Science.gov

Sample records for oil recovery seventh

  1. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    SciTech Connect

    Reid, T B; Colonomos, P

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  2. Surfactant development for enhanced oil recovery. Seventh quarterly report, April 1--June 30, 1995

    SciTech Connect

    1995-11-01

    The overall objective of the project is to develop surfactant system(s) that will enhance projects on tertiary oil recovery. Such surfactant systems will be expected to be stable at high temperatures and exhibit high salinity tolerance. The authors have shown in previous reports that double-tailed surfactants show very good promise as well as remarkable potential for effective tertiary oil recovery. For this reason they have continued to devote research activities on this class of surfactants. In this report two additional double-tailed surfactants were synthesized and their critical micelle concentration (CMC) determined. These surfactants are sodium dihexadecyl phosphate (SDDP) and calcium ditetradecyl sulfonate CaDTDS. These are all anionic surfactants with different head groups. The observed critical micelle concentration for these surfactants are 0.78 {times} 10{sup {minus}5} M and 0.81 {times} 10{sup {minus}5} M, respectively. These CMC values were obtained using conductometric and surface tensiometric methods.

  3. Enhanced oil recovery update

    SciTech Connect

    Smith, R.V

    1989-03-01

    Technology continues to grow in the realm of enhanced oil recovery. Since 1950 several processes have proven economic for oil recovery. Others are still in their infancy and must be custom designed for each reservoir. This paper gives a general overview of these processes. The author focuses on the latest technology and the outlook for enhanced oil recovery operations.

  4. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  5. Biochemically enhanced oil recovery and oil treatment

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  6. Enhanced oil recovery system

    DOEpatents

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  7. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  8. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Ukigai, T.; Yamada, J.

    1985-08-27

    A micellar slug for use in the recovery of oil is described, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as an essential component an alpha-olefin sulfonate having 10 to 26 carbon atoms and containing 0.1% to 15% by weight by weight of a disulfonate. This micellar slug has an excellent salinity tolerance and hard-water resistance. Furthermore, the micellar slugs of the present invention are capable of forming micro-emulsions having a sufficiently low interfacial tension and, therefore, can improve oil recovery efficiency.

  9. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kowada, Y.; Ukigai, T.; Yamada, J.

    1985-04-23

    A micellar slug for use in the recovery of oil is described, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains, as an essential component, a divalent metal salt of an alpha-olefin sulfonic acid. This micellar slug has an excellent salinity tolerance and hard-water resistance. Furthermore, the micro-emulsion formed from the present micellar slug is maintained stable in a subterranean reservoir formed by alkaline earth metal carbonates and, therefore, the oil recovery efficiency can be improved.

  10. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Yamada, J. I.

    1985-07-30

    A micellar slug for use in the recovery of oil, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as an essential component an internal olefin sulfonate. This micellar slug has an excellent capability for decreasing an interfacial tension between oil and water and an excellent salinity tolerance and hard-water resistance. Furthermore, the micro-emulsion can be formed from this micellar slug in a wide composition range.

  11. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  12. Biosurfactant and enhanced oil recovery

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  13. Oil Recovery System

    NASA Astrophysics Data System (ADS)

    1983-01-01

    A Downhole Steam Generation System brings oil up from deep reservoirs. The system, developed by Foster-Miller Associates consists of a steam generator, a "packer" that keeps the steam from leaking up the wellbore, and tube string that supplies air, fuel, water and hydraulics to the generator and packer; all are encased in a standard seven-inch well casing. Downhole means that the steam generator is located far down the well casing rather than on the surface. This design is more efficient than surface generated steam. A COSMIC (Computer Software Management and Information Center) program aided in the design.

  14. Method for enhanced oil recovery

    DOEpatents

    Comberiati, Joseph R.; Locke, Charles D.; Kamath, Krishna I.

    1980-01-01

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  15. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  16. Microbial enhanced oil recovery research

    SciTech Connect

    Sharma, M.M.; Georgiou, G.

    1990-01-01

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) investigation of the mechanisms of microbially induced oil mobilization; (2) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs; (4) development of simulators for MEOR; and (5) design of operational strategies for the sequential injection of microorganisms and nutrient in reservoirs are: (1) systematic discussion of the mechanisms important in MEOR processes; (2) Measurement of the growth characteristics of Bacillus Licheniformis under various conditions of pH, temperature and salt concentration for both aerobic and anaerobic growth.; (3) measurement of interfacial tension reducing ability of the biosurfactant under different conditions of pH and salt concentration; (4) development of some preliminary methods to concentrate and characterize the biosurfactant; (5) development of a compositional numerical simulator for MEOR processes; and (6) Measurement of the lowest interfacial tension (IFT) value reported for biosurfactants to date. Demonstration of the fact that the low IFT values required for oil recovery can be attained with biosurfactants.

  17. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  18. Oil recovery by fluorochemical surfactant waterflooding

    SciTech Connect

    Cooke, T.W.

    1984-07-17

    The instant invention relates to the recovery of oil from subterranean oil reservoirs involving the injection of an aqueous based liquid containing a fluorochemical surfactant possessing an oleophobic-hydrophobic fluoroaliphatic group, a hydrophilic group and an oleophilic group, optionally in conjugation with a conventional enhanced oil recovery surfactant.

  19. Surfactant waterflood oil recovery process

    SciTech Connect

    Kudchadker, M.V.; Whittington, L.E.

    1982-03-16

    Disclosed is a surfactant waterflooding oil recovery process for use in high salinity water-containing formations employing two separate surfactant-containing slugs or a single slug in which the composition is changed from the first to the last portion of the slug injected into the formation. The first portion of the surfactant fluid contains a surfactant combination which exhibits optimum low surface tension characteristics, and the second or latter portion of the surfactant slug contains a blend of surfactants which produces a high viscosity fluid. Use of hydrophilic viscosity-increasing polymer is thus avoided, eliminating the interaction between polymer and surfactant which causes a reduction in surfactant effectiveness.

  20. Micellar clug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Ukigai, T.; Yamada, J.

    1985-08-13

    A micellar slug for use in the recovery of oil, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as essential components at least one alpha-olefin sulfonate having 10 to 30 carbon atoms and at least one ethoxylate selected from the group consisting of polyoxyethylene alkyl ethers and polyoxyethylene alkylphenyl ethers in a weight ratio. The micro-emulsion can be formed from this micellar slug in a wide composition range. Furthermore, this micellar slug has an excellent salinity tolerance and hard-water resistance.

  1. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Ukigai, T.; Yamada, J.

    1985-10-29

    A micellar slug for use in the recovery of oil, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as an essential component an internal olefin sulfonate or sulfonates having 10 to 30 carbon atoms and an alpha-olefin sulfonate or sulfonates having 10 to 30 carbon atoms. This micellar slug has a sufficiently low interfacial tension, good salinity tolerance, hard-water resistance, ability to maintain the micro-emulsion against change in the composition of the micro-emulsion, and mobility controlled viscosity.

  2. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  3. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  4. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  5. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1985-03-12

    A novel surfactant is formed by reacting maleic anhydride with a polynuclear aromatic compound having a molecular weight of at least 155. A novel surfactant system useful in enhanced oil recovery containing the above surfactant is also provided. In addition, an improved process for the enhanced recovery of oil is provided utilizing the novel surfactant system.

  6. Secondary oil recovery techniques improve remediation projects

    SciTech Connect

    Aminian, K.; Ameri, S.

    1996-01-01

    The petroleum industry has successfully developed sophisticated oil recovery technologies that could be used for effective contaminant removal from soil and/or groundwater. In enhanced recovery, the residual oil is mobilized through injection of a solvent that is miscible with oil. Soil vapor extraction takes advantage of the highly volatile nature of VOCs in air and the relative ease of moving air through the unsaturated zone to effectively remove VOCs from the soil. A similar approach can be used for groundwater decontamination.

  7. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  8. Surfactant and process for enhanced oil recovery

    SciTech Connect

    Stapp, P. R.

    1984-12-11

    A novel surfactant is formed by reacting maleic anhydride with either a petroleum sulfonate or an alkaryl sulfonate. A surfactant system containing the above surfactant useful in enhanced oil recovery processes is also provided.

  9. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect

    Ray, R.M.

    1992-02-26

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

  10. Nanostructured systems for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Kuvshinov, I. V.

    2015-10-01

    The reservoir energy or that of the injected heat carrier was used to generate in situ intelligent chemical systems—nanostructured gels, sols and oil-displacing surfactants systems, preserving for a long time in the reservoir a complex of the properties being optimal for oil displacement. The results of field tests and commercial application of physicochemical technologies using nanostructured systems for enhanced oil recovery in oilfields with difficult-to-recover reserves, including deposits of high-viscosity oils, have been presented. Field tests of new "cold" technologies on the deposit of high-viscosity oil in Usinskoye oilfield proved their high efficiency.

  11. Acoustic Wave Stimulated Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Reichmann, Sven; Giese, Rüdiger; Amro, Mohammed

    2013-04-01

    High demand and the finite oil deposits will be a problem in the future. To temper the impact of a shortage in crude oil, a lot of research in the field of enhanced oil recovery (EOR) is worldwide ongoing. Using seismic waves to stimulate recovery of oil is known as seismic-EOR. The development of a stimulation procedure using seismic sources and the evaluation of the obtained data in a real oil field is the aim of the project WAVE.O.R. The project is funded by the German scientific society for oil, gas and coal (DGMK). The Technical University of Freiberg (TUBAF) and the German Research Center for Geosciences (GFZ) in Potsdam developed a flooding cell connected with magnetostrictive actuators as sources for seismic energy. This device is eligible to survey the impact of different seismic stimulation parameter like frequency, alignment, amplitude and rock characteristics on oil recovery. The obtained laboratory data of flooding experiments using seismic waves were analyzed for key features like water breakthrough point, oil recovery and oil fraction. New approach has been developed, which consists of the connection of a principal component analysis with a clustering algorithm. This new technique allows us a better understanding and thus prediction of the recovery behavior of oil bearing sediments. The experiments show promising possibilities to enhance oil recovery with seismic stimulation. Especially the combination of different frequencies between 100 Hz and 4000 Hz had a positive impact on oil recovery. The responsible mechanisms were identified and discussed. Data obtained with the laboratory device will be applied in a field test using a borehole device developed by the GFZ in the project "Seismic Prediction While Drilling" (SPWD). For this purpose experiments are conducted to obtain the radiation pattern of the seismic sources used by the SPWD device in a borehole. In addition, the development of a control setup for the 1-D actuator array is an aim of the

  12. Surfactant waterflooding enhanced oil recovery process

    SciTech Connect

    Schievelbein, V.H.

    1984-07-17

    Disclosed is a surfactant waterflooding enhanced oil recovery process and surfactant fluid suitable for use in an enhanced oil recovery process which accomplishes an increase in the amount of oil recovered over prior art methods. The surfactant fluid contains an alkylpolyalkoxy sulfate or alkylarylpolyalkoxy sulfate, or an alkylpolyalkoxyalkylene sulfonate or alkylarylpolyalkoxyalkylene sulfonate, either alone or in combination with an organic sulfonate anionic surfactant, such as petroleum sulfonate. The optimum average degree of ethoxylation of the alkoxy sulfate or alkoxy sulfonate surfactant is identified, and the surfactant fluid is formulated with a mixture of ethoxylated and sulfated or ethoxylated and sulfonated surfactants, having a broad even range of degree of ethoxylation.

  13. Recovery rates, enhanced oil recovery and technological limits.

    PubMed

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.

  14. Recovery rates, enhanced oil recovery and technological limits.

    PubMed

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR. PMID:24298076

  15. Recovery rates, enhanced oil recovery and technological limits

    PubMed Central

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-01

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR. PMID:24298076

  16. Aqueous flooding methods for tertiary oil recovery

    SciTech Connect

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  17. Physicochemical methods for enhancing oil recovery from oil fields

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.

    2007-10-01

    Physicochemical methods for enhancing oil recovery from oil fields that are developed using water flooding and thermal steam treatment are considered. The results of pilot testing of processes based on these methods carried out at West Siberian and Chinese oil fields are analysed. The attention is focused on the processes that make use of surfactant blends and alkaline buffer solutions and thermotropic gel-forming systems.

  18. Surfactant waterflooding oil recovery method

    SciTech Connect

    Schievelbein, V.H.

    1981-12-29

    Oil is recovered from an underground petroleum reservoir which contains a brine having a salinity of from 50 to 220 kg/m3 total dissolved solids by injecting an alkylarylpolyalkoxy sulfate or alkylpolyalkoxy sulfate surfactant that exhibits phase stability in the brine or diluted brine. The surfactant is injected in an aqueous solution which is prepared with diluted brine which has a salinity slightly less than that required to cause partitioning of the surfactant out of the aqueous phase into the oil-water interface or oil phase. The injection of surfactant is followed by the injecting of a driving slug comprised of either diluted brine or thickened diluted brine.

  19. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  20. Sulfone cosurfactants in enhanced oil recovery processes

    SciTech Connect

    Stapp, P. R.

    1984-12-04

    A surfactant system useful for oil recovery consisting essentially of a NaCl, a hydrocarbon sulfonate surfactant, such as a petroleum sulfonate, and a cosurfactant such as a sulfone or sulfolane derivative. In another embodiment, a C/sub 1/ to C/sub 8/ alcohol is additionally present as a cosurfactant.

  1. Oil recovery method utilizing an alkylarylpoxyalkylene sulfonate

    SciTech Connect

    McCoy, D.R.

    1984-08-14

    An alkylarylpolyalkoxyalkylene sulfonate alone or combined with a water soluble petroleum sulfonate surfactant is dissolved in water to form an effective surfactant fluid that is stable in high salinity environments. The surfactant fluid is injected into an underground petroleum-containing reservoir in an enhanced oil recovery process.

  2. Oil recovery method using unique salinity for oil recovery surfactant system

    SciTech Connect

    Glinsmann, G.R.; Hedges, J.H.

    1981-05-05

    A series of surfactant systems is prepared at varying electrolyte concentrations, each system being mixed with oil to be displaced or its equivalent and allowed to equilibrate to determine the salinity at which the microemulsion phase has approximately equal volumes of oil and water; thereafter additional series of such surfactant systems are prepared utilizing different cosurfactants; thereafter the resulting surfactant systems are used at their optimal salinity (I.E., the salinity at which approximately equal volumes of oil and water are taken up into the microemulsion phase) to recover oil from test cores and the resulting oil recovery plotted versus the salinity to give the unique salinity at which maximum oil recovery is obtained for the particular oil-surfactant combination.

  3. Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs

    SciTech Connect

    Louis M. Castanier; William E. Brigham

    1998-03-31

    The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

  4. A field laboratory for improved oil recovery

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  5. Research on oil recovery mechanisms in heavy oil reservoirs

    SciTech Connect

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  6. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  7. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  8. Enhanced oil recovery projects data base

    SciTech Connect

    Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

    1992-04-01

    A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

  9. Starting up microbial enhanced oil recovery.

    PubMed

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  10. Microbial enhancement of oil recovery: Recent advances

    SciTech Connect

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  11. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  12. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  13. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  14. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect

    Charles McCormick; Andrew Lowe

    2007-03-20

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  15. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    SciTech Connect

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  16. Recovery of heavy oils from deep reservoirs

    SciTech Connect

    Stoller, H. M.; Fox, R. L.

    1980-01-01

    The objective of Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. Two approaches are being pursued: improving the thermal efficiency of injection string components and the development of downhole steam generators to achieve steam injection. The first approach has seen the testing of commercially available components at a high temperature (650/sup 0/F)/high pressure (2100 psi) simulation facility. Promising components will be tested shortly in a field test conducted by Husky Oil at Lloydminster, Canada. The second approach has seen the prototype development and laboratory testing of low-pressure and high-pressure hydrocarbon-fueled downhole steam generators. Concurrently, a modified high pressure steam generator has undergone extensive laboratory combustion studies and is currently being employed in a field test at Chevron's Kern River field. This field test is examining the effects of simultaneous injection of steam and combustion products on the reservoir and oil recovery. 9 figures.

  17. Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies

    SciTech Connect

    Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

    1995-09-01

    Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. The phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.

  18. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, Clayton J.

    1985-01-01

    Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

  19. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Zhang, Julien

    2015-11-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  20. Double tapered surfactant waterflood oil recovery process

    SciTech Connect

    Carlin, J.T.; Tyler, T.N.

    1980-11-11

    Disclosed is an oil recovery process for recovering oil from subterranean formations containing relatively high salinity water , said process employing an aqueous surfactant fluid containing at least two surfactants, one primary anionic surfactant such as petroleum sulfonate and a solubilizing cosurfactant such as an alkyl or alkylaryl, polyethoxy sulfate or sulfonate. The process comprises injecting a plurality of slugs of surfactant fluids followed by a low salinity fluid containing a viscosifying amount of a hydrophilic polymer. The salinity and concentration of solubilizing cosurfactant of each surfactant slug are both decreased from the maximum level in the first slug of the surfactant fluid and in successive slugs to a minimum level at the last slug of the surfactant fluid.

  1. Fluid microstructures and enhanced oil recovery

    SciTech Connect

    Puig, J.E.; Scriven, L.E.; Davis, H.T.; Miller, W.G.

    1982-01-01

    Ultralow interfacial tensions between oil and water are caused not by monolayer adsorption but by a film of surfactant-rich third phase-either viscous material derived from liquid crystalline dispersions, or less viscous equilibrium microemulsion. The sometimes transparent dispersions, which had been overlooked before, become ultradispersions of vesicles upon sonication, and can be dissolved by certain alcohols. These and other findings are summarized from a concerted study of a petroleum sulfonate surfactant system representative of surfactant waterflooding, and of pure surfactant systems that mimic it. Reviewed are the relationships between surfactant-rich microstructures and their compositions, recovery of residual oil from short sandstone cores, and surfactant retention in such cores. Vesicular surfactant delivery is examined. 87 references.

  2. Reservoir characterization and enhanced oil recovery research

    SciTech Connect

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  3. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  4. Environmental regulations handbook for enhanced oil recovery

    SciTech Connect

    Madden, M.P. ); Blatchford, R.P.; Spears, R.B. )

    1991-12-01

    This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

  5. Enhanced oil recovery using electrical methods

    NASA Astrophysics Data System (ADS)

    Rehman, Muhammad Moshin

    Heavy Oil Recovery is gaining much popularity because of huge consumption of oil in the modern industry. Main concern in the extraction of heavy oil is its high viscosity. Heating heavy oil by different electrical means has come out to be a promising solution for viscosity reduction. This includes the low frequency resistive heating, induction heating and high frequency microwave heating or the dielectric heating. Application of low frequency resistive heating is limited by the requirement of brine (conducting fluid) inside the reservoir while Induction heating is only applicable in the presence of ferrous elements in the reservoir. High frequency microwave heating can be used effectively for enhancing the oil productivity. Ultrasonic stimulation is another technique capable of reducing the viscosity of heavy oil without employing the heating techniques. Although many models have been presented addressing microwave heating of heavy oil but, no model has been found in the literature addressing the design of microwave sources and the experimental verification of the results. Similarly some authors have also addressed the ultrasonic stimulation of heavy oil but no one has discussed the behavior of ultrasonic waves at different power level along with the experimental verification. This thesis presents complete mathematical modeling of microwave heating, with numerical solution by considering two-dimensional radial model. In addition, the design, positioning, and orientation of the array of microwave antennas have also been considered in numerical simulations while results of some of the cases are also verified experimentally. Similarly, the Thesis discusses the ultrasonic modeling with numerical solution and experimental verification at different power levels and positioning of the ultrasonic transducer. These models present the results in the form of temperature & pressure distribution and productivity enhancement. For numerical simulations, a Finite Element Analysis

  6. Direct Oil Recovery from Saturated Carbon Nanotube Sponges.

    PubMed

    Li, Xiying; Xue, Yahui; Zou, Mingchu; Zhang, Dongxiao; Cao, Anyuan; Duan, Huiling

    2016-05-18

    Oil adsorption by porous materials is a major strategy for water purification and industrial spill cleanup; it is of great interest if the adsorbed oil can be safely recovered from those porous media. Here, direct oil recovery from fully saturated bulk carbon nanotube (CNT) sponges by displacing oil with water in controlled manner is shown. Surfactant-assisted electrocapillary imbibition is adopted to drive aqueous electrolyte into the sponge and extrude organic oil out continuously at low potentials (up to -1.2 V). More than 95 wt % of oil adsorbed within the sponge can be recovered, via a single electrocapillary process. Recovery of different oils with a wide range of viscosities is demonstrated, and the remaining CNT sponge can be reused with similar recovery capacity. A direct and efficient method is provided to recover oil from CNT sponges by water imbibition, which has many potential environmental and energy applications.

  7. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  8. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect

    Charles McCormick; Andrew Lowe

    2005-10-15

    Herein we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water-soluble A blocks comprised of N,N-dimethylacrylamide (DMA) and pH-responsive B blocks of N,N-dimethylvinylbenzylamine (DMVBA). To our knowledge, this represents the first example of an acrylamido-styrenic block copolymer prepared directly in homogeneous aqueous solution. The best blocking order (using polyDMA as a macro-CTA) was shown to yield well-defined block copolymers with minimal homopolymer impurity. Reversible aggregation of these block copolymers in aqueous media was studied by {sup 1}H NMR spectroscopy and dynamic light scattering. Finally, an example of core-crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. Our ability to form micelles directly in water that are responsive to pH represents an important milestone in developing ''smart'' multifunctional polymers that have potential for oil mobilization in Enhanced Oil Recovery Processes.

  9. Microbial enhanced oil recovery research. [Peptides

    SciTech Connect

    Sharma, M.M.; Georgiou, G. )

    1991-01-01

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (2) development of simulators for MEOR; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs,; (4) design of operation strategies for the sequential injection of microorganisms and nutrient in reservoirs. Accomplishments are: (1) ultra low interfacial tensions (0.003 mN/M) were obtained between decane and 5% NaCl brine using biosurfactants obtained from Bacillus Licheniformis, JF-2 which is the lowest IFT ever reported for biosurfactants; (2) a method to was developed isolate the biosurfactant from the growth medium; (3) the structure of the isolated biosurfactant has been determined; (4) several techniques have been proposed to increase the yield of the surfactant; and (5) an MEOR simulator has been completed.

  10. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery.

    PubMed

    Wei, Q F; Mather, R R; Fotheringham, A F; Yang, R D

    2003-06-01

    Mechanical recovery of oil by oil sorbents is one of the most important countermeasures in marine oil-spill response. Polypropylene is the ideal material for marine oil-spill recovery due to its low density, low water uptake and excellent physical and chemical resistance. Different forms of polypropylene nonwoven sorbents were evaluated in this study in terms of initial oil-sorption capacities and oil-retention properties. The investigation revealed that the fibre diameter, sorbent porosity and oil property are the most important factors in the oil-sorption performance of polypropylene nonwoven sorbents.

  11. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    SciTech Connect

    Buckley, Jill S.

    2002-01-29

    The objectives of this five-year project were: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding.

  12. SUPRI Heavy Oil Research Program. Seventh annual report, October 1, 1982-September 30, 1983

    SciTech Connect

    Brigham, W. E.

    1984-05-01

    This research program has five main objectives: (1) flow properties - to assess the effects of temperature and pressure on absolute and relative permeabilities, on capillary pressure and on any relevant property of petroleum reservoirs; (2) in-situ combustion - tube runs for simulation of in-situ combustion experiments are performed under different pressure and oxygen concentration levels, and kinetics of in-situ combustion reactions are also studied; (3) steam injection with additives - to optimize the steam injection techniques when the control in steam injection is studied; (4) reservoir definition - to improve existing interpretation techniques for well tests, tracer tests and logging; and (5) field support services - to discuss practical problems with representatives of the oil industry. Progress reports are presented for the 5 tasks.

  13. Microbial enhanced oil recovery: Entering the log phase

    SciTech Connect

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  14. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  15. Microbial enhanced oil recovery research. [Peptides

    SciTech Connect

    Sharma, M.M.; Georgiou, G. )

    1992-01-01

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 [times] 10[sup 3] mN/m which is one of the lowest values ever obtained with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in surfactancy.

  16. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  17. Sulfonation of phenols extracted from the pyrolysis oil of oil palm shells for enhanced oil recovery.

    PubMed

    Awang, Mariyamni; Seng, Goh Meng

    2008-01-01

    The cost of chemicals prohibits many technically feasible enhanced oil recovery methods to be applied in oil fields. It is shown that by-products from oil palm processing can be a source of valuable chemicals. Analysis of the pyrolysis oil from oil palm shells, a by-product of the palm oil industry, reveals a complex mixture of mainly phenolic compounds, carboxylic acids, and aldehydes. The phenolic compounds were extracted from the pyrolysis oil by liquid-liquid extraction using alkali and an organic solvent and analyzed, indicating the presence of over 93% phenols and phenolic compounds. Simultaneous sulfonation and alkylation of the pyrolysis oil was carried out to produce surfactants for application in oil fields. The lowest measured surface tension and critical micelle concentration was 30.2 mNm(-1) and 0.22 wt%, respectively. Displacement tests showed that 7-14% of the original oil in place was recovered by using a combination of surfactants and xanthan (polymer) as additives.

  18. Urea as a cosurfactant in enhanced oil recovery processes

    SciTech Connect

    Stapp, P. R.; Chaney, M. B.

    1985-01-15

    A surfactant system useful for oil recovery comprising salt water, a surfactant, such as a petroleum sulfonate, and urea. Optionally, a C/sub 3/ to C/sub 8/ alcohol is additionally present as a cosurfactant.

  19. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling. PMID:27294566

  20. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    SciTech Connect

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  1. Microbial enhanced oil recovery and wettability research program

    SciTech Connect

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  2. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  3. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.

    PubMed

    Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia

    2012-10-01

    A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields. PMID:22704814

  4. Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields.

    PubMed

    Castorena-Cortés, Gladys; Roldán-Carrillo, Teresa; Reyes-Avila, Jesús; Zapata-Peñasco, Icoquih; Mayol-Castillo, Martha; Olguín-Lora, Patricia

    2012-10-01

    A considerable portion of oil reserves in Mexico corresponds to heavy oils. This feature makes it more difficult to recover the remaining oil in the reservoir after extraction with conventional techniques. Microbial enhanced oil recovery (MEOR) has been considered as a promising technique to further increase oil recovery, but its application has been developed mainly with light oils; therefore, more research is required for heavy oil. In this study, the recovery of Mexican heavy oil (11.1°API and viscosity 32,906 mPa s) in a coreflood experiment was evaluated using the extremophile mixed culture A7, which was isolated from a Mexican oil field. Culture A7 includes fermentative, thermophilic, and anaerobic microorganisms. The experiments included waterflooding and MEOR stages, and were carried out under reservoir conditions (70°C and 9.65 MPa). MEOR consisted of injections of nutrients and microorganisms followed by confinement periods. In the MEOR stages, the mixed culture A7 produced surface-active agents (surface tension reduction 27 mN m⁻¹), solvents (ethanol, 1738 mg L⁻¹), acids (693 mg L⁻¹), and gases, and also degraded heavy hydrocarbon fractions in an extreme environment. The interactions of these metabolites with the oil, as well as the bioconversion of heavy oil fractions to lighter fractions (increased alkanes in the C₈-C₃₀ range), were the mechanisms responsible for the mobility and recovery of heavy oil from the porous media. Oil recovery by MEOR was 19.48% of the residual oil in the core after waterflooding. These results show that MEOR is a potential alternative to heavy oil recovery in Mexican oil fields.

  5. Laboratory methods for enhanced oil recovery core floods

    SciTech Connect

    Robertson, E.P.; Bala, G.A.; Thomas, C.P.

    1994-03-01

    Current research at the Idaho National Engineering Laboratory (INEL) is investigating microbially enhanced oil recovery (MEOR) systems for application to oil reservoirs. Laboratory corefloods are invaluable in developing technology necessary for a field application of MEOR. Methods used to prepare sandstone cores for experimentation, coreflooding techniques, and quantification of coreflood effluent are discussed in detail. A technique to quantify the small volumes of oil associated with laboratory core floods is described.

  6. Enhanced oil recovery: Definitions, fundamentals, applications, and research frontiers

    NASA Astrophysics Data System (ADS)

    Simon, Ralph

    This paper describes the highlights of current oil-recovery technology, including primary, secondary, tertiary, and enhanced recovery processes. Fundamental displacement phenomena are discussed: (1) from a macro-view, such as injection- and production-well patterns, impermeable barriers, and geologic faults; and (2) from a micro-view, which considers oil displacement on a pore-by-pore basis in a three-dimensional interconnected network of flow channels. Applications used to illustrate displacement fundamentals included the major features of water, polymer, and micellar flooding; and steam and CO 2 injection. Also discussed are two principal frontiers of enhanced oil recovery research: definition of the reservoir, and independent measurement of the amount of oil in place.

  7. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration

    SciTech Connect

    Zuo, Lin; Benson, Sally M.

    2013-01-01

    A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ≈ 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

  8. Recovery of hydrocarbon oil from filter cakes

    SciTech Connect

    Tyson, W. H.; Stuart, F. A.

    1985-10-01

    A process for recovering hydrocarbon oils and hydrocarbon oils containing dissolved additives from filter cakes produced by filtering such oils using a siliceous filter aid. A small amount of a release agent, up to 2 cc per gram of filter cake, is slowly added to the filter cake with agitation to prevent formation of a release agent phase and then a further quantity of release agent is added to the resultant mixture with gentle stirring and the final mixture is then held quiescent at elevated temperature until an oil phase separates. The oil phase is removed and the remainder of the mixture is filtered to separate a release agent filtrate and a filter cake consisting mainly of filter aid.

  9. Improved oil recovery in nanopores: NanoIOR

    PubMed Central

    de Almeida, James Moraes; Miranda, Caetano Rodrigues

    2016-01-01

    Fluid flow through minerals pores occurs in underground aquifers, oil and shale gas reservoirs. In this work, we explore water and oil flow through silica nanopores. Our objective is to model the displacement of water and oil through a nanopore to mimic the fluid infiltration on geological nanoporous media and the displacement of oil with and without previous contact with water by water flooding to emulate an improved oil recovery process at nanoscale (NanoIOR). We have observed a barrier-less infiltration of water and oil on the empty (vacuum) simulated 4 nm diameter nanopores. For the water displacement with oil, we have obtained a critical pressure of 600 atm for the oil infiltration, and after the flow was steady, a water layer was still adsorbed to the surface, thus, hindering the direct contact of the oil with the surface. In addition, oil displacement with water was assessed, with and without an adsorbed water layer (AWL). Without the AWL, the pressure needed for oil infiltration was 5000 atm, whereas, with the AWL the infiltration was observed for pressures as low as 10 atm. Hence, the infiltration is greatly affected by the AWL, significantly lowering the critical pressure for oil displacement. PMID:27319357

  10. Improved oil recovery in nanopores: NanoIOR.

    PubMed

    de Almeida, James Moraes; Miranda, Caetano Rodrigues

    2016-06-20

    Fluid flow through minerals pores occurs in underground aquifers, oil and shale gas reservoirs. In this work, we explore water and oil flow through silica nanopores. Our objective is to model the displacement of water and oil through a nanopore to mimic the fluid infiltration on geological nanoporous media and the displacement of oil with and without previous contact with water by water flooding to emulate an improved oil recovery process at nanoscale (NanoIOR). We have observed a barrier-less infiltration of water and oil on the empty (vacuum) simulated 4 nm diameter nanopores. For the water displacement with oil, we have obtained a critical pressure of 600 atm for the oil infiltration, and after the flow was steady, a water layer was still adsorbed to the surface, thus, hindering the direct contact of the oil with the surface. In addition, oil displacement with water was assessed, with and without an adsorbed water layer (AWL). Without the AWL, the pressure needed for oil infiltration was 5000 atm, whereas, with the AWL the infiltration was observed for pressures as low as 10 atm. Hence, the infiltration is greatly affected by the AWL, significantly lowering the critical pressure for oil displacement.

  11. Improved oil recovery in nanopores: NanoIOR

    NASA Astrophysics Data System (ADS)

    de Almeida, James Moraes; Miranda, Caetano Rodrigues

    2016-06-01

    Fluid flow through minerals pores occurs in underground aquifers, oil and shale gas reservoirs. In this work, we explore water and oil flow through silica nanopores. Our objective is to model the displacement of water and oil through a nanopore to mimic the fluid infiltration on geological nanoporous media and the displacement of oil with and without previous contact with water by water flooding to emulate an improved oil recovery process at nanoscale (NanoIOR). We have observed a barrier-less infiltration of water and oil on the empty (vacuum) simulated 4 nm diameter nanopores. For the water displacement with oil, we have obtained a critical pressure of 600 atm for the oil infiltration, and after the flow was steady, a water layer was still adsorbed to the surface, thus, hindering the direct contact of the oil with the surface. In addition, oil displacement with water was assessed, with and without an adsorbed water layer (AWL). Without the AWL, the pressure needed for oil infiltration was 5000 atm, whereas, with the AWL the infiltration was observed for pressures as low as 10 atm. Hence, the infiltration is greatly affected by the AWL, significantly lowering the critical pressure for oil displacement.

