (KW) in anaerobic co-digestion.

    PubMed

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2013-02-01

    The effects of ultrasonic and thermo-chemical pre-treatments on the methane production potential of anaerobic co-digestion with synthetic kitchen waste (KW) or fat, oil and grease (FOG) were investigated. Non-linear regressions were fitted to accurately assess and compare the methane production from co-digestion under the various pre-treatment conditions and to achieve representative simulations and predictions. Ultrasonic pre-treatment was not found to improve methane production effectively from either FOG co-digestion or KW co-digestions. Thermo-chemical pre-treatment could increase methane production yields from both FOG and KW co-digestions. COD solubilization was found to effectively represent the effects of pre-treatment. A comprehensive evaluation indicated that the thermo-chemical pre-treatments of pH=10, 55°C and pH=8, 55°C provided the best conditions to increase methane production from FOG and KW co-digestions, respectively. The most effective enhancement of biogas production (288±0.85mLCH(4)/g TVS) was achieved from thermo-chemically pre-treated FOG co-digestion, which was 9.9±1.5% higher than FOG co-digestion without thermo-chemical pre-treatment.

  16. Method and apparatus for recovering waste oil

    SciTech Connect

    Kennedy, A.B.

    1982-09-21

    Oil is recovered from a mixture of oil and water by heating the mixture, adding a de-emulsifier, passing the mixture through a first vibrating screen, adding a surface tension reducer, processing through a hydrocyclone, passing through a second vibrating screen, and separating the oil from water by settling.

  17. Considering Oil Production Variance as an Indicator of Peak Production

    DTIC Science & Technology

    2010-06-07

    Acquisition Cost ( IRAC ) Oil Prices. Source: Data used to construct graph acquired from the EIA (http://tonto.eia.doe.gov/country/timeline/oil_chronology.cfm...Acquisition Cost ( IRAC ). Production vs. Price – Variance Comparison Oil production variance and oil price variance have never been so far

  18. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (a...

  19. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  20. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  1. Solid waste generation from oil and gas industries in United Arab Emirates.

    PubMed

    Elshorbagy, Walid; Alkamali, Abdulqader

    2005-04-11

    Solid wastes generated from oil and gas industrial activities are very diverse in their characteristics, large in their amounts and many of which are hazardous in nature. Thus, quantifying and characterizing the generated amounts in association with their types, classes, sources, industrial activities, and their chemical and biological characteristics is an obvious mandate when evaluating the possible management practices. This paper discusses the types, amounts, generation units, and the factors related to solid waste generation from a major oil and gas field in the United Arab Emirates (Asab Field). The generated amounts are calculated based on a 1-year data collection survey and using a database software specially developed and customized for the current study. The average annual amount of total solid waste generated in the studied field is estimated at 4061 t. Such amount is found equivalent to 650 kg/capita, 0.37 kg/barrel oil, and 1.6 kg/m3 of extracted gas. The average annual amount of hazardous solid waste is estimated at 55 t and most of which (73%) is found to be generated from gas extraction-related activities. The majority of other industrial non-hazardous solid waste is generated from oil production-related activities (41%), The present analysis does also provide the estimated generation amounts per waste type and class, amounts of combustible, recyclable, and compostable wastes, and the amounts dumped in uncontrolled way as well as disposed into special hazardous landfill facilities. The results should help the decision makers in evaluating the best alternatives available to manage the solid wastes generated from the oil and gas industries.

  2. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  3. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.

  4. Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste.

    PubMed

    Subudhi, Sanjukta; Batta, Neha; Pathak, Mihirjyoti; Bisht, Varsha; Devi, Arundhuti; Lal, Banwari; Al khulifah, Bader

    2014-10-01

    A bioflocculant-producing bacterial isolate designated as 'TERI-IASST N' was isolated from activated sludge samples collected from an oil refinery. This isolate demonstrated maximum bioflocculation activity (74%) from glucose among 15 different bioflocculant-producing bacterial strains isolated from the sludge samples and identified as Achromobacter sp. based on 16S rRNA gene sequence. Optimization of pH and supplementation of urea as nitrogen source in the production medium enhanced the flocculation activity of strain TERI-IASST N to 84% (at pH 6). This strain revealed maximum flocculation activity (90%) from sucrose compared to the flocculation activity observed from other carbon sources as investigated (glucose, lactose, fructose, maltose and starch). Ca(2+) served as the suitable divalent cation for maximum bioflocculation activity of TERI-IASST strain N. Maximum flocculation activity was observed at optimum C/N ratio of 1. Flocculation activity of this strain decreased to 75% in the presence of heavy metals; Zn, Pb, Ni, Cu and Cd. In addition strain N revealed considerable biosorption of Zn (430mgL(-1)) and Pb (30mgL(-1)). Bioflocculant yield of strain N was 10.5gL(-1). Fourier transform infrared spectrum indicated the presence of carboxyl, hydroxyl, and amino groups, typical of glycoprotein. Spectroscopic analysis of bioflocculant by nuclear magnetic resonance revealed that it is a glycoprotein, consisting of 57% total sugar and 13% protein.

  5. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  6. Microwave irradiation biodiesel processing of waste cooking oil

    NASA Astrophysics Data System (ADS)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  7. Transesterification of Waste Olive Oil by "Candida" Lipase

    ERIC Educational Resources Information Center

    Shen, Xiangping; Vasudevan, Palligarnai T.

    2008-01-01

    Biodiesel was produced by transesterification of waste olive oil with methanol and Novozym [R] 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, reaction temperature, and mixing speed on biodiesel yield was determined. The effect of different acyl acceptors and/or solvents on biodiesel yield was also evaluated.…

  8. Synthesis of hydroxytyrosyl alkyl ethers from olive oil waste waters.

    PubMed

    Madrona, Andrés; Pereira-Caro, Gema; Mateos, Raquel; Rodríguez, Guillermo; Trujillo, Mariana; Fernández-Bolaños, Juan; Espartero, José L

    2009-05-11

    The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  9. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    PubMed

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d.

  10. Problems Associated with Declining National Oil Production

    NASA Astrophysics Data System (ADS)

    Jackson, J. S.

    2009-12-01

    Forecasts of peak oil production have focussed on the global impacts of declining production. Meanwhile, national oil production has declined in 20 countries, leading to local problems that receive little comment outside of the effected regions. Two problems deserve wider recognition: declining state revenues and fuel substitution. Most oil producing countries with large reserves adopted licensing practices that provide significant revenues to the host governments such that oil revenues generate from 40 to 80 percent of total government funds. Typically these governments allocate a fraction of this revenue to their state oil companies, utilizing the remainder for other activities. As oil revenues decline with falling production, host governments face a dilemma: either to increase state oil company budgets in order to stem the decline, or to starve the state oil company while maintaining other government programs. The declining oil revenues in these states can significantly reduce the government's ability to address important national issues. Mexico, Indonesia, and Yemen illustrate this situation in its early phases. Fuel substitution occurs whenever one fuel proves less expensive than another. The substitution of coal for wood in the eighteenth century and oil for coal in the twentieth century are classic examples. China and India appear to be at peak oil production, while their economies generate increasing demand for energy. Both countries are substituting coal and natural gas for oil with attendant environmental impacts. Coal-to-liquids projects are proposed in in both China, which will require significant water resources if they are executed. These examples suggest that forecasting the impact of peak oil at a regional level requires more than an assessment of proven-probable-possible reserves and a forecast of supply-demand scenarios. A range of government responses to declining oil income scenarios must also be considered, together with scenarios describing

  11. Transformation of waste cooking oil into C-18 fatty acids using a novel lipase produced by Penicillium chrysogenum through solid state fermentation.

    PubMed

    Kumar, Sunil; Negi, Sangeeta

    2015-10-01

    The prime aim of the current work was to illustrate the components existing in repeatedly used cooking oil and to develop an economical process for the production of fatty acids from low cost feedstock waste. The waste cooking oil was characterized by the occurrence of high molecular weight hydrocarbons and polymerized derivative of esters. Triacontanoic acid methyl ester, 2,3,5,8-Tetramethyldecane, 3,3 dimethyl heptane, and 2,2,3,3-teramethyl pentane were detected as thermal and oxidative contaminants that adversely affect the quality of cooking oil. Fundamentally, waste cooking oil comprises ester bonds of long chain fatty acids. The extracellular lipase produced from P. chrysogenum was explored for the hydrolysis of waste cooking oil. The incorporation of lipase to waste cooking oil in 1:1 proportion released 17 % oleic acid and 5 % stearic acid.

  12. Transesterification of soybean oil using combusted oyster shell waste as a catalyst.

    PubMed

    Nakatani, Nobutake; Takamori, Hitoshi; Takeda, Kazuhiko; Sakugawa, Hiroshi

    2009-02-01

    Transesterification of soybean oil catalyzed by combusted oyster shell, which is waste material from shellfish farms, was examined. Powdered oyster shell combusted at a temperature above 700 degrees C, at which point the calcium carbonate of oyster shell transformed to calcium oxide, acted as a catalyst in the transesterification of soybean oil. On the basis of factorial design, the reaction conditions of catalyst concentration and reaction time were optimized in terms of the fatty acid methyl ester concentration expressed as biodiesel purity. Under the optimized reaction conditions of a catalyst concentration and reaction time of 25wt.%. and 5h, respectively, the biodiesel yield, expressed relative to the amount of soybean oil poured into the reaction vial, was more than 70% with high biodiesel purity. These results indicate oyster shell waste combusted at high temperature can be reused in biodiesel production as a catalyst.

  13. Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. S-XJ-1.

    PubMed

    Liu, Jia; Peng, Kaiming; Huang, Xiangfeng; Lu, Lijun; Cheng, Hang; Yang, Dianhai; Zhou, Qi; Deng, Huiping

    2011-01-01

    Exploration of biodemulsifiers has become a new research aspect. Using waste frying oils (WFOs) as carbon source to synthesize biodemulsifiers has a potential prospect to decrease production cost and to improve the application of biodemulsifiers in the oilfield. In this study, a demulsifying strain, Alcaligenes sp. S-XJ-1, was investigated to synthesize a biodemulsifier using waste frying oils as carbon source. It was found that the increase of initial pH of culture medium could increase the biodemulsifier yield but decrease the demulsification ratio compared to that using paraffin as carbon source. In addition, a biodemulsifier produced by waste frying oils and paraffin as mixed carbon source had a lower demulsification capability compared with that produced by paraffin or waste frying oil as sole carbon source. Fed-batch fermentation of biodemulsifier using waste frying oils as supplementary carbon source was found to be a suitable method. Mechanism of waste frying oils utilization was studied by using tripalmitin, olein and tristearin as sole carbon sources to synthesize biodemulsifier. The results showed saturated long-chain fatty acid was difficult for S-XJ-1 to utilize but could effectively enhance the demulsification ability of the produced biodemulsifier. Moreover, FT-IR result showed that the demulsification capability of biodemulsifiers was associated with the content of C=O group and nitrogen element.

  14. A study on production of biodiesel using a novel solid oxide catalyst derived from waste.

    PubMed

    Majhi, Samrat; Ray, Srimanta

    2016-05-01

    The issues of energy security, dwindling supply and inflating price of fossil fuel have shifted the global focus towards fuel of renewable origin. Biodiesel, having renewable origin, has exhibited great potential as substitute for fossil fuels. The most common route of biodiesel production is through transesterification of vegetable oil in presence of homogeneous acid or base or solid oxide catalyst. But, the economics of biodiesel is not competitive with respect to fossil fuel due to high cost of production. The vegetable oil waste is a potential alternative for biodiesel production, particularly when disposal of used vegetable oil has been restricted in several countries. The present study evaluates the efficacy of a low-cost solid oxide catalyst derived from eggshell (a food waste) in transesterification of vegetable oil and simulated waste vegetable oil (SWVO). The impact of thermal treatment of vegetable oil (to simulate frying operation) on transesterification using eggshell-derived solid oxide catalyst (ESSO catalyst) was also evaluated along with the effect of varying reaction parameters. The study reported that around 90 % biodiesel yield was obtained with vegetable oil at methanol/oil molar ratio of 18:1 in 3 h reaction time using 10 % ESSO catalyst. The biodiesel produced with ESSO catalyst from SWVO, thermally treated at 150 °C for 24 h, was found to conform with the biodiesel standard, but the yield was 5 % lower compared to that of the untreated oil. The utilization of waste vegetable oil along with waste eggshell as catalyst is significant for improving the overall economics of the biodiesel in the current market. The utilization of waste for societal benefit with the essence of sustainable development is the novelty of this work.

  15. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  16. Preparation of waste oil for analysis to determine hazardous metals

    SciTech Connect

    Essling, A.M.; Huff, D.R.; Huff, E.A.; Fox, I.M.; Graczyk, D.G.

    1995-07-01

    Two methods for preparing waste-oil samples to permit measurement of their metals content were evaluated. For this evaluation, metals-in-oil standard reference materials were prepared by each method and the resulting solutions were analyzed for 20 metals, including those (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag) regulated as hazardous under the Resource Conservation and Recovery Act. One preparation method involved combustion of the waste oil under oxygen at 25 atm pressure, as described in the American Society for Testing and Materials test method E926-88. As we applied it, this method gave recoveries well under 90% for most of the metals that we examined and, hence, proved unsatisfactory for routine application to waste-oil analysis. With the other method, nitric acid decomposition in a sealed vessel heated with microwave energy (analogous to US Environmental Protection Agency Method 3051), recoveries of all 20 metal contaminants were within 90 to 110% of the certified values. This microwave digestion procedure was also more efficient since it allowed six samples to be prepared together, whereas the oxygen combustion approach allowed processing of only one sample at a time.

  17. Use of waste ash from palm oil industry in concrete.

    PubMed

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.

  18. Elimination of cutting oil wastes by promoted hydrothermal oxidation.

    PubMed

    Portela, J R; López, J; Nebot, E; Martínez de la Ossa, E

    2001-11-16

    Cutting oils are emulsionable fluids widely used in metalworking processes. Their composition is normally oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Generally, it is a waste too dilute to be incinerated and it is difficult to treat biologically. Other conventional treatment methods currently used are not satisfactory from the environmental point of view. Wet air oxidation (WAO) and supercritical water oxidation (SCWO) are two forms of hydrothermal oxidation that have been proved to be effective processes to treat a wide variety of industrial wastes, but hardly tested for oily wastes. In the case of refractory wastes, WAO process is not efficient enough due to the moderate temperatures used. SCWO is a more powerful process since operating temperatures are usually around 600 degrees C, but the use of severe conditions leads to major disadvantages in the commercialization of the technology. In order to enhance WAO and SCWO efficiency at mild conditions, the use of free radical promoters has been studied in this work. Both normal and promoted hydrothermal oxidation have been tested to treat cutting oil wastes in a continuous flow system operating at 300-500 degrees C. Hydrogen peroxide has been used both as a source of oxygen and as a source of free radicals by introducing it into the reactor with or without previous thermal decomposition, respectively. Organic material is easily oxidized in both cases, obtaining more than 90% TOC reduction in less than 10s at 500 degrees C. At lower temperatures, the use of promoters clearly enhances the oxidation process. Activation energies have been estimated for normal and promoted oxidation processes.

  19. Biodiesel production from heterotrophic microalgal oil.

    PubMed

    Miao, Xiaoling; Wu, Qingyu

    2006-04-01

    The present study introduced an integrated method for the production of biodiesel from microalgal oil. Heterotrophic growth of Chlorella protothecoides resulted in the accumulation of high lipid content (55%) in cells. Large amount of microalgal oil was efficiently extracted from these heterotrophic cells by using n-hexane. Biodiesel comparable to conventional diesel was obtained from heterotrophic microalgal oil by acidic transesterification. The best process combination was 100% catalyst quantity (based on oil weight) with 56:1 molar ratio of methanol to oil at temperature of 30 degrees C, which reduced product specific gravity from an initial value of 0.912 to a final value of 0.8637 in about 4h of reaction time. The results suggested that the new process, which combined bioengineering and transesterification, was a feasible and effective method for the production of high quality biodiesel from microalgal oil.

  20. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek

    2002-07-01

    This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

  1. Perspectives of microbial oils for biodiesel production.

    PubMed

    Li, Qiang; Du, Wei; Liu, Dehua

    2008-10-01

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed.

  2. Evaluation of various agro-wastes for traditional black soap production.

    PubMed

    Taiwo, O E; Osinowo, F A

    2001-08-01

    The agricultural wastes, cocoa-pod husks, palm-bunch waste, sorghum chaff and groundnut shells, which are normally thrown away have been used in the production of black soap. Unlike other soaps which are made from oils and chemicals, black soap is made from oils and agro-wastes ashes. Chemical analysis indicated that the liquid extract from the ashes of the different agro-wastes used contained various amounts of potassium and sodium compounds. The most common ingredient in the agro-wastes was potassium carbonate. The amount of potassium carbonate was 56.73 +/- 0.16% in cocoa-pod ash, 43.15 +/- 0.13% in palm-bunch ash, 16.65 +/- 0.05% in groundnut shell ash and 12.40 +/- 0.08% in sorghum chaff ash. Soaps made from the agro-wastes ashes had excellent solubility, consistency, cleansing and lathering abilities.

  3. Waste/By-Product Hydrogen

    DTIC Science & Technology

    2011-01-13

    produce hydrogen using high temp fuel cells‐such as DFC or SOFC —Paint fume from Ford Motors plant in Canada‐ FCE’s fuel cell � Total market is above...This can be captured and transported for use or used to help power the plants themselves (GM and Dow Chemical had a Demo Program) Reduction... power �Agricultural and food processing plants can turn waste into power Gills Onions saves $1 2M/year

  4. An Investigation of Biodiesel Production from Wastes of Seafood Restaurants

    PubMed Central

    El-Gendy, Nour Sh.; Hamdy, A.; Abu Amr, Salem S.

    2014-01-01

    This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst. PMID:25400665

  5. Oil field waste disposal in salt caverns: An information website

    SciTech Connect

    Tomasko, D.; Veil, J. A.

    1999-12-10

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  6. Esterified sago waste for engine oil removal in aqueous environment.

    PubMed

    Ngaini, Zainab; Noh, Farid; Wahi, Rafeah

    2014-01-01

    Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy.

  7. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    SciTech Connect

    1996-06-30

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  8. Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece.

    PubMed

    Pavlidou, A; Anastasopoulou, E; Dassenakis, M; Hatzianestis, I; Paraskevopoulou, V; Simboura, N; Rousselaki, E; Drakopoulou, P

    2014-11-01

    This work aims to contribute to the knowledge of the impacts of olive oil waste discharge to freshwater and oligotrophic marine environments, since the ecological impact of olive oil wastes in riverine and coastal marine ecosystems, which are the final repositories of the pollutants, is a great environmental problem on a global scale, mostly concerning all the Mediterranean countries with olive oil production. Messinia, in southwestern Greece, is one of the greatest olive oil production areas in Europe. During the last decade around 1.4×10(6)tons of olive oil mill wastewater has been disposed in the rivers of Messinia and finally entered the marine ecosystem of Messiniakos gulf. The pollution from olive oil mill wastewater in the main rivers of Messinia and the oligotrophic coastal zone of Messiniakos gulf and its effects on marine organisms were evaluated, before, during and after the olive oil production period. Elevated amounts of phenols (36.2-178 mg L(-1)) and high concentrations of ammonium (7.29-18.9 mmol L(-1)) and inorganic phosphorus (0.5-7.48 mmol L(-1)) were measured in small streams where the liquid disposals from several olive oil industries were gathered before their discharge in the major rivers of Messinia. The large number of olive oil units has downgraded the riverine and marine ecosystems during the productive period and a period more than five months is needed for the recovery of the ecosystem. Statistical analysis showed that the enrichment of freshwater and the coastal zone of Messiniakos gulf in ammonia, nitrite, phenols, total organic carbon, copper, manganese and nickel was directly correlated with the wastes from olive oil. Toxicity tests using 24h LC50 Palaemonidae shrimp confirm that olive mill wastewater possesses very high toxicity in the aquatic environment.

  9. Monitoring of olive oil mills' wastes using electrical resistivity tomography techniques

    NASA Astrophysics Data System (ADS)

    Simyrdanis, Kleanthis; Papadopoulos, Nikos; Kirkou, Stella; Sarris, Apostolos; Tsourlos, Panagiotis

    2014-08-01

    Olive oil mills' wastes (OOMW) are one of the byproducts of the oil production that can lead to serious environmental pollution when they are deposited in ponds dug on the ground surface. Electrical Resistivity Tomography (ERT) method can provide a valuable tool in order to monitor through time the physical flow of the wastes into the subsurface. ERT could potentially locate the electrical signature due to lower resistivity values resulting from the leakage of OOMW to the subsurface. For this purpose, two vertical boreholes were installed (12m depth, 9 m apart) in the vicinity of an existing pond which is filled with OOMW during the oil production period. The test site is situated in Saint Andreas village about 15km south of the city of Rethymno (Crete, Greece). Surface ERT measurements were collected along multiple lines in order to reconstruct the subsurface resistivity models. Data acquisition was performed with standard and optimized electrode configuration protocols. The monitoring survey includes the ERT data collection for a period of time. The study was initiated before the OOMW were deposited in the pond, so resistivity fluctuations are expected due to the flow of OOMW in the porous subsurface media through time. Preliminary results show the good correlation of the ERT images with the drilled geological formations and the identification of low resistivity subsurface zone that could be attributed to the flow of the wastes within the porous layers.

  10. Utilization of Navy-Generated Waste Oils as Boiler Fuel-Economic Analysis and Laboratory Tests.

    DTIC Science & Technology

    1980-02-01

    01M i AI . 5 PERFORMING ORG. REPORT NUMBER CLABORATORY TESTS 9. PERFORMING ORGANIZATION NAME AND ADDRESS, 1 1. CONTROLLING OF FICE N AME AND ADDRESS...generated waste oils is reported. Estimates show that between 5 % and 1 3% of the Navy boiler fuel requirements (excluding coal) may be met by...Waste Oils 2. Combustion I. Z0838-01-002 I Feasibility of utilizing Navy-generated waste oils is reported. Estimates show that between 5 % and 13% of

  11. Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds.

    PubMed

    Kim, Yong Sang; Kim, Young Seok; Kim, Sung Hyun

    2010-07-01

    Thermal decomposition properties of plastic waste-waste lube oil compounds were investigated under nonisothermal conditions. Polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) were selected as representative household plastic wastes. A plastic waste mixture (PWM) and waste lube oil (WLO) were mixed with mixing ratios of 33, 50, and 67 (w/w) % on a PWM weight basis, and thermogravimetric (TG) experiments were performed from 25 to 600 degrees C. The Flynn-Wall method and the Ozawa-Flynn-Wall method were used for analyses of thermodynamic parameters. In this study, activation energies of PWM/WLO compounds ranged from 73.4 to 229.6 kJ/mol between 0.2 and 0.8 of normalized mass conversions, and the 50% PWM/WLO compound had lower activation energies and enthalpies among the PWM/WLO samples at each mass conversion. At the point of maximum differential mass conversion, the analyzed activation energies, enthalpies, entropies, and Gibbs free energies indicated that mixing PWM and WLO has advantages in reducing energy to decrease the degree of disorder. However, no difference in overall energy that would require overcoming both thermal decomposition reactions and degree of disorder was observed among PWM/WLO compounds under these experimental conditions.

  12. Value added liquid products from waste biomass pyrolysis using pretreatments.

    PubMed

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition.

  13. Production of Fungal Glucoamylase for Glucose Production from Food Waste

    PubMed Central

    Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki

    2013-01-01

    The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186

  14. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  15. Converting citrus wastes into value-added products: Economic and environmently friendly approaches.

    PubMed

    Sharma, Kavita; Mahato, Neelima; Cho, Moo Hwan; Lee, Yong Rok

    2017-02-01

    Citrus fruits, including oranges, grapefruits, lemons, limes, tangerines, and mandarins, are among the most widely cultivated fruits around the globe. Its production is increasing every year due to rising consumer demand. Citrus-processing industries generate huge amounts of wastes every year, and citrus peel waste alone accounts for almost 50% of the wet fruit mass. Citrus waste is of immense economic value as it contains an abundance of various flavonoids, carotenoids, dietary fiber, sugars, polyphenols, essential oils, and ascorbic acid, as well as considerable amounts of some trace elements. Citrus waste also contains high levels of sugars suitable for fermentation for bioethanol production. However, compounds such as D-limonene must be removed for efficient bioethanol production. The aim of the present article was to review the latest advances in various popular methods of extraction for obtaining value-added products from citrus waste/byproducts and their potential utility as a source of various functional compounds.

