Science.gov

Sample records for oil source rocks

  1. Extraction of whole versus ground source rocks: Fundamental petroleum geochemical implications including oil-source rock correlation

    USGS Publications Warehouse

    Price, L.C.; Clayton, J.L.

    1992-01-01

    In petroleum geochemistry, extractable hydrocarbons (HCs) in source rocks have typically been studied by grinding the rock to a fine powder (???100 mesh) and then extracting the HCs from the rock with a solvent. This procedure carries the implicit assumption that the HCs are homogeneously distributed throughout the rock. However, sequential Soxhlet extractions of whole (unpowdered) source rocks have shown that progressive extracts from the same rock can be quite different and may not even correlate with each other. A crude oil-like material clearly has been fractionated from indigenous bitumen in these rocks, has moved to cracks and parting laminae in the rocks, is ready for expulsion from the rocks, and is thus most accessible to the first extracting solvents. This process, which we believe is largely due to HC gases and carbon dioxide generated over all maturation ranks in source rocks, carries petroleum geochemical implications of a fundamental nature for oil-source rock correlations and gives insight into primary migration mechanisms, origin of oil deposits, and use of maturity and organic-facies indices. ?? 1992.

  2. Extraction of whole versus ground source rocks: Fundamental petroleum geochemical implications including oil-source rock correlation

    SciTech Connect

    Price, L.C.; Clayton, J.L. )

    1992-03-01

    In petroleum geochemistry, extractable hydrocarbons (HCs) in source rocks have typically been studied by grinding the rock to a fine powder ({le}100 mesh) and then extracting the HCs from the rock with a solvent. This procedure carries the implicit assumption that the HCs are homogeneously distributed throughout the rock. However, sequential Soxhlet extractions of whole (unpowdered) source rocks have shown that progressive extracts from the same rock can be quite different and may not even correlate with each other. A crude oil-like material clearly has been fractionated from indigenous bitumen in these rocks, has moved to cracks and parting laminae in the rocks, is ready for expulsion from the rocks, and is thus most accessible to the first extracting solvents. This process, which the authors believe is largely due to HC gases and carbon dioxide generated over all maturation ranks in source rocks, carries petroleum geochemical implications of a fundamental nature for oil-source rock correlations and gives insight into primary migration mechanisms, origin of oil deposits, and use of maturity and organic-facies indices.

  3. New oil source rocks cut in Greek Ionian basin

    SciTech Connect

    Karakitsios, V.; Rigakis, N.

    1996-02-12

    The Ionian zone of Northwest Greece (Epirus region) constitutes part of the most external zones of the Hellenides (Paxos zone, Ionian zone, Gavrovo Tripolitza zone). The rocks of the Ionian zone range from Triassic evaporites and associated breccias through a varied series of Jurassic through Upper Eocene carbonates and lesser cherts and shales followed by Oligocene flysch. The surface occurrences of petroleum in the Ionian zone are mainly attributed to Toarcian Lower Posidonia beds source rocks and lesser to late Callovian-Tithonian Upper Posidonia beds and to the Albian-Cenomanian Upper Siliceous zone or Vigla shales of the Vigla limestones. Oil that could not be attributed to the above source rocks is believed to have an origin from Triassic formations that contain potential source rocks in Albania and Italy. However, several samples of the shales of Triassic breccias from outcrops and drillholes were analyzed in the past, but the analytical results were not so promising since their hydrocarbon potential was low. In this article, the authors will present their analytical results of the Ioannina-1 well, where for the first time they identified some very rich source beds in the Triassic breccias formation of Northwest Greece.

  4. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  5. Petroleum potentialities of central Tunisia as deduced from identification and characterization of oil source rocks

    SciTech Connect

    Saidi, M.; Acheche, M.H.; Inoubli, H. ); Belayouni, H. )

    1991-08-01

    Many potential oil source rocks occur within the Tunisian stratigraphic column, including Silurian-Devonian shales, Albian and upper Albian-Vraconian carbonates, Cenomanian-Turonian black shales and lower Eocene carbonates. This focuses on the inventory of potential oil source rocks in central Tunisia ranging from middle Jurassic to Turonian. The emphasis is on determining their genetic potential and whether they could have generated oil and gas. Geochemical data obtained from the analysis of at least 2,147 samples show this region to be of significant interest as a petroleum prospective area. The main source rocks identified are Toarcian shales, upper Albian-Vraconian carbonates and Cenomanian-Turonian black shales. They contain predominantly type 2 organic matter (oil and gas prone) and are at the low maturity limit of the oil window. The occurrence of those source rocks close to numerous potential reservoir facies supports the conclusion that central Tunisia is a very interesting area for petroleum exploration.

  6. Prediction of source rock characteristics based on terpane biomarkers in crude oils: a multivariate statistical approach

    SciTech Connect

    Zumberge, J.E.

    1987-06-01

    The distributions of eight tricyclic and eight pentacyclic terpanes were determined for 216 crude oils located worldwide with subsequent simultaneous RQ-mode factor analysis and stepwise discriminate analysis for the purpose of predicting source rock features or depositional environments. Five categories of source rock beds are evident: nearshore marine; deeper-water marine; lacustrine; phosphatic-rich source beds; and Ordovician age source rocks. The first two factors of the RQ-mode factor analysis describe 45 percent of the variation in the data set; the tricyclic terpanes appear to be twice as significant as pentacyclic terpanes in determining the variation among samples. Lacustrine oils are characterized by greater relative abundances of C/sub 21/ diterpane and gammacerane; nearshore marine sources by C/sub 19/ and C/sub 20/ diterpanes and oleanane; deeper-water marine facies by C/sub 24/ and C/sub 25/ tricyclic and C/sub 31/ plus C/sub 32/ extended hopanes; and Ordovician age oils by C/sub 27/ and C/sub 29/ pentacyclic terpanes. Although thermal maturity trends can be observed in factor space, the trends to do necessarily obscure the source rock interpretations. Also, since bacterial degradation of crude oils rarely affects tricyclic terpanes, biodegraded oils can be used in predicting source rock features. The precision to which source rock depositional environments are determined might be increased with the addition of other biomarker and stable isotope data using multivariate statistical techniques.

  7. Assessment of potential oil and gas resources in source rocks of the Alaska North Slope, 2012

    USGS Publications Warehouse

    Houseknecht, David W.; Rouse, William A.; Garrity, Christopher P.; Whidden, Katherine J.; Dumoulin, Julie A.; Schenk, Christopher J.; Charpentier, Ronald R.; Cook, Troy A.; Gaswirth, Stephanie B.; Kirschbaum, Mark A.; Pollastro, Richard M.

    2012-01-01

    The U.S. Geological Survey estimated potential, technically recoverable oil and gas resources for source rocks of the Alaska North Slope. Estimates (95-percent to 5-percent probability) range from zero to 2 billion barrels of oil and from zero to nearly 80 trillion cubic feet of gas.

  8. Expelling of hydrocarbon in undercompacted oil-source rocks

    SciTech Connect

    Zhou, Guojun ); Chen, Fajing )

    1994-08-01

    The clay of source rocks below a certain depth is generally undercompacted. Historical analysis of undercompacted EK2 mudstone in the Huang Hua depression, North China basin, has shown that the peak of the undercompacted zone decreases under a certain depth, mainly due to development of a microfracture caused by abnormally high pressure. Based on the compaction history of mudstones and the hydraulic fracturing condition in this area, the depth of the microfracture developed in the EK2 undercompacted zone is calculated at 2900 m, which is also verified by fluorescence data. Geochemical evidence has also shown that many hydrocarbons are expelled under 2900 m.

  9. Source rock contributions to the Lower Cretaceous heavy oil accumulations in Alberta: a basin modeling study

    USGS Publications Warehouse

    Berbesi, Luiyin Alejandro; di Primio, Rolando; Anka, Zahie; Horsfield, Brian; Higley, Debra K.

    2012-01-01

    The origin of the immense oil sand deposits in Lower Cretaceous reservoirs of the Western Canada sedimentary basin is still a matter of debate, specifically with respect to the original in-place volumes and contributing source rocks. In this study, the contributions from the main source rocks were addressed using a three-dimensional petroleum system model calibrated to well data. A sensitivity analysis of source rock definition was performed in the case of the two main contributors, which are the Lower Jurassic Gordondale Member of the Fernie Group and the Upper Devonian–Lower Mississippian Exshaw Formation. This sensitivity analysis included variations of assigned total organic carbon and hydrogen index for both source intervals, and in the case of the Exshaw Formation, variations of thickness in areas beneath the Rocky Mountains were also considered. All of the modeled source rocks reached the early or main oil generation stages by 60 Ma, before the onset of the Laramide orogeny. Reconstructed oil accumulations were initially modest because of limited trapping efficiency. This was improved by defining lateral stratigraphic seals within the carrier system. An additional sealing effect by biodegraded oil may have hindered the migration of petroleum in the northern areas, but not to the east of Athabasca. In the latter case, the main trapping controls are dominantly stratigraphic and structural. Our model, based on available data, identifies the Gordondale source rock as the contributor of more than 54% of the oil in the Athabasca and Peace River accumulations, followed by minor amounts from Exshaw (15%) and other Devonian to Lower Jurassic source rocks. The proposed strong contribution of petroleum from the Exshaw Formation source rock to the Athabasca oil sands is only reproduced by assuming 25 m (82 ft) of mature Exshaw in the kitchen areas, with original total organic carbon of 9% or more.

  10. Recognition of an infracambrian source rock based on biomarkers in the Baghewala-1 oil, India

    SciTech Connect

    Peters, K.E.; Clark, M.E.; Lee, C.Y.

    1995-10-01

    Heavy, sulfur-rich oil produced from the Infra-cambrian (540-640 Ma) Jodhpur Formation in the Baghewala-1 well represents a new exploration play in the Bikaner-Nagaur basin in India and the punjab basin in Pakistan. The Baghewala-1 oil is nonbiodegraded, and thermal-maturation-dependent biomarker ratios indicate generation from the source rock within the early oil window. Age-diagnostic and source-dependent biomarkers indicate that the oil originated from algal and bacterial organic matter with no higher plant input in an Infracambrian, carbonate-rich source rock deposited under anoxic marine conditions. These characteristics support a local origin of the Baghewala-1 oil from organic-rich laminated dolomites in the Infracambrian Bilara Formation. Significant amounts of petroleum could originate from equivalents of the proposed Bilara source rock in the Punjab basin, Pakistan, where the Precambrian to lower Paleozoic section is thicker and more deeply buried than in India. Deeper burial of the source rock in the Punjab basin than in the Bikaner-Nagaur basin could generate more mature equivalents of the Baghewala-1 oil. The Baghewala-1 oil is geochemically similar to another heavy oil from the Infracambrian Salt Range Series in the nearby Karampur-1 well in Pakistan and to oils derived from carbonate-evaporite facies of the Infracambrian Huqf Group about 2000 km (1243 mi) to the southwest in the Eastern Flank province of southern Oman. These findings are consistent with published evidence that subsiding rift basins in northwest India, Pakistan, and southern Oman were in close proximity during the Infracambrian along the Middle Eastern edge of Gondwanaland.

  11. Oils and source rocks from the Anadarko Basin: Final report, March 1, 1985-March 15, 1995

    SciTech Connect

    Philp, R. P.

    1996-11-01

    The research project investigated various geochemical aspects of oils, suspected source rocks, and tar sands collected from the Anadarko Basin, Oklahoma. The information has been used, in general, to investigate possible sources for the oils in the basin, to study mechanisms of oil generation and migration, and characterization of depositional environments. The major thrust of the recent work involved characterization of potential source formations in the Basin in addition to the Woodford shale. The formations evaluated included the Morrow, Springer, Viola, Arbuckle, Oil Creek, and Sylvan shales. A good distribution of these samples was obtained from throughout the basin and were evaluated in terms of source potential and thermal maturity based on geochemical characteristics. The data were incorporated into a basin modelling program aimed at predicting the quantities of oil that could, potentially, have been generated from each formation. The study of crude oils was extended from our earlier work to cover a much wider area of the basin to determine the distribution of genetically-related oils, and whether or not they were derived from single or multiple sources, as well as attempting to correlate them with their suspected source formations. Recent studies in our laboratory also demonstrated the presence of high molecular weight components(C{sub 4}-C{sub 80}) in oils and waxes from drill pipes of various wells in the region. Results from such a study will have possible ramifications for enhanced oil recovery and reservoir engineering studies.

  12. Restoration of Circum-Arctic Upper Jurassic source rock paleolatitude based on crude oil geochemistry

    USGS Publications Warehouse

    Peters, K.E.; Ramos, L.S.; Zumberge, J.E.; Valin, Z.C.; Scotese, C.R.

    2008-01-01

    Tectonic geochemical paleolatitude (TGP) models were developed to predict the paleolatitude of petroleum source rock from the geochemical composition of crude oil. The results validate studies designed to reconstruct ancient source rock depositional environments using oil chemistry and tectonic reconstruction of paleogeography from coordinates of the present day collection site. TGP models can also be used to corroborate tectonic paleolatitude in cases where the predicted paleogeography conflicts with the depositional setting predicted by the oil chemistry, or to predict paleolatitude when the present day collection locality is far removed from the source rock, as might occur due to long distance subsurface migration or transport of tarballs by ocean currents. Biomarker and stable carbon isotope ratios were measured for 496 crude oil samples inferred to originate from Upper Jurassic source rock in West Siberia, the North Sea and offshore Labrador. First, a unique, multi-tiered chemometric (multivariate statistics) decision tree was used to classify these samples into seven oil families and infer the type of organic matter, lithology and depositional environment of each organofacies of source rock [Peters, K.E., Ramos, L.S., Zumberge, J.E., Valin, Z.C., Scotese, C.R., Gautier, D.L., 2007. Circum-Arctic petroleum systems identified using decision-tree chemometrics. American Association of Petroleum Geologists Bulletin 91, 877-913]. Second, present day geographic locations for each sample were used to restore the tectonic paleolatitude of the source rock during Late Jurassic time (???150 Ma). Third, partial least squares regression (PLSR) was used to construct linear TGP models that relate tectonic and geochemical paleolatitude, where the latter is based on 19 source-related biomarker and isotope ratios for each oil family. The TGP models were calibrated using 70% of the samples in each family and the remaining 30% of samples were used for model validation. Positive

  13. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks

    NASA Astrophysics Data System (ADS)

    Helgeson, Harold C.; Richard, Laurent; McKenzie, William F.; Norton, Denis L.; Schmitt, Alexandra

    2009-02-01

    Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ≳25 but ≲100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ˜1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO 2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO 2 gas, and a more mature (oxidized) kerogen with a lower

  14. Lower Tertiary and Upper Cretaceous source rocks in Louisiana and Mississippi: Implications to Gulf of Mexico crude oil

    SciTech Connect

    Sassen, R. )

    1990-06-01

    The Lower Tertiary Sparta Formation, Wilcox Group, and the Midway Group in southern Louisiana include organic-rich source facies that generate crude oil at relatively high thermal maturities. The Wilcox Group is an important source of Wilcox crude oil, and regional kerogen variations explain two crude oil subfamilies. Wilcox crude oils in downdip areas of southern Louisiana migrated short distances, but long-range lateral migration (about 150 km) best explains Wilcox crude oils far updip from mature source rocks. Crude oils in Oligocene and younger reservoirs in southern Louisiana migrated vertically from deep lower Tertiary source rocks. Some crude oils in Upper Cretaceous Tuscaloosa reservoirs were emplaced by long-range lateral migration from Tuscaloosa source rocks. Given little evidence of upper Tertiary source rocks and the overmaturity problems of Mesozoic source rocks, most crude oils in upper Tertiary and Pleistocene reservoirs of the Gulf continental shelf are best explained by vertical migration from deep lower Tertiary source rocks. Even so, it is simplistic to assume an exclusive lower Tertiary origin. Many Tertiary and Pleistocene crude oils of this study probably include an overprint of high-maturity hydrocarbons from Mesozoic sources. 12 figs., 7 tabs.

  15. Correlation of oils and source rock characteristics using biological markers, Cuyama Basin, California

    SciTech Connect

    Lillis, P.G.

    1988-03-01

    Biological marker data obtained from gas chromatography and gas chromatography/mass spectrometry were used to correlate the oils in the Cuyama basin and to characterize the potential source facies. Biological markers provide a wealth of information about petroleum and source rocks, including information on paleoecology, depositional environment, and thermal maturity. Pristane/phytane ratios and sterane and hopanoid distributions indicate the source facies was deposited in a restricted marine basin and the organic matter was derived primarily from marine phytoplankton with a significant contribution from land plants and bacteria. Previous studies have documented that the Miocene Monterey Formation is a major source rock for oils in several California basins. However, clear differences exist between the composition of Cuyama basin oils and typical Monterey oils. Cuyama basin oils have lower sulfur contents (< 0.5 wt. %), higher pristane/phytane ratios (1.7-1.9), and no 28,30-bisnorhopane, in comparison to Monterey oils, which have higher sulfur contents (1-6 wt %), lower pristane/phytane ratios (< 1), and significant amounts of 28,30-bisnorhopane. The low sulfur content of the Cuyama basin oils is probably due to precipitation of microbially reduced sulfur with iron from terrigenous clay input, this preventing sulfur incorporation into the kerogen. The higher clay content in the source facies is also indicated by higher diasterane content. Petroleum geochemistry studies indicate that the Cuyama basin oils share a common source. The source facies appears to be an atypical Monterey Formation deposited in an inboard basin, with significant terrigenous organic and clay mineral debris contributing to the autochthonous biogenous sediments.

  16. Assessment of Mesozoic-Kainozoic climate impact on oil-source rock potential (West Siberia)

    NASA Astrophysics Data System (ADS)

    Iskorkina, A. A.; Isaev, V. I.; Terre, D. A.

    2015-11-01

    Based on paleotemperature modeling, the evaluation of the effect of Neo-Pleistocene permafrost rock thickness on geothermal regime of the Bazhenov deposits has been performed. It has been stated that permafrost about 300 m in thickness must be considered for appropriate reconstruction of geothermal history of source rocks in the south-east areas of West Siberia. This condition is relevant to a consistent consideration of oil-generation phase history and can prevent underestimation (to 25%) of hydrocarbon-in-place resources.

  17. Origin of crude oil in eastern Gulf Coast: Upper Jurassic, Upper Cretaceous, and lower Tertiary source rocks

    SciTech Connect

    Sassen, R.

    1988-02-01

    Analysis of rock and crude oil samples suggests that three source rocks have given rise to most crude oil in reservoirs of the eastern Gulf Coast. Carbonate source rocks of the Jurassic Smackover Formation are characterized by algal-derived kerogen preserved in an anoxic and hypersaline environment, resulting in crude oils with distinct compositions. Migration commenced during the Cretaceous, explaining the emplacement of Smackover-derived crude oil in Jurassic and in some Cretaceous reservoirs. Upper Cretaceous clastic and carbonate source rocks are also present. Much crude oil in Upper Cretaceous reservoirs has been derived from organic-rich marine shales of the Tuscaloosa Formation. These shales are characterized by algal and higher plant kerogen, resulting in distinct crude oil compositions. Migration commenced during the Tertiary, but was mostly focused to Upper Cretaceous reservoirs. Lower Tertiary shales, including those of the Wilcox Formation, are quite organic-rich and include downdip marine facies characterized by both algal and higher plant kerogen. Crude oils in lower Tertiary reservoirs are dissimilar to crude oils from deeper and older source rocks. Migration from lower Tertiary shales commenced during the late Tertiary and charged Tertiary reservoirs. Although most crude oil in the eastern Gulf Coast has been emplaced by short-range migration, often with a strong vertical component, some long-range lateral migration (> 100 km) has occurred along lower Tertiary sands. The framework of crude oil generation and migration onshore has important implications with respect to origin of crude oil in the Gulf of Mexico.

  18. The source rock of the Nyasa Rift Basin and oil shows of Tanzania

    NASA Astrophysics Data System (ADS)

    Kagya, M.; Ntomola, S. J.; Mpanju, F.

    Several organic geochemical analyses have been carried out in the Nyasa Rift Basin. The main objective was to assess the hydrocarbon potential of this southern part of the East African Rift Valley. Much interest has been shown in the carbonaceous shales and the coals of the Karroo Formation of Carboniferous/ Permian age, locally known as K 2. They are characterized by coal measures alternating with bituminous/ carbonaceous shales, mudstones and occasional sandstone. The cores and outcrop samples from the Ilima Colliery, Mwalesi and Ivogo Ridge were studied. The screening analysis showed the samples of both the coal and carbonaceous shales to be fair to good source rocks. the visual kerogen compositions, together with HI values, suggest kerogen type III or mixed up type III/II. The thermal maturity data as shown by T max, vitrinite reflectance, spore color fluorescence, and thermal alternation index, indicate an early mature to mature oil source rock. The oil shows, as observed in the Tundaua (Pemba) and Msimbati seeps and the bituminous sands of the Wingayongo and Msimbati areas, indicate the presence of oil-generating source rocks.

  19. Qualitative and quantitative analysis of Dibenzofuran, Alkyldibenzofurans, and Benzo[b]naphthofurans in crude oils and source rock extracts

    USGS Publications Warehouse

    Meijun Li,; Ellis, Geoffrey S.

    2015-01-01

    Dibenzofuran (DBF), its alkylated homologues, and benzo[b]naphthofurans (BNFs) are common oxygen-heterocyclic aromatic compounds in crude oils and source rock extracts. A series of positional isomers of alkyldibenzofuran and benzo[b]naphthofuran were identified in mass chromatograms by comparison with internal standards and standard retention indices. The response factors of dibenzofuran in relation to internal standards were obtained by gas chromatography-mass spectrometry analyses of a set of mixed solutions with different concentration ratios. Perdeuterated dibenzofuran and dibenzothiophene are optimal internal standards for quantitative analyses of furan compounds in crude oils and source rock extracts. The average concentration of the total DBFs in oils derived from siliciclastic lacustrine rock extracts from the Beibuwan Basin, South China Sea, was 518 μg/g, which is about 5 times that observed in the oils from carbonate source rocks in the Tarim Basin, Northwest China. The BNFs occur ubiquitously in source rock extracts and related oils of various origins. The results of this work suggest that the relative abundance of benzo[b]naphthofuran isomers, that is, the benzo[b]naphtho[2,1-d]furan/{benzo[b]naphtho[2,1-d]furan + benzo[b]naphtho[1,2-d]furan} ratio, may be a potential molecular geochemical parameter to indicate oil migration pathways and distances.