  12. Oil recovery; Technology that tames large spills

    SciTech Connect

    Valenti, M.

    1991-05-01

    This paper reports that the threat of oil spills is growing with the increasing use of larger tankers, the expansion of offshore oil exploration, and-as was demonstrated recently in the Persian Gulf-the dangers of war and terrorism. Aware of the environmental havoc that massive spills can cause, engineers are working hard to devise effective methods of scooping oil from the water's surface and cleaning contaminated shorelines. Techniques are being developed, which combine mechanical, chemical, and biological processes to contain spills.

  13. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers. PMID:27087065

  14. Seismic stimulation for enhanced oil recovery

    SciTech Connect

    Pride, S.R.; Flekkoy, E.G.; Aursjo, O.

    2008-07-22

    The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.

  15. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate.

  16. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    SciTech Connect

    Buckley, Jill S.

    1999-07-01

    The objective of this five-year project are: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the second year of this project we have tested the generality of the proposed mechanisms by which crude oil components can alter wetting. Using these mechanisms, we have begun a program of characterizing crude oils with respect to their wettability altering potential. Wettability assessment has been improved by replacing glass with mica as a standard surface material and crude oils have been used to alter wetting in simple square glass capillary tubes in which the subsequent imbibition of water can be followed visually.

  17. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  18. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    PubMed

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out.

  19. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  20. Oil spill recovery: Oil booms and skimmers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations of selected patents concerning booms, skimmers and skimming techniques used for oil spill recovery. Patents covering oil absorbent materials, dispersants, floating booms, methods and equipment for oil spill containment and collection, marine barriers, cryogenic beach cleaners, microbial materials, and ultrasonic oil removal are included. Citations concerning oil/water separation for non-oil spill recovery applications are examined in a separate bibliography. (Contains a minimum of 177 citations and includes a subject term index and title list.)

  1. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.

    PubMed

    Chávez-Miyauchi, Tomás E; Firoozabadi, Abbas; Fuller, Gerald G

    2016-03-01

    Injection of optimized chemistry water in enhanced oil recovery (EOR) has gained much interest in the past few years. Crude oil-water interfaces can have a viscoelastic character affected by the adsorption of amphiphilic molecules. The brine concentration as well as surfactants may strongly affect the fluid-fluid interfacial viscoelasticity. In this work we investigate interfacial viscoelasticity of two different oils in terms of brine concentration and a nonionic surfactant. We correlate these measurements with oil recovery in a glass-etched flow microchannel. Interfacial viscoelasticity develops relatively fast in both oils, stabilizing at about 48 h. The interfaces are found to be more elastic than viscous. The interfacial elastic (G') and viscous (G″) moduli increase as the salt concentration decreases until a maximum in viscoelasticity is observed around 0.01 wt % of salt. Monovalent (Na(+)) and divalent (Mg(2+)) cations are used to investigate the effect of ion type; no difference is observed at low salinity. The introduction of a small amount of a surfactant (100 ppm) increases the elasticity of the crude oil-water interface at high salt concentration. Aqueous solutions that give the maximum interface viscoelasticity and high salinity brines are used to displace oil in a glass-etched "porous media" micromodel. Pressure fluctuations after breakthrough are observed in systems with high salt concentration while at low salt concentration there are no appreciable pressure fluctuations. Oil recovery increases by 5-10% in low salinity brines. By using a small amount of a nonionic surfactant with high salinity brine, oil recovery is enhanced 10% with no pressure fluctuations. Interface elasticity reduces the snap-off of the oil phase, leading to reduced pressure fluctuations. This study sheds light on significance of interface viscoelasticity in oil recovery by change in salt concentration and by addition of a small amount of a nonionic surfactant.

  2. Oil recovery method utilizing a dicyclopentadience derived ethoxysulfonate

    SciTech Connect

    McCoy, D.R.; Gipson, R.M.; Naylor, C.G.

    1984-01-17

    A dicyclopentadiene derived ethoxysulfonate alone or combined with a petroleum sulfonate surfactant is dissolved in water to form an effective surfactant fluid that is stable in high salinity and/or high temperature environments. The surfactant fluid is injected into an underground petroleum-containing reservoir in an enhanced oil recovery process.

  3. Oil recovery method utilizing a dicyclopentadiene derived ethoxysulfonate

    SciTech Connect

    McCoy, D.R.; Gipson, R.M.; Naylor, C.G.

    1984-01-17

    A dicyclopentadiene derived ethoxysulfonate alone or combined with a petroleum sulfonate surfactant is dissolved in water to form an effective surfactant fluid that is stable in high salinity and/or high temperature environments. The surfactant fluid is injected into an underground petroleum-containing reservoir in an enhanced oil recovery process. 10 claims.

  4. Surfactant compositions useful in enhanced oil recovery processes

    SciTech Connect

    Nuckels, N.J.; Thompson, J.L.

    1984-01-17

    Surfactant compositions comprising: (1) an alkylated, diaromatic sulfonate, (2) a petroleum sulfonate, (3) a condensation product of an alkanol and an alkylene oxide, or a sulfate of such a condensation product, and (4) a glycol ether are useful in enhanced oil recovery processes.

  5. Oil recovery performances of surfactant solutions by capillary imbibition.

    PubMed

    Babadagli, Tayfun; Boluk, Yaman

    2005-02-01

    Critical parameters playing a role in oil recovery by capillary imbibition of surfactant solutions were studied. Experiments conducted on sandstone and carbonate samples using different oil and surfactant types were evaluated for surfactant selection. In this evaluation interfacial tension (IFT), surfactant type, solubility characteristics of surfactants, rock type, initial water (pre-wet rock), and surfactant concentration were considered. In addition to these, a new technique was adopted to facilitate the surfactant screening process. This technique is based on assigning inorganic and organic property values and plotting organic conception diagrams (OCD) for surfactants. OCD defines the property of a compound in terms of physical chemistry in such a way that the property that depends much on the van der Waals force is called "organic" and the one that depends much on electric affinity is called "inorganic." Correlations between the capillary imbibition recovery performance and the properties of surfactant and oil (organic value (OV), inorganic value (IV), and IFT of surfactant solutions, oil viscosity, and surfactant type) were obtained. These correlations are expected to be useful in selecting the proper surfactant for improved oil recovery as well as identifying the effects of surfactant properties on the capillary imbibition performance. PMID:15576095

  6. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  7. A field laboratory for improved oil recovery. Final report

    SciTech Connect

    Hildebrandt, A.F.; McDonald, J.; Claridge, E.; Killough, J.

    1992-09-01

    The purpose of Annex III of the Memorandum of Understanding, undertaken by the Houston Petroleum Research Center at the University of Houston, was to develop a field laboratory for research in improved oil recovery using a Gulf Coast reservoir in Texas. The participants: (1) make a field site selection and conducted a high resolution seismic survey in the demonstration field, (2) obtained characteristics of the reservoir (3) developed an evaluation of local flood efficiency in different parts of the demonstration reservoir, (4) used diverse methodology to evaluate the potential recovery of the remaining oil in the test reservoir, (5) developed cross-well seismic tomography, and (6) will transfer the learned technologies to oil operators through publication and workshops. This abstract is an overview of these tasks.

  8. Uncertainty Quantification for CO2-Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Middleton, R.; Bauman, J.; Viswanathan, H.; Fessenden-Rahn, J.; Pawar, R.; Lee, S.

    2013-12-01

    CO2-Enhanced Oil Recovery (EOR) is currently an option for permanently sequestering CO2 in oil reservoirs while increasing oil/gas productions economically. In this study we have developed a framework for understanding CO2 storage potential within an EOR-sequestration environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. By coupling a EOR tool--SENSOR (CEI, 2011) with a uncertainty quantification tool PSUADE (Tong, 2011), we conduct an integrated Monte Carlo simulation of water, oil/gas components and CO2 flow and reactive transport in the heterogeneous Morrow formation to identify the key controlling processes and optimal parameters for CO2 sequestration and EOR. A global sensitivity and response surface analysis are conducted with PSUADE to build numerically the relationship among CO2 injectivity, oil/gas production, reservoir parameters and distance between injection and production wells. The results indicate that the reservoir permeability and porosity are the key parameters to control the CO2 injection, oil and gas (CH4) recovery rates. The distance between the injection and production wells has large impact on oil and gas recovery and net CO2 injection rates. The CO2 injectivity increases with the increasing reservoir permeability and porosity. The distance between injection and production wells is the key parameter for designing an EOR pattern (such as a five (or nine)-spot pattern). The optimal distance for a five-spot-pattern EOR in this site is estimated from the response surface analysis to be around 400 meters. Next, we are building the machinery into our risk assessment framework CO2-PENS to utilize these response surfaces and evaluate the operation risk for CO2 sequestration and EOR at this site.

  9. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    SciTech Connect

    Buckley, Jill S.

    1999-11-09

    This project has three main goals. The first is to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces. The second goal is to apply the results of surface studies to improved predictions of oil production in laboratory experiments. Finally, we aim to use the results of this research to recommend ways to improve oil recovery by waterflooding. In order to achieve these goals, the mechanisms of wetting alteration must be explained. We propose a methodology for studying those mechanisms on mineral surfaces, then applying the results to prediction and observation of wetting alteration in porous media. Improved understanding of the underlying mechanisms will show when and how wettability in the reservoir can be altered and under what circumstances that alteration would be beneficial in terms of increased production of oil.

  10. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  11. Steam foam drive method for enhanced oil recovery

    SciTech Connect

    D'Souza, A.; Friedmann, F.

    1991-08-27

    This patent describes a process for the recovery of oil from a petroleum reservoir by improving steam sweep efficiency during steam-flooding, wherein a foaming agent is added to divert steam to unswept zones and the reservoir is penetrated by at least one injection well and at least one production. It comprises injecting steam and a surfactant solution comprising the foaming agent into an injection well, while concurrently and separately injecting an additional amount of liquid water into the injection well to generate a foam and thereby increase the pressure at the injection well; and recovering oil from a production well.

  12. The Application Of Microbial Enhanced Oil Recovery On Unconventional Oil: A Field Specific Approach

    NASA Astrophysics Data System (ADS)

    Goodman, Sean; Millar, Andrew; Allison, Heather; McCarthy, Alan

    2014-05-01

    A substantial amount of the world's recoverable oil reserves are made from unconventional or heavy resources. However, great difficulty has been had in recovering this oil after primary and secondary recovery methods have been employed. Therefore, tertiary methods such as microbial enhanced oil recovery (MEOR) have been employed. MEOR involves the use of bacteria and their metabolic products to alter the oil properties or rock permeability within a reservoir in order to promote the flow of oil. Although MEOR has been trialed in the past with mixed outcomes, its feasibility on heavier oils has not been demonstrated. The aim of this study is to show that MEOR can be successfully applied to unconventional oils. By using an indigenous strain of bacteria isolated from a reservoir of interest and applied to field specific microcosms, we will look into the effect of these bacteria compared to variant inoculums to identify which mechanisms of action the bacteria are using to improve recovery. Using this information, we will be able to identify genes of interest and groups of bacteria that may be beneficial for MEOR and look accurately identify favorable bacteria within a reservoir.

  13. Evaluation of Reservoir Wettability and its Effect on Oil Recovery.

    SciTech Connect

    Buckley, J.S.

    1998-01-15

    We report on the first year of the project, `Evaluation of Reservoir Wettability and its Effect on Oil Recovery.` The objectives of this five-year project are (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the first year of this project we have focused on understanding the interactions between crude oils and mineral surfaces that establish wetting in porous media. As background, mixed-wetting and our current understanding of the influence of stable and unstable brine films are reviewed. The components that are likely to adsorb and alter wetting are divided into two groups: those containing polar heteroatoms, especially organic acids and bases; and the asphaltenes, large molecules that aggregate in solution and precipitate upon addition of n-pentane and similar agents. Finally, the test procedures used to assess the extent of wetting alteration-tests of adhesion and adsorption on smooth surfaces and spontaneous imbibition into porous media are introduced. In Part 1, we report on studies aimed at characterizing both the acid/base and asphaltene components. Standard acid and base number procedures were modified and 22 crude oil samples were tested. Our approach to characterizing the asphaltenes is to focus on their solvent environment. We quantify solvent properties by refractive index measurements and report the onset of asphaltene precipitation at ambient conditions for nine oil samples. Four distinct categories of interaction mechanisms have been identified that can be demonstrated to occur when crude oils contact solid surfaces: polar interactions can occur on dry surfaces, surface precipitation is important if the oil is a poor solvent for its

  14. Microbial enhancement of oil recovery: Recent advances. Proceedings

    SciTech Connect

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  15. Environmental regulations handbook for enhanced oil recovery. Final report

    SciTech Connect

    Wilson, T.D.

    1980-08-01

    A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

  16. Feasibility study of enhanced oil recovery in six oil fields of Colombia. Export trade information (Final)

    SciTech Connect

    Not Available

    1986-09-01

    The study was prepared for the Empresa Colombiana de Petroleos by Scientific Software-Intercomp, Inc. The primary objectives of the study were to determine which of the reservoirs in the principal fields were amenable to enhanced oil recovery (EOR) processes, to evaluate which process was the most effective from both a technical and economic point of view, and to propose the steps required to further investigate the recommended EOR methods at the laboratory and field (pilot) level. The Final Report (Volume 1) is divided into the following sections (along with summary, conclusions, recommendations, tables and figures): (1) Data Gathering and Review; (2) Enhanced Oil Recovery Reservoir Screening; (3) Laboratory and Field Coordination; (4) Rescreening of Selected Reservoirs; and (5) Enhanced Oil Recovery Pilots.

  17. Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  18. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    SciTech Connect

    1989-12-01

    This white paper presents a unique plan for an Oil Industry-DOE cost sharing research project for Thermal Enhanced Oil Recovery (TEOR) of medium and heavy oil using geopressured-geothermal brine. This technology would provide an environmentally clean method of recovery as opposed to the burning of crude oil or natural gas used widely by the industry, but presently under scrutiny by federal and state air quality agencies, as well as provide an alternative to the very expensive operational and mechanical problems associated with heating water on the surface for injection. An example test reservoir is a shallow, small structural reservoir about 1-l/2 miles long by 1/2 mile wide. It is presently producing heavy oil (18.6 API gravity) from 5 wells, and is marginally economic. One of three nearby geopressured-geothermal wells could be re-entered and recompleted to supply about 400 F brine from 13-16,000 feet. This brine can be used to heat and drive the heavy oil. It is anticipated that about one million barrels of oil may be recovered by this project. Over 3 million barrels are estimated to be in place; only 2.7% of the oil in place has been produced. The suggested teaming arrangement includes: (1) EG&G Idaho, Inc., which presently provides technical and management support to DOE in the Gulf EG&G would supply coordination, management and Coast Geopressured-Geothermal Program. technical support to DOE for the Thermal Enhanced Oil Recovery Project. (2) A small business which would supply the field, geologic and well data, production wells, and production operation. They would cost-share the project and provide revenue from increased production (5% of increased production) to help offset DOE costs. Though DOE would cost-share brine supply and injection system, they would not assume well ownership. The small business would supply engineering and operations for brine supply, injection system, and collection of field producing and injection data. Phase 1--Geologic, reservoir

  19. Essays on carbon policy and enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin R.

    The growing concerns about climate change have led policy makers to consider various regulatory schemes designed to reduce the stock and growth of atmospheric CO2 concentrations while at the same time improving energy security. The most prominent proposals are the so called "cap-and-trade" frameworks which set aggregate emission levels for a jurisdiction and then issue or sell a corresponding number of allowances to emitters. Typically, these policy measures will also encourage the deployment of carbon capture and storage (CCS) in geological formations and mature oil fields through subsidies or other incentives. The ability to store CO 2 in mature oil fields through the deployment of CO2 enhanced oil recovery (CO2--EOR) is particularly attractive as it can simultaneously improve oil recovery at those fields, and serve as a possible financial bridge to the development of CO2 transportation infrastructure. The purpose of this research is to explore the impact that a tandem subsidy-tax policy regime may have on bargaining between emitters and sequestration providers, and also to identify oil units in Wyoming that can profitably undertake CO 2--EOR as a starting point for the build-out of CO2 pipelines. In the first essay an economics lab experiment is designed to simulate private bargaining between carbon emitters (such as power plants) and carbon sequestration sites when the emitter faces carbon taxes, sequestration subsidies or both. In a tax-subsidy policy regime the carbon tax (or purchased allowances) can be avoided by sequestering the carbon, and in some cases the emitter can also earn a subsidy to help pay for the sequestration. The main policy implications of the experiment results are that the sequestration market might be inefficient, and sequestration providers seem to have bargaining power sufficient to command high prices. This may lead to the integration of CO2 sources and sequestration sites, and reduced prices for the injectable CO2 purchased by oil

  20. Combined heating and chemical treatment for oil recovery from aging crude oil.

    PubMed

    Hou, Chunjuan; Jiang, Qingzhe; Song, Zhaozheng; Tan, Guorong; Shi, Zhan

    2016-07-01

    With increasing use of chemical oil displacement agents in tertiary recovery and the application of various demulsifiers for crude oil dehydration, a large amount of aging crude oil containing a high ratio of water is produced, and it is very difficult for processing and utilisation. In this article, we chose aging crude oil samples from a union station in an oilfield in China. Sample composition was analysed to demonstrate that the key of aging crude oil dehydration is the removal of solid impurities. Thus, an efficient method of combining heating and chemical treatments was developed to treat aging crude oil. It includes two steps: The first step is washing of aging crude oil with hot water with sodium dodecylbenzene sulfonate; the second step is chemical demulsification of the above mixture with hydrochloric acid and sodium chloride solution. The result showed that 2.9% of solid impurities and 29.2% of water were removed in the first step; 27.2% of oil, 24.3% of water, and 3.47% of solid impurities in the aging crude oil were recycled in the second step. A total 87.07% of aging crude oil could be solved with this method. The present two-step treatment method can ensure that the dehydration process runs normally and efficiently in the union station, making it a promising method in the recycling of aging crude oil. PMID:27236165

  1. Combined heating and chemical treatment for oil recovery from aging crude oil.

    PubMed

    Hou, Chunjuan; Jiang, Qingzhe; Song, Zhaozheng; Tan, Guorong; Shi, Zhan

    2016-07-01

    With increasing use of chemical oil displacement agents in tertiary recovery and the application of various demulsifiers for crude oil dehydration, a large amount of aging crude oil containing a high ratio of water is produced, and it is very difficult for processing and utilisation. In this article, we chose aging crude oil samples from a union station in an oilfield in China. Sample composition was analysed to demonstrate that the key of aging crude oil dehydration is the removal of solid impurities. Thus, an efficient method of combining heating and chemical treatments was developed to treat aging crude oil. It includes two steps: The first step is washing of aging crude oil with hot water with sodium dodecylbenzene sulfonate; the second step is chemical demulsification of the above mixture with hydrochloric acid and sodium chloride solution. The result showed that 2.9% of solid impurities and 29.2% of water were removed in the first step; 27.2% of oil, 24.3% of water, and 3.47% of solid impurities in the aging crude oil were recycled in the second step. A total 87.07% of aging crude oil could be solved with this method. The present two-step treatment method can ensure that the dehydration process runs normally and efficiently in the union station, making it a promising method in the recycling of aging crude oil.

  2. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field

  3. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    SciTech Connect

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  4. Prospects for enhanced oil recovery in the United States

    SciTech Connect

    Claridge, E.L.

    1982-08-01

    It appears that only one third of the crude oil discovered in the United States will be recovered by primary and secondary recovery methods. The application of tertiary recovery methods is not proceeding at a rate sufficient to prevent the abandonment of about 250 billion barrels at a rate of about 10 billion barrels per year, which has begun and will continue unless significant steps are taken, either to make tertiary recovery more immediately attractive or to ''moth-ball'' the oil fields and their leases and operating unit agreements until economic conditions are made more favorable. The current status and prospects of each major process are examined. The reasons why thermal recovery is the principal process at present, but is unable to expand much, why CO/sub 2/ flooding is about to begin on a large scale but not in many places where it would be applicable, and why chemical flooding has lost promise even though it is needed for most of the fields nearing abandonment, are discussed. It appears likely that no more than 15 billion barrels will be recovered by EOR processes by 2000 A.D.

  5. Microbial enhanced oil recovery research. Annex 5, Summary annual report

    SciTech Connect

    Sharma, M.M.; Georgiou, G.

    1990-12-31

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) investigation of the mechanisms of microbially induced oil mobilization; (2) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs; (4) development of simulators for MEOR; and (5) design of operational strategies for the sequential injection of microorganisms and nutrient in reservoirs are: (1) systematic discussion of the mechanisms important in MEOR processes; (2) Measurement of the growth characteristics of Bacillus Licheniformis under various conditions of pH, temperature and salt concentration for both aerobic and anaerobic growth.; (3) measurement of interfacial tension reducing ability of the biosurfactant under different conditions of pH and salt concentration; (4) development of some preliminary methods to concentrate and characterize the biosurfactant; (5) development of a compositional numerical simulator for MEOR processes; and (6) Measurement of the lowest interfacial tension (IFT) value reported for biosurfactants to date. Demonstration of the fact that the low IFT values required for oil recovery can be attained with biosurfactants.

  6. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    SciTech Connect

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

  7. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    PubMed

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles.

  8. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    PubMed

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles. PMID:26701744

  9. First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement

    SciTech Connect

    1980-01-01

    The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

  10. SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project

    SciTech Connect

    Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

    1980-03-01

    The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

  11. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... tangible property is used directly in a qualified enhanced oil recovery project and is essential to the... gas and water from the oil after it is produced are used directly in the project and are essential to... 26 Internal Revenue 1 2012-04-01 2012-04-01 false Qualified enhanced oil recovery costs....

  12. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... tangible property is used directly in a qualified enhanced oil recovery project and is essential to the... gas and water from the oil after it is produced are used directly in the project and are essential to... 26 Internal Revenue 1 2014-04-01 2013-04-01 true Qualified enhanced oil recovery costs....

  13. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    PubMed

    Zengel, Scott; Bernik, Brittany M; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution

  14. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    PubMed

    Zengel, Scott; Bernik, Brittany M; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution

  15. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery

    PubMed Central

    Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We

  16. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  17. Interfacial phenomena in foam flooding process for heavy oil recovery

    SciTech Connect

    Sharma, M.K.; Shah, D.O.

    1983-08-01

    The ability of pure and commercial foaming agents to generate in situ foams and their effects on air mobility, breakthrough time, fluid recovery and oil displacement efficiency have been studied. These parameters were correlated with the interfacial properties of foaming agents. A striking decrease in the air mobility was observed with increasing temperature as well as pressure which in turn increased the effectiveness of foams to displace additional fluid. It was observed that the chain length compatibility and molecular packing at the air-liquid interface strikingly influenced the interfacial properties of foaming agents, microscopic characteristics and behavior of foams. From the studies on mixed surfactant systems, a minimum in surface tension, a maximum in surface viscosity, a minimum in bubble size and a maximum in heavy oil displacement efficiency in a porous medium were observed when both the components of the foaming system had equal chain length.

  18. DOE seeks to hike recovery in specific oil reservoirs

    SciTech Connect

    Not Available

    1992-08-10

    This paper reports that the Department of Energy is seeking proposals for demonstration projects on ways to better produce oil from U.S. shallow shelf carbonate reservoirs. The $40 million research program is the second in DOE's campaign to enhance recovery from specific types of fields. It has allotted $48 million for demonstration projects for fluvial dominated deltaic reservoirs and plans to target as many as eight more classes of U.S. reservoirs for research. DOE established the program to forestall premature abandonment of wells in high priority fields. It the the U.S. could lose access to more than 75% of domestic oil reserves by 2005 if the current abandonment rate of 17,000 wells/year continues.

  19. Alkaline injection for enhanced oil recovery: a status report

    SciTech Connect

    Mayer, E.H.; Berg, R.L.; Carmichael, J.D.; Weinbrandt, R.M.

    1983-01-01

    In the past several years, there has been renewed interest in enhanced oil recovery (EOR) by alkaline injection. Alkaline solutions also are being used as preflushes in micellar/polymer projects. Several major field tests of alkaline flooding are planned, are in progress, or recently have been completed. Considerable basic research on alkaline injection has been published recently, and more is in progress. This paper summarizes known field tests and, where available, the amount of alkali injected and the performance results. Recent laboratory work, much sponsored by the U.S. DOE, and the findings are described. Alkaline flood field test plans for new projects are summarized.

  20. Well test analysis for enhanced oil recovery projects

    SciTech Connect

    Ikoku, C.U.

    1981-01-01

    Recent studies on the transient flow of non-Newtonian fluid in porous media have proposed new well test analysis techniques for non-Newtonian injection wells. This work extends these new techniques to non-Newtonian injection well falloff testing. The practical use of this well test analysis method is demonstrated. The limitations of the techniques also are addressed. Examples of field data are used to demonstrate how this analysis can aid in well tests interpretation and provide data and insight for the design and operation of enhanced oil recovery projects.

  1. Well test analysis for enhanced oil recovery projects

    SciTech Connect

    Ikoku, C.U.

    1982-06-01

    Recent studies on the transient flow of non-Newtonian fluid in porous media have proposed new well test analysis techniques for non-Newtonian injection wells. This paper extends these new techniques to non-Newtonian injection well falloff testing. The practical use of this well test analysis method is demonstrated. The limitations of the techniques are also addressed. Examples of field data are used to demonstrate how this analysis can aid in well test interpretation and provide data and insight for the design and operation of enhanced oil recovery projects.

  2. Oil recovery by imbibition in low-permeability chalk

    SciTech Connect

    Cuiec, L.; Bourbiaux, B.; Kalaydjian, F. )

    1994-09-01

    This paper describes experimental studies of spontaneous imbibition of oil by water in a low-permeability outcrop chalk. At constant and high interfacial tension (IFT), the importance of capillary forces and the existence of a predominantly countercurrent mechanism were established. Additional experiments were performed to investigate the influence of length and of various boundary conditions. In another investigation the authors modified the IFT at the sample boundary by using pairs of conjugate phases of the n-hexane/ethanol/brine ternary system. Final recovery increased when IFT was lowered. They give a numerical interpretation for this last result.

  3. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  4. Microbial enhanced oil recovery research. Final report, Annex 5

    SciTech Connect

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

  5. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-07-30

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  6. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2004-01-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  7. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-12-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  8. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2003-10-31

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  9. Enhanced oil recovery: Project Roundup. 17 waterflood developments in Rocky Mountains reported

    SciTech Connect

    Not Available

    1981-09-01

    Progress reports on enhanced oil recovery projects primarily in the Rocky Mountain region are presented. The types of recovery processes covered include waterflooding, carbon dioxide injection, steamflooding, polymer/alkalin

  10. Supporting technology for enhanced oil recovery: Fifth amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect

    Reid, T.B. ); Rivas, O. )

    1989-12-01

    An Agreement between the Department of Energy of the United States of America and the Ministry of Energy and Mines of the Republic of Venezuela to cooperate in Energy Research and Development was signed March 6, 1980. The object of cooperation under this DOE/MEMV Agreement was to promote a balanced exchange of energy technologies and to conduct joint projects in the areas of Petroleum, Solar Energy, Geothermal Energy, Hydroelectric Energy and Coal. This report describes research projects in enhanced recovery. The following tasks are discussed: DOE-SUPRI Foam Diversion Research and Simulation Studies; INTEVEP Steam-Foam Laboratory Research -- High Pressure and High Temperature using 2-D Model; DOE-NIPER Light Oil Steamflooding Research; INTEVEP In-Situ Combustion Kinetics Research; DOE-LLNL Electromagnetic Cross borehole Scanning; and INTEVEP Mechanistic Studies for Heavy Oil.

  11. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect

    Reid, T.B. ); Rivas, O. )

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  12. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  13. Thermal numerical simulator for laboratory evaluation of steamflood oil recovery

    SciTech Connect

    Sarathi, P.

    1991-04-01

    A thermal numerical simulator running on an IBM AT compatible personal computer is described. The simulator was designed to assist laboratory design and evaluation of steamflood oil recovery. An overview of the historical evolution of numerical thermal simulation, NIPER's approach to solving these problems with a desk top computer, the derivation of equations and a description of approaches used to solve these equations, and verification of the simulator using published data sets and sensitivity analysis are presented. The developed model is a three-phase, two-dimensional multicomponent simulator capable of being run in one or two dimensions. Mass transfer among the phases and components is dictated by pressure- and temperature-dependent vapor-liquid equilibria. Gravity and capillary pressure phenomena were included. Energy is transferred by conduction, convection, vaporization and condensation. The model employs a block centered grid system with a five-point discretization scheme. Both areal and vertical cross-sectional simulations are possible. A sequential solution technique is employed to solve the finite difference equations. The study clearly indicated the importance of heat loss, injected steam quality, and injection rate to the process. Dependence of overall recovery on oil volatility and viscosity is emphasized. The process is very sensitive to relative permeability values. Time-step sensitivity runs indicted that the current version is time-step sensitive and exhibits conditional stability. 75 refs., 19 figs., 19 tabs.

  14. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    SciTech Connect

    Penner, S.S.

    1982-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  15. Economic Implementation and Optimization of Secondary Oil Recovery

    SciTech Connect

    Cary D. Brock

    2006-01-09

    The St Mary West Barker Sand Unit (SMWBSU or Unit) located in Lafayette County, Arkansas was unitized for secondary recovery operations in 2002 followed by installation of a pilot injection system in the fall of 2003. A second downdip water injection well was added to the pilot project in 2005 and 450,000 barrels of saltwater has been injected into the reservoir sand to date. Daily injection rates have been improved over initial volumes by hydraulic fracture stimulation of the reservoir sand in the injection wells. Modifications to the injection facilities are currently being designed to increase water injection rates for the pilot flood. A fracture treatment on one of the production wells resulted in a seven-fold increase of oil production. Recent water production and increased oil production in a producer closest to the pilot project indicates possible response to the water injection. The reservoir and wellbore injection performance data obtained during the pilot project will be important to the secondary recovery optimization study for which the DOE grant was awarded. The reservoir characterization portion of the modeling and simulation study is in progress by Strand Energy project staff under the guidance of University of Houston Department of Geosciences professor Dr. Janok Bhattacharya and University of Texas at Austin Department of Petroleum and Geosystems Engineering professor Dr. Larry W. Lake. A geologic and petrophysical model of the reservoir is being constructed from geophysical data acquired from core, well log and production performance histories. Possible use of an outcrop analog to aid in three dimensional, geostatistical distribution of the flow unit model developed from the wellbore data will be investigated. The reservoir model will be used for full-field history matching and subsequent fluid flow simulation based on various injection schemes including patterned water flooding, addition of alkaline surfactant-polymer (ASP) to the injected water

  16. Geomechanical Study of Bakken Formation for Improved Oil Recovery

    SciTech Connect

    Ling, Kegang; Zeng, Zhengwen; He, Jun; Pei, Peng; Zhou, Xuejun; Liu, Hong; Huang, Luke; Ostadhassan, Mehdi; Jabbari, Hadi; Blanksma, Derrick; Feilen, Harry; Ahmed, Salowah; Benson, Steve; Mann, Michael; LeFever, Richard; Gosnold, Will

    2013-12-31

    On October 1, 2008 US DOE-sponsored research project entitled “Geomechanical Study of Bakken Formation for Improved Oil Recovery” under agreement DE-FC26-08NT0005643 officially started at The University of North Dakota (UND). This is the final report of the project; it covers the work performed during the project period of October 1, 2008 to December 31, 2013. The objectives of this project are to outline the methodology proposed to determine the in-situ stress field and geomechanical properties of the Bakken Formation in Williston Basin, North Dakota, USA to increase the success rate of horizontal drilling and hydraulic fracturing so as to improve the recovery factor of this unconventional crude oil resource from the current 3% to a higher level. The success of horizontal drilling and hydraulic fracturing depends on knowing local in-situ stress and geomechanical properties of the rocks. We propose a proactive approach to determine the in-situ stress and related geomechanical properties of the Bakken Formation in representative areas through integrated analysis of field and well data, core sample and lab experiments. Geomechanical properties are measured by AutoLab 1500 geomechanics testing system. By integrating lab testing, core observation, numerical simulation, well log and seismic image, drilling, completion, stimulation, and production data, in-situ stresses of Bakken formation are generated. These in-situ stress maps can be used as a guideline for future horizontal drilling and multi-stage fracturing design to improve the recovery of Bakken unconventional oil.

  17. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  18. In-situ steam drive oil recovery process

    SciTech Connect

    Vanmeurs, P.; Waxman, M.H.; Vinegar, H.J.