  16. Biodegradation of oil refinery wastes under OPA and CERCLA

    SciTech Connect

    Gamblin, W.W.; Banipal, B.S.; Myers, J.M.

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).

  17. Biodegradation of oil refinery wastes under OPA and CERCLA

    SciTech Connect

    Banipal, B.S.; Myers, J.M.; Fisher, C.W.

    1995-12-31

    Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the full-scale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach in the evaluation of using biodegradation as a treatment method to achieve site-specific clean-up including pilot scale biodegradation operations is included in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceeded under field conditions and that the site-specific cleanup criteria can be attained within a proposed project time. Also presented are degradation rates and half-lives for PAHs for which cleanup criteria has been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other investigators (API 1987).

  18. A novel bioconversion for value-added products from food waste using Musca domestica.

    PubMed

    Niu, Yi; Zheng, Dong; Yao, Binghua; Cai, Zizhe; Zhao, Zhimin; Wu, Shengqing; Cong, Peiqing; Yang, Depo

    2017-03-01

    Food waste, as a major part of the municipal solid waste has been generated increasingly worldwide. Efficient and feasible utilization of this waste material for productivity process is significant for both economical and environmental reasons. In the present study, Musca domestica larva was used as the carrier to conduct a bioconversion with food waste to get the value-added maggot protein, oil and organic fertilizers. Methods of adult flies rearing, culture medium adjuvant selection, maggot culture conditions, stocking density and the valorization of the waste have been explored. From the experimental results, every 1000g culture mediums (700g food waste and 300g adjuvant) could be disposed by 1.5g M. domestica eggs under proper culture conditions after emergence in just 4days, 42.95±0.25% of which had been consumed and the culture medium residues could be used as good organic fertilizers, accompanying with the food waste consumption, ∼53.08g dried maggots that contained 57.06±2.19% protein and 15.07±2.03% oil had been produced. The maggot protein for its outstanding pharmacological activities is regarded as a good raw material in the field of medicine and animal feeding. Meanwhile, the maggot oil represents a potential alternative feedstock for biodiesel production. In our study, the maggot biodiesel was obtained after the procedure of transesterification reaction with methanol and the productivity was 87.71%.

  19. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  20. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  1. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  2. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  3. 40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-Dyes and/or pigments production wastes. 268.20 Section 268.20 Protection of Environment ENVIRONMENTAL... Disposal § 268.20 Waste specific prohibitions—Dyes and/or pigments production wastes. (a) Effective...

  4. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  5. Production of hydrogen from municipal solid waste

    SciTech Connect

    Coleman, S.L.

    1995-11-01

    The Gasification of Municipal Solid Waste (MSW) includes gasification and the process for producing a gasificable slurry from raw MSW by using high pressures of steam. A potential energy source, MSW is a composite of organic materials such as: paper, wood, food waste, etc. There are different paper grades producing different results with low-quality paper forming better slurries than high-quality papers; making MSW a difficult feedstock for gasification. The objective of the bench-scale laboratory work has been to establish operating conditions for a hydrothermal pre-processing scheme for municipal solid waste (MSW) that produces a good slurry product that can be pumped and atomized to the gasifier for the production of hydrogen. Batch reactors are used to determine product yields as a function of hydrothermal treatment conditions. Various ratios of water-to-paper were used to find out solid product, gas product, and soluble product yields of MSW. Experimental conditions covered were temperature, time, and water to feed ratio. Temperature had the strongest effect on product yields.

  6. Coprocessing of hydrocarbonaceous wastes and residual oil - a novel approach to recycling

    SciTech Connect

    Anderson, N.E.; Berger, D.J.

    1993-12-31

    The Plastic and Rubber Recycling (PARR) Process being developed by Kilborn Inc., and Canadian Energy Developments Inc., offers a unique approach to the recovery and recycle of waste hydrocarbonaceous materials as they are simultaneously hydrogenated with low quality residual oil to yield basic petrochemicals and virgin plastic and synthetic rubber compounds. Laboratory scale experiments with used tire rubber crumb, scrap polystyrene and heavy oil residuum as the coprocessing medium gave encouraging results. In excess of 90 percent of the carbonaceous matter was converted to distillate oil product that, upon secondary hydrotreating, could be considered high quality ethylene cracking furnace feedstock or aromatics extraction plant feedstock. This presentation will discuss the technical and economic potential of the PARR Process, the planned technology development program and initial commercialization plans.

  7. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq).

  8. Investigation on environmental factors of waste plastics into oil and its emulsion to control the emission in DI diesel engine.

    PubMed

    Kumar, P Senthil; Sankaranarayanan, G

    2016-12-01

    Rapid depletion of conventional fossil fuel resources, their rising prices and environmental issues are the major concern of alternative fuels. On the other hand waste plastics cause a very serious environmental dispute because of their disposal problems. Waste plastics are one of the promising factors for fuel production because of their high heat of combustion and their increasing availability in local communities. In this study, waste plastic oil (WPO) is tested in DI diesel engine to evaluate its performance and emission characteristics. Results showed that oxides of nitrogen (NOx) emission get increased with WPO when compared to diesel oil. Further, the three phase (O/W/O) plastic oil emulsion is prepared with an aid of ultrasonicater according to the %v (10, 20 & 30). Results expose that brake thermal efficiency (BTE) is found to be increased. NOx and smoke emissions were reduced up to 247ppm and 41% respectively, when compared to diesel at full load condition with use of 30% emulsified WPO.

  9. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  10. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  11. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  12. Pyrolysis of poppy capsule pulp for bio-oil production.

    PubMed

    Hopa, Derya Yeşim; Yılmaz, Nazan; Alagöz, Oğuzhan; Dilek, Meltem; Helvacı, Ahmet; Durupınar, Ümit

    2016-12-01

    The feasibility of biofuel production via the pyrolysis of poppy capsule pulp, the main waste product of Afyon Alkoloid Factory, was investigated. The poppy capsule pulp was shown to have a high volatile matter content (ca. 76%). Pyrolysis experiments were carried out in the temperature range 400-550°C (heating rate 18°C min(-1) and holding time 20 min) under a nitrogen atmosphere. The chemical components of the bio-oil were characterized by Fourier transform infrared spectrometry and gas chromatography-mass spectrometry. The effects of pyrolysis temperature on the production efficiency and the calorific value of the bio-oil were investigated. The maximum bio-oil yield and its calorific value at 500°C were 23.6% and 31.6 MJ kg(-1), respectively. The latter value is close to that of many petroleum fractions. This high-energy bio-oil is therefore a clean fuel precursor and can be upgraded into higher quality fuels.

  13. Response of soil microorganisms to radioactive oil waste: results from a leaching experiment

    NASA Astrophysics Data System (ADS)

    Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.

    2015-06-01

    Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and hydrophobicity. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The effects on various microbial parameters of raw waste containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 of 226Ra, 2.8 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (1.6 g kg-1 of TPH, 7.9 of 226Ra, 3.9 of 232Th, and 183 kBq kg-1 of 40K) were examined in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The raw waste sample (H) was collected from tanks during cleaning and maintenance, and a treated waste sample (R) was obtained from equipment for oil waste treatment. Thermal steam treatment is used in the production yard to reduce the oil content. The disposal of H waste samples on the soil surface led to an increase in the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60cm) layers, respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R- columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5

  14. Waste product profile: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1996-02-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweaters and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.

  15. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates.

    PubMed

    Obruca, Stanislav; Petrik, Sinisa; Benesova, Pavla; Svoboda, Zdenek; Eremka, Libor; Marova, Ivana

    2014-07-01

    Spent coffee grounds (SCG), an important waste product of the coffee industry, contain approximately 15 wt% of coffee oil. The aim of this work was to investigate the utilization of oil extracted from SCG as a substrate for the production of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator H16. When compared to other waste/inexpensive oils, the utilization of coffee oil resulted in the highest biomass as well as PHB yields. Since the correlation of PHB yields and the acid value of oil indicated a positive effect of the presence of free fatty acids in oil on PHB production (correlation coefficient R (2) = 0.9058), superior properties of coffee oil can be probably attributed to the high content of free fatty acids which can be simply utilized by the bacteria culture. Employing the fed-batch mode of cultivation, the PHB yields, the PHB content in biomass, the volumetric productivity, and the Y P/S yield coefficient reached 49.4 g/l, 89.1 wt%, 1.33 g/(l h), and 0.82 g per g of oil, respectively. SCG are annually produced worldwide in extensive amounts and are disposed as solid waste. Hence, the utilization of coffee oil extracted from SCG is likely to improve significantly the economic aspects of PHB production. Moreover, since oil extraction decreased the calorific value of SCG by only about 9 % (from 19.61 to 17.86 MJ/kg), residual SCG after oil extraction can be used as fuel to at least partially cover heat and energy demands of fermentation, which should even improve the economic feasibility of the process.

  16. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.

    PubMed

    Pukale, Dipak D; Maddikeri, Ganesh L; Gogate, Parag R; Pandit, Aniruddha B; Pratap, Amit P

    2015-01-01

    Transesterification based biodiesel production from waste cooking oil in the presence of heterogeneous solid catalyst has been investigated in the present work. The effect of different operating parameters such as type of catalyst, catalyst concentration, oil to methanol molar ratio and the reaction temperature on the progress of the reaction was studied. Some studies related to catalyst reusability have also been performed. The important physicochemical properties of the synthesized biodiesel have also been investigated. The results showed that tri-potassium phosphate exhibits high catalytic activity for the transesterification of waste cooking oil. Under the optimal conditions, viz. catalyst concentration of 3wt% K3PO4, oil to methanol molar ratio of 1:6 and temperature of 50°C, 92.0% of biodiesel yield was obtained in 90min of reaction time. Higher yield was obtained in the presence of ultrasound as compared to conventional approach under otherwise similar conditions, which can be attributed to the cavitational effects. Kinetic studies have been carried out to determine the rate constant at different operating temperatures. It was observed that the kinetic rate constant increased with an increase in the temperature and the activation energy was found to be 64.241kJ/mol.

  17. ENGINEERING SACCHAROMYCES CEREVISIAE FOR ETHANOL PRODUCTION FROM AGRICULTURAL WASTE PRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research focusing on the production of alternative fuels has intensified due to increasing global demand for a limited oil supply. Fuel ethanol production in the U.S. amounted to 5 billion gallons for 2006 and is projected to increase. Most of the ethanol produced is currently from fermentation of...

  18. Wastes and by-products - alternatives for agricultural use

    SciTech Connect

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  19. Biopolymers production with carbon source from the wastes of a beer brewery industry

    NASA Astrophysics Data System (ADS)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  20. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  1. Report: EPA Should Clarify and Strengthen Its Waste Management Oversight Role With Respect to Oil Spills of National Significance

    EPA Pesticide Factsheets

    Report #11-P-0706, September 26, 2011. As a support agency to the Coast Guard, EPA’s oversight of the Gulf Coast oil spill waste management activities provided assurance that oil-contaminated waste was disposed of properly.

  2. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    PubMed

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.

  3. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.

  4. Response of soil microorganisms to radioactive oil waste: results from a leaching experiment

    NASA Astrophysics Data System (ADS)

    Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.

    2015-01-01

    Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and other properties. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The toxicity and effects on various microbial parameters of raw waste (H) containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 kBq kg-1 of 226Ra, 2.8 kBq kg-1 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (R) (1.6 g kg-1 of TPH, 7.9 kBq kg-1 of 226Ra, 3.9 kBq kg-1 of 232Th, and 183 kBq kg-1 of 40K) were estimated in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The disposal of H waste samples on the soil surface led to an increase of the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60 cm) layers respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R-columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5-1.4 times in comparison to control ones. Changes of soil functional characteristics caused by the treated waste containing mainly radionuclides were not observed. PCR-SSCP (polymerase chain

  5. [Hygienic assessment of waste of soda production].

    PubMed

    Samutin, N M; Vaisman, Y I; Rudakova, L V; Kalinina, E V; Glushankova, I S; Batrakova, G M

    2013-01-01

    The object of investigations was soda industry waste. Slimes are formed at slimes storage which occupy considerable areas and are considered to be the source of permanent impact on the hydrosphere objects. Slimes storage placement within settlement boundaries and water protection zone of large watercourses leads to the deterioration of sanitary, hygienic and environmental situation and to the rising of risks to health of communities. Waste processing with getting new materials on the base of soda industry waste with wide application is seems to be one of the way for problem solving. It is essential to take into account sanitary and hygienic characteristics of slimes within justifying possible directions of its use. Thus, researches concerning assessment of physical, chemical and toxicological waste characteristics are considered to be actual. The aim of researches is to examine physical, chemical and toxicological characteristics of soda production slimes for justifying directions of its use including delivery of new materials respondent to the all regulatory sanitary and hygienic requirements. Experimental investigations of assessment physical, chemical and toxicological characteristics of slimes were carried out according to standard methods. Within assessment of toxicological slimes characteristics the following test-objects were used: Ceriodaphnia affinis, Paramecium caudatum. As a result of investigations watered slime samples were determined to be referred to the 4th hazard level (low-hazard) waste; samples with preliminary mechanical dehydration are referred to the 5th hazard level (practically nonhazardous) waste for environment. These are correspond to the 3rd and 4th hazard level according to sanitary regulations, respectively.

  6. Bacterial bioavailability and biodegradability of high-molecular weight hydrocarbons from oil refinery wastes.

    PubMed

    Krasteva, A; Van Beneden, D; Van Keer, C; Topalova, J; Dimkov, R; Kozuharov, D

    2001-01-01

    A general problem for oil refineries is the proper disposal of production sludges generated during the processing of crude oil. Dumping of sludges leads to environmental pollution, and particularly to sediment contamination. High-molecular weight-PAHs are important constituents of refinery wastes. These are toxic and recalcitrant pollutants, several of them being known mutagens or carcinogens. Research on biodegradability of the compounds is hampered by the insolubility in aqueous media. We analysed the chemical composition of a refinery waste sludge and determined the contents of mineral oils and PAHs. In a microbial investigation of the same sludge fractions we isolated several bacterial strains having a significant potential for breakdown of mineral oils and PAHs. Many techniques have already been applied to offer these compounds as substrates for microorganisms. Linking of the water-insoluble substrates (the PAHs, fluoranthene and chrysene, or the mineral oils) to Chromosorb beads and supplying them in a fluidised bed reactor as a single carbon source to bacterial isolates, offers a practical alternative in research on biodegradation. Even, this system resembles the common soil conditions, where bio-availability is reduced by linking of the contaminants to soil particles or accumulation of the products in hydrophobic pockets. After incubation of the carrier beads in an appropriate medium, the liquid fraction from the fluidised bed reactor and the carrier beads were collected separately and analysed for longchain hydrocarbons and for PAHs. In six days of incubation in an adapted broth formulation, biodegradation amounts 60.1% for fluoranthene and 47.2% for chrysene. Heavy hydrocarbons ranging from C10 up to C40 have been utilised in a thirty-day period for 72.4%. This project is a logical extension of our previous studies on the bio-availability of PAHs in contaminated sediments. We evaluate the potential use of pure cultures as a remedial solution to enhance

  7. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH.

  8. Ethanol production from potato peel waste (PPW).

    PubMed

    Arapoglou, D; Varzakas, Th; Vlyssides, A; Israilides, C

    2010-10-01

    Considerable concern is caused by the problem of potato peel waste (PPW) to potato industries in Europe. An integrated, environmentally-friendly solution is yet to be found and is currently undergoing investigation. Potato peel is a zero value waste produced by potato processing plants. However, bio-ethanol produced from potato wastes has a large potential market. If Federal Government regulations are adopted in light of the Kyoto agreement, the mandatory blending of bio-ethanol with traditional gasoline in amounts up to 10% will result in a demand for large quantities of bio-ethanol. PPW contain sufficient quantities of starch, cellulose, hemicellulose and fermentable sugars to warrant use as an ethanol feedstock. In the present study, a number of batches of PPW were hydrolyzed with various enzymes and/or acid, and fermented by Saccharomyces cerevisae var. bayanus to determine fermentability and ethanol production. Enzymatic hydrolysis with a combination of three enzymes, released 18.5 g L(-1) reducing sugar and produced 7.6 g L(-1) of ethanol after fermentation. The results demonstrate that PPW, a by-product of the potato industry features a high potential for ethanol production.

  9. Catalytic pyrolysis of peat with additions of oil-slime and polymeric waste

    NASA Astrophysics Data System (ADS)

    Sulman, E.; Kosivtsov, Yu.; Sulman, M.; Alfyorov, V.; Lugovoy, Yu.; Chalov, K.; Misnikov, O.; Afanasjev, A.; Kumar, N.; Murzin, D.

    2012-09-01

    In this work the influence of natural and synthetic aluminosilicates, metal chlorides of iron subgroup on the peat low-temperature pyrolysis and co-pyrolysis of peat with oil-slime and polymeric waste was studied in variety of conditions (t = 350-650δC, catalyst loading: from 1 up to 30 % (wt.)). The use of bentonite clay (30 % (wt.)) at 460δC as a catalyst in peat pyrolysis resulted in increase of weight of gaseous and liquid products from 23 up to 30 % (wt.) and from 32 up to 45 % (wt.), respectively. Co-pyrolysis of peat and oil-slime in the presence of bentonite clay resulted in increase of gaseous product weight from 18 up to 26 % (wt.) and liquid fraction yield - from 45 up to 55 % (wt.) in comparison with precalculated value. The use of metal chlorides of iron subgroup (2 % (wt.) concentration) at 500 δC in the co-pyrolysis of peat and polymeric waste led to optimal conversion of substrate in desired products, 15 % increase of total weight of gaseous and liquid products formed during the pyrolysis process and simultaneous decrease of char formation.

  10. Sound waste management plan. Restoration project 95115. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    1996-02-01

    The project was designed to address marine pollution that is generated from landbased sources within the Prince William Sound communities of Cordova, Valdez, Whittier Tatitlek, and Chenega Bay. The project recommends ways to improve the management of three different waste streams generated within the communities and which are a chronic source of marine pollution: used oil, household hazardous waste, and solid waste. The recommendations, some of which have already been implemented, include: creation of a comprehensive used oil management system in each community, construction of Environmental Operation Stations to improve the overall management of solid and oily wastes, and the development of a regional household hazardous waste program.

  11. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  12. Reclamation of coking wastes

    SciTech Connect

    Mraovich, G.

    1981-04-28

    Waste products derived from coking coal, such as coal tar decanter wastes and wash oil muck, are processed to recover an oil fraction and a granular coke breeze residue. The wastes are mixed with a diluent oil, preferably having a saponification number of about 100 or more, are subjected to agitation and mixing and are thereafter filtered to produce a granular, coke breeze cake and a filtrate comprising water and oil which separate easily by decantation.

  13. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    PubMed Central

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-01-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge. PMID:27905538

  14. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study

    NASA Astrophysics Data System (ADS)

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X.; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  15. Potential and optimization of two-phase anaerobic digestion of oil refinery waste activated sludge and microbial community study.

    PubMed

    Wang, Qinghong; Liang, Ying; Zhao, Peng; Li, Qing X; Guo, Shaohui; Chen, Chunmao

    2016-12-01

    Oil refinery waste activated sludge produced from oil wastewater biological treatment is a major industrial sludge. Two-phase anaerobic digestion of oil refinery waste activated sludge was studied for the first time. Thermal pretreatment under 170 °C is effective on sludge solubilization. At the optimum hydrolytic-acidogenic condition which was pH of 6.5, temperature of 55 °C and HRT of 2 days, 2754 mg/L volatile fatty acids (VFAs) were produced and acetic acid and butyric acid were the key components. Comparative studies of single-phase and two-phase anaerobic digestion in terms of organic removal, biogas production and methane concentration were conducted. The cumulative methane production and soluble COD (SCOD) removal efficiency in the two-phase system were 228 mL/g COD added and 77.8%, respectively, which were 1.6 and 2.1 times higher than those in single-phase anaerobic digestion. Such improved performance is attributed to intensification of dominant microbial population in separated reactors. Caloramator, Ureibacillus, Dechloromonas, Petrobacter, and T78 played important roles in hydrolytic-acidification and oil-organics degradation. Syntrophic bacteria in the family Porphyromonadaceae and the genus Anaerobranca provide acetate for methanogen. The results demonstrated the potential and operating condition of two-phase anaerobic digestion in treatment of oil refinery waste activated sludge.

  16. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect

    Veil, J. A.

    1999-01-27

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  17. Expansion of bellshill lake oil production

    SciTech Connect

    Pagett, B.; Mcintosh, I.; Richardson, A.

    1983-01-01

    The Bellshill Lake pool consists of a thin oil leg overlying a large and active aquifer. The pool produces under essentially 100% water drive with water coning being a major problem. In late 1981, Petro-Canada identified that oil production from the Bellshill Lake pool could be economically increased from the current 850 cu m/day by a program of infill drilling. Favorable economics for infill drilling were primarily achieved through accelerating oil production. Single well radial coning models were used to predict well performance. Model results were confirmed by history matching actual well performance using a type curve approach. This work describes the approach used in the reservoir study, the justification used for directional drilling, and the drilling procedure.

  18. Production of organic acids from kitchen wastes.

    PubMed

    Loh, C W; Fakhru'l-Razi, A; Hassan, M A; Karim, M I

    1999-01-01

    This study involves the production of short-chain organic acids from kitchen wastes as intermediates for the production of biodegradable plastics. Flasks, without mixing were used for the anaerobic conversion of the organic fraction of kitchen wastes into short-chain organic acids. The influence of pH, temperature and addition of sludge cake on the rate of organic acids production and yield were evaluated. Fermentations were carried out in an incubator at different temperatures controlled at 30 degrees C. 40 degrees C, 50 degrees C, 60 degrees C and uncontrolled at room temperature. The pH was also varied at pH 5, 6, 7, and uncontrolled pH. 1.0 M phosphate buffer was used for pH control, and 1.0 M HCl and 1.0 M NaOH were added when necessary. Sludge cake addition enhanced the rate of maximum acids production from 4 days to 1 day. The organic acids produced were maximum at pH 7 and 50 degrees C i.e., 39.84 g/l on the fourth day of fermentation with a yield of 0.87 g/g soluble COD consumed, and 0.84 g/g TVS. The main organic acid produced was lactic acid (65-85%), with small amounts of acetic (10-30%), propionic (5-10%), and butyric (5-20%) acids. The results of this study showed that kitchen wastes could be fermented to high concentration of organic acids, which could be used as substrates for the production of biodegradable plastics.

  19. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  20. DWPF waste glass Product Composition Control System

    SciTech Connect

    Brown, K.G.; Postles, R.L.

    1992-01-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  1. DWPF waste glass Product Composition Control System

    SciTech Connect

    Brown, K.G.; Postles, R.L.

    1992-07-01

    The Defense Waste Processing Facility (DWPF) will be used to blend aqueous radwaste (PHA) with solid radwaste (Sludge) in a waste receipt vessel (the SRAT). The resulting SRAT material is transferred to the SME an there blended with ground glass (Frit) to produce a batch of melter feed slurry. The SME material is passed to a hold tank (the MFT) which is used to continuously feed the DWPF melter. The melter. The melter produces a molten glass wasteform which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository. The Product Composition Control System (PCCS) is the system intended to ensure that the melt will be processible and that the glass wasteform will be acceptable. This document provides a description of this system.

  2. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    NASA Astrophysics Data System (ADS)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  3. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    SciTech Connect

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  4. Microbial screening and analytical methods for the production of polyol oils from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to develop a new useful method including microbial screening and product identification for a bioprocess to produce polyol oils from soybean oil. Methods for separating of product polyol oils from soybean oil substrate and free fatty acid byproducts using HPLC and TLC...