  20. Geochemical analysis of selected hydrocarbon samples in the Douala basin, Cameroon: Implications for an oil-prone source rock

    SciTech Connect

    Ackerman, W.C.; Boatwright, D.C. ); Burwood, R.; Mycke, B.; Van Lerberche, D. ); Bondjo, E.; Tamfu, S.; Ovono, D. )

    1993-09-01

    Several oil seeps from the onshore Douala basin in southwest Cameroon have been analyzed by GC/MS, PY/GC, and PY/GC/MS to determine the nature and quality of their source rocks. Geochemical data indicate oil-prone source rocks exist in the Upper Cretaceous to middle Tertiary passive margin sedimentary section. Paleoenvironmental indicators suggest these source rocks were deposited in paralic/deltaic to hypersaline marine settings. In conjunction with existing geological data, two geochemical models are proposed. (1) The oils were derived from a kerogen facies, which grades from a hypersaline marine environment in the Albian to a marine facies in the Cenomanian Maastrichtian. (2) The oils were derived from a hypersaline marine facies in the Albian and a second marine facies deposited during the Oligocene. Although previous work by other authors has shown the Upper Cretaceous/lower Tertiary source rocks from wells in the Logbaba gas field to be gas prone (type III), data from the present study provide evidence that at least one mature oil-prone source rock exists within this interval elsewhere in the basin.

  1. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Powell, T. G.

    1987-03-01

    A series of C 13 to C 31 aryl isoprenoids (1-alkyl,2,3,6-trimethylbenzenes) have been identified in reef-hosted oils and their source rocks from the Middle and Upper Silurian of the Michigan Basin and Middle Devonian of the Alberta Basin, Canada. Their structure has been confirmed by unambiguous synthesis of the C 14 member of the series. Their structure and isotopic composition indicate that they are derived from isorenieratene from the Chlorobiaceae family of sulphur bacteria. These results are consistent with geological and geochemical studies that show that the source rocks were deposited under metahaline to hypersaline sulphate and sulphide rich water columns. The distribution of other biomarkers in these oils and source rocks indicates that a diverse biota contributed organic matter to the source environment. In conjunction with the aryl isoprenoids, they show that there is a remarkable similarity in composition between the two sets of oils and source rocks despite their great temporal and geographic separation. This reflects the similarity of their environments and emphasizes the importance of sedimentary facies in controlling the composition of organic matter in source rocks and their derived oils.

  2. Preliminary investigation of oil and source rock organic geochemistry from selected Tertiary basins of Thailand

    NASA Astrophysics Data System (ADS)

    Lawwongngam, Kulwadee; Philp, R. P.

    Selected samples of crude oils and extracts from source rocks obtained from six Thailand Tertiary basins of the central plain and of the Gulf of Thailand regions were examined for geochemical properties and molecular compositions. Analyses were performed using GC, CGCMS and carbon isotope mass spectrometry. Though these results should be viewed as preliminary, the results are significant in terms of a regional understanding of the petroleum geochemistry of Thailand. Results from bulk geochemical properties and biomarker assemblages characterize derivatives of organic sources deposited in lacustrine environments. The organic matter is mainly derived from algae with varying amounts of higher plant material. However, an observed variation in the pristane/phytane ratios among the samples may imply differences in depositional oxicity. On the other hand, basinal differences in sedimentation rates, or in the oxygen concentration of the varying waters and/or sediment pore-waters resulted in spatial heterogeneities in the quantity and degree of preservation of the organic matter. In addition, a degree of physical separation between these paleo-lacustrine environments is indicated by differences in paleosalinity, e.g. the hypersaline biomarker, gammacerane, which is restricted to samples from the offshore Gulf of Thailand basins. Maturity parameters for these Tertiary oils and source rock extracts were determined using biomarker analyses of T s/T m, 22S/22S + 22R C 31 hopane, C 30 moretane/hopane, 20R/20S + 20R C 29 sterane, and aromatic compounds. Though the samples demonstrate an overall relatively low level of maturity as specified by the biomarker index, a degree of individual basinal variability is also distinguishable. The observed differences in the maturity values indicate regional heterogeneity among the basin thermal histories, suggesting differences in geothermal gradients and/or in the basin subsidence rates.

  3. Source rock potential in Pakistan

    SciTech Connect

    Raza, H.A. )

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceous rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.

  4. Petroleum geochemistry of oil and gas from Barbados: Implications for distribution of Cretaceous source rocks and regional petroleum prospectivity

    USGS Publications Warehouse

    Hill, R.J.; Schenk, C.J.

    2005-01-01

    Petroleum produced from the Barbados accretionary prism (at Woodbourne Field on Barbados) is interpreted as generated from Cretaceous marine shale deposited under normal salinity and dysoxic conditions rather than from a Tertiary source rock as previously proposed. Barbados oils correlate with some oils from eastern Venezuela and Trinidad that are positively correlated to extracts from Upper Cretaceous La Luna-like source rocks. Three distinct groups of Barbados oils are recognized based on thermal maturity, suggesting petroleum generation occurred at multiple levels within the Barbados accretionary prism. Biodegradation is the most significant process affecting Barbados oils resulting in increased sulfur content and decreased API gravity. Barbados gases are interpreted as thermogenic, having been co-generated with oil, and show mixing with biogenic gas is limited. Gas biodegradation occurred in two samples collected from shallow reservoirs at the Woodbourne Field. The presence of Cretaceous source rocks within the Barbados accretionary prism suggests that greater petroleum potential exists regionally, and perhaps further southeast along the passive margin of South America. Likewise, confirmation of a Cretaceous source rock indicates petroleum potential exists within the Barbados accretionary prism in reservoirs that are deeper than those from Woodbourne Field.

  5. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan

    2010-09-01

    The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.

  6. Black shale source rocks and oil generation in the Cambrian and Ordovician of the central Appalachian Basin, USA

    USGS Publications Warehouse

    Ryder, R.T.; Burruss, R.C.; Hatch, J.R.

    1998-01-01

    Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician blcak shale (Utica and Antes shales) in the Appalachian basin. Moroever, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in the same source rocks. Oils from the Cambrian and Ordovician reservoirs have similar saturated hydrocarbon compositions, biomarker distributions, and carbon isotope signatures. Regional variations in the oils are attributed to differences in thermal maturation rather than to differences in source. Total organic carbon content, genetic potential, regional extent, and bitument extract geochemistry identify the balck shale of the Utica and Antes shales as the most plausible source of the oils. Other Cambrian and Ordovician shale and carbonate units, such as the Wells Creek formation, which rests on the Knox unconformity, and the Rome Formation and Conasauga Group in the Rome trough, are considered to be only local petroleum sources. Tmax, CAI, and pyrolysis yields from drill-hole cuttings and core indicate that the Utica Shale in eastern and central Ohio is mature with respect to oil generation. Burial, thermal, and hydrocarbon-generation history models suggest that much of the oil was generated from the Utica-Antes source in the late Paleozoic during the Alleghanian orogeny. A pervasive fracture network

  7. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and

  8. Organic geochemistry and petrology of oil source rocks, Carpathian Overthrust region, southeastern Poland - Implications for petroleum generation

    USGS Publications Warehouse

    Kruge, M.A.; Mastalerz, Maria; Solecki, A.; Stankiewicz, B.A.

    1996-01-01

    The organic mailer rich Oligocene Menilite black shales and mudstones are widely distributed in the Carpathian Overthrust region of southeastern Poland and have excellent hydrocarbon generation potential, according to TOC, Rock-Eval, and petrographic data. Extractable organic matter was characterized by an equable distribution of steranes by carbon number, by varying amounts of 28,30-dinor-hopane, 18??(H)-oleanane and by a distinctive group of C24 ring-A degraded triterpanes. The Menilite samples ranged in maturity from pre-generative to mid-oil window levels, with the most mature in the southeastern portion of the study area. Carpathian petroleum samples from Campanian Oligocene sandstone reservoirs were similar in biomarker composition to the Menilite rock extracts. Similarities in aliphatic and aromatic hydrocarbon distributions between petroleum asphaltene and source rock pyrolyzates provided further evidence genetically linking Menilite kerogens with Carpathian oils.

  9. Geochemical evidence for mudstone as the possible major oil source rock in the Jurassic Turpan Basin, Northwest China

    USGS Publications Warehouse

    Chen, J.; Qin, Yelun; Huff, B.G.; Wang, D.; Han, D.; Huang, D.

    2001-01-01

    Geologists and geochemists have debated whether hydrocarbons from Jurassic coal measures are derived from the mudstones or the coals themselves. This paper identifies mudstones as the possible major source rock of hydrocarbons in the Jurassic basins in Northwest China. The Turpan Basin is used as a representative model. Mudstones in the Middle-Lower Jurassic are very well developed in the basin and have an average genetic potential from 2 to 4 mg/g. The vitrinite reflectance of the source rocks ranges from 0.6 to 1.3%, exhibiting sufficient thermal maturity to generate oil and gas. Biomarkers in crude oils from the basin are similar to those in mudstones from the coal-bearing strata, with a low tricyclic terpane (cheilanthane) content, a relatively high content of low carbon number (less than C22) tricyclic terpanes and a low content of high carbon number tricyclic terpanes, relatively high ratios of Ts/Tm, and C29 Ts/17?? (H)-C29 norhopane, and low ratios of Tm/17?? (H)-C30 hopane and 17?? (H)-C31 homohopane/17?? (H)-C30 hopane. These characteristics and the distribution of steranes and terpanes in the crude oil and mudstone differ significantly from those of the Jurassic coals and carbonaceous shales of the basin, indicating mudstone is possibly the major source rock of the oils in the Turpan Basin. ?? 2001 Elsevier Science Ltd. All rights reserved.

  10. Cretaceous source rocks in Pakistan

    SciTech Connect

    Kari, I.B. )

    1993-02-01

    Pakistan is located at the converging boundaries of the Indian, Arabian, and Eurasian plates. Evolution of this tectonic setting has provided an array of environmental habitats for deposition of petroleum source rocks and development of structural forms. The potential Cretaceous source rocks in Central and South Indus Basin are spread over an area of about 300,000 km[sup 2]. With 2% cutoff on Total Organic Carbon, the average source rock thickness is 30-50 m, which is estimated to have generated more than 200 billion bbl of oil equivalent. To date, production of more than 30,000 bbl of oil and about 1200 million ft[sup 3] of gas per day can be directly attributed to Cretaceous source. This basin was an area of extensional tectonics during the Lower to Middle Cretaceous associated with slightly restricted circulation of the sea waters at the north-western margin of Indian Plate. Lower Cretaceous source rocks (Sembar Formation) were deposited while the basin was opening up and anoxia was prevailing. Similarly Middle to Upper Cretaceous clastics were deposited in setting favorable for preservation of organic matter. The time and depth of burial of the Cretaceous source material and optimum thermal regime have provided the requisite maturation level for generation of hydrocarbons in the basin. Central Indus basin is characterized by Cretaceous source rocks mature for gas generation. However, in South Indus Basin Cretaceous source rocks lie within the oil window in some parts and have gone past it in others.

  11. Source rocks, thermal history and oil in the Carson Sink and Buena Vista Valley, west central Nevada

    SciTech Connect

    Barker, C.E.

    1995-06-01

    Rock-Eval, gas chromatography, mass spectrometry, and thermal history reconstruction data from six wells suggest that Tertiary rocks in the Carson Sink and Buena Vista Valley areas are marginally mature to overmature with respect to hydrocarbon generation and have locally expelled oil. The lacustrine Tertiary calcareous mudstones and marls in these wells have a total organic carbon (TOC) range from 0.1 to 3 wt.-%, with modes at about 0.5 to 0.7, 1.5, and 2 to 3 wt-% TOC. However, in the Standard Amoco Carson Sink 1 well, some of these samples have up to 3 wt-% less TOC than reported by Hastings (1979) and these are thought to represent drill cutting samples that have been depleted in more TOC rich rock chips. Even if the TOC data are biased, these TOC-depleted samples are still oil-prone rocks, with hydrogen indices commonly above 400 mg hydrocarbon/g C, and some samples with TOC in the 2-3 wt.-% range. Analysis of an oil show at Kyle Hot Springs in Buena Vista Valley revealed a wax-rich, low sulfur oil probably from a carbonate-rich, hypersaline lacustrine source rock. This oil could be generated from strata similar to those analyzed above. Other Tertiary source rocks in the two valleys consist of lenses of humic coals that appear to be gas prone. Shows of biogenic(?) gas from shallow wells in Tertiary to Holocene lacustrine strata are common in the Carson Sink. Mesozoic rocks locally may have remaining hydrocarbon generation potential in the Stillwater Range which lie along the eastern margin of the Carson Sink. Published conodont alteration index data shows that the Paleozoic rocks are overmature. Reconstructed thermal histories of the Carson Sink and Buena Vista Valley areas, indicate petroleum is presently being generated. Mechanisms for petroleum generation are rapid burial (140 m/m.y.) in a high geothermal gradient (45 to 110{degrees}C/km), and hydrothermal and contact metamorphism.

  12. U-Th-Pb in petroleum by LA-ICP-MS: Source rocks-crude oils comparison.

    NASA Astrophysics Data System (ADS)

    Gourlan, Alexandra T.; Ricard, Estelle; Prinzhofer, Alain; Christophe, Pecheyran; Donard, Olivier X. C.

    2010-05-01

    The U, Th elemental and Pb isotopic ratios in petroleum source rocks have been determined for the first time and compared with crude oils from different regions in the World using a femtosecond laser ablation (high ablation rates) coupled to an ICP-MS and direct analysis of digested samples on ICP-MS. The advantage of femtosecond compared to nanosecond laser ablation is that it drastically reduces thermal effects, minimizes isotope and elemental fractionation and matrix effects during chemical analysis of solid samples. Fs-Laser Ablation coupled to an ICP-MS is therefore a potentially valuable tool for the determination of trace metals in crude oils as well as in solid samples such as source rocks. The principal problems encountered arise from the lack of isotopic lead standards in organic matrixes and the heterogeneity of source rocks which contain sulphides with high natural U and Th concentrations. Therefore, to determine exactly the U, Th and Pb contents in source rocks, two analytical techniques have to be compared. In one, the use of the laser ablation allows us to analyze in-situ small parts of the organic materials and to determine the proportions of two end members: pure kerogene and pure sulphides. In the other, the use of the conventional dissolution of the same pellets involves total consumption of the sample and gives an average value of the isotopic lead ratios and U, Th and Pb concentrations of the bulk sample. For the two cases a "sample-standard bracketing" procedure was applied using NIST 612 glass standard for ablation and NIST 981 in aqueous solution for the mineralization. Due to the lack of organic matrix standards, the fs-LA-ICP-MS technique produces only qualitative trace element (U, Th and Pb) and isotopic analysis of source rocks. Our results obtained on both crude oils and associated source rocks have shown that Th, U, Pb systematics determined using the two analytical methods (mineralization of kerogen directly analyzed on ICP-MS or MC

  13. A plankton-residue model to explain trace-element enrichments in oil-source rocks

    SciTech Connect

    Piper, D.Z.; Isaacs, C.M. )

    1996-01-01

    Sedimentary deposits enriched in organic matter commonly have high concentrations of many trace elements. In the past, trace-element enrichment was attributed to accumulation by precipitation/adsorption reactions under conditions of bottom-water sulfate reduction, or from a seawater that itself had an unusually high concentration of trace elements. Examination of the ancient and modern sediment record shows, however, that many trace elements in these deposits accumulated within an organic fraction whose composition closely approached that of modem plankton; their accumulation further required only a moderate rate of primary productivity. Specific examples are represented by the accumulation of Cu, Cd, Mo, Ni, and Zn in the California Borderland today and by their abundance in Quaternary sediment from the Japan Sea, Cretaceous sediment from the Atlantic Ocean, the Miocene Monterey Formation, and the Permian Phosphoria Formation. Accordingly, we propose that the elevated trace-element concentration of many oil-source rocks, above that contributed by the detrital fraction, is a residue from the diagenetic degradation of marine plankton. Recent studies have shown that the burial rate (accumulation rate) of organic matter can rep- resent less than 5% of its rain rate (depositional rate) onto the sea floor and as little as 1 % of primary productivity. By contrast, several of the trace elements, once deposited on the sea floor, can be largely retained. In the Japan Sea sediment, for example, Cu: and Zn: organic-matter ratios in the marine fraction of 9 sediment alone average 10 times their ratios in plankton, suggesting a 90% loss of the organic matter that rained onto the sea floor, but Zn: Cu ratios and other trace-element: Cu ratios in this and other deposits closely approach modern plankton values.

  14. A plankton-residue model to explain trace-element enrichments in oil-source rocks

    SciTech Connect

    Piper, D.Z.; Isaacs, C.M.

    1996-12-31

    Sedimentary deposits enriched in organic matter commonly have high concentrations of many trace elements. In the past, trace-element enrichment was attributed to accumulation by precipitation/adsorption reactions under conditions of bottom-water sulfate reduction, or from a seawater that itself had an unusually high concentration of trace elements. Examination of the ancient and modern sediment record shows, however, that many trace elements in these deposits accumulated within an organic fraction whose composition closely approached that of modem plankton; their accumulation further required only a moderate rate of primary productivity. Specific examples are represented by the accumulation of Cu, Cd, Mo, Ni, and Zn in the California Borderland today and by their abundance in Quaternary sediment from the Japan Sea, Cretaceous sediment from the Atlantic Ocean, the Miocene Monterey Formation, and the Permian Phosphoria Formation. Accordingly, we propose that the elevated trace-element concentration of many oil-source rocks, above that contributed by the detrital fraction, is a residue from the diagenetic degradation of marine plankton. Recent studies have shown that the burial rate (accumulation rate) of organic matter can rep- resent less than 5% of its rain rate (depositional rate) onto the sea floor and as little as 1 % of primary productivity. By contrast, several of the trace elements, once deposited on the sea floor, can be largely retained. In the Japan Sea sediment, for example, Cu: and Zn: organic-matter ratios in the marine fraction of 9 sediment alone average 10 times their ratios in plankton, suggesting a 90% loss of the organic matter that rained onto the sea floor, but Zn: Cu ratios and other trace-element: Cu ratios in this and other deposits closely approach modern plankton values.

  15. Estimates of Oil and Gas Potential of Source Rock by 13C Nuclear Magnetic Resonance (NMR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Longbottom, T. L.; Hockaday, W. C.; Boling, K. S.; Dworkin, S. I.

    2014-12-01

    Kerogen is defined as the insoluble fraction of organic matter preserved in sediments. Due to its structural complexity, kerogen is poorly understood, yet it holds vast economic importance as petroleum source rock, and represents the largest organic carbon pool on earth. Kerogen originates from a mixture of organic biomolecules and tends to be dominated by the polymeric components of cell walls and cellular membranes, which undergo interactions with sedimentary minerals at elevated temperature and pressure upon burial. Due to the importance of burial diagenesis to petroleum formation, much of our knowledge of chemical properties of kerogens is related to diagenetic and catagenetic effects. The more common geochemical evaluations of the oil and gas potentials of source rock are based upon proximate analyses such as hydrogen and oxygen indices and thermal stability indices, such as those provided by Fisher assay and Rock Eval®. However, proximate analyses provide limited information regarding the chemical structure of kerogens, and therefore provide little insight to the processes of kerogen formation. NMR spectra of kerogen have been previously shown to be useful in estimating oil and gas potential, and the proposed study seeks to refine nuclear magnetic resonance spectroscopy as a tool in kerogen characterization, specifically for the purpose of oil and gas potential calculations.

  16. Geochemical features of oils from western and southern Gulf of Mexico: Reconstruction of the depositional environment of their source rocks

    SciTech Connect

    Guzman, M.; Mello, M.; Holguin, N.

    1996-08-01

    Three main source rock depositional environments can be interpreted from the western and southern Gulf of Mexico oils: marine deltaic, marine carbonate and marine carbonate evaporitic. Marine deltaic oils are geographically limited to the Burgos and Macuspana basins. Their molecular features suggest a source from reworked, bacterially degraded terrestrial higher plants deposited in siliciclastic dysaerobic depositional environments. They can be recognized by their {delta}{sup 13}C values (between 23.6 to -21.7 {per_thousand}), low sulphur content (0.06 to 0.12 wt % S), high pristane/phytane ratios (1.95 to 3.43), high concentrations of oleanane, and very low sterane/hopane mbbs (<0.05). Marine carbonate oils have a widespread distribution throughout the western and southern Gulf of Mexico. They are present from Tampico Basin to Campeche Sound. Isotopic values of these oils range from -24 to -28.1 {per_thousand}. They are characterized by medium to high sulphur content, pristane/phytane <1, abundant extended hopanes C{sub 35} hopanes greater than or in similar abundance to their C{sub 34} counterparts, and presence of hexahydrobenzohopanes. Subtle internal differences in biomarker composition of this oil set can be interpreted in terms of salinity, clay content and oxygen depletion variations. Marine carbonate evaporitic oils are present in the Veracruz Basin and the Chiapas-Tabasco area. The oils are recognized by their heavy {delta}{sup 13}C values (between -23 to -24 {per_thousand}), very low sterane/hopane ratios, high C24-tetracyclics/C26-tricyclics terpanes ratios, and C{sub 33} hopanes greater than their C{sub 34} counterparts. In this oil set the organic matter is dominated by a strongly prevailing bacterial input. The diversity of oil families from the western and southern Gulf of Mexico explains the enormous petroleum potential of this region.

  17. Petroleum source rock richness, type and maturity for four rock units on the Alaskan North Slope: are they sources for the two oil types

    SciTech Connect

    Magoon, L.B.; Claypool, G.E.