    1987-02-03

    A process is described for heating a subterranean oil and water-containing reservoir formation, comprising: completing at least one each of heat-injecting and fluid-producing wells into a treatment interval of the formation which is at least about 100 feet thick, contains both oil and water, and is both undesirably impermeable and non-productive in response to injections of oil recovery fluids; arranging the wells to have boreholes which, substantially throughout the treatment interval, are substantially parallel and are separated by substantially equal distances of at least about 20 feet; in each heat-injecting well, substantially throughout the treatment interval, sealing the face of the reservoir formation with a solid material which is relatively heat-conductive and substantially fluid impermeable; in each fluid-producing well, substantially throughout the treatment interval, establishing fluid communication between the wellbore and the reservoir formation and arranging the well for producing fluid from the reservoir formation; and heating the interior of each heat-injecting well, at least substantially throughout the treatment interval, at a rate or rates capable of (a) increasing the temperature within the borehole interior to at least about 600/sup 0/C. and (b) maintaining a borehole interior temperature of at least about 600/sup 0/C. without causing it to become high enough to thermally damage equipment within the borehole while heat is being transmitted away from the borehole at a rate not significantly faster than that permitted by the thermal conductivity of the reservoir formation.

  19. Micro-Employees Employment, Enhanced Oil-Recovery Improvement

    NASA Astrophysics Data System (ADS)

    Allahtavakoli, M.; Allahtavakoli, Y.

    2009-04-01

    Employment of Micro-organisms, as profitable micro-employees in improvement of Enhanced Oil Recovery (EOR), leads us to a famous method named "MEOR". Applying micro-organisms in MEOR makes it more lucrative than other EOR ways because feeding these micro-employees is highly economical and their metabolic processes require some cheap food-resources such as molasses. In addition, utilizing the local micro-organism in reservoirs will reduce the costs effectively; Furthermore these micro-organisms are safety and innocuous to some extent. In MEOR, the micro-organisms are always employed for two purposes, "Restoring pressure to reservoir" and "Decreasing Oil-Viscosity". As often as more, the former is achievable by In-Situ Mechanism or by applying the micro-organisms producing Biopolymers and the latter is also reachable by applying the micro-organisms producing Bio-surfactants. This paper as a proposal which was propounded to National Iranian Oil Company (NIOC) is an argument for studying and reviewing "Interaction between Micro-organisms and Reservoir physiochemical properties", "Biopolymer producers and Bio-Surfactant Producers", "In-Situ Mechanism", "Proposed Methods in MEOR" and their limitations.

  20. Thermally-enhanced oil recovery method and apparatus

    DOEpatents

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  1. Interaction between Fingering and Heterogeneity during Viscous Oil Recovery in Carbonate Rocks (Invited)

    NASA Astrophysics Data System (ADS)

    Mohanty, K. K.; Doorwar, S.

    2013-12-01

    Due to the fast depleting conventional oil reserves, research in the field of petroleum engineering has shifted focus towards unconventional (viscous and heavy) oils. Many of the viscous oil reserves are in carbonate rocks. Thermal methods in carbonate formations are complicated by mineral dissolution and precipitation. Non-thermal methods should be developed for viscous oils in carbonates. In viscous oil reservoirs, oil recovery due to water flood is low due to viscous fingering. Polymer flood is an attractive process, but the timing of the polymer flood start is an important parameter in the optimization of polymer floods. Vuggy Silurian dolomite cores were saturated with formation brine and reservoir oil (150-200 cp). They were then displaced by either a polymeric solution (secondary polymer flood) or brine followed the polymeric solution (tertiary polymer flood). The amount of brine injection was varied as a parameter. Oil recovery and pressure drop was monitored as a function of the starting point of the polymer flood. To visualize the displacement at the pore-scale, two types of micromodels were prepared: one with isolated heterogeneity and the other with connected heterogeneity. The wettability of the micromodels was either water-wet or oil-wet. The micromodels were saturated with formation brine and oil. A series of water flood and polymer flood was conducted to identify the mechanism of fluid flow. Dolomite corefloods show that a tertiary polymer flood following a secondary water flood recovers a substantial amount of oil unlike what is observed in typical sandstone cores with light oil. The tertiary oil recovery plus the secondary waterflood recovery can exceed the oil recovery in a secondary polymer flood in dolomite-viscous oil-brine system. These experiments were repeated in a Berea-oil-brine system which showed that the oil recovered in the secondary polymer flood was similar to the cumulative oil recovery in the tertiary polymer flood. The high

  2. Impacts, recovery rates, and treatment options for spilled oil in marshes.

    PubMed

    Michel, Jacqueline; Rutherford, Nicolle

    2014-05-15

    In a review of the literature on impacts of spilled oil on marshes, 32 oil spills and field experiments were identified with sufficient data to generate recovery curves and identify influencing factors controlling the rate of recovery. For many spills, recovery occurred within 1-2 growing seasons, even in the absence of any treatment. Recovery was longest for spills with the following conditions: Cold climate; sheltered settings; thick oil on the marsh surface; light refined products with heavy loading; oils that formed persistent thick residues; and intensive treatment. Recovery was shortest for spills with the following conditions: Warm climate; light to heavy oiling of the vegetation only; medium crude oils; and less-intensive treatment. Recommendations are made for treatment based on the following oiling conditions: Free-floating oil on the water in the marsh; thicker oil (>0.5 cm) on marsh surface; thinner oil (<0.5 cm) on marsh surface; heavy oil loading on vegetation; and light to moderate oil loading on vegetation.

  3. Use of taurine additives in enhanced oil recovery with anionic surfactants

    SciTech Connect

    Prukop, G.; Chea, C.K.

    1990-12-11

    This patent describes a method disclosed for increasing the recovery of oil in enhanced oil recovery operations employing anionic surfactant by blending a taurine with the anionic surfactant. The taurine may also increase the salt and divalent ion tolerance of the aniomic surfactant.

  4. Design and feasibility study for a portable oil recovery turbopump

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A portable oil recovery turbopump concept, using the Firefly module as primer mover, for the offloading of distressed tank vessels is examined. The demands to be met both in terms of the type of petroleum to be offloaded, as well as the operational requirements placed on the pump, are studied with respect to the capability of different pump configurations. Two configurations, one a centrifugal type and the other a screw type pump, are developed and evaluated. While the centrifugal configuration is found to be effective in a large proportion of tank vessel offloading situations, the screw type will be required where high viscosity cargoes are involved. The feasibility of the turbopump concept, with the Firefly module as prime mover, is established.

  5. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  6. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  7. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovich; De, Asoke Kumar

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  8. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  9. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    SciTech Connect

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  10. Enhanced oil recovery using flash-driven steamflooding

    DOEpatents

    Roark, Steven D.

    1990-01-01

    The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.

  11. Oil field experiments of microbial improved oil recovery in Vyngapour, West Siberia, Russia

    SciTech Connect

    Murygina, V.P.; Mats, A.A.; Arinbasarov, M.U.; Salamov, Z.Z.; Cherkasov, A.B.

    1995-12-31

    Experiments on microbial improved oil recovery (MIOR) have been performed in the Vyngapour oil field in West Siberia for two years. Now, the product of some producing wells of the Vyngapour oil field is 98-99% water cut. The operation of such wells approaches an economic limit. The nutritious composition containing local industry wastes and sources of nitrogen, phosphorus and potassium was pumped into an injection well on the pilot area. This method is called {open_quotes}nutritional flooding.{close_quotes} The mechanism of nutritional flooding is based on intensification of biosynthesis of oil-displacing metabolites by indigenous bacteria and bacteria from food industry wastes in the stratum. 272.5 m{sup 3} of nutritious composition was introduced into the reservoir during the summer of 1993, and 450 m3 of nutritious composition-in 1994. The positive effect of the injections in 1993 showed up in 2-2.5 months and reached its maximum in 7 months after the injections were stopped. By July 1, 1994, 2,268.6 tons of oil was produced over the base variant, and the simultaneous water extraction reduced by 33,902 m{sup 3} as compared with the base variant. The injections in 1994 were carried out on the same pilot area.

  12. Recovery of oil from oil-in-water emulsion using biopolymers by adsorptive method.

    PubMed

    Elanchezhiyan, S Sd; Sivasurian, N; Meenakshi, Sankaran

    2014-09-01

    In the present study, it is aimed to identify, a low cost sorbent for the recovery of oil from oil-in-water emulsion using biopolymers such as chitin and chitosan. Chitin has the greater adsorption capacity than chitosan due to its hydrophobic nature. The characterizations of chitin and chitosan were done using FTIR, SEM, EDAX, XRD, TGA and DSC techniques. Under batch equilibrium mode, a systematic study was performed to optimize the various equilibrium parameters viz., contact time, pH, dosage, initial concentration of oil, and temperature. The adsorption process reached equilibrium at 40 min of contact time and the percentage removal of oil was found to be higher (90%) in the acidic medium. The Freundlich and Langmuir models were applied to describe the equilibrium isotherms and the isotherm constants were calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to find out the nature of the sorption mechanism. The kinetic studies were investigated with reaction-based and diffusion-based models. The suitable mechanism for the removal of oil has been established.

  13. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  14. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  15. A Sugar-Based Gelator for Marine Oil-Spill Recovery.

    PubMed

    Vibhute, Amol M; Muvvala, Venkatanarayana; Sureshan, Kana M

    2016-06-27

    Marine oil spills constitute an environmental disaster with severe adverse effects on the economy and ecosystem. Phase-selective organogelators (PSOGs), molecules that can congeal oil selectively from oil-water mixtures, have been proposed to be useful for oil-spill recovery. However, a major drawback lies in the mode of application of the PSOG to an oil spill spread over a large area. The proposed method of using carrier solvents is impractical for various reasons. Direct application of the PSOG as a solid, although it would be ideal, is unknown, presumably owing to poor dispersion of the solid through the oil. We have designed five cheap and easy-to-make glucose-derived PSOGs that disperse in the oil phase uniformly when applied as a fine powder. These gelators were shown to selectively congeal many oils, including crude oil, from oil-water mixtures to form stable gels, which is an essential property for efficient oil-spill recovery. We have demonstrated that these PSOGs can be applied aerially as a solid powder onto a mixture of crude oil and sea water and the congealed oil can then be scooped out. Our innovative mode of application and low cost of the PSOG offers a practical solution to oil-spill recovery.

  16. A Sugar-Based Gelator for Marine Oil-Spill Recovery.

    PubMed

    Vibhute, Amol M; Muvvala, Venkatanarayana; Sureshan, Kana M

    2016-06-27

    Marine oil spills constitute an environmental disaster with severe adverse effects on the economy and ecosystem. Phase-selective organogelators (PSOGs), molecules that can congeal oil selectively from oil-water mixtures, have been proposed to be useful for oil-spill recovery. However, a major drawback lies in the mode of application of the PSOG to an oil spill spread over a large area. The proposed method of using carrier solvents is impractical for various reasons. Direct application of the PSOG as a solid, although it would be ideal, is unknown, presumably owing to poor dispersion of the solid through the oil. We have designed five cheap and easy-to-make glucose-derived PSOGs that disperse in the oil phase uniformly when applied as a fine powder. These gelators were shown to selectively congeal many oils, including crude oil, from oil-water mixtures to form stable gels, which is an essential property for efficient oil-spill recovery. We have demonstrated that these PSOGs can be applied aerially as a solid powder onto a mixture of crude oil and sea water and the congealed oil can then be scooped out. Our innovative mode of application and low cost of the PSOG offers a practical solution to oil-spill recovery. PMID:26821611

  17. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  18. Oil-spill recovery: oil booms and skimmers. January 1971-October 1988 (Citations from the US Patent data base). Report for January 1971-October 1988

    SciTech Connect

    Not Available

    1988-10-01

    This bibliography contains citations of selected patents concerning booms, skimmers, and skimming techniques for oil spill recovery. Selected patents include oil absorbent materials, dispersants, floating booms, methods and equipment for oil-spill containment and collection, marine barriers, cryogenic beach cleaners, microbial materials, and ultrasonic oil removal. Citations concerning oil-water separation for non-oil spill recovery applications are excluded and examined in a separate bibliography. (Contains 127 citations fully indexed and including a title list.)

  19. Oil spill recovery: Oil booms and skimmers. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-07-01

    The bibliography contains citations of selected patents concerning booms, skimmers, and skimming techniques used for oil spill recovery. Patents cover cleanup and containment systems, floating booms, collection and storage, barriers, and dispersants. Visible markings, lighters for transferring oil, and pollution monitoring systems are also included. (Contains 50-250 citations and includes a subject term index and title list.)

  20. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    PubMed

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately. PMID:23904657

  1. ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

    SciTech Connect

    Mark B. Murphy

    2002-09-30

    The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

  2. Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates

    SciTech Connect

    Norman R. Morrow; Jill Buckley

    2006-04-01

    About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.

  3. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    DOE R&D Accomplishments Database

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  4. Recovery of NORM from scales generated by oil extraction.

    PubMed

    Al Attar, Lina; Safia, Bassam; Ghani, Basem Abdul; Al Abdulah, Jamal

    2016-03-01

    Scales, containing naturally occurring radioactive materials (NORM), are a major problem in oil production that lead to costly remediation and disposal programmes. In view of environmental protection, radio and chemical characterisation is an essential step prior to waste treatment. This study focuses on developing of a protocol to recover (226)Ra and (210)Pb from scales produced by petroleum industry. X-ray diffractograms of the scales indicated the presence of barite-strontium (Ba0.75Sr0.25SO4) and hokutolite (Ba0.69Pb0.31SO4) as main minerals. Quartz, galena and Ca2Al2SiO6(OH)2 or sphalerite and iron oxide were found in minor quantities. Incineration to 600 °C followed by enclosed-digestion and acid-treatment gave complete digestion. Using (133)Ba and (210)Pb tracers as internal standards gave recovery ranged 87-91% for (226)Ra and ca. 100% for (210)Pb. Radium was finally dissolved in concentrated sulphuric acid, while (210)Pb dissolved in the former solution as well as in 8 M nitric acid. Dissolving the scales would provide better estimation of their radionuclides contents, facilitate the determination of their chemical composition, and make it possible to recycle NORM wastes in terms of radionuclides production. PMID:26773509

  5. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    SciTech Connect

    Somasundaran, Prof. P.

    2001-02-27

    The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

  6. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    SciTech Connect

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  7. Harlequin duck population recovery following the 'Exxon Valdez' oil spill: Progress, process and constraints

    USGS Publications Warehouse

    Esler, Daniel; Bowman, T.D.; Trust, K.A.; Ballachey, B.E.; Dean, T.A.; Jewett, S.C.; O'Clair, C. E.

    2002-01-01

    Following the 1989 'Exxon Valdez' oil spill in Prince William Sound, Alaska, we studied the status of recovery of harlequin duck Histrionicus histrionicus populations during 1995 to 1998. We evaluated potential constraints on full recovery, including (1) exposure to residual oil; (2) food limitation; and (3) intrinsic demographic limitations on population growth rates. In this paper, we synthesize the findings from our work and incorporate information from other harlequin duck research and monitoring programs to provide a comprehensive evaluation of the response of this species to the 'Exxon Valdez' spill. We conclude that harlequin duck populations had not fully recovered by 1998. Furthermore, adverse effects continued as many as 9 yr after the oil spill, in contrast to the conventional paradigm that oil spill effects on bird populations are short-lived. These conclusions are based on the findings that (1) elevated cytochrome P450 (CYP1A) induction on oiled areas indicated continued exposure to oil in 1998; (2) adult female winter survival was lower on oiled than unoiled areas during 1995 to 1998; (3) fall population surveys by the Alaska Department of Fish and Game indicated numerical declines in oiled areas during 1995 to 1997; and (4) densities on oiled areas in 1996 and 1997 were lower than expected using models that accounted for effects of habitat attributes. Based on hypothesized links between oil contamination and demography, we suggest that harlequin duck population recovery was constrained primarily by continued oil exposure. Full population recovery will also be delayed by the time necessary for intrinsic population growth to allow return to pre-spill numbers following cessation of residual oil spill effects. Although not all wildlife species were affected by the 'Exxon Valdez' oil spill, and some others may have recovered quickly from any effects, harlequin duck life history characteristics and benthic, nearshore feeding habits make them susceptible to

  8. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yannis C.

    2003-03-19

    The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yorstos, Yanis C.

    2002-03-11

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  10. Analysis of potential used oil recovery from individuals. Final report

    SciTech Connect

    Gottlieb, M.

    1981-07-01

    To assist the Department of Energy in its investigation of methods for recycling used motor oil, Market Facts conducted a telephone survey of individuals who change their own motor oil. The study examined the amount of oil used, oil change practices, oil disposal methods, and perceptions and attitudes toward used motor oil disposal and oil recycling. The results of this survey are presented in this report. The findings of this study confirm the generally held view that about half the vehicle households in the United States now do their own oil changes and additions. These do-it-yourselfers (DIY) households account for almost two-thirds of the motor oil consumed by all US households and produce about one-third of one billion gallons of used motor oil annually. At least half of this used motor oil, more than 170 million gallons, is returned to the environment in a form that pollutes the ground and endangers the water supply. Measures such as requiring information about proper disposal and the need for recycling used oil to be printed on motor oil containers have been taken in many states. The need for reminder advertising and reinforcement education and information and practical measures to ease the burden of compliance is suggested. These results suggest that careful consideration be given to the logistics of these measures. The most appealing of the measures would appear to be making a special container available to DIY oil changers. Employing civic groups as collection agents would also seem to be attractive.

  11. Distribution and Recovery of Crude Oil in Various Types of Porous Media and Heterogeneity Configurations

    NASA Astrophysics Data System (ADS)

    Tick, G. R.; Ghosh, J.; Greenberg, R. R.; Akyol, N. H.

    2015-12-01

    A series of pore-scale experiments were conducted to understand the interfacial processes contributing to the removal of crude oil from various porous media during surfactant-induced remediation. Effects of physical heterogeneity (i.e. media uniformity) and carbonate soil content on oil recovery and distribution were evaluated through pore scale quantification techniques. Additionally, experiments were conducted to evaluate impacts of tetrachloroethene (PCE) content on crude oil distribution and recovery under these same conditions. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was likely responsible for mobilization and recovery of lighter fractions of crude oil. Corresponding increases in viscous forces were insufficient to initiate and maintain the displacement of the heavy crude oil in more homogeneous porous media systems during surfactant flushing. Interestingly, higher relative recoveries of heavy oil fractions were observed within more heterogeneous porous media indicating that wettability may be responsible for controlling mobilization in these systems. Compared to the "pure" crude oil experiments, preliminary results show that crude oil with PCE produced variability in oil distribution and recovery before and after each surfactant-flooding event. Such effects were likely influenced by viscosity and interfacial tension modifications associated with the crude-oil/solvent mixed systems.

  12. Review of technology for Arctic offshore oil and gas recovery

    SciTech Connect

    Sackinger, W. M.

    1980-08-01

    The technical background briefing report is the first step in the preparation of a plan for engineering research oriented toward Arctic offshore oil and gas recovery. A five-year leasing schedule for the ice-prone waters of the Arctic offshore is presented, which also shows the projected dates of the lease sale for each area. The estimated peak production rates for these areas are given. There is considerable uncertainty for all these production estimates, since no exploratory drilling has yet taken place. A flow chart is presented which relates the special Arctic factors, such as ice and permafrost, to the normal petroleum production sequence. Some highlights from the chart and from the technical review are: (1) in many Arctic offshore locations the movement of sea ice causes major lateral forces on offshore structures, which are much greater than wave forces; (2) spray ice buildup on structures, ships and aircraft will be considerable, and must be prevented or accommodated with special designs; (3) the time available for summer exploratory drilling, and for deployment of permanent production structures, is limited by the return of the pack ice. This time may be extended by ice-breaking vessels in some cases; (4) during production, icebreaking workboats will service the offshore platforms in most areas throughout the year; (5) transportation of petroleum by icebreaking tankers from offshore tanker loading points is a highly probable situation, except in the Alaskan Beaufort; and (6) Arctic pipelines must contend with permafrost, making instrumentation necessary to detect subtle changes of the pipe before rupture occurs.

  13. The Prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet.

    PubMed

    González, Manuel; Uriarte, Adolfo; Pozo, Rogelio; Collins, Michael

    2006-01-01

    On 19th November 2002, the oil tanker Prestige (containing 77,000 tonnes of heavy fuel no. 2 (M100)) sank in 3500 m of water, off the coast of northwestern Spain. Intermittent discharge of oil from the stricken tanker, combined with large-scale sea surface dispersion, created a tracking and recovery problem. Initially, conventional oil recovery approaches were adopted, close to the wreck. With time and distance from the source, the oil dispersed dramatically and became less viscous. Consequently, a unique monitoring, prediction and data dissemination system was established, based upon the principles of 'operational oceanography'; this utilised in situ tracked buoys and numerical (spill trajectory) modelling outputs, in combination with remote sensing (satellite sensors and visual observation). Overall, wind effects on the surface waters were found to be the most important mechanism controlling the smaller oil slick movements. The recovery operation involved up to 180 fishing boats, 9-30 m in length. Such labour-intensive recovery of the oil (21,000 tonnes, representing an unprecedented ratio of 6.6 tonnes at sea, per tonne recovered on land) continued over a 10 month period. The overall recovery at sea, by the fishing vessels, represented 63% of the total oil recovered at sea; this compares to only 37% recovered by specialised 'counter- pollution' vessels.

  14. Development of on-farm oil recovery and processing methods: Final report

    SciTech Connect

    Goodrum, J.W.; Kilgo, M.B.

    1987-09-02

    Using supercritical carbon dioxide (SC-CO2), peanut oil was extracted from ground peanuts at pressures of 2000 to 10,000 psi and temperatures of 25-120/degree/ C. Above 6000 psi, increasing the temperature to the maximum possible without heavily charring the peanuts (120/degree/C) significantly increased the initial extraction rate. Increasing the pressure at constant temperature increased the rate. At higher temperatures (75/degree/ C and above) roasting began to occur, however, this was not detrimental to the extraction rate or overall oil recovery. Decreasing the particle size increases the overall yield per batch of peanuts as seen in both the half factorial and particle size experiments. Increasing the moisture increases the amount of volatiles lost. The flow rate does not affect the solubility, percent oil recovered or volatiles lost for flow rates of 40 to 60 liters CO2/minute at STP. Recovery of peanut and rapeseed oil with a combined process of partial recovery in a screw press plus extraction of the remaining oil with SC-CO2 is technically a viable alternative to other oil recovery methods. Oil recoveries of 95% (peanuts) and 75% (rapeseed) have been demonstrated. The initial extraction rate for rapeseed was consistently lower than the rate for peanuts at the same extraction temperature and pressure. No differences in SC-CO2 extraction rates or yields were found between Dwarf Essex and Cascade varieties of rapeseed. 8 refs., 17 figs., 5 tabs.

  15. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    SciTech Connect

    Armstrong, Ryan T.; Wildenschild, Dorthe

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

  16. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect

    1997-10-01

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  17. Effects of CO sub 2 addition to steam on recovery of West Sak crude oil

    SciTech Connect

    Hornbrook, M.W. ); Dehghani, K. )

    1991-02-01

    This paper reports on a high-pressure 1D laboratory displacement study which evaluated the effects of adding CO{sub 2} to steam on the recovery of West Sak crude oil. Results of the laboratory experiments indicate that the simultaneous injection of CO{sub 2} and steam increases recovery, reduces injection temperatures, and reduces the heat input required.

  18. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect

    A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; R. Reynolds; m. Michnick

    1998-04-15

    The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

  19. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true The enhanced oil recovery credit-general rules. 1... price deflator for 1990. The “GNP implicit price deflator” is the first revision of the implicit price... section 263(c) is $85. Because G is an integrated oil company, G must capitalize 25.50 ($85 × 30%)...

  20. 26 CFR 1.43-1 - The enhanced oil recovery credit-general rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true The enhanced oil recovery credit-general rules. 1... price deflator for 1990. The “GNP implicit price deflator” is the first revision of the implicit price... section 263(c) is $85. Because G is an integrated oil company, G must capitalize 25.50 ($85 × 30%)...

  1. Microfluidic and micro-core methods for enhanced oil recovery and carbon storage applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Phong

    Injection of CO2 into the subsurface, for both storage and oil recovery, is an emerging strategy to mitigate atmospheric CO2 emissions and associated climate change. In this thesis microfluidic and micro-core methods were developed to inform combined CO2-storage and oil recovery operations and determine relevant fluid properties. Pore scale studies of nanoparticle stabilized CO2-in-water foam and its application in oil recovery to show significant improvement in oil recovery rate with different oils from around the world (light, medium, and heavy). The CO2 nanoparticle-stabilized CO2 foams generate a three-fold increase in oil recovery (an additional 15% of initial oil in place) as compared to an otherwise similar CO2 gas flood. Nanoparticle-stabilized CO2 foam flooding also results in significantly smaller oil-in-water emulsion sizes. All three oils show substantial additional oil recovery and a positive reservoir homogenization effect. A supporting microfluidic approach is developed to quantify the minimum miscibility pressure (MMP) -- a critical parameter for combined CO 2 storage and enhanced oil recovery. The method leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. In terms of speed, a pressure scan for a single minimum miscibility pressure measurement required less than 30 min, in stark contrast to days or weeks with existing rising bubble and slimtube methods. In practice, subsurface geology also interacts with injected CO 2. Commonly carbonate dissolution results in pore structure, porosity, and permeability changes. These changes are measured by x-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium. This work leverages established advantages of

  2. [Study on effect of oil-bearing solution environment of Caryophylli Flos and other traditional Chinese medicines on system flux and oil recovery rate].

    PubMed

    Fan, Wen-Ling; Guo, Li-Wei; Lin, Ying; Shen, Jie; Cao, Gui-Ping; Zhu, Yun; Xu, Min; Yang, Lei

    2013-10-01

    The membrane enrichment process of traditional Chinese medicine volatile oil is environmental friendly and practical, with a good application prospect. In this article, oil-bearing solutions of eight traditional Chinese medicines, namely Caryophylli Flos, Schizonepetae Herba, Eupatorii Herb, Acori Talarinowii Rhizoma, Magnoliae Flos, Chrysanthemum indicum, Cyperi Rhizoma and Citri Reticulatae Pericarpium Viride, were taken as the experimental system. Under unified conditions (membrane: PVDF-14W, temperature: 40 degreeC, pressure: 0. 1 MPa, membrane surface speed: 150 r min- 1), trans-membrane was conducted for above eight oil-bearing solutions to explore the effect of their oil-bearing solution environment on system flux and oil recovery rate. The results showed that systems with smaller pH had a lower flux, without significant effect on oil recovery rate. Greater differences between the surface tension of solutions and that of pure water contributed to a lower oil recovery rate. The conductivity had no notable effect on membrane enrichment process. Systems with high turbidity had a lower flux, without remarkable effect on oil recovery rat. Heavy oils showed lower flux than light ones, but with a slightly higher oil recovery rat. Systems with higher viscosity had a lower flux than those with lower viscosity. Except for Magnoliae Flos volatile oil, all of the remaining volatile oils showed a much higher oil recovery rat than systems with high viscosity. The above results could provide data support and theoretical basis for the industrialization of membrane enrichment volatile oil technology. PMID:24422391

  3. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    SciTech Connect

    Yortsos, Yanis C.

    2000-01-19

    This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

  4. Effects of a dual-pump crude-oil recovery system, Bemidji, Minnesota, USA

    USGS Publications Warehouse

    Delin, Geoffrey N.; Herkelrath, William N.

    2014-01-01

    A crude-oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual-pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved-oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil-phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.

  5. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect

    Olsen, D.K.; Johnson, W.I.

    1993-08-01

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  6. Criteria for oil spill recovery: a case study of the intertidal community of Prince William Sound, Alaska, following the Exxon Valdez oil spill.

    PubMed

    Skalski, J R; Coats, D A; Fukuyama, A K

    2001-07-01

    Marine intertidal organisms in Prince William Sound were exposed to crude oil following the TN Exxon Valdez oil spill in 1989. The intertidal communities were also subjected to mechanical disturbance during invasive oil spill remediation and cleanup efforts. Using monitoring data collected from 1989 to 1997, impacts and eventual recovery were assessed at oiled but uncleaned sites and oiled and cleaned study areas. A statistical model where recovery was defined as parallelism between the time profiles at control and oiled sites was evaluated. Statistical analysis and graphical presentations of the data suggest intertidal epibiota communities recovered from the oil spill by 1992 at the oiled sites and by 1994 at the oiled and remediated sites. Empirical data from the intertidal monitoring program supports the use of tests of parallelism in evaluating recovery and the need to avoid simply the comparison of sample means from control and oiled sites. PMID:11437004

  7. Criteria for oil spill recovery: a case study of the intertidal community of Prince William Sound, Alaska, following the Exxon Valdez oil spill.

    PubMed

    Skalski, J R; Coats, D A; Fukuyama, A K

    2001-07-01

    Marine intertidal organisms in Prince William Sound were exposed to crude oil following the TN Exxon Valdez oil spill in 1989. The intertidal communities were also subjected to mechanical disturbance during invasive oil spill remediation and cleanup efforts. Using monitoring data collected from 1989 to 1997, impacts and eventual recovery were assessed at oiled but uncleaned sites and oiled and cleaned study areas. A statistical model where recovery was defined as parallelism between the time profiles at control and oiled sites was evaluated. Statistical analysis and graphical presentations of the data suggest intertidal epibiota communities recovered from the oil spill by 1992 at the oiled sites and by 1994 at the oiled and remediated sites. Empirical data from the intertidal monitoring program supports the use of tests of parallelism in evaluating recovery and the need to avoid simply the comparison of sample means from control and oiled sites.

  8. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  9. Surfactant-Polymer Interaction for Improved Oil Recovery

    SciTech Connect

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  10. "The Seventh Seal."

    ERIC Educational Resources Information Center

    Palmer, Peter M.

    1969-01-01

    The significance of Bergman's "Seventh Seal" lies not in the speeches nor in the actions of the central characters but rather in the film's form, its totality created by the emotive elements of imagery and sound together with the intellectual elements of actions and words. The scene-units are related to a central motif (the opening of the seventh…

  11. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    PubMed

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-01

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  12. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    PubMed

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-01

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media. PMID:27506231

  13. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect

    Jill S. Buckley; Norman R. Morrow

    2003-05-01

    This report summarizes the experimental results of some baseline imbibition tests on recovery of mineral oil at very strongly water wet conditions (VSWW) from sandstones with air permeability ranging from 80 to 360 md. Mixed wettability cores were prepared by adsorption from either Minnelusa or Gullfaks crude oil using either synthetic Minnelusa reservoir brine or sea water. Recovery of two synthetic-based mud (SBM) base oils, Petrofree(reg sign)SF and LVT 200 from mixed wettability cores gave results that correlated closely with results for refined oils with viscosities ranging from 3.8 to 84 cp. Two synthetic-based mud emulsifiers (LE SUPERMUL and EZ MUL(reg sign)NT) were added to mineral oil and tested for their effect on the wettability of MXW-F core samples as indicated by spontaneous imbibition. In both cases a significant decrease in water wetness was obtained.

  14. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    PubMed

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051

  15. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery

    PubMed Central

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051

  16. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  17. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004

    SciTech Connect

    Larry Zirker; James Francfort; Jordan Fielding

    2004-08-01

    This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE

  18. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect

    Tiedemann, H.A. )

    1991-03-01

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  19. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    PubMed

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase. PMID

  20. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  1. Resources recovery of oil sludge by pyrolysis: Kinetics study

    SciTech Connect

    Shie, J.L.; Chang, C.Y.; Lin, J.P.; Wu, C.H.; Lee, D.J.

    1999-07-01

    Oil sludge, if unused, is one of the major industrial wastes needed to be treated for the petroleum refinery plant or petrochemical industry. It contains a large amount of combustibles with high heating values. The treatment of waste oil sludge by burning has certain benefit; however, it cannot provide the useful resource efficiently. On the other hand, the conversion of oil sludge to lower molecule weight organic compounds by pyrolysis not only solves the disposal problem but also matches the appeal of resource utilization. The major sources of oil sludge include the oil storage tank sludge, the biological sludge, the dissolve air flotation (DAF) scum, the American Petroleum Institute (API) separator sludge and the chemical sludge. In this study, the oil sludge from the oil storage tank of a typical petroleum refinery plant located in the northern Taiwan is used as the raw material of pyrolysis. Its heating value of dry basis and low heating value of wet basis are about 10,681 k cal/kg and 5,870 k cal/kg, respectively. The removal of the moisture of oil sludge significantly increases its heating value. The pyrolysis of oil sludge is conducted by the use of nitrogen as the carrier gas in the temperature range of 380 {approximately} 1,073 K and at various constant heating rates of 5.2, 12.8 and 21.8 K/min. The pyrolytic reaction is significant in 450 {approximately} 800 K and complex. For the sake of simplicity and engineering use, a one-reaction kinetic model is proposed for the pyrolysis of oil sludge, and is found to satisfactorily fit the experimental data. The activation energy, reaction order and frequency factor of the corresponding pyrolysis reaction in nitrogen for oil sludge are 78.22 kJ/mol, 2.92 and 9.48 105 l/min, respectively. These results are very useful for the proper design of the pyrolysis system of the oil sludge under investigation.