  5. A Model Study to Unravel the Complexity of Bio-Oil from Organic Wastes.

    PubMed

    Croce, Annamaria; Battistel, Ezio; Chiaberge, Stefano; Spera, Silvia; De Angelis, Francesco; Reale, Samantha

    2017-01-10

    Binary and ternary mixtures of cellulose, bovine serum albumin (BSA) and tripalmitin, as biomass reference compounds for carbohydrates, proteins and triglycerides, respectively, were treated under hydrothermal liquefaction (HTL) conditions to describe the main reaction pathways involved in the process of bio-oil production from municipal organic wastes. Several analytical techniques (elemental analysis, GC-MS, atmospheric-pressure photo-ionisation high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and (13) C cross-polarisation magic-angle spinning NMR spectroscopy) were used for the molecular-level characterisation of the resulting aqueous phase, solid residue and bio-oil, in particular. The main reaction pathways led to free fatty acids, fatty acid amides, 2,5-diketopiperazines and Maillard-type compounds as the main components of the bio-oil. The relationship of such compounds to the original components of the biomass was thus determined, which highlights the fate of the heteroatom-containing molecules in particular. Finally, the molecular composition of the bio-oils from our reference compounds was matched with that of the bio-oil from municipal organic waste biomass by comparing their high-resolution Fourier transform ion cyclotron resonance mass spectra, and we obtained a surprisingly high similarity. Hence, the ternary mixture acts as a reliable biomass model and is a powerful tool to clarify the degradation mechanisms that occur in the biomass under HTL treatment, with the ultimate goal to improve the HTL process itself by modulating the input of the organic starting matter and then the upgrading steps to bio-fuels.

  6. Wet oxidation of oil-bearing sulfide wastes

    SciTech Connect

    Miller, R.L.; Hotz, N.J.

    1991-01-01

    Oil-bearing metal sulfide sludges produced in treatment of an industrial wastewater, which includes plating wastes, have yielded to treatment by electrooxidation and hydrogen peroxide processes. The oxidation can be controlled to be mild enough to avoid decomposition of the organic phase while oxidizing the sulfides to sulfates. The pH is controlled to near neutral conditions where iron, aluminum and chromium(III) precipitate as hydrous oxides. Other metals, such as lead and barium, may be present as sulfate precipitates with limited solubility, while metals such as nickel and cadmium would be present as complexed ions in a sulfate solution. The oxidations were found to proceed smoothly, without vigorous reaction; heat liberation was minimal. 2 refs., 12 figs.

  7. Microbial products from sweet potato wastes

    SciTech Connect

    Nghiem, N.P.

    1982-01-01

    Microbial production of methane from alkaline sweet potato wastes was studied. Assessment of methane production potential was based on total COD of the wastes. A single-stage and a two-stage system were studied. In both systems, to ensure stable operation and high performance, methane fermenters had to be initially seeded with large quantities of methane formers. A 50% inoculum (based on total fermenter volume) was found to be most effective. Methane formers tended to aggregate to form spherical particles which had extremely high settling rates, this eliminated the requirement of cell recycle. In both single-stage and two-stage systems the rates of gas production was sufficiently fast to induce thorough mixing of the fermenter contents. At low residence times of two and four days the two-stage system achieved significantly higher conversions. Gas production started almost immediately after feeding the methane fermenter of the two-stage system. The conversions in the methane fermenter of a two-stage system could be predicted by a model based on Contois' kinetics. The composition of the gas produced in this fermenter could also be predicted from the distribution of the organic acids in the effluent from the acid fermenter. The acid formation stage was studied in a chemostat operated at a fixed residence time of 5.5 hours. The highest yield of 0.09 g protein/g glucose consumed was obtained at pH 5.5 and 37/sup 0/C.

  8. Biotechnological production of methanol from waste biomass

    SciTech Connect

    Kozak, R.; Morris, D.

    1995-12-01

    The production of methanol (CH{sub 3}OH) from waste biomass is possible through the use of genetically modified bacteria. The biomass to methanol conversion process makes use of a naturally occurring, direct aerobic enzymatic system referred to as oxidative demethylation. Methoxy groups are stripped off of lignin and lignin like plant substances (approximately fifty percent of all plant biomass) and hydrolyzed to form methanol. Since the biotech process is stoichiometric, potentially every methoxy group in the lignin feedstock can be converted to methanol fuel. Approximately 30-35% of lignin is a methoxy compound that can be converted. Biotechnological conversion could produce up to 100 gallons/ton or 20 billion gallons a year of methanol from waste biomass. Current work has focused on the genetic modification of the enzymatic conversion process to reach commercial production. The goals of this research are; increase product yields, implement an operon {open_quotes}switch{close_quotes} mechanism to exploit multiple feedstocks, and produce environmentally safe by-products. Progress on these topics will be reported.

  9. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    NASA Astrophysics Data System (ADS)

    Aji, Mahardika Prasetya; Wiguna, Pradita Ajeng; Susanto, Rosita, Nita; Suciningtyas, Siti Aisyah; Sulhadi

    2016-04-01

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showed that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.

  10. Solid state anaerobic co-digestion of yard waste and food waste for biogas production.

    PubMed

    Brown, Dan; Li, Yebo

    2013-01-01

    Food and yard wastes are available year round at low cost and have the potential to complement each other for SS-AD. The goal of this study was to determine optimal feedstock/effluent (F/E) and food waste/yard waste mixing ratios for optimal biogas production. Co-digestion of yard and food waste was carried out at F/E ratios of 1, 2, and 3. For each F/E ratio, food waste percentages of 0%, 10%, and 20%, based on dry volatile solids, were evaluated. Results showed increased methane yields and volumetric productivities as the percentage of food waste was increased to 10% and 20% of the substrate at F/E ratios of 2 and 1, respectively. This study showed that co-digestion of food waste with yard waste at specific ratios can improve digester operating characteristics and end performance metrics over SS-AD of yard waste alone.

  11. Optimization of squalene produced from crude palm oil waste

    NASA Astrophysics Data System (ADS)

    Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.

    2017-01-01

    Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.

  12. Co-composting of rose oil processing waste with caged layer manure and straw or sawdust: effects of carbon source and C/N ratio on decomposition.

    PubMed

    Onursal, Emrah; Ekinci, Kamil

    2015-04-01

    Rose oil is a specific essential oil that is produced mainly for the cosmetics industry in a few selected locations around the world. Rose oil production is a water distillation process from petals of Rosa damascena Mill. Since the oil content of the rose petals of this variety is between 0.3-0.4% (w/w), almost 4000 to 3000 kg of rose petals are needed to produce 1 kg of rose oil. Rose oil production is a seasonal activity and takes place during the relatively short period where the roses are blooming. As a result, large quantities of solid waste are produced over a limited time interval. This research aims: (i) to determine the possibilities of aerobic co-composting as a waste management option for rose oil processing waste with caged layer manure; (ii) to identify effects of different carbon sources - straw or sawdust on co-composting of rose oil processing waste and caged layer manure, which are both readily available in Isparta, where significant rose oil production also takes place; (iii) to determine the effects of different C/N ratios on co-composting by the means of organic matter decomposition and dry matter loss. Composting experiments were carried out by 12 identical laboratory-scale composting reactors (60 L) simultaneously. The results of the study showed that the best results were obtained with a mixture consisting of 50% rose oil processing waste, 64% caged layer manure and 15% straw wet weight in terms of organic matter loss (66%) and dry matter loss (38%).

  13. Biogas and energy production from cattle waste

    SciTech Connect

    Chakravarthi, J.

    1997-12-31

    Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking, lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.

  14. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges.

    PubMed

    Tansel, Berrin

    2017-01-01

    Advancements in technology, materials development, and manufacturing processes have changed the consumer products and composition of municipal solid waste (MSW) since 1960s. Increasing quantities of discarded consumer products remain a major challenge for recycling efforts, especially for discarded electronic products (also referred as e-waste). The growing demand for high tech products has increased the e-waste quantities and its cross boundary transport globally. This paper reviews the challenges associated with increasing e-waste quantities. The increasing need for raw materials (especially for rare earth and minor elements) and unregulated e-waste recycling operations in developing and underdeveloped counties contribute to the growing concerns for e-waste management. Although the markets for recycled materials are increasing; there are major challenges for development of the necessary infrastructure for e-waste management and accountability as well as development of effective materials recovery technologies and product design.

  15. Waste shells of mollusk and egg as biodiesel production catalysts.

    PubMed

    Viriya-Empikul, N; Krasae, P; Puttasawat, B; Yoosuk, B; Chollacoop, N; Faungnawakij, K

    2010-05-01

    The solid oxide catalysts derived from waste shells of egg, golden apple snail, and meretrix venus were employed to produce biodiesel from transesterification of palm olein oil. The shell materials were calcined in air at 800 degrees C with optimum time of 2-4h to transform calcium species in the shells into active CaO catalysts. All catalysts showed the high biodiesel production activity over 90% fatty acid methyl ester (FAME) in 2h, whilst the eggshell-derived catalyst showed comparable activity to the one derived from commercial CaCO(3). The catalytic activity was in accordance with the surface area of and the Ca content in the catalysts.

  16. Scintillation gamma spectrometer for analysis of hydraulic fracturing waste products.

    PubMed

    Ying, Leong; O'Connor, Frank; Stolz, John F

    2015-01-01

    Flowback and produced wastewaters from unconventional hydraulic fracturing during oil and gas explorations typically brings to the surface Naturally Occurring Radioactive Materials (NORM), predominantly radioisotopes from the U238 and Th232 decay chains. Traditionally, radiological sampling are performed by sending collected small samples for laboratory tests either by radiochemical analysis or measurements by a high-resolution High-Purity Germanium (HPGe) gamma spectrometer. One of the main isotopes of concern is Ra226 which requires an extended 21-days quantification period to allow for full secular equilibrium to be established for the alpha counting of its progeny daughter Rn222. Field trials of a sodium iodide (NaI) scintillation detector offers a more economic solution for rapid screenings of radiological samples. To achieve the quantification accuracy, this gamma spectrometer must be efficiency calibrated with known standard sources prior to field deployments to analyze the radioactivity concentrations in hydraulic fracturing waste products.

  17. Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.

    PubMed

    Lowrey, Joshua; Brooks, Marianne S; Armenta, Roberto E

    2016-05-01

    Improving the economics of microalgae production for the recovery of microbial oil requires a comprehensive exploration of the measures needed to improve productivity as well as to reduce the overall processing costs. One avenue for cost reduction involves recycling the effluent waste water remaining after lipid extraction. This study investigates the feasibility of recycling those wastes for growing thraustochytrid biomass, a heterotrophic microalgae, where wastes were generated from the enzymatic extraction of the lipids from the cell biomass. It was demonstrated that secondary cultures of the tested thraustochytrid grown in the recycled wastes performed favorably in terms of cell and oil production (20.48 g cells L(-1) and 40.9 % (w/w) lipid) compared to the control (13.63 g cells L(-1) and 56.8 % (w/w) lipid). Further, the significant uptake of solubilized cell material (in the form of amino acids) demonstrated that the recycled waste has the potential for offsetting the need for fresh medium components. These results indicate that the implementation of a nutrient recycling strategy for industrial microalgae production could be possible, with significant added benefits such as conserving water resources, improving production efficiency, and decreasing material inputs.

  18. Hydrogen production from municipal solid waste

    SciTech Connect

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B.

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  19. Cleaner production: Minimizing hazardous waste in Indonesia

    SciTech Connect

    Bratasida, D.L.

    1996-12-31

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmental management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.

  20. Bioconversion of oil palm frond by Aspergillus niger to enhances it's fermentable sugar production.

    PubMed

    Lim, Sheh-Hong; Ibrahim, Darah

    2013-09-15

    The aim of this study was to develop an economical bioprocess to produce the fermentable sugars at laboratory scales Using Oil Palm Frond (OPF) as substrate in Solid State Fermentation (SSF). OPF waste generated by oil palm plantations is a major problem in terms of waste management. However, this lignocellulosic waste material is a cheap source of cellulose. We used OPF as substrate to produce fermentable sugars. The high content of cellulose in OPF promises the high fermentable sugars production in SSF. Saccharification of OPF waste by A. niger USMAI1 generates fermentable sugars and was evaluated through a solid state fermentation. Physical parameters, e.g., inoculum size, initial substrate moisture, initial pH, incubation temperature and the size of substrate were optimized to obtain the maximum fermentable sugars from oil palm fronds. Up to 77 mg of fermentable sugars per gram substrate was produced under the optimal physical parameter conditions. Lower productivity of fermentable sugars, 32 mg fermentable sugars per gram substrate was obtained under non optimized conditions. The results indicated that about 140.6% increase in fermentable sugar production after optimization of the physical parameters. Glucose was the major end component amongst the fermentable sugars obtained. This study indicated that under optimum physical parameter conditions, the OPF waste can be utilized to produce fermentable sugars which then convert into other products such as alcohol.

  1. Baseline Glass Development for Combined Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-06-29

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  2. Study the Growth of Microalgae in Palm Oil Mill Effluent Waste Water

    NASA Astrophysics Data System (ADS)

    Selmani, Nabila; Mirghani, Mohamed E. S.; Zahangir Alam, Md

    2013-06-01

    This paper emphasizes mainly on the biomass productivity and lipids content of two microalgae strains known by their high lipids content namely: Botryoccoccus sudeticus and Chlorella vulgaris. These strains were first screened for the highest biomass and lipids content, then Plackett-Burman design was used to evaluate the significant media for the growth when using POME waste water as culture medium. Results show that Botryoccocus sudeticus contains high content of biomass and lipids yield. Moreover, all the three factors have positive effect on the biomass productivity, while using one nutrient factor gives much lower biomass. These results can be used further as an insight for optimizing the biomass and the oil productivity of the microalgae.

  3. Lipases immobilization for effective synthesis of biodiesel starting from coffee waste oils.

    PubMed

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-08-13

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required.

  4. Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils

    PubMed Central

    Ferrario, Valerio; Veny, Harumi; De Angelis, Elisabetta; Navarini, Luciano; Ebert, Cynthia; Gardossi, Lucia

    2013-01-01

    Immobilized lipases were applied to the enzymatic conversion of oils from spent coffee ground into biodiesel. Two lipases were selected for the study because of their conformational behavior analysed by Molecular Dynamics (MD) simulations taking into account that immobilization conditions affect conformational behavior of the lipases and ultimately, their efficiency upon immobilization. The enzymatic synthesis of biodiesel was initially carried out on a model substrate (triolein) in order to select the most promising immobilized biocatalysts. The results indicate that oils can be converted quantitatively within hours. The role of the nature of the immobilization support emerged as a key factor affecting reaction rate, most probably because of partition and mass transfer barriers occurring with hydrophilic solid supports. Finally, oil from spent coffee ground was transformed into biodiesel with yields ranging from 55% to 72%. The synthesis is of particular interest in the perspective of developing sustainable processes for the production of bio-fuels from food wastes and renewable materials. The enzymatic synthesis of biodiesel is carried out under mild conditions, with stoichiometric amounts of substrates (oil and methanol) and the removal of free fatty acids is not required. PMID:24970178

  5. Palm olein oil produces less lipid peroxidation products than soya bean oil.

    PubMed

    Zaiton, Z; Merican, Z; Khalid, B A; Mohamed, J B; Baharom, S

    1997-06-01

    The soleus muscles of hyperthyroid rats were used to investigate the effect of palm olein oil and soya bean oil on the production of lipid peroxidation products. It was found that palm olein oil but not soya bean oil significantly decreased malonaldehyde and conjugated diene levels of the soleus muscles of hyperthyroid rats. These findings suggest that palm olein per se produces less lipid peroxidation products than soya bean oil. Such an assay method gives a composite net picture of the propensity of an oil to produce lipid peroxidation products.

  6. An environmental friendly recovery production line of waste toner cartridges.

    PubMed

    Ruan, Jujun; Li, Jia; Xu, Zhenming

    2011-01-30

    Quantity of waste toner cartridges has been generated following the increasing demand for printer and duplicator. Waste toner cartridge contains abundant valuable metals, plastics as well as toxic residual toner. Therefore, the recovery of waste toner cartridges is a meaningful subject, not only from waste treatment but also from environment protection. This study proposed a mechanical production line for recovering waste toner cartridges. The recovery process involved shearing process, magnetic separation, and eddy current separation. The recovery rates of steel (magnet), toner, aluminum, and plastic were 98.4%, 95%, 97.5%, and 98.8%, respectively. The results of the comparison between the production line and full manual dismantling indicated that the production line succeed in recovering waste toner cartridges. In addition, the proposed production line is an efficient and environmental friendly way for recovering waste toner cartridges.

  7. Lipase-catalyzed biodiesel production from waste activated bleaching earth as raw material in a pilot plant.

    PubMed

    Park, Enoch Y; Sato, Masayasu; Kojima, Seiji

    2008-05-01

    The production of fatty acid methyl esters (FAMEs) from waste activated bleaching earth (ABE) discarded by the crude oil refining industry using lipase from Candida cylindracea was investigated in a 50-L pilot plant. Diesel oil or kerosene was used as an organic solvent for the transesterification of triglycerides embedded in the waste ABE. When 1% (w/w) lipase was added to waste ABE, the FAME content reached 97% (w/w) after reaction for 12 h at 25 degrees C with an agitation rate of 30 rpm. The FAME production rate was strongly dependent upon the amount of enzyme added. Mixtures of FAME and diesel oil at ratios of 45:55 (BDF-45) and 35:65 (BDF-35) were assessed and compared with the European specifications for biodiesel as automotive diesel fuel, as defined by pr EN 14214. The biodiesel quality of BDF-45 met the EN 14214 standard. BDF-45 was used as generator fuel, and the exhaust emissions were compared with those of diesel oil. The CO and SO2 contents were reduced, but nitrogen oxide emission increased by 10%. This is the first report of a pilot plant study of lipase-catalyzed FAME production using waste ABE as a raw material. This result demonstrates a promising reutilization method for the production of FAME from industrial waste resources containing vegetable oils for use as a biodiesel fuel.

  8. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    SciTech Connect

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q.

    2014-12-15

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  9. Production Strategies and Applications of Microbial Single Cell Oils

    PubMed Central

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  10. Production Strategies and Applications of Microbial Single Cell Oils.

    PubMed

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty

  11. Phosphate bonded structural products from high volume wastes

    DOEpatents

    Singh, Dileep; Wagh, Arun S.

    1998-01-01

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder.

  12. Phosphate bonded structural products from high volume wastes

    SciTech Connect

    Singh, D.; Wagh, A.S.

    1998-12-08

    A method to produce structural products from benign waste is provided comprising mixing pretreated oxide with phosphoric acid to produce an acid solution, mixing the acid solution with waste particles to produce a slurry, and allowing the slurry to cure. The invention also provides for a structural material comprising waste particles enveloped by an inorganic binder. 1 fig.

  13. Oil-containing waste water treating material consisting of modified active carbon

    SciTech Connect

    Sato, H.; Shigeta, S.; Takenaka, Y.

    1982-03-16

    An oil-containing waste water treating material comprises an active carbon upon whose surface is chemically bonded at least one nitrogenous compound which is an amine or a quaternarized derivative thereof.

  14. Using caprolactam waste products in the production of glass articles

    SciTech Connect

    Min'ko, N.I.; Sabitov, S.S.; Belousov, Yu.L.; Chabot'ko, M.B.; Onishchuk, V.I.

    1986-09-01

    This paper describes the recovery of sodium carbonates from the waste incurred in the production of caprolactam. The process involves the pyrolysis of sodium salts of dicarboxylic acids--primarily adipic acid--and the subsequent purification of the resulting sodium carbonates and their incorporation into the manufacture of glass. The contribution of the carbonates to the glass falls chiefly in the domain of improving the working properties during manufacture and in the production of glassware whose light transmission properties are not a priority.

  15. Chemical looping reforming of waste cooking oil in packed bed reactor.

    PubMed

    Pimenidou, P; Rickett, G; Dupont, V; Twigg, M V

    2010-08-01

    Chemical looping steam reforming for hydrogen production from waste cooking oil was investigated using a packed bed reactor. The steam to carbon ratio of 4 and temperatures between 600 and 700 degrees C yielded the best results of the range of conditions tested. Six cycles at two weighted hourly space velocities (WHSV of 2.64 and 5.28 h(-1)) yielded high (>0.74) and low (<0.2) oil conversion fractions, respectively, representing low and high coking conditions. The WHSV of 2.64 h(-1) yielded product concentrations closest to equilibrium values calculated assuming a fresh rapeseed oil composition. Repeated cycling revealed some output oscillations in reactant conversion and in the extent of Ni-NiO conversion, but did not exhibit deterioration by the 6th cycle. The selectivity of CO, CO(2) and CH(4) were remarkably constant over the performed cycles, resulting in a repeatable syngas composition with H(2) selectivity very close to the optimum.

  16. New Method of Online Measurement of Oil and Suspended Material Concentration In Flowing Waste Water

    NASA Astrophysics Data System (ADS)

    Liao, Hongwei; Xu, Guobing; Xu, Xinqiang; Zhou, Fangde

    2007-06-01

    At present, the most of the measurements of oil and suspended material concentration in waste water measuring are not online surveys. A new method of online measurement of oil and suspended material concentration in flowing waste water is presented. The room experiments and field tests showed that it is suitable to waste water treatment on line. After sampling, It needed to measure immediately the concentration in first time. Then let sample to be in still in 10 - 20 seconds. After that the bulk concentration was measured in second time. Because of the suspended solids having heavy density, they would be dropped from waster water. During ultrasonic operation, emulsify the oil in waster water, the oil and suspended solid would be depart. After that the third time measurement was done. In thus way the concentrations of oil and suspended solids can be measured. At present there are two on-site equipments operating in the Changqing oilfield, and the results are pretty well.

  17. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  18. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    PubMed

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products.

  19. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  20. Scheduled oil sampling: A proactive approach towards pollution prevention and waste minimization

    SciTech Connect

    Reece, C.; Zirker, L.

    1995-11-01

    The Waste Reduction Operations Complex (WROC) at the Idaho National Engineering Laboratory (INEL) maintains an emergency fire protection system which provides fire water during emergency conditions. The diesel engine driving this system receives regular preventative maintenance (PM) and servicing. The Waste Minimization Plan for WROC requires that all systems and processes be given a regular assessment to verify any Pollution Prevention (P2) or Waste Minimization (Waste Min.) activities. The WROC Maintenance group has implemented a proactive or best management practice (BMP) that reflects this P2/Waste Min. awareness. The diesel engine is operated for 30 minutes each week to maintain its readiness. A typical owner`s manual for industrial engines require that the oil be changed every 100-hours of operation or 6-months; only 13-hours of operation occur during the 6-months before the required oil change. Thirteen hours of operation would not warrant changing the oil. The WROC proactive approach to this problem is to perform an annual Scheduled Oil Sampling (SOS). An 8-ounce sample of oil is obtained and sent to a SOS lab. The SOS lab analyzes the condition (breakdown) of the oil and, provides a detailed analysis of metal particulates (from engine wear), and checks for impurities, such as, sulphur, water, coolant, and fuel in the system. The oil is changed only when the sampling results warrant that an oil change is necessary. The actual costs of the oil, filters, and labor far exceed the costs of performing the SOS. The projected cost savings after 8 years is about $12,000 in labor, oil changing costs, and hazardous waste analysis.

  1. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production.

    PubMed

    Yan, Dong; Lu, Yue; Chen, Yi-Feng; Wu, Qingyu

    2011-06-01

    The by-product of sugar refinery-waste molasses was explored as alternative to glucose-based medium of Chlorella protothecoides in this study. Enzymatic hydrolysis is required for waste molasses suitable for algal growth. Waste molasses hydrolysate was confirmed as a sole source of full nutrients to totally replace glucose-based medium in support of rapid growth and high oil yield from algae. Under optimized conditions, the maximum algal cell density, oil content, and oil yield were respectively 70.9 g/L, 57.6%, and 40.8 g/L. The scalability of the waste molasses-fed algal system was confirmed from 0.5L flasks to 5L fermenters. The quality of biodiesel from waste molasses-fed algae was probably comparable to that from glucose-fed ones. Economic analysis indicated the cost of oil production from waste molasses-fed algae reduced by 50%. Significant cost reduction of algal biodiesel production through fermentation engineering based on the approach is expected.

  2. Assessment of gamma radiolytic degradation in waste lubricating oil by GC/MS and UV/VIS

    NASA Astrophysics Data System (ADS)

    Scapin, Marcos A.; Duarte, Celina L.; Bustillos, José Oscar W. V.; Sato, Ivone M.

    2009-07-01

    The hydrocarbons degradation by gamma irradiation of the waste automotive lubricating oil at different absorbed doses has was investigated. The waste automotive oil in a Brazilian oil recycling company was collected. This sample was fractioned and 50% and 70% (v/v) Milli-Q water were added. Each sample was irradiated with 100, 200 and 500 kGy doses using a gamma source Co-60—GAMMACELL type, with 5×10 3 Ci total activity. Gas chromatography-mass spectrometry (GC/MS) was used to identify degraded organic compounds. The mass spectra were analyzed using the mass spectral library from NIST, installed in the spectrometer. The sample irradiated at 500 kGy dose with 70% (v/v) Milli-Q water addition formed eight degradation products, namely diethanolmethylamine (C 5H 13NO), diethyldiethylene glycol (C 8H 18O 3), 1-octyn-3-ol, 4-ethyl (C 10H 18O) and 1.4-pentanediamine, N1, N1-diethyl (C 9H 22N 2). The color changing of the waste lubricating oil, for different absorbed doses, was determined by UV/VIS spectrophotometer. The related sample showed the lowest absorbance value evidencing the formation of 2-ethoxyethyl ether (C 8H 18O 3) compound.