    1983-01-01

    A comprehensive petroleum geochemical study assessed the petroleum resources on the Alaskan North Slope. The collection and interpretation of geochemical data not only from exploratory wells drilled in the National Petroleum Reserve in Alaska (NPRA) but also from wells drilled to the east in the Prudhoe Bay area and from rocks exposed in the Arctic National Wildlife Refuge and in the Brooks Range from Cape Lisburne to the United States/Canadian border were studied. More than 17 different kinds of rock analyses, eight different oil analyses, and three gas analyses are being used to evaluate rock (outcrop samples, core, drill cuttings), oil (seeps, drill stem test, oil-stained core, producing well), and gas (drill stem test, producing well) samples on the North Slope. To date, the more than 60,000 analyses completed on these samples were placed into a computer-based file for storage and retrieval in tabular, graphical, or map form numerous graphical software programs were written to facilitate interpretation.

  18. World petroleum systems with Jurassic source rocks

    SciTech Connect

    Klemme, H.D. )

    1993-11-08

    Fourteen petroleum systems with Upper Jurassic source rocks contain one quarter of the world's discovered oil and gas. Eleven other systems with Lower and Middle Jurassic source rocks presently have a minor but significant amount of discovered oil and gas. The purpose of this article is to review the systems geologically, describe their location in space and time on a continental scale, estimate their relative petroleum system recovery efficiencies, and outline the effect their essential elements and processes have on their petroleum plumbing.

  19. Biomarker distribution of source rocks in the dongpu depression and its relation to the generation of immature oil

    NASA Astrophysics Data System (ADS)

    Jiyang, Shi; Mingju, Xiang; Zhiqing, Hong; Benshan, Wang; Lijie, Zhang; Maoan, Xin

    In order to understand thermal stabilities of various biomarkers in sedimentary rocks, and to utilize them to subdivide the stage of diagenesis and to define the immature oil-generating threshold in the eastern part of China, serial cores from various depths and core samples from well WHI-I, heated in a simulation experiment at various temperatures, have been analysed. As a result, the relative thermal stabilities for alkybenzenes, alkylithophenes, benzohopanes, hopenes, diasterenes, ββ-hopanes, steranes and terpanes have been recognized and it has been suggested that the immature oil-generating threshold could be defined at the depth at which there are no hopenes in sedimentary rocks.

  20. The significance of 24-norcholestanes, triaromatic steroids and dinosteroids in oils and Cambrian-Ordovician source rocks from the cratonic region of the Tarim Basin, NW China

    USGS Publications Warehouse

    Li, Meijun; Wang, T.-G.; Lillis, Paul G.; Wang, Chunjiang; Shi, Shengbao

    2012-01-01

    Two oil families in Ordovician reservoirs from the cratonic region of the Tarim Basin are distinguished by the distribution of regular steranes, triaromatic steroids, norcholestanes and dinosteroids. Oils with relatively lower contents of C28 regular steranes, C26 20S, C26 20R + C27 20S and C27 20R regular triaromatic steroids, dinosteranes, 24-norcholestanes and triaromatic dinosteroids originated from Middle–Upper Ordovician source rocks. In contrast, oils with abnormally high abundances of the above compounds are derived from Cambrian and Lower Ordovician source rocks. Only a few oils have previously been reported to be of Cambrian and Lower Ordovician origin, especially in the east region of the Tarim Basin. This study further reports the discovery of oil accumulations of Cambrian and Lower Ordovician origin in the Tabei and Tazhong Uplifts, which indicates a potential for further discoveries involving Cambrian and Lower Ordovician sourced oils in the Tarim Basin. Dinosteroids in petroleum and ancient sediments are generally thought to be biomarkers for dinoflagellates and 24-norcholestanes for dinoflagellates and diatoms. Therefore, the abnormally high abundance of these compounds in extracts from the organic-rich sediments in the Cambrian and Lower Ordovician and related oils in the cratonic region of the Tarim Basin suggests that phytoplankton algae related to dinoflagellates have appeared and might have flourished in the Tarim Basin during the Cambrian Period. Steroids with less common structural configurations are underutilized and can expand understanding of the early development history of organisms, as well as define petroleum systems.

  1. Sequence stratigraphy and source rock potential of the Aptian (Bab Member) in east onshore Abu Dhabi: A model approach to oil exploration

    SciTech Connect

    Azzam, I.N.; Taher, A.K.

    1995-11-01

    A new geologic model of the Aptian Bab Member (Shuaiba Fm.) have been built, in east Onshore Abu Dhabi, using sequence stratigraphy and biostratigraphy. The model reveals that the Shuaiba is subdivided into two sequences (Upper and Lower). The first sequence is comprised of transgressive and highstand systems tract that can be distinguished in the Lower Shuaiba of Early aptian age. The second sequence, the Upper Shuaiba, consists of deeper intrashelf basin sediments comprising a transgressive and highstand systems tract of Late Aptian age. A practical modeling on the Shuaiba Fm. for identifying and calculating Total Organic Carbon (TOC) content and it`s thermal maturity have been adopted using well logs. The modeling indicated that the upper part of Lower Shuaiba (basinal facies) is a prolific, mature source rock especially in the northern part of the study area. Volumetric calculations for Shuaiba source rock indicated that most of the Upper Thamama oils have been generated and migrated from the mature Shuaiba source.

  2. Middle Triassic source rocks in north Lombardy

    SciTech Connect

    Gnaccolini, M.; Gaetani, M.; Mattavelli, L.; Leoni, C.; Poliani, G.; Riva, A.

    1988-08-01

    Using molecular geochemistry techniques, we established that the Perledo-Verenna and Meride Formations (Middle Triassic, southern Alps) represent the source rocks of the Gaggiano and Villafortuna deep oil fields discovered 40 km northwest of Milan. To find the geological factors which control the areal extent thickness and organic matter distribution relative to these sequences, a sedimentological and geochemical study was undertaken.

  3. D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III

    USGS Publications Warehouse

    Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.

    1999-01-01

    Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381??C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330??C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ~ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 ??C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350??C for 72 h, or 330??C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115??C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected

  4. Source-rock geochemistry of the San Joaquin Basin Province, California: Chapter 11 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Magoon, Leslie B.; Valin, Zenon C.; Lillis, Paul G.

    2007-01-01

    Source-rock thickness and organic richness are important input parameters required for numerical modeling of the geohistory of petroleum systems. Present-day depth and thickness maps for the upper Miocene Monterey Formation, Eocene Tumey formation of Atwill (1935), Eocene Kreyenhagen Formation, and Cretaceous-Paleocene Moreno Formation source rocks in the San Joaquin Basin were determined using formation tops data from 266 wells. Rock-Eval pyrolysis and total organic carbon data (Rock-Eval/TOC) were collected for 1,505 rock samples from these source rocks in 70 wells. Averages of these data for each well penetration were used to construct contour plots of original total organic carbon (TOCo) and original hydrogen index (HIo) in the source rock prior to thermal maturation resulting from burial. Sufficient data were available to construct plots of TOCo and HIo for all source-rock units except the Tumey formation of Atwill (1935). Thick, organic-rich, oil-prone shales of the upper Miocene Monterey Formation occur in the Tejon depocenter in the southern part of the basin with somewhat less favorable occurrence in the Southern Buttonwillow depocenter to the north. Shales of the upper Miocene Monterey Formation generated most of the petroleum in the San Joaquin Basin. Thick, organic-rich, oil-prone Kreyenhagen Formation source rock occurs in the Buttonwillow depocenters, but it is thin or absent in the Tejon depocenter. Moreno Formation source rock is absent from the Tejon and Southern Buttonwillow depocenters, but thick, organic-rich, oil-prone Moreno Formation source rock occurs northwest of the Northern Buttonwillow depocenter adjacent to the southern edge of Coalinga field.

  5. Genesis of oil and hydrocarbon gases within Mars and carbonaceous chondrites from our solar system: organic origin (source rocks or direct biogenic sink?)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Prasanta K.

    2011-10-01

    The petroleum hydrocarbons (oil and gas) and kerogen macromolecules are abundant within the extraterrestrial atmospheric particles. These hydrocarbons occur as reservoir of lakes and oceans or in hydrate forms on various planets (Earth, Mars, moons of Saturn and Jupiter), asteroid belts, carbonaceous chondrites, and as solid residue within the planets or moons in the Solar System and beyond. The abundance of PAHs in the outer Solar System may indicate that the genesis of these primitive biomarker hydrocarbons may have formed abiogenically much earlier (> 5Ga) than the formation of our Solar System (~ 5 Ga). However, the origin of petroleum on Earth is overwhelmingly connected to the biogenic organic matter that is related to source rocks (thermal degradation of macromolecular kerogen). This may show a similar genesis of the kerogen macromolecules and petroleum hydrocarbons (oil and gas) within the carbonaceous chondrites (CCs), Mars, and selected moons from Saturn and Jupiter. They may be biologically and genetically related. Recent evidence of the possible presence of source rocks (organic rich black carbonaceous rocks) and associated petroleum system elements within Eberswalde and Holden areas of Mars may indicate similar terrestrial associations. Similarly, studies of Carbonaceous Chondrites using biological, petrological, SEM/EDS, and petroleum geochemical methods may also indicate the presence of source rock macromolecule within the CCs. These studies pointed out two new issues: (1) approximately, the major part of the CCs possibly originated from archaea, bacteria, and primitive algal remains; and (2) three types of temperature events affecting the petroleum generation within these carbonaceous chondrites: (i) lower temperature events (<200oC) in comets and cooler asteroids or planets (examples: Murchison, Tagish Lake, Orgueil); (ii) intermediate temperature events (200 - 300oC) as associated within the deeper section of the comets, asteroids or planets

  6. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: Insights from hydrous pyrolysis experiments

    USGS Publications Warehouse

    Curtis, John B.; Kotarba, M.J.; Lewan, M.D.; Wieclaw, D.

    2004-01-01

    The Oligocene Menilite Shales in the study area in the Polish Flysch Carpathians are organic-rich and contain varying mixtures of Type-II, Type-IIS and Type-III kerogen. The kerogens are thermally immature to marginally mature based on atomic H/C ratios and Rock-Eval data. This study defined three organic facies, i.e., sedimentary strata with differing hydrocarbon-generation potentials due to varying types and concentrations of organic matter. These facies correspond to the Silesian Unit and the eastern and western portions of the Skole Unit. Analysis of oils generated by hydrous pyrolysis of outcrop samples of Menilite Shales demonstrates that natural crude oils reservoired in the flysch sediments appear to have been generated from the Menilite Shales. Natural oils reservoired in the Mesozoic basement of the Carpathian Foredeep appear to be predominantly derived and migrated from Menilite Shales, with a minor contribution from at least one other source rock most probably within Middle Jurassic strata. Definition of organic facies may have been influenced by the heterogeneous distribution of suitable Menilite Shales outcrops and producing wells, and subsequent sample selection during the analytical phases of the study. ?? 2004 Elsevier Ltd. All rights reserved.

  7. Depositional controls, distribution, and effectiveness of world's petroleum source rocks

    SciTech Connect

    Klemme, H.D.; Ulmishek, G.F.

    1989-03-01

    Six stratigraphic intervals representing one-third of Phanerozoic time contain source rocks that have provided more than 90% of the world's discovered oil and gas reserves (in barrels of oil equivalent). The six intervals include (1) Silurian (generated 9% of the world's reserves); (2) Upper Devonian-Tournaisian (8% of reserves); (3) Pennsylvanian-Lower Permian (8% of reserves); (4) Upper Jurassic (25% of reserves); (5) middle Cretaceous (29% of reserves); and (6) Oligocene-Miocene (12.5% of reserves). This uneven distribution of source rocks in time has no immediately obvious cyclicity, nor are the intervals exactly repeatable in the commonality of factors that controlled the formation of source rocks. In this study, source rocks of the six intervals have been mapped worldwide together with oil and gas reserves generated by these rocks. Analysis of the maps shows that the main factors affecting deposition of these source rocks and their spatial distribution and effectiveness in generating hydrocarbon reserves are geologic age, global and regional tectonics, paleogeography, climate, and biologic evolution. The effect of each of the factors on geologic setting and quality of source rocks has been analyzed. Compilation of data on maturation time for these source rocks demonstrated that the majority of discovered oil and gas is very young, more than 80% of the world's oil and gas reserves have been generated since Aptian time, and nearly half of the world's hydrocarbons have been generated and trapped since the Oligocene.

  8. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  9. Source rock maturation, San Juan sag

    SciTech Connect

    Gries, R.R.; Clayton, J.L.

    1989-09-01

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  10. Basin richness and source rock disruption - a fundamental relationship

    USGS Publications Warehouse

    Price, L.C.

    1994-01-01

    Primary petroleum migration (expulsion from source rocks) remains the least understood parameter controlling the genesis of oil deposits. It is hypothesised that source rocks must be physically disrupted before meaningful expulsion can occur. Faulting, with accompanying significant fracturing, would appear to be the optimum naturally-occurring process for physical disruption of source rocks. If these hypotheses are valid, intensity of faulting in deeply-buried HC "kitchens' containing mature source rocks should strongly correlate with increasing basin richness. This possible relationship is examined in this paper; it is found that there is a strong correlation of increasing basin richness with increasing structural intensity over and adjacent to basin depocentres. This correlation thus supports the hypothesis that physical disruption of mature source rocks is a necessary, and previously unappreciated, controlling parameter for oil expulsion. -from Author

  11. Possible late middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, Mid-Continent and east-central United States

    SciTech Connect

    Hatch, J.R.; Jacobson, S.R.; Witzke, B.J.; Risatti, J.B.; Anders, D.E.; Watney, W.L.; Newell, K.D.; Vuletich, A.K.

    1987-11-01

    A possible coeval excursion in organic-matter delta/sup 13/C is recognized in different late Middle Ordovician lithologic facies over a distance of 480 mi (770 km), perhaps 930 mi (1500 km), in the Mid-Continent and east-central US. The large variability in the carbon isotope compositions of Ordovician oils from the Mid-Continent and east-central US is a direct result of the variable carbon isotope composition of organic matter in the Middle Ordovician hydrocarbon source rocks. The excursion in organic-matter delta/sup 13/C in late Middle Ordovician rocks may reflect significantly increased organic matter productivity and/or preservation. The excursion is not directly related to maceral composition of the organic matter. Limited dissolved CO/sub 2/ availability, possibly a result of continued high organic matter productivity, and limited circulation in the Middle Ordovician seas may have increased the size of the excursion in organic matter delta/sup 13/C. 5 figures, 4 tables.

  12. Catagenesis of organic matter of oil source rocks in Upper Paleozoic coal formation of the Bohai Gulf basin (eastern China)

    SciTech Connect

    Li, R.X.; Li, Y.Z.; Gao, Y.W.

    2007-05-15

    The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basin has been poorly explored so far, but it is highly promising for natural gas.

  13. POSSIBLE LATE MIDDLE ORDOVICIAN ORGANIC CARBON ISOTOPE EXCURSION: EVIDENCE FROM ORDOVICIAN OILS AND HYDROCARBON SOURCE ROCKS, MID-CONTINENT AND EAST-CENTRAL UNITED STATES.

    USGS Publications Warehouse

    Hatch, Joseph R.; Jacobson, Stephen R.; Witzke, Brian J.; Risatti, J. Bruno; Anders, Donald E.; Watney, W. Lynn; Newell, K. David; Vuletich, April K.

    1987-01-01

    Oils generated by Middle Ordovician rocks are found throughout the Mid-Continent and east-central regions of the United States. Gas chromatographic characteristics of these oils include a relatively high abundance of n-alkanes with carbon numbers less than 20, a strong predominance of odd-numbered n-alkanes between C//1//0 and C//2//0, and relatively small amounts of branched and cyclic alkanes. The wide ranges in delta **1**3C for oils and rock extracts reflect a major, positive excursion(s) in organic matter delta **1**3C in late Middle Ordovician rocks. This excursion has at least regional significance in that it can be documented in sections 480 mi apart in south-central Kansas and eastern Iowa. The distance may be as much as 930 mi. The parallel shifts in organic and carbonate delta **1**3C in core samples from 1 E. M. Greene well, Washington County, Iowa, imply changes in the isotope composition of the ocean-atmosphere carbon reservoir. These and other aspects of the subject are discussed.

  14. Source rock potential of upper cretaceous marine shales in the Wind River Basin, Wyoming: Chapter 8 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2007-01-01

    /S3 ratios indicate that it is capable of generating both oil and gas. Maps showing the distribution of kerogen types and organic richness for the lower shaly member of the Cody Shale are similar to the Mowry and show that lower shaly member of the Cody is more organic rich and more oil-prone in the eastern part of the basin. Analyses of samples of the upper sandy member of the Cody Shale indicate that it has little or no potential as a source rock. Thermal maturity mapping based on vitrinite reflectance measurements in the coal-bearing post-Cody Upper Cretaceous and Paleocene rocks shows that Upper Cretaceous marine shales in the deeper parts of the Wind River Basin are thermally mature to overmature with respect to hydrocarbon generation.

  15. Source apportionment in oil spill remediation.

    PubMed

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes source of the oil in this case and the contribution that Caño Limon made to the total oil ranged from 0% to 74%. The total hydrocarbon concentrations were lower after cleaning indicating an efficacy of 90% although the reduction in Caño Limon oil was smaller. This was sufficient to make further remediation unnecessary.

  16. Petroleum source rocks of the Junggar, Tarim, and Turpan basins, northwest China

    SciTech Connect

    Graham, S.A.; Brassell, S.; Carroll, A.R.; McKnight, C.L.; Chu, J.; Hendrix, M.S. ); Xiao, X. ); Demaison, G. ); Liang, Y. )

    1990-05-01

    The sedimentary basins of Xinjiang Uygur Autonomous Region, China, are poorly explored for petroleum. Volumetric adequacy of petroleum source rocks is a critical exploration risk in these basins, particularly because source rock data are limited. However, recent studies provide new source rock data and permit speculative assessment of source rock potential of Xinjiang basins. The Junggar basin, best explored of Xinjiang basins and containing a giant oil field, is underlain over much of its extent by an Upper Permian lacustrine oil-shale sequence that is known for its organic richness and oil source quality. Depending on position in the basin, the Permian section ranges from immature to overmature and is inferred to be the principal source of oil in the basin. Upper Triassic-Middle Jurassic coal measures, including lacustrine rocks, constitute a secondary source rock sequence in the Junggar basin. The smaller intermontane Turpan basin contains a very similar Upper Triassic-Middle Jurassic sequence, which, where sufficiently deeply buried, probably comprises the only significant oil source sequence in the basin. The vast Tarim basin offers the greatest potential variety of petroleum source rocks of all Xinjiang basins, but remains the least well documented. From limited, but geologically planned and focused sampling, Cambrian, Carboniferous, and Permian strata are considered unlikely to be major oil source contributors in the dominantly shallow-marine Paleozoic section of the northern Tarim basin. Only Ordovician black shales appear to have significant oil source potential, and a lower Paleozoic source is confirmed for some Tarim oils by gas chromatography-mass spectrometry analysis. The Upper Triassic-Middle Jurassic sequence of northern Tarim basin, similar to that of the Junggar and Turpan basins in comprising a section rich in coal and lacustrine shale, constitutes another, potentially significant oil source.

  17. Source rock evaluation of Cretaceous and Tertiary series in Tunisia

    SciTech Connect

    Oudin, J. )

    1988-08-01

    Tunisia represents a mature hydrocarbon province with a long exploration history. In the Sfax-Kerkennah and Gabes Gulf areas, the hydrocarbon accumulations are located in series of Cretaceous and Tertiary age. To estimate the petroleum potential of this region, an evaluation of the source rock quality of the Cretaceous and Tertiary series was undertaken. In the Sfax-Kerkennak area, most of the wells studied indicate that, in the Tertiary, Ypresian and lower Lutetian show good organic content but, taking into account the potential productivity, only the Ypresian can be considered as a potential source rock. In the Cretaceous, mainly studies in the offshore area of the Gabes Gulf, the amount of organic matter is fair and it is chiefly located in Albian and Cenomanian. The Vraconian with its quite good potential is a valuable source rock. Due to the difference in the environment of deposition for these two possible source rocks - the Ypresian with its lagoon facies being carbonate and the Vraconian shaly - variations in the type of organic matter can be noted, although both are of marine origin. The hydrocarbons generated from these source rocks reflect these variations and permit them to correlate the different crude oils found in this area with their original source beds.

  18. Dynamic rock fragmentation: oil shale applications

    SciTech Connect

    Boade, R. R.; Grady, D. E.; Kipp, M. E.

    1980-01-01

    Explosive rock fragmentation techniques used in many resource recovery operations have in the past relied heavily upon traditions of field experience for their design. As these resources, notably energy resources, become less accessible, it becomes increasingly important that fragmentation techniques be optimized and that methods be developed to effectively evaluate new or modified explosive deployment schemes. Computational procedures have significant potential in these areas, but practical applications must be preceded by a thorough understanding of the rock fracture phenomenon and the development of physically sound computational models. This paper presents some of the important features of a rock fragmentation model that was developed as part of a program directed at the preparation of subterranean beds for in situ processing of oil shale. The model, which has been implemented in a two-dimensional Lagrangian wavecode, employs a continuum damage concept to quantify the degree of fracturing and takes into account experimental observations that fracture strength and fragment dimensions depend on tensile strain rates. The basic premises of the model are considered in the paper as well as some comparisons between calculated results and observations from blasting experiments.

  19. Source rocks of the Sub-Andean basins

    SciTech Connect

    Raedeke, L.D. )

    1993-02-01

    Seven source rock systems were mapped using a consistent methodology to allow basin comparison from Trinidad to southern Chile. Silurian and Devonian systems, deposited in passive margin and intracratonic settings, have fair-good original oil/gas potential from central and northern Bolivia to southern Peru. Kerogens range from mature in the foreland to overmature in the thrust belt. Permian to Carboniferous deposition in local restricted basins formed organic-rich shales and carbonates with very good original oil/gas potential, principally in northern Bolivia and southern Peru. Late Triassic to early Jurassic marine shales and limestones, deposited in deep, narrow, basins from Ecuador to north-central maturity. Locally, in the Cuyo rift basin of northern Argentina, a Triassic lacustrine unit is a very good, mature oil source. Early Cretaceous to Jurassic marine incursions into the back-arc basins of Chile-Argentina deposited shales and limestones. Although time transgressive (younging to the south), this system is the principal source in southern back-arc basins, with best potential in Neuquen, where three intervals are stacked A late Cretaceous marine transgressive shale is the most important source in northern South America. The unit includes the La Luna and equivalents extending from Trinidad through Venezuela, Colombia, Ecuador, and into northern Peru. Elsewhere in South America upper Cretaceous marine-lacustrine rocks are a possible source in the Altiplano and Northwest basins of Bolivia and Argentina. Middle Miocene to Oligocene source system includes shallow marine, deltaic, and lacustrine sediments from Trinidad to northern Peru.