  2. CO2 Enhanced Oil Recovery from the Residual Zone - A Sustainable Vision for North Sea Oil Production

    NASA Astrophysics Data System (ADS)

    Stewart, Jamie; Haszeldine, Stuart; Wilkinson, Mark; Johnson, Gareth

    2014-05-01

    This paper presents a 'new vision for North Sea oil production' where previously unattainable residual oil can be produced with the injection of CO2 that has been captured at power stations or other large industrial emitters. Not only could this process produce incremental oil from a maturing basin, reducing imports, it also has the capability to store large volumes of CO2 which can offset the emissions of additional carbon produced. Around the world oil production from mature basins is in decline and production from UK oil fields peaked in 1998. Other basins around the world have a similar story. Although in the UK a number of tax regimes, such as 'brown field allowances' and 'new field allowances' have been put in place to re-encourage investment, it is recognised that the majority of large discoveries have already been made. However, as a nation our demand for oil remains high and in the last decade imports of crude oil have been steadily increasing. The UK is dependent on crude oil for transport and feedstock for chemical and plastics production. Combined with the necessity to provide energy security, there is a demand to re-assess the potential for CO2 Enhanced Oil Recovery (CO2-EOR) in the UK offshore. Residual oil zones (ROZ) exist where one of a number of natural conditions beyond normal capillary forces have caused the geometry of a field's oil column to be altered after filling [1]. When this re-structuring happens the primary interest to the hydrocarbon industry has in the past been in where the mobile oil has migrated to. However it is now considered that significant oil resource may exist in the residual zone play where the main oil column has been displaced. Saturations within this play are predominantly close to residual saturation (Sr) and would be similar to that of a water-flooded field [2]. Evidence from a number of hydrocarbon fairways shows that, under certain circumstances, these residual zones in US fields are comparable in thickness to the

  3. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    SciTech Connect

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  4. Sea otter population status and the process of recovery from the 1989 Exxon Valdez oil spill

    USGS Publications Warehouse

    Bodkin, J.L.; Ballachey, B.E.; Dean, T.A.; Fukuyama, A.K.; Jewett, S.C.; McDonald, L.; Monson, D.H.; O'Clair, C. E.; VanBlaricom, G.R.

    2002-01-01

    Sea otter Enhydra lutris populations were severely affected by the 1989 Exxon Valdez oil spill in western Prince William Sound, AK, and had not fully recovered by 2000. Here we present results of population surveys and incorporate findings from related studies to identify current population status and factors affecting recovery. Between 1993 and 2000, the number of sea otters in the spill-area of Prince William Sound increased by about 600 to nearly 2700. However, at Knight Island, where oil exposure and sea otter mortality in 1989 was most severe, no increase has been observed. Sea otter reproduction was not impaired, and the age and sex composition of captured otters are consistent with both intrinsic reproduction and immigration contributing to recovery. However, low resighting rates of marked otters at Knight Island compared to an unoiled reference area, and high proportions of young otters in beach cast carcasses through 1998, suggest that the lack of recovery was caused by relatively poor survival or emigration of potential recruits. Significantly higher levels of cytochrome P4501A (CYP1A), a biomarker of hydrocarbons, were found in sea otters at Knight Island from 1996 to 1998 compared to unoiled Montague Island, implicating oil effects in the lack of recovery at Knight Island. Delayed recovery does not appear to be directly related to food limitation. Although food availability was relatively low at both oiled and unoiled areas, we detected significant increases in sea otter abundance only at Montague Island, a finding inconsistent with food as a principal limiting factor. Persistent oil in habitats and prey provides a source of continued oil exposure and, combined with relatively low prey densities, suggests a potential interaction between oil and food. However, sea otters foraged more successfully at Knight Island and young females were in better condition than those at Montague Island. We conclude that progress toward recovery of sea otters in Prince

  5. Sea otter population status and the process of recovery from the 1989 'Exxon Valdez' oil spill

    USGS Publications Warehouse

    Bodkin, J.L.; Ballachey, B.E.; Dean, T.A.; Fukuyama, A.K.; Jewett, S.C.; McDonald, L.; Monson, D.H.; O'Clair, C. E.; VanBlaricom, G.R.

    2002-01-01

    Sea otter Enhydra lutris populations were severely affected by the 1989 'Exxon Valdez' oil spill in western Prince William Sound, AK, and had not fully recovered by 2000. Here we present results of population surveys and incorporate findings from related studies to identify current population status and factors affecting recovery. Between 1993 and 2000, the number of sea otters in the spill-area of Prince William Sound increased by about 600 to nearly 2700. However, at Knight Island, where oil exposure and sea otter mortality in 1989 was most severe, no increase has been observed. Sea otter reproduction was not impaired, and the age and sex composition of captured otters are consistent with both intrinsic reproduction and immigration contributing to recovery. However, low resighting rates of marked otters at Knight Island compared to an unoiled reference area, and high proportions of young otters in beach cast carcasses through 1998, suggest that the lack of recovery was caused by relatively poor survival or emigration of potential recruits. Significantly higher levels of cytochrome P4501A (CYP1A), a biomarker of hydrocarbons, were found in sea otters at Knight Island from 1996 to 1998 compared to unoiled Montague Island, implicating oil effects in the lack of recovery at Knight Island. Delayed recovery does not appear to be directly related to food limitation. Although food availability was relatively low at both oiled and unoiled areas, we detected significant increases in sea otter abundance only at Montague Island, a finding inconsistent with food as a principal limiting factor. Persistent oil in habitats and prey provides a source of continued oil exposure and, combined with relatively low prey densities, suggests a potential interaction between oil and food. However, sea otters foraged more successfully at Knight Island and young females were in better condition than those at Montague Island. We conclude that progress toward recovery of sea otters in Prince

  6. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery.

  7. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery

    PubMed Central

    Elshafie, Abdulkadir E.; Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bemani, Ali S.; Al-Bahry, Saif N.; Al-Maqbali, Dua’a; Banat, Ibrahim M.

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13–15% salinity, pH range of 2–12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  8. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery.

    PubMed

    Elshafie, Abdulkadir E; Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Al-Bahry, Saif N; Al-Maqbali, Dua'a; Banat, Ibrahim M

    2015-01-01

    Biosurfactant production using Candida bombicola ATCC 22214, its characterization and potential applications in enhancing oil recovery were studied at laboratory scale. The seed media and the production media were standardized for optimal growth and biosurfactant production. The production media were tested with different carbon sources: glucose (2%w/v) and corn oil (10%v/v) added separately or concurrently. The samples were collected at 24 h interval up to 120 h and checked for growth (OD660), and biosurfactant production [surface tension (ST) and interfacial tension (IFT)]. The medium with both glucose and corn oil gave better biosurfactant production and reduced both ST and IFT to 28.56 + 0.42mN/m and 2.13 + 0.09mN/m, respectively within 72 h. The produced biosurfactant was quite stable at 13-15% salinity, pH range of 2-12, and at temperature up to 100°C. It also produced stable emulsions (%E24) with different hydrocarbons (pentane, hexane, heptane, tridecane, tetradecane, hexadecane, 1-methylnaphthalene, 2,2,4,4,6,8-heptamethylnonane, light and heavy crude oil). The produced biosurfactant was extracted using ethyl acetate and characterized as a mixture of sophorolipids (SPLs). The potential of SPLs in enhancing oil recovery was tested using core-flooding experiments under reservoir conditions, where additional 27.27% of residual oil (Sor) was recovered. This confirmed the potential of SPLs for applications in microbial enhanced oil recovery. PMID:26635782

  9. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    PubMed

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS.

  10. Oil recovery process: injection of fatty alcohol followed by soap

    SciTech Connect

    Cardenas, R.; Carlin, J.

    1980-07-22

    A method is described for recovering crude oil from a subterranean reservoir having one or more injection means in fluid communication with one or more producing means. The method comprises injecting into said reservoir through said injection means an effective quantity of a solution of a fatty alcohol wherein the alcohol is selected from the group consisting of n-dodecyl, n-octyl and oleyl alcohols and mixtures thereof ranging in concentration from about 0.1 to about 10.0 weight percent of the injected solution and either a crude oil or a refined fraction of crude oil followed by an effective quantity of a solution comprising a soap and water wherein said soap is a sodium dodecyl sulfate ranging in concentration from about 0.05 to about 5.0 weight percent of the injected solution, said solutions combining with the crude oil present in the reservoir to form an oil-in-water emulsion, driving said solutions and emulsion through the reservoir by injection of a driving fluid and recovering the crude oil through said produciton means.

  11. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    PubMed

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  12. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.

    PubMed

    Mohammadian, Erfan; Junin, Radzuan; Rahmani, Omeid; Idris, Ahmad Kamal

    2013-02-01

    Due to partial understanding of mechanisms involved in application of ultrasonic waves as enhanced oil recovery method, series of straight (normal), and ultrasonic stimulated water-flooding experiments were conducted on a long unconsolidated sand pack using ultrasonic transducers. Kerosene, vaseline, and SAE-10 (engine oil) were used as non-wet phase in the system. In addition, a series of fluid flow and temperature rise experiments were conducted using ultrasonic bath in order to enhance the understanding about contributing mechanisms. 3-16% increase in the recovery of water-flooding was observed. Emulsification, viscosity reduction, and cavitation were identified as contributing mechanisms. The findings of this study are expected to increase the insight to involving mechanisms which lead to improving the recovery of oil as a result of application of ultrasound waves. PMID:23137783

  13. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N.

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  14. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  15. Studies on the effect of ohmic heating on oil recovery and quality of sesame seeds.

    PubMed

    Kumari, Kirti; Mudgal, V D; Viswasrao, Gajanan; Srivastava, Himani

    2016-04-01

    This research describes a new technological process for sesame oil extraction. The process deals with the effect of ohmic heating on enhancement of oil recovery and quality of cleaned and graded sesame seed. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on oil extraction process were investigated. Three levels of electric field strength (600, 750 and 900 V/m), end point temperature (65, 75 and 85 °C) and holding time (5, 10 and 15 min.) were taken as independent variables using full factorial design. Percentage oil recovered from sesame seed through mechanical extracted oil by application of ohmic heating varies from 39.98 to 43.15 %. The maximum oil recovery 43.15 % was obtained when the sample was heated and maintained at 85 °C using EFS of 900 V/m for a holding time of 10 min as against 34.14 % in control sample. The free fatty acid (FFA) of the extracted oil was within the acceptable limit (1.52 to 2.26 % oleic acid) of 0.5 to 3 % as prescribed respectively by Prevention of Food Adulteration (PFA) and Bureau of Indian Standards (BIS). The peroxide value of extracted oil was also found within the acceptable limit (0.78 to 1.01 meq/kg). The optimum value for maximum oil recovery, minimum residual oil content, free fatty acid (FFA) and peroxide value were 41.24 %, 8.61 %, 1.74 % oleic acid and 0.86 meq/kg, respectively at 722.52 V/m EFS at EPT 65 °C for 5 min. holding time which was obtained by response surface methodology. PMID:27413228

  16. Studies on the effect of ohmic heating on oil recovery and quality of sesame seeds.

    PubMed

    Kumari, Kirti; Mudgal, V D; Viswasrao, Gajanan; Srivastava, Himani

    2016-04-01

    This research describes a new technological process for sesame oil extraction. The process deals with the effect of ohmic heating on enhancement of oil recovery and quality of cleaned and graded sesame seed. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on oil extraction process were investigated. Three levels of electric field strength (600, 750 and 900 V/m), end point temperature (65, 75 and 85 °C) and holding time (5, 10 and 15 min.) were taken as independent variables using full factorial design. Percentage oil recovered from sesame seed through mechanical extracted oil by application of ohmic heating varies from 39.98 to 43.15 %. The maximum oil recovery 43.15 % was obtained when the sample was heated and maintained at 85 °C using EFS of 900 V/m for a holding time of 10 min as against 34.14 % in control sample. The free fatty acid (FFA) of the extracted oil was within the acceptable limit (1.52 to 2.26 % oleic acid) of 0.5 to 3 % as prescribed respectively by Prevention of Food Adulteration (PFA) and Bureau of Indian Standards (BIS). The peroxide value of extracted oil was also found within the acceptable limit (0.78 to 1.01 meq/kg). The optimum value for maximum oil recovery, minimum residual oil content, free fatty acid (FFA) and peroxide value were 41.24 %, 8.61 %, 1.74 % oleic acid and 0.86 meq/kg, respectively at 722.52 V/m EFS at EPT 65 °C for 5 min. holding time which was obtained by response surface methodology.

  17. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  18. Wettability and spreading: Two key parameters in oil recovery with three-phase gravity drainage

    SciTech Connect

    Vizika, O.; Lombard, J.M.

    1996-02-01

    The objective of this paper is to show that the porous medium wettability and the spreading characteristics of the fluid system hold the key roles in three-phase gas injection, and to study to which extent these two parameters affect oil recovery and phase distributions. To this end gravity assisted inert gas injection experiments have been performed in water-wet, oil-wet and fractionally-wet porous media for spreading and nonspreading conditions. The experiments are simulated and the oil and gas relative permeabilities for three-phase flow are calculated by history matching. It is proved that the existence of wetting and spreading oil films--caused by wettability and spreading--greatly affects the flow mechanisms and consequently the recovery kinetics and the process efficiency. The results are interpreted in terms of physicochemical parameters on the basis of pore scale mechanisms.

  19. Model capabilities for in-situ oil shale recovery

    SciTech Connect

    Hommert, P.J.; Tyner, C.E.

    1980-01-01

    The extensive oil shale reserves of the United States are now under development as an energy source. One of the approaches for extracting oil from shale is the so-called modified in-situ retort. The operation of such retorts for maximum yield requires an understanding of oil loss mechanisms so that operating strategies that minimize these losses can be developed. The present modeling capabilities for describing the behavior and yield from a modified in-situ retort are discussed. It is shown how the advances made in describing retort chemistry have greatly increased the predictive capabilities of these models. Two models that have been subject to comparison with laboratory retorts are described. The first is a one-dimensional model that treats the retort as a packed bed reactor, the second is a quasi-two-dimensional examination of block retorting. Both models are capable of predicting retorting rates, off gas composition and oil yield losses to coking and combustion. The block model, for example, describes conditions where local oil yield losses can be as high as 50%. Areas for further model improvement include additional work on describing retort chemistry, such as the steam/char and gas phase combustion reactions. The major need for modeling now is expansion to multi-dimensional simulation. This is necessary if a predictive capability is to be developed for field situations where sweep efficiency losses and gravitational effects become important.

  20. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    SciTech Connect

    Yortsos, Y.C.

    1992-04-01

    This report covers work performed in the area related to the physicochemical factors for the improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are studied: (1) The understanding of vapor-liquid flow in porous media, whether the flow is internal (boiling), external (steam injection) or countercurrent (as in vertical heat pipes). (2) The effect of reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs (which are typical of oil reservoirs). (3) The flow properties of additives for the improvement of recovery efficiency, in particular the properties of foams.

  1. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    PubMed

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. PMID:24240116

  2. Selective plugging strategy-based microbial-enhanced oil recovery using Bacillus licheniformis TT33.

    PubMed

    Suthar, Harish; Hingurao, Krushi; Desai, Anjana; Nerurkar, Anuradha

    2009-10-01

    The selective plugging strategy of microbial enhanced oil recovery involves the use of microbes that grow and produce exopolymeric substances, which block the high permeability zones of an oil reservoir, thus allowing the water to flow through the low permeability zones leading to increase in oil recovery. Bacillus licheniformis TT33, a hot water spring isolate, is facultatively anaerobic, halotolerant, and thermotolerant. It produces EPS as well as biosurfactant and has a biofilm-forming ability. The viscosity of its cell-free supernatant is 120 mPas at 28 degrees C. Its purified EPS contained 26% carbohydrate and 3% protein. Its biosurfactant reduced the surface tension of water from 72 to 34 mN/m. This strain gave 27.7+/-3.5% oil recovery in a sand pack column. Environmental scanning electron microscopy analysis showed bacterial growth and biofilm formation in the sand pack. Biochemical tests and amplified ribosomal DNA restriction analysis confirmed that the oil recovery obtained in the sand pack column was due to Bacillus licheniformis TT33. PMID:19884785

  3. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    SciTech Connect

    Not Available

    1995-02-01

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  4. Enhanced oil recovery by surfactant-enhanced volumetric sweep efficiency: Second annual report, September 30, 1986-September 30, 1987

    SciTech Connect

    Harwell, J H; Scamehorn, J F

    1988-04-01

    It is widely known that heterogeneities in oil reservoirs occurring as a result of permeability variations in the rock can have a detrimental effect on an oil recovery process; preferential diversion of injected displacement fluid occurs through the high-permeability zones, leaving the lower-permeability zones at a high residual oil content at a time when it is no longer economically viable to continue the oil recovery process. A novel oil recovery process is described which aims to improve the volumetric sweep efficiency of oil recovery. High-permeability zones are partially or completely plugged off by using the chromatographic and phase behavior of surfactants and their mixtures and the preferential invasion of high-permeability areas by low-viscosity injected fluids. The plugging will divert flow into regions of higher oil saturation. 85 refs., 46 figs., 6 tabs.

  5. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the

  6. Oil recovery from naturally fractured reservoirs by steam injection methods. Final report

    SciTech Connect

    Reis, J.C.; Miller, M.A.

    1995-05-01

    Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

  7. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    SciTech Connect

    Penner, S.S.

    1981-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  8. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  9. Sea cleaning and oil recovery vessel termed ''scor-vessel''

    SciTech Connect

    Pierson, H.G.

    1981-12-29

    The invention as described in this application is the culmination of work in response to a current need to recover oil, resulting from the multiple oil spills occuring on the seas and harbors, rivers and lakes, in the united states. The irreversible damage to fish and wildlife is widely evident and the cost to mankind is immeasureable. Therefore, I have applied tried and proven known principles and technology, to invent a new process to recover contaminating liquids from the surface of waters used for marine navigation and transportation by ingesting and storing those liquids in a tanker type vessel.

  10. Method for tall oil recovery and apparatus therefor

    SciTech Connect

    Joyce, E.R.; Smith, W.L.

    1982-08-31

    A system and apparatus are disclosed for removing particles from suspension in a liquid, particularly for removing tall oil soap particles from black liquor. The black liquor flows along a fluid flow path which runs between a source of black liquor and a skimming tank. Two electrodes are disposed one downstream of the other within the fluid flow path. A power supply applies an electrical potential between the electrodes. The downstream electrode is connected to earth ground. It has been found that this earth ground connection provides substantial improvements in the quality and quantity of recovered tall oil soap.

  11. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery

    SciTech Connect

    1996-12-31

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this quarter work continued on: development of relative permeabilities during steam injection; optimization of recovery processes in heterogeneous reservoirs by using optimal control methods; and behavior of non-Newtonian fluid flow and on foam displacements in porous media.

  12. Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery

    SciTech Connect

    Yortsos, Y.C.

    1996-12-31

    Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this past quarter, work continued on: the development of relative permeabilities during steam displacement; the optimization of recovery processes in heterogeneous reservoirs by using optical control methods; and in the area of chemical additives, work continued on the behavior of non-Newtonian fluid flow and on foam displacements in porous media.

  13. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding

    NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-11-01

    Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly, and an enormous progress in the application of nanotechnology in this area is to be expected. The nanotechnology has been widely used in several other industries, and the interest in the oil industry is increasing. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery, and it is chosen as an alternative method to unlock the remaining oil resources and applied as a new enhanced oil recovery method in last decade. This paper therefore focuses on the reviews of the application of nanotechnology in chemical flooding process in oil recovery and reviews the applications of nanomaterials for improving oil recovery that have been proposed to explain oil displacement by polymer flooding within oil reservoirs, and also this paper highlights the research advances of polymer in oil recovery. Nanochemical flooding is an immature method from an application point of view.

  14. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    SciTech Connect

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  15. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  16. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment. PMID:25072775

  17. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  18. MORICE--new technology for mechanical oil recovery in ice infested waters.

    PubMed

    Jensen, Hans V; Mullin, Joseph V

    2003-01-01

    Mechanical oil recovery in ice infested waters (MORICE) was initiated in 1995 to develop technology for the recovery of oil spills in ice. It has been a multinational effort involving Norwegian, Canadian, American and German organizations and researchers. Through a stepwise approach with the development organized in six separate phases, laboratory tests and field experiments have been conducted to study various ideas and concepts, and to refine the ideas that were considered to have the best potential for removing oil in ice. Put together in one unit, these concepts included ice processing equipment and two alternative oil recovery units installed on a work platform. In January 2002, the final oil and ice testing with MORICE concepts was conducted at the Ohmsett test facility in Leonardo, New Jersey. The unit has been referred to as a harbor version to indicate the size and operating conditions, but the concepts could be scaled up to increase the capacity of oil and ice processing. For heavier ice conditions it would also be necessary to increase the overall strength. PMID:12899889

  19. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect

    Murphy, Mark B.

    1999-11-01

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  20. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Mark B.

    2002-01-16

    The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  1. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect

    Murphy, Michael B.

    2002-02-21

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  2. High efficiency shale oil recovery. Final report, January 1, 1992--June 30, 1993

    SciTech Connect

    Adams, D.C.

    1993-09-29

    The Adams Counter-current shale oil recovery process is an improved retorting technology enabling highly efficient oil recovery from oil shale. The high efficiency results primarily from the following facts: it (1) recovers the ash heat to preheat the feed ore; (2) burns and uses the coke energy and (3) operates without using hot ash recycling as a heat carrier. This latter feature is doubly important, contributing to high oil yield and to the generation of highly reactive coke which can be burned below 1000{degree}F, avoiding the endothermal calcination of the mineral carbonates and helping to clean the ash of contaminants. This project demonstrates that oil shale can be retorted under the specified conditions and achieve the objectives of very high efficiency. The project accomplished the following: 51 quartz sand rotary kiln runs provided significant engineering data. A heat transfer value of 107 Btu/hr/ft{sup 2}/{degree}F was obtained at optimum RPM; eight oil shale samples were obtained and preliminary shakedown runs were made. Five of the samples were selected for kiln processing and twelve pyrolysis runs were made on the five different oil shales;average off recovery was 109% of Fisher Assay; retorted residue from all five samples was oxidized at approximately 1000{degree}F. The ash from these runs was oxidized to varying extents, depending on the oil shale and oxidizing temperatures. While 1000{degree}F is adequately hot to provide process heat from coke combustion for these ores, some Eastern oil shales, without mineral carbonates, may be oxidized at higher temperatures, perhaps 100--300 degrees hotter, to obtain a more complete oxidation and utilization of the coke.

  3. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives

  4. Recovery trajectories after in situ burning of an oiled wetland in coastal Louisiana, USA.

    PubMed

    Pahl, James W; Mendelssohn, Irving A; Henry, Charles B; Hess, Thomas J

    2003-02-01

    The high degree of physical disturbance associated with conventional response options to oil spills in wetlands is driving the investigation of alternative cleanup methodologies. In March 1995, a spill of gas condensate in a brackish marsh at Rockefeller Wildlife Refuge in southwestern Louisiana was remediated through the use of in situ burning. An assessment of vegetation recovery was initiated in three treatment marshes: (1) oil-impacted and burned, (2) oil impacted and unburned, and (3) a nonoiled unburned reference. We compared percent cover, stem density, and biomass in the treatment marshes to define ecological recovery of the marsh vegetation and soil hydrocarbon content to determine the efficacy of in situ burning as a cleanup technique. Burning led to a rapid decrease in soil hydrocarbon concentrations in the impacted-and-burned marsh to background levels by the end of the first growing season. Although a management fire accidentally burned the oil-impacted-and-unburned and reference marshes in December 1995, stem density, live biomass, and total percent cover values in the oil-impacted-and-burned marsh were equivalent to those in the other treatment marshes after three years. In addition, plant community composition within the oil-impacted-and-burned marsh was similar to the codominant mix of the grasses Distichlis spicata (salt grass) and Spartina patens (wire grass) characteristic of the surrounding marsh after the same time period. Rapid recovery of the oil-impacted-and-unburned marsh was likely due to lower initial hydrocarbon exposure. Water levels inundating the soil surface of this grass-dominated marsh and the timing of the in situ burn early in the growing season were important factors contributing to the rapid recovery of this wetland. The results of this in situ burn evaluation support the conclusion that burning, under the proper conditions, can be relied upon as an effective cleanup response to hydrocarbon spills in herbaceous wetlands.

  5. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    SciTech Connect

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  6. Response to heavy, non-floating oil spilled in a Great Lakes river environment: a multiple-lines-of-evidence approach for submerged oil assessment and recovery

    USGS Publications Warehouse

    Dollhopf, Ralph H.; Fitzpatrick, Faith A.; Kimble, Jeffrey W.; Capone, Daniel M.; Graan, Thomas P.; Zelt, Ronald B.; Johnson, Rex

    2014-01-01

    The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, MI in July 2010 is one of the largest freshwater oil spills in North American history. The unprecedented scale of impact and massive quantity of oil released required the development and implementation of new approaches for detection and recovery. At the onset of cleanup, conventional recovery techniques were employed for the initially floating oil and were successful. However, volatilization of the lighter diluent, along with mixing of the oil with sediment during flooded, turbulent river conditions caused the oil to sink and collect in natural deposition areas in the river. For more than three years after the spill, recovery of submerged oil has remained the predominant operational focus of the response. The recovery complexities for submerged oil mixed with sediment in depositional areas and long-term oil sheening along approximately 38 miles of the Kalamazoo River led to the development of a multiple-lines-of-evidence approach comprising six major components: geomorphic mapping, field assessments of submerged oil (poling), systematic tracking and mapping of oil sheen, hydrodynamic and sediment transport modeling, forensic oil chemistry, and net environmental benefit analysis. The Federal On-Scene Coordinator (FOSC) considered this information in determining the appropriate course of action for each impacted segment of the river. New sources of heavy crude oils like diluted bitumen and increasing transportation of those oils require changes in the way emergency personnel respond to oil spills in the Great Lakes and other freshwater ecosystems. Strategies to recover heavy oils must consider that the oils may suspend or sink in the water column, mix with fine-grained sediment, and accumulate in depositional areas. Early understanding of the potential fate and behavior of diluted bitumen spills when combined with timely, strong conventional recovery methods can

  7. Lloydminster fireflood performance, modifications promise good recoveries. [Canadian oil fields

    SciTech Connect

    Fairfield, W.H.; White, P.D.

    1982-02-08

    Efforts to increase ultimate recovery by thermal methods began 16 years ago with steam huff-and-puff and displacement steam drive. These early efforts were not successful. The first in situ combustion drive, the Golden Lake Sparky Fireflood, was initiated 12 years ago and is the subject of this work. It consists of one 20-acre inverted five-spot pattern and two approximately 30-acre inverted seven-spots. All three patterns are currently operating, and the project shows promise of accomplishing recoveries in excess of 30%. It is currently being expanded to include two additional patterns. Field characteristics are discussed along with observations on combustion operations Sparky sands. A critique of the fireflood process is given and the oxygen fireflood - a modification to the fireflood process - is outlined. 4 refs.

  8. Improved techniques for fluid diversion in oil recovery. Final report

    SciTech Connect

    Seright, R.

    1996-01-01

    This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.

  9. N n-disubstituted amide cosurfactants in enhanced oil recovery processes

    SciTech Connect

    Stapp, P. R.; Chaney, M. B.

    1984-12-25

    A surfactant system useful for oil recovery consisting essentially of a NaCl brine, a hydrocarbon sulfonate surfactant, such as a petroleum sulfonate, and a cosurfactant such as a N,N-disubstituted amide. In another embodiment, a C/sub 1/ to C/sub 8/ alcohol is additionally present as a cosurfactant.

  10. Improved polymers for enhanced oil recovery: synthesis and rheology. Third annual report, October 1979-September 1980

    SciTech Connect

    McCormick, C.L.; Hester, R.D.; Neidlinger, H.H.; Wildman, G.C.

    1981-04-01

    This document reports on the synthesis, characterization, and rheological studies of random- and graft-copolymers which are used as models for mobility control agents in enhanced oil recovery. These studies include macromolecular syntheses of model polymers, dilute solution viscosity studies, aqueous-size exclusion chromatography, and laser light scattering.

  11. Heteropolysaccharide preparation and use thereof as a mobility control agent in enhanced oil recovery

    SciTech Connect

    Robison, P.D.; Stipanovic, A.J.; Stypulkoski, C.E.; Wan, N.C.; Easter, S.

    1993-08-17

    A method is described of enhancing the recovery of oil from a petroleum-rich reservoir comprising at least one step of injecting into said reservoir an aqueous solution of the heteropolysaccharide produced by the variant strain of Agrobacterium Radiobacter which is deposited under Accession Number ATCC 53271.

  12. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect

    Eric P. Robertson

    2007-11-01

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

  13. Improvement in oil recovery using cosolvents with CO sub 2 gas floods

    SciTech Connect

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  14. Improvement in oil recovery using cosolvents with CO{sub 2} gas floods

    SciTech Connect

    Raible, C.

    1992-01-01

    This report presents the results of investigations to improve oil recovery using cosolvents in CO{sub 2} gas floods. Laboratory experiments were conducted to evaluate the application and selection of cosolvents as additives to gas displacement processes. A cosolvent used as a miscible additive changed the properties of the supercritical gas phase. Addition of a cosolvent resulted in increased viscosity and density of the gas mixture, and enhanced extraction of oil compounds into the CO{sub 2} rich phase. Gas phase properties were measured in an equilibrium cell with a capillary viscometer and a high pressure densitometer. A number of requirements must be considered in the application of a cosolvent. Cosolvent miscibility with CO{sub 2}, brine solubility, cosolvent volatility and relative quantity of the cosolvent partitioning into the oil phase were factors that must be considered for the successful application of cosolvents. Coreflood experiments were conducted with selected cosolvents to measure oil recovery efficiency. The results indicate lower molecular weight additives, such as propane, are the most effective cosolvents to increase oil recovery.

  15. Effect of the spreading coefficient on the efficiency of oil recovery with gravity drainage

    SciTech Connect

    Vizika, O.

    1993-12-31

    Oil recovery with gravity drainage is a method with high potentiality. However, the effect of the spreading coefficient that seems to be a key parameter affecting the recovery efficiency and characteristics, has not yet been thoroughly studied. Gravity drainage experiments in presence of connate water for positive and negative spreading coefficients have been performed. The production is determined as a function of time and the distribution of the three fluids are obtained with CT sanner. A positive spreading coefficient favorises slow drainage of the oil by film flow, and the hydraulic continuity is maintained leading down to a very low residual saturations, for non-spreading conditions the oil gets disconnected and trapped forever, and the process is less efficient. The oil recovery as a function of time is compared with the predictions of a model taking into account the mechanism of spreading of oil on water, and a very good agreement is obtained. The water occupies the roughness of the porous medium the surface of which is modeled as a fractial object. By means of the same model, expressions for the relative permeability-saturation and capillary pressure-saturation relations are also obtained.

  16. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    USGS Publications Warehouse

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  17. Status and outlook for oil recovery using carbon dioxide injection operations

    SciTech Connect

    Henry, J.D.

    1981-01-01

    This review of the status of CO2 injection operations in enhanced oil recovery (EOR) concludes that the process, while not fully proven, is ready for large scale implementation. A large but uncertain potential still exists for EOR. Some technologic problems remain, but these are mostly of an optimization nature and should not stop the initiation of CO2. There is enough source CO2 for the first generation projects, but more CO2 is likely to be needed for future projects. Although the Windfall Profit Tax itself is detrimental to all oil recovery projects, the tertiary incentives are differentially helpful to EOR. In conclusion, the time for expanded CO2 recovery projects has come. 33 references.

  18. Technical review of enhanced oil recovery literature. Final report

    SciTech Connect

    1980-04-01

    This report represents the work done under DOE grant No. DE-FG05-79ER10086. It reviews the chemical, miscible and thermal areas of enhanced and recovery (EOR) and has produced a comprehensive bibliography and glossary of terms. The analysis looks into several areas of interest, including: screening criteria, process design, variable interaction and reservoir applicability. In this summary section, the following are shown: (1) screening criteria for process selection; (2) screening guide summary for EOR process; and (3) representative schematics of three major process operations.

  19. Interplay of bacteria, bacteriophage, and Berea sandstone rock in relation to enhanced oil recovery

    SciTech Connect

    Chang, P.L.