  3. Production of polyol oils from soybean oil by bioprocess and Philippines edible medicinal wild mushrooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus A01-35 (NRRL B-59985) (Hou and Lin, 2013). The objective of this study is to identify the chemical ...

  4. Production of polyol oils from soybean oil by Pseudomonas aeruginosa E03-12.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy-polyols are important starting materials for the manufacture of polymers such as polyurethane. We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus ...

  5. Catalyst life and product color prediction for gas oil HDS

    SciTech Connect

    Ushio, M.; Hatayama, M.; Waku, T.

    1995-12-31

    Gas oil hydrodesulfurization was investigated. The sulfur content was reduced by increasing the reaction temperature. However, the severe temperatures made the product oil colored. The kinetic parameters of decoloring reaction at lower tempeatures were calculated.

  6. Dispersion Of Crude Oil And Petroleum Products In Freshwater

    EPA Science Inventory

    The objective of this research was to investigate the relationship between dispersion effectiveness in freshwater and the surfactant composition for fresh and weathered crude oil. Although limited research on the chemical dispersion of crude oil and petroleum products in freshwat...

  7. Commercial production of the oil absorbent Sea Sweep

    SciTech Connect

    Reed, T.B.; Mobeck, W.L.

    1993-12-31

    A new absorbent has been developed for oil spills. It attracts oil and chemicals and floats on water indefinitely. It is mpm-leaching and can save land and beaches from environmental disasters and can be disposed of in an environmentally acceptable manner or recycled. The new absorbent is called {open_quotes}Sea Sweep{close_quotes}; extensive research has been done on it under an EPA Small Business Innovation Research grant, Phase I and Phase II. Sea Sweep has been tested for toxicity to the environment. Less than 2 mg/l total organic carbon was found in water in contact with oil saturated Sea Sweep after 30 minutes. No toxicity was measured to any of the marine or freshwater tested species at any test concentrations. Sea Sweep is made from {open_quotes}pin chips,{close_quotes} a waste wood product, using a patented thermolytic process in which the wood is heated to about 300{degrees}C. It is a coarse, free-flowing granular material absorbing from 2.6 to 6.6 g/g of oils and chemicals. While originally designed for marine oil spills, it is also very effective for oil and chemical spills on land or water. Sea Sweep has now reached the stage of limited commercialization. A small (5 tons/day) plant has been built in northern Colorado at a wood recycling plant and it has been operated since January 1993. The plant features an afterburner that destroys the blue haze resulting from pyrolysis of the sawdust so that production is environmentally acceptable. Sea Sweep is marketed in 5, 10 and 25 lb plastic bags and 500 lb drop bags. It is also sold in socks, booms pillows and bilge rats. The company will recycle non-toxic materials for the customer using methods developed under the SBIR grant. Sea Sweep has been features in a number of articles, on television, and in national and international trade shows. The international marketing of Sea Sweep is administered from the corporate offices in Denver. Domestic marketing is administered from the regional office in Chicago.

  8. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules.

  9. Experimental analysis to utilize the solid wastes in brick production.

    PubMed

    Varadarajan, Rajagopalan; Govindan, Venkatesan

    2013-07-01

    Utilization of industrial, municipal, agricultural and other waste products in the industry has been the focus of research for economical, environmental, and technical reasons. Two solid wastes, i.e. Sugar-cane bagasse--is a fibrous waste-product of the sugar refining industry and granite processing industry generates a large amount of wastes mainly in the form of powder during sawing and polishing processes, which pollute and damage the environment, have been taken to experimental study. The objective of this study is to utilize the bagasse ash and granite waste for the manufacturing of bricks. Mixtures were prepared with 0, 10, 20, 30, 40 and 50% wastes of total weight of clay. The produced bricks are tested for mechanical properties, such as water absorption and compressive strength, according to Indian Standard Code. The result showed that 20% of bagasse ash and granite waste is optimum percentage to be used in the manufacturing of conventional bricks.

  10. Optimization of biogas production from coffee production waste.

    PubMed

    Battista, Federico; Fino, Debora; Mancini, Giuseppe

    2016-01-01

    This study was conducted to investigate the effects of chemical pretreatments on biogas production from coffee waste. After the preparation of a mixture of coffee waste with a TS concentration of 10%w/w, basic and acid pretreatments were conducted in batch mode and their performances were compared with the biogas produced from a mixture without any pretreatment stage. The basic pretreatment demonstrated a very good action on the hydrolysis of the lignin and cellulose, and permitted a biogas production of about 18NL/L with a methane content of almost 80%v/v. Thus, the basic pretreatment has been used to scale-up the process. The coffee refuse was has been carried out in a 45L anaerobic reactor working in continuous mode and in a mesophilic condition (35°C) with a Hydraulic Retention Time (HRT) of about 40days. A high biogas production of 1.14NL/Ld, with a methane percentage of 65%v/v was obtained, thus permitting a process yield of about 83% to be obtained.

  11. Changing of the guard in domestic oil production

    SciTech Connect

    Schmidt, R.H.

    1984-04-01

    Unless there are major new oil discoveries in the Eleventh Federal Reserve District, California and Alaska will threaten the region's domination of domestic oil production. Despite price deregulation, production has declined since 1971 because of depleting reserves and the low prospects for major discoveries. The loss of oil sales may be offset by an increase in the sale of oil field equipment to world markets. 2 figures.

  12. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    NASA Astrophysics Data System (ADS)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  13. Food and agricultural waste: Sources of carbon for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, wastes derived from agriculture products have met with limited success in the production of biofuels. Our objective in this report is to showcase a new and meaningful concept (called “avoidance”), to measure the environmental importance of converting these waste streams into energy. Agr...

  14. Quality improvement of pyrolysis oil from waste rubber by adding sawdust.

    PubMed

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q

    2014-12-01

    This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  15. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  16. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste.

    PubMed

    Ismail, Salmah; Dadrasnia, Arezoo

    2015-01-01

    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.

  17. Bioactive compounds with added value prepared from terpenes contained in solid wastes from the olive oil industry.

    PubMed

    Parra, Andres; Lopez, Pilar E; Garcia-Granados, Andres

    2010-02-01

    Starting from solid wastes from two-phase olive-oil extraction, the pentacyclic triterpenes oleanolic acid and maslinic acid were isolated. These natural compounds were transformed into methyl olean-12-en-28-oate (5), which then was transformed into several seco-C-ring triterpene compounds by chemical and photolytic modifications. The triene seco-products were fragmented through several oxidative procedures to produce, simultaneously, cis- and trans-decalin derivatives, both potential synthons for bioactive compounds. The chemical behavior of the isolated fragments was investigated, and a suitable approach to several low-molecular-weight terpenes was performed. These are interesting processes for the value-addition to solid waste from the olive-oil industry.

  18. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  19. Generation, characterization and reuse of solid wastes from a biodiesel production plant.

    PubMed

    Oliveira, Fernando Jorge Santos; Santana, Daniele Dos Santos; Costa, Simone Soraya Brito; Oliveira, Lenise Diniz; Liduino, Vitor Silva; Servulo, Eliana Flávia Camporese

    2017-03-01

    The aim of this study was to identify and characterize industrial solid wastes generated by a biodiesel production plant in Brazil, as well as to present strategies for the management of these materials. This plant produces every year around 100,000tons of biodiesel from vegetable oils and animal fats. The methodology of the study included technical visits, interviews with the operational and environmental management staff as well as analysis of documents, reports and computerized data systems. An approach to reduce the generation of hazardous waste was investigated. It was take into account the amount of raw material that was processed, reduction of landfill disposal, and the maximization of the their recycling and reuse. The study also identified the sources of waste generation and accordingly prepared an evaluation matrix to determine the types of waste with the higher potential for minimization. The most important residue of the process was the filter material impregnated with oil and biodiesel, requiring, therefore, measures for its minimization. The use of these residues in the production of ceramic artefacts (light bricks) was considered to be very promising, since no significant effect on the physico-chemical and mechanical properties of the artefacts produced was observed. Phytotoxicity test using seeds of Lactuva sativa (lettuce), Brassica juncea (mustard), Abelmoschus esculentus (okra), Chrysanthemum leucanthemum (daisy), Dendranthema grandiflorum (chrysanthemum) and Allium porrum (leek) were carried out. The results clearly show incorporation of the waste material into bricks did not influence relative germination and relative root elongation in comparison to control tests.

  20. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  1. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates.

    PubMed

    Almeida, Darne G; Soares da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Sarubbo, Leonie A

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R(2) = 0.99833) and biosurfactant yield (R(2) = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = -0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm(-1) and 4.19 gL(-1), respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL(-1), respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry.

  2. Extended Producer Responsibility and Product Stewardship for Tobacco Product Waste

    PubMed Central

    Curtis, Clifton; Collins, Susan; Cunningham, Shea; Stigler, Paula; Novotny, Thomas E

    2015-01-01

    This paper reviews several environmental principles, including Extended Producer Responsibility (EPR), Product Stewardship (PS), the Polluter Pays Principle (PPP), and the Precautionary Principle, as they may apply to tobacco product waste (TPW). The review addresses specific criteria that apply in deciding whether a particular toxic product should adhere to these principles; presents three case studies of similar approaches to other toxic and/or environmentally harmful products; and describes 10 possible interventions or policy actions that may help prevent, reduce, and mitigate the effects of TPW. EPR promotes total lifecycle environmental improvements, placing economic, physical, and informational responsibilities onto the tobacco industry, while PS complements EPR, but with responsibility shared by all parties involved in the tobacco product lifecycle. Both principles focus on toxic source reduction, post-consumer take-back, and final disposal of consumer products. These principles when applied to TPW have the potential to substantially decrease the environmental and public health harms of cigarette butts and other TPW throughout the world. TPW is the most commonly littered item picked up during environmental, urban, and coastal cleanups globally. PMID:26457262

  3. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    SciTech Connect

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oily wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.

  4. Medical waste production at hospitals and associated factors.

    PubMed

    Cheng, Y W; Sung, F C; Yang, Y; Lo, Y H; Chung, Y T; Li, K-C

    2009-01-01

    This study was conducted to evaluate the quantities of medical waste generated and the factors associated with the generation rate at medical establishments in Taiwan. Data on medical waste generation at 150 health care establishments were collected for analysis in 2003. General medical waste and infectious waste production at these establishments were examined statistically with the potential associated factors. These factors included the types of hospital and clinic, reimbursement payment by National Health Insurance, total number of beds, bed occupancy, number of infectious disease beds and outpatients per day. The average waste generation rates ranged from 2.41 to 3.26kg/bed/day for general medical wastes, and 0.19-0.88kg/bed/day for infectious wastes. The total average quantity of infectious wastes generated was the highest from medical centers, or 3.8 times higher than that from regional hospitals (267.8 vs. 70.3Tons/yr). The multivariate regression analysis was able to explain 92% of infectious wastes and 64% of general medical wastes, with the amount of insurance reimbursement and number of beds as significant prediction factors. This study suggests that large hospitals are the major source of medical waste in Taiwan. The fractions of medical waste treated as infectious at all levels of healthcare establishments are much greater than that recommended by the USCDC guidelines.

  5. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  6. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOEpatents

    Gaddy, James L.

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  7. Systems and methods of storing combustion waste products

    DOEpatents

    Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin

    2016-04-12

    In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.

  8. Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study.

    PubMed

    Benítez, E; Sainz, H; Melgar, R; Nogales, R

    2002-04-01

    The vermicomposting with Eisenia andrei of dry olive cake, a lignocellulosic waste produced during the extraction of olive oil, either alone or mixed with municipal biosolids, was studied in a nine-month pilot scale experiment. Number and biomass of earthworms and enzyme activities were periodically monitored and relevant properties of the final products were determined. In the assayed substrates, the total biomass of earthworms increased at the end of the experimental period between 9 and 12-fold respectively in comparison with the earthworm biomass initially inoculated. The increase in hydrolytic enzymes and overall microbial activity during the vermicomposting process indicated the biodegradation of the olive cake and resulted in the disappearance of the initial phytotoxicity of the substrate. However, the recalcitrant lignocellulosic nature of the dry olive cake prevented suitable humification during the vermicomposting process. For this reason, in addition to organic amendments, other management procedures should be considered.

  9. Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.

    PubMed

    Alimahmoodi, Mahmood; Mulligan, Catherine N

    2011-01-01

    The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series.

  10. Vitamin B12 biosynthesis over waste frying sunflower oil as a cost effective and renewable substrate.

    PubMed

    Hajfarajollah, Hamidreza; Mokhtarani, Babak; Mortaheb, Hamidreza; Afaghi, Ali

    2015-06-01

    Statistical experimental designs were used to develop a medium based on waste frying sunflower oil (WFO) and other nutrient sources for production of vitamin B12 (VB12) by Propionibacterium freudenreichii subsp. freudenreichii PTCC 1674. The production of acetic acid and propionic acid were also evaluated using the same microorganism. The amount of WFO in the media was initially optimized. The amount of 4 % w/v of oil found to be an appropriate amount for production of VB12. A Plackett Burman design was then employed to identify nutrients that have significant effect on the production of VB12 in the WFO media. Dimethylbenzimidazolyl (DMB), cobalt chloride, ferrous sulfate, and calcium chloride were the most important compounds. The level optimization of nutrients as the significant factors was finally performed using response surface methodology based on a central composite design. The model predicted that a medium containing 35.56 mg/L DMB, 14.69 mg/L CoCl2.6H2O, 5.82 mg/L FeSO4.7H2O, and 11.41 mg/L CaCl2.2H2O gives the maximum VB12 production of 2.60 mg/L. The optimized medium provides a final concentration of vitamin 170 % higher than that by the original medium. This study offers valuable insights on a cost-effective carbon source for industrial production of food-grade VB12.

  11. A vernonia diacylglycerol acyltransferase can increase renewable oil production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the production of plant oils such as soybean oil, a critical renewable resource for food and fuel, will be highly valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. We show that by manipulating a h...

  12. Market analysis of shale oil co-products. Appendices

    SciTech Connect

    Not Available

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  13. Study on earthed atomizing corona discharge enhancing the biodegradability of waste water from oil extraction

    NASA Astrophysics Data System (ADS)

    Du, S.; Xu, J.; Mi, J.; Li, N.

    2012-10-01

    This paper studies the usage of earthed atomizing corona discharge to dispose waste water from oil extraction. The I-V characteristic curves of earthed atomizing positive and negative corona discharge are compared to study the influence of water flux and inter-electrode distance (which refers to the distance between line electrode and plate electrodes) on discharge characteristics, and to measure the turbidity, pH, biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and the variation tendency of BOD5/COD in the process of dealing with waste water from oil extraction by earthed atomizing corona discharge. Ultimately, the mechanism of earthed atomizing corona discharge is analyzed. Research results indicate that when using earthed atomizing corona discharge to dispose of waste water from oil extraction, as the processing time grows there is a maximum value of turbidity, the pH level increases gradually then stabilizes, COD appears to descend, and BOD5 as well as BOD5/COD both have minimum values. When the processing time attains 300 min, waste water from oil extraction is suitable for biochemical treatment, foreshadowing that earthed atomizing corona discharge technology demonstrates energy conservation characteristic in improving the biodegradability of waste water from oil extraction and has a brilliant application prospect waiting ahead.

  14. Decoloration Kinetics of Waste Cooking Oil by 60Co γ-ray/H2O2

    NASA Astrophysics Data System (ADS)

    Xiang, Yulin; Xiang, Yuxiu; Wang, Lipeng

    2016-03-01

    In order to decolorize, waste cooking oil, a dark red close to black solution from homes and restaurants, was subjected to 60Co γ-ray/H2O2 treatment. By virtue of UV/Vis spectrophotometric method, the influence of Gamma irradiation to decoloration kinetics and rate constants of the waste cooking oil in the presence of H2O2 was researched. In addition, the influence of different factors such as H2O2 concentration and irradiation dose on the decoloration rate of waste cooking oil was investigated. Results indicated that the decoloration kinetics of waste cooking oil conformed to the first-order reaction. The decoloration rate increased with the increase of irradiation dose and H2O2 concentration. Saponification analysis and sensory evaluation showed that the sample by 60Co γ-ray/H2O2 treatment presented better saponification performance and sensory score. Furthermore, according to cost estimate, the cost of the 60Co γ-ray/H2O2 was lower and more feasible than the H2O2 alone for decoloration of waste cooking oil.

  15. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  16. Screening of microbes for the production of polyol oils from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. More than 30.6 million tons of soybean oil were produced worldwide annually and the major use of this oil is for food products. Triacylglycerols (TAG) containing hydroxy fatty acids (FA), e.g., castor oil, have many industrial uses such as the manufacture of aviation lubricant, plasti...

  17. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    SciTech Connect

    Dale, M.C.; Okos, M.; Burgos, N.

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  18. [Preparation of biodiesel from waste edible oils and performance and exhaust emissions of engines fueled with blends of the biodiesel].

    PubMed

    Ge, Yun-shan; Lu, Xiao-ming; Gao, Li-ping; Han, Xiu-kun; Ji, Xing

    2005-05-01

    The purpose of this study is to evaluate the effect of biodiesel on environment and to investigate the effect of the biodiesel made of waste edible oils on the performance and emissions of engines. Life cycle assessment (LCA) of biodiesel and diesel was introduced and the results of the LCA of both the fuels were given. The technological process of biodiesel production from waste edible oils, which is called transesterification of waste oils and methanol catalyzed with NaOH, was presented. Two turbocharged DI engines fueled with different proportions of biodiesel and diesel, namely, B50 (50% biodiesel + 50% diesel) and B20 (20% biodiesel + 80% diesel), were chosen to conduct performance and emission tests on a dynamometer. The results of the study indicate that there was a slight increase in fuel consumption by 8% and a drop in power by 3% with the blends of biodiesel, compared with diesel, and that the best improvements in emissions of smoke, HC, CO and PM were 65%, 11%, 33% and 13% respectively, but NOx emission was increased. The study also shows that it is satisfied to fuel engines with the low proportion blends of the biodiesel, without modifying engines, in performance and emissions.

  19. Oil from hydrocracking as a raw material for the production of white oils

    SciTech Connect

    Potanina, V.A.; Dremova, T.I.; Ponomareva, T.P.; Zlotnikov, V.Z.

    1984-01-01

    This article investigates the feasibility of using distillate oil from hydrocracking for white oil production. A process technology has been developed in the USSR for the manufacture of high-quality oils by hydrocracking a heavy distillate feed in high-pressure equipment. The neutral and hydrocracked oil sample and a blend of these stocks were subjected to treatment with oleum, neutralization with 65% ethyl alcohol, and contact finishing to obtain white oils. The physicochemical properties of the white oils are given. It is determined that the hydrocracked oil can be used as the raw material in manufacturing perfume oil meeting the standard GOST 4225-76, and that the blends can be used to obtain pharmaceutical white oil meeting the standard GOST 3164-78.

  20. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.

    PubMed

    Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon

    2015-05-01

    The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris.

  1. Oil production in the Arctic National Wildlife Refuge: the technology and the Alaskan oil context

    SciTech Connect

    Powers, L.M.

    1989-02-01

    This report presents the results of an assessment of issues focusing on the oil-field technology being used to develop the Alaskan North Slope's oil resources and the likely configuration of that technology as it might be applied in the future to the coastal plain and the prospects for future North Slope oil production, especially the likelihood that the flow of oil through the Trans Alaskan Pipeline System will suffer a serious decline during the next decade.

  2. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  3. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  4. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  5. Characterization of bio-oil from hydrothermal liquefaction of organic waste by NMR spectroscopy and FTICR mass spectrometry.

    PubMed

    Leonardis, Irene; Chiaberge, Stefano; Fiorani, Tiziana; Spera, Silvia; Battistel, Ezio; Bosetti, Aldo; Cesti, Pietro; Reale, Samantha; De Angelis, Francesco

    2013-01-01

    Solid wastes of organic origins are potential feedstocks for the production of liquid biofuels, which could be suitable alternatives to fossil fuels for the transport and heating sectors, as well as for industrial use. By hydrothermal liquefaction, the wet biomass is partially transformed into a water-immiscible, oil-like organic matter called bio-oil. In this study, an integrated NMR spectroscopy/mass spectrometry approach has been developed for the characterization of the hydrothermal liquefaction of bio-oil at the molecular level. (1)H and (13)C NMR spectroscopy were used for the identification of functional groups and gauging the aromatic carbon content in the mixture. GC-MS analysis revealed that the volatile fraction was rich in fatty acids, as well as in amides and esters. High-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been applied in a systematic way to fully categorize the bio-oil in terms of different classes of components, according to their molecular formulas. Most importantly, for the first time, by using this technique, and for the liquefaction bio-oil characterization in particular, FT-MS data have been used to develop a methodology for the determination of the aromatic versus aliphatic carbon and nitrogen content. It is well known that, because they resist hydrogenation and represent sources of polluting species, both aromatic molecules and nitrogen-containing species raise concerns for subsequent upgrading of bio-oil into a diesel-like fuel.

  6. Characterization of cellulosic wastes and gasification products from chicken farms

    SciTech Connect

    Joseph, Paul; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

  7. Extraction of tocopherolquinone from commercially produced vegetable oil waste and its regeneration back to vitamin E

    NASA Astrophysics Data System (ADS)

    Bayala, Isso

    Vegetable oils are the most important natural source of vitamin E in the human diet. These oils are refined in order to eliminate impurities and undesirable substances that may affect the taste or cause health risks. While the goal of the refinery is to improve the quality of certain organoleptic parameters such as odors, it also has some negative impacts on the content and stability of the micronutrients such as tocopherols and tocotrienols. Synthetic vitamin E now manufactured as all-racemic alpha tocopheryl acetate is usually marked as d, l-tocopherol or d, l-tocopheryl acetate with no known side effects, but has been proven to be less active than its natural form. Naturopathic and orthomolecular medicine advocates consider the synthetic vitamin E forms to offer little or no benefit for cancer, circulatory and heart diseases. The market for vitamin E has been growing since the year 2000 causing a gradual rise in pricing because of the shortage in supplies. On a geographical basis North America constitutes the largest consumer on the planet with 50 % of the synthetic vitamin E world market followed by Europe with 25 % and Latin America and Asia Pacific sharing equally the remaining balance. In response to the shortfall, several companies are modifying their operations by rationalizing their older facilities while upgrading technology and adding capacity to meet the demand. But this response has also its downside with companies obligated to meet tough environmental regulations. The purpose of the present dissertation was to develop a method that can help industries involved in vitamin E production maximize their productivity by transforming some of the waste products to vitamin E. To that end, a cost effective simple method was developed in chapter II using tin (II) to regenerate tocopherolquinone back to vitamin E. Chapter II also concerns a method developed to reduce tocopherolquinone back to vitamin E but this time using the chemical species chromium (III

  8. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  9. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  10. 40 CFR 112.9 - Spill Prevention, Control, and Countermeasure Plan Requirements for onshore oil production...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS OIL POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from... Countermeasure Plan Requirements for onshore oil production facilities (excluding drilling and...

  11. 40 CFR 112.9 - Spill Prevention, Control, and Countermeasure Plan Requirements for onshore oil production...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS OIL POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from... Countermeasure Plan Requirements for onshore oil production facilities (excluding drilling and...

  12. 40 CFR 112.9 - Spill Prevention, Control, and Countermeasure Plan Requirements for onshore oil production...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS OIL POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from... Countermeasure Plan Requirements for onshore oil production facilities (excluding drilling and...

  13. 40 CFR 112.9 - Spill Prevention, Control, and Countermeasure Plan Requirements for onshore oil production...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS OIL POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from... Countermeasure Plan Requirements for onshore oil production facilities (excluding drilling and...

  14. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  15. Consumption and production waste: another externality of tobacco use

    PubMed Central

    Novotny, T.; Zhao, F.