  20. Oil-source correlation study in northeastern Alaska

    USGS Publications Warehouse

    Anders, D.E.; Magoon, L.B.

    1986-01-01

    The occurrence of numerous oil-stained outcrops across the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska indicates that commercial hydrocarbons could be present in the subsurface of this region. In addition, this region is flanked by two important oil provinces-the Prudhoe Bay area to the west and the Mackenzie delta to the east. To begin to understand the petroleum resource potential of ANWR, we evaluated the source rock quality and thermal maturity of five rock units ranging in age from Triassic to early Tertiary: Shublik Formation, Kingak Shale, pebble shale unit, Hue Shale and Canning Shale. We also compared ANWR oils using stable carbon isotope ratios, tricyclic terpane ratios, and saturate/aromatic hydrocarbon ratios. The organic carbon content of the five rock units range from an average of 1.6 to 4.0 wt%. Cretaceous rocks from the coastal plain are thermally immature (vitrinite reflectance <0.5%) and in the southern mountains thermally mature to overmature (vitrinite reflectance 1.0-1.8%). In general, type III organic matter predominates in the Kingak Shale, pebble shale unit, and Canning Shale, and types II and III in the Hue Shale. ANWR oils are divided into three groups: (1) Jago oil type, includes oils from Angun Point, Katakturuk River and Jago River; (2) Manning oil type, from Manning Point near the coast of the Beaufort Sea; and (3) Kavik oil type, from Kavik west of the Canning River. None of the three oil types of ANWR compares favorably with the economically important oils from Prudhoe Bay and the National Petroleum Reserve of Alaska (NPRA). The most promising source rock for the otherd ANWR oil types could not be type II units of the Hue Shale. Possible source rocks for the other ANWR oil types could not be established. ?? 1986.

  1. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  2. Source rock potential of middle cretaceous rocks in Southwestern Montana

    USGS Publications Warehouse

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J.; Pawlewicz, M.J.

    1996-01-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S1+S2) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% Ro. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% Ro, and at Big Sky Montana, where vitrinite reflectance averages 2.5% Ro. At both localities, high Ro values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  3. Pyromat II micropyrolysis of source rocks and oil shales: Effects of native content and sample size on T sub max values and kinetic parameters

    SciTech Connect

    Reynolds, J.G.; Murray, A.

    1991-01-01

    The Pyromat 2 micropyrolyzer can routinely measure kinetics on standard shales and source rocks. However, when examining samples which have high native bitumen contents, samples with high TOC and native bitumen contents, asphaltenes, tar sands, and other non-kerogen type materials, the pyrolysis profiles sometimes deviate from normal expected behavior. Some of the deviant features are: (1) evolution before the maximum assigned to kerogen breakdown, (2) broadening of the maximum assigned to kerogen breakdown and shifting in T{sub max} with increasing sample size, and (3) artifacts in activation energy distributions derived in kinetic analyses. This report examines these features in more detail and offers potential experimental solutions to circumvent problems created by these features. 9 refs., 9 figs., 5 tabs.

  4. New depositional models for Cretaceous source rocks

    SciTech Connect

    Kauffman, E.G.; Villamil, T. )

    1993-02-01

    The Cretaceous marks one of the greatest periods of source rock development in geologic history, especially in coastal and epi-continental marine basins where the number, duration, and geographic extent of Corg-rich intervals exceeds that of oceanic basins. Large-scale factors regulating Cretaceous source rocks include sealevel, sedimentation rate/type, paleoclimate and marine thermal gradients, paleoceanography (circulation, stratification, chemistry, upwelling, nutrient supply), and surface water productivity. Marine dispositional settings favored as models for Corg concentration include silled and tectonically depressed basins, intersection of OMZ's with shallow continental seas, coastal upwelling, highly stratified shallow seas, and oceanic anoxic events (OAE's). All of these settings are thought to be characterized by stagnant, anoxic/highly dysoxic water masses above the sediment-water interface, and highly stressed benthic environments. This seemingly supported by fine lamination, spare bioturbation, high pyrite and Corg content of most source rocks. But high-resolution (cm-scale) sedimentologic, paleobiologic, and geochemical analyses of Jurassic-Cretaceous source rocks reveal, instead, dynamic benthic environments with active currents, episodically crowded with diverse life in event communities, and persistently characterized by longer term, low diversity resident benthic communities. These characteristics indicate rapidly fluctuating, predominantly dysoxic to oxic waters at and above the sediment-water interface for most Corg-rich black shales. A new model for source rock generation is proposed which retains the redox boundary at or near the sediment-water interface over large areas of seafloor, in part aided by extensive development of benthic microbial mats which may contribute up to 30% of the Corg to marine source rocks.

  5. Major marine source rocks and stratigraphic cycles

    SciTech Connect

    Duval, B.C.

    1995-11-01

    The identification of continental encroachment cycles and subcycles by using sequence stratigraphy can assist explorationists in locating source rocks. The continental encroachment cycles are associated with the breakup of the supercontinents and fit a smooth long-term eustatic curve. They are first order, with a duration greater than 50 m.y., and are composed of transgressive and regressive phases inducing major changes in shoreline. The limit between the transgressive and regressive phases corresponds to a major downlap surface, and major marine source rocks are often found in association with this surface, particularly in the northern hemisphere. Potential {open_quotes}secondary{close_quotes} source rock intervals can also be sought by sequence stratigraphy because each continental encroachment cycle is composed of several subcycles, and the same configuration of a regressive forestepping phase overlying a transgressive backstepping phase also creates a downlap surface that may correspond with organic-rich intervals. The stratigraphic distribution of source rocks and related reserves fits reasonably well with continental encroachment cycles and subcycles. For instance, source rocks of Silurian, Upper Jurassic, and Middle-Upper Cretaceous are associated with eustatic highs and bear witness to this relationship. The recognition and mapping of such downlap surfaces is therefore a useful step to help map source rocks. The interpretation of sequence stratigraphy from regional seismic lines, properly calibrated with geochernical data whenever possible, can be of considerable help in the process. Several examples from around the world illustrate the power of the method: off-shore of eastern Venezuela, coastal basin of Angola, western Africa, the North Sea, south Algeria, and the North Caucasian trough.

  6. An overview on source rocks and the petroleum system of the central Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Böcker, Johannes; Littke, Ralf; Forster, Astrid

    2017-03-01

    The petroleum system of the Upper Rhine Graben (URG) comprises multiple reservoir rocks and four major oil families, which are represented by four distinct source rock intervals. Based on geochemical analyses of new oil samples and as a review of chemical parameter of former oil fields, numerous new oil-source rock correlations were obtained. The asymmetric graben resulted in complex migration pathways with several mixed oils as well as migration from source rocks into significantly older stratigraphic units. Oldest oils originated from Liassic black shales with the Posidonia Shale as main source rock (oil family C). Bituminous shales of the Arietenkalk-Fm. (Lias α) show also significant source rock potential representing the second major source rock interval of the Liassic sequence. Within the Tertiary sequence several source rock intervals occur. Early Tertiary coaly shales generated high wax oils that accumulated in several Tertiary as well as Mesozoic reservoirs (oil family B). The Rupelian Fish Shale acted as important source rock, especially in the northern URG (oil family D). Furthermore, early mature oils from the evaporitic-salinar Corbicula- and Lower Hydrobienschichten occur especially in the area of the Heidelberg-Mannheim-Graben (oil family A). An overview on potential source rocks in the URG is presented including the first detailed geochemical source rock characterization of Middle Eocene sediments (equivalents to the Bouxwiller-Fm.). At the base of this formation a partly very prominent sapropelic coal layer or coaly shale occurs. TOC values of 20-32 % (cuttings) and Hydrogen Index (HI) values up to 640-760 mg HC/g TOC indicate an extraordinary high source rock potential, but a highly variable lateral distribution in terms of thickness and source rock facies is also supposed. First bulk kinetic data of the sapropelic Middle Eocene coal and a coaly layer of the `Lymnäenmergel' are presented and indicate oil-prone organic matter characterized by low

  7. An overview on source rocks and the petroleum system of the central Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Böcker, Johannes; Littke, Ralf; Forster, Astrid

    2016-05-01

    The petroleum system of the Upper Rhine Graben (URG) comprises multiple reservoir rocks and four major oil families, which are represented by four distinct source rock intervals. Based on geochemical analyses of new oil samples and as a review of chemical parameter of former oil fields, numerous new oil-source rock correlations were obtained. The asymmetric graben resulted in complex migration pathways with several mixed oils as well as migration from source rocks into significantly older stratigraphic units. Oldest oils originated from Liassic black shales with the Posidonia Shale as main source rock (oil family C). Bituminous shales of the Arietenkalk-Fm. (Lias α) show also significant source rock potential representing the second major source rock interval of the Liassic sequence. Within the Tertiary sequence several source rock intervals occur. Early Tertiary coaly shales generated high wax oils that accumulated in several Tertiary as well as Mesozoic reservoirs (oil family B). The Rupelian Fish Shale acted as important source rock, especially in the northern URG (oil family D). Furthermore, early mature oils from the evaporitic-salinar Corbicula- and Lower Hydrobienschichten occur especially in the area of the Heidelberg-Mannheim-Graben (oil family A). An overview on potential source rocks in the URG is presented including the first detailed geochemical source rock characterization of Middle Eocene sediments (equivalents to the Bouxwiller-Fm.). At the base of this formation a partly very prominent sapropelic coal layer or coaly shale occurs. TOC values of 20-32 % (cuttings) and Hydrogen Index (HI) values up to 640-760 mg HC/g TOC indicate an extraordinary high source rock potential, but a highly variable lateral distribution in terms of thickness and source rock facies is also supposed. First bulk kinetic data of the sapropelic Middle Eocene coal and a coaly layer of the `Lymnäenmergel' are presented and indicate oil-prone organic matter characterized by low

  8. Aspalts, oils, and bituminous rocks for the Dead Sea area-A geochemical correlation study

    SciTech Connect

    Spiro, B.; Whelte, D.G.; Rullkoetter, J.; Schaefer, R.G.

    1983-07-01

    Oils and asphalts (gilsonite) form the Dead Sea area, Isreal, were characterized by bulk composition, specific C/sub 15/ hydrocarbons (n-alkalines, isoprenoids, steranes, triterpanes), and aromatics including sulfur compounds and light hydrocarbons (C/sub 2/ to C/sub 8/ molecular range). These indicators, complemented by literature data (sulfur content, sulfur isotope composition and distribution of petroporphyrins) define the oils and asphalts as belonging to a single geochemical province. The geochemical characteristecs suggest a source bacterial reworked algae and a source rock poor in clay minerals, probably a calcareous rock. Calcareous bituminous rocks of the Campanian-Maestrichtian Ghareb Formation are exposed on the margin of the Dead Sea graben, on dounwarped blocks, and they probably extend under the thick graben fill. The agreement of the geochemical indicators suggests that these bituminous rocks are a potential source of the asphalts and oils in the Dead Sea area. Differences between the various types of hydrocarbon occurrences are due to a combination of several effects such as variations in source material, the thermal history of the different downwarped blocks, water washing, and biodegradation. Differences in maturation are pronounced: the bituminous rocks and asphalts are immature, oils are derived from source rocks in an initial stage of petroleum generation.

  9. Petroleum source rock potential on Jamaica

    SciTech Connect

    Rodrigues, K.

    1983-01-10

    By means of standard geochemical techniques, geologists evaluated the hydrocarbon source rock potential of Jamaican shales and mudstones in terms of the amount, type, and maturity of the organic matter preserved in these sediments. Samples taken from outcrops and well cores revealed that shales from the Chapelton and Windsor formations may have the best potential for hydrocarbon generation.

  10. Source of oils in Gulf Coast Cenozoic reservoirs

    SciTech Connect

    Curtis, D.M. )

    1989-09-01

    Many Gulf Coast geologists have assumed that shales interbedded with or adjacent to the reservoir sandstones are source rocks for oils in Cenozoic reservoirs, but few source-rock quality shales have been identified in Cenozoic strata. Reservoirs and their associated shales are in thermally immature and organic-poor intervals. Based on geothermal gradient, age, and depth, it can be shown that thermally mature source rocks should be present in older slope shales beneath each producing trend. Assumptions regarding the source rock potential of the interbedded thermally immature shales derive from the fact that hydrocarbons migrated into traps soon after burial of the reservoir (early migration). Early migration from the source rock was therefore also assumed (shallow burial, early migration model). Review of the geochemical requirements for a source rock shows that geochemical constraints demand late migration from the source rock after many thousands of feet of burial (deep burial, late migration model). Geological and geochemical concepts are compatible, however, if migration out of the source rock was late (long after deposition and deep burial of the source rock) but migration into the reservoir was early (soon after shallow burial of the reservoir and trap system).

  11. Reservoir, seal, and source rock distribution in Essaouira Rift Basin

    SciTech Connect

    Ait Salem, A. )

    1994-07-01

    The Essaouira onshore basin is an important hydrocarbon generating basin, which is situated in western Morocco. There are seven oil and gas-with-condensate fields; six are from Jurassic reservoirs and one from a Triassic reservoir. As a segment of the Atlantic passive continental margin, the Essaouira basin was subjected to several post-Hercynian basin deformation phases, which resulted in distribution, in space and time, of reservoir, seal, and source rock. These basin deformations are synsedimentary infilling of major half grabens with continental red buds and evaporite associated with the rifting phase, emplacement of a thick postrifting Jurassic and Cretaceous sedimentary wedge during thermal subsidence, salt movements, and structural deformations in relation to the Atlas mergence. The widely extending lower Oxfordian shales are the only Jurassic shale beds penetrated and recognized as potential and mature source rocks. However, facies analysis and mapping suggested the presence of untested source rocks in Dogger marine shales and Triassic to Liassic lacustrine shales. Rocks with adequate reservoir characteristics were encountered in Triassic/Liassic fluvial sands, upper Liassic dolomites, and upper Oxfordian sandy dolomites. The seals are provided by Liassic salt for the lower reservoirs and Middle to Upper Jurassic anhydrite for the upper reservoirs. Recent exploration studies demonstrate that many prospective structure reserves remain untested.

  12. Laser cleaning of oil spill on coastal rocks

    NASA Astrophysics Data System (ADS)

    Kittiboonanan, Phumipat; Rattanarojpan, Jidapa; Ratanavis, Amarin

    2015-07-01

    In recent years, oil spills have become a significant environmental problem in Thailand. This paper presents a laser treatment for controlled-clean up oil spill from coastal rocks. The cleaning of various types of coastal rocks polluted by the spill was investigated by using a quasi CW diode laser operating at 808 nm. The laser power was attempted from 1 W to 70 W. The result is shown to lead to the laser removal of oil spill, without damaging the underlying rocks. In addition, the cleaning efficiency is evaluated using an optical microscope. This study shows that the laser technology would provide an attractive alternative to current cleaning methods to remove oil spill from coastal rocks.

  13. Northeast Kansas well tests oil, gas possibilities in Precambrian rocks

    USGS Publications Warehouse

    Merriam, D.F.; Newell, K.D.; Doveton, J.H.; Magnuson, L.M.; Lollar, B.S.; Waggoner, W.M.

    2007-01-01

    Tests for oil and gas prospects in Precambrian rocks in Northeast Kansas is currently being undertaken by WTW Operating LLC. It drilled in late 2005 the no.1 Wilson well with a depth of 5,772ft, 1,826ft into the Precambrian basement on a venture testing the possibility of oil and gas in the crystalline rocks. The basin extends northeast into Nebraska and Iowa and is a shallow cratonic basin filled with Paleozoic segments. The rocks have been previously though as not a potential for oil and gas due to the rocks' crystalline and nonporous character with the exception of the Midcontinent rift system (MRS). Later, though, small quantities of oil have been produced on the Central Kansas uplift from granite wash while the wells also produced low-Btu with swabbing operations. The recovered gas contained considerable nonflammable components of nitrogen, carbon dioxide and helium which equates to a low btu content of 283.

  14. Novel maturity parameters for mature to over-mature source rocks and oils based on the distribution of phenanthrene series compounds.

    PubMed

    Wang, Zixiang; Wang, Yongli; Wu, Baoxiang; Wang, Gen; Sun, Zepeng; Xu, Liang; Zhu, Shenzhen; Sun, Lina; Wei, Zhifu

    2016-03-01

    Pyrolysis experiments of a low-mature bitumen sample originated from Cambrian was conducted in gold capsules. Abundance and distribution of phenanthrene series compounds in pyrolysis products were measured by GC-MS to investigate their changes with thermal maturity. Several maturity parameters based on the distribution of phenanthrene series compounds have been discussed. The results indicate that the distribution changes of phenanthrene series compounds are complex, and cannot be explained by individual reaction process during thermal evolution. The dealkylation cannot explain the increase of phenanthrene within the EasyRo range of 0.9% ∼ 2.1%. Adding of phenanthrene into maturity parameters based on the methylphenanthrene isomerization is unreasonable, even though MPI 1 and MPI 2 could be used to some extent. Two additional novel and an optimized maturation parameters based on the distribution of phenanthrene series compounds are proposed and their relationships to EasyRo% (x) are established: log(MPs/P) = 0.19x + 0.08 (0.9% < EasyRo% < 2.1%); log(MPs/P) = 0.64x - 0.86 (2.1% < EasyRo% < 3.4%); log(DMPs/TMPs) = 0.71x - 0.55 (0.9% < EasyRo% < 3.4%); log(MTR) = 0.84x - 0.75 (0.9% < EasyRo% < 3.4%). These significant positive correlations are strong argument for using log(MPs/P), log(DMPs/TMPs) and log(MTR) as maturity parameters, especially for mature to over-mature source rocks.

  15. Asphalts, oils, and bituminous rocks from the Dead Sea Area-A geochemical correlation study

    SciTech Connect

    Spiro, B.; Rullkotter, J.; Schaefer, R.G.; Welte, D.H.

    1983-07-01

    Oils and asphalts (gilsonite) from the Dead Sea area, Israel, were characterized by bulk composition, specific C/sub 15//sub +/ hydrocarbons (n-alkanes, isoprenoids, steranes, triterpanes), and aromatics including sulfur compounds and light hydrocarbons (C/sub 2/ to C/sub 8/ molecular range). These indicators, complemented by literature data (sulfur content, sulfur isotope composition and distribution of petroporphyrins) define the oils and asphalts as belonging to a single geochemical province. The geochemical characteristics suggest a source material of bacterially reworked algae and a source rock poor in clay minerals, probably a calcareous rock. Calcareous bituminous rocks of the CampanianMaestrichtian Ghareb Formation are exposed on the margin of the Dead Sea graben, on downwarped blocks, and they probably extend under the thick graben fill. The agreement of the geochemical indicators suggests that these bituminous rocks are a potential source of the asphalts and oils in the Dead Sea area. Differences between the various types of hydrocarbon occurrences are due to a combination of several effects such as variations in source material, the thermal history of the different downwarped blocks, water washing, and biodegradation. The distribution characteristics of hydrocarbons (C/sub 6/ to C/sub 35/ and C/sub 2/ to C/sub 8/) is sensitive to biodegradation and/or water washing. The aromatic fractions (except very soluble compounds like benzene, toluene, etc) are less affected by these processes and record the variability due to source and possibly thermal history. The interpretation of the triterpane and sterane distribution corroborates that of other hydrocarbons with respect to maturation and type of source rock. Differences in maturation are pronounced: the bituminous rocks and asphalts are immature, and the oils are derived from source rocks in an initial stage of petroleum generation.

  16. Source rock study of Smackover Formation from east Texas to Florida

    SciTech Connect

    Sassen, R.; Moore, C.H.

    1987-05-01

    Analyses of core and crude oil samples indicate that the laminated lime mudstone facies of the lower Smackover Formation is a significant source rock across the trend. The source facies was deposited in an anoxic and hypersaline environment that permitted preservation of algal kerogen. Moreover, source potential also occurs in undifferentiated Gilmer-Smackover rocks of east Texas deposited in a carbonate slope environment. Thermal maturity is the key factor that controls the generation of crude oil by the carbonate source facies and the eventual destruction of hydrocarbons in upper Smackover and Norphlet reservoirs. Once the regional thermal maturity framework is understood, it is possible to construct a source rock model that explains the distribution of crude oil, gas condensate, and methane across the trend. Calculated thermal maturity histories provide insight to the timing of hydrocarbon generation and migration and to the timing of hydrocarbon destruction and sulfate reduction in deep reservoirs. Basic geochemical strategies for exploration are suggested. One strategy is to focus exploration effort on traps formed prior to the time of crude oil migration that were nearest to effective source rocks. Another strategy is to avoid drilling reservoir rocks that are thermally overmature for preservation of hydrocarbons.

  17. Source rock, maturity data indicate potential off Namibia

    SciTech Connect

    Bray, R.; Lawrence, S.; Swart, R.

    1998-08-10

    Namibia`s territorial waters occupy a large portion of West Africa`s continental shelf. The area to the 1,000 m isobath is comparable in size to the combined offshore areas of Gabon, Congo, Zaire, and Angola. Around half as much again lies in 1,000--2,500 m of water. The whole unlicensed part of this area will be open for bidding when the Third Licensing Round starts Oct. 1, 1998. Offshore Namibia is underexplored by drilling with only seven exploration wells drilled. Shell`s Kudu field represents a considerable gas resource with reserves of around 3 tcf and is presently the only commercial discovery.Namibia`s offshore area holds enormous exploration potential. Good quality sandstone reservoirs are likely to be distributed widely, and a number of prospective structural and stratigraphic traps have been identified. The recognition of Cretaceous marine oil-prone source rocks combined with the results of new thermal history reconstruction and maturity modeling studies are particularly significant in assessment of the oil potential. The paper discusses resource development and structures, oil source potential, maturity, and hydrocarbon generation.