    1986-01-01

    Much research and development is needed to recovery oil reserves presently unattainable, and biologically enhanced oil recovery is a technology that may be used for this purpose. To address the problem of bacterial contamination in an oil field injection well region, each end of a Teflon-sleeved Berea sandstone rock was connected to a flask containing nutrient medium. By inoculation one flask with Escherichia coli B, observations of the bacterial growth in the uninoculated flask resulting from the transport and establishment of cells across the rock could be made. Differences in bacterial populations occurred depending on whether bacteriophage T4D was first adsorbed to the rock. The results of these experiments indicate that the inhibition of bacterial establishment within a rock matrix is possible via lytic interaction. Some nonlytic effects are also implied by experiments with B/4 cells, which are T4D-resistant mutants of E. coli B. A 10 to 40% retention of T4 by the rock occurred when it was loaded with 10/sup 5/ to 10/sup 6/ PFU. Also proposed is a lysogenic system for possible use in biologically enhanced oil recovery techniques. In addition to the model bacteria and phage system described above, measurements of the passage of Pseudomonas putida. 12633 and a phage-resistant mutant through Berea sandstone rock were also made. When bacteriophage gh-1 was adsorbed within the rock matrix, a reduction in the passage of the susceptible but no the resistant cells through the rock was observed. The use of P. putida and gh-1 represents a more realistic group of experiments since these pseudomonas are ubiquitous soil bacteria commonly found in oil rock regions. Preliminary work on the degradation of certain nitrogen compounds in the context of biologically enhanced oil recovery is also described in this dissertation.

  20. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    SciTech Connect

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  1. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  2. Dynamics of capillary imbibition when surfactant, polymer, and hot water are used as aqueous phase for oil recovery.

    PubMed

    Babadagli, Tayfun

    2002-02-01

    Capillary imbibition is an oil recovery mechanism in naturally fractured reservoirs if rock matrix is water wet and there is enough water in fractures in contact with matrix. It, however, may not yield an effective recovery under certain circumstances even if these conditions are maintained. Heavy matrix oil, high interfacial tension (IFT), oil-wet matrix sample, and limited contact area of matrix with water in fractures require additional effort to enhance the oil recovery by capillary imbibition. Chemicals and heat can be injected into naturally fractured reservoirs to improve the capillary imbibition recovery performance. With the involvement of low IFT fluid, heat, and polymer solution in the process, capillary imbibition dynamics may change and this entails an identification of the dynamics of the process through laboratory experiments before injection of these expensive fluids into oil reservoirs. In this study, the dynamics of capillary imbibition was studied experimentally. Static imbibition experiments were conducted on oil- and water-wet rock samples under different boundary conditions and saturated with different types of oil. The analyses were conducted using three indicators, namely the capillary imbibition rate, ultimate oil recovery, and shape of the recovery profile. Based on these indicators, the dynamics of capillary imbibition of different aqueous phases were evaluated for different oil types and matrix properties. The conditions that cause weak or strong capillary imbibition were identified. PMID:16290401

  3. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    SciTech Connect

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  4. Carbon dioxide for the recovery of (residual) crude oil. Final report

    SciTech Connect

    Doscher, T.M.; El Arabi, M.; Gharib, S.; Oyekan, R.

    1983-03-01

    The original plan of the work was altered with the agreement of the various contract officers from that of emphasis on the use of additives in improving the efficiency of carbon dioxide to a plan for developing a thorough understanding of the mechanism and basic efficiency of carbon dioxide as a recovery agent for residual crude oil. As this program proceeded, the results obtained from the physical model studies were not those anticipated from prior theoretical studies and laboratory experiments which had not been physically scaled. This required that the work be continued to no more than define and establish as unequivocally as possible the actual mechanism by which carbon dioxide might recover some of the reputed hundreds of billions barrels of residual oil in reservoirs in the United States. Only in this way could a proper evaluation of the potential of the process be defined and hopefully, subsequently, improved. The work has now been completed and leads to the conclusion that the recovery of residual oil by carbon dioxide depends on solution of the carbon dioxide in the oil and the displacement of the resulting solution by the continuing gas drive, or, alternately, a substitute water drive. The efficiency of the process will depend on the diffusion of carbon dioxide into the residual oil prior to the breakthrough of the latter and the residual oil phase saturation to the concurrent gas drive. 17 references, 16 figures.

  5. Microscopic study of oil recovery by carbon dioxide. Final report, October 1, 1978-August 31, 1980

    SciTech Connect

    Wang, G.C.

    1980-12-01

    Visual examinations of microscopic behavior of CO/sub 2/ flooding processes were conducted using a high pressure glass-bead packed transparent flow tube. The apparatus and techniques developed have made it possible to observe the physical phenomena of the displacement of oil by CO/sub 2/ under both miscible and immiscible conditions. Effects of CO/sub 2/ slug size and formation dip on oil recovery were also investigated. The results have been recorded in a series of magnified color photographs for after-run study and interpretation. Four natural crude oils ranging from API gravities of 15 to 48 were chosen for displacement tests. The majority of the tests were performed at a temperature of 120/sup 0/F and pressures from 1000 to 2500 psi. Three types of displacement, namely: (a) immiscible, (b) semi-miscible, and (c) miscible, were observed within the testing pressure range. Type (b) is a dispersion process in which oil is disintegrated into micro-size particles and transported in the CO/sub 2/ stream. More than one type of displacement could exist simultaneously in a flooding system. A CO/sub 2/ slug that is too large is wasteful and can cause early CO/sub 2/ breakthrough. A slug that is too small would allow the trailing water to channel through the oil bank and thus degenerate to an ordinary waterflooding; nevertheless, the oil recovery would be significantly increased over that achieved by a straight waterflooding.

  6. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

  7. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency. PMID:23553033

  8. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    SciTech Connect

    Davey, R.A.; Lappin-Scott, H.

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  9. An evaluation of known remaining oil resources in the state of Louisiana and Texas. Volume 3, Project on Advanced Oil Recovery and the States

    SciTech Connect

    Not Available

    1994-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Louisiana and Texas. Individual reports for six other oil producing states and a national report have been separately published. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS).

  10. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  11. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE PAGES

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  12. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  13. Carbon nanotube enables quantum leap in oil recovery

    SciTech Connect

    Ito, Masaei; Noguchi, Toru; Ueki, Hiroyuki; Takeuchi, Kenji; Endo, Morinobu

    2011-09-15

    Highlights: {yields} A novel sealing material based on a CNT-rubber composite was developed for use in oilfield. {yields} Solved the critical issues of dispersion and bonding on CNT-rubber composites. {yields} Clarified the mechanism of nano network reinforcement using test data. -- Abstract: A novel sealing material based on a CNT-rubber composite was developed for use in producing oil from deep, hot reservoirs. Fully dispersed and better bondings are two critical advances that enhance its mechanical properties. Authors solved the critical issues and clarified the mechanism of nano network reinforcement using test data. The resulting sealing solution underwent field tests around the world, and it marks a rare success story for the use of nanotechnology in the oilfield.

  14. Quantitation of microbial products and their effectiveness in enhanced oil recovery. Final report

    SciTech Connect

    Zhang, X.; Knapp, R.M.; McInerney, M.J.

    1995-02-01

    A three-dimensional, three-phase, multiple-component numerical simulator was developed to investigate transport and growth of microorganisms in porous media and the impacts of microbial activities on oil recovery. The microbial activities modeled in this study included: (1) growth, retention, chemotaxis, and end product inhibition of growth, (2) the formation of metabolic products, and (3) the consumption of nutrients. Major mechanisms for microbial enhanced oil recovery (MEOR) processes were modeled as follows: (1) improvement in sweep efficiency of a displacement process due to in situ plugging of highly-permeable production zones by cell mass or due to improved mobility control achieved by increasing the viscosity of the displacing fluid with a biopolymer, and (2) solubilization and mobilization of residual oil in porous media due to the reduction of the interfacial tension between oleic and aqueous phases by the production of a biosurfactant. The numerical solutions for mathematical models involved two steps. The distributions of pressure and phase saturations were solved from continuity equations and Darcy flow velocities for the aqueous phase were computed. This was followed by the solution of convection-dispersion equations for individual components. Numerical solutions from the proposed model were compared to results obtained from analytical equations, commercial simulators, and laboratory experiments. The comparison indicated that the model accurately quantified microbial transport and metabolism in porous media, and predicted additional crude oil recovery due to microbial processes. 50 refs., 41 figs., 26 tabs.

  15. Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990

    SciTech Connect

    Tiedemann, H.A. )

    1991-05-01

    The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

  16. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Final report

    SciTech Connect

    Pitts, M.

    1995-12-01

    This research studied the oil recovery potential of flooding light oil reservoirs by combining interfacial tension reducing agent(s) with a mobility control agent. The specific objectives were: To define the mechanisms and limitations of co-injecting interfacial tension reduction agent(s) and a mobility control agent to recover incremental oil. Specifically, the study focused on the fluid-fluid and fluid-rock interactions. To evaluate the economics of the combination technology and investigate methods to make the process more profitable. Specific areas of study were to evaluate different chemical concentration tapers and the volume of chemical injection required to give optimal oil recovery.

  17. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Murphy, Mark B.

    1999-02-24

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

  18. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension

    NASA Astrophysics Data System (ADS)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-01-01

    Chemical enhanced oil recovery is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While Substantial amount of crude oil remains in the reservoir after primary and secondary production, conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery. This paper, therefore, focuses on the reviews of the application of nano technology in chemical flooding process in oil recovery and reviews the application nano in the polymer and surfactant flooding on the interfacial tension process.

  19. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect

    Mark B. Murphy

    2005-09-30

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced

  20. Impact of innovations on future energy supply - chemical enhanced oil recovery (CEOR).

    PubMed

    Bittner, Christian

    2013-01-01

    The International Energy Agency (IEA) expects an increase of global energy demand by one-third during next 20 years together with a change in the global energy mix. A key-influencing factor is a strong expected increase in oil and gas production in the United States driven by 'new' technologies such as hydraulic fracturing. Chemical enhanced oil recovery (CEOR) is another strong growing technology with the potential of a step change innovation, which will help to secure future oil supply by turning resources into reserves. While conventional production methods give access to on average only one-third of original oil in place, the use of surfactants and polymers allows for recovery of up to another third of this oil. In the case of polymer flooding with poly acrylamide, the number of full field implementations has increased in recent years. In the meantime new polymers have been developed to cover previously unmet needs - such polymers can be applied in fields of high salinity and high temperature. Use of surfactants is in an earlier stage, but pilot tests show promising results.

  1. Research on improved and enhanced oil recovery in Illinois through reservoir characterization

    SciTech Connect

    Oltz, D.F.

    1992-01-01

    This project will provide information that can maximize hydrocarbon production minimize formation damage and stimulate new production in Illinois. Such information includes definition of hydrocarbon resources, characterization of hydrocarbon reservoirs, and the implementation of methods that will improve hydrocarbon extractive technology. Increased understanding of reservoir heterogeneities that affect oil recovery can aid in identifying producible resources. The transfer of technology to industry and the general public is a significant component of the program. The project is designed to examine selected subsurface oil reservoirs in Illinois. Scientists use advanced scientific techniques to gain a better understanding of reservoir components and behavior and address ways of potentially increasing the amount of recoverable oil. Initial production rates for wells in the Illinois Basin commonly decline quite rapidly and as much as 60 percent of the oil in place can be unrecoverable using standard operating procedures. Heterogeneities (geological differences in reservoir make-up) affect a reservoir's capability to release fluids. By-passed mobile and immobile oil remain in the reservoir. To learn how to get more of the oil out of reservoirs, the ISGS is studying the nature of reservoir rock heterogeneities and their control on the distribution and production of by-passed, mobile oil.

  2. Change and recovery of coastal mesozooplankton community structure during the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Carassou, L.; Hernandez, F. J.; Graham, W. M.

    2014-12-01

    The response of mesozooplankton community structure to the Deepwater Horizon oil spill in the northern Gulf of Mexico was investigated using data from a long-term plankton survey off the coast of Alabama (USA). Environmental conditions observed in the study area during the oil spill (2010) were compared to historical observations (2005-2009), to support the contention that variations observed in zooplankton assemblage structure may be attributed to the oil spill, as opposed to natural climatic or environmental variations. Zooplankton assemblage structure observed during the oil spill period (May-August) in 2010 was then compared to historical observations from the same period (2005-2009). Significant variations were detected in assemblage structure in May and June 2010, but these changes were no longer significant by July 2010. The density of ostracods, cladocerans and echinoderm larvae were responsible for most of the differences observed, but patterns differed depending on taxa and months. Many taxa had higher densities during the oil spill year, including calanoid and cyclopoid copepods, ostracods, bivalve larvae and cladocerans, among others. Although this result is somewhat surprising, it is possible that increased microbial activity related to the infusion of oil carbon may have stimulated secondary production through microbial-zooplankton trophic linkages. Overall, results suggest that, although changes in zooplankton community composition were observed during the oil spill, variations were weak and recovery was rapid.

  3. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    PubMed

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated.

  4. Thermotropic nanostructured "gel in gel" systems for improved oil recovery and water shutoff

    NASA Astrophysics Data System (ADS)

    Altunina, L. K.; Kuvshinov, V. A.; Stasyeva, L. A.

    2015-10-01

    Thermotropic nanostructured system with two gel-forming components has been created based on inorganic hydroxypolymer and organic polymer with a lower critical solution temperature of "aluminum salt-cellulose ether-carbamide-water", forming at heating a bound-dispersed nano-sized "gel in gel" structure. The studies on the kinetics of gelation and rheological properties of solutions and gels in this system have shown that the gels have a higher viscosity and elasticity and thereby are promising for creating deflecting screens in oil reservoirs, redistribution of filtration flows, improved oil recovery and for water shutoff.

  5. Solid olive waste in environmental cleanup: oil recovery and carbon production for water purification.

    PubMed

    El-Hamouz, Amer; Hilal, Hikmat S; Nassar, Nashaat; Mardawi, Zahi

    2007-07-01

    A potentially-economic three-fold strategy, to use solid olive wastes in water purification, is presented. Firstly, oil remaining in solid waste (higher than 5% of waste) was recovered by the Soxhlet extraction technique, which can be useful for the soap industry. Secondly, the remaining solid was processed to yield relatively high-surface area active carbon (AC). Thirdly, the resulting carbon was employed to reversibly adsorb chromate ions from water, aiming to establish a water purification process with reusable AC. The technique used here enabled oil recovery together with the production of a clean solid, suitable for making AC. This process also has the advantage of low production cost.

  6. An evaluation of iron oxide nanofluids in enhanced oil recovery application

    NASA Astrophysics Data System (ADS)

    Guan, Beh Hoe; Khalid, M. Hanafi M.; Matraji, Herman Hari; Chuan, Lee Kean; Soleimani, Hassan

    2014-10-01

    This paper evaluates the oil recover efficiency of Iron Oxide (Fe2O3) nanofluids in EOR. Iron Oxide nanoparticles were synthesized at two different temperatures via sol-gel method. TEM results show that the Fe2O3 prepared at 300°C and 600°C were ranged from 10-25nm and 30-90nm, respectively. Results showed that the nanofluid composed of Iron Oxide nanoparticles prepared at 300°C gives 10% increase in the oil recovery in comparison with Fe2O3 nanoparticles calcined at 600°C.

  7. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery

    SciTech Connect

    Somasundaran, Prof. P.

    2002-03-04

    The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.

  8. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Morgan, C.D.

    1995-09-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.

  9. Effect of morphology of aluminium oxide nanoparticles on viscosity and interfacial tension (IFT) and the recovery efficiency in enhanced oil recovery (EOR)

    NASA Astrophysics Data System (ADS)

    Zaid, Hasnah Mohd; Radzi, Nur Shahbinar Ahmad; Latiff, Noor Rasyada Ahmad; Shafie, Afza

    2014-10-01

    Conventional enhanced oil recovery (EOR) methods failed to extract the remaining oil from unconventional, high salinity and high temperature high pressure (HTHP) oil reservoirs. In surfactant flooding method, surfactants are injected to reduce the interfacial tension between oil and water hence sufficiently displaces oil from the reservoir. In steam flooding, high temperature steam is injected into a reservoir to heat oil to make it less viscous, making it easier to move to the production wells. However these methods fail to failed to perform because injection agents start to change its properties under the extreme condition. Therefore, nanoparticles are introduced to mitigate these challenges because of its ability to change certain factor in certain condition. Previous studies had shown that increments in the oil recovery were observed when core-flooding experiments using Aluminum Oxide (Al2O3) nanofluid were conducted. In this research, the effect of morphology of Al2O3 nanoparticles on viscosity and interfacial tension (IFT) and the recovery efficiency in EOR was studied. Al2O3 nanoparticles were synthesized and the morphology was altered by hydrothermal treatment using different concentration of NaOH. After being treated, the morphology of Al2O3 changed from hexagonal to thin lath. The IFT between crude oil and the nanofluids of the treated Al2O3 showed lower values compared to the untreated ones. It was also observed from core-flooding experiment that the Al2O3 nanofluid which had undergone treatment with 10 M NaOH gave the highest recovery of 52.50% of residual oil in place (ROIP). The change in morphology could have resulted in better dispersion and thus lead to higher recovery.

  10. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    SciTech Connect

    Not Available

    1991-10-01

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  11. Harlequin Duck population injury and recovery dynamics following the 1989 Exxon Valdez oil spill.

    PubMed

    Iverson, Samuel A; Esler, Daniel

    2010-10-01

    The 1989 Exxon Valdez oil spill caused significant injury to wildlife populations in Prince William Sound, Alaska, USA. Harlequin Ducks (Histrionicus histrionicus) were particularly vulnerable to the spill and have been studied extensively since, leading to one of the most thorough considerations of the consequences of a major oil spill ever undertaken. We compiled demographic and survey data collected since the spill to evaluate the timing and extent of mortality using a population model. During the immediate aftermath of the spill, we estimated a 25% decrease in Harlequin Duck numbers in oiled areas. Survival rates remained depressed in oiled areas 6-9 years after the spill and did not equal those from unoiled areas until at least 11-14 years later. Despite a high degree of site fidelity to wintering sites, immigration was important for recovery dynamics, as the relatively large number of birds from habitats outside the spill zone provided a pool of individuals to facilitate numerical increases. On the basis of these model inputs and assumptions about fecundity rates for the species, we projected a timeline to recovery of 24 years under the most-likely combination of variables, with a range of 16 to 32 years for the best-case and worst-case scenarios, respectively. Our results corroborate assertions from other studies that the effects of spilled oil on wildlife can be expressed over much longer time frames than previously assumed and that the cumulative mortality associated with chronic exposure to residual oil may actually exceed acute mortality, which has been the primary concern following most oil spills.

  12. High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  13. Harlequin Duck population injury and recovery dynamics following the 1989 Exxon Valdez oil spill.

    PubMed

    Iverson, Samuel A; Esler, Daniel

    2010-10-01

    The 1989 Exxon Valdez oil spill caused significant injury to wildlife populations in Prince William Sound, Alaska, USA. Harlequin Ducks (Histrionicus histrionicus) were particularly vulnerable to the spill and have been studied extensively since, leading to one of the most thorough considerations of the consequences of a major oil spill ever undertaken. We compiled demographic and survey data collected since the spill to evaluate the timing and extent of mortality using a population model. During the immediate aftermath of the spill, we estimated a 25% decrease in Harlequin Duck numbers in oiled areas. Survival rates remained depressed in oiled areas 6-9 years after the spill and did not equal those from unoiled areas until at least 11-14 years later. Despite a high degree of site fidelity to wintering sites, immigration was important for recovery dynamics, as the relatively large number of birds from habitats outside the spill zone provided a pool of individuals to facilitate numerical increases. On the basis of these model inputs and assumptions about fecundity rates for the species, we projected a timeline to recovery of 24 years under the most-likely combination of variables, with a range of 16 to 32 years for the best-case and worst-case scenarios, respectively. Our results corroborate assertions from other studies that the effects of spilled oil on wildlife can be expressed over much longer time frames than previously assumed and that the cumulative mortality associated with chronic exposure to residual oil may actually exceed acute mortality, which has been the primary concern following most oil spills. PMID:21049885

  14. Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery, Annual Report, September 30, 1999-September 30, 2000

    SciTech Connect

    Somasundaran, Prof. P.

    2001-04-04

    The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

  15. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  16. Evaluation of microwave digestion systems for mercury recovery in an oil matrix

    SciTech Connect

    Whitaker, M.J.; Clymire, J.W.

    1997-09-01

    The scope of this document is to characterize three microwave systems developed by CEM Corporation. The purpose of this investigative work was to evaluate the performance of each system for dissolution qualities and the recovery of mercury in an oil based matrix. The microwave systems evaluated were the heavy duty vessel system (HDV), the advanced composite system (ACV), and the open vessel system (OVS). All three systems have automated features, but all systems are limited by one factor or another. EPA method 3051 was the procedure used for sample preparation for this project. This particular microwave digestion method can also be used for other metal analytes of interest. Of the three different systems, only the HDV (now UDV) demonstrated complete digestion of the oil based matrix in a one step process and acceptable mercury recoveries.

  17. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  18. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOEpatents

    Johnson, Jr., James S.; Westmoreland, Clyde G.

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  19. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  20. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  1. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    SciTech Connect

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  2. Effects of Dual-Pump Recovery on Crude-Oil Contamination of Groundwater, Bemidji, Minnesota

    NASA Astrophysics Data System (ADS)

    Delin, G. N.; Herkelrath, W. N.; Lounsbury, S.

    2009-12-01

    In 1979 a crude-oil pipeline ruptured near Bemidji, Minnesota spilling about 1.7 million liters of crude oil onto a glacial-outwash deposit. Initial remediation efforts in 1979-80 removed about 75% of this oil. In 1983 the U.S. Geological Survey and several academic institutions began research to study the fate and transport of the petroleum hydrocarbons in the unsaturated and saturated zones at the site. In 1998 the Minnesota Pollution Control Agency (MPCA) requested that the pipeline company remove as much of the remaining oil as possible. A dual-pump recovery system was installed using five wells to remove the free-phase oil. Each well had an oil skimming pump as well as a deeper pump in the groundwater, which was used to create a cone of depression in the water table near the well. The oil/water mixture from the skimming pump was pumped to a treatment facility where the oil was separated for later removal from the site. Pumped wastewater was injected into an upgradient infiltration gallery. Despite large public and private expenditures on development and implementation of this type of remediation system, few well-documented field-scale case studies have been published. The renewed remediation presented an opportunity to document how the dissolution, biodegradation, vapor transport, and other processes changed as the site transitioned from natural attenuation to a condition of pump-and-treat remediation and back again following termination of the remediation. Impacts of the remediation were evaluated in part using measurements of oil thicknesses in wells, dissolved-oxygen concentrations in groundwater, and concentrations of methane and other gases in the unsaturated zone. The remediation from 1999 - 2004 resulted in removal of about 114,000 liters of crude oil from the site, or about 27% of the total that remained following the initial remediation in 1979-80. Although the renewed remediation decreased oil thicknesses in the immediate vicinity of remediation

  3. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    SciTech Connect

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  4. Reliability of Low-Salinity Waterflooding in Oil Recovery: Effects of Reservoir Conditions and Fractures

    NASA Astrophysics Data System (ADS)

    Namnoum, Ali; Abdelaziz, Ramadan

    2016-04-01

    ​Low-salinity waterflooding is a relatively new technique for enhanced oil recovery. The paper aims at understanding the thermal, physical and chemical processes in the fractured reservoirs. The effects of water injection in the fractured formations are simulated by TOUGH2 and TOUGHREACT analyses with a case study. Using TOUGHREACT as a geochemical model provides an inclusive insight into possible changes in the mineral composition.

  5. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect

    Castle, James W.; Molz, Fred J.

    2003-02-07

    Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  6. Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations

    SciTech Connect

    Meister, J. J.

    1981-05-12

    Alkyl vinyl ether-maleic anhydride copolymers, alone or in combination with ethoxylated acids and/or ethoxylated amides and, optionally, together with polyalkoxylated carboxylic acids, polyalkoxylated amides and sulfated derivatives thereof, ethoxylated alkyl phenols, ethoxylated alcohols and the corresponding sulfated derivatives, sulfated aliphatic alcohols and alkylene oxide block copolymers, are useful to stabilize sulfonate surfactants, E.G., petroleum sulfonates, E.G., for use in tertiary oil recovery.

  7. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect

    Castle, J.W.; Bridges, R.A.; Lorinovich, C.J.; Molz, Fred J.; Dinwiddie, C.L.; Lu, S.

    2003-02-07

    Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  8. Numerical investigation of complex flooding schemes for surfactant polymer based enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir

    2015-11-01

    Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  9. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    PubMed Central

    Shibulal, Biji; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  10. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1989-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. These studies will be utilized to develop and test mathematical models for prediction of the effects of reservoirs heterogeneities.

  11. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1990-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that effect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, or engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production.

  12. Robust magnetic/polymer hybrid nanoparticles designed for crude oil entrapment and recovery in aqueous environments.

    PubMed

    Pavía-Sanders, Adriana; Zhang, Shiyi; Flores, Jeniree A; Sanders, Jonathan E; Raymond, Jeffery E; Wooley, Karen L

    2013-09-24

    Well-defined, magnetic shell cross-linked knedel-like nanoparticles (MSCKs) with hydrodynamic diameters ca. 70 nm were constructed through the co-assembly of amphiphilic block copolymers of PAA20-b-PS280 and oleic acid-stabilized magnetic iron oxide nanoparticles using tetrahydrofuran, N,N-dimethylformamide, and water, ultimately transitioning to a fully aqueous system. These hybrid nanomaterials were designed for application as sequestering agents for hydrocarbons present in crude oil, based upon their combination of amphiphilic organic domains, for aqueous solution dispersibility and capture of hydrophobic guest molecules, with inorganic core particles for magnetic responsivity. The employment of these MSCKs in a contaminated aqueous environment resulted in the successful removal of the hydrophobic contaminants at a ratio of 10 mg of oil per 1 mg of MSCK. Once loaded, the crude oil-sorbed nanoparticles were easily isolated via the introduction of an external magnetic field. The recovery and reusability of these MSCKs were also investigated. These results suggest that deployment of hybrid nanocomposites, such as these, could aid in environmental remediation efforts, including at oil spill sites, in particular, following the bulk recovery phase.

  13. Robust magnetic/polymer hybrid nanoparticles designed for crude oil entrapment and recovery in aqueous environments.

    PubMed

    Pavía-Sanders, Adriana; Zhang, Shiyi; Flores, Jeniree A; Sanders, Jonathan E; Raymond, Jeffery E; Wooley, Karen L

    2013-09-24

    Well-defined, magnetic shell cross-linked knedel-like nanoparticles (MSCKs) with hydrodynamic diameters ca. 70 nm were constructed through the co-assembly of amphiphilic block copolymers of PAA20-b-PS280 and oleic acid-stabilized magnetic iron oxide nanoparticles using tetrahydrofuran, N,N-dimethylformamide, and water, ultimately transitioning to a fully aqueous system. These hybrid nanomaterials were designed for application as sequestering agents for hydrocarbons present in crude oil, based upon their combination of amphiphilic organic domains, for aqueous solution dispersibility and capture of hydrophobic guest molecules, with inorganic core particles for magnetic responsivity. The employment of these MSCKs in a contaminated aqueous environment resulted in the successful removal of the hydrophobic contaminants at a ratio of 10 mg of oil per 1 mg of MSCK. Once loaded, the crude oil-sorbed nanoparticles were easily isolated via the introduction of an external magnetic field. The recovery and reusability of these MSCKs were also investigated. These results suggest that deployment of hybrid nanocomposites, such as these, could aid in environmental remediation efforts, including at oil spill sites, in particular, following the bulk recovery phase. PMID:23987122

  14. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Yanis C.

    2001-08-07

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  15. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect

    Yortsos, Y.C.

    2001-05-29

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  16. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems.

  17. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    SciTech Connect

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  18. Distribution and recovery trajectory of Macondo (Mississippi Canyon 252) oil in Louisiana coastal wetlands.

    PubMed

    Turner, R Eugene; Overton, Edward B; Meyer, Buffy M; Miles, M Scott; McClenachan, Giovanna; Hooper-Bui, Linda; Engel, Annette Summers; Swenson, Erick M; Lee, James M; Milan, Charles S; Gao, Heng

    2014-10-15

    We measured the concentration of petroleum hydrocarbons in 405 wetland sediment samples immediately before the April 2010 Deepwater Horizon disaster led to their broad-scale oiling, and on nine trips afterwards. The average concentrations of alkanes and PAHs were 604 and 186 times the pre-spill baseline values, respectively. Oil was distributed with some attenuation up to 100m inland from the shoreline for alkanes, but increased for aromatics, and was not well-circumscribed by the rapid shoreline assessments (a.k.a. SCAT) of relative oiling. The concentrations of target alkanes and PAHs in June 2013 were about 1% and 5%, respectively, of the February 2011 concentrations, but remained at 3.7 and 33 times higher, respectively, than in May 2010. A recovery to baseline conditions suggests that the concentration of alkanes may be near baseline values by the end of 2015, but that it may take decades for the PAH concentrations to be that low. PMID:25176275

  19. High efficiency shale oil recovery. Fourth quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Adams, D.C.

    1992-12-31

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  20. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments

    SciTech Connect

    Willhite, G.P.; Green, D.W.; McCool, S.

    2001-03-28

    Gelled polymer treatments were applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. Procedures were developed to determine the weight-average molecular weight and average size of polyacrylamide samples in aqueous solutions. Sample preparation techniques were key to achieving reproducible results.

  1. Recovery of coal fines from washery and power plant effluents by integrated technique of oil agglomeration and biofilm formation.

    PubMed

    Sharma, S; Luxamikant; Dastidar, M G; RoyChoudhury, P K

    1999-01-01

    The possibility of applying an integrated technique of oil agglomeration and biofilm formation for recovery of coal fines from coal washeries and power plants effluents has been explored. Laboratory experiments with simulated slurries of different Indian coal fines demonstrate that vegetable oils are satisfactory agglomerating agents for recovery of most of the coal fines depending on the nature of coal and type of oil. The agglomeration behaviour of coal fines was assessed in terms of % yield, % organic matter recovery and % ash rejections. Maximum 85% agglomerate recovery was obtained in the agglomeration stage. Residual oil concentrations in some cases were found to exceed the permissible limit. Recovery of residual coal fines and reduction in residual oil concentration in the resultant slurry after oil agglomeration have been attempted using biofilm formation. A laboratory scale treatment reactor was put under complete recirculation to facilitate attached microbial growth on coal particles as carrier under aerobic conditions. The influence of various parameters on attached growth and stable biofilm formation were studied. The growth patterns of attached cell in suspension and consumption pattern of carbon substrate (oil) have been investigated. Steady decline in residual substrate concentration in the slurry with corresponding increase in the growth of attached and free cell mass is observed. The growth process was favoured in pH range of 6.5-7.0. The attached growth was found to be expanded in size in due course of time ultimately leading to the formation of stable biofilm in the treatment reactor which was subjected to the influent total suspended solids loading resulting from oil agglomeration step. Performance of the biofilm reactor in terms of % reduction in total suspended solids and residual oil concentration in the influent slurry was assessed in continuous mode. Complete recovery of coal fines and 60% degradation of oil was observed in the final

  2. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report

    SciTech Connect

    Murphy, M.B.

    1996-04-22

    The overall objective of this project is to demonstrate that development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. specific goals to attain the objective are (1) to demonstrate that development drilling program and pressure maintenance program, based on advanced reservoir management methods , can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. This is the second quarterly progress report on the project. Results obtained to date are summarized.

  3. Recovery of a subtropical rocky shore is not yet complete, four years after a moderate sized oil spill.

    PubMed

    Finlayson, Kimberly; Stevens, Tim; Arthur, James Michael; Rissik, David

    2015-04-15

    Little is known about the recovery trajectory from small to moderate spills (<1000 t), particularly in the sub-tropics. On 11 March 2009 the MV Pacific Adventurer spilt 270 t of bunker fuel oil 13 km off Moreton Island, Australia, impacting wetlands, sandy beaches and rocky shores. This study examines the recovery of the rocky shore community four years after the spill. Results indicate that recovery on Moreton Island is taking longer than the 3-4 years suggested by the literature. The upper shore is recovering faster than the mid shore and is nearly recovered while the mid shore is still in the recovery process. These results indicate that small to moderate sized spills can have environmental impacts on par with much larger spills and emphasizes the need for a clear definition of a recovery endpoint. Long term studies are required to gain a full understanding of trajectories of recovery after oil spill impacts.

  4. Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes.