    1999-01-01

    OBJECTIVE—To describe the waste produced by and environmental implications of individual cigarette consumption (filter tips, packages, and cartons) and tobacco manufacturing.
STUDY SELECTION—All available articles and reports published since 1970 related to cigarette consumption and production waste were reviewed.
DATA SOURCES—Global cigarette consumption data were used to estimate cigarette butt and packaging waste quantities. Data from the Center for Marine Conservation's International Coastal Cleanup Project were used to describe some environmental impacts of tobacco-related trash. Data from the United States Environmental Protection Agency's (EPA's) Toxics Release Inventory and reported global cigarette consumption totals were used to estimate waste production from cigarette manufacturing.
DATA EXTRACTION AND SYNTHESIS—In 1995, an estimated 5.535 trillion cigarettes (27 675 million cartons and 276 753 million packages) were sold by the tobacco industry globally. Some of the wastes from these products were properly deposited, but a large amount of tobacco consumption waste ends up in the environment. Some is recovered during environmental clean-up days. For the past eight years (1990-1997), cigarette butts have been the leading item found during the International Coastal Cleanup Project; they accounted for 19.1% of all items collected in 1997. The tobacco manufacturing process produces liquid, solid, and airborne waste. Among those wastes, some materials, including nicotine, are designated by the EPA as Toxics Release Inventory (TRI) chemicals. These are possible environmental health hazards. In 1995, the global tobacco industry produced an estimated 2262 million kilograms of manufacturing waste and 209 million kilograms of chemical waste. In addition, total nicotine waste produced in the manufacture of reduced nicotine cigarettes was estimated at 300 million kilograms.
CONCLUSIONS—Laws against littering relative to cigarette butts

  16. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  17. Time Domain Reflectometry for Measuring Volumetric Water Content in Processed Oil Shale Waste

    NASA Astrophysics Data System (ADS)

    Reeves, T. L.; Elgezawi, S. M.

    1992-03-01

    Time domain reflectometry (TDR) was evaluated and developed to monitor volumetric water content (θυ) in oil shale solid waste retorted and combusted by the Lurgi-Ruhrgas process. A TDR probe was designed and tested that could be buried and compacted in waste embankments and provide in situ measurements for θυ in the high-saline and high-alkaline conditions exhibited by this waste. TDR was found to be accurate for measurement of θυ across a broad range of water contents in the processed oil shale waste. A computer algorithm to automate the analysis of TDR traces to determine θυ, was developed and tested. A sensitivity test was performed to analyze differences between three smoothing algorithms on the measurement. No significant differences were found between smoothing algorithms or between the number of points applied for smoothing.

  18. Solidification/stabilisation of liquid oil waste in metakaolin-based geopolymer

    NASA Astrophysics Data System (ADS)

    Cantarel, V.; Nouaille, F.; Rooses, A.; Lambertin, D.; Poulesquen, A.; Frizon, F.

    2015-09-01

    The solidification/stabilisation of liquid oil waste in metakaolin based geopolymer was studied in the present work. The process consists of obtaining a stabilised emulsion of oil in a water-glass solution and then adding metakaolin to engage the setting of a geopolymer block with an oil emulsion stabilised in the material. Geopolymer/oil composites have been made with various oil fraction (7, 14 and 20 vol.%). The rigidity and the good mechanical properties have been demonstrated with compressive strength tests. Leaching tests evidenced the release of oil from the composite material is very limited whereas the constitutive components of the geopolymer (Na, Si and OH-) are involved into diffusion process.

  19. Characterization of cellulosic wastes and gasification products from chicken farms.

    PubMed

    Joseph, Paul; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    2012-04-01

    The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

  20. Thermo-chemical extraction of fuel oil from waste lubricating grease.

    PubMed

    Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul

    2013-06-01

    This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source.

  1. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis.

    PubMed

    Islam, Mohammad Rofiqul; Parveen, Momtaz; Haniu, Hiroyuki

    2010-06-01

    Agricultural waste in the form of sugarcane bagasse was pyrolyzed in a fixed-bed fire-tube heating reactor under different pyrolysis conditions to determine the role of final temperature, sweeping gas flow rate and feed size on the product yields. Final temperature range studied was between 375 and 575 degrees C and the highest liquid product yield was obtained at 475 degrees C. Liquid products obtained under the most suitable conditions were characterized by physical properties, elemental analysis, GCV, FT-IR, (1)H NMR analysis and distillation. The empirical formula of the bio-oil with heating value of 23.5MJ/kg was established as CH(1.68)O(0.557)N(0.012). Comparison with other approaches showed that the liquid product yield by this simpler reactor system was higher with better physico-chemical properties as fuel. These findings show that fixed-bed fire-tube heating pyrolysis is a good option for production of bio-oils from biomass solid wastes.

  2. Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate.

    PubMed

    Gharat, Nikhil; Rathod, Virendra K

    2013-05-01

    This work reports the production of biodiesel with waste cooking oil and dimethyl carbonate in solvent free system through transesterification by immobilized enzyme (Novozym 435) under the influence of ultrasound irradiation. The experiments were conducted in an ultrasonic water bath under three different conditions i.e. ultrasonic irradiation (UI) without stirring, UI coupled with stirring and only stirring to compare their overall effects on fatty acid methyl esters (FAME) conversion. As compared with the conventional stirring method, where FAME conversion was 38.69% at 4h, the UI without stirring significantly enhanced the conversion of enzymatic transesterification to 57.68% for the same reaction time. However the reaction rate was further increased under the condition of ultrasonication coupled with stirring and resulted into higher conversion of 86.61% for the same reaction time. Effects of reaction parameters, such as temperature, ratio of DMC/oil, speed of agitation and enzyme loading on the conversion were investigated. Furthermore, repeated use of Novozym 435 showed gradual decline in both conversion as well as enzyme activity.

  3. Exploring the antioxidant potential of lignin isolated from black liquor of oil palm waste.

    PubMed

    Bhat, Rajeev; Khalil, H P S A; Karim, A A

    2009-09-01

    This study was conducted to evaluate the potential antioxidant activity of lignin obtained from black liquor, a hazardous waste product generated during the extraction of palm oil. Antioxidant potential of the extracted lignin was evaluated by dissolving the extracted samples in 2 different solvent systems, namely, 2-methoxy ethanol and DMSO. Results revealed high percent inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in the lignin sample dissolved in 2-methoxy ethanol over DMSO (concentration range of 1-100 microg/ml). Lignin extracted in 2-methoxy ethanol exhibited higher inhibition percentage (at 50 microg/ml, 84.2%), whereas a concentration of 100 microg/ml was found to be effective in the case of the DMSO solvent (69.8%). Fourier transform infrared (FTIR) spectrometry revealed that the functional groups from the extracted lignin and commercial lignin were highly similar, indicating the purity of the lignin extracted from black liquor. These results provide a strong basis for further applications of lignin in the food industry and also illustrate an eco-friendly approach to utilize oil palm black liquor.

  4. Introduction to Energy Conservation and Production at Waste Cleanup Sites

    EPA Pesticide Factsheets

    This issue paper, prepared by EPA's Engineering Forum under the Technical Support Project, provides an overview on the considerations for energy conservation and production during the design and (O&M) phases of waste cleanup projects.

  5. Chemical composition of fat and oil products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fats and oils are an important dietary component, and contribute to the nutritional and sensory quality of foods. This chapter focuses on the chemical composition of fats and oils, and how these compositions affect the functional properties of fats and oils in foods. The focus will remain on the mos...

  6. Oil-tanker waste-disposal practices: A review

    SciTech Connect

    Not Available

    1992-01-01

    In the spring of 1991, the Environmental Protection Agency, Region 10 (EPA), launched an investigation into tanker waste disposal practices for vessels discharging ballast water at the Alyeska Pipeline Services Company's Ballast Water Treatment (BWT) facility and marine terminal in Valdez, Alaska. It had been alleged that the Exxon Shipping Company was transferring 'toxic wastes originating in California' to Valdez. In response, EPA decided to examine all waste streams generated on board and determine what the fate of these wastes were in addition to investigating the Exxon specific charges. An extensive Information Request was generated and sent to the shipping companies that operate vessels transporting Alaska North Slope Crude. Findings included information on cargo and fuel tank washings, cleaning agents, and engine room waste.

  7. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    NASA Astrophysics Data System (ADS)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  8. Geochemical modeling research related to the surface disposal of processed oil shale solid waste. [Elements and compounds in oil shale wastes

    SciTech Connect

    Reddy, K. J.; Drever, J. I.

    1987-10-01

    Several geochemical codes are available in the literature to model chemical processes such as oxidation-reduction, precipitation-dissolution, formation of solution complex, adsorption, and ion exchange. However, these models differ in the environments to which they apply. The objective of this research was to evaluate the applicability of existing geochemical codes to predict water quality from an oil shale solid waste environment. We selected EQ3/EQ6, GEOCHEM, MINTEQ, PHREEQE, SOLMNEQ, and WATEQFC geochemical models for further evaluation. We concluded that all these models lack thermodynamic data for minerals and solution complexes which are important for oil shale solid waste studies. Selection of any one of the models would require development of a more reliable thermodynamic database, and this report describes the initiation of that work. So far, critical evaluation of thermodynamic data has been completed for Sr, F, Mo, and Se. 64 refs., 15 tabs.

  9. Waste management through life cycle assessment of products

    NASA Astrophysics Data System (ADS)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  10. Enzymatic Products from Modified Soybean Oil Containing Hydrazinoester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We use soybean oil to produce new, non-petroleum based products. The starting material is the ene reaction product of soybean oil and diethyl azodicarboxylate (DEAD), which can then be hydrolyzed chemically and enzymatically. Chemical hydrolysis gives hydrazino-fatty acids, whereas enzymatic hydro...

  11. Powder Production From Waste Polyethylene Terephthalate (PET) Water Bottles

    DTIC Science & Technology

    2014-06-01

    Powder Production From Waste Polyethylene Terephthalate (PET) Water Bottles by Anit Giri, Frank Kellogg, Kyu Cho, and Marc Pepi ARL-MR...871 June 2014 Powder Production From Waste Polyethylene Terephthalate (PET) Water Bottles Anit Giri and Frank Kellogg Bowhead Science and...Polyethylene Terephthalate (PET) Water Bottles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Anit Giri, * Frank

  12. Impact of heavy metals on the oil products biodegradation process.

    PubMed

    Zukauskaite, Audrone; Jakubauskaite, Viktorija; Belous, Olga; Ambrazaitiene, Dalia; Stasiskiene, Zaneta

    2008-12-01

    Oil products continue to be used as a principal source of energy. Wide-scale production, transport, global use and disposal of petroleum have made them major contaminants in prevalence and quantity in the environment. In accidental spills, actions are taken to remove or remediate or recover the contaminants immediately, especially if they occur in environmentally sensitive areas, for example, in coastal zones. Traditional methods to cope with oil spills are confined to physical containment. Biological methods can have an advantage over the physical-chemical treatment regimes in removing spills in situ as they offer biodegradation of oil fractions by the micro-organisms. Recently, biological methods have been known to play a significant role in bioremediation of oil-polluted coastal areas. Such systems are likely to be of significance in the effective management of sensitive coastal ecosystems chronically subjected to oil spillage. For this reason the aim of this paper is to present an impact of Mn, Cu, Co and Mo quantities on oil biodegradation effectiveness in coastal soil and to determine the relationship between metal concentrations and degradation of two oil products (black oil and diesel fuel). Soil was collected in the Baltic Sea coastal zone oil products degradation area (Klaipeda, Lithuania). The experiment consisted of two parts: study on the influence of micro-elements on the oil product biodegradation process; and analysis of the influence of metal concentration on the number of HDMs. The analysis performed and results obtained address the following areas: impact of metal on a population of hydrocarbon degrading micro-organisms, impact of metals on residual concentrations of oil products, influence of metals on the growth of micro-organisms, inter-relation of metal concentrations with degradation rates. Statistical analysis was made using ;Statgraphics plus' software. The influence of metals on the growth of micro-organisms, the biodegradation process

  13. Modern technologies of waste utilization from industrial tire production

    NASA Astrophysics Data System (ADS)

    Azimov, Yusuf; Gilmanshin, Iskander; Gilmanshina, Suriya

    2016-06-01

    The innovative technology of waste tire production recovery from JSC "Nizhnekamskshina", which determines the possibility of obtaining a new type of composite material in the form fiber filled rubber compound (FFRC) as the raw material, production of rubber products with high technical and operational characteristics.

  14. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  15. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  16. Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study.

    PubMed

    Bhattacharya, Munna; Guchhait, Sugata; Biswas, Dipa; Datta, Sriparna

    2015-11-01

    The growth kinetics and biodegradation of two waste lubricating oil samples including waste engine oil (WEO) and waste transformer oil (WTO) were studied using pure isolates and mixed culture of Ochrobactrum sp. C1 and Bacillus sp. K1. The mixed culture significantly influenced degradation efficiency of the pure isolates through bioaugmentation process. In particular, the mixed culture was capable of growing on various n-alkanes and polycyclic aromatic hydrocarbons and was able to tolerate unusually high concentrations of waste lubricants (WEO-86.0 g/L and WTO-81.5 g/L). The initial concentration of waste lubricating oils has been varied in the range of 1-10 % (v/v). Under this experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max = 0.078 h(-1), K S = 23.101 g/L, K i = 43.844 g/L for WEO; and μ max = 0.044 h(-1), K S = 10.662 g/L, K i = 58.310 g/L for WTO. The values of intrinsic kinetic parameters, like specific growth rate μ max, half saturation constant, K S, inhibition constant, K i and the maximum substrate concentration, S max and growth yield coefficient Y x/s , have been determined using each model hydrocarbon and their mixture as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of carbon atoms present in n-alkanes. The metabolites from degradation of model hydrocarbon compounds have been identified by GC-MS to elucidate the possible pathway of waste lubricating oil degradation process.

  17. Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results.

    PubMed

    Calabrò, P S; Pontoni, L; Porqueddu, I; Greco, R; Pirozzi, F; Malpei, F

    2016-02-01

    The cultivation of orange (Citrus×sinensis) and its transformation is a major industry in many countries in the world, it leads to the production of about 25-30Mt of orange peel waste (OPW) per year. Until now many options have been proposed for the management of OPW but although they are technically feasible, in many cases their economic/environmental sustainability is questionable. This paper analyse at lab scale the possibility of using OPW as a substrate for anaerobic digestion. Specific objectives are testing the possible codigestion with municipal biowaste, verifying the effect on methane production of increasingly high concentration of orange essential oil (EO, that is well known to have antioxidant properties that can slower or either inhibit biomass activity) and obtaining information on the behaviour of d-limonene, the main EO component, during anaerobic digestion. The results indicate that OPW can produce up to about 370LnCH4/kgVS in mesophilic conditions and up to about 300LnCH4/kgVS in thermophilic conditions. The presence of increasingly high concentrations of EO temporary inhibits methanogenesis, but according to the results of batch tests, methane production restarts while d-limonene is partially degraded through a pathway that requires its conversion into p-cymene as the main intermediate.

  18. Pyritic waste from precombustion coal cleaning: Amelioration with oil shale retort waste and sewage sludge for growth of soya beans

    SciTech Connect

    Lewis, B.G.; Gnanapragasam, N.; Stevens, M.L.

    1994-12-31

    Solid residue from fossil fuel mining and utilization generally present little hazard to human health. However, because of the high volumes generated, they do pose unique disposal problems in terms of land use and potential degradation of soil and water. In the specific case of wastes from precombustion coal cleaning, the materials include sulfur compounds that undergo oxidation when exposed to normal atmospheric conditions and microbial action and then produce sulfuric acid. The wastes also contain compounds of metals and nonmetals at concentrations many times those present in the original raw coal. Additionally, the residues often contain coal particles and fragments that combust spontaneously if left exposed to the air, thus contributing to the air pollution that the coal cleaning process was designed to prevent. Federal and state efforts in the United States to ameliorate the thousands of hectares covered with these wastes have focused on neutralizing the acidity with limestone and covering the material with soil. The latter procedure creates additional degraded areas, which were originally farmland or wildlife habitat. It would seem preferable to reclaim the coal refuse areas without earth moving. The authors describe here experiments with neutralization of coal waste acidity using an alkaline waste derived from the extraction of oil from oil shale to grow soya beans (Glycine max. [L]) on a mixture of wastes and sewage sludge. Yield of plant material and content of nutrients an potentially toxic elements in the vegetation and in the growth mixtures were determined; results were compared with those for plants grown on an agricultural soil, with particular focus on boron.

  19. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.

  20. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste

  1. Production of polyol oils from soybean oil through bioprocess

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produced by a two-step chemical process involving epoxidation and then the subsequent opening of the oxirane ring. The objective of this study is to d...

  2. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    PubMed Central

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  3. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass.

  4. Production of iron from metallurgical waste

    SciTech Connect

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  5. Bio-hydrogen production from renewable organic wastes

    SciTech Connect

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  6. Medicinal and cosmetics soap production from Jatropha oil.

    PubMed

    Shahinuzzaman, M; Yaakob, Zahira; Moniruzzaman, M

    2016-06-01

    Soap is the most useful things which we use our everyday life in various cleansing and cosmetics purposes. Jatropha oil is nonedible oil which has more benefits to soap making. It has also cosmetics and medicinal properties. But the presence of toxic Phorbol esters in Jatropha oil is the main constrains to use it. So it is necessary to search a more suitable method for detoxifying the Jatropha oil before the use as the main ingredient of soap production. This review implies a more suitable method for removing phorbol esters from Jatropha oil. Several parameters such as the % yield of pure Jatropha oil soap, TFM value of soap, total alkali content, free caustic alkalinity content, pH, the antimicrobial activity, and CMC value of general soap should be taken into consideration for soap from detoxified Jatropha oil.

  7. Genetic discovery for oil production and quality in sesame.

    PubMed

    Wei, Xin; Liu, Kunyan; Zhang, Yanxin; Feng, Qi; Wang, Linhai; Zhao, Yan; Li, Donghua; Zhao, Qiang; Zhu, Xiaodong; Zhu, Xiaofeng; Li, Wenjun; Fan, Danlin; Gao, Yuan; Lu, Yiqi; Zhang, Xianmei; Tang, Xiumei; Zhou, Congcong; Zhu, Chuanrang; Liu, Lifeng; Zhong, Ruichun; Tian, Qilin; Wen, Ziruo; Weng, Qijun; Han, Bin; Huang, Xuehui; Zhang, Xiurong

    2015-10-19

    Oilseed crops are used to produce vegetable oil. Sesame (Sesamum indicum), an oilseed crop grown worldwide, has high oil content and a small diploid genome, but the genetic basis of oil production and quality is unclear. Here we sequence 705 diverse sesame varieties to construct a haplotype map of the sesame genome and de novo assemble two representative varieties to identify sequence variations. We investigate 56 agronomic traits in four environments and identify 549 associated loci. Examination of the major loci identifies 46 candidate causative genes, including genes related to oil content, fatty acid biosynthesis and yield. Several of the candidate genes for oil content encode enzymes involved in oil metabolism. Two major genes associated with lignification and black pigmentation in the seed coat are also associated with large variation in oil content. These findings may inform breeding and improvement strategies for a broad range of oilseed crops.

  8. High level radioactive waste glass production and product description

    SciTech Connect

    Sproull, J.F.; Marra, S.L.; Jantzen, C.M.

    1993-12-01

    This report examines borosilicate glass as a means of immobilizing high-level radioactive wastes. Borosilicate glass will encapsulate most of the defense and some of the commercial HLW in the US. The resulting waste forms must meet the requirements of the WA-SRD and the WAPS, which include a short term PCT durability test. The waste form producer must report the composition(s) of the borosilicate waste glass(es) produced but can choose the composition(s) to meet site-specific requirements. Although the waste form composition is the primary determinant of durability, the redox state of the glass; the existence, content, and composition of crystals; and the presence of glass-in-glass phase separation can affect durability. The waste glass should be formulated to avoid phase separation regions. The ultimate result of this effort will be a waste form which is much more stable and potentially less mobile than the liquid high level radioactive waste is currently.

  9. IET control building (TAN620). equipment removed. Lube oil and waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). equipment removed. Lube oil and waste piping at upper right. Fire door on right. Rebar exposed in concrete of ceiling. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. Microbiological remediation of waste-oil polluted soils : Ecotoxicological and toxicological considerations.

    PubMed

    Rippen, G; Held, T; Ripper, P

    1994-09-01

    A waste-oil contaminated site situated near a river is supposed to be cleaned-up by means of different but complementary methods. On the basis of a research project, target values have been developed in close cooperation between the participant parties for the saturated and the unsaturated soil layers.The clean-up targets are introduced and discussed.

  11. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  12. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  13. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  14. Biodiesel production in crude oil contaminated environment using Chlorella vulgaris.

    PubMed

    Xaaldi Kalhor, Aadel; Mohammadi Nassab, Adel Dabbagh; Abedi, Ehsan; Bahrami, Ahmad; Movafeghi, Ali

    2016-12-01

    Biodiesel is a valuable alternative to fossil fuels and many countries choose biodiesel as an unconventional energy source. A large number of investigations have been done on microalgae as a source of oil production. In recent years, wastewater pollutions have caused many ecological problems, and therefore, wastewater phycoremediation has attracted the international attention. This paper studied the cultivation of Chlorella vulgaris in a crude oil polluted environment for biodiesel production. Intended concentrations were 10 and 20gperliter (crude oil/water) at two times. The results showed that the growth of C. vulgaris was improved in wastewater and the maximum amount of dry mass and oil was produced at the highest concentration of crude oil (0.41g and 0.15g/l, respectively). In addition, dry mass and oil yield of the microalga were significantly enhanced by increasing the experiment duration.

  15. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods.

    PubMed

    Szentmihályi, Klára; Vinkler, Péter; Lakatos, Béla; Illés, Vendel; Then, Mária

    2002-04-01

    From the rose hip seed, which is generally a waste material, valuable oil can be obtained for medicinal use. Various extraction methods have been compared: traditional solvent extraction with ultrasound-, microwave-, sub- and supercritical fluid extraction (SFE). Unsaturated fatty acid (UFA: oleic-, linoleic- and linolenic acid; 16.25-22.11%, 35.94-54.75%, 20.29-26.48%) and polyunsaturated fatty acid (PUFA:linoleic- and linolenic acid) content were over 90% and 60% in the recovered oils. The oils contained different amounts of metals. The concentration of some metals, particularly iron in microwave oil (27.11 microg g(-1)) is undesirable from the aspect of stability. By traditional solvent extraction, oil was obtained in 4.85 wt/wt%. Subcritical FE appeared to be the best method for the recovery of rose hip oil with highest oil yield (6.68 wt/wt%), carotene- (145.3 microg g(-1)) and linoleic acid content (54.75%). Supercritical FE without organic solvent is suitable for mild recovery of oil. The oil was rich in UFA and PUFA (92.7% and 76.25%) and contained the lowest amount of carotene and pheophytin (36.3 and 45.8 microg g(-1)). Oil yield in most new extraction methods (microwave extraction, super- and subcritical FE) was higher than in the case of traditional Soxhlet extraction. The main benefit of supercritical FE with CO2 is the solvent free oil while in the case of other extractions evaporation of the solvent is needed. Although the content of bioactive compounds in oils was different, all oils may be appropriate for medicinal use.

  16. Continuous biohydrogen production from waste bread by anaerobic sludge.

    PubMed

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge.

  17. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  18. Non-OPEC oil production: The key to the future

    SciTech Connect

    Borg, I.Y.

    1990-05-11

    The dramatic increase in non-OPEC oil production that has occurred since the fuel crises of the seventies was accelerated by the subsequent increases in oil prices on world markets. Current moderate world prices are attributable to increased supply in the last decade from these countries. Among those nations whose production has more than doubled since 1973 are China, Mexico, the UK, Norway, Egypt, India, Oman, Brazil, Colombia, Angola, and Syria. In this context, non-OPEC nations include the Communist oil-producing countries, since their ability to meet their own domestic demand has forestalled the day when they will compete for supplies on world markets. The prospect for continued growth in non-OPEC oil production is good. Prospects for additions to reserves continue to be bright in virgin exploration areas and semimature oil-producing provinces. Non-OPEC oil production may reach peak levels in the 1995--2000 time frame. However, production will be increasingly countered by growing demand, especially in South and Central America and Asia. It is almost certain that by the mid-nineties, competition for oil supplies in world markets will elevate the price of oil available from the well endowed OPEC nations. Supply disruptions as well may be in the offing by the turn of the century as surpluses on world markets disappear. 92 refs., 20 figs., 5 tabs.

  19. Wood processing wastes recovery and composted product field test

    SciTech Connect

    Chang, C.T.; Lin, K.L.