  18. Controls on the distribution of Cretaceous source rocks in South America

    SciTech Connect

    Vear, A. )

    1993-02-01

    More than thirty South American basins, exhibiting a variety of structural styles, contain petroleum source rocks of Cretaceous age. However, the presence of truly [open quote]world-class[close quote] source rocks, capable of supplying multi-billion barrel oil provinces, is restricted to relatively few basins and appears to be primarily a function of large scale Cretaceous tectonic setting. In Early Cretaceous times the best source rocks were preserved in both a southern ocean and in the rift between South America and Africa. By the Late Cretaceous, these southern and eastern continental limits had become narrow passive margins. In contrast, on the northern continental margin a wide shelf to a restricted tropical sea was developing at this time. Periodic upwelling enhanced surface productivity on this shelf, which led to development of some of the world's richest source rocks. On the tectonically active western margin moderate quality source rocks were forming in a series of back-arc basins, whilst further west, in the Pacific fore-arc, organic-rich intervals were rarely deposited. This article documents what is known about each of the explored basins (including the volume and character of discovered petroleums), it investigates the geologic factors which governed the richness and quality of petroleum source rocks and it assesses how continued tectonic activity has modified or even destroyed primary source quality. Finally it predicts which of the as yet underexplored basins should contain good quality source rocks and could become prolific petroleum provinces of the future.

  19. Streaming Potential In Rocks Saturated With Water And Oil

    NASA Astrophysics Data System (ADS)

    Tarvin, J. A.; Caston, A.

    2011-12-01

    Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).

  20. Marine petroleum source rocks and reservoir rocks of the Miocene Monterey Formation, California, U.S.A

    USGS Publications Warehouse

    Isaacs, C.M.

    1988-01-01

    The Miocene Monterey Formation of California, a biogenous deposit derived mainly from diatom debris, is important both as a petroleum source and petroleum reservoir. As a source, the formation is thought to have generated much of the petroleum in California coastal basins, which are among the most prolific oil provinces in the United States. Oil generated from the Monterey tends to be sulfur-rich and heavy (<20° API), and has chemical characteristics that more closely resemble immature source extracts than "normal" oil. Thermal-maturity indicators in Monterey kerogens appear to behave anomalously, and several lines of evidence indicate that the oil is generated at lower than expected levels of organic metamorphism. As a reservoir, the Monterey is important due both to conventional production from permeable sandstone beds and to fracture production from fine-grained rocks with low matrix permeability. Fractured reservoirs are difficult to identify, and conventional well-log analysis has not proven to be very useful in exploring for and evaluating these reservoirs. Lithologically similar rocks are broadly distributed throughout the Circum-Pacific region, but their petroleum potential is unlikely to be realized without recognition of the distinctive source and reservoir characteristics of diatomaceous strata and their diagenetic equivalents.

  1. Experiment plan Sandia oil shale Rock Fragmentation Research Program

    SciTech Connect

    Parrish, R.L.

    1985-04-01

    Sandia National Laboratories is engaged in a program to develop a prescriptive design capability for the in situ recovery of oil from shale. This will provide industry a firm basis for evaluating the technical and economic potential of a given process. Emphasis is being placed on the development of numerical models that, for given site characteristics (material properties, geological structure, etc.), would provide predictions of oil yield for a particular resource. The models include rock fragmentation models that would provide predictions of rubble bed characteristics; these rubble beds would then be evaluated with retort process models for predictions of oil yield. The Rock Fragmentation Research Program being conducted to develop the rock fragmentation models includes field experiments specifically designed to acquire quantitative diagnostic and response measurements for use in the model development. Two well-instrumented single blastwell cratering experiments were conducted in this program during 1983 at the DOE Anvil Points Mine. The Anvil Points Mine was closed in 1984; continuation of the experimental program will be at the Exxon Co., USA Colony Mine. This report describes the test plan for the continuation of the rock fragmentation experiments. A discussion of program objectives and testing philosophy is provided, followed by a description of the experiments thought necessary to accomplish the program objectives. A detailed design and instrumentation plan is provided for the first series of tests to be conducted. 38 refs., 13 figs., 6 tabs.

  2. Applying Bioaugmentation to Treat DNAPL Sources in Fractured Rock

    DTIC Science & Technology

    2017-03-27

    GUIDANCE DOCUMENT Applying Bioaugmentation to Treat DNAPL Sources in Fractured Rock ESTCP Project ER-201210 MARCH 2017 Charles Schaefer, Ph.D...12-C-0062 Applying Bioaugmentation to Treat DNAPL Sources in Fractured Rock 5b. GRANT NUMBER NA 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S...Approved for Public Release, Distribution is Unlimited 13. SUPPLEMENTARY NOTES None 14. ABSTRACT Management of fractured rock sites impacted by

  3. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  4. The overthrusted Zaza Terrane of middle Cretaceous over the North American continental carbonate rocks of upper Jurassic-Lower Cretaceous age - relationships to oil generation

    SciTech Connect

    Echevarria Rodriguez, G.; Castro, J.A.; Amaro, S.V.

    1996-08-01

    The Zaza Terrane is part of the Caribbean plate thrust over the southern edge of the North American basinal and platform carbonate rocks of upper Jurassic-Lower Cretaceous age. Zaza Terrane are volcanic and ophiolitic rocks of Cretaceous age. The ophiolites are mostly serpentines which behave as reservoirs and seals. All Cuban oil fields are either within Zaza Terrane or basinal carbonates underneath, or not far away to the north of the thrust contacts. It appears that the overthrusting of the Zaza Terrane caused the generation of oil in the basinal carbonate source rocks underneath, due to the increase of rock thickness which lowered the oil window to a deeper position and increased the geothermal gradient. Oil generation was after thrusting, during post-orogenic. API gravity of oil is light toward the south and heavy to very heavy to the north. Source rocks to the south are probably of terrigenous origin.

  5. Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 billion years

    NASA Astrophysics Data System (ADS)

    Jackson, M. J.; Powell, T. G.; Summons, R. E.; Sweet, I. P.

    1986-08-01

    The discovery of indigenous live oil in 1.4-Gyr-old rocks in the McArthur Basin of northern Australia is reported. Previously reported occurrences of indigenous Precambrian oil are less than 1 Gyr old. Potential petroleum source rocks in the McArthur Basin range in age from 1.4-1.7 Gyr and were deposited in marine and lacustrine environments. In parts of the basin they have been buried sufficiently deeply to have generated hydrocarbons. They span the period corresponding to the appearance of eukaryotic organisms, and because of their low degree of thermal alteration, they provide a valuable resource for the study of primitive biota through their hydrocarbon biomarkers. The hydrocarbon composition of the oil is consistent with a derivation from organic matter of prokaryotic origin. These results show that exploration of previously ignored mid-Proterozoic sediments may lead to the discovery of new reserves of oil.

  6. Source facies and oil families of the Malay Basin, Malaysia

    SciTech Connect

    Creaney, S.; Hussein, A.H. ); Curry, D.J.; Bohacs, K.M. ); Hassan, R. )

    1994-07-01

    The Malay Basin consists of a number of separate petroleum systems, driven exclusively by nonmarine source rocks. These systems range from lower Oligocene to middle Miocene and show a progression from lacustrine-dominated source facies in the lower Oligocene to lower Miocene section to coastal plain/delta plain coal-related sources in the lower to middle Miocene section. Two lacustrine sources are recognized in the older section, and multiple source/reservoir pairs are recognized in the younger coaly section. The lacustrine sources can be recognized using well-log analysis combined with detailed core and sidewall core sampling. Chemically, they are characterized by low pristane/phytane ratios, low oleanane contents, and a general absence of resin-derived terpanes. These sources have TOCs in the 1.0-4.0% range and hydrogen indices of up to 750. In contrast, the coal-related sources are chemically distinct with pristane/phytane ratios of up to 8, very high oleanane contents, and often abundant resinous compounds. All these sources are generally overmature in the basin center and immature toward the basin margin. The oils sourced from all sources in the Malay Basin are generally low in sulfur and of very high economic value. Detailed biomarker analysis of the oils in the Malay Basin has allowed the recognition of families associated with the above sources and demonstrated that oil migration has been largely strata parallel with little cross-stratal mixing of families.

  7. The effect of oil-water-rock partitioning on the occurrence of alkylphenols in petroleum systems

    NASA Astrophysics Data System (ADS)

    Taylor, Paul; Larter, Steve; Jones, Martin; Dale, Jason; Horstad, Idar

    1997-05-01

    Low molecular weight (Co-C3) alkylphenols are ubiquitous constituents of crude oils and formation waters of petroleum systems, and they represent legislatively monitored pollutants in produced oils and waters from offshore petroleum facilities. Their origin and the controls on their abundance are uncertain. Analysis of forty-four oils from various petroleum provinces, together with laboratory partitioning experiments, has provided further information on these controls. Although phenols are clearly partitioned between oil and water in petroleum systems, the consistency of most nondegraded petroleum phenol distributions (despite the apparent decrease of phenol concentrations in petroleums with increasing secondary migration distance) requires phenol partitioning between petroleum, water, and solid phases - chiefly kerogen in the carrier bed. The retention of significant phenol concentrations in petroleums that have migrated tens of kilometres does indicate that petroleum typically only equilibrates with minor volumes of rock and associated waters. Laboratory experiments indicate that oils which have migrated ˜25 km in the North Sea Tampen Spur through Jurassic sandstones may have equilibrated with less than 20 vol of rock and water, and possibly much less than 1 vol, depending on the sorbing phases within the rock (i.e., mineral or organic matter) and the wetting phase (oil or water). We conclude, supporting the hypothesis of Ioppolo-Armanios et al. (1995), that although ortho-substituted isomers dominate the phenol distributions of many petroleums, this reflects catalytic alkylation/isomerisation of unknown alkylphenol precursors in source rocks, rather than selective removal of meta- and para-substituted alkylphenol isomers from petroleum by water washing.

  8. The cretaceous source rocks in the Zagros Foothills of Iran: An example of a large size intracratonic basin

    SciTech Connect

    Bordenave, M.L. ); Huc, A.Y. )

    1993-02-01

    The Zagros orogenic belt of Iran is one of the world most prolific petroleum producing area. However, most of the oil production is originated from a relatively small area, the 60,000 km[sup 2] wide Dezful Embayment which contains approximately 12% of the proven oil global reserves. The distribution of the oil and gas fields results from the area extent of six identified source rock layers, their thermal history and reservoir, cap rock and trap availability. In this paper, the emphasis is three of the layers of Cretaceous sources rocks. The Garau facies was deposited during the Neocomian to Albian interval over Lurestan, Northeast Khuzestan and extends over the extreme northeast part of Fars, the Kazhdumi source rock which deposited over the Dezful Embayment, and eventually the Senonian Gurpi Formation which has marginal source rock characteristics in limited areas of Khuzestan and Northern Fars. The deposition environment of these source rock layers corresponds to semipermanent depressions, included in an overall shallow water intracratonic basin communicating with the South Tethys Ocean. These depressions became anoxic when climatic oceanographical and geological conditions were adequate, i.e., humid climate, high stand water, influxes of fine grained clastics and the existence of sills separating the depression from the open sea. Distribution maps of these source rock layers resulting from extensive field work and well control are also given. The maturation history of source rocks is reconstructed from a set of isopachs. It was found that the main contributor to the oil reserves is the Kazhdumi source rock which is associated with excellent calcareous reservoirs.

  9. Geochemical character and origin of oils in Ordovician reservoir rock, Illinois and Indiana, USA

    SciTech Connect

    Guthrie, J.M.; Pratt, L.M.

    1995-11-01

    Twenty-three oils produced from reservoirs within the Ordovician Galena Group (Trenton equivalent) and one oil from the Mississippian Ste. Genevieve Limestone in the Illinois and Indiana portions of the Illinois basin are characterized. Two end-member oil groups (1) and (2) and one intermediate group (1A) are identified using conventional carbon isotopic analysis of whole and fractionated oils, gas chromatography (GC) of saturated hydrocarbon fractions, isotope-ratio-monitoring gas chromatography/mass spectrometry (irm-GC/MS) of n-alkanes ranging from C{sub 15} to C{sub 25}, and gas chromatography/mass spectrometry (GC/MS) of the aromatic hydrocarbon fractions. Group 1 is characterized by high odd-carbon predominance in mid-chain n-alkanes (C{sub 15}-C{sub 19}), low abundance Of C{sub 20+}, n-alkanes, and an absence of pristane and phytane. Group IA is characterized by slightly lower odd-carbon predominance of mid-chain n-alkanes, greater abundance of C{sub 20+} n-alkanes compared to group 1, and no pristane and phytane. Conventional correlations of oil to source rock based on carbon isotopic-type curves and hopane (m/z 191) and sterane (m/z 217) distributions are of limited use in distinguishing Ordovician-reservoired oil groups and determining their origin. Oil to source rock correlations using the distribution and carbon isotopic composition of n-alkanes and the m/z 133 chromatograms of n-alkylarenes show that groups 1 and 1A originated from strata of the Upper Ordovician Galena Group. Group 2 either originated solely from the Upper Ordovician Maquoketa Group or from a mixture of oils generated from the Maquoketa Group and the Galena Group. The Mississippian-reservoired oil most likely originated from the Devonian New Albany Group. The use of GC, irm-GC/MS, and GC/MS illustrates the value of integrated molecular and isotopic approaches for correlating oil groups with source rocks.

  10. Subsalt source rock maturity in the Sudanese Red Sea

    SciTech Connect

    Geiger, C. |; Pigott, J.; Forgotson, J.M. Jr.

    1995-08-01

    Thermal modeling can demonstrate that stratal salt deposits may provide a significant heat conduit and conceptually provide a basis for hypothermal fairways of hydrocarbon aspiration in regions of dominant thermal overmaturity. However, accurate evaluation of thermal maturity suppression by modeling must be geologically constrained. With respect to the Tertiary Tokar Delta of offshore Sudan, ID tectonic subsidence analysis of boreholes in the region reveals at least two major pu1ses of crustal extension and associated heating (24-20 m.a. and 5.4-2.7 m.a.). Integrating the borehole geochemical information with a Tokar Delta seismic stratigraphic interpretation allows the construction of constrained 2D thermal basin models through time using Procom BMT. The best match between the observed and modelled vitrinite reflectance values is achieved by using a two phase tectonic stretching model with pulses at 22{+-}2 m.a. and 4{+-}1.5 m.a. and incremental subcrustal stretching factors which vary between 2.65-2.75. Utilizing these parameters suggests the top of the oil window to occur within the Zeit Formation and bottom of the oil window to exist at the base of the Dungunab Salt. As only subsalt source rocks are observed, this model would tend to negate the possibility of the occurrence of liquid hydrocarbons. For the Tokar Delta the presently observed general high heat flow is so high that it leads in all cases to overcooked organics for a subsalt source. However, that hydrocarbons in the post-salt Zeit Formation of the Tokar Delta have been discovered suggests significant secondary hydrocarbon migration to have occurred within the late Miocene (15.4 - 5.4 m.a.). Potential migration pathways would be a1ong basement-induced fault conduits. If true, similar secondary migration play concepts may be applicable elsewhere in the Red Sea.

  11. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect

    Claypool, G.E.; Mancini, E.A.

    1989-07-01

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  12. Volga-Ural basin, U. S. S. R. : Rich petroleum systems with a single source rock

    SciTech Connect

    Ulmishek, G.F. )

    1991-03-01

    The Volga-Ural basin has produced about 40 billion barrels of oil and still produces a billion barrels annually. The productive Middle Devonian-Lower Permian sequence is composed of various carbonate rocks (including reefs) with clastic intervals in the Middle Devonian-lower Frasnian, middle-upper Visean, and Middle Carboniferous. A single source-rock unit, the Frasnian Domanik Formation, 30-60 m thick, is responsible for productivity of the entire sedimentary section. The three clastic intervals and underlying carbonate strata contain the bulk of the hydrocarbon reserves. Widespread upward and downward vertical migration in this structurally simple basin is explained by imperfect regional seals. Imperfection of the seals has also resulted in a predominance of oil over gas. The best seal is the overpressured Domanik Formation itself; it separates the sedimentary section into two petroleum systems: one in underlying Middle Devonian-lower Frasnian clastics and the other in overlying clastic and carbonate rocks.

  13. Thermal and petroleum-generation history of the Mississippian Eleana Formation and Tertiary source rocks, Yucca Mountain Area, Southern Nye County, Nevada

    SciTech Connect

    Barker, C.E.

    1995-06-01

    A geochemical and geologic assessment of petroleum potential in the Yucca Mountain area indicates little remaining potential for significant oil and gas generation in the Mississippian Eleana Formation or related Paleozoic rocks, and good but a really restricted potential in Tertiary rocks in Area 8 of the Nevada Test Site. Mesozoic source rocks are not present in the Yucca Mountain area. The Tertiary source rocks in Area 8 of the Nevada Test Site are typically carbon-rich, and where hydrogen-rich, they are good oil-prone source rocks that are immature to marginally mature with respect to oil and gas generation. A geologically similar occurrence of hydrothermally altered Tertiary source rocks at north Bare Mountain retains little hydrocarbon generation capacity. The implication is that hydrocarbons were generated during hydrothermal alteration and have since migrated out of the source rocks or alive been lost during exhumation. A reconstructed thermal history of the Yucca Mountain area, based on the Eleana Formation, indicates petroleum was generated in the Late Paleozoic and possibly Early Mesozoic and that the oil was lost or metamorphosed to pyrobitumen during later heating, probably related to igneous activity. The Tertiary rocks are still capable of generating oil and gas, but little potential exists for a major hydrocarbon discovery due to the restricted occurrence of good source rocks and their marginal thermal maturity when situated away from intrusions.

  14. Structural controls on source rock distribution and maturation in southeast Turkey

    SciTech Connect

    Reed, J.D.; Ottensman, V.V.; Cushing, G.W. ); Aytuna, S. )

    1990-05-01

    Production from the western part of the Zagros fold and thrust belt southeastern Turkey is characterized by high-sulfur (2-3%) oils from middle Cretaceous Mardin Formation. The oils are generated from two carbonate sources, one from the middle Cretaceous passive margin sequence and one deposited as a part of the Upper Cretaceous foreland basin sequence. Both sources are associated with transgressive events coincident with two recognized Cretaceous oceanic anoxic events in Cenomanian-Turonian and Coniacian-Santonian. Geochemical markers in the oils substantiate the restricted, anoxic conditions characteristic of their source rock deposition. During the Upper Cretaceous compressional event, horsts formed buttresses to advancing oceanic thrust sheets. The oceanic thrust sheets consisted of the Karadut and Kocali formations, oceanic equivalents of the Mesozoic shelf. The middle and Upper Cretaceous source facies were rapidly and deeply buried by the tectonically thickened thrust sheets adjacent to the buttresses. Thick burial by the oceanic rocks was critical for thermal maturation of the sources. Geohistory modeling shows generation occurred during the Tertiary coincidental with tectonic activity that probably allowed oil migration to occur along new or reactivated Cretaceous faults.

  15. Storage of Residual Fuel Oil in Underground Unlined Rock Caverns.

    DTIC Science & Technology

    1980-12-01

    Francaise des Petroles BP, Elf Union, Shell Francaise, and Compagnie Francaise de Raffinage (Total). The company and its subsidiaries were formed with...DEC 80 D C BANKS UNCLASSIFIED WES/NP/S4.-8O-19 ti. LE VEL MISCELLANEOUS PAPER GL-80-19 31 STORAGE OF RESIDUAL FUEL OIL IN UNDERGROUND UNLINED ROCK...Ruimaia.~ indl a riiirI( le ol Air in1 wi r’ hve en coIit’Icted to enc1ouraige muiliriershnpl I[I the i 5kRM. 1) By Innf t-Ii .fi’ I ’I.]%- I "W

  16. Source-rock distribution model of the periadriatic region

    SciTech Connect

    Zappaterra, E. )

    1994-03-01

    The Periadriatic area is a mosaic of geological provinces comprised of spatially and temporally similar tectonic-sedimentary cycles. Tectonic evolution progressed from a Triassic-Early Jurassic (Liassic) continental rifting stage on the northern edge of the African craton, through an Early Jurassic (Middle Liassic)-Late Cretaceous/Eocene oceanic rifting stage and passive margin formation, to a final continental collision and active margin deformation stage in the Late Cretaceous/Eocene to Holocene. Extensive shallow-water carbonate platform deposits covered large parts of the Periadriatic region in the Late Triassic. Platform breakup and development of a platform-to-basin carbonate shelf morphology began in the Late Triassic and extended through the Cretaceous. On the basis of this paleogeographic evolution, the regional geology of the Periadriatic region can be expressed in terms of three main Upper Triassic-Paleogene sedimentary sequences: (A), the platform sequence; (B), the platform to basin sequence; and (C), the basin sequence. These sequences developed during the initial rifting and subsequent passive-margin formation tectonic stages. The principal Triassic source basins and most of the surface hydrocarbon indications and economically important oil fields of the Periadriatic region are associated with sequence B areas. No major hydrocarbon accumulations can be directly attributed to the Jurassic-Cretaceous epioceanic and intraplatform source rock sequences. The third episode of source bed deposition characterizes the final active margin deformation stage and is represented by Upper Tertiary organic-rich terrigenous units, mostly gas-prone. These are essentially associated with turbiditic and flysch sequences of foredeep basins and have generated the greater part of the commercial biogenic gases of the Periadriatic region. 82 refs., 11 figs., 2 tabs.

  17. Importance of hydrous pyrolysis studies in properly identifying source rocks of the Unita basin

    SciTech Connect

    Ruble, T.E.; Lewan, M.D.; Philp, R.P.

    1995-12-01

    The Uinta Basin in northeastern Utah historically has received considerable attention from petroleum geochemists; as a classic model of hydrocarbon generation from lacustrine source rocks. Previous work has focused primarily on the organic-rich Type-I algal kerogen contained in the Mahogany zone of the upper Green River Formation. Although recently published geochemical data suggest Mahogany zone source rocks are too immature to have generated the basin`s hydrocarbon reserves, this unit has been used as an analog for open lacustrine source rocks inferred to be buried more deeply. A series of hydrous pyrolysis experiments were conducted to examine this hypothesis. Source rocks included both the Mahogany zone and the basal Green River {open_quotes}black shale facies{close_quotes}. Compositional differences in the expelled pyrolysates suggest only the {open_quotes}black shale facies{close_quotes} is the source of the waxy crude oils produced in the Uinta Basin. Kinetic parameters derived from these experiments support such an interpretation and offer new insights for modeling hydrocarbon generation. These parameters have also been compared to previously reported values and those determined by Rock-Eval analysis.