    PubMed

    Song, Wen; Kovscek, Anthony R

    2015-08-21

    Sandstone formations are ubiquitous in both aquifers and petroleum reservoirs, of which clay is a major constituent. The release of clay particles from pore surfaces as a result of reduced injection fluid salinity can greatly modify the recovery of hydrocarbons from subsurface formations by shifting the wettability properties of the rock. In this paper we demonstrate a microfluidic approach whereby kaolinite is deposited into a two-dimensional microfluidic network (micromodel) to enable direct pore-scale, real-time visualization of fluid-solid interactions with representative pore-geometry and realistic surface interactions between the reservoir fluids and the formation rock. Structural characterization of deposited kaolinite particles agrees well with natural modes of occurrence in Berea sandstones; hence, the clay deposition method developed in this work is validated. Specifically, more than 90% of the deposited clay particles formed pore-lining structures and the remainder formed pore bridging structures. Further, regions of highly concentrated clay deposition likely leading to so-called Dalmatian wetting properties were found throughout the micromodel. Two post-deposition treatments are described whereby clay is adhered to the silicon surface reversibly and irreversibly resulting in microfluidic systems that are amenable to studies on (i) the fundamental mechanisms governing the increased oil recovery during low salinity waterfloods and (ii) the effect of a mixed-wet surface on oil recovery, respectively. The reversibly functionalized platform is used to determine the conditions at which stably adhered clay particles detach. Specifically, injection brine salinity below 6000 ppm of NaCl induced kaolinite particle release from the silicon surface. Furthermore, when applied to an aged system with crude oil, the low salinity waterflood recovered an additional 14% of the original oil in place compared to waterflooding with the formation brine.

  5. Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes.

    PubMed

    Song, Wen; Kovscek, Anthony R

    2015-08-21

    Sandstone formations are ubiquitous in both aquifers and petroleum reservoirs, of which clay is a major constituent. The release of clay particles from pore surfaces as a result of reduced injection fluid salinity can greatly modify the recovery of hydrocarbons from subsurface formations by shifting the wettability properties of the rock. In this paper we demonstrate a microfluidic approach whereby kaolinite is deposited into a two-dimensional microfluidic network (micromodel) to enable direct pore-scale, real-time visualization of fluid-solid interactions with representative pore-geometry and realistic surface interactions between the reservoir fluids and the formation rock. Structural characterization of deposited kaolinite particles agrees well with natural modes of occurrence in Berea sandstones; hence, the clay deposition method developed in this work is validated. Specifically, more than 90% of the deposited clay particles formed pore-lining structures and the remainder formed pore bridging structures. Further, regions of highly concentrated clay deposition likely leading to so-called Dalmatian wetting properties were found throughout the micromodel. Two post-deposition treatments are described whereby clay is adhered to the silicon surface reversibly and irreversibly resulting in microfluidic systems that are amenable to studies on (i) the fundamental mechanisms governing the increased oil recovery during low salinity waterfloods and (ii) the effect of a mixed-wet surface on oil recovery, respectively. The reversibly functionalized platform is used to determine the conditions at which stably adhered clay particles detach. Specifically, injection brine salinity below 6000 ppm of NaCl induced kaolinite particle release from the silicon surface. Furthermore, when applied to an aged system with crude oil, the low salinity waterflood recovered an additional 14% of the original oil in place compared to waterflooding with the formation brine. PMID:26151880

  6. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  7. The potential of enhanced oil recovery by carbon dioxide flooding in New Mexico: Final technical report

    SciTech Connect

    Brashear, J.P.; Becker, A.B.; Dowd, W.T.; Biglarbigi, K.; Crawford, P.M.

    1986-12-01

    This report examines the potential of carbon dioxide miscible flooding in New Mexico to increase oil reserves and production, state and local revenues, state economic activity, jobs and wages, gross domestic product, and federal revenues. Using models and data bases built for the National Petroleum Council's study of enhanced oil recovery, 97 New Mexico reservoirs were evaluated to determine the potential of carbon dioxide flooding at prices from $16/B to $40/B, minimum rates of return of 10% and 15%, and three tax treatments: current taxes and two incentive cases (relief from income and production taxes for the life of a project or until project payback). The results show that at prices beginning at $20/B, substantial new reserves and production can be gained if tax incentives to payback are available, yielding substantial benefits to the state up to about $30/B. Beyond that price, incentives could be counter-productive to the state. Incentives can be administered through the use of a simple, readily measured ratio to determine approximately when payback occurs to minimize the administrative burden. With carefully designed incentives and oil prices in the $24 to 28/B range, New Mexico's oil production and oil-based taxes could be sustained at near current levels well into the next century. 45 figs., 9 tabs.

  8. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    PubMed

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs.

  9. Visual display of reservoir parameters affecting enhanced oil recovery. FY 1994 annual report

    SciTech Connect

    Wood, J.R.

    1995-06-01

    Evaluation of oil and gas properties for enhanced oil recovery (EOR) involves a high degree of risk, especially when the fields are old and well past their prime. The purpose of this project is to provide the small-to-medium size oil field operator with the tools necessary to do an EOR evaluation of the same quality and sophistication that only large international oil companies have been able to afford to date. This approach utilizes readily available, affordable computer software and analytical services. This project will provide a detailed example, based on a field trial, of how to evaluate a field for EOR operations utilizing data typically available in a field which has undergone primary development. After reviewing PC-based software from most major vendors, the authors decided that the most effective way to provide a user-friendly, state-of-the-art package to the independent producers who are primary clients is to link the best modules from four different systems: a commercial database, a wireline log analysis program, a mapping program, and a 2D and 3D visualization program, into a flexible, user-friendly unit. This would result in a product that could be used by small oil and gas companies to perform computerized reservoir studies. Progress to date is described.

  10. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    PubMed

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs. PMID:27362472

  11. Biosurfactants as demulsifying agents for oil recovery from oily sludge--performance evaluation.

    PubMed

    Chirwa, Evans M N; Mampholo, Tshepo; Fayemiwo, Oluwademilade

    2013-01-01

    The oil producing and petroleum refining industries dispose of a significant amount of oily sludge annually. The sludge typically contains a mixture of oil, water and solid particles in the form of complex slurry. The oil in the waste sludge is inextractible due to the complex composition and complex interactions in the sludge matrix. The sludge is disposed of on land or into surface water bodies thereby creating toxic conditions or depleting oxygen required by aquatic animals. In this study, a fumed silica mixture with hydrocarbons was used to facilitate stable emulsion ('Pickering' emulsion) of the oily sludge. The second step of controlled demulsification and separation of oil and sludge into layers was achieved using either a commercial surfactant (sodium dodecyl sulphate (SDS)) or a cost-effective biosurfactant from living organisms. The demulsification and separation of the oil layer using the commercial surfactant SDS was achieved within 4 hours after stopping mixing, which was much faster than the 10 days required to destabilise the emulsion using crude biosurfactants produced by a consortium of petrochemical tolerant bacteria. The recovery rate with bacteria could be improved by using a more purified biosurfactant without the cells.

  12. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  13. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study.

    PubMed

    Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2014-11-01

    for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process.

  14. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins--a pilot study.

    PubMed

    Rusanov, Krasimir; Garo, Eliane; Rusanova, Mila; Fertig, Orlando; Hamburger, Matthias; Atanassov, Ivan; Butterweck, Veronika

    2014-11-01

    for the recovery of polyphenols from rose oil distillation wastewater suggesting an industrial scalability of the process. PMID:25295672

  15. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect

    J. Ford Brett; Robert V. Westermark

    2002-06-30

    This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at

  16. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    SciTech Connect

    Not Available

    1989-08-01

    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  17. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  18. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, October 1--December 30, 1994

    SciTech Connect

    Wasan, D.T.

    1994-12-31

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. The problem of characterizing emulsions in porous media is very important in enhanced oil recovery applications. This is usually accomplished by externally added or insitu generated surfactants that sweep the oil out of the reservoir. Emulsification of the trapped oil is one of the mechanisms of recovery. The ability to detect emulsions in the porous medium is therefore crucial to designing profitable flood systems. The capability of microwave dielectric techniques to detect emulsions in porous medium is demonstrated by mathematical modelling and by experiments. This quarter the dielectric properties of porous media are shown to be predicted adequately by treating it an an O/W type dispersion of sand grains in water. Dielectric measurements of emulsion flow in porous media show that dielectric techniques may be applied to determine emulsion characteristics in porous media. The experimental observations were confirmed by theoretical analysis.

  19. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  20. A Field-Scale Simulation of the Reversible Nanoparticle Adsorption for Enhancing Oil Recovery Using Hydrophilic Nanofluids

    NASA Astrophysics Data System (ADS)

    Cao, Liyuan

    In order to develop and apply nanotechnology in oil industry, nanoparticles transport in porous media has been studied in the past few years. Theoretical modeling were carried out to evaluate nanoparticle mobility and investigate nanoparticle retention mechanism. In this study, a simulator based on Ju and Fan's mathematical model was used to study nanoparticles transport in porous media on a reservoir scale. The simulator was verified with two simulation software, Eclipse from Schlumberger and MNM1D (Micro- and Nanoparticle transport Model in porous media in 1D geometry) developed by Tosco et al. Different injection scenarios were simulated: continuous injection, slug injection, and postflush. The effect of injection time, injection rate, and slug size on oil recovery were studied. The result discovered that when nanofluids flooding is used after water flooding as tertiary recovery method, early nanofluids injection will lead to higher oil recovery, but with more nanoparticle loss. Higher injection rate of nanofluids could help improve the flooding efficiency, but not the ultimate oil recovery for field development. Also, it can cause more nanoparticle loss. Brine water postflush is recommended when doing nanoflooding. It can significantly improve the recovery of nanoparticles, and for a homogeneous or heterogeneous reservoir, oil recovery is better compared to water flooding.

  1. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  2. An evaluation of known remaining oil resources in the state of Louisiana: Project on advanced oil recovery and the states. Volume 5

    SciTech Connect

    1993-11-01

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Louisiana. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Louisiana oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Louisiana and the nation as a whole.

  3. OCCIDENTAL VERTICAL MODIFIED IN SITU PROCESS FOR THE RECOVERY OF OIL FROM OIL SHALE. PHASE II

    SciTech Connect

    Nelson, Reid M.

    1980-09-01

    The progress presented in this report covers the period June 1, 1980 through August 31, 1980 under the work scope for.Phase II of the DOE/Occidental Oil Shale, Inc. (OOSI) Cooperative Agreement. The major activities at OOSI 1s Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7, 8 and 8x; completing Mini-Retort (MR) construction; continuing surface facility construction; tracer testing the MR 1 s; conducting Retorts 7 & 8 related Rock Fragmentation tests; setting up and debugging the Sandia B-61 trailer; and preparing the Phase II instrumentation plan.

  4. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Technical progress report, January--March 1995

    SciTech Connect

    Pitts, M.J.

    1995-05-01

    Two series of corefloods were performed to improve alkaline-surfactant-polymer oil recovery economics. In these series of corefloods, the objective was to increase oil recovery by changing the chemical injection sequence. An alkaline gradient was evaluated in the first series of corefloods. Radial corefloods using Berea core were performed in which a pre-flush of alkaline-polymer solution was injected before the alkaline-surfactant-polymer solution. 30% pore volume (PV) of 1.0 wt % Na{sub 2}CO{sub 3} plus 0.2 wt % Petrostep B-100 plus 500 mg/l Flopaam 3330S was injected followed by 30% PV 500 mg/l Flopaam 3330S. A 5% PV 2.0 wt % Na{sub 2}CO{sub 3} plus 500 mg/l Flopaam 3330S followed by 5% PV 1.5 wt % Na{sub 2}CO{sub 3} plus 500 mg/l Flopaam 3330S was injected prior to the alkaline-surfactant-polymer solution in the coreflood with an alkaline-polymer pre-flush. A water flush of 1.5 to 2 PV followed chemical injection. The pre-flush objective was to inject sufficient alkali to satiate consumption and to force the surfactant to go through optimum interfacial tension and phase behavior states. Incremental oil recovery increased 24% from 0.106 PV (30.3% waterflood residual oil) to 0.131 PV (38.6% waterflood residual oil) when an alkaline-gradient pre-flush was injected. The effect on the oil recovery economics of an alkaline-polymer pre-flush is shown in Table 2. Oil recovery as well as the mass of alkali and polymer injected increased making the cost per incremental barrel of oil unchanged.

  5. Reservoir characterization and enhanced oil recovery research. Annual report, September 1988--August 1989

    SciTech Connect

    Lake, L.W.; Pope, G.A.; Schechter, R.S.

    1992-03-01

    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  6. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term -- Class

    SciTech Connect

    Carr, Timothy R.; Green,Don W.; Willhite, G. Paul

    1999-10-29

    The objective of this project is to demonstrate incremental reserves from Osagian and Meramecian (Mississippian) dolomite reservoirs in western Kansas through application of reservoir characterization to identify areas of unrecovered mobile oil. The project addresses producibility problems in two fields: Specific reservoirs target the Schaben Field in Ness County, Kansas, and the Bindley Field in Hodgeman County, Kansas. The producibility problems to be addressed include inadequate reservoir characterization, drilling and completion design problems, non-optimum recovery efficiency. The results of this project will be disseminated through various technology transfer activities. At the Schaben demonstration site, the Kansas team will conduct a field project to demonstrate better approaches to identify bypassed oil within and between reservoir units.

  7. Surfactant-enhanced alkaline flooding for light oil recovery. [Annual report], 1993--1994

    SciTech Connect

    Wasan, D.T.

    1995-03-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (2) investigated the kinetics of oil removal from a silica surface, and (3) developed a theoretical interfacial activity model for determining equilibrium interfacial tension. The results of the studies conducted during the course of this project are presented.

  8. Simulation of EOR (enhanced oil recovery) processes in stochastically generated permeable media

    SciTech Connect

    Waggoner, J.R.; Castillo, J.L.; Lake, L.W. . Dept. of Petroleum Engineering)

    1990-01-01

    Many enhanced oil recovery (EOR) processes involve injecting an agent, such as steam or CO{sub 2}, that is much more mobile than the resident oil. Other EOR processes attempt to improve sweep efficiency by adding polymer or surfactant to the injected water to create a favorable mobility ratio. This study examines the effect of statistically generated heterogeneity on miscible displacements at unfavorable and favorable mobility ratios. The principal goal is to delineate the effects of fingering, dispersion and channeling on volumetric sweep efficiency. Two-dimensional heterogeneous permeability fields are generated with variability (heterogeneity) and spatial correlation as characterizing parameters. Four levels of correlation and three of variability make up a 12 element matrix. At each element of the matrix, a miscible displacement simulation at unit mobility ratio shows the effect of the heterogeneity, and simulations at mobility ratios of 10 and 0.5 show the effect of viscous force differences combined with heterogeneity. 20 refs., 7 figs., 3 tabs.

  9. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOEpatents

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  10. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis.

    PubMed

    Cooney, Gregory; Littlefield, James; Marriott, Joe; Skone, Timothy J

    2015-06-16

    This study uses life cycle analysis (LCA) to evaluate the greenhouse gas (GHG) performance of carbon dioxide (CO2) enhanced oil recovery (EOR) systems. A detailed gate-to-gate LCA model of EOR was developed and incorporated into a cradle-to-grave boundary with a functional unit of 1 MJ of combusted gasoline. The cradle-to-grave model includes two sources of CO2: natural domes and anthropogenic (fossil power equipped with carbon capture). A critical parameter is the crude recovery ratio, which describes how much crude is recovered for a fixed amount of purchased CO2. When CO2 is sourced from a natural dome, increasing the crude recovery ratio decreases emissions, the opposite is true for anthropogenic CO2. When the CO2 is sourced from a power plant, the electricity coproduct is assumed to displace existing power. With anthropogenic CO2, increasing the crude recovery ratio reduces the amount of CO2 required, thereby reducing the amount of power displaced and the corresponding credit. Only the anthropogenic EOR cases result in emissions lower than conventionally produced crude. This is not specific to EOR, rather the fact that carbon-intensive electricity is being displaced with captured electricity, and the fuel produced from that system receives a credit for this displacement. PMID:25992466

  11. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis.

    PubMed

    Cooney, Gregory; Littlefield, James; Marriott, Joe; Skone, Timothy J

    2015-06-16

    This study uses life cycle analysis (LCA) to evaluate the greenhouse gas (GHG) performance of carbon dioxide (CO2) enhanced oil recovery (EOR) systems. A detailed gate-to-gate LCA model of EOR was developed and incorporated into a cradle-to-grave boundary with a functional unit of 1 MJ of combusted gasoline. The cradle-to-grave model includes two sources of CO2: natural domes and anthropogenic (fossil power equipped with carbon capture). A critical parameter is the crude recovery ratio, which describes how much crude is recovered for a fixed amount of purchased CO2. When CO2 is sourced from a natural dome, increasing the crude recovery ratio decreases emissions, the opposite is true for anthropogenic CO2. When the CO2 is sourced from a power plant, the electricity coproduct is assumed to displace existing power. With anthropogenic CO2, increasing the crude recovery ratio reduces the amount of CO2 required, thereby reducing the amount of power displaced and the corresponding credit. Only the anthropogenic EOR cases result in emissions lower than conventionally produced crude. This is not specific to EOR, rather the fact that carbon-intensive electricity is being displaced with captured electricity, and the fuel produced from that system receives a credit for this displacement.

  12. Damage to and recovery of coastlines polluted with C-heavy oil spilled from the Nakhodka.

    PubMed

    Hayakawa, Kazuichi; Nomura, Maki; Nakagawa, Takuya; Oguri, Seiji; Kawanishi, Takuya; Toriba, Akira; Kizu, Ryoichi; Sakaguchi, Toshifumi; Tamiya, Eiichi

    2006-03-01

    The damage to and recovery of the Japanese coastline from Suzu, Ishikawa Prefecture to Mikuni, Fukui Prefecture was investigated visually over three years after a C-heavy oil spill from the Russian tanker "Nakhodka" in the Japan Sea on January 2, 1997. The beached C-heavy oil tended to remain for a long time on coasts of bedrock and boulder/cobble/pebble but it was removed rapidly from coasts of gravel/sand and man-made structures such as concrete tetrapods. On the coasts of the latter type, wave energy appeared to be the main force removing the oil. One year after the spill, C-heavy oil tended to remain strongly on the sheltered coasts of bedrock and boulder/cobble/pebble. Even on coasts of this type, the contamination was remarkably absent by 2 years after the spill. The concentration levels of polycyclic aromatic hydrocarbons (PAHs) in oil lumps, sand and seawater were monitored during 3 years following the spill. The concentrations of PAHs having 2 or 3 rings decreased more quickly than did those of PAHs having 4 or more rings, suggesting that volatilization was the main cause of the decrease. On the other hand, the concentrations of PAHs having 4 to 6 rings did not start to decrease until 7 months after the spill. The main cause of the decrease seemed to be photolysis. The concentration of BaP in seawater off the polluted coasts was high 1 month after the spill and then decreased. Three years after the spill, the level fell to the sub ng/L level, which was as low as the level in seawater along unpolluted clean coasts in Japan. The concentration of BaP in greenling was higher than the normal level only during the first two months after the spill. These results suggest that the coastlines in Ishikawa and Fukui Prefectures that were polluted with C-heavy oil recovered in 3 years.

  13. Redox dynamics during recovery of an oil-impacted estuarine wetland.

    PubMed

    LaRiviere, Daniel J; Autenrieth, Robin L; Bonner, James S

    2003-08-01

    Redox potentials and sediment porewater parameters were measured around the periphery of a small cove along the San Jacinto River in Texas throughout a crude oil and chemical dispersant remediation study to distinguish normal dynamics from those caused as a response to stress from oil deposition and chemical treatment and subsequent recovery. Before the application of oil and treatments, sediments displayed average redox potentials of 0-350 mV when not submerged. Within 2 days of the applications, redox potentials in these plots decreased and exhibited a range from -200 to 0 mV for a duration of 5 weeks. Applied treatments significantly reduced the sediments of the wetland. Reduced redox potentials were indicative of the corresponding sulfate reduction that was also found to be significant following the oil application. GC/MS and MPN analysis indicates this reduction is due to biological oxidation of the crude oil components by alkane- and PAH-degraders in these surficial sediments and validates the usefulness of the redox measurement as an indicator for carbon oxidation. Increases in aqueous phase total organic and inorganic carbon coincided with a decrease in pH shortly after the applications, suggesting incomplete mineralization and the generation of organic acids. While dissolved ferrous iron and sulfide have been found to be good indicators of reductive processes in petroleum-contaminated aquifer sediments; that was not the case in this wetland study. Despite the disappearance of sulfate following the oil application, dissolved ferrous iron and sulfide concentrations remained at pre-application levels suggesting the formation of mackinawite and/or pyrite. The transient exposure of surface sediments to oxygen complicates the consideration of potential solid phase pathways since aqueous iron may be removed by precipitation when oxidized or reduced, making porewater iron a poor indicator for terminal electron accepting processes in wetland sediments.

  14. Secondary oil recovery from selected Carter sandstone oilfields--Black Warrior Basin, Alabama. Final report

    SciTech Connect

    Anderson, J.C.

    1995-02-01

    Producibility problems, such as low reservoir pressure and reservoir heterogeneity, have severely limited oil production from the Central Bluff and North Fairview fields. Specific objectives for this project were: To successfully apply detailed geologic and engineering studies with conventional waterflood technologies to these fields in an effort to increase the ultimate economic recovery of oil from Carter sandstone fields; To extensively model, test and evaluate these technologies; thereby, developing a sound methodology for their use and optimization; and To team with Advanced Resources International and the US DOE to assimilate and transfer the information and results gathered from this study to other oil companies to encourage the widespread use of these technologies. At Central Bluff, water injection facilities were constructed and water injection into one well began in January 1993. Oil response from the waterflood has been observed at both producing wells. One of the producing wells has experienced early water breakthrough and a concomitant drop in secondary oil rate. A reservoir modeling study was initiated to help develop an appropriate operating strategy for Central Bluff. For the North Fairview unit waterflood, a previously abandoned well was converted for water injection which began in late June 1993. The reservoir is being re-pressurized, and unit water production has remained nil since flood start indicating the possible formation of an oil bank. A reservoir simulation to characterize the Carter sand at North Fairview was undertaken and the modeling results were used to forecast field performance. The project was terminated due to unfavorable economics. The factors contributing to this decision were premature water breakthrough at Central Bluff, delayed flood response at North Fairview and stalled negotiations at the South Bluff site.

  15. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect

    Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

    2003-02-07

    This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

  16. Feasibility study of enhanced oil recovery for fields in decline. Export trade information (Final)

    SciTech Connect

    Not Available

    1991-08-01

    The report, generated by Scientific Software-Intercomp, Inc. for Yacimientos Petroliferos Fiscales Bolivianos, documents the results of a feasibility study which addressed the viability of developing petroleum areas in Bolivia. The primary objective of the project was to describe the reservoirs that have been discovered and their reserves, describe which would be the best alternatives for development of these reservoirs, and to determine the best alternatives for development of all the reserves together. The report, volume 4 of 4, concerns the feasibility of enhancing the oil or condensate recovery from a chosen group of fields (Yapacani, Humberto Suarez Roca, Vibora, La Pena, San Roque, and Camiri).

  17. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  18. High efficiency shale oil recovery. Second quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  19. Surfactant-enhanced alkaline flooding for light oil recovery. Final report 1994--1995

    SciTech Connect

    Wasan, D.T.

    1995-12-01

    In this report, the authors present the results of their experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are summarized.

  20. Surfactant-enhanced alkaline flooding for light oil recovery. Final report

    SciTech Connect

    Wasan, D.T.

    1996-05-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12. 0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are discussed.

  1. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect

    J. Ford Brett; Robert V. Westermark

    2001-12-31

    This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on

  2. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1990-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Geological research this quarter has focused on descriptions of core material and petrographic thin sections from reservoirs producing from the Smackover Formation in southwestern Alabama, computer entry of pertinent data, and generation of maps and cross-sections.

  3. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1991-01-01

    The objective of this project is to augment the National Reservoir Database (TORIS database), to increase our understanding of how geologic heterogeneity affects the recovery of oil and gas from carbonate reservoirs in the State of Alabama, and to identify resources that are producible at moderate cost. This objective will be achieved through detailed geological, geostatistical, and engineering characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneity on hydrocarbon production. The paper reports on the progress of several subtasks. The subjects discussed are: controls on reservoir heterogeneity in the Smackover; pore facies and Smackover reservoir heterogeneity; geological and petrophysical reservoir characterization; geologic flow modeling; and geostatistical modeling. Accomplishments this quarter are summarized and their significance to EOR research is discussed. 1 ref., 4 figs. (CK)

  4. Enhanced oil recovery method using surfactant compositions for improved oil mobility

    SciTech Connect

    Current, S.P.

    1992-05-05

    This patent describes a surfactant composition useful for coacting with an emulsion in a petroleum reservoir which includes at least two surfactant components, one of the components being an anionic surfactant and the other of the components being a nonionic polyether surfactant which is selected from among polyol ethers, polyol esters and phenolic resins, wherein the anionic surfactant comprises an alpha olefin sulfonate dimmer having from 15 to 45 carbon atoms, wherein the ratio of the components is selected to reduce the viscosity of an emulsion in a petroleum reservoir to near, or less than, the viscosity of the oil phase alone and wherein the anionic surfactant component is from 30 to 70 weight percent of the total surfactant composition.

  5. INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS

    SciTech Connect

    G.P. Willhite; D.W. Green; C.S. McCool

    2003-05-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in

  6. Sea otter (Enhydra lutris) perspective: Mechanisms of impact and potential recovery of nearshore vertebrate predators following the 1989 Exxon Valdez oil spill. Part A. Sea otter population status and the process of recovery from the 1989 Exxon Valdez oil spill

    USGS Publications Warehouse

    Bodkin, J.L.; Ballachey, B.E.; Dean, T.A.; Fukuyama, A.K.; Jewett, S.C.; McDonald, L.; Monson, D.H.; O'Clair, C. E.; VanBlaricom, G.R.; Holland-Bartels, L. E.

    2002-01-01

    Sea otter (Enhydra lutris populations were severely affects by the 1989 Exxon Valdez oil spill in western Prince William Sound, AK, and had not fully recovered by 2000. Here we present results of population surveys and incorporate findings from related studies to identify current population status and factors affecting recovery. Between 1993 and 2000, the number of sea otters in the spill-area of Prince William Sound increased by about 600 to nearly 2700. However, at Knight Island, where oil exposure and sea otter mortality in 1989 approached 0.90, no increase has been observed. Sea otter reproduction was not impaired and the age and sex structure of animals captured are consistent with both intrinsic reproduction and immigration contributing to recovery. However, low resighting rates of marked animals at Knight Island compared to an unoiled reference area, and a high proportion of young animals in beach cast carcasses through 1998, suggest that the lack of recovery was caused by relatively poor survival or emigration of potential recruits. Significantly higher levels of cytochrome P4501A (CYP1A), a biomarker of hydrocarbons, were found in sea otters at Knight Island, in 1996-98 compared to unoiled Montague Island, implicating oil effects in the lack of recovery at Knight Island. Delayed recovery does not appear to be directly related to food limitation. Although food availability was relatively low at both oiled and unoiled areas, we detected significant increases in sea otter abundance only at Montague Island, as finding inconsistent with food as a principal limiting factor. Persistent oil in habitats and prey provides a source of continued oil exposure and, combined with relatively low prey densities, suggests a potential interaction between oil and food. However, sea otters foraged more successfully at Knight Island and young females were in better condition than those at Montague Island. We conclude that progress toward recovery of sea otters in Prince William

  7. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils.

    PubMed

    Xia, Wen-Jie; Luo, Zhi-Bin; Dong, Han-Ping; Yu, Li; Cui, Qing-Feng; Bi, Yong-Qiang

    2012-03-01

    A bacterial strain was isolated and cultured from the oil excavation areas in tropical zone in northern China. The biochemical characteristics and partial sequenced 16S rRNA gene of isolate, WJ-1, was identical to those of cultured representatives of the species Pseudomonas aeruginosa. This bacterium was able to produce a type of biosurfactant. Compositional analysis revealed that the extracted biosurfactant was composed of high percentage lipid (∼74%, w/w) and carbohydrate (∼20%, w/w) in addition to a minor fraction of protein (∼6%, w/w). The best production of 50.2 g/l was obtained when the cells were grown on minimal salt medium containing 6.0% (w/v) glucose and 0.75% (w/v) sodium nitrate supplemented with 0.1% (v/v) element solution at 37 °C and 180 rpm after 96 h. The optimum biosurfactant production pH value was found to be 6.0-8.0. The biosurfactant of WJ-1, with the critical micelle concentration of 0.014 g/L, could reduce surface tension to 24.5 mN/m and emulsified kerosene up to EI(24) ≈95. The results obtained from time course study indicated that the surface tension reduction and emulsification potential was increased in the same way to cell growth. However, maximum biosurfactant production occurred and established in the stationary growth phase (after 90 h). Thin layer chromatography, Fourier transform infrared spectrum, and mass spectrum analysis indicate the extracted biosurfactant was affiliated with rhamnolipid. The core holder flooding experiments demonstrated that the oil recovery efficiency of strain and its biosurfactant was 23.02% residual oil.

  8. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project

  9. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Technical progress report, October--December 1994

    SciTech Connect

    Pitts, M.J.

    1994-01-01

    The study will investigate two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent into petroleum reservoirs. The first will consist of defining the mechanisms of interaction of an alkaline agent, a surfactant, and a polymer on a fluid-fluid and a fluid-rock basis. The second is the improvement of the economics of the combined technology. This report examines effect of rock type on oil recovery by an alkaline-surfactant-polymer solutions. This report also begins a series of evaluations to improve the economics of alkaline-surfactant-polymer oil recovery.

  10. Use of amine oxide surfactants for chemical flooding EOR (enhanced oil recovery)

    SciTech Connect

    Olsen, D.K.

    1989-11-01

    The use of amine oxides with and without alcohols as cosolvents, and in combination with other surfactants as mixed micellar formulations for enhanced oil recovery by surfactant flooding was investigated. Amine oxides are a salt-tolerant class of surfactants that produce low interfacial tension and can develop viscosity without the addition of polymers. These salt-tolerant formulations generate three-phase regions with hydrocarbons over a broad salinity range, develop moderate solubilization, and produce low interfacial tensions, however oil recovery from amine oxide-alcohol phase behavior optimized formulations was directly dependent upon the quantity of surfactant injected. The large pore volume and high concentration of surfactant required prohibits their economic use as the primary surfactant in chemical flooding EOR. Dimethylalkylamine oxides are useful as cosurfactants and viscosifiers in formulations with other surfactants for chemical flooding EOR but the use of ethoxylated and propoxylated amine oxides should be avoided due to the decomposition of these amine oxides under reservoir conditions. Phase behavior, phase inversion temperatures, and viscosity scans have been correlated with surfactant structures to provide a guide for amine oxide applications in chemical flooding. 36 refs., 5 figs., 6 tabs.

  11. Tertiary oil recovery processes research at the University of Texas. Annual report, October 1981-September 1982

    SciTech Connect

    Schechter, R.S.; Wade, W.H.

    1985-01-01

    During the past year we have continued three major projects: (I) further delineation of surfactant adsorption mechanisms, (II) the systematics of chromatographic separation processes, and (III) the design and evaluation of surfactants. In I we have: (a) explored surface condensed structures and plateau adsorption levels; and (b) expanded absorption theory to encompass heterogeneities, studied the critical admicelle concentration and multicomponent adsorption. In II we have traced the composition path for several pure alkyl benzene sulfonates in the grid diagram and examined surfactant wave fronts. In III we have developed two and quantitative surfactant synthesis schemes and finished studies on ..cap alpha..-olefin sulfonates, ethoxylated oleyl sulfonates and alkane sulfonates. The following 5 papers in III have been processed for inclusion in the Energy Data Base: (1) synthesis and performance of isomer-free secondary alkane sulfonate surfactants; (2) synthesis and performance of linear monoisomeric ethylene oxide sulfonate surfactants; (3) alpha-olefin sulfonates for enhanced oil recovery; (4) ethoxylated oleyl sulfonates as model compounds for enhanced oil recovery; (5) phase behavior of simple salt tolerant sulfonates.

  12. High efficiency shale oil recovery. First quarter report, January 1, 1992--March 31, 1992

    SciTech Connect

    Adams, D.C.

    1992-12-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  13. Use of chemical additives with steam injection to increase oil recovery. Final report

    SciTech Connect

    Handy, L.L.

    1984-09-01

    Surfactants and certain inorganic bases have been evaluated as possible chemical additives to improve performance of steamfloods. Special emphasis was given to chemicals which would reduce the residual oil saturation in regions flooded by hot water below the steam zone. Problems considered were the effect of prolonged exposure to steam temperature on the stability of petroleum sulfonates, the effect of temperature on surfactant adsorption and the effect of temperature on interfacial tensions. Methods were developed for measuring quantitatively the thermal stability of the aryl sulfonate class of surfactant. This class includes the petroleum sulfonates. The best of the surfactants evaluated in this study had marginal stability for use with steamfloods. The surfactants in combination with elevated temperatures do reduce residual oil saturations. Data are presented on the temperature effects on interfacial tensions and on adsorption. Certain inorganic chemicals which give high pH are effective and inexpensive but hydroxyl ions react with silica in the reservoir. This reaction is accentuated at higher temperatures. Data show that the pH of the injected hot water with caustic decreases with contact time. The experiments did not permit determining if an equilibrium pH would be obtained which would be high enough to be effective in recovering oil. Core floods showed that pH's in excess of 12 would be required to reduce residual oil saturations if sodium hydroxide was the injected chemical. The addition of surfactants with caustic or the use of sodium carbonate may permit recovery of oil at lower pH's. A reservoir simulator is being developed to predict performance of steamfloods with chemical additives. This has been completed for simple linear floods but is being extended to three dimensions and to more complicated flooding operations. 31 references, 43 figures, 2 tables.