    1997-12-31

    Lumber mill waste, more than 3,000 tons per month, is one of the main waste sources in I-Lan area. Most of the lumber mill waste is sawdust which takes a large parts of organic-containing wastes in I-Lan county. Wastes from seafood plants around the Sueou Harbor causes a treatment problem because of their high nitrogen and phosphorous concentrations. Furthermore, the distiller-by products in I-Lan Winery are easy to become spoiled and result in odor. In this study, the compost method is suggested to deal with these waste problems and make energy recovery. Microorganisms incubating in the laboratory provide the stable seed needed for composting. Flowers and vegetable raising are scheduled to be used in field to verify the efficiency of the products. The optimal combination ration of wastes and operation criteria then will be concluded in this study after economic analyzing. The results show that the Zinnia elegans leaves growth is relative with organic fertilizer. It can also be illustrated from the statistical value that the F value is 19.4 and above the critical value 9.4.

  20. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease

    SciTech Connect

    Wan Caixia; Zhou Quancheng; Fu Guiming

    2011-08-15

    Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

  1. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica.

    PubMed

    Dobrowolski, Adam; Mituła, Paweł; Rymowicz, Waldemar; Mirończuk, Aleksandra M

    2016-05-01

    In this study, crude glycerol from various industries was used to produce lipids via wild type Yarrowia lipolytica A101. We tested samples without any prior purification from five different waste products; each contained various concentrations of glycerol (42-87%) as the sole carbon source. The best results for lipid production were obtained for medium containing glycerol from fat saponification. This reached 1.69gL(-1) (25% of total cell dry weight) with a biomass yield of 0.17gg(-1) in the flasks experiment. The batch cultivation in a bioreactor resulted in enhanced lipid production-it achieved 4.72gL(-1) with a biomass yield 0.21gg(-1). Moreover, the properly selected batch of crude glycerol provides a defined fatty acid composition. In summary, this paper shows that crude glycerol from soap production could be efficiently converted to single cell oil without any prior purification.

  2. Integrated bioethanol and biomanure production from potato waste.

    PubMed

    Chintagunta, Anjani Devi; Jacob, Samuel; Banerjee, Rintu

    2016-03-01

    Disposal of potato processing waste and the problem of pollution associated with it is a vital issue that is being faced by the potato processing plants. The conventional peeling methods presently followed in the processing plants for removing the potato peel, also result in the loss of some portion of the mash which is rich in starch. Indiscriminate discharge of the waste causes detrimental effects in the environment, so this problem can be resolved by successful utilization of the waste for the generation of value added products. Hence, the present work focuses on integrated production of bioethanol and biomanure to utilize the waste completely leading to zero waste generation. The first part of the work describes a comparative study of ethanol production from potato peel and mash wastes by employing co-culture of Aspergillus niger and Saccharomyces cerevisiae at various incubation time (24-120 h) instead of application of enzymes. The solid state fermentation of potato peel and mash inoculated with co-culture, resulted in bioethanol production of 6.18% (v/v) and 9.30% (v/v) respectively. In the second part of the work, the residue obtained after ethanol production was inoculated with seven different microorganisms (Nostoc muscorum, Fischerella muscicola, Anabaena variabilis, Aulosira fertilissima, Cylindrospermum muscicola, Azospirillium lipoferum, Azotobacter chroococcum) and mixture of all the organisms in equal ratio for nitrogen (N), phosphorous (P) and potassium (K) enrichment. Among them, A. variabilis was found to enrich N, P and K content of the residue by nearly 7.66, 21.66 and 15 fold than that of the initial content, ultimately leading to improved N:P:K ratio of approximately 2:1:1. The application of simultaneous saccharification and fermentation (SSF) for the conversion of potato waste to ethanol and enrichment of residue obtained after ethanol production with microorganisms to be used as manure envisages environmental sustainability.

  3. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin).

  4. Biodiesel production potential from fat fraction of municipal waste in Makkah.

    PubMed

    Shahzad, K; Nizami, A S; Sagir, M; Rehan, M; Maier, S; Khan, M Z; Ouda, O K M; Ismail, I M I; BaFail, A O

    2017-01-01

    In the Kingdom of Saudi Arabia (KSA), millions of Muslims come to perform Pilgrimage every year. Around one million ton of municipal solid waste (MSW) is generated in Makkah city annually. The collected MSW is disposed of in the landfills without any treatment or energy recovery. As a result, greenhouse gas (GHG) emissions and contamination of the soil and water bodies along with leachate and odors are occurring in waste disposal vicinities. The composition of MSW shows that food waste is the largest waste stream (up to 51%) of the total generated MSW. About 13% of the food waste consists of fat content that is equivalent to about 64 thousand tons per year. This study aims to estimate the production potential of biodiesel first time in Makkah city from fat/oil fractions of MSW and highlight its economic and environmental benefits. It has been estimated that 62.53, 117.15 and 6.38 thousand tons of biodiesel, meat and bone meal (MBM) and glycerol respectively could be produced in 2014. A total electricity potential of 852 Gigawatt hour (GWh) from all three sources based on their energy contents, Higher Heating Value (HHV) of 40.17, 18.33 and 19 MJ/kg, was estimated for 2014 that will increase up to 1777 GWh in 2050. The cumulative net savings from landfill waste diversion (256 to 533 million Saudi Riyal (SAR)), carbon credits (46 to 96 million SAR), fuel savings (146 to 303 million SAR) and electricity generation (273 to 569 million SAR) have a potential to add a total net revenue of 611 to 1274 million SAR every year to the Saudi economy, from 2014 to 2050 respectively. However, further studies including real-time data about annual slaughtering activities and the amount of waste generation and its management are critical to decide optimum waste management practices based on life cycle assessment (LCA) and life cycle costing (LCC) methodologies.

  5. Biodiesel production potential from fat fraction of municipal waste in Makkah

    PubMed Central

    2017-01-01

    In the Kingdom of Saudi Arabia (KSA), millions of Muslims come to perform Pilgrimage every year. Around one million ton of municipal solid waste (MSW) is generated in Makkah city annually. The collected MSW is disposed of in the landfills without any treatment or energy recovery. As a result, greenhouse gas (GHG) emissions and contamination of the soil and water bodies along with leachate and odors are occurring in waste disposal vicinities. The composition of MSW shows that food waste is the largest waste stream (up to 51%) of the total generated MSW. About 13% of the food waste consists of fat content that is equivalent to about 64 thousand tons per year. This study aims to estimate the production potential of biodiesel first time in Makkah city from fat/oil fractions of MSW and highlight its economic and environmental benefits. It has been estimated that 62.53, 117.15 and 6.38 thousand tons of biodiesel, meat and bone meal (MBM) and glycerol respectively could be produced in 2014. A total electricity potential of 852 Gigawatt hour (GWh) from all three sources based on their energy contents, Higher Heating Value (HHV) of 40.17, 18.33 and 19 MJ/kg, was estimated for 2014 that will increase up to 1777 GWh in 2050. The cumulative net savings from landfill waste diversion (256 to 533 million Saudi Riyal (SAR)), carbon credits (46 to 96 million SAR), fuel savings (146 to 303 million SAR) and electricity generation (273 to 569 million SAR) have a potential to add a total net revenue of 611 to 1274 million SAR every year to the Saudi economy, from 2014 to 2050 respectively. However, further studies including real-time data about annual slaughtering activities and the amount of waste generation and its management are critical to decide optimum waste management practices based on life cycle assessment (LCA) and life cycle costing (LCC) methodologies. PMID:28207856

  6. Market analysis of shale oil co-products. Summary report

    SciTech Connect

    Not Available

    1980-12-01

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  7. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  8. Closure of a hazardous waste disposal facility in an active oil field

    SciTech Connect

    Knott, S.A.; White, A.E. )

    1991-02-01

    State and federal laws and regulations enacted during the past five years have led to closure activities at a large number of hazardous waste disposal facilities. These closures are often lengthy, difficult, and expensive. Closures must adhere to federal regulations promulgated by the U.S. Environmental Protection Agency (EPA) as well as State regulations administered by the Department of Health Services and the Regional Water Quality Control Boards. This exhibit depicts the regulatory framework for closure of a hazardous waste site. It also describes the closure alternatives for a site in the Central Valley which primarily accepted wastes generated from oil field activities. Generally, one of two closure alternatives is followed: (1) sites are closed-in-place with the wastes covered or monitored, or (2) wastes are treated and removed so that no waste or waste residue remains. Regulations issued by the EPA in 1987 made another option available. This option is risk-based clean closure and involves the identification of risk-based cleanup goals. A site-specific risk assessment adhering to federal and state guidelines is required to establish the cleanup goals. Waste constituents present in concentrations below these goals may be left in place without post closure care.

  9. Production and degradation of polyhydroxyalkanoates in waste environment

    SciTech Connect

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  10. Oil Biotechnology: Value-Added Products and Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During my 40+ years research career, I have been working on "biocatalysis" of hydrophobic organic compounds, both petroleum oil and vegetable oil, to convert them to value-added products. "Biocatalysis" is defined as the use of a biocatalyst such as whole microbial cells or enzymes, in an aqueous o...

  11. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil.

    PubMed

    Hindryawati, Noor; Maniam, Gaanty Pragas

    2015-01-01

    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation.

  12. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  13. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies USA Inc.

    2001-12-17

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  14. By-products: oil sorbents as a potential energy source.

    PubMed

    Karakasi, Olga K; Moutsatsou, Angeliki

    2013-04-01

    The present study investigated the utilization of an industrial by-product, lignite fly ash, in oil pollution treatment, with the further potential profit of energy production. The properties of lignite fly ash, such as fine particle size, porosity, hydrophobic character, combined with the properties, such as high porosity and low specific gravity, of an agricultural by-product, namely sawdust, resulted in an effective oil-sorbent material. The materials were mixed either in the dry state or in aqueous solution. The oil sorption behaviour of the fly ash-sawdust mixtures was investigated in both marine and dry environments. Mixtures containing fly ash and 15-25% w/w sawdust performed better than each material alone when added to oil spills in a marine environment, as they formed a cohesive semi-solid phase, adsorbing almost no water, floating on the water surface and allowing total oil removal. For the clean-up of an oil spill 0.5 mm thick with surface area 1000 m(2), 225-255 kg of lignite fly ash can be utilized with the addition of 15-25% w/w sawdust. Fly ash-sawdust mixtures have also proved efficient for oil spill clean-up on land, since their oil sorption capacity in dry conditions was at least 0.6-1.4 g oil g(-1) mixture. The higher calorific value of the resultant oil-fly ash-sawdust mixtures increased up to that of bituminous coal and oil and exceeded that of lignite, thereby encouraging their utilization as alternative fuels especially in the cement industry, suggesting that the remaining ash can contribute in clinker production.

  15. Truck ramp construction from clean coal technology waste products

    SciTech Connect

    Wolfe, W.E.; Beeghly, J.H.

    1993-12-31

    The construction and performance of a truck ramp made from clean coal technology waste products are described. The specific waste product used in this project was generated at the power plant located on the campus of The Ohio State University in Columbus. The ramp is used by University vehicles depositing hard trash at a central disposal facility on the OSU campus. Laboratory tests which had been conducted on samples made from the power plant waste product clearly showed that, when the material is property compacted, strengths could be obtained that were much higher than those of the natural soils the clean coal waste would replace. In addition, the permeability and swelling characteristics of the waste product should make it an attractive alternative to importing select borrow materials. Based on the results of the laboratory tests, a decision was made to use the power plant waste in the truck ramp rather than the soil that was called for in the original design. Prior to the start of construction, the area on which the ramp was to be located was covered with an impermeable geomembrane. Drain lines were installed on top of the geomembrane so that water that might leach through the ramp could be collected. The waste product from the power plant was placed on the geomembrane in 20 to 30 centimeter lifts by University maintenance personnel without special equipment. A drain line was installed across the toe of the ramp to intercept surface runoff, and a wearing surface of 7 to 15 centimeters of crushed limestone was placed over the compacted ash. The finished ramp structure recycled approximately 180 metric tons of the power plant byproduct. After over a year in service there is no indication of erosion or rutting in the ramp surface. Tests performed on the leachate and runoff water have shown the high pH characteristic of these materials, but concentrations of metals fall below the established limits.

  16. Oil Production, The Price Crash and Uncertainty in Climate Change

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2015-12-01

    World oil production increased to about 74 million barrels per day by January 2005, and was fairly constant until 2011 when it started to increase to 77.8 mb/d in 2014. This spectacular increase of 4 mb/d was almost entirely due to a sharp increase in production in the US from shale formations, called light tight oil (LTO). World oil production minus this increase in US LTO Production has been flat since 2005 at about 74 mb/d. When US production starts to decline, world oil production likely will as well. That surge is forecast to end soon because LTO is expensive to produce, the first year decline rates are extremely high requiring many new wells each year to maintain or increase production and the most productive locations have already been drilled. It is unprofitable for the Exploration and Production (E&P) companies. Full-year free cash flow has been negative for most tight oil E&P companies since 2009. The total negative cash flow for the 19 largest E&P companies totaled 10.5B in 2014. The surge in US LTO production created an imbalance in global supply and demand and resulted in a 50% decrease in the price of oil. The tight-oil producers who were are financially marginal at an oil price greater than 90 per barrel are even more so at the lower price. As a result the surge in US production of LTO is declining, making it unlikely that world oil production will exceed the present value of about 28 Gb/yr (equivalent to 75 mb/d) (175 EJ/yr). Many of the SRES (IPCC Special Report on Emission Scenarios) and RCP (IPCC Representative Concentration Pathways) projections (especially RCP 8.5 and 6) require CO2 emissions due to oil consumption in the range of 32 Gb/yr to 57 Gb/yr (200 to 350 EJ/yr). The higher values would require a doubling of world oil production. It is highly uncertain whether the higher CO2 scenarios will be reached. This is an element of uncertainty missing from most considerations of future climate change.

  17. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    PubMed

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016.

  18. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    PubMed Central

    Chaiyut, Nattawut; Worawanitchaphong, Phatsakon

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854

  19. Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production.

    PubMed

    Buasri, Achanai; Chaiyut, Nattawut; Loryuenyong, Vorrada; Worawanitchaphong, Phatsakon; Trongyong, Sarinthip

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700-1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol.

  20. Oil as a Product of the Mantle

    NASA Astrophysics Data System (ADS)

    Ivanov, Kirill; Fedorov, Yuri; Erokhin, Yuri; Petrov, Lev; Pogromskaja, Olga; Shishmakov, A.; Biglov, Kamil

    2010-05-01

    Thermodynamic calculations and experiments showed that methane can not polymerize into heavier hydrocarbons at pressures lower than 5 kbar, while for a synthesis of hydrocarbon systems similar on composition to nature oils it is necessary 700-1800° and 15-80 kbar [1, 2]. If oil had been formed in mantle, composed mainly of ultrabasic rocks, then it is logically to suppose that oil and ultramaphite interrelation should be reflected upon its microelement composition. The West Siberia and Tatarstan oil geochemical study (by ICP-MS method; Element 2, analytics Yu.L. Ronkin et al., lab. of physical-chemical methods of researches, IGG, UB RAS) shows [3] that oils possess an extremely specific microelement composition. The main geochemical oil features are limitedly low contents of the majority of microelements and a brightly expressed positive europium anomaly, characteristic for deep formations. At the diagram of the normalized REE contents a noted feature of their distribution in oils is the prevalence of light lanthanoids over middle and heavy ones (La/Yb=16-19). Ni, Co, Cr, V, Cs, Sr, Zr and PGE in oils are quite comparable with their concentrations in ultrabasites. A series of experiments on the mass transport of the organic compounds from the bituminous argillites samples (of the Bazhenov suite of the North-Pokachev, South-Yagun and Tevlin-Russkin West-Siberian oil deposits) into synthesided hydrocarbons and mineralized thermal waters has been made. It was shown that biomarker presence in natural oils is not a proof of the oil organic origin, but may be quite gained by the hydrocarbons in the process of migration through sedimentary rocks, containing the organic substance. One of the main tasks should be the development of new methods of hydrocarbon deposit prospecting. Thus, proceeding from the deep oil genesis quite an important thing is the mapping of the basement faults. The ideas being developed by us [3] give all grounds for refusing from such quite recently

  1. Minimization of combustion by-products: Characteristics of hazardous waste

    SciTech Connect

    Lee, C.C.; Huffman, G.L.

    1990-11-01

    It has been well recognized that, although there are many potential solid waste treatment technologies, none are as universally applicable as incineration for the treatment of the many types of waste which are governed by the many different Federal laws and State regulations. However, incinerators may release trace amounts of unwanted combustion by-products, particularly if the incinerators are not well designed or properly operated. Control of emissions of combustion by-products (CBPs) is one of the major technical and sociological issues surrounding the implementation of incineration as a waste treatment alternative. Much of this is due to the lack of detailed knowledge about CBPs. The Clean Air Act Amendment is emphasizing the control of toxic air pollutants from all combustion sources; some of these pollutants are CBPs. CBPs include: (1) unburned principal organic hazardous constituents (POHCs); (2) products of incomplete combustion (PICs); (3) metals emissions; and (4) residuals/ashes. The Paper is a part of a series of writings on the subject of the CBP issue from EPA's Risk Reduction Engineering Laboratory in Cincinnati, Ohio. It specifically addresses the aspect of hazardous waste characteristics. The main objective of the series is to compare combustion by-products from all combustion sources including fossil fuel combustion and waste incineration, which hopefully will serve as an initial step in the eventual minimization of the release of CBPs to the environment.

  2. Allocating petroleum products during oil supply disruptions.

    PubMed

    Bezdek, R H; Taylor, W B

    1981-06-19

    Four options for allocating a long-term, severe shortfall of petroleum imports are analyzed: oil price and allocation controls, coupon gasoline rationing, variable gasoline tax and rebate, and no oil price controls with partial rebates. Each of these options is evaluated in terms of four criteria: microeconomic effects, macroeconomic effects, equity, and practical problems. The implications of this analysis for energy contingency planning are discussed.

  3. 1981 international directory of oil spill control products

    SciTech Connect

    Not Available

    1981-01-01

    This directory provides detailed information on oil spill control products in the following categories: booms, pumps, skimmers, spill control chemicals, and sorbents. The information was obtained directly from manufacturers. Prices are not included. (DMC)

  4. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    SciTech Connect

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  5. Chemical enhancement of oil production by cyclic steam injection

    SciTech Connect

    Blair, C.M. Jr.; Scribner, R.E.

    1982-12-01

    Members of a special class of interfacially active chemicals were injected into wells in Kern County, CA, immediately before and during the huff 'n' puff steaming cycle. The chemical treatment was found to give significant increases in oil production.

  6. Outer Continental Shelf Oil and Gas Leasing/Production Program

    SciTech Connect

    Not Available

    1988-01-01

    This annual report on the Outer Continental Shelf (OCS) Oil and Gas Leasing and Production program summarizes receipts and expenditures, and includes information on OCS safety violations as reported by the US Coast Guard. 3 figs., 12 tabs.

  7. Ignitability of crude oil and its oil-in-water products at arctic temperature.

    PubMed

    Ranellone, Raymond T; Tukaew, Panyawat; Shi, Xiaochuan; Rangwala, Ali S

    2017-02-15

    A novel platform and procedure were developed to characterize the ignitability of Alaska North Slope (ANS) crude oil and its water-in-oil products with water content up to 60% at low temperatures (-20-0°C). Time to ignition, critical heat flux, in-depth temperature profiles were investigated. It was observed that a cold boundary and consequent low oil temperature increased the thermal inertia of the oil/mixture and consequently the time to sustained ignition also increased. As the water content in the ANS water-in-oil mixture increased, the critical heat flux for ignition was found to increase. This is mainly because of an increase in the thermal conductivity of the mixture with the addition of saltwater. The results of the study can be used towards design of ignition strategies and technologies for in situ burning of oil spills in cold climates such as the Arctic.

  8. Application of oil refinery waste in the biosynthesis of glycolipids by yeast.

    PubMed

    Bednarski, Włodzimierz; Adamczak, Marek; Tomasik, Jan; Płaszczyk, Mariusz

    2004-10-01

    Candida antarctica or Candida apicola synthesized surfactants (glycolipids) in the cultivation medium supplemented with oil refinery waste, either with soapstock (from 5.0% to 12.0% v/v) or post-refinery fatty acids (from 2.0% to 5.0% v/v). The efficiency of glycolipids synthesis was determined by the amount of waste supplemented to the medium and was from 7.3 to 13.4 g/l and from 6.6 to 10.5 g/l in the medium supplemented with soapstock and post-refinery fatty acids, respectively. The studied yeast also synthesized glycolipids in the non-supplemented medium however, by the enrichment of medium with the oil refinery waste, a 7.5-8.5-fold greater concentration of glycolipids was obtained in the post-culture liquid then in the medium without addition of oil refinery waste. The yeast synthesized from 6.6 to 10.3 g dry biomass/l and the intra-cellular fat content was from 16.8% to 30.2%. The efficiency of glycolipids synthesis was determined by yeast species, medium acidity and culture period. The surface tension of the post-culture liquid separated from yeast biomass was reduced to 35.6 mN/m, which corresponded to the surface tension obtained at the critical micelle concentration of glycolipids.

  9. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  10. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m-1 at a low dosage as 0.100 g L-1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  11. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants.

    PubMed

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-05-06

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m(-1) at a low dosage as 0.100 g L(-1) of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants.

  12. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants

    PubMed Central

    Zhang, Qi-Qi; Cai, Bang-Xin; Xu, Wen-Jie; Gang, Hong-Ze; Liu, Jin-Feng; Yang, Shi-Zhong; Mu, Bo-Zhong

    2015-01-01

    Waste cooking oil (WCO) is a kind of non-edible oil with enormous quantities and its unreasonable dispose may generate negative impact on human life and environment. However, WCO is certainly a renewable feedstock of bio-based materials. To get the rebirth of WCO, we have established a facile and high-yield method to convert WCO to bio-based zwitterionic surfactants with excellent surface and interfacial properties. The interfacial tension between crude oil and water could reach ultra-low value as 0.0016 mN m−1 at a low dosage as 0.100 g L−1 of this bio-based surfactant without the aid of extra alkali, which shows a strong interfacial activity and the great potential application in many industrial fields, in particular, the application in enhanced oil recovery in oilfields in place of petroleum-based surfactants. PMID:25944301

  13. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    SciTech Connect

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  14. Production of gaseous fuel by pyrolysis of municipal solid waste

    NASA Technical Reports Server (NTRS)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  15. Purification of Sewage Contaminated by Oil Products Using Mesoporous Coal

    NASA Astrophysics Data System (ADS)

    Gvazava, Elene; Maisuradze, Nino; Samkharadze, Irma

    2016-10-01

    The sorption properties of mesoporous coals (pore size of ∼⃒ 4 nm, the specific surface area of 25 to 150 m2/g) of Georgian hard coal deposit have been studied and the efficacy of their usage for the treatment of sewage water polluted by oil products has been established. Purification rate depends on coal mass loaded in filter, grain size, initial concentration of oil products, the water acidity, etc.

  16. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect

    Miller, R.L.; Atwood, R.L.; Ye, Yi

    1991-12-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  17. Froth flotation of oil-bearing metal sulfide wastes

    SciTech Connect

    Miller, R.L. ); Atwood, R.L.; Ye, Yi )

    1991-01-01

    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  18. Apparatus for treating oil field wastes containing hydrocarbons

    SciTech Connect

    Mudd, R.E.; Wyatt, W.L.

    1986-03-11

    An apparatus is described for treating wastes containing carbonaceous materials comprising: (a) a rotary kiln having a first end higher than a second end whereby material rotating therein will flow from the first to the second end, the kiln having an inlet at the first end; (b) means for injecting burning fuel and air into the first end of the kiln and cause substantially complete combustion of all carbonaceous materials in the wastes and leaving only dry solid non-combustible residue and gases; (c) outlet means at the second end of the kiln; (d) separating means connected to the outlet means for separating heavier solid materials exiting the kiln from lighter solid materials exiting the kiln, the separating means including suction means for entraining the lighter materials in air and gases exhausted from the kiln while permitting heavier solid materials to separate therefrom by gravity; and (e) means downstream from the suction means for separating the lighter solid materials from the gases.