  18. Neocomian source and reservoir rocks in the western Brooks Range and Arctic Slope, Alaska

    SciTech Connect

    Mull, C.G.; Reifenstuhl, R.R.; Harris, E.E.; Crowder, R.K.

    1995-04-01

    Detailed (1:63,360) mapping of the Tingmerkpuk sandstone and associated rocks in the Misheguk Mountain and DeLong Mountains guadrangles of the western Brooks Range thrust belt documents potential hydrocarbon source and reservoir rocks in the northern foothills of the western Delong Mountains and adjacent Colville basin of northwest Alaska. Neocomian (?) to Albian micaceous shale, litharenite, and graywacke that overlies the Tingmerkpuk represents the onset of deposition of orogenic sediments derived from the Brooks Range to the south, and the merging of northern and southern sediment sources in the Colville basin. Both the proximal and distal Tingmerkpuk facies contain clay shale interbeds and overlie the Upper Jurassic to Neocomian Kingak Shale. Preliminary geochemical data show that in the thrust belt, these shales are thermally overmature (Ro 1.4-1.6), but are good source rocks with total organic content (TOC) that ranges from 1.2 to 1.8 percent. Shale in the overlying Brookian rocks is also thermally overmature (Ro 1.2-1.5 percent), but contains up to 1.8 percent TOC from a dominantly terrigenous source, and has generated gas. In outcrops at Surprise Creek, in the foothills north of the thrust belt, the Kingak (1.9 percent TOC) and underlying Triassic Shublik Formation (4.6 percent TOC) are excellent oil source rocks with thermal maturity close to peak oil generation stage (Ro0.75-0.9 percent). These rocks have lower thermal maturity values than expected for their stratigraphic position within the deeper parts of the Colville basin and indicate anomalous burial and uplift history in parts of the basin. Preliminary apatite fission-track (AFTA) data from the thrust belt indicate a stage of rapid uplift and cooling at about 53.61 Ma.

  19. Ordovician petroleum source rocks and aspects of hydrocarbon generation in Canadian portion of Williston basin

    SciTech Connect

    Osadetz, K.G.; Snowdon, L.R.

    1988-07-01

    Accumulation of rich petroleum source rocks - starved bituminous mudrocks in both the Winnipeg Formation (Middle Ordovician) and Bighorn Group (Upper Ordovician) - is controlled by cyclical deepening events with a frequency of approximately 2 m.y. Tectonics control both this frequency and the location of starved subbasins of source rock accumulation. Deepening cycles initiated starvation of offshore portions of the inner detrital and medial carbonate facies belts. Persistence of starved offshore settings was aided by marginal onlap and strandline migration in the inner detrital facies belt, and by low carbonate productivity in the medial carbonate facies belt. Low carbonate productivity was accompanied by high rates of planktonic productivity. Periodic anoxia, as a consequence of high rates of planktonic organic productivity accompanying wind-driven equatorial upwellings, is the preferred mechanism for suppressing carbonate productivity within the epeiric sea. The planktonic, although problematic, form Gloecapsamorpha prisca Zalesskey 1917 is the main contributing organism to source rock alginites. A long-ranging alga (Cambrian to Silurian), it forms kukersites in Middle and Upper Ordovician rocks of the Williston basin as a consequence of environmental controls - starvation and periodic anoxia. Source rocks composed of this organic matter type generate oils of distinctive composition at relatively high levels of thermal maturity (transformation ratio = 10% at 0.78% R/sub o/). In the Canadian portion of the Williston basin, such levels of thermal maturity occur at present depths greater than 2950 m within a region of geothermal gradient anomalies associated with the Nesson anticline. Approximately 193 million bbl (30.7 x 10/sup 6/ m/sup 3/) of oil has been expelled into secondary migration pathways from thermally mature source rocks in the Canadian portion of the basin.

  20. Timing and petroleum sources for the Lower Cretaceous Mannville Group oil sands of northern Alberta based on 4-D modeling

    USGS Publications Warehouse

    Higley, D.K.; Lewan, M.D.; Roberts, L.N.R.; Henry, M.

    2009-01-01

    The Lower Cretaceous Mannville Group oil sands of northern Alberta have an estimated 270.3 billion m3 (BCM) (1700 billion bbl) of in-place heavy oil and tar. Our study area includes oil sand accumulations and downdip areas that partially extend into the deformation zone in western Alberta. The oil sands are composed of highly biodegraded oil and tar, collectively referred to as bitumen, whose source remains controversial. This is addressed in our study with a four-dimensional (4-D) petroleum system model. The modeled primary trap for generated and migrated oil is subtle structures. A probable seal for the oil sands was a gradual updip removal of the lighter hydrocarbon fractions as migrated oil was progressively biodegraded. This is hypothetical because the modeling software did not include seals resulting from the biodegradation of oil. Although the 4-D model shows that source rocks ranging from the Devonian-Mississippian Exshaw Formation to the Lower Cretaceous Mannville Group coals and Ostracode-zone-contributed oil to Mannville Group reservoirs, source rocks in the Jurassic Fernie Group (Gordondale Member and Poker Chip A shale) were the initial and major contributors. Kinetics associated with the type IIS kerogen in Fernie Group source rocks resulted in the early generation and expulsion of oil, as early as 85 Ma and prior to the generation from the type II kerogen of deeper and older source rocks. The modeled 50% peak transformation to oil was reached about 75 Ma for the Gordondale Member and Poker Chip A shale near the west margin of the study area, and prior to onset about 65 Ma from other source rocks. This early petroleum generation from the Fernie Group source rocks resulted in large volumes of generated oil, and prior to the Laramide uplift and onset of erosion (???58 Ma), which curtailed oil generation from all source rocks. Oil generation from all source rocks ended by 40 Ma. Although the modeled study area did not include possible western

  1. Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, northwestern China

    USGS Publications Warehouse

    Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.

    2008-01-01

    The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.

  2. Distribution, richness, quality, and thermal maturity of source rock units on the North Slope of Alaska

    USGS Publications Warehouse

    Peters, K.E.; Bird, K.J.; Keller, M.A.; Lillis, P.G.; Magoon, L.B.

    2003-01-01

    Four source rock units on the North Slope were identified, characterized, and mapped to better understand the origin of petroleum in the area: Hue-gamma ray zone (Hue-GRZ), pebble shale unit, Kingak Shale, and Shublik Formation. Rock-Eval pyrolysis, total organic carbon analysis, and well logs were used to map the present-day thickness, organic quantity (TOC), quality (hydrogen index, HI), and thermal maturity (Tmax) of each unit. To map these units, we screened all available geochemical data for wells in the study area and assumed that the top and bottom of the oil window occur at Tmax of ~440° and 470°C, respectively. Based on several assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original organic richness prior to thermal maturation.

  3. Evaporites as a source for oil

    SciTech Connect

    Schreiber, B.C.; Benalihioulhaj, S. . Dept. of Geology); Philp, R.P. . School of Geology and Geophysics)

    1993-02-01

    Organic matter, present in some sediments, acts as the source for hydrocarbons and has been studied at great length, but organic-rich sediments from hypersaline environments are just beginning to be understood. Many types of organic matter from such restricted environments have been identified, and in this study their maturation pathways and products are being explored. By collecting biologically-identified organic matter produced within modern evaporative environments from a number of different marine and nonmarine settings and carrying out detailed geochemical examination of samples we are gradually beginning to understand these materials. The organic samples collected were from evaporative marine, sabkha, and lacustrine deposits, and have been subjected to two types of artificial maturation, hydrous and confined pyrolysis, over a fairly wide range of temperatures (1500 to 350[degrees]C). The biomarker products of these treatments are being analyzed and followed in great detail. Analyses of saturate and aromatic hydrocarbons as well as sulfur compounds in the original and the matured samples provide a comprehensive view of the biomarker assemblages associated with these different depositional environments at different stages of maturity. Infrared spectroscopy and Rock Eval pyrolysis of both the isolated kerogens from both the original and pyrolyzed samples has permitted us to clearly characterize the functional groupings on the one hand and the free hydrocarbons, the potential hydrocarbons, and the oxygenated compounds on the other hand. We have thus been able to demonstrate the potential of the organic matter associated with the different evaporitic environments to act as a good source for oil generation.

  4. Factors affecting the pore space transformation during hydrocarbon generation in source rock (shales): laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.

    2014-12-01

    Oil and gas generation is a set of processes which taking place in the interior, the processes can't be observable in nature. In the process of dumping the source rock, organic matter is transformed into a complex of high-molecular compounds - precursors of oil and gas (kerogen). Entering of a source column for specific thermobaric conditions, triggers the formation of low molecular weight hydrocarbon compounds. Generation of sufficient quantities of hydrocarbons leads to the primary fluid migration within the source rock. For the experiment were selected mainly siliceous-carbonate composition rocks from Domanic horizon South-Tatar arch. The main aim of experiment was heating the rocks in the pyrolyzer to temperatures which correspond katagenes stages. For monitoring changes in the morphology of the pore space X-ray microtomography method was used. As a result, when was made a study of the composition of mineral and organic content of the rocks, as well as textural and structural features, have been identified that the majority of the rock samples within the selected collection are identical. However, characteristics such as organic content and texture of rocks are different. Thus, the experiment was divided into two parts: 1) the study of the influence of organic matter content on the morphology of the rock in the process of thermal effects; 2) study the effect of texture on the primary migration processes for the same values of organic matter. Also, an additional experiment was conducted to study the dynamics of changes in the structure of the pore space. At each stage of the experiment morphology of altered rocks characterized by the formation of new pores and channels connecting the primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. At the second stage of the research also revealed that the conversion of the pore

  5. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge

    USGS Publications Warehouse

    Peters, K.E.; Magoon, L.B.; Bird, K.J.; Valin, Z.C.; Keller, M.A.

    2006-01-01

    Four key marine petroleum source rock units were identified, characterized, and mapped in the subsurface to better understand the origin and distribution of petroleum on the North Slope of Alaska. These marine source rocks, from oldest to youngest, include four intervals: (1) Middle-Upper Triassic Shublik Formation, (2) basal condensed section in the Jurassic-Lower Cretaceous Kingak Shale, (3) Cretaceous pebble shale unit, and (4) Cretaceous Hue Shale. Well logs for more than 60 wells and total organic carbon (TOC) and Rock-Eval pyrolysis analyses for 1183 samples in 125 well penetrations of the source rocks were used to map the present-day thickness of each source rock and the quantity (TOC), quality (hydrogen index), and thermal maturity (Tmax) of the organic matter. Based on assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original TOC (TOCo) and the original hydrogen index (HIo) prior to thermal maturation. The quantity and quality of oil-prone organic matter in Shublik Formation source rock generally exceeded that of the other units prior to thermal maturation (commonly TOCo > 4 wt.% and HIo > 600 mg hydrocarbon/g TOC), although all are likely sources for at least some petroleum on the North Slope. We used Rock-Eval and hydrous pyrolysis methods to calculate expulsion factors and petroleum charge for each of the four source rocks in the study area. Without attempting to identify the correct methods, we conclude that calculations based on Rock-Eval pyrolysis overestimate expulsion factors and petroleum charge because low pressure and rapid removal of thermally cracked products by the carrier gas retards cross-linking and pyrobitumen formation that is otherwise favored by natural burial maturation. Expulsion factors and petroleum charge based on hydrous pyrolysis may also be high

  6. Petroleum geochemistry of oils and rocks in Arctic National Wildlife Refuge, Alaska

    SciTech Connect

    Magoon, L.B.; Anders, D.E.

    1987-05-01

    Thirteen oil seeps or oil-stained outcrops in or adjacent to the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska indicate that commercial quantities of hydrocarbons may be present in the subsurface. The area is flanked by two important petroleum provinces: the Prudhoe Bay area on the west and the Mackenzie delta on the east. Organic carbon content (wt. %), organic matter type, and pyrolysis hydrocarbon yield show that rock units such as the Kingak Shale (average 1.3 wt. %), pebble shale unit (2.1 wt. %), and Canning Formation (1.9 wt. %) contain predominantly type III organic matter. The exception is the Hue Shale (5.9 wt. %), which contains type II organic matter. Pre-Cretaceous rocks that crop out in the Brooks Range could not be adequately evaluated because of high thermal maturity. Thermal maturity thresholds for oil, condensate, and gas calculated from vitrinite reflectance gradients in the Point Thomson area are 4000, 7300, and 9330 m, respectively (12,000, 22,500, and 28,000 ft). Time-temperature index (TTI) calculations for the Beli-1 and Point Thomson-1 wells immediately west of ANWR indicate that maturity first occurred in the south and progressed north. The Cretaceous Hue Shale matured in the Beli-1 well during the Eocene and in the Point Thomson-1 well in the late Miocene to early Pliocene. In the Point Thomson area, the condensate and gas recovered from the Thomson sandstone and basement complex based on API gravity and gas/oil ratio (GOR) probably originated from the pebble shale unit, and on the same basis, the oil recovered from the Canning Formation probably originated from the Hue Shale. The gas recovered from the three wells in the Kavik area is probably thermal gas from overmature source rocks in the immediate area.

  7. Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan sag, south-central Colorado

    SciTech Connect

    Gries, R.R.; Clayton, J.L.; Leonard, C.

    1997-07-01

    The San Juan sag, concealed by the vast San Juan volcanic field of south-central Colorado, has only recently benefited from oil and gas wildcat drilling and evaluations. Sound geochemical analyses and maturation modeling are essential elements for successful exploration and development. Oil has been produced in minor quantities from an Oligocene sill in the Mancos Shale within the sag, and major oil and gas production occurs from stratigraphically equivalent rocks in the San Juan basin to the southwest and in the Denver basin to the northeast. The objectives of this study were to identify potential source rocks, assess thermal maturity, and determine hydrocarbon-source bed relationships. Source rocks are present in the San Juan sag in the upper and lower Mancos Shale (including the Niobrara Member), which consists of about 666 m (2184 ft) of marine shale with from 0.5 to 3.1 wt. % organic carbon. Pyrolysis yields (S{sub 1} + S{sub 2} = 2000-6000 ppm) and solvent extraction yields (1000-4000 ppm) indicate that some intervals within the Mancos Shale are good potential source rocks for oil, containing type II organic matter, according to Rock-Eval pyrolysis assay.

  8. Paleoceanography and paleolimnology of petroleum source rocks

    SciTech Connect

    Pratt, L.M. )

    1990-11-01

    Sedimentary strata containing greater than 0.5 wt. % organic carbon are unusual in both modern and ancient depositional settings. Rates of primary production (photosynthesis), recycling (decompositional efficiency), and sediment accumulation (clastic dilution) are the principal factors determining organic carbon contents of sediments and sedimentary rocks. Clastic dilution is the dominant factor in all aquatic environments when sediment accumulation rates are above about 100 mg/cm{sup 2}/yr or sedimentation rates are above about 300 m/10{sup 6}/yr. Enhanced primary productivity associated with upwelling is the dominant control on burial and preservation of organic matter in modern marine environments, but benthic anoxia related to restricted circulation may be the dominant factor in many modern lakes and most ancient epicontinental seas. During transportation and sedimentation in marine and lacustrine environments, organic detritus can by oxidized to carbon dioxide or incorporated into new biomass by bacterial communities that sequentially transfer electrons from organic matter to oxygen, nitrate, iron (Fe{sup 3+}), manganese (Mn{sup 4+}), sulfate, and carbon dioxide. Zonation of early diagenetic minerals results from progressive changes in the composition of pore water and sediment as organic matter is buried to depths of about 10 m. Mineralic and stable isotopic (carbon and sulfur) compositions of diagenetic carbonates and iron sulfides reflect depth-related bacterial and redox zones. Data bearing on these processes contribute to development of comprehensive basin models because they can be used to reconstruct changes in salinity and oxygen content of bottom water.

  9. The Kingak shale of northern Alaska-regional variations in organic geochemical properties and petroleum source rock quality

    USGS Publications Warehouse

    Magoon, L.B.; Claypool, G.E.

    1984-01-01

    The Kingak Shale, a thick widespread rock unit in northern Alaska that ranges in age from Early Jurassic through Early Cretaceous, has adequate to good oil source rock potential. This lenticular-shaped rock unit is as much as 1200 m thick near the Jurassic shelf edge, where its present-day burial depth is about 5000 m. Kingak sediment, transported in a southerly direction, was deposited on the then marine continental shelf. The rock unit is predominantly dark gray Shale with some interbeds of thick sandstone and siltstone. The thermal maturity of organic matter in the Kingak Shale ranges from immature (2.0%R0) in the Colville basin toward the south. Its organic carbon and hydrogen contents are highest in the eastern part of northern Alaska south of and around the Kuparuk and Prudhoe Bay oil fields. Carbon isotope data of oils and rock extracts indicate that the Kingak Shale is a source of some North Slope oil, but is probably not the major source. ?? 1984.

  10. Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan sag, south-central Colorado

    USGS Publications Warehouse

    Gries, R.R.; Clayton, J.L.; Leonard, C.

    1997-01-01

    The San Juan sag, concealed by the vast San Juan volcanic field of south-central Colorado, has only recently benefited from oil and gas wildcat drilling and evaluations. Sound geochemical analyses and maturation modeling are essential elements for successful exploration and development. Oil has been produced in minor quantities from an Oligocene sill in the Mancos Shale within the sag, and major oil and gas production occurs from stratigraphically equivalent rocks in the San Juan basin to the south-west and in the Denver basin to the northeast. The objectives of this study were to identify potential source rocks, assess thermal maturity, and determine hydrocarbon-source bed relationships. Source rocks are present in the San Juan sag in the upper and lower Mancos Shale (including the Niobrara Member), which consists of about 666 m (2184 ft) of marine shale with from 0.5 to 3.1 wt. % organic carbon. Pyrolysis yields (S1 + S2 = 2000-6000 ppm) and solvent extraction yields (1000-4000 ppm) indicate that some intervals within the Mancos Shale are good potential source rocks for oil, containing type II organic matter, according to Rock-Eval pyrolysis assay. Oils produced from the San Juan sag and adjacent part of the San Juan basin are geochemically similar to rock extracts obtained from these potential source rock intervals. Based on reconstruction of the geologic history of the basin integrated with models of organic maturation, we conclude that most of the source rock maturation occurred in the Oligocene and Miocene. Little to no maturation took place during Laramide subsidence of the basin, when the Animas and Blanco Basin formations were deposited. The timing of maturation is unlike that of most Laramide basins in the Rocky Mountain region, where maturation occurred as a result of Paleocene and Eocene basin fill. The present geothermal gradient in the San Juan sag is slightly higher (average 3.5??C/100 m; 1.9??F/100 ft) than the regional average for southern Rocky

  11. Monterey source rock facies and petroleum formation - a synthesis of results of the cooperative Monterey organic geochemistry study

    SciTech Connect

    Rullkoetter, J.; Isaacs, C.M.

    1996-12-31

    Based on the analysis of two carefully selected coastal outcrop series of Monterey rocks and a suite of eleven crude oils from the onshore and offshore Santa Maria and Santa Barbara-Ventura basins, an interlaboratory effort was undertaken (i) to characterize organic-matter-rich sections of the source rock geochemically in terms of changes in depositional environment and (ii) to assess the effect of these variations on crude oil composition. Despite intra - and interbasinal variations in organic carbon enrichment and hydrogen richness, the organic matter appears to be largely derived from a common planktonic source. Differences in organic matter quality are primarily attributed to different extents of early diagenetic alteration, most probably by sulfate-reducing bacteria in the pore water, while differences in organic matter enrichment are suggested to essentially indicate varying levels of dilution and dissolution of biogenic mineral matter. Prolific source rock horizons with hydrogen-rich organic matter were found at the Lions Head section, whereas the Naples Beach section in general represents more highly microbially altered organic matter with lower hydrogen contents according to Rock-Eval pyrolysis. Although petroleum generation in many cases occurred at low levels of thermal stress, distinct molecular indicators suggest a significant range of maturity values among the oils investigated. Maturation behavior is clearly related to sulfur content. Maturity evolution of South Elwood oils differing from those of other oils may be organofacies related but possibly also related to local heating rate anomalies.

  12. Monterey source rock facies and petroleum formation - a synthesis of results of the cooperative Monterey organic geochemistry study

    SciTech Connect

    Rullkoetter, J. ); Isaacs, C.M. )

    1996-01-01

    Based on the analysis of two carefully selected coastal outcrop series of Monterey rocks and a suite of eleven crude oils from the onshore and offshore Santa Maria and Santa Barbara-Ventura basins, an interlaboratory effort was undertaken (i) to characterize organic-matter-rich sections of the source rock geochemically in terms of changes in depositional environment and (ii) to assess the effect of these variations on crude oil composition. Despite intra - and interbasinal variations in organic carbon enrichment and hydrogen richness, the organic matter appears to be largely derived from a common planktonic source. Differences in organic matter quality are primarily attributed to different extents of early diagenetic alteration, most probably by sulfate-reducing bacteria in the pore water, while differences in organic matter enrichment are suggested to essentially indicate varying levels of dilution and dissolution of biogenic mineral matter. Prolific source rock horizons with hydrogen-rich organic matter were found at the Lions Head section, whereas the Naples Beach section in general represents more highly microbially altered organic matter with lower hydrogen contents according to Rock-Eval pyrolysis. Although petroleum generation in many cases occurred at low levels of thermal stress, distinct molecular indicators suggest a significant range of maturity values among the oils investigated. Maturation behavior is clearly related to sulfur content. Maturity evolution of South Elwood oils differing from those of other oils may be organofacies related but possibly also related to local heating rate anomalies.

  13. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  14. Sedimentology and origin of source rocks in the Tertiary Niger delta

    SciTech Connect

    Bustin, R.M.