  14. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  15. Teapot Dome: Site Characterization of a CO2- Enhanced Oil Recovery Site in Eastern Wyoming

    SciTech Connect

    Friedmann, S J; Stamp, V

    2005-11-01

    Naval Petroleum Reserve No. 3 (NPR-3), better known as the Teapot Dome oil field, is the last U.S. federally-owned and -operated oil field. This provides a unique opportunity for experiments to provide scientific and technical insight into CO{sub 2}-enhanced oil recovery (EOR) and other topics involving subsurface fluid behavior. Towards that end, a combination of federal, academic, and industrial support has produced outstanding characterizations of important oil- and brine-bearing reservoirs there. This effort provides an unparalleled opportunity for industry and others to use the site. Data sets include geological, geophysical, geochemical, geomechanical, and operational data over a wide range of geological boundary conditions. Importantly, these data, many in digital form, are available in the public domain due to NPR-3's federal status. Many institutions are already using portions of the Teapot Dome data set as the basis for a variety of geoscience, modeling, and other research efforts. Fifteen units, 9 oil-bearing and 6 brine-bearing, have been studied to varying degrees. Over 1200 wells in the field are active or accessible, and over 400 of these penetrate 11 formations located below the depth that corresponds to the supercritical point for CO{sub 2}. Studies include siliciclastic and carbonate reservoirs; shale, carbonate, and anhydrite cap rocks; fractured and unfractured units; and over-pressured and under-pressured zones. Geophysical data include 3D seismic and vertical seismic profiles. Reservoir data include stratigraphic, sedimentological, petrologic, petrographic, porosity, and permeability data. These have served as the basis for preliminary 3D flow simulations. Geomechanical data include fractures (natural and drilling induced), in-situ stress determination, pressure, and production history. Geochemical data include soil gas, noble gas, organic, and other measures. The conditions of these reservoirs directly or indirectly represent many reservoirs

  16. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  17. Understanding the role of brine ionic composition on oil recovery by assessment of wettability from colloidal forces.

    PubMed

    Alshakhs, Mohammed J; Kovscek, Anthony R

    2016-07-01

    The impact of injection brine salinity and ionic composition on oil recovery has been an active area of research for the past 25years. Evidence from laboratory studies and field tests suggests that implementing certain modifications to the ionic composition of the injection brine leads to greater oil recovery. The role of salinity modification is attributed to its ability to shift wettability of a rock surface toward water wetness. The amount of trapped oil released depends on the nature of rock, oil, and brine surface interactions. Reservoir rocks exhibit different affinities to fluids. Carbonates show stronger adsorption of oil films as opposed to the strongly water-wet and mixed-wet sandstones. The concentration of divalent ions and total salinity of the injection brine are other important factors to consider. Accordingly, this paper provides a review of laboratory and field studies of the role of brine composition on oil recovery from carbonaceous rock as well as rationalization of results using DLVO (Derjaguin, Landau, Verwey and Overbeek) theory of surface forces. DLVO evaluates the contribution of each component of the oil/brine/rock system to the wettability. Measuring zeta potential of each pair of surfaces by a charged particle suspension method is used to estimate double layer forces, disjoining pressure, and contact-angle. We demonstrate the applicability of the DLVO approach by showing a comprehensive experimental study that investigates the effect of divalent ions in carbonates, and uses disjoining pressure results to rationalize observations from core flooding and direct contact-angle measurements.

  18. Electromagnetic Imaging of CO2 Sequestration at an Enhanced-Oil-Recovery Site

    SciTech Connect

    Kirkendall, B; Roberts, J

    2004-02-17

    The two year LDRD-ER-089 project Electromagnetic Imaging of CO{sub 2} Sequestration at an Enhanced-Oil-Recovery Site used a dual track approach to imaging and interpreting the effectiveness and migration of CO2 injection at an enhanced oil recovery site. Both field data and laboratory data were used together to aid in the interpretation and understanding of CO{sub 2} flow in a heavily fracture enhanced oil recovery site. In particular, project highlights include; {lg_bullet} The development of a low-noise digital field system to measure the EM induction response to CO{sub 2} in a variety of field conditions. Central to this system is a low-noise induction receiver antenna that can measure the low-energy response of the CO{sub 2}. This system has consistently measured a shallow pseudo-miscible CO{sub 2} flood at source frequencies between 2.0 kHz and 10 kHz. In addition, the existing and added oil and brine in the formation have also been characterized. {lg_bullet} Comparisons of cross-well images with induction logs acquired before drilling suggest the EM induction resolution for CO2 imaging is equivalent with applications to waterflood imaging completed at LLNL. {lg_bullet} The development and use of laboratory equipment to conduct fluid and gas time-lapsed injection studies of core samples using fluids acquired in the field. Measurements of the resistivity during this injection process and the ability to make instantaneous measurements of the frequency response provide a unique dataset for interpretation. {lg_bullet} The development of an optimum finite difference grid spacing that allows for stable inversions at different frequencies. {lg_bullet} The use of time-lapse field images to show the change of electrical conductivity in the field scales to the laboratory results. Using this result, we can approximate an interpretation of field images based on the rate-of-change of the laboratory results. {lg_bullet} The application of Q-domain processing is not

  19. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  20. Modeling and simulation of multiphase multicomponent multiphysics porous media flows in the context of chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir; Fluids Team

    2015-11-01

    One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  1. Vapour extraction (VAPEX) process for recovery of heavy oil and bitumen

    SciTech Connect

    Jha, K.N.; Butler, R.M.; Lim, G.B.

    1995-12-31

    For over 90% of the vast resources of bitumen and heavy oil in Canada, in situ recovery processes have to be developed to produce and utilize them efficiently and economically. Thermal recovery processes using steam, although effective for thick reservoirs with good quality sands, are increasingly proving to be uneconomical, particularly for thin, shaley, or bottom water reservoirs. The inefficiency is caused by large heat losses, high water requirement, extensive surface facilities, and adverse environmental impact. To overcome these problems, a new non-thermal vapour extraction (VAPEX) process has been developed. The process is closely related to the Steam-Assisted Gravity Drainage (SAGD) concept. However, in the VAPEX process the steam chamber is replaced with a chamber containing light hydrocarbon vapours close to its dew point at the reservoir pressure. If the pressure used is close to the saturation pressure of hydrocarbons, deasphalting may occur in the reservoir causing a substantial reduction in viscosity and heavy metal contents. Experiments conducted in a Hele-Shaw cell and in a 2D physical scaled model using Lloydminster, Cold Lake, and Peace River heavy oil/bitumen and ethane, propane, and butane as solvents demonstrated that this process is very promising technically as well as economically. An active aquifer underlying the bitumen zone made the reservoir more valuable because of spreading of the solvent vapour directly underneath the formation which increased the vapour-bitumen contact extensively. The investigation was extended from a dual horizontal continuous injection/production well strategy described above to a single horizontal well cyclic process for the Cold Lake reservoir in a 3D physical scaled model. The tests illustrated that ethane was an effective solvent in producing Cold Lake bitumen and that the cyclic VAPEX process has the potential to be a breakthrough recovery technology.

  2. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, July 1--September 30, 1995

    SciTech Connect

    Wasan, D.T.

    1995-12-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. The problem of characterizing emulsions in porous media is very important in enhanced oil recovery applications. This is usually accomplished by externally added or in situ generated surfactants that sweep the oil out of the reservoir. Emulsification of the trapped oil is one of the mechanisms of recovery. The ability to detect emulsions in the porous medium is therefore crucial to designing profitable flood systems. The capability of microwave dielectric techniques to detect emulsions in porous medium is demonstrated by mathematical modeling and by experiments. This quarter the shape dependence of the complex dielectric properties of W/O and O/W type dispersions in the microwave frequency region were analyzed using the generalized effective medium theory of Hanai. The computations show that the authors earlier finding for spherical dispersions can now be extended to include nonspherical geometries. The computed results show that the difference in dielectric behavior of the two emulsion types are a strong function of the shape of the dispersions, with the differences vanishing when the two phases are oriented as layers parallel and perpendicular to the electromagnetic field.

  3. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  4. Harnessing Geothermal Energy from CO2 Enhanced Oil Recovery (EOR) Operations

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Randolph, J. B.

    2012-12-01

    Recent geotechnical research shows that geothermal heat can be efficiently mined by circulating CO2 through naturally permeable, porous rock formations. This method, called CO2 Plume Geothermal (CPG), targets the same geologic reservoirs that are suitable for deep saline aquifer CO2 sequestration or enhanced oil recovery (EOR). While previous investigations have focused on CO2-based heat mining from saline aquifers, here we present new research that is primarily concerned with EOR reservoirs, specifically those using a CO2 flood. EOR operations provide excellent opportunities for economically-favorable geothermal energy recovery, assuming subsurface temperatures are sufficient, because the majority of costly infrastructure (i.e., wells) is in place. Moreover, the subsurface characteristics that make a site suitable for hydrocarbon recovery -- at least moderate reservoir permeability and porosity, and a low-permeability capping feature -- help ensure that fluid can be circulated for heat extraction and that CO2 will be contained. However, heat extraction from the CO2 + water/brine + hydrocarbon EOR production stream is challenging, requiring fluid separation and multiple binary and/or direct power systems (depending on site-specific fluid composition and conditions). We discuss several scenarios, encompassing multiple power system configurations, for harnessing geothermal energy from CO2 EOR operations. In addition, we present preliminary numerical modeling results for net power production from such EOR operations -- accounting for wide variation in produced fluid temperature, pressure, and composition -- and consider the economic implications of power sales for EOR sites.

  5. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  6. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  7. Enhanced oil recovery through in-situ generated surfactants augmented by chemical injection

    SciTech Connect

    Wasan, D.T.

    1990-08-01

    Experimental and theoretical studies were conducted to advance understanding and predictability in the successful application of the combined surfactant-enhanced alkaline flooding for tertiary oil recovery. An experimental investigation of the buffered surfactant-enhanced alkaline flooding system chemistry was undertaken to determine the influence of the various species present on interfacial tension and phase behavior. The minimum in interfacial tension and the region of spontaneous emulsification correspond to a particular pH range, so that by buffering the aqueous pH against changes in alkali concentration, low interfacial tension can be maintained when the amount of alkali decreases due to the influence of external factors, such as divalent ions, acids, rock consumption, and dispersion. Reflected light micro-interferometry study was conducted to observe stratification in thin liquid films (associated with emulsion and foam systems) formed from micellar solutions of nonionic surfactants, such as ethoxylated alcohols. We show in the case of micellar solutions of nonionic surfactants that the stratification which results in the enhanced stability of films (and therefore the colloidal dispersion) is very sensitive to temperature. A new microwave interference dielectrometer was developed for characterizing oil-in-water and water-in-oil macroemulsions. The apparatus is readily applicable to either on-line or laboratory measurements. The dielectric properties of macroemulsions in the microwave frequency region were analyzed using interaction potential models and effective medium theories. 151 refs., 60 figs., 4 tabs.

  8. Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103

    SciTech Connect

    Brigham, William E.

    1999-08-09

    Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

  9. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term -- Class 2

    SciTech Connect

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    1999-07-08

    This report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  10. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS--NEAR TERM--CLASS 2

    SciTech Connect

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    1999-06-01

    This annual report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  11. Recovery of seabirds following the Exxon Valdez oil spill: An overview

    SciTech Connect

    Wiens, J.A.

    1995-12-31

    Following the Exxon Valdez oilspill in March 1989, over 35,000 dead birds were retrieved. Model analyses suggested that actual seabird mortality could have been in the hundreds of thousands, prompting concerns about severe and persistent impacts on populations of several species, especially murres (Uria spp.). Recovery for some populations was projected to take decades. The findings of several studies conducted following the oil spill, however, indicate that these concerns may not be justified. These studies examined colony attendance and reproduction of murres as well as habitat utilization for the prevalent species in Prince William Sound and along the Kenai Peninsula. Surveys of attendance by birds at murre breeding colonies in 1991 indicated no overall differences from prespill attendance levels when colonies were grouped by the degree of oiling in the vicinity. At a large colony in the Barren Islands, where damage was described as especially severe, counts of murres were generally similar to historical estimates made in the late 1970s. In 1990 and 1991, murres breeding at the Barren Islands colony also produced young at levels that were within the range of natural (prespill) variation for this site. Incidental observations indicated that several other species reproduced successfully in oiled areas in Prince William Sound and along the Kenai Peninsula following the spill. 161 refs., 2 figs., 2 tabs.

  12. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. PMID:20602990

  13. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  14. Evaluation of reservoir wettability and its effect on oil recovery. Annual report, February 1, 1996--January 31, 1997

    SciTech Connect

    Buckley, J.S.

    1998-03-01

    We report on the first year of the project, {open_quotes}Evaluation of Reservoir Wettability and its Effect on Oil Recovery.{close_quotes} The objectives of this five-year project are: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the first year of this project we have focused on understanding the interactions between crude oils and mineral surfaces that establish wetting in porous media. Mixed-wetting can occur in oil reservoirs as a consequence of the initial fluid distribution. Water existing as thick films on flat surfaces and as wedges in comers can prevent contact of oil and mineral. Water-wet pathways are thus preserved. Depending on the balance of surface forces-which depend on oil, solid, and brine compositions-thick water films can be either stable or unstable. Water film stability has important implications for subsequent alteration of wetting in a reservoir. On surfaces exposed to oil, the components that are likely to adsorb and alter wetting can divided into two main groups: those containing polar heteroatoms, especially organic acids and bases; and the asphaltenes, large molecules that aggregate in solution and precipitate upon addition of n-pentane and similar agents. In order to understand how crude oils interact with mineral surfaces, we must first gather information about both these classes of compounds in a crude oil. Test procedures used to assess the extent of wetting alteration include adhesion and adsorption on smooth surfaces and spontaneous imbibition into porous media. Part 1 of this project is devoted to determining the mechanisms by which crude oils alter wetting.

  15. Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980

    SciTech Connect

    Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

    1980-11-01

    The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

  16. A study of water chemistry extends the benefits of using silica-based nanoparticles on enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Torsæter, Ole

    2016-01-01

    Chemistry of the injected water has been investigated as an important parameter to improve/enhance oil recovery (IOR/EOR). Numerous extensive experiments have observed that water chemistry, such as ionic composition and salinity, can be modified for IOR/EOR purposes. However, the possible oil displacement mechanism remains debatable. Nanoparticle recently becomes more popular that have shown a great potential for IOR/EOR purposes in lab-scale, where in most experiments, water-based fluid were used as dispersed fluid. As yet, there has been no discussion in the literature on the study of water chemistry on enhanced oil recovery using silica-based nanoparticles. A broad range of laboratory studies involving rock, nanoparticles and fluid characterization; fluid-fluid and fluid-rock interactions; surface conductivity measurement; coreflood experiment; injection strategy formulation; filtration mechanism and contact angle measurement are conducted to investigate the impact of water chemistry, such as water salinity and ionic composition including hardness cations, on the performance of silica-based nanoparticles in IOR/EOR process and reveal possible displacement mechanism. The experimental results demonstrated that water salinity and ionic composition significantly impacted oil recovery using hydrophilic silica-based nanoparticles and that the oil recovery increased with the salinity. The primary findings from this study are that the water salinity, the ionic composition and the injection strategy are important parameters to be considered in Nano-EOR.

  17. Salt marsh recovery and oil spill remediation after in-situ burning: effects of water depth and burn duration.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Carney, Kenneth; Bryner, Nelson P; Walton, William D

    2002-02-15

    Effects of water depth, burn duration, and diesel fuel concentration on the relationship between recovery of marsh vegetation, soil temperature, and oil remediation during in-situ burning of oiled mesocosms were investigated. The water depth over the soil surface during in-situ burning was a major factor controlling recovery of the salt marsh grass, Spartina alterniflora. Ten centimeters of water overlying the soil surface was sufficient to protect the marsh soil from burn impacts with soil temperatures <37 degrees C and high plant survival rate. In contrast, a water table 10 cm below the soil surface resulted in mean soil temperatures > 100 degrees C at the 2-cm soil depth, which completely inhibited the post-burn recovery of S. alterniflora. Although poor plant recovery was also apparent in the treatments with 0 and 2 cm of water over the soil surface, this result was likely due to the chemical stress of the diesel fuel used to create the fire rather than the heat, per se, which never reached the estimated lethal temperature of 60 degrees C. In-situ burning effectively removed more than 95% of floating oil from the water surface. Thus, in-situ burning prevented the oil from potentially contaminating adjacent habitats. However, in-situ burning did not effectively remediate the oil that had penetrated the soil.

  18. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect

    1997-05-01

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  19. Recovery

    NASA Video Gallery

    This video discusses the recovery events that occur in high-power rocketry and the various devices used in safely recovering the rocket. The video includes a discussion of black powder and ejection...

  20. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases

  1. [Recovery].

    PubMed

    Estingoy, Pierrette; Gilliot, Élodie; Parisot, Clément

    2015-01-01

    The historical fatalism of the impossibility of recovering from psychosis eased from the 1970s with the shaping of the idea of a possible recovery. Recovery is today the objective for the patient and caregivers. The key to achieving this lies in the encounter with Others. A collective approach, on the level of the institution, must be established. The aim is to create opportunities for the patient to express their doubts and feelings. PMID:26363659

  2. Synthesis and characterization of dielectric nanoparticles for application in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Zaid, H. Mohd; Yahya, N.; Ahmad Latiff, N. R.; Demiral, B.

    2012-09-01

    A non-invasive electromagnetically enhanced oil recovery (EOR) method by injecting nanofluids into the oil reservoir simultaneously with electromagnetic irradiation, with the intention to create disturbance at oil-water interfaces and increase oil production has been proposed. Dielectric nanoparticles having relatively high dielectric loss factor were chosen due to the abundance of bound surface charges which exist at the surface. In this research, zinc oxide, ZnO and aluminium oxide, Al2O3 nanoparticles were successfully synthesized by sol-gel method. Zinc nitrate hexahydrate and aluminium nitrate nonahydrate were used as the precursors for ZnO and Al2O3 respectively. Solutions formed by dissolving zinc nitrate hexahydrate and aluminium nitrate nonahydrate in nitric acid were stirred in 14 days to ensure homogeneity. The resulting xerogels were annealed at various temperatures; 200°C, 250°C and 300°C for ZnO and 900°C, 1000°C and 1100°C for Al2O3, respectively. The as-synthesized ZnO and Al2O3 nanoparticles were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope and Energy Dispersive X-Ray Spectroscopy (EDX). XRD analysis shows that the resulting nanoparticles have high crystallinity, which can be indexed to standard hexagonal structure for both ZnO and Al2O3, having average crystallite size of 45nm and 38nm, respectively. Dielectric properties of both nanoparticles shows that Al2O3 has higher dielectric losses in the low frequency region compared to ZnO which may be resulted from its highly porous structure and impurities existence.

  3. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  4. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments. PMID:25326183

  5. Study on the Reutilization of Clear Fracturing Flowback Fluids in Surfactant Flooding with Additives for Enhanced Oil Recovery (EOR)

    PubMed Central

    Dai, Caili; Wang, Kai; Liu, Yifei; Fang, Jichao; Zhao, Mingwei

    2014-01-01

    An investigation was conducted to study the reutilization of clear fracturing flowback fluids composed of viscoelastic surfactants (VES) with additives in surfactant flooding, making the process more efficient and cost-effective. The clear fracturing flowback fluids were used as surfactant flooding system with the addition of α-olefin sulfonate (AOS) for enhanced oil recovery (EOR). The interfacial activity, emulsification activity and oil recovery capability of the recycling system were studied. The interfacial tension (IFT) between recycling system and oil can be reduced by 2 orders of magnitude to 10−3 mN/m, which satisfies the basic demand of surfactant flooding. The oil can be emulsified and dispersed more easily due to the synergetic effect of VES and AOS. The oil-wet surface of quartz can be easily converted to water-wet through adsorption of surfactants (VES/AOS) on the surface. Thirteen core plug flooding tests were conducted to investigate the effects of AOS concentrations, slug sizes and slug types of the recycling system on the incremental oil recovery. The investigations prove that reclaiming clear fracturing flowback fluids after fracturing operation and reuse it in surfactant flooding might have less impact on environment and be more economical. PMID:25409507

  6. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    SciTech Connect

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine

  7. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    SciTech Connect

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher

  8. Investigation of oil recovery improvement by coupling an interfacial tension agent and a mobility control agent in light oil reservoirs. Summary annual report, October 1994--September 1995

    SciTech Connect

    Pitts, M.J.

    1995-12-31

    The study will investigate two major areas concerning co-injecting an interfacial tension reduction agent(s) and a mobility control agent into petroleum reservoirs. The first will consist of defining the mechanisms of interaction of an alkaline agent, a surfactant, and a polymer on a fluid-fluid and a fluid-rock basis. The second is the improvement of the economics of the combined technology. The third year of the study finished the oil recovery coreflood studies and evaluated different techniques to improve alkaline-surfactant-polymer solution economics. The final series of corefloods compared the oil recovery efficiency of the alkali gradient in Berea sandstone and J Sand sandstone. Oil recovery efficiency was essentially the same in both types of core, 13 to 15% PV of oil. Cost of chemical per incremental barrel of oil with 30% pore volume of alkaline-surfactant- polymer solution injected were $3.20 for the Na{sub 2}CO{sub 3}- Petrostep B-100-Flopaam 3330S solution in both types of core.

  9. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2005-04-30

    The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in

  10. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%.

  11. Design and feasibility study for a portable oil recovery turbopump. Final report

    SciTech Connect

    Not Available

    1982-05-01

    A portable oil recovery turbopump concept, using the Firefly module as primer mover, for the offloading of distressed tank vessels is examined. The demands to be met both in terms of the type of petroleum to be offloaded, as well as the operational requirements placed on the pump, are studied with respect to the capability of different pump configurations. Two configurations, one a centrifugal type and the other a screw type pump, are developed and evaluated. While the centrifugal configuration is found to be effective in a large proportion of tank vessel offloading situations, the screw type will be required where high viscosity cargoes are involved. The feasibility of the turbopump concept, with the Firefly module as prime mover, is established.

  12. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed

  13. TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY

    SciTech Connect

    Mark A. Meadows

    2006-03-31

    Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

  14. Improved Oil Recovery In Fluvial Dominated Deltaic Reservoirs of Kansas - Near Term

    SciTech Connect

    Green, Don W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-14

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these types of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  15. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    SciTech Connect

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  16. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration.

    PubMed

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-07-12

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions. PMID:27354529

  17. Free amino acid pool of a sea anemone: exposure and recovery after an oil spill. [Sea Anemones

    SciTech Connect

    Kasschau, M.R.; Howard, C.L.

    1984-07-01

    A number of laboratory studies on marine invertebrates have shown changes in free amino acid (FAA) pools in response to various pollutants. During a nineteen-month field study to determine the effects of natural environmental parameters on the FAA pools to the Gulf Coast sea anemone, Bunodosoma cavernata, an oil tanker collision occurred about 8 miles off Galveston Island. The initial spill from the tanker Burma Agate occurred on November 1, 1979 with large leakages continuing for several weeks. There was no visible sign of oil on the first collection date 13 days after the spill, but 11 days later the anemones were covered with an oil sheen. As a result of this natural exposure to the oil, the authors decided to monitor the sea anemones for changes in the FAA pool during the oil exposure and recovery period.

  18. Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration.

    PubMed

    Luo, Dan; Wang, Feng; Zhu, Jingyi; Cao, Feng; Liu, Yuan; Li, Xiaogang; Willson, Richard C; Yang, Zhaozhong; Chu, Ching-Wu; Ren, Zhifeng

    2016-07-12

    The current simple nanofluid flooding method for tertiary or enhanced oil recovery is inefficient, especially when used with low nanoparticle concentration. We have designed and produced a nanofluid of graphene-based amphiphilic nanosheets that is very effective at low concentration. Our nanosheets spontaneously approached the oil-water interface and reduced the interfacial tension in a saline environment (4 wt % NaCl and 1 wt % CaCl2), regardless of the solid surface wettability. A climbing film appeared and grew at moderate hydrodynamic condition to encapsulate the oil phase. With strong hydrodynamic power input, a solid-like interfacial film formed and was able to return to its original form even after being seriously disturbed. The film rapidly separated oil and water phases for slug-like oil displacement. The unique behavior of our nanosheet nanofluid tripled the best performance of conventional nanofluid flooding methods under similar conditions.

  19. Planning phase for the New Mexico Improved Oil Recovery Project. Final report

    SciTech Connect

    Martin, F.D.; Weiss, W.W.

    1991-06-01

    This project is a collaborative effort with Los Alamos National Laboratory, Sandia National Laboratories, and a number of universities throughout the country. Field and laboratory tests were proposed to investigate advanced technologies in reservoir characterization, reservoir simulation, and recovery enhancement. Basically, the approach was to acquire an oilfield property for experimental purposes where interdisciplinary testing could be performed. Several researchers, especially in the academic area, would like to have access to field data and have expressed interest in participating in the project. A standardized dataset from a well-characterized site could be made available to anyone who is developing and validating new simulators. The data-gathering phase should be coordinated fully with the principal users of the data, and all data should be stored in an easily accessible form. A database for the New Mexico Improved Oil Recovery Project (NMIORP) could be established which would be designed for access by various computer networks. Initially, this project provided for a planning phase for the NMIORP. A field site, the Sulimar Queen Unit, has been acquired by New Mexico Tech, and the activities specified in the planning phase have been completed. A data acquisition well was drilled, logged, and cored. Geological and reservoir studies for the Sulimar Queen Unit were conducted. Results of these studies indicate that the Sulimar Queen Unit is a suitable field site for the NMIORP. This report describes the results of the studies that were conducted and outlines possible future tests that could be performed at the field site.

  20. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  1. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment. PMID:26406569

  2. Enhanced oil recovery through in-situ generated surfactants augmented by chemical injection

    SciTech Connect

    Wasan, D.T.

    1989-10-01

    Both experimental and theoretical studies are conducted to advance understanding and predictability in the successful application of the combined surfactant-alkali-polymer flooding for tertiary oil recovery. During this past year, experimental studies on the system chemistry were made on alkaline/acidic oil systems with and without added surfactant and/or cosurfactant. The acid was found to play a major role in the lowering of the interfacial tension in these systems. An interferometric technique was used to observe the presence of ordered structures inside stratifying films formed from micellar solutions of anionic surfactants and other colloidal suspensions. The structural component of the disjoining pressure in thin films with micellar structure, which gives rise to an increased stability in emulsions, foams and colloidal suspensions, has been calculated for the first time. A novel technique for measuring the dilatational viscosity at both the gas-liquid and liquid-liquid interfaces is developed. The measured interfacial dilatational viscosities correlate directly with emulsion and foam stability experiments. 119 refs., 50 figs., 25 tabs.

  3. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    SciTech Connect

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  4. Modelling the effect of wettability distributions on oil recovery from microporous carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Kallel, W.; van Dijke, M. I. J.; Sorbie, K. S.; Wood, R.; Jiang, Z.; Harland, S.

    2016-09-01

    Carbonate-hosted hydrocarbon reservoirs are known to be weakly- to moderately oil-wet, but the pore-scale wettability distribution is poorly understood. Moreover, micropores, which often dominate in carbonate reservoirs, are usually assumed to be water-wet and their role in multi-phase flow is neglected. Modelling the wettability of carbonates using pore network models is challenging, because of our inability to attribute appropriate chemical characteristics to the pore surfaces and over-simplification of the pore shapes. Here, we implement a qualitatively plausible wettability alteration scenario in a two-phase flow network model that captures a diversity of pore shapes. The model qualitatively reproduces patterns of wettability alteration recently observed in microporous carbonates via high-resolution imaging. To assess the combined importance of pore-space structure and wettability on petrophysical properties, we consider a homogeneous Berea sandstone network and a heterogeneous microporous carbonate network, whose disconnected coarse-scale pores are connected through a sub-network of fine-scale pores. Results demonstrate that wettability effects are significantly more profound in the carbonate network, as the wettability state of the micropores controls the oil recovery.

  5. Microbial enhanced oil recovery research. Annex 5, Summary annual report 1990--1991

    SciTech Connect

    Sharma, M.M.; Georgiou, G.

    1991-12-31

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (2) development of simulators for MEOR; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs,; (4) design of operation strategies for the sequential injection of microorganisms and nutrient in reservoirs. Accomplishments are: (1) ultra low interfacial tensions (0.003 mN/M) were obtained between decane and 5% NaCl brine using biosurfactants obtained from Bacillus Licheniformis, JF-2 which is the lowest IFT ever reported for biosurfactants; (2) a method to was developed isolate the biosurfactant from the growth medium; (3) the structure of the isolated biosurfactant has been determined; (4) several techniques have been proposed to increase the yield of the surfactant; and (5) an MEOR simulator has been completed.

  6. Fluid diversion and sweep improvement with chemical gels in oil recovery processes

    SciTech Connect

    Seright, F.S.; Martin, F.D.

    1991-04-01

    The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

  7. Mechanisms behind injecting the combination of nano-clay particles and polymer solution for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Khalili Nezhad, Seyyed Shahram; Cheraghian, Goshtasp

    2016-08-01

    Laboratory investigations and field applications have proved injection of polymer solution to be an effective means to improve oil recovery for reservoirs of medium oil viscosity. The incremental oil produced in this case is the result of an increase in areal and vertical sweep efficiencies. Biopolymers and synthetic polymers are the major categories used in the petroleum industry for specific reasons. Biopolymers like xanthan are limited in their application as they are more susceptible to biodegradation. Synthetic polymers like Hydrolyzed PolyAcrylaMide (HPAM) have a much wider application as they are less susceptible to biodegradation. Furthermore, development of nanotechnology has successfully provided technical and economical viable alternatives for present materials. The objective of this study is to investigate the effect of combining clay nanoparticles with polymer solution on oil recovery. This paper includes a history match of both one-dimensional and two-dimensional polymer floods using a three-dimensional numerical model for fluid flow and mass transport. Results indicated that the amount of polymer adsorption decreased when clay nanoparticles were added to the PolyAcrylaMide solution; however, mobility ratio improvement is believed to be the main contributor for the proposed method in order to enhance much oil recovery compared to xanthan flood and HPAM flood.

  8. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    NASA Astrophysics Data System (ADS)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  9. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    PubMed

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  10. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2

    SciTech Connect

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    2000-04-30

    This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify

  11. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  12. Enhanced oil recovery using water as a driving fluid. Part 7. Field applications of carbon dioxide flooding

    SciTech Connect

    Mungan, N.

    1981-09-01

    Spurred by Windfall Profit Tax incentives and the availability of less costly CO/sub 2/ from natural deposits, there now is increased interest and activities in the field application of CO/sub 2/ flooding in the US. Interest is focused on miscible CO/sub 2/ flooding, but it should be recognized that even without miscibility, the swelling and viscosity reduction of crude oil can significantly contribute to incremental oil recovery. Thus, CO/sub 2/ flooding may apply to the recovery of heavy oils and could serve as an alternative process to steam and hydrocarbon solvent processes in some instances. This study deals with how to identify a suitable reservoir, studies required to support a field application, guidelines for pilot testing, operational problems that may arise in the field, and a brief review of field applications to date.

  13. Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery - Mattoon Oil Field, Illinois. Final report

    SciTech Connect

    Baroni, M.

    1995-09-01

    Phase I results of a C0{sub 2}-assisted oil recovery demonstration project in selected Cypress Sandstone reservoirs at Mattoon Field, Illinois are reported. The design and scope of this project included C0{sub 2} injectvity testing in the Pinnell and Sawyer units, well stimulaton treatments with C0{sub 2} in the Strong unit and infill well drilling, completion and oil production. The field activities were supported by extensive C0{sub 2}-oil-water coreflood experiments, CO{sub 2} oil-phase interaction experiments, and integrated geologic modeling and reservoir simulations. The progress of the project was made public through presentations at an industry meeting and a DOEs contractors` symposium, through quarterly reports and one-to-one consultations with interested operators. Phase II of this project was not implemented. It would have been a water-alternating-gas (WAG) project of longer duration.

  14. Enhancing the recovery of tiger nut (Cyperus esculentus) oil by mechanical pressing: Moisture content, particle size, high pressure and enzymatic pre-treatment effects.

    PubMed

    Ezeh, Onyinye; Gordon, Michael H; Niranjan, Keshavan

    2016-03-01

    Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33% on a dry defatted basis, which represents a recovery of 90% of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil. PMID:26471565

  15. Enhancing the recovery of tiger nut (Cyperus esculentus) oil by mechanical pressing: Moisture content, particle size, high pressure and enzymatic pre-treatment effects.