  19. Characteristics of bicyclic sesquiterpanes in crude oils and petroleum products.

    PubMed

    Yang, Chun; Wang, Zhendi; Hollebone, Bruce P; Brown, Carl E; Landriault, Mike

    2009-05-15

    This study presents a quantitative gas chromatography-mass spectrometry analysis of bicyclic sesquiterpanes (BSs) in numerous crude oils and refined petroleum products including light and mid-range distillate fuels, residual fuels, and lubricating oils collected from various sources. Ten commonly recognized bicyclic sesquiterpanes were determined in all the studied crude oils and diesel range fuels with principal dominance of BS3 (C(15)H(28)), BS5 (C(15)H(28)) and BS10 (C(16)H(30)), while they were generally not detected or in trace in light fuel oils like gasoline and kerosene and most lubricating oils. Laboratory distillation of crude oils demonstrated that sesquiterpanes were highly enriched in the medium distillation fractions of approximately 180 to 481 degrees C and were generally absent or very low in the light distillation fraction (boiling point to approximately 180 degrees C) and the heavy residual fraction (>481 degrees C). The effect of evaporative weathering on a series of diagnostic ratios of sesquiterpanes, n-alkanes, and biomarkers was evaluated with two suites of weathered oil samples. The change of abundance of sesquiterpanes was used to determine the extent of weathering of artificially evaporated crude oils and diesel. In addition to the pentacyclic biomarker C(29) and C(30) alphabeta-hopane, C(15) and C(16) sesquiterpanes might be alternative internal marker compounds to provide a direct way to estimate the depletion of oils, particularly diesels, in oil spill investigations. These findings may offer potential applications for both oil identification and oil-source correlation in cases where the tri- to pentacyclic biomarkers are absent due to refining or environmental weathering of oils.

  20. Sandia National Laboratories/Production Agency Weapon Waste Minimization Plan

    SciTech Connect

    Skinrood, A.C.; Radosevich, L.G.

    1991-07-01

    This Plan describes activities to reduce the usage of hazardous materials and the production of hazardous material waste during the development, production, stockpile, and retirement phases of war reserve nuclear weapons and nuclear weapon test units. Activities related to the development and qualification of more benign materials and processes for weapon production and the treatment and disposal of these materials from weapon retirement are described in separate plans.

  1. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  2. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba).

    PubMed

    Albalat, Amaya; Nadler, Lauren E; Foo, Nicholas; Dick, James R; Watts, Andrew J R; Philp, Heather; Neil, Douglas M; Monroig, Oscar

    2016-12-01

    In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as "tails-only" for the scampi trade. In the "tailing" process, the "head" (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes in

  3. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba)

    PubMed Central

    Albalat, Amaya; Nadler, Lauren E.; Foo, Nicholas; Dick, James R.; Watts, Andrew J. R.; Philp, Heather; Neil, Douglas M.; Monroig, Oscar

    2016-01-01

    In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as “tails-only” for the scampi trade. In the “tailing” process, the “head” (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and

  4. Genotoxic effects of fumes from asphalt modified with waste plastic and tall oil pitch.

    PubMed

    Lindberg, Hanna K; Väänänen, Virpi; Järventaus, Hilkka; Suhonen, Satu; Nygren, Jonas; Hämeilä, Mervi; Valtonen, Jarkko; Heikkilä, Pirjo; Norppa, Hannu

    2008-05-31

    As the use of recycled materials and industrial by-products in asphalt mixtures is increasing, we investigated if recycled additives modify the genotoxicity of fumes emitted from asphalt. Fumes were generated in the laboratory at paving temperature from stone-mastic asphalt (SMA) and from SMA modified with waste plastic (90% polyethylene, 10% polypropylene) and tall oil pitch (SMA-WPT). In addition, fumes from SMA, SMA-WPT, asphalt concrete (AC), and AC modified with waste plastic and tall oil pitch (AC-WPT) were collected at paving sites. The genotoxicity of the fumes was studied by analysis of DNA damage (measured in the comet assay) and micronucleus formation in human bronchial epithelial BEAS 2B cells in vitro and by counting mutations in Salmonella typhimurium strains TA98 and YG1024. DNA damage was also assessed in buccal leukocytes from road pavers before and after working with SMA, SMA-WPT, AC, and AC-WPT. The chemical composition of the emissions was analysed by gas chromatography/mass spectrometry. The SMA-WPT fume generated in the laboratory induced a clear increase in DNA damage in BEAS 2B cells without metabolic activation. The laboratory-generated SMA fume increased the frequency of micronucleated BEAS 2B cells without metabolic activation. None of the asphalt fumes collected at the paving sites produced DNA damage with or without metabolic activation. Fumes from SMA and SMA-WPT from the paving sites increased micronucleus frequency without metabolic activation. None of the asphalt fumes studied showed mutagenic activity in Salmonella. No statistically significant differences in DNA damage in buccal leukocytes were detected between the pre- and post-shift samples collected from the road pavers. However, a positive correlation was found between DNA damage and the urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) after work shift, which suggested an association between occupational exposures during road paving and genotoxic effects. Our

  5. TENORM: Fertilizer and Fertilizer Production Wastes

    EPA Pesticide Factsheets

    Phosphate rock is used in the production of phosphate fertilizers. Due to its chemical properties, phosphate rock may contain significant quantities of naturally occurring radioactive materials (NORM).

  6. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  7. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  8. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  9. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    PubMed

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production.

  10. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.

    PubMed

    Patowary, Rupshikha; Patowary, Kaustuvmani; Kalita, Mohan Chandra; Deka, Suresh

    2016-10-01

    The present study aimed at isolating rhamnolipid biosurfactant-producing bacteria that could utilize paneer whey, an abundant waste source as sole medium for the production purpose. Pseudomonas aeruginosa strain, SR17, was isolated from hydrocarbon-contaminated soil that could efficiently utilize paneer whey for rhamnolipid production and reduce surface tension of the medium from 52 to 26.5 mN/m. The yield of biosurfactant obtained was 2.7 g/l, upgraded to 4.8 g/l when supplemented with 2 % glucose and mineral salts. Biochemical, FTIR, and LC-MS analysis revealed that extracted biosurfactant is a combination of both mono and di-rhamnolipid congeners. The critical micelle concentration (CMC) was measured to be 110 mg/l. Emulsification activity of the biosurfactant against n-hexadecane, olive oil, kerosene, diesel oil, engine oil, and crude oil were found to be 83, 88, 81, 92, 86, and 100 %, respectively. The rhamnolipid was detected to be non-toxic against mouse fibroblastic cell line L292.

  11. Drying Pre-treatment on Empty Fruit Whole Bunches of Oil Palm Wastes

    NASA Astrophysics Data System (ADS)

    Khalib, N. Che; Abdullah, N.; Sulaiman, F.

    2010-07-01

    This study is focused on the drying pre-treatment on whole empty fruit bunches [EFB] oil palm wastes. The drying process of whole EFB wastes by conventional method is investigated using the conventional oven in order to obtain less than 10 mf wt % moisture content. Normally, the biomass is dried to less than 10 mf wt % in most laboratory experiments and commercial processes for thermal conversion technologies such as pyrolysis. The result shows that the moisture content of EFB of less than 10 mf wt % is achieved after 29 hours of drying process.

  12. Distribution of radium in oil and gas industry wastes from Malaysia.

    PubMed

    Omar, M; Ali, H M; Abu, M P; Kontol, K M; Ahmad, Z; Ahmad, S H S S; Sulaiman, I; Hamzah, R

    2004-05-01

    Radium concentrations in 470 samples of the various types of waste from oil and gas industries were analysed using gamma spectrometers. The results showed that the radium concentration varied within a wide range. The highest mean 226Ra and 228Ra concentrations of 114,300 and 130,120 Bq/kg, respectively, were measured in scales. Overall, 75% of the waste, mostly sludge and extraction residue lies within the normal range of radium concentration in soils of Malaysia. However, some platform sludge can have radium concentration up to 560 Bq/kg.

  13. Multi-loop Control System Design for Biodiesel Process using Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Patle, Dipesh S.; Z, Ahmad; Rangaiah, G. P.

    2015-06-01

    Biodiesel is one of the promising liquid fuels for future due to its advantages such as renewability and eco-friendliness. This manuscript describes the development of a multi-loop control system design for a comprehensive biodiesel process using waste cooking oil. Method for controlled variable-manipulated variable (CV-MV) pairings are vital for the stable, effective and economical operation of the process. Liquid recycles, product quality requirements and effective inventory control pose tough challenges to the safe operation of the biodiesel process. A simple and easy to apply effective RGA method [Xiong Q, Cai W J and He M J 2005 A practical loop pairing criterion for multivariable processes Journal of Process Control vol. 15 pp 741-747.] is applied to determine CV-MV pairings i.e. control configuration design for the bioprocess. This method uses steady state gain as well as bandwidth information of the process open loop transfer function to determine input-output pairings.

  14. Pretreatment and hydrolysis methods for recovery of fermentable sugars from de-oiled Jatropha waste.

    PubMed

    Kumar, Gopalakrishnan; Sen, Biswarup; Lin, Chiu-Yue

    2013-10-01

    The release of reducing sugars (RS) upon various pretreatments and hydrolysis methods from de-oiled Jatropha waste (DJW) was studied. The highest RS concentration of 12.9 g/L was observed at 10% enzyme hydrolysis. The next highest RS of 8.0 g/L and 7.8 g/L were obtained with 10% HCl and 2.5% H2SO4, respectively. The NaOH (2.5%), ultrasonication and heat (90°C for 60 min) treatments showed the RS concentration of 2.5 g/L, 1.1 g/L and 2.0 g/L, respectively. Autoclave treatment slightly enhanced the sugar release (0.9 g/L) compared to no treatment (0.7 g/L). Glucose release (11.4 g/L) peaked in enzyme hydrolysis. Enzyme treated acid unhydrolysed biomass showed 11.1 g/L RS. HCl and H2SO4 pretreatment gave maximal xylose (6.89 g/L and 6.16 g/L, respectively). Combined (acid and enzyme) hydrolysis employed was efficient and its subsequent batch hydrogen fermentation showed a production 3.1 L H2/L reactor.

  15. Saponified waste palm oil as an attractive renewable resource for mcl-polyhydroxyalkanoate synthesis.

    PubMed

    Możejko, Justyna; Ciesielski, Slawomir

    2013-10-01

    The synthesis of mcl-polyhydroxyalkanoates (mcl-PHAs) by Pseudomonas sp. Gl01 using saponified waste palm oil (SWPO) as the sole carbon source was investigated. It was shown that the analyzed strain accumulated biopolymers during the growth phase. Up to 43% of mcl-PHAs at 17 h were produced, when Pseudomonas sp. Gl01 was grown for 48 h in a biofermentor containing 15 g/l of SWPO. The results clearly indicate that lower carbon source supplementation decreased mcl-PHAs production. Furthermore, the obtained results confirmed that nitrogen limitation is unnecessary for the stimulation of biopolymer synthesis. Additionally, in the present study the mcl-PHAs biosynthesis at the molecular level was also investigated. Using the RT real-time PCR technique, the expression of PHA synthase genes (phaC1 and phaC2) and PHA depolymerase gene (phaZ) was analyzed. The data suggest that the phaZ gene could be transcribed together with the phaC1 or phaC2 gene, which means that PHA synthesis and degradation followed simultaneously. Depending on the oily substrate concentration a wide range of repeat-unit components were observed. The purified polymers consisted of monomers ranging from C₆ to C₁₆. Moreover, a differential scanning calorimetric and gel permeation chromatography analysis confirmed that the extracted mcl-PHAs are elastomers with useful physical and chemical properties.

  16. Genoprotective effects of lignin isolated from oil palm black liquor waste.

    PubMed

    Naik, Prashantha; Rozman, Hj Din; Bhat, Rajeev

    2013-07-01

    Black liquor waste (BLW), a major by-product of palm oil extraction process contains lignin as one of the constituents. Lignin isolated from BLW was evaluated for antioxidant and genoprotective properties and was compared with the commercial lignin for overall efficacy. Antioxidant compounds (phenolics and tannins) and antioxidant activities (phosphomolybdenum assay, ABTS(+) and FRAP assays) of lignin isolated from BLW were compared with commercial lignin. Bone marrow micronucleus (MN) test was employed for evaluating the dose-yield protective effect against cyclophosphamide (CP, 50mg/kg b.w.) induced genotoxicity in mouse. Results revealed isolated lignin to exhibit rich antioxidant activities. A decrease in MN frequency and recovery of P/N ratio (P: polychromatic erythrocytes, N: normochromatic erhythocytes) indicated protective effects of lignin against cyclophosphamide induced genotoxicity and cytotoxicity. The efficacy of BLW-derived lignin as an antioxidant and genoprotective agent was comparable to commercial lignin. Results on lignin isolated from BLW are envisaged to find potential applications in food and/or pharmaceutical industries.

  17. Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid.

    PubMed

    Overbeck, Tom; Steele, James L; Broadbent, Jeff R

    2016-12-01

    De-oiled algal biomass (algal cake) generated as waste byproduct during algal biodiesel production is a promising fermentable substrate for co-production of value-added chemicals in biorefinery systems. We explored the ability of Lactobacillus casei 12A to ferment algal cake for co-production of lactic acid. Carbohydrate and amino acid availability were determined to be limiting nutritional requirements for growth and lactic acid production by L. casei. These nutritional requirements were effectively addressed through enzymatic hydrolysis of the algal cake material using α-amylase, cellulase (endo-1,4-β-D-glucanase), and pepsin. Results confirm fermentation of algal cake for production of value-added chemicals is a promising avenue for increasing the overall cost competiveness of the algal biodiesel production process.

  18. Household Hazardous Waste (HHW)

    EPA Pesticide Factsheets

    This page gives an overview of how to safely manage household hazardous wastes like cleaners, paints and oils. Information is also provided on how to find recycling and disposal options for these products, as well as natural alternatives.

  19. Production and pipeline transport of oil-water dispersions

    SciTech Connect

    Carniani, E.; Celsi, A.; Ercolani, D.

    1997-07-01

    Oil-water dispersions are becoming increasingly important for their potential application in the economical exploitation of heavy-oil fields and as novel fuels to be utilized for gasification in industrial power plants and in small heating systems. Snamprogetti in co-operation with Agip and Eniricerche is involved in a research project, partially supported by the Holding Company ENI and Europen Union (Thermie project), for the developing of a new integrated process to produce heavy crude oil from the marginal fields located in the Adriatic Sea as oil-water dispersions. The process scheme provides the multiphase pipeline transportation of the oil in reservoir water dispersion (primary dispersion) from the platform to the onshore processing Oil Centre for oil production and for the preparation of a very stable dispersion of oil in fresh water (secondary dispersion) to be utilized for direct burning. To obtain the necessary information for the design of the production, transportation and processing systems Snamprogetti has equipped a pilot plant to perform dispersion preparations and characterizations, single phase and multiphase transportation tests. The present work provides experimental data relevant to pumping tests of primary and secondary dispersions showing a stable flow configuration for the secondary and a tendency to stratification for the primary in certain flow conditions. During multiphase pumping tests of primary dispersions a markedly non-newtonian behavior has been observed when strong segregation phenomena occur. A comparison with results obtained by one-phase and multiphase flow programs is also presented.

  20. Oil production by Mortierella isabellina from whey treated with lactase.

    PubMed

    Demir, Muammer; Turhan, Irfan; Kucukcetin, Ahmet; Alpkent, Zafer

    2013-01-01

    Whey, a by-product of cheese manufacturing is rich in nutrients such as lactose, proteins, and mineral salts. The fungus Mortierella isabellina was used for production of oil containing γ-linoleic acid (GLA) during fermentation on deproteinized whey permeate (DP-WP) with and without lactase addition. The maximum oil concentration was 3.65 g/L in DP-whey (16.0% lactose) without enzyme treatment. Treatment of DP-WP with lactase resulted in an increase in oil content to 17.13 g/L. Palmitic (22.50-25.80%) and oleic acids (37.60-48.56%) were the major fatty acids along with GLA (2.18-5.48%), linoleic (16.21-22.43%) and stearic acid (3.20-10.08%). This study suggests that whey can be utilized as a feedstock for production of microbial oil.

  1. Innovative technologies of waste recycling with production of high performance products

    NASA Astrophysics Data System (ADS)

    Gilmanshin, R.; Ferenets, A. V.; Azimov, Yu I.; Galeeva, A. I.; Gilmanshina, S. I.

    2015-06-01

    The innovative ways of recycling wastes as a tool for sustainable development are presented in the article. The technology of the production of a composite material based on the rubber fiber composite waste tire industry is presented. The results of experimental use of the products in the real conditions. The comparative characteristics of the composite material rubber fiber composite are given. The production technology of construction and repairing materials on the basis of foamed glass is presented.

  2. Nuclear waste glass Product Consistency Test (PCT), Version 3. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.

    1990-11-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples.

  3. Forest products decomposition in municipal solid waste landfills

    SciTech Connect

    Barlaz, Morton A. . E-mail: barlaz@eos.ncsu.edu

    2006-07-01

    Cellulose and hemicellulose are present in paper and wood products and are the dominant biodegradable polymers in municipal waste. While their conversion to methane in landfills is well documented, there is little information on the rate and extent of decomposition of individual waste components, particularly under field conditions. Such information is important for the landfill carbon balance as methane is a greenhouse gas that may be recovered and converted to a CO{sub 2}-neutral source of energy, while non-degraded cellulose and hemicellulose are sequestered. This paper presents a critical review of research on the decomposition of cellulosic wastes in landfills and identifies additional work that is needed to quantify the ultimate extent of decomposition of individual waste components. Cellulose to lignin ratios as low as 0.01-0.02 have been measured for well decomposed refuse, with corresponding lignin concentrations of over 80% due to the depletion of cellulose and resulting enrichment of lignin. Only a few studies have even tried to address the decomposition of specific waste components at field-scale. Long-term controlled field experiments with supporting laboratory work will be required to measure the ultimate extent of decomposition of individual waste components.

  4. Experimental evaluation of the transesterification of waste palm oil into biodiesel.

    PubMed

    Al-Widyan, Mohamad I; Al-Shyoukh, Ali O

    2002-12-01

    Transesterified vegetable oils (VOs) are promising alternative diesel fuel. Waste VOs are cheap and renewable but currently disposed of inadequately. In this work, waste palm oil was transesterified under various conditions. H2SO4 and different concentrations of HCl and ethanol at different excess levels were used. Higher catalyst concentrations (1.5-2.25 M) produced biodiesel with lower specific gravity, gamma, in a much shorter reaction time than lower concentrations. The H2SO4 performed better than HCl at 2.25 M, as it resulted in lower gamma. Moreover, a 100% excess alcohol effected significant reductions in reaction time and lower gamma relative to lower excess levels. The best process combination was 2.25 M H2SO4 with 100% excess ethanol which reduced gamma from an initial value of 0.916 to a final value of 0.8737 in about 3 h of reaction time. Biodiesel had the behavior of a Newtonian fluid.

  5. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    PubMed

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO2) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al2O3 and Ni-Co/Al2O3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al2O3 catalyst, producing 153.67mmolsyngasg(-1)waste. The addition of cobalt metal as a promoter to the Ni/Al2O3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases.

  6. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY PCBs Bulk Product v. Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION..., Attention Docket ID No. EPA-HQ-RCRA-2011-0847. Mail: U.S. Environmental Protection Agency; EPA Docket...

  7. Response to Oil Sands Products Assessment

    DTIC Science & Technology

    2015-09-01

    Dilbit) from Alberta, Canada, are subject to spilling during transport to domestic markets and refineries in the U.S. via pipeline, tank cars, or...B-3 Figure ‎B-4. Proposed supply of Canadian crude to refinery markets . ......................................................... B-4...challenges in transporting crude oil to domestic markets , especially to refineries. The forecasted output for 2015 represents what will be the

  8. Pulp and paper from blue agave waste from tequila production.

    PubMed

    Idarraga, G; Ramos, J; Zuñiga, V; Sahin, T; Young, R A

    1999-10-01

    Pulping of blue agave waste, from the production of tequila, was evaluated by both chemical and biomechanical pulping processes. Two conventional and two organosolv systems were used to pulp the agave waste under a standard set of conditions. The soda-ethanol process was superior in terms of delignification and pulp properties in comparison to the soda and ethanol organosolv processes for pulping of agave waste; however, the kraft process gave the best strength properties. In general, the strength of the agave waste pulps was rather poor in comparison to wood and other agro-based pulps; however, the tear strength was relatively high. This result is typical of poorly bonded sheets and may be due to the coarseness of the agave fibers and/or loss of hemicelluloses in the steaming process for the tequila production. Fungal treatment of the agave waste with Ceriporiopsis subvermispora reduced the energy consumption for mechanical refining but gave biomechanical pulps with inferior strength properties. The blue agave chemical pulps should be suitable for blending with softwood kraft pulps for publication grade paper.

  9. Analysis of vegetable oil production in central Iowa

    SciTech Connect

    Claar, P.W. II.; Colvin, T.S.; Marley, S.J.

    1982-01-01

    Vegetable oil can be used as an emergency substitute for diesel fuel for farming applications. This paper is an economic and energy analysis for vegetable oil production on a 180-ha (450-acre) central Iowa farm. The following data are presented as the basis for the economic analysis: (1) the yields of four varieties of sunflowers at three planting dates; (2) the measured sunflower harvesting losses-preharvest, header, threshing, and separating and cleaning for each variety and date of planting; and (3) the quantities of sunflower oil yielded from the pressing operation. Based on the data presented, it was concluded that even though a farmer could satisfatorily produce sunflowers, the on-farm processed sunflower oil does not compete with current diesel fuel prices. On-farm processed soybean oil has more potential as a substitute fuel from an economic standpoint in central Iowa. 8 tables.

  10. New Fission-Product Waste Forms: Development and Characterization

    SciTech Connect

    Alexandra Navrotsky

    2010-07-30

    Research performed on the program “New Fission Product Waste Forms: Development and Characterization,” in the last three years has fulfilled the objectives of the proposal which were to 1) establish ceramic waste forms for disposing of Cs, Sr and minor actinides, 2) fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of promising waste forms, 3) establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry, and 4) establish synthesis, testing, scaleup and commercialization routes for wasteform implementation through out in-kind collaborations. In addition, since Cs and Sr form new elements by radioactive decay, the behavior and thermodynamics of waste forms containing different proportions of Cs, Sr and their decay products were discovered using non-radioactive analogues. Collaborations among researchers from three institutions, UC Davis, Sandia National Laboratories, and Shott Inc., were formed to perform the primary work on the program. The unique expertise of each of the members in the areas of waste form development, structure/property relationships, hydrothermal and high temperature synthesis, crystal/glass production, and thermochemistry was critical to program success. In addition, collaborations with the Brigham Young Univeristy, Ben Gurion University, and Los Alamos National Laboratory, were established for standard entropies of ceramic waste forms, sol-gel synthesis, and high temperature synthesis. This work has had a significant impact in a number of areas. First, the studies of the thermodynamic stability of the mineral analogues provided an important technical foundation for assessment the viability of multicomponent oxide phases for Cs and Sr removal. Moreover, the thermodynamic data discovered in this program established information on the reaction

  11. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.

    PubMed

    Lu, Xiaowei; Jordan, Beth; Berge, Nicole D

    2012-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 °C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO(2)-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

  12. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  13. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect

    Elcock, D.

    1998-03-05

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  14. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study.

    PubMed

    Djukić-Vuković, Aleksandra; Mladenović, Dragana; Radosavljević, Miloš; Kocić-Tanackov, Sunčica; Pejin, Jelena; Mojović, Ljiljana

    2016-02-01

    Waste substrates from bioethanol and beer productions are cheap, abundant and renewable substrates for biorefinery production of lactic acid (LA) and variability in their chemical composition presents a challenge in their valorisation. Three types of waste substrates, wasted bread and wasted potato stillage from bioethanol production and brewers' spent grain hydrolysate from beer production were studied as substrates for the production of l(+) LA and probiotic biomass by Lactobacillus rhamnosus ATCC 7469. The correlation of the content of free alpha amino nitrogen and the production of LA was determined as a critical characteristic of the waste media for efficient LA production by L. rhamnosus on the substrates which contained equal amount of fermentable sugars. A maximal LA productivity of 1.54gL(-1)h(-1) was obtained on wasted bread stillage media, whilst maximal productivities achieved on the potato stillage and brewers' spent grain hydrolysate media were 1.28gL(-1)h(-1)and 0.48gL(-1)h(-1), respectively. A highest LA yield of 0.91gg(-1) was achieved on wasted bread stillage media, followed by the yield of 0.81gg(-1) on wasted potato stillage and 0.34gg(-1) on brewers' spent grain hydrolysate media. The kinetics of sugar consumption in the two stillage substrates were similar while the sugar conversion in brewers' spent grain hydrolysate was slower and less efficient due to significantly lower content of free alpha amino nitrogen. The lignocellulosic hydrolysate from beer production required additional supplementation with nitrogen.