    1988-08-01

    Organic matter in Tertiary strata of the Niger delta is mainly a mixture of types II and III, has a high pristane/phytane ratio (> 1.0), and is composed of the macerals vitrinite and minor liptinite. The main palynofacies are structured woody material, cuticles, pollen, spores, and opaque and minor amorphous organic matter. The distribution and abundance of the organic matter reflects the age and sedimentology of the strata. There is a progressive decline in mean total organic carbon (TOC) content from upper Eocene (2.2% TOC) to Pliocene strata (0.90% TOC) and an associated general decrease in hydrogen index (HI) and pristane/phytane ratio. The decrease in TOC and HI in younger strata mainly reflects increased dilution of a nearly constant supply of terrestrial organic matter associated with the generally higher sedimentation rates of younger strata. The low pristane/phytane ratio of younger strata may reflect less oxidizing depositional conditions. No rich source rocks occur in the Niger delta and, as conventionally measured, the strata have little or no oil generating potential. The poor quality of the source rocks has been compensated for by their greater volume and excellent migration routes. The Niger delta type of source rock - although an end member in terms of general source rock composition - appears to be relatively typical of Tertiary deltas.

  15. Subcritical water extraction of trace metals from petroleum source rock.

    PubMed

    Akinlua, Akinsehinwa; Smith, Roger M

    2010-06-15

    The extraction of trace metals from petroleum source rock by superheated water was investigated and the conditions for maximum yield were determined. The results showed that no significant extraction was attained at 100 degrees C but the extraction was enhanced at higher temperatures. The optimum temperature for superheated water extraction of the metals from petroleum source rocks was 250 degrees C. Extraction yields increased with enhanced extraction time. Exhaustive extraction time for all the trace metals determined in this study was attained at 30min. Comparison of results of leaching these trace metals by superheated water with those of acid digestion revealed that cadmium, chromium, manganese and nickel had better yields with superheated water while vanadium had better yield with acid digestion. The results showed that the temperature and kinetic rates have significant effects on superheated water extraction of metals from petroleum source rocks. The results also revealed that effective leaching of some metals from petroleum source rocks by superheated water can be achieved without any modification except for vanadium.

  16. Wetting behavior of selected crude oil/brine/rock systems

    SciTech Connect

    1997-04-01

    Of the many methods of characterizing wettability of a porous medium, the most commonly used are the Amott test and the USBM test. The Amott test does not discriminate adequately between systems that give high values of wettability index to water and are collectively described as very strongly water-wet. The USBM test does not recognize systems that achieve residual oil saturation by spontaneous imbibition. For such systems, and for any systems that exhibit significant spontaneous imbibition, measurements of imbibition rate provide a useful characterization of wettability. Methods of interpreting spontaneous imbibition data are reviewed and a new method of quantifying wettability from rate of imbibition is proposed. Capillary pressure is the driving force in spontaneous imbibition. The area under an imbibition curve is closely related to the work of displacement that results from decrease in surface free energy. Imbibition rate data can be correlated to allow for differences in interracial tension, viscosities, pore structure, and sample size. Wettability, the remaining key factor in determining the capillary driving force and the related imbibition rate, then largely determines the differences in saturation vs. scaled time curves. These curves are used to obtain pseudo imbibition capillary pressure curves; a wettability index based on relative areas under these curves is defined as the relative pseudo work of imbibition. The method is applied for two crude oil/brine/rock systems. Comparison of the method with the Amott wettability index is made for different wettability states given by differences in aging of cores with crude oil. Correlations of wettability indices with waterflood recoveries are presented.

  17. Sedimentation, zoning of reservoir rocks in W. Siberian basin oil fields

    SciTech Connect

    Kliger, J.A. )

    1994-02-07

    A line pattern of well cluster spacing was chosen in western Siberia because of taiga, marshes, etc., on the surface. The zoning of the oil pools within productive Upper Jurassic J[sub 3] intervals is complicated. This is why until the early 1990s almost each third well drilled in the Shaimsky region on the western edge of the West Siberian basin came up dry. The results of development drilling would be much better if one used some sedimentological relationships of zoning of the reservoir rocks within the oil fields. These natural phenomena are: Paleobasin bathymetry; Distances from the sources of the clastic material; and Proximity of the area of deposition. Using the diagram in this article, one can avoid drilling toward areas where the sandstone pinch out, area of argillization of sand-stones, or where the probability of their absence is high.

  18. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  19. Hydrogen in rocks: an energy source for deep microbial communities

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Dickinson, J. Thomas; Cash, Michele

    2002-01-01

    To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.

  20. Hydrogen in rocks: an energy source for deep microbial communities.

    PubMed

    Freund, Friedemann; Dickinson, J Thomas; Cash, Michele

    2002-01-01

    To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.

  1. Hydrogen in rocks: an energy source for deep microbial communities

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Dickinson, J. Thomas; Cash, Michele

    2002-01-01

    To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.

  2. Aquifers survey in the context of source rocks exploitation: from baseline acquisition to long term monitoring

    NASA Astrophysics Data System (ADS)

    Garcia, Bruno; Rouchon, Virgile; Deflandre, Jean-Pierre

    2017-04-01

    Producing hydrocarbons from source rocks (like shales: a mix of clays, silts, carbonate and sandstone minerals containing matured organic matter, i.e. kerogen oil and gas, but also non-hydrocarbon various species of chemical elements including sometimes radioactive elements) requires to create permeability within the rock matrix by at least hydraulically fracturing the source rock. It corresponds to the production of hydrocarbon fuels that have not been naturally expelled from the pressurized matured source rock and that remain trapped in the porosity or/and kerogen porosity of the impermeable matrix. Azimuth and extent of developed fractures can be respectively determined and mapped by monitoring the associated induced microseismicity. This allows to have an idea of where and how far injected fluids penetrated the rock formation. In a geological context, aquifers are always present in the vicinity -or on fluid migration paths- of such shale formations: deep aquifers (near the shale formation) up to sub-surface and potable (surface) aquifers. Our purpose will be to track any unsuitable invasion or migration of chemicals specifies coming from matured shales of production fluids including both drilling and fracturing ones into aquifers. Our objective is to early detect and alarm of any anomaly to avoid any important environmental issue. The approach consists in deploying a specific sampling tool within a well to recover formation fluids and to run a panoply of appropriate laboratory tests to state on fluid characteristics. Of course for deep aquifers, such a characterization process may consider aquifer properties prior producing shale oil and gas, as they may contain naturally some chemical species present in the source rocks. One can also consider that a baseline acquisition could be justified in case of possible previous invasion of non-natural fluids in the formation under survey (due to any anthropogenic action at surface or in the underground). The paper aims

  3. Stratigraphic controls on the source rock distribution, Llanos Orientales Basin, Colombia

    SciTech Connect

    Ramon, J.C.; Fajardo, A.; Rubiano, J.; Reyes, A. )

    1996-01-01

    All available rock and oil geochemistry analyses were tied to a high-resolution stratigraphic framework for more than 50 wells in the Central Llanos Orientates Basin. New Tertiary generation input is proposed. The best source rock intervals are at the base and top of the Gacheta Formation (Upper Cretaceous) and in the middle of the Barco-Cuervos (Paleocene) and Mirador (Eocene) formations. These organic-rich zones contain type II and III kerogen. TOC contents range from about 1% up to 15%. The four source rock intervals occur within marine shales near condensed sections, at the position maximum accommodation/sediment-supply (A/S) ratios. The development of conditions that allow accumulation and preservation of anomalously high fractions of organic matter might be explained by two mechanisms. Increased A/S ratio results in retention of more sediment in the coastal plain, thus reducing the tendency for siliciclastic sediment to dilute the organic matter accumulating on the shelf. Also, deeper water might restrict circulation, enhancing bottom anoxic conditions. In the more transitional and continental sequences, increased A/S ratio is associated with higher phreatic water level. A high ground water table enhances preservation of coaly intervals. The sea-level rise brings marine water into valleys and low-gradient coastal plains. The resulting embayments, marsh and swampy areas are organic-prone, contributing to the source rock potential of strata associated with high conditions and base-level rise-to-fall turnaround positions.

  4. Stratigraphic controls on the source rock distribution, Llanos Orientales Basin, Colombia

    SciTech Connect

    Ramon, J.C.; Fajardo, A.; Rubiano, J.; Reyes, A.

    1996-12-31

    All available rock and oil geochemistry analyses were tied to a high-resolution stratigraphic framework for more than 50 wells in the Central Llanos Orientates Basin. New Tertiary generation input is proposed. The best source rock intervals are at the base and top of the Gacheta Formation (Upper Cretaceous) and in the middle of the Barco-Cuervos (Paleocene) and Mirador (Eocene) formations. These organic-rich zones contain type II and III kerogen. TOC contents range from about 1% up to 15%. The four source rock intervals occur within marine shales near condensed sections, at the position maximum accommodation/sediment-supply (A/S) ratios. The development of conditions that allow accumulation and preservation of anomalously high fractions of organic matter might be explained by two mechanisms. Increased A/S ratio results in retention of more sediment in the coastal plain, thus reducing the tendency for siliciclastic sediment to dilute the organic matter accumulating on the shelf. Also, deeper water might restrict circulation, enhancing bottom anoxic conditions. In the more transitional and continental sequences, increased A/S ratio is associated with higher phreatic water level. A high ground water table enhances preservation of coaly intervals. The sea-level rise brings marine water into valleys and low-gradient coastal plains. The resulting embayments, marsh and swampy areas are organic-prone, contributing to the source rock potential of strata associated with high conditions and base-level rise-to-fall turnaround positions.

  5. A rich Middle Triassic source rock in the Barents Sea Area

    SciTech Connect

    Bjoroy, M.; Hall, P.B.

    1983-05-01

    The scope of the work presented in this paper is an evaluation of the petroleum potential of the source rock which shows most promise for the Barents Sea Area. The evaluation is based on analysis of a large number of samples from a Middle Triassic black shale deposit on the various islands of the Svalbard Archipelago. This investigation has shown that the shale is an oil-prone source rock. Analysis of samples taken from areas in the Barents Sea, indicates that this shale sequence has similar potential as a source rock throughout the area south of Svalbard. Integration of this data with the available geophysical and geological data allows the authors to propose that the rich, oilprone Middle Triassic shale sequence also has a widespread distribution throughout the Norwegian Arctic. The results of the geochemical analysis undertaken on Mesozoic deposits of Svalbard and from subsea outcrops in the Barents Sea area is presented. In addition the significant geological data for the region are included. The geochemical data includes; total organic carbon content, Rock-Eval pyrolysis values, vitrinite reflectance and kerogen analysis in transmitted light. In addition some data on the amount and composition of extractable organic matter in the Triassic shales are mentioned.

  6. Source rock in the lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-12-31

    The MC-84 (King) well was drilled in the deep-water Gulf of Mexico in 1993, in Mississippi Canyon Block 84 in a water depth of 5,149 ft. This well drilled an anticlinal feature. The well penetrated an Upper Cretaceous section and crossed Middle Cretaceous Unconformity with final total depth in the Lower Cenomanian. Numerous sidewall cores were taken throughout the Lower Tertiary and Cretaceous. Six of the sidewall cores (from 14,230 to 15,170 ft subsea) are organic rich and contain Type II oil-prone kerogen (TOC values from 2.6 to 5.2% and hydrogen indices from 360 to 543 ppm). The Lower Tertiary through Lower Cenomianian section is thermally immature for oil generation, on the basis of biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous section had biomarker characteristics similar to oil recovered from the Miocene in the MC-84 well. The oil was generated from a similar but more mature source rock, probably of Early Cretaceous age. Results of thermal modeling indicate that the only section thermally mature for oil generation is in the lower portion of the Lower Cretaceous, below the total depth of the well. The model also indicates that the organic-rich section equivalent to that penetrated by the MC-84 well could be mature farther to the north, where water depths are shallower, overburden thickness is greater, and heat flow is higher. Late Tertiary sediment loading in this area, primarily during the Miocene, is probably the driving mechanism for hydrocarbon generation from the Cretaceous (and possibly the Lower Tertiary) potential source rocks. This offers a favorable geological setting for capturing hydrocarbons because reservoirs and traps associated with Miocene deposition and subsequent loading-induced salt movement had formed prior to the onset of oil generation and migration.

  7. Source rock potential of shallow-water evaporitic settings

    SciTech Connect

    Warren, J.K.

    1986-05-01

    In the major evaporitic environments on the world's surface today, most organic matter accumulates in shallow subaqueous to seasonally subaerially exposed, algal-mat sediments. Given the present depositional setting, this organic matter probably could not be preserved to form source rocks. However, if the authors place such evaporite deposition into a geologic context, source rocks could have formed in shallow-water settings in the past. Such settings were characterized by hydrologic conditions that allowed the retention of hypersaline, anoxic pore water to depths where the organic material was buried deep enough to generate hydrocarbons. When deep-basin, shallow-water, evaporite successions were laid down in basins such as the Mediterranean during the late Miocene, the Michigan basin during the Silurian, and in other large saline giants, conditions were right for source rocks to form within shallow-water and salt-flat evaporitic environments. The evaporites in these saline giants were deposited under conditions of relatively shallow water (< 50 m); the basin never appears to have dried out, but water levels changed quickly (approx. 10,000 years) from shallow to deep. Continual water saturation coupled with saline pore fluids prevented the inflow of fresh, oxidizing ground water into the basin center of shallow-water organic-rich evaporites. Immature hydrocarbons derived from such rocks today drip from the 5.5-m.y. old evaporites of Sicily in active salt and sulfur mines. Organic-rich sediments could also be preserved to generate hydrocarbons in rapidly subsiding rift basins. In such basins, rapid burial has prevented the entrance of fresher oxygenated waters and the associated degradation and destruction of the organic matter. The early continental rift stage generates the source rocks; the ephemeral streams, wadis, and dune fields become the reservoirs, and the subsequent evaporite stage seals the reservoir.

  8. Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks

    SciTech Connect

    Ingersoll, R.V. )

    1990-08-01

    Actualistic models relating plate-tectonic setting to sedimentary basins and provenance successfully predict modal compositions of sand and sandstone at the scale of continents and ocean basins (third-order models). Second-order models may be used to identify source regions within a given tectonic setting, such as source terranes within the Rio Grande rift of New Mexico. First-order models relate the composition of modern alluvial sand directly to specific source rocks (e.g., granite). Petrographic data from locally derived sand of known provenance may be used to statistically discriminate compositions according to their source rocks, thus defining actualistic petrofacies. Ancient petrofacies may be compared to the actualistic petroficies, in order to better constrain provenance and paleotectonic reconstructions. This approach may be applied at first-, second-, or third-order scales. At first- and second-order scales, stepwise discriminant analysis reveals the Tertiary provenance history of the Rio Grande rift of north-central New Mexico by comparing Tertiary petrofacies with modern petrofacies of known provenance. Application of this technique provides needed objectivity in source-rock and paleotectonic reconstructions.

  9. DEVELOPING A SAFE SOURCE OF CASTOR OIL

    USDA-ARS?s Scientific Manuscript database

    Castor bean (Ricinus communis L.) is an important oilseed crop with significant industrial value. However, the production of castor oil is hampered by the presence of the toxin ricin and hyper-allergenic 2S albumins in its seed. We are thus investigating the possibility of developing a safe source...

  10. Potential petroleum source rock deposition in the middle Cretaceous Wasia Formation, Rub'Al Khali, Saudi Arabia

    SciTech Connect

    Newell, K.D.; Hennington, R.D.

    1983-03-01

    Stratigraphic correlation and regional geochemical sampling in the Rub'Al Khali (The Empty Quarter) of Saudi Arabia indicate at least two potential petroleum source rock units occur in the middle Cretaceous Wasia Formation. These two sequences, informally named the Safaniya ''source rock'' and the lower Mishrif, are dominated by oil-prone amorphous (Type II) organic matter, in places in excess of 10 weight percent organic carbon. Both units are fine-grained pelagic lime mudstones which were probably deposited in relatively quiet anoxic waters of large intraplatform embayments or basins. The Safaniya ''source rock'' and the lower Mishrif reflect strong marine transgressions on the Arabian craton in Albian to Cenomanian and Cenomanian to Turonian time, respectively. Regressive-phase sedimentary rocks overlying these two transgressive organic-rock phases are generally poor in organic carbon despite being deposited, in part, in similar forereef open-marine depositional settings. The sealevel high-stands associated with the Safaniya ''source rock'' and the lower Mishrif are partly synchronous with two recently described ''oceanic anoxic events'' respectively occurring in late Barremian to late Albian time and late Cenomanian to early Turonian time. Although there is a credible time correlation of these organic-rock units with oceanic anoxic events, their connection to oceanic anoxic events could be strengthened if they could be traced out to the vicinity of the middle Cretaceous continental margin.

  11. The thermal maturation degree of organic matter from source rocks revealed by wells logs including examples from Murzuk Basin, Libya

    SciTech Connect

    Negoita, V.; Gheorghe, A.

    1995-08-01

    The customary technique used to know the organic matter quantity per rock volume it as well as the organic matter maturation stage is based on geochemical analyses accomplished on a preselected number of samples and cuttings drawn from boreholes during the drilling period. But the same objectives can be approached without any extra cost using the continuous measurements of well logs recorded in each well from the ground surface to the total depth. During the diagenetic stage, the identification of potential source rocks out of which no hydrocarbon have been generated may be carried out using a well logging suite including Gamma Ray Spectrometry, the Compensated Neutron/Litho Density combination and a Dual Induction/Sonic Log. During the catagenetic stage the onset of oil generation brings some important changes in the organic matter structure as well as in the fluid distribution throughout the pore space of source rocks. The replacement of electric conductive water by electric non-conductive hydrocarbons, together with water and oil being expelled from source rocks represent a process of different intensities dependent of time/temperature geohistory and kerogen type. The different generation and expulsion scenarios of hydrocarbons taking place during the catagenetic and metagenetic stages of source rocks are very well revealed by Induction and Laterolog investigations. Several crossplots relating vitrinite reflectance, total organic carbon and log-derived physical parameters are illustrated and discussed. The field applications are coming from Murzuk Basin, where Rompetrol of Libya is operating.

  12. Compositional variability of mixed oils and measures of sources and migration pathways: Case studies from the Potiguar basin, Brazil

    SciTech Connect

    Trindade, L.A.F. Petrobras Brassell, S.C. ); Santos Neto, E.V. )

    1991-03-01

    Regional studies of petroleum samples in cross sections from both offshore and onshore reservoirs reveal compositional differences attributable to varying extents of oil mixing with discernible landward trends. These discrepancies can be related to a combination of petroleum source, maturity, and migration history. The source rocks of these petroleum source, maturity, and migration history. The source rocks of these petroleums are classified in two groups on the basis of their geochemical and molecular characteristics: (1) Neocomian and Aptian lacustrine freshwater shales and (2) Aptian marine evaporitic shales and marls. Both families of source rocks are located in an offshore structural low. The geochemically contrasting oils derived from these source beds migrated updip through Aptian carrier beds to immature strata, constrained by a monoclinal structure. Evaluation of the distribution of compositional heterogeneities and investigation of migration effects on oil composition revealed trends related to the amount of mixing that reflect the timing of oil generation and migration and the direction of migration. The more migrated oils contain greater contributions from freshwater sources whereas the less migrated oils display increasing contributions from the shallower hypersaline source beds. Biomarker maturity parameters indicate that the most migrated oils are less mature, consistent with their early generation from the deeper lacustrine freshwater source beds and migration to first fill the shallower reservoirs.

  13. Rock comminution as a source of hydrogen for subglacial ecosystems

    NASA Astrophysics Data System (ADS)

    Telling, J.; Boyd, E. S.; Bone, N.; Jones, E. L.; Tranter, M.; Macfarlane, J. W.; Martin, P. G.; Wadham, J. L.; Lamarche-Gagnon, G.; Skidmore, M. L.; Hamilton, T. L.; Hill, E.; Jackson, M.; Hodgson, D. A.

    2015-11-01

    Substantial parts of the beds of glaciers, ice sheets and ice caps are at the pressure melting point. The resulting water harbours diverse subglacial microbial ecosystems capable of affecting global biogeochemical cycles. Such subglacial habitats may have acted as refugia during Neoproterozoic glaciations. However, it is unclear how life in subglacial environments could be supported during glaciations lasting millions of years because energy from overridden organic carbon would become increasingly depleted. Here we investigate the potential for abiogenic H2 produced during rock comminution to provide a continual source of energy to support subglacial life. We collected a range of silicate rocks representative of subglacial environments in Greenland, Canada, Norway and Antarctica and crushed them with a sledgehammer and ball mill to varying surface areas. Under an inert atmosphere in the laboratory, we added water, and measured H2 production with time. H2 was produced at 0 °C in all silicate-water experiments, probably through the reaction of water with mineral surface silica radicals formed during rock comminution. H2 production increased with increasing temperature or decreasing silicate rock grain size. Sufficient H2 was produced to support previously measured rates of methanogenesis under a Greenland glacier. We conclude that abiogenic H2 generation from glacial bedrock comminution could have supported life and biodiversity in subglacial refugia during past extended global glaciations.

  14. Sea Level and Paleoenvironment Control on Late Ordovician Source Rocks, Hudson Bay Basin, Canada

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Hefter, J.

    2009-05-01

    Hudson Bay Basin is one of the largest Paleozoic sedimentary basins in North America, with Southampton Island on its north margin. The lower part of the basin succession comprises approximately 180 to 300 m of Upper Ordovician strata including Bad Cache Rapids and Churchill River groups and Red Head Rapids Formation. These units mainly comprise carbonate rocks consisting of alternating fossiliferous limestone, evaporitic and reefal dolostone, and minor shale. Shale units containing extremely high TOC, and interpreted to have potential as petroleum source rocks, were found at three levels in the lower Red Head Rapids Formation on Southampton Island, and were also recognized in exploration wells from the Hudson Bay offshore area. A study of conodonts from 390 conodont-bearing samples from continuous cores and well cuttings from six exploration wells in the Hudson Bay Lowlands and offshore area (Comeault Province No. 1, Kaskattama Province No. 1, Pen Island No. 1, Walrus A-71, Polar Bear C-11 and Narwhal South O-58), and about 250 conodont-bearing samples collected from outcrops on Southampton Island allows recognition of three conodont zones in the Upper Ordovician sequence, namely (in ascendant sequence) Belodina confluens, Amorphognathus ordovicicus, and Rhipidognathus symmetricus zones. The three conodont zones suggest a cycle of sea level changes of rising, reaching the highest level, and then falling during the Late Ordovician. Three intervals of petroleum potential source rock are within the Rhipidognathus symmetricus Zone in Red Head Rapids Formation, and formed in a restricted anoxic and hypersaline condition during a period of sea level falling. This is supported by the following data: 1) The conodont Rhipidognathus symmetricus represents the shallowest Late Ordovician conodont biofacies and very shallow subtidal to intertidal and hypersaline condition. This species has the greatest richness within the three oil shale intervals to compare other parts of Red

  15. Devonian Novaculites as source of oil in Marathon-Ouachita thrust system

    SciTech Connect

    Zemmels, I.; Grizzle, P.L.; Walters, C.C.; Haney, F.R.