    PubMed

    Ezeh, Onyinye; Gordon, Michael H; Niranjan, Keshavan

    2016-03-01

    Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33% on a dry defatted basis, which represents a recovery of 90% of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.

  16. Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

  17. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment.

  18. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment. PMID:25464326

  19. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  20. Local and Global Impacts of Carbon Capture and Storage Combined with Enhanced Oil Recovery in Four Depleted Oil Fields, Kern County, California

    NASA Astrophysics Data System (ADS)

    Gillespie, J.; Jordan, P. D.; Goodell, J. A.; Harrington, K.; Jameson, S.

    2015-12-01

    Depleted oil reservoirs are attractive targets for geologic carbon storage (GCS) because they possess proven trapping mechanisms and large amounts of data pertaining to production and reservoir geometry. In addition, CO2 enhanced oil recovery (EOR) can improve recovery of the remaining oil at recovery factors of 6 to 20% of original oil in place in appropriate reservoirs. CO2 EOR increases the attractiveness of depleted oil and gas reservoirs as a starting point for CCS because the CO2 becomes a commodity that can be purchased by field operators for EOR purposes thereby offsetting the costs of CO2 capture at the power plant. In California, Kern County contains the largest oil reservoirs and produces 76% of California's oil. Most of the production at depths suitable for CCS combined with CO2 EOR comes from three reservoirs: the Vedder and Temblor formations and the Stevens Sandstone of the Monterey Formation. These formations were evaluated for GCS and CO2 EOR potential at the North and South Coles Levee (Stevens Sandstone), Greeley (Vedder) and McKittrick (Temblor) fields. CO2 EOR could be expected to produce an additional 150 million bbls of oil. The total storage space created by pre- and post-EOR fluid production for all three reservoirs is approximately 104 million metric tons (MMT). Large fixed sources in California produce 156 MMT/yr of CO2, and sources in Kern County produce 26 MMT/yr (WESTCARB, 2012). Therefore, the fields could store about four years of local large fixed source emissions and about two thirds of statewide emissions. However, from a global perspective, burning the additional oil produced by CO2 EOR would generate an additional 65 MMT of CO2 if not captured. This would result in a net reduction of greenhouse gas of only 39 MMT rather than the full 104 MMT. If the water produced along with the oil recovered during CO2 EOR operations is not reinjected into the reservoir, the storage space could be much higher.

  1. An Analytical Model for Simulating Heavy-Oil Recovery by Cyclic Steam Injection Using Horizontal Wells, SUPRI TR-118

    SciTech Connect

    Diwan, Utpal; Kovscek, Anthony R.

    1999-08-09

    In this investigation, existing analytical models for cyclic steam injection and oil recovery are reviewed and a new model is proposed that is applicable to horizontal wells. A new flow equation is developed for oil production during cyclic steaming of horizontal wells. The model accounts for the gravity-drainage of oil along the steam-oil interface and through the steam zone. Oil viscosity, effective permeability, geometry of the heated zone, porosity, mobile oil saturation, and thermal diffusivity of the reservoir influence the flow rate of oil in the model. The change in reservoir temperature with time is also modeled, and it results in the expected decline in oil production rate during the production cycle as the reservoir cools. Wherever appropriate, correlations and incorporated to minimize data requirements. A limited comparison to numerical simulation results agrees well, indicating that essential physics are successfully captured. Cyclic steaming appears to be a systematic met hod for heating a cold reservoir provided that a relatively uniform distribution of steam is obtained along the horizontal well during injection. A sensitivity analysis shows that the process is robust over the range of expected physical parameters.

  2. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process

    PubMed Central

    Salehi, Mehdi Mohammad; Safarzadeh, Mohammad Amin; Sahraei, Eghbal; Nejad, Seyyed Alireza Tabatabaei

    2014-01-01

    Growing oil prices coupled with large amounts of residual oil after operating common enhanced oil recovery methods has made using methods with higher operational cost economically feasible. Nitrogen is one of the gases used in both miscible and immiscible gas injection process in oil reservoir. In heterogeneous formations gas tends to breakthrough early in production wells due to overriding, fingering and channeling. Surfactant alternating gas (SAG) injection is one of the methods commonly used to decrease this problem. Foam which is formed on the contact of nitrogen and surfactant increases viscosity of injected gas. This increases the oil–gas contact and sweep efficiency, although adsorption of surfactant on rock surface can causes difficulties and increases costs of process. Many parameters must be considered in design of SAG process. One of the most important parameters is SAG ratio that should be in optimum value to improve the flooding efficiency. In this study, initially the concentration of surfactant was optimized due to minimization of adsorption on rock surface which results in lower cost of surfactant. So, different sodium dodecyl sulfate (SDS) concentrations of 100, 500, 1000, 2000, 3000 and 4000 ppm were used to obtain the optimum concentration at 70 °C and 144.74×105 Pa. A simple, clean and relatively fast spectrophotometric method was used for determination of surfactant which is based on the formation of an ion-pair. Then the effect of surfactant to gas volume ratio on oil recovery in secondary oil recovery process during execution of immiscible surfactant alternating gas injection was examined experimentally. The experiments were performed with sand pack under certain temperature, pressure and constant rate. Experiments were performed with surfactant to gas ratio of 1:1, 1:2, 1:3, 2:1 and 3:1 and 1.2 pore volume injected. Then, comparisons were made between obtained results (SAG) with water flooding, gas flooding and water alternating gas

  3. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity

    SciTech Connect

    Mancini, E.A.

    1990-01-01

    The objectives of this project are to augment the National Reservoir Database (TORIS database) and to increase our understanding of geologic heterogeneities that affect the recoveries of oil and gas from carbonate reservoirs in the State of Alabama and to identify those resources that are producible at moderate cost. These objectives will be achieved through detailed geological, engineering, and geostatistical characterization of typical Jurassic Smackover Formation hydrocarbon reservoirs in selected productive fields in the State of Alabama. The results of these studies will be used to develop and test mathematical models for prediction of the effects of reservoir heterogeneities in hydrocarbon production. Work to date has focused on the completion of Subtasks 1, 2, and 3. Subtask 1 included the survey and tabulation of available reservoir engineering and geological data relevant to the Smackover reservoir in southwestern Alabama. Subtask 2 comprises the geological and engineering characterization of Smackover reservoir lithofacies. This has been accomplished through detailed examination and analysis of geophysical well logs, core material, well cuttings, and well-test data from wells penetrating Smackover reservoirs in southwestern Alabama. From these data, reservoir heterogeneities, such as lateral and vertical changes in lithology, porosity, permeability, and diagenetic overprint, have been recognized and used to produce maps, cross sections, graphs, and other graphic representations to aid in interpretation of the geologic parameters that affect these reservoirs. Subtask 3 includes the geologic modeling of reservoir heterogeneities for Smackover reservoirs. This research has been based primarily on the evaluation of key geologic and engineering data from selected Smackover fields. 1 fig.

  4. Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils.

    PubMed

    Ramos-Gómez, Sonia; Busto, María D; Perez-Mateos, Manuel; Ortega, Natividad

    2014-09-01

    This study describes the design of a suitable DNA isolation method from commercial vegetable oils for the application of DNA markers for food safety and traceability. Firstly, a comparative study was made of eight methods for the recovery of high quality DNA from olive, sunflower and palm oils, and a CTAB-based method was selected. In order to optimize this method, the effect of the organic compounds and several components in the lysis buffer and the lysis and precipitation time were evaluated. For the purpose of overcoming the limitations detected in spectrophotometric and PCR DNA yield evaluations, the performance of the extraction protocols during the optimization processes was evaluated using qPCR. The suggested DNA extraction optimized is less time consuming than other conventional DNA extraction methods, uses a reduced oil volume and is cheaper than available commercial kits. Additionally, the applicability of this method has been successfully assayed in ten commercial vegetable oils and derivatives.

  5. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  6. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

    SciTech Connect

    P. Somasundaran

    2008-09-20

    Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

  7. Influence of physical and chemical methods of enhanced oil recovery in formation microflora and properties of crude oil

    NASA Astrophysics Data System (ADS)

    Shcherbakova, A. G.; Altunina, L. K.; Svarovskaya, L. I.; Ovsyannikova, V. S.; Filatov, D. A.; Chuikina, D. I.

    2015-10-01

    The results of the analyzes of crude oil and produced water from wells in the areas of pilot testing of new flow deflection and oil-displacing Compounds developed in the Institute of Petroleum Chemistry SB RAS. It was found that changes in the properties and Compound of the oil and water mainly occur in the redistribution of filtration flows and integration in the development of the previously unwashed areas, as well as in washing off the residual heavy oil from the reservoir rock, and in some wells - due to formation biocenosis, contributing to desorption of oil from the rock.

  8. Harlequin Duck recovery from the Exxon Valdez oil spill: A population genetics perspective

    USGS Publications Warehouse

    Lanctot, R.; Goatcher, B.; Scribner, K.; Talbot, S.; Pierson, B.; Esler, Daniel; Zwiefelhofer, D.

    1999-01-01

    Concerns about Harlequin Duck (Histrionicus histrionicus) population recovery following the Exxon Valdez oil spill led biologists to ask whether birds located in different molting and wintering areas belong to genetically distinct and, thus, demographically independent populations. Owing to the lack of direct observations of movements among marine areas, three classes of genetic markers that differed in mode of inheritance were used to evaluate the degree of genetic differentiation among wintering areas within Prince William Sound (PWS) and the Alaska Peninsula and Kodiak Archipelago (APKA). We could not reject the null hypothesis that the wintering aggregations within each region are composed of a single genetically panmictic population. Differences in genotype frequencies among wintering locations within PWS and APKA were low and nonsignificant for all three classes of markers. Furthermore, we saw no evidence for deviations in Hardy-Weinberg equilibrium or gametic disequilibrium between loci within a winter collection site as would be expected if these locales were composed of individuals from reproductively isolated (and genetically distinct) breeding locales. Finally, no evidence for significant structuring was noted between PWS and APKA. Lack of spatial genetic structuring could be due to the cumulative effects of low levels of gene flow over long time periods, low levels of gene flow by immature birds moving between marine habitats, or to episodic dispersal caused by habitat alteration (e.g. volcanic eruptions). Harlequin Ducks are likely to recolonize or enhance populations in areas recovering from environmental damage via emigration of birds from non-affected areas. Demographic studies suggest, however, that levels of movements are low, and that population recovery by emigration is a long-term process.

  9. Review of statistical methods used in enhanced-oil-recovery research and performance prediction. [131 references

    SciTech Connect

    Selvidge, J.E.

    1982-06-01

    Recent literature in the field of enhanced oil recovery (EOR) was surveyed to determine the extent to which researchers in EOR take advantage of statistical techniques in analyzing their data. In addition to determining the current level of reliance on statistical tools, another objective of this study is to promote by example the greater use of these tools. To serve this objective, the discussion of the techniques highlights the observed trend toward the use of increasingly more sophisticated methods and points out the strengths and pitfalls of different approaches. Several examples are also given of opportunities for extending EOR research findings by additional statistical manipulation. The search of the EOR literature, conducted mainly through computerized data bases, yielded nearly 200 articles containing mathematical analysis of the research. Of these, 21 were found to include examples of statistical approaches to data analysis and are discussed in detail in this review. The use of statistical techniques, as might be expected from their general purpose nature, extends across nearly all types of EOR research covering thermal methods of recovery, miscible processes, and micellar polymer floods. Data come from field tests, the laboratory, and computer simulation. The statistical methods range from simple comparisons of mean values to multiple non-linear regression equations and to probabilistic decision functions. The methods are applied to both engineering and economic data. The results of the survey are grouped by statistical technique and include brief descriptions of each of the 21 relevant papers. Complete abstracts of the papers are included in the bibliography. Brief bibliographic information (without abstracts) is also given for the articles identified in the initial search as containing mathematical analyses using other than statistical methods.

  10. Microbial enhanced oil recovery research. Annex 5, Summary annual report, 1991--1992

    SciTech Connect

    Sharma, M.M.; Georgiou, G.

    1992-12-31

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 {times} 10{sup 3} mN/m which is one of the lowest values ever obtained with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in surfactancy.

  11. INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES

    SciTech Connect

    Yannis C. Yortsos

    2003-02-01

    This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

  12. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  13. Screening of mixed surfactant systems: Phase behavior studies and CT imaging of surfactant-enhanced oil recovery experiments

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Lorenz, P.B.; Cook, I.M.; Scott, L.J.

    1993-11-01

    A systematic chemical screening study was conducted on selected anionic-nonionic and nonionic-nonionic systems. The objective of the study was to evaluate and determine combinations of these surfactants that would exhibit favorable phase behavior and solubilization capacity. The effects of different parameters including (a) salinity, (b) temperature, (c) alkane carbon number, (c) hydrophilic/lipophilic balance (HLB) of nonionic component, and (d) type of surfactant on the behavior of the overall chemical system were evaluated. The current work was conducted using a series of ethoxylated nonionic surfactants in combinations of several anionic systems with various hydrocarbons. Efforts to correlate the behavior of these mixed systems led to the development of several models for the chemical systems tested. The models were used to compare the different systems and provided some guidelines for formulating them to account for variations in salinity, oil hydrocarbon number, and temperature. The models were also evaluated to determine conformance with the results from experimental measurements. The models provided good agreement with experimental results. X-ray computed tomography (CT) was used to study fluid distributions during chemical enhanced oil recovery experiments. CT-monitored corefloods were conducted to examine the effect of changing surfactant slug size injection on oil bank formation and propagation. Reducing surfactant slug size resulted in lower total oil production. Oil recovery results, however, did not correlate with slug size for the low-concentration, alkaline, mixed surfactant system used in these tests. The CT measurements showed that polymer mobility control and core features also affected the overall oil recovery results.

  14. Continental Shelf Freshwater Water Resources and Enhanced Oil Recovery By Low Salinity Water Flooding

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Morrow, N.; Wilson, J. L.

    2014-12-01

    This study investigates the prospects of utilizing offshore freshwater in continental shelf oil production. Petroleum engineers have recently shown that tertiary water floods using freshwater can enhance oil recovery by as much as 18% (Morrow and Buckley, 2011). Hydrogeologists recently estimated that up to 5x105 km3of fresh to brackish water are sequestered in shallow ( < 500 m) permeable sands and carbonate reservoirs within 80 km of the present-day coastline around the world (Post et al., 2013). Most of the offshore freshwater was emplaced during the Pleistocene during periods of sea level low stands and when ice sheets over ran passive margins at high latitudes. We have analyzed a series of continental shelf cross sections from around the world estimating the average freshwater volume emplaced with distance offshore. We compare the distribution of fresh-brackish water with distance from the coastline to oil platform locations in order to assess the economic viability of this energy-water nexus. We also discuss a project that is currently underway within the North Sea (Clair Ridge) to field validate this concept. We present a series of variable-density groundwater flow and solute transport simulations that are intended to assess how long freshwater resources could be produced in an offshore environment using horizontal drilling technologies before seawater invades the well. We considered a 100m thick freshwater reservoir sandwiched between two 200-300m thick confining units. We pumped the horizontal well at a rate of 5.4 m3/day (1 gpm per meter of well). The resulting drawdown was less than 5 m at the well head (r=0.15 m). For a 1000 m long horizontal well, this resulted in the production of 5455 m3/day of fresh water (over 34,000 barrels per day). Concentrations increased at the wellhead by about 5000 mg/l after 20 years of continuous pumping using a reservoir permeability of 10-13 m2. This simulation demonstrates that where freshwater is available it is likely

  15. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    PubMed

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent. PMID:27041513

  16. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    PubMed

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  17. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    SciTech Connect

    James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

    2002-10-30

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained

  18. Enhanced oil recovery process using a hydrophobic associative composition containing a hydrophilic/hydrophobic polymer

    SciTech Connect

    Evani, S.

    1989-03-21

    An enhanced oil recovery process is described, which comprises forcing an aqueous flooding medium from an injection well through a subterranean formation toward a producing well wherein the flooding medium contains a mobility control agent which is soluble in an aqueous flooding medium. The agent consists of a hydrophilic/hydrophobic polymer having hydrophobic moieties and a water-dispersible, nonionic surfactant having hydrophobic groups that are capable of associating with the hydrophobic moieties of the polymer wherein the proportion of the polymer and the surfactant is such that, at ambient conditions, water containing 0.5 weight percent of the agent has a viscosity at least twice the viscosity of water. The agent is prepared by carrying out the polymerization to form the polymer in the presence of the nonionic surfactant, the ratio of the surfactant to the polymer in the agent being sufficient to provide a viscosity at least twice that of an aqueous solution containing only the polymer, the hydrophobic polymer being a copolymer of a hydrophilic/water-soluble monomer and a water-insoluble monomer selected from the group consisting of higher alkyl ester of ..cap alpha..,..beta..-ethylenically unsaturated carboxylic acids wherein alkyl has from 8 to 20 carbons, alkylaryl esters of ethylenically unsaturated carboxylic acids, N-alkylethylenically unsaturated amides wherein alkyl has from 8 to 20 carbon atoms; vinyl alkylates wherein alkyl has at least 8 carbons and ar-alkyl styrenes wherein alkyl has at least 4 carbons.

  19. Second amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect

    Peterson, G.; Munoz, J.D.

    1986-03-01

    This report contains the result of efforts under the several tasks of the Second Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. The report is presented in sections (for each of the 12 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 11 and 14 through 24. The first and second reports on Annex IV, Venezuela-MEM/USA-DOE Fossil Energy Report IV-1 and Report IV-2 (DOE/BETS/SP-83/15 and DOE/BC-84/6/SP), contain the results from the first 14 tasks, with the exception of an INTEVEP Survey for Task II which is included here. Those reports are dated April 1983 and August 1984 and are both entitled, ''EOR Thermal Processes''. Selected papers have been processed for inclusion in the Energy Data Base.

  20. Visual display of reservoir parameters affecting enhanced oil recovery. Third quarterly report, [April 1995--June 1995

    SciTech Connect

    Wood, J.R.

    1995-07-01

    This project will provide a detailed example, based on a field trial, of how to evaluate a field for enhanced oil recovery (EOR) operations utilizing data typically available in a filed that has undergone primary development. The approach will utilize readily available, affordable computer software and analytical services. The GeoGraphix Exploration System (GES) software package was acquired this quarter and installed. Well logging, formation tops and other data are being loaded into the program. We also acquired and installed GeoGraphix`s well-log evaluation package, QLA2. Miocene tops for the entire Pioneer Anticline were loaded into the GES system and contour maps and 3D surface visualizations were constructed. Fault data have been digitized and will soon be loaded into the GeoGraphix mapping module and combined with formation-top data to produce structure maps which will display all fault traces. The versatile program MatLab can be used to perform time series analysis and to produce spatial displays of data. MatLab now has a 3D volume visualization package. In the coming quarter we will test MatLab using Pioneer data set.

  1. Evening primrose oil ameliorates platelet aggregation and improves cardiac recovery in myocardial-infarct hypercholesterolemic rats.

    PubMed

    Abo-Gresha, Noha M; Abel-Aziz, Eman Z; Greish, Sahar M

    2014-01-01

    Omega-6 polyunsaturated fatty acids (n-6 PUFA) are well known for their role in cardiovascular disease (CVD). We proposed that Evening prime rose oil (EPO) can improve the outcome of a heart with myocardial infarction (MI) in the presence of diet-induced hyperaggregability. This study was designed to examine its cholesterol lowering, antithrombotic and anti-inflammatory effects. High fat diet was administered for 4 weeks then MI was induced by isoproterenol (85 mg/kg/s.c./24 h). Treatment with EPO (5 or 10 gm/kg/day) for 6 weeks improved the electrocardiographic pattern, serum lipid profile, cardiac biomarkers as well as Platelet aggregation percent. We reported decreased serum level of TNF-α, IL-6 and COX-2 with attenuation of TNF-α and TGF-β in the cardiac homogenate. Moreover, histopathology revealed marked amelioration. Finally, we provide evidence that EPO improve cardiac recovery in hypercholesterolemic myocardial infarct rats. These effects are attributed to direct hypocholesterolemic effect and indirect effect on the synthesis of eicosanoids (prostaglandins, cytokines).

  2. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma

    SciTech Connect

    J. Ford Brett; Robert V. Westermark

    2000-09-30

    This Technical Quarterly Report is for the reporting period July 1, 2000 to September 30, 2000. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Since this is the first Quarterly report, much of the work done is of a preliminary nature. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The selection of the pilot test area has been completed. The drilling of the test well is waiting on rig availability. Phillips has begun sonic core testing of offset cores, waiting on the core from the well to be drilled. Design work is progressing for the tool, which will be built to fit the test well. Installation of monitoring equipment and the downhole vibration tool will occur after the well is drilled. Technical transfer efforts have begun with the submission of an abstract for a technical paper for the Oklahoma City Society of Petroleum Engineers meeting in March 2001.

  3. Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp fibre

    NASA Astrophysics Data System (ADS)

    Ramly, N. H.; Zakaria, R.; Naim, M. N.

    2016-06-01

    Surfactant-assisted aqueous extraction has been proposed as a “green” alternative to hexane extraction for the recovery of oil from plant matters. An efficient aqueous surfactant extraction system usually use an extended type of ionic surfactant with the ability to produce Winsor type III microemulsion, reducing the interfacial tension (IFT) between plant oil and surfactant solution to an ultralow level (10-3 mN/m). However, the safe used of this surfactant in food processing is uncertain leading to non-food application of the recovered oil. In the present study, the potential of Tween 80, a commercial food-grade non-ionic surfactant, was evaluated in the recovery of residual oil from palm-pressed mesocarp. The emulsion produced between Tween 80 and crude palm oil (CPO) was characterised in terms of IFT, droplet size, viscosity and phase inversion temperature (PIT). The effect of surfactant concentration, electrolyte (NaCl) and temperature were studied to determine whether a Winsor Type III microemulsion can be produced. Results shows that although these parameters were able to reduce the IFT to very low values, Winsor type III microemulsion was not produced with this single surfactant. Emulsion of CPO and Tween 80 solution did not produce a PIT even after heating to 100°C indicating that middle phase emulsion was not able to be formed with increasing temperature. The highest percentage of oil extraction (38.84%) was obtained at the concentration above the critical micelle concentration (CMC) of Tween 80 and CPO, which was at 0.5 wt% Tween 80 with 6% NaCl, and temperature of 60°C. At this concentration, the IFT value is 0.253 mN/m with a droplet size of 4183.8 nm, and a viscosity of 7.38 cp.

  4. INEEL Biotechnology for Oilfield Application--Microbial Enhanced Oil Recovery FY-03 Report

    SciTech Connect

    G. A. Bala; D. F. Bruhn; S. L. Fox; K. S. Noah; K. D. Schaller; E. P. Robertson; X. Xie

    2003-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Biotechnology for Oilfield Operations program supports development, engineering, and application of biotechnology for exploration and production. This continuing INEEL program also supports mitigation of detrimental field conditions. The program is consistent with the United States Department of Energy mission to ¡§promote activities and policies through its oil technology and natural gas supply programs to enhance the efficiency and environmental quality of domestic oil and natural gas exploration, recovery, processing, transport, and storage.¡¨ In addition, the program directly supports the focus areas of Reservoir Life Extension; Advanced Drilling, Completion and Stimulation Systems; Effective Environmental Protection; and Cross Cutting Areas. The program is enhanced by collaborative relationships with industry and academia. For fiscal year 2003, the program focused on production and characterization of biological surfactants from agricultural residuals and the production and application of reactive microbial polymers. This report specifically details: 1. Use of a chemostat reactor operated in batch mode for producing surfactin, with concomitant use of an antifoam to prevent surfactant loss. The program achieved production and recovery of 0.6 g/L of surfactin per 12 hr. 2. Characterization of surfactin produced from agricultural residuals with respect to its ability to mediate changes in surface tension. Conditions evaluated were salt (as NaCl) from 0 to 10% (w/v), pH from 3 to 10, temperature from 21 to 70¢XC, and combinations of these conditions. When evaluated singularly, pH below 6 and salt concentrations above 30 g/L were found to have an adverse impact on surfactin. Temperatures of 70¢XC for 95 days had no effect. When the effect of temperature was added to the pH experiment, there were no significant changes, and, again, surface tension, at any temperature, increased at pH below 6

  5. Carbon dioxide for the recovery of crude oil: a literature search to June 30, 1979. Final report

    SciTech Connect

    Doscher, T.

    1980-05-01

    Individual summaries and pertinent commentaries on each of the groups of references into which the literature on carbon dioxide for the recovery of crude oil has been classified are presented in this report. The major classifications are: physical models, laboratory studies, field tests, modelling, patents, and miscellaneous. A special summary that reviews and comments on field operations, fluid handling, and corrosion problems is also included. User's guide and subject categories for the CO/sub 2/ literature survey are given, followed by abstracts of the citations. It is concluded from this survey that the most significant deficiency in research on carbon dioxide flooding for the recovery of crude oil is the paucity of well controlled and interpreted field tests.

  6. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  7. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  8. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  9. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  10. 2013 update on sea otter studies to assess recovery from the 1989 Exxon Valdez oil spill, Prince William Sound, Alaska

    USGS Publications Warehouse

    Ballachey, Brenda E.; Monson, Daniel H.; Esslinger, George G.; Kloecker, Kimberly; Bodkin, James; Bowen, Lizabeth; Miles, A. Keith

    2014-01-01

    On March 24, 1989, the tanker vessel Exxon Valdez ran aground in Prince William Sound, Alaska, spilling an estimated 42 million liters of Prudhoe Bay crude oil. Oil spread in a southwesterly direction and was deposited on shores and waters in western Prince William Sound (WPWS). The sea otter (Enhydra lutris) was one of more than 20 nearshore species considered to have been injured by the spill. Since 1989, the U.S. Geological Survey has led a research program to evaluate effects of the spill on sea otters and assess progress toward recovery, as defined by demographic and biochemical indicators. Here, we provide an update on the status of sea otter populations in WPWS, presenting findings through 2013. To assess recovery based on demographic indicators, we used aerial surveys to estimate abundance and annual collections of sea otter carcasses to evaluate patterns in ages-at-death. To assess recovery based on biochemical indicators, we quantified transcription rates for a suite of genes selected as potential indicators of oil exposure in sea otters based on laboratory studies of a related species, the mink (Mustela vison). In our most recent assessment of sea otter recovery, which incorporated results from a subset of studies through 2009, we concluded that recovery of sea otters in WPWS was underway. This conclusion was based on increasing abundance throughout WPWS, including increasing numbers at northern Knight Island, an area that was heavily oiled in 1989 and where the local sea otter population had previously shown protracted injury and lack of recovery. However, we did not conclude that the WPWS sea otter population had fully recovered, due to indications of continuing reduced survival and exposure to lingering oil in sea otters at Knight Island, at least through 2009. Based on data available through 2013, we now conclude that the status of sea otters—at all spatial scales within WPWS—is consistent with the designation of recovery from the spill as

  11. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  12. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  13. Seventh Grade Level Science Sample Curriculum.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    This document presents a sample of the Arkansas science curriculum and identifies the content standards for physical science systems, life science systems, and Earth science/space science systems for seventh grade students. Each content standard is explained and includes student learning expectations, seventh grade benchmarks, assessments, and…

  14. Advanced oil recovery technologies for improved recovery from Slope Basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (sixth quarter), January 1, 1997--March 31, 1997

    SciTech Connect

    1997-04-30

    The overall objective of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the U.S. oil and gas industry.

  15. Enhanced oil recovery by CO/sub 2/ foam flooding. Annual report, October 1, 1982-September 30, 1983

    SciTech Connect

    1983-12-22

    The objective is to identify commercially available additives which are effective in reducing the mobility of carbon dioxide, CO/sub 2/, thereby improving its efficiency in the recovery of tertiary oil, and which are low enough in cost to be economically attractive. During the past year significant progress has been made in developing a commercial method of reducing the mobility of carbon dioxide in enhanced oil recovery processes. Four basic chemical structures, listed below, appear to show most promise for gas mobility control: (1) ethoxylated adducts of C/sub 8/ - C/sub 14/ linear alcohols; (2) sulfate esters of ethoxylated C/sub 9/ - C/sub 16/ linear alcohols; (3) low molecular weight co-polymers of ethylene oxide and propylene oxide; and (4) synthetic organic sulfonates. With the exception of the sulfonates, the above types are compatible with normal oil field brines, unaffected by the presence of crude oil and stable under conditions common in a petroleum reservoir. The second significant result during the year involves identification of several sulfonate structures that have high potential for mobility control for carbon dioxide. Commercial sulfonate additives are available that appear optimum for reservoirs where freshwater will be used to inject the surfactant solution. They can also be considered for limited brine applications, for as temperature increases the utility of sulfonates for mobility control also increases. This is encouraging since some of the previously identified additives are chemically unstable at temperatures encountered in most petroleum reservoirs. 113 references, 23 figures, 4 tables.

  16. Prolonged recovery of sea otters from the Exxon Valdez oil spill? A re-examination of the evidence.

    PubMed

    Garshelis, David L; Johnson, Charles B

    2013-06-15

    Sea otters (Enhydra lutris) suffered major mortality after the Exxon Valdez oil spill in Prince William Sound, Alaska, 1989. We evaluate the contention that their recovery spanned over two decades. A model based on the otter age-at-death distribution suggested a large, spill-related population sink, but this has never been found, and other model predictions failed to match empirical data. Studies focused on a previously-oiled area where otter numbers (~80) stagnated post-spill; nevertheless, post-spill abundance exceeded the most recent pre-spill count, and population trends paralleled an adjacent, unoiled-lightly-oiled area. Some investigators posited that otters suffered chronic effects by digging up buried oil residues while foraging, but an ecological risk assessment indicated that exposure levels via this pathway were well below thresholds for toxicological effects. Significant confounding factors, including killer whale predation, subsistence harvests, human disturbances, and environmental regime shifts made it impossible to judge recovery at such a small scale.

  17. Prolonged recovery of sea otters from the Exxon Valdez oil spill? A re-examination of the evidence.

    PubMed

    Garshelis, David L; Johnson, Charles B

    2013-06-15

    Sea otters (Enhydra lutris) suffered major mortality after the Exxon Valdez oil spill in Prince William Sound, Alaska, 1989. We evaluate the contention that their recovery spanned over two decades. A model based on the otter age-at-death distribution suggested a large, spill-related population sink, but this has never been found, and other model predictions failed to match empirical data. Studies focused on a previously-oiled area where otter numbers (~80) stagnated post-spill; nevertheless, post-spill abundance exceeded the most recent pre-spill count, and population trends paralleled an adjacent, unoiled-lightly-oiled area. Some investigators posited that otters suffered chronic effects by digging up buried oil residues while foraging, but an ecological risk assessment indicated that exposure levels via this pathway were well below thresholds for toxicological effects. Significant confounding factors, including killer whale predation, subsistence harvests, human disturbances, and environmental regime shifts made it impossible to judge recovery at such a small scale. PMID:23639486

  18. Preparation and characterization of gas-filled liposomes: can they improve oil recovery?

    PubMed

    Vangala, Anil; Morris, Robert; Bencsik, Martin; Perrie, Yvonne

    2007-01-01

    Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (T(c)), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their T(c) was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 microm, after 7 days storage at 25 degrees C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 +/- 0.3 mum and 12.3 +/- 1.0 microm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 microm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar

  19. Enhanced oil recovery by CO/sub 2/ foam flooding. Second annual report. [109 references

    SciTech Connect

    Patton, John T.; Spence, Ken

    1980-11-01

    The objective is to identify commercially available additives which are effective in reducing the mobility of carbon dioxide, CO/sub 2/, thereby improving its efficiency in the recovery of tertiary oil, and which are low enough in cost to be economically attractive. During 1980 significant progress has been accomplished on each major contract objective. The apparatus, design and construction phase of this project is essentially complete. Correlation work on dynamic foam stability, in two-phase flow experiments in a linear sandpack, has shown that the most active foaming agents, as identified in static tests, may not necessarily be the best choices for mobility control in the field. The Alipal CD128-Monamid 150AD system, the leading foam generator in the static test, is slightly inferior to an ethoxylated alcohol, Neodol 23-6.5, that produces only a modest amount of foam in the static test. In the dynamic test, Neodol 23-6.5 lowered gas mobility by about a factor of 2 greater than the Alipal system. Both systems are outstanding in their performance, and further comparative tests are scheduled. A third structure which looks promising based on the interpretation of the above test is a Pluronic surfactant whose hydrophobe consists of polypropylene oxide rather than a linear alcohol as used in the Neodol surfactants. Additional tests on the hydrolysis rate of Alipal-type surfactants indicate that molecular breakdown may not be as rapid as at first suspected. Under neutral conditions the half-life of ethoxylated alcohol sulfates appears to be two to three years at a reservoir temperature of 120/sup 0/F. The Neodol and Pluronic structures should be even more stable.

  20. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data

    USGS Publications Warehouse

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.