  15. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  16. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  17. International evolution of fat, oil and grease (FOG) waste management - A review.

    PubMed

    Wallace, Thomas; Gibbons, David; O'Dwyer, Michael; Curran, Thomas P

    2017-02-01

    In recent years, issues relating to fat, oil and grease (FOG) in sewer systems have intensified. In the media, sewer blockages caused by FOG waste deposits, commonly referred to as 'fatbergs', are becoming a reminder of the problems that FOG waste can cause when left untreated. These FOG blockages lead to sanitary sewer overflows, property flooding and contamination of water bodies with sewage. Despite these financial and environmentally detrimental effects, a homogenous FOG waste management method has not been developed internationally. However, some successful enduring FOG management programmes have been established, such as in Dublin city and in Scandinavian countries. The aim of this paper is to carry out a review on existing FOG research and management approaches. FOG management involves comprehending: (1) FOG deposition factors in the sewer, (2) FOG prevention and awareness tactics undertaken internationally and (3) potential utilisation methods for FOG waste. This review will highlight that preventing FOG from entering the sewer is the most common approach, often through simple awareness campaigns. The diverted FOG is rarely valorised to bioenergy or biomaterials, despite its potential. Thus, all facets of the FOG waste lifecycle must be identified and managed. Advancements in processes and techniques must be assessed to best determine the future evolution of FOG waste management to assist in achieving a sustainable urban environment.

  18. Utilization of cellulosic waste for energy production

    NASA Astrophysics Data System (ADS)

    Deshpande, V.; Mishra, C.; Rao, M.; Seeta, R.; Srinivasan, M. C.; Jagannathan, V.

    1980-01-01

    Bioconversion of cellulose for the production of food or alcohol is of importance for the utilization of a renewable and abundant resource. The hydrolysis of different cellulosic materials by the cellulolytic enzymes produced by Penicillium funiculosum was studied. Fifty to 70% saccharification was obtained from pretreated bagasse, cotton and wood. The effect of different pretreatments to make the cellulose more susceptible to enzyme breakdown was also studied. Alkali pretreatment was found to be effective for most of the substrates. The production of alcohol from the hydrolysates by yeast fermentation without isolation of glucose was studied.

  19. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil.

    PubMed

    Song, Geum-Ju; Seo, Yong-Chil; Pudasainee, Deepak; Kim, In-Tae

    2010-07-01

    An attempt has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35-40%), acetylene (13-20%), ethylene (3-4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg(-1) and the concentrations of toxic gases, such as NO(x), HCl and HF, were below the regulatory emissions limit. Gas chromatography-mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 microm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.

  20. Air toxics from heavy oil production and consumption

    SciTech Connect

    Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

    1992-12-22

    This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis.

  1. Method for creating high carbon content products from biomass oil

    DOEpatents

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  2. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect

    Not Available

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  3. Production of Cold-Active Bacterial Lipases through Semisolid State Fermentation Using Oil Cakes.

    PubMed

    Joseph, Babu; Upadhyaya, Supriya; Ramteke, Pramod

    2011-01-01

    Production of cold active lipase by semisolid state fermentation involves the use of agroindustrial residues. In the present study, semisolid state fermentation was carried out for the production of cold active lipase using Micrococcus roseus, isolated from soil samples of Gangotri glaciers, Western Himalayas. Among various substrate tested, groundnut oil cake (GOC) favored maximal yield of lipases at 15 ± 1°C within 48 h. Supplementation of glucose 1% (w/v) as additional carbon source and ammonium nitrate 2% (w/v) as additional nitrogen source enhanced production of lipase. Addition of triglycerides 0.5% (v/v) tends to repress the lipase production. Further mixed preparation of groundnut oil cake (GOC) along with mustard oil cake (MOC) in the ratio of 1 : 1, and its optimization resulted in improved production of cold active lipase. The enzyme exhibited maximum activity at 10-15°C and was stable at temperatures lower than 30°C. The lipase exhibited optimum activity at pH 8 and showed more than 60% stability at pH 9. Semisolid state fermentation process by utilizing agroindustrial wastes will direct to large-scale commercialization of lipase catalyzed process in cost-effective systems.

  4. Robust optimization on sustainable biodiesel supply chain produced from waste cooking oil under price uncertainty.

    PubMed

    Zhang, Yong; Jiang, Yunjian

    2017-02-01

    Waste cooking oil (WCO)-for-biodiesel conversion is regarded as the "waste-to-wealthy" industry. This paper addresses the design of a WCO-for-biodiesel supply chain at both strategic and tactical levels. The supply chain of this problem is studied, which is based on a typical mode of the waste collection (from restaurants' kitchen) and conversion in the cities. The supply chain comprises three stakeholders: WCO supplier, integrated bio-refinery and demand zone. Three key problems should be addressed for the optimal design of the supply chain: (1) the number, sizes and locations of bio-refinery; (2) the sites and amount of WCO collected; (3) the transportation plans of WCO and biodiesel. A robust mixed integer linear model with muti-objective (economic, environmental and social objectives) is proposed for these problems. Finally, a large-scale practical case study is adopted based on Suzhou, a city in the east of China, to verify the proposed models.

  5. The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining

    SciTech Connect

    Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K.

    2008-10-15

    In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

  6. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  7. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  8. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters

    PubMed Central

    Berdugo-Clavijo, Carolina; Gieg, Lisa M.

    2014-01-01

    The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls), corresponding to the detection of an alkyl succinate synthase encoding gene (assA/masA) in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up to 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic vs. sessile) within a subsurface crude oil reservoir. PMID:24829563

  9. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters.

    PubMed

    Berdugo-Clavijo, Carolina; Gieg, Lisa M

    2014-01-01

    The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls), corresponding to the detection of an alkyl succinate synthase encoding gene (assA/masA) in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up to 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic vs. sessile) within a subsurface crude oil reservoir.

  10. Large-scale biohydrogen production from bio-oil.

    PubMed

    Sarkar, Susanjib; Kumar, Amit

    2010-10-01

    Large amount of hydrogen is consumed during the upgrading of bitumen into synthetic crude oil (SCO), and this hydrogen is exclusively produced from natural gas in Western Canada. Because of large amount of emission from natural gas, alternative sources for hydrogen fuel especially renewable feedstocks could significantly reduce CO(2) emissions. In this study, biomass is converted to bio-oil by fast pyrolysis. This bio-oil is steam reformed near bitumen upgrading plant for producing hydrogen fuel. A techno-economic model is developed to estimate the cost of hydrogen from biomass through the pathway of fast pyrolysis. Three different feedstocks including whole-tree biomass, forest residues (i.e. limbs, branches, and tops of tree produced during logging operations), and straw (mostly from wheat and barley crops) are considered for biohydrogen production. Delivered cost of biohydrogen from whole-tree-based biomass ($2.40/kg of H(2)) is lower than that of forest residues ($3.00/kg of H(2)) and agricultural residues ($4.55/kg of H(2)) at a plant capacity of 2000 dry tonnes/day. In this study, bio-oil is produced in the field/forest and transported to a distance of 500 km from the centralized remote bio-oil production plant to bitumen upgrading plant. Feedstock delivery cost and capital cost are the largest cost contributors to the bio-oil production cost, while more than 50% of the cost of biohydrogen production is contributed by bio-oil production and transportation. Carbon credits of $133, $214, and $356/tonne of CO(2) equivalent could make whole-tree, forest residues, and straw-based biohydrogen production competitive with natural gas-based H(2) for a natural gas price of $5/GJ, respectively.

  11. Production pump for high gravity or sand laden oil

    SciTech Connect

    Ponder, M.

    1990-05-01

    This patent describes a plunger type reciprocating pump for a producing oil well. It comprises: an elongate pump housing having an open upper end and a reciprocating part therein; tubing connector means for the open upper end for connection to a production tubing string assembled by threading together tubing joints to produce oil into the string and wherein the connector means includes; means telescoping relative to the tubing string.

  12. Catalytic pyrolysis of oil fractions separated from food waste leachate over nanoporous acid catalysts.

    PubMed

    Kim, Seung-Soo; Heo, Hyeon Su; Kim, Sang Guk; Ryoo, Ryong; Kim, Jeongnam; Jeon, Jong-Ki; Park, Sung Hoon; Park, Young-Kwon

    2011-07-01

    Oil fractions, separated from food waste leachate, can be used as an energy source. Especially, high quality oil can be obtained by catalytic cracking. In this study, nanoporous catalysts such as Al-MCM-41 and mesoporous MFI type zeolite were applied to the catalytic cracking of oil fractions using the pyrolysis gas chromatography/mass spectrometry. Mesoporous MFI type zeolite showed better textural porosity than Al-MCM-41. In addition, mesoporous MFI type zeolite had strong Brönsted acidity while Al-MCM-41 had weak acidity. Significant amount of acid components in the food waste oil fractions were converted to mainly oxygenates and aromatics. As a result of its well-defined nanopores and strong acidity, the use of a mesoporous MFI type zeolite produced large amounts of gaseous and aromatic compounds. High yields of hydrocarbons within the gasoline range were also obtained in the case of mesoporous MFI type zeolite, whereas the use of Al-MCM-41, which exhibits relatively weak acidity, resulted in high yields of oxygenates and diesel range hydrocarbons.

  13. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    SciTech Connect

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  14. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  15. Nuclear waste glass product consistency test (PCT), Version 5. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached.

  16. Processing of wastes from lead/acid battery production

    NASA Astrophysics Data System (ADS)

    Polivianny, I. R.; Rusin, A. I.; Lata, V. A.; Khegay, L. D.; Nourjigitov, S. T.

    Experience in the recovery of scrap and wastes from lead/acid battery production suggests that an electrothermal method has good prospects. This process is characterized by a high degree of lead and antimony (approx 98%) extraction, by effective gas cleaning and dust collection, and by full dust returning to the furnace. The electrothermal method is also distinguished by the high reliability of electric furnaces, the useability of any type of secondary lead battery scrap and wastes, and the possibility of process mechanization and control. In this paper, a description is given of the main technical and economical factors of soda-reduction smelting in an electric furnace, a technological scheme for wastes recovery, and the charge composition and features of the process.

  17. Tobacco Product Waste: An Environmental Approach to Reduce Tobacco Consumption.

    PubMed

    Novotny, Thomas E; Slaughter, Elli

    2014-01-01

    Cigarette butts and other tobacco product wastes (TPW) are the most common items picked up in urban and beach cleanups worldwide. TPW contains all the toxins, nicotine, and carcinogens found in tobacco products, along with the plastic nonbiodegradable filter attached to almost all cigarettes sold in the United States and in most countries worldwide. Toxicity studies suggest that compounds leached from cigarette butts in salt and fresh water are toxic to aquatic micro-organisms and test fish. Toxic chemicals have also been identified in roadside TPW. With as much as two-thirds of all smoked cigarettes (numbering in the trillions globally) being discarded into the environment each year, it is critical to consider the potential toxicity and remediation of these waste products. This article reviews reports on the toxicity of TPW and recommends several policy approaches to mitigation of this ubiquitous environmental blight.

  18. Past, Present, and Future Production of Bio-oil

    SciTech Connect

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers

  19. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques

    SciTech Connect

    Lu Xiaowei; Jordan, Beth; Berge, Nicole D.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from

  20. Waste Vegetable Oil as an Alternative Fuel for Diesel Vehicles

    DTIC Science & Technology

    2009-03-01

    government should procure “environmentally preferable” and “ biobased ” products. Those were non food or feed products and made by renewable agricultural...are needed. The containers should be heat resistant and convenient to move. An internet search revealed there were many different plastic ...receptacles available for about the same relative cost. U.S. Plastics in Lima, Ohio was selected due to the proximity to the base, saving on freight

  1. Integrated Use of Fluidized Bed Technology for Oil Production from Oil Shale

    NASA Astrophysics Data System (ADS)

    Siirde, Andres; Martins, Ants

    The plant unit which consists of a fluidized bed retort and CFB furnace for burning the by-products of retorting (semicoke and semicoke gas) is presented in this paper. The oil shale retort consists of a fast fluidized bed shaft, coarse semicoke bit, semicoke separation chamber and cyclone for the separation of fine semicoke particles. The crashed oil shale and hot ash from the CFB ash separator are fed concurrently into the fast fluidized bed shaft. For fluidizing the mixture of oil shale and hot ash particles, the recycle semicoke gas is used. The pyrolysis of oil shale begins in fluidized bed and is completed in the semicoke separation chamber. The coarse semicoke particles are separated from fluidized bed directly while the medium size particles are separated from the gases in the semicoke separation chamber and the finest semicoke particles in the cyclone. All the fractions of semicoke from the fluidized bed retort and semicoke gas from the oil fractionator are burnt in the CFB furnace. The semicoke ash is separated from flue gases in the CFB ash separator. A part of separated hot ash is fed into the fluidized bed retort as a solid heat carrier material and the rest into the furnace through the ash cooler or separated from the process. The retention of sulphur dioxide formed during the semicoke and semicoke gas combustion, is guaranteed for about 99 % due to the high CaO content in the semicoke ash and convenient temperature (about 850°C) in the CFB furnace. The described plant unit is useful for retorting oil shale and other solid hydrocarbon-containing fuels. The advantages of the present retorting process and system are: improved oil yield, greater throughput, lower retorting time, avoidance of moving parts in the retorting zones, reduced downtime, etc. A new plant unit for oil shale oil production has been elaborated and defended by the Estonian Utility Model EE 200700671 UI.

  2. Method of chemical analysis for oil shale wastes

    SciTech Connect

    Wallace, J.R.; Alden, L.; Bonomo, F.S.; Nichols, J.; Sexton, E.

    1984-06-01

    Several methods of chemical analysis are described for oil shale wastewaters and retort gases. These methods are designed to support the field testing of various pollution control systems. As such, emphasis has been placed on methods which are rapid and sufficiently rugged to perform well under field conditions. Ion chromatograph has been developed as a technique for the minor non-carbonate inorganic anions in retort water, including SO4, NO3, S2O3, SCN(-1), and total S. The method recommended for sulfide is a potiometric titration with Pb(II). The freezing point depression was used to determine the total solute content in retort waters, a test which can be considered analogous to the standard residue test. Three methods are described for the determination of total ammoniacal nitrogen in retort wastewaters: (1) a modified ion selective electrode technique, (2) an optical absorption technique, and (3) an ion chromatographic technique. Total sulfur in retort gas is determined by combusting the gas in a continuously flowing system, whereupon the resulting sulfur dioxide is determined by SO2 monitor. Individual sulfur species in retort gas including H2S, COS, SO2, and CH3CH2SH are determined by gas chromatography with flame photometric detection. Quality control, pH, conductivity, total inorganic carbon, and total organic carbon measurements are discussed briefly.

  3. Disposal of NORM waste in salt caverns

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  4. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOEpatents

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  5. Energy Production from Zoo Animal Wastes

    SciTech Connect

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  6. Studies on production and characterization of enriched urban waste composts and their influence on crops productivity.

    PubMed

    Salakinkop, S R; Hunshal, C S; Gorogi, P T; Basavaraj, B

    2008-01-01

    Enriched compost produced with use of municipal solid wastes (MSW) recorded narrow C:N ratio at the end of decomposition period than municipal solid wastes decomposed without enrichers. To enhance the decomposition rate, quality of municipal solid wastes and enrichers/amendments are found very significant for production of compost. Nutrient content particularly nitrogen, phosphorus and potassium could be enhanced with addition of organic amendment/enrichers. Response of different crops for composts produced with addition of different enrichers like night soil, 25% distillery sludge and bio-fertilizers (Azospirillum sp and Bacillus sp) was conspicuous compared to the compost derived from municipal solid wastes alone with respect to increased growth and yield of crops. Among the enriched composts, night soil enriched compost significantly increased the response of potato and groundnut crops. According to farmer's opinion obtained with matrix scoring, chemical fertilizers and sheep penning are cheaper compared to pit compost or urban solid waste compost. While chemical fertilizers are considered to have adverse effects on soil more than pit compost, tank silt, sheep penning and urban solid waste. Weed infestation is associated more with urban waste than other sources. For dry land, agriculture urban waste could be useful due to good moisture holding capacity. Crop yields could be improved under low rainfall condition whenever pit compost or urban solid waste is used.

  7. In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water.

    PubMed

    Wedler, Jonas; Weston, Anna; Rausenberger, Julia; Butterweck, Veronika

    2016-10-01

    Classical production of rose oil is based on water steam distillation from the flowers of Rosa damascena. During this process, large quantities of waste water accrue which are discharged to the environment, causing severe pollution of both, groundwater and surface water due to a high content of polyphenols. We recently developed a strategy to purify the waste water into a polyphenol-depleted and a polyphenol-enriched fraction RF20-(SP-207). RF20-(SP-207) and sub-fraction F(IV) significantly inhibited cell proliferation and migration of HaCaT cells. Since there is a close interplay between these actions and inflammatory processes, here we focused on the fractions' influence on pro-inflammatory biomarkers. HaCaT keratinocytes were treated with RF20-(SP-207), F(IV) (both at 50μg/mL) and ellagic acid (10μM) for 24h under TNF-α (20ng/mL) stimulated and non-stimulated conditions. Gene expression of IL-1β, IL-6, IL-8, RANTES and MCP-1 was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and cellular protein secretion of IL-8, RANTES and MCP-1 was determined by ELISA based assays. RF20-(SP-207) and F(IV) significantly decreased the expression and cellular protein secretion of IL-1β, IL-6, IL-8, RANTES and MCP-1. The diminishing effects on inflammatory target gene expression were slightly less pronounced under TNF-α stimulated conditions. In conclusion, the recovered polyphenol fraction RF20-(SP-207) from rose oil distillation waste water markedly modified inflammatory target gene expression in vitro, and, therefore, could be further developed as alternative treatment of acute and chronic inflammation.

  8. Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose.

    PubMed

    Rahman, S H A; Choudhury, J P; Ahmad, A L; Kamaruddin, A H

    2007-02-01

    Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively.

  9. Recent Trends in Water Use and Production for California Oil Production.

    PubMed

    Tiedeman, Kate; Yeh, Sonia; Scanlon, Bridget R; Teter, Jacob; Mishra, Gouri Shankar

    2016-07-19

    Recent droughts and concerns about water use for petroleum extraction renew the need to inventory water use for oil production. We quantified water volumes used and produced by conventional oil production and hydraulic fracturing (HF) in California. Despite a 25% decrease in conventional oil production from 1999 to 2012, total water use increased by 30% though much of that increase was derived from reuse of produced water. Produced water volumes increased by 50%, with increasing amounts disposed in unlined evaporation ponds or released to surface water. Overall freshwater use (constituting 1.2% of the state's nonagricultural water consumption) increased by 46% during this period due to increased freshwater-intensive tertiary oil production. HF has been practiced in California for more than 30 years, accounting for 1% of total oil production in 2012 from mostly directional and vertical wells. Water use intensity for HF wells in California averaged at 3.5 vol water/vol oil production in 2012 and 2.4 vol/vol in 2013, higher than the range from literature estimates and net water use intensity of conventional production (1.2 vol/vol in 2012). Increasing water use and disposal for oil production have important implications for water management and have potentially adverse health, environmental, and ecological impacts.

  10. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    PubMed

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology.

  11. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  12. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  13. Recovery of used frying sunflower oil with sugar cane industry waste and hot water.

    PubMed

    Ali, Rehab F M; El Anany, A M

    2014-11-01

    removing oil oxidation products. The current study also recommends using hot water treatment for improving the quality of used frying oil.

  14. Fermentative Hydrogen Production From Food Waste Without Inocula

    NASA Astrophysics Data System (ADS)

    Shimizu, S.; Fujisawa, A.; Mizuno, O.; Kameda, T.; Yoshioka, T.

    2008-02-01

    The kind of seed microorganisms and its growth conditions are important factors for the hydrogen fermentation. However, there are many kinds of bacteria in food waste, and it is necessary to know their behavior if it is used as a substrate. Therefore, hydrogen fermentation of food waste was investigated in the absence of inocula with an initial pH varying from 5 to 9 and in a temperature range between 22 to 50 °C. Hydrogen production occurred when the initial pH of the solution containing the food waste was adjusted to 7-9 and the temperature was adjusted to 22 or 35 °C (maximum production was 40 ml-H2/g-TS at an initial pH of 9 and a temperature of 35 °C). However, the hydrogen production stopped when the pH decreased due to the accumulation of organic acids. In the next step, the pH was controlled by the addition of a NaOH solution between 5.0 and 9.0. When the pH was controlled between 5.0-6.0, the hydrogen production increased to a maximum of 90 ml-H2/g-TS at a pH of 5.5 and a temperature of 35 °C; more than 4 times more than for the sample without pH adjustment, due to the acceleration of butyrate fermentation.

  15. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    PubMed

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process.

  16. The Fate of Organophosphorus Pesticides during Camellia Oil Production.

    PubMed

    Liu, Yihua; Mo, Runhong; Zhong, Donglian; Shen, Danyu; Ni, Zhanglin; Tang, Fubin

    2015-08-01

    The purpose of this study was to investigate the fate of organophosphorus pesticides (OPs) during camellia oil production process, from camellia fruit to the final oil product. The results showed that the OPs were mainly distributed in the peel of camellia fruit, basically above 40% after the pesticide application of 7 d (P < 0.05). A small amount of OPs could enter into the seed and convert to crude camellia oil, with the concentration of 19.5 to 548.2 mg/L. In addition, metabolites of OPs (25.7 to 768.9 mg/L) could be detected in the crude camellia oil. Moreover, the refining process (degumming, deacidfying, bleaching) had a significant effect on the removal of OPs from the crude camellia oil (P < 0.05), and the effect was related to the octanol-water partition constant (LogP) of pesticide. The larger the LogP, the more stable the OPs were during refining process. The final refined camellia oil was found to have no detectable levels of OPs metabolite.

  17. Environmental problems and technology needs related to oil production

    SciTech Connect

    Browne, L.W.

    1985-06-01

    More stringent regulations based on potential health and environmental impacts have added responsibility on the oil producer and the states. The author describes the potential for soil and water contamination from several sources, including well drilling and well completion chemicals, corrosion, and disposal of brine and other fluid waste. He cites pit lining and solidification techniques now under study and the possibility of land farming. He also cites the information about ground water, soil characterization, plant growth, etc. that is needed. The Geologic and Engineering Environmental Information Data Base should be a valuable tool in solving some of the problems.

  18. Effect of operating parameters on bio-fuel production from waste furniture sawdust.

    PubMed

    Uzun, Basak Burcu; Kanmaz, Gülin

    2013-04-01

    Fast pyrolysis is an effective technology for conversion of biomass into energy and value-added chemicals instead of burning them directly. In this study, fast pyrolysis of waste furniture sawdust (pine sawdust) was investigated under various reaction conditions (reaction time, pyrolysis temperature, heating rate, residence time and particle size) in a tubular reactor. The optimum reaction conditions for bio-oil production was found as reaction time of 5 min, pyrolysis temperature of 500 °C, heating rate of 300 °C min(-1) under nitrogen flow rate of 400 cm(3) min(-1). At these conditions, maximum bio-oil yield was obtained as 42.09%. Pyrolysis oils were characterized by using various elemental analyses, fourier - transformation infrared (FT-IR) spectrometry and gas chromatography-mass spectrometry (GC-MS). The results of the GC-MS showed that cracking of large molecular phenolics was followed by partial conversion into phenol and alkylated phenols (45%) during the pyrolysis. According to the experimental and characterization results; the liquid product could be used as feedstock for the chemical industry or petroleum crude for refinery.

  19. Environmental effects of offshore oil production

    SciTech Connect

    Middletich, B.S.

    1981-01-01

    The papers deal with two major categories of oil field impacts: hydrocarbon and sulfur discharges from producing platforms; and the effects of the structures themselves in the marine environment. The studies can also be broken down into those that deal with the fate of the polluting discharges (dispersion, degradation, consumption); and those that deal with the affected organisms themselves. Some studies used control sites to compare effects near the platforms. Others analyzed composition, density, and quality of organisms throughout the field, offering comparisons between control sites and oil field sites. The presence of pollutants in particulates was studied and measured. Effectiveness of degradation of petro pollutants by bacteria is also examined. Biocides used in the working stream to control sulfur oxidizing bacteria were treated briefly. Effects of the structures and potential pollution was also described for the fouling community, i.e., barnacles, etc. Effects of the presence of the structures on migratory and resident birds are examined for hundreds of species constantly using the area as a fly-way or habitat.

  20. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.