    1985-02-01

    The Arkansas Novaculite of southern Oklahoma and the Caballos Novaculite of west Texas (both Devonian) form fractured reservoirs in the Marathon-Ouachita thrust system. These formations were examined to ascertain their petroleum potential. Findings include the following. (1) The thermal maturity of the thrust system conforms to the maturity of the sequence that it has overthrust, suggesting that this allochthonous facies is not anomalously mature. (2) Shale units within the novaculites contain oil-prone organic matter in sufficient concentrations to constitute source rocks. (3) The composition of oils from Isom Springs field in southern Oklahoma and from McKay Creek field in west Texas is virtually identical and generally resembles Devonian oils in Oklahoma and west Texas. The authors concluded that the Devonian novaculites of the Marathon-Ouachita thrust system are self sourcing and do not require a fortuitous juxtaposition of source rocks of a different age to produce a commercial deposit.

  16. Oil bioremediation using insoluble nitrogen source.

    PubMed

    Rosenberg, E; Legman, R; Kushmaro, A; Adler, E; Abir, H; Ron, E Z

    1996-11-15

    Oil bioremediation is limited by the availability of nitrogen and phosphorous, which are needed by the bacteria and not present in sufficient amounts in hydrocarbons. The supply of these two essential elements as water-soluble salts presents several problems. These include the rapid dilution of the salts in the large volumes of polluted land or water and their utilization by other bacteria that do not degrade oil. In addition, increasing the concentration of mobile nitrogen creates further environmental problems. The use of hydrophobic sources of nitrogen and phosphorous that have a low water solubility can overcome these problems. We have studied one such compound. F-1, that is not used by most bacteria but serves as a good nitrogen and phosphorous source for those bacterial strains that are capable of utilizing it. We have shown that bacteria using F-1 do not cross-feed other bacterial strains. Moreover, when the concentration of the pollutant is sufficiently reduced, the multiplication of the bacteria slows down until they become a negligible fraction of the bacterial population. Chemical analysis indicated that following a 28-day treatment of Alaskan crude oil, most of the hydrocarbons, including polycyclic aromatics, are degraded to undetectable levels. The C34 and C35 components were also degraded, although their degradation was not completed within this time period. In treatment of a sandy beach that was accidentally polluted with crude heavy oil, about 90% degradation was obtained within about 4 months at an outside average temperature of 5 -10 degrees C.

  17. Methane and carbon at equilibrium in source rocks

    PubMed Central

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266

  18. Methane and carbon at equilibrium in source rocks.

    PubMed

    Mango, Frank D

    2013-12-12

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized.

  19. Preliminary hydrocarbon source rock assessment of the Paleozoic and Mesozoic formations of the western Black Sea region of Turkey

    SciTech Connect

    Harput, B.O.; Demirel, I.H.; Karayigit, A.I.; Aydin, M.; Sahintuerk, O.; Bustin, R.M.

    1999-12-01

    Source rock maturity and potential of Paleozoic and Mesozoic formations in the Eregli, Zonguldak, Bartin, Ulus, and Eflani subregions of the western Black Sea region (WBSR), have been investigated by rock-eval pyrolysis, reflected-light microscopy, and palynofacies analyses. The % Ro values of dispersed organic matter of the Paleozoic formations primarily range from 0.72 to 1.8%, but values as high as 2.6% occur locally in the Silurian Findikli Formation in the Eregli subregion. The % Ro values of Namurian-Westphalian coal seams in the K20/H well drilled in the Zonguldak subregion range from 0.87 to 1.52%, with increasing depth consistent with sedimentary depth of burial. Most Cretaceous age samples have reflectance values ranging from 0.44 to 1.6% Ro that indicates they are marginally mature to mature with respect to the oil window. Rock-eval pyrolysis demonstrates that the Paleozoic formations have limited oil-generation potential (HI values {le} 200 mg HC/g C{sub org}), but good gas potential (TOC values up to 3%). Cretaceous formations have better petroleum source rock characteristics, but they too are primarily gas prone. Variations in the source rock maturity probably reflect variable burial histories in different localities of the WBSR.

  20. The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah

    USGS Publications Warehouse

    Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.

    1999-01-01

    A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks

  1. Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area, Egypt

    NASA Astrophysics Data System (ADS)

    El Kammar, M. M.

    2015-04-01

    A relatively thick Upper Cretaceous-Lower Tertiary sedimentary succession is exposed in Gebel Duwi, Red Sea area, through an almost horizontal tunnel cutting the NE dipping strata from Quseir to Thebes formations. The black shale belonging to Dakhla Formation represents a real potential for future energy resource for Egypt. Dakhla Formation consists mainly of organic-rich calcareous shale to argillaceous limestone that can be considered as a good to excellent source rock potential. The total organic carbon (TOC) content ranges from 2.04% to 12.08%, and the Hydrogen Index (HI) values range from 382 to 1024 mg HC/g TOC. Samples of the Dakhla Formation contain mostly kerogen of types I and II that prone oil and oil-gas, indicating marine organic matter derived mainly from algae and phytoplankton organisms and proposing typical oil source kerogen. The average of the potential index (PI) value is 0.02 mg HC/g rock, which indicates the beginning of a considerable amount of oil generation from the Dakhla Formation. The Tmax values range from 427 to 435 °C. Based on the Tmax data and PI values, the studied black shale samples are immature to early mature for hydrocarbon generation in the Duwi area. The data reduction suggests four main factors covering about 91% of the total variances. The average of the calorific value (459 kcal/kg) indicates unworkable efficiency of such black shale for direct combustion use in power stations. However, selective operation of specific horizons having the highest calorific values may provide viable resources.

  2. Hydrocarbon potential of Cretaceous sediments in the Lower and Middle Benue Trough, Nigeria: Insights from new source rock facies evaluation

    NASA Astrophysics Data System (ADS)

    Akande, Samuel O.; Egenhoff, Sven O.; Obaje, Nuhu G.; Ojo, Olusola J.; Adekeye, Olabisi A.; Erdtmann, Bernd D.

    2012-02-01

    The Nigerian Benue Trough is an intracratonic rift structure which evolution is related to the Early Cretaceous opening of the South Atlantic Ocean and the Gulf of Guinea. Previous hydrocarbon potential assessments of the successions in the trough revealed a number of organic rich intervals capable of yielding significant quantities of hydrocarbons in the Cretaceous sections. Stratigraphic continuity of these intervals suggests their potentials for hydrocarbons if thermally mature and both oil and gas can be generated. The present study have expanded on some previously reported source rock data of the Cretaceous formations in the Benue Trough by detailed mapping of the stratigraphic intervals with source rock potentials on the basis of their structural setting, lithologic characteristics, and depositional environments. Further characterization of the organic matter within the Cenomanian to Coniacian on one hand and the Campanian to Maastrichtian intervals were carried out to determine the geochemical character of the organic rich zones, their maturity and effectiveness to generate and expel hydrocarbons. In the Lower Benue Trough, mature facies of the Cenomanian to Turonian Eze-Aku Formation with a predominance of Types II and III kerogen, the Turonian to Coniacian Type III dominated Awgu Formation and the Type III dominated Lower Maastrichtian sub-bituminous coals of the Mamu Formation have proven potentials as oil and gas source rocks. In the Middle Benue Basin, the preserved mature intervals of the Awgu Formation shales and coals are good gas source rocks with some oil prone units in view of the predominating Type III kerogen. Targets for hydrocarbons generated by these source rock intervals should focus on the non-emergent Cretaceous reservoirs within the pre-Santonian successions whereas, the mature equivalents of the sub-bituminous coal facies would generate and charge both Upper Cretaceous reservoirs and possibly the sub-Niger Delta successions in the sub-surface.

  3. Detection of Oil Pollution Hotspots and Leak Sources Through the Quantitative Assessment of the Persistence and Temporal Repetition of Regular Oil Spills in the Caspian Sea Using Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Bayramov, E. R.; Buchroithner, M. F.; Bayramov, R. V.

    2015-08-01

    The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution Images acquired during 2006-2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2-10 (3471.04 sq. km.), 11-20 (971.66 sq. km.), 21-50 (692.44 sq. km.), 51-128 (191.38 sq. km.). The most critical oil leak sources with the frequency range of 41-128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  4. Thermal maturity trends from rock-eval and vitrinite reflectance analysis on potential source rocks in eastern Nevada

    SciTech Connect

    Barker, C.E.; Peterson, J.A.; Poole, F.G. )

    1991-06-01

    Organic geochemical and petrographic analyses of potential source rock samples taken from 30 drill holes penetrating Cenozoic basins of the Basin and Range province in eastern Nevada indicate two distinct trends in thermal maturity, as expressed by vitrinite reflectance equivalent (VRE). VRE is any coal rank or other thermal maturity parameter converted to its equivalent in vitrinite reflectance units using correlation charts. One trend is an increase with depth from about 2% VRE at 500 ft to 5% VRE at 12,000 ft, which is supermature with respect to oil generation. The other trend consists of mature rocks that have a nearly uniform VRE of about 0.7% ({plus minus}0.2%) from the near surface to a depth of 12,000 ft. Both the lower and the higher range geothermal gradients measured across the area, about 0.4 to 2.5F/100 ft (8 to 45C/km), correspond with the mature and supermature trends, respectively. The authors attribute these trends to two major thermal environments common within these Cenozoic basins. The supermature trend results from high geothermal gradients found near igneous intrusions, faulted contacts of uplifted metamorphic core complexes, or other heat sources. The mature trend characterized by near-zero VRE gradients results from groundwater recharge which produces cool temperatures at depth and low geothermal gradients. These generalizations should be applied with caution to any specific area because they are based on a composite VRE depth curve and, in some localities, may not represent realistic interpretation. However, VRE profiles within individual drill holes within the region generally follow one of these trends.

  5. Surface potential and permeability of rock cores under asphaltenic oil flow conditions

    SciTech Connect

    Alkafeef, S.F.; Gochin, R.J.; Smith, A.L.

    1995-12-31

    The surface properties, wetting behaviour and permeability of rock samples are central to understanding recovery behaviour in oil reservoirs. This paper will present a method new to petroleum engineering to show how area/length ratios for porous systems can be obtained by combining streaming potential and streaming current measurements on rock cores. This has allows streaming current measurements (independent of surface conductivity errors) to be made on rock samples using hydrocarbon solvents with increasing concentrations of asphaltene. Negative surface potentials for the rock became steadily more positive as asphaltene coated the pore surfaces, with permeability reduction agreeing well with petrographic analysis.

  6. Kuwait oil fires - Compositions of source smoke

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Stevens, Robert K.; Winstead, Edward L.; Pinto, Joseph P.; Sebacher, Daniel I.; Abdulraheem, Mahmood Y.; Al-Sahafi, Mohammed; Mazurek, Monica A.; Rasmussen, Rei A.; Cahoon, Donald R.

    1992-01-01

    While the Kuwait oil-fire smoke plumes manifested a pronounced impact on solar radiation in the Gulf region (such as visibility and surface temperatures), smoke plume concentrations of combustion-generated pollutants suggest that the overall chemical impact on the atmosphere of the smoke from these fires was probably much less than anticipated. Combustion in the Kuwaiti oil fires was surprisingly efficient, releasing on average more than 93 percent of the combusted hydrocarbon fuels as CO2. Correspondingly, combustion-produced quantities of carbon monoxide (CO) and carbonaceous particles were low, each about 2 percent by weight. The fraction of CH4 produced by the fires was also relatively low (about 0.2 percent), but source emissions of nonmethane hydrocarbons were high (about 2 percent). Processes other than combustion (e.g., volatilization) probably contributed significantly to the measured in-plume hydrocarbon concentrations. Sulfur emissions (particulate and gaseous) measured at the source fires were lower (about 0.5 percent) than predicted based on average sulfur contents in the crude. N2O emissions from the Kuwaiti oil fires were very low and often could not be distinguished from background concentrations.

  7. Hydrocarbon potential of hydrocarbon source rocks of the New Siberian Islands, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gaedicke, Christoph; Sobolev, Peter; Franke, Dieter; Piepjohn, Karsten; Brandes, Christian; Kus, Jolanta; Scheeder, Georg

    2016-04-01

    The New Siberian Islands are bridging the Laptev Sea with the East Siberian Sea. The Laptev and East Siberian Seas cover large areas of the continental margin of northeastern Arctic Russia. The East Siberian Shelf encompassing an area of 935.000 km2 is still virtually unexplored and most of the geological models for this shelf are extrapolations of the geology of the New Siberian Islands, the Wrangel Island and the northeast Siberian landmass. Apart from few seismic reflection lines, airborne magnetic data were the primary means of deciphering the structural pattern of the East Siberian Shelf. The Laptev Shelf covers an area of about 66.000 km2 and occupies a shelf region, where the active mid-oceanic spreading ridge of the Eurasian Basin hits the slope of the continental margin. During the joint VSEGEI/BGR field expedition CASE 13 (Circum Arctic Structural Events) in summer 2011 we sampled outcrops from the New Siberian Archipelago including the De Long Islands. 102 samples were collected and the Upper Palaeozoic to Lower Cenozoic units are found to be punctuated by several organic-rich intervals. Lithology varies from continental dominated clastic sedimentary rocks with coal seams to shallow marine carbonates and deep marine black shales. Rock-Eval pyrolysis, gas chromatography/mass spectrometry and organic petrography studies were performed to estimate organic matter contents, composition, source, and thermal maturity. According to the results of our analyses, samples from several intervals may be regarded as potential petroleum source rocks. The Lower Devonian shales have the highest source rock potential of all Paleozoic units. Triassic samples have a good natural gas potential. Cretaceous and Cenozoic low-rank coals, lignites, and coal-bearing sandstones display some gas potential. The kerogen of type III (humic, gas-prone) dominates. Most of the samples (except some of Cretaceous and Paleogene age) reached the oil generation window.

  8. WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS

    SciTech Connect

    G.Q. Tang; N.R. Morrow

    1997-04-01

    The effect of aging and displacement temperatures, and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea Sandstone using three distinctly different crude oils and three reservoir brines. Brine concentration was varied by changing the concentration of total dissolved solids of the synthetic brine in proportion to give brine of twice, one tenth, and one hundredth of the reservoir brine concentration. Aging and displacement temperatures were varied independently. For all crude oils, water-wetness and oil recovery increased with increase in displacement temperature. Tests on the effect of brine concentration showed that salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the reservoir brine with dilution of both the initial (connate) and invading brine or dilution of either. Removal of light components from the crude oil resulted in increased water-wetness. Addition of alkanes to the crude oil reduced the water-wetness, and increased oil recovery. Relationships between waterflood recovery and wettability are summarized.

  9. Anthropogenic sources stimulate resonance of a natural rock bridge

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey R.; Thorne, Michael S.; Koper, Keith D.; Wood, John R.; Goddard, Kyler; Burlacu, Relu; Doyle, Sarah; Stanfield, Erik; White, Benjamin

    2016-09-01

    The natural modes of vibration of bedrock landforms, as well as the sources and effects of stimulated resonance remain poorly understood. Here we show that seismic energy created by an induced earthquake and an artificial reservoir has spectral content coincident with the natural modes of vibration of a prominent rock bridge. We measured the resonant frequencies of Rainbow Bridge, Utah using data from two broadband seismometers placed on the span, and identified eight distinct vibrational modes between 1 and 6 Hz. A distant, induced earthquake produced local ground motion rich in 1 Hz energy, stimulating a 20 dB increase in measured power at the bridge's fundamental mode. Moreover, we establish that wave action on Lake Powell, an artificial reservoir, generates microseismic energy with peak power ~1 Hz, also exciting resonance of Rainbow Bridge. These anthropogenic sources represent relatively new energy input for the bridge with unknown consequences for structural fatigue.

  10. Prediction of source rock origin by chemometric analysis of fourier transform infrared-attenuated total reflectance spectra of oil petroleum: evaluation of aliphatic and aromatic fractions by self-modeling mixture analysis.

    PubMed

    Abbas, Ouissam; Dupuy, Nathalie; Rebufa, Catherine; Vrielynck, Laurence; Kister, Jacky; Permanyer, Albert

    2006-03-01

    This study describes a new methodology for the interpretation of Fourier transform infrared (FT-IR) attenuated total reflectance (ATR) spectra of Algerian, Brazilian, and Venezuelan crude oils. It is based on a comparative study between a chemometric treatment and the classical one, which refers to indices calculation. In fact, the combined use of FT-IR indices and principal component analysis (PCA) has led to the classification of the studied samples in terms of geographic distribution. Quantitative analysis has been successfully realized by the supervised method partial least squares (PLS), which has permitted the prediction of the locations of oils. We have also applied another mathematical processing method, simple-to-use interactive self-modeling mixture analysis (SIMPLISMA), to evaluate the aromatic and aliphatic composition of the oils by extracting pure spectra representative of the different fractions.

  11. Rock bolting techniques for forming an in situ oil shale retort

    SciTech Connect

    Sass, A.

    1981-08-04

    A subterranean formation containing oil shale is prepared for in situ retorting by forming a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort site. Formation is initially excavated from the retort site for forming one or more voids extending horizontally across the retort site, leaving a zone of unfragmented formation adjacent such a void. In one ambodiment, an array of rocks bolts are anchored in at least a portion of the roof adjacent such a void for providing reinforcement of unfragmented formation above the void. Vertical blasting holes are drilled in the zone of unfragmented formation adjacent the void. Explosive is placed in the blasting holes and detonated for explosively expanding the zone of unfragmented formation toward the void, including the rock bolted portion of the roof, for forming at least a portion of a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort. Surprisingly, the rock bolting does not interfere with, and in some instances can improve, fragmentation compared with comparable blasts without such rock bolts. The reinforcement provided by the rock bolts can reduce or eliminate the need for roof support pillars in horizontal voids at intermediate levels of the retort site.

  12. Petroleum evaluation of Ordovician black shale source rocks in northern Appalachian basin

    SciTech Connect

    Wallace, L.G.; Roen, J.B.

    1988-08-01

    A preliminary appraisal of the Ordovician black shale source beds in the northern part of the Appalachian basin shows that the sequence is composed of the Upper Ordovician Utica Shale and its correlatives. The shales range in thickness from less than 200 ft in the west to more than 600 ft in the east along the Allegheny Front. Structure contours indicate that the shales plunge from 2,000 ft below sea level in central Ohio and to about 12,000 ft below sea level in central and northeastern Pennsylvania. Geochemical analyses of 175 samples indicate that the sequence has an average total organic carbon content (TOC) of 1.34%. Conodont alteration indices (CAI) and production indices indicate that the stages of maturation range from diagenetic in the less deeply buried western part of the basin, which probably produced mostly oil, to catagenetic in the more deeply buried eastern part of the basin, which probably produced mostly gas. Potential for continued hydrocarbon generation is poor in the east and fair to moderate in the western part of the basin. If the authors assume that these rocks have produced hydrocarbons, the hydrocarbons have since migrated. Using an average TOC of 1%, an organic carbon to hydrocarbon conversion factor of 10%, and a volume of rock within the oil and gas generation range as defined by CAI values of 1.5-4, the Ordovician shale could have generated 165 billion bbl of oil or equivalent. If only 1% of the 165 billion bbl was trapped after migration, then 1.65 billion bbl of oil or equivalent would be available for discovery.

  13. Source rock potential and organic matter characterization of the Messinian evaporitic sequence on Zakynthos Island, Ionian Sea

    NASA Astrophysics Data System (ADS)

    Karakitsios, Vasileios; Kafousia, Nefeli; Agiadi, Konstantina; Kontakiotis, George; de Rafelis, Marc

    2017-04-01

    In this study, we investigate the hydrocarbon potential as well as the type and thermal maturity of the organic matter in the evaporitic sequence of Kalamaki and Agios Sostis sections (Zakynthos Island, Greece). Detailed sampling of the two sections was followed by analyses for the total organic carbon (TOC) content and the petroleum potential. In Kalamaki, the TOC values range is 0.03-1.31 wt%, 0.15-1.31 wt% in the pre-evaporitic sediments and 0.03-0.95 wt% in the evaporitic sequence, partially indicating fair to good hydrocarbon potential. Overall, our samples are classified principally as non-source rocks. The total of free and pyrolizable hydrocarbons range from 0.03 to 3.41 mg HC/g rock, corresponding to little or no source rock potential. The hydrocarbon index (HI)-TOC cross-plot suggests that the studied samples represent diverse source types ranging from gas-prone to oil-prone. This plot reveals that the most promising rock units are in the evaporitic sequence of Kalamaki. Nevertheless, the HI values of the samples range from 12.46 to 271.14 mg HC/g TOC, whereas the ratio of pyrolizable to free hydrocarbons ranges from 0.02 to 9.12. Therefore, the type of organic material in the studied sediments is classified as gas prone, with the exception of one sample that is classified as gas and oil prone. Based on the HI-oxygen index (OI) plot, most of the samples are type III kerogen derived from terrestrial plant debris deposited in oxidized environments capable of producing gas. A few samples only from the evaporitic sequence are type II (oil prone), and a few from the pre- and the evaporitic sequence are type IV. The cross-plot of free hydrocarbons against TOC indicates indigenous hydrocarbon production for all sediments. Furthermore, based on the production index (PI) and Tmax values, most samples from Kalamaki are immature. However, several samples from the evaporitic sequence have reached the mature oil stage. In addition, these organic-rich evaporitic

  14. Geochemistry, palynology, and regional geology of worldclass Upper Devonian source rocks in the Madre de Dios basin, Bolivia

    SciTech Connect

    Peters, K.E.; Conrad, K.T.; Carpenter, D.G.; Wagner, J.B.

    1996-08-01

    Recent exploration drilling indicates the existence of world-class source rock in the Madre de Dios basin, Bolivia. In the Pando-1 X and -2X wells, over 200 m of poorly bioturbated, organic-rich (TOC = 3-16 wt.%) prodelta to shelf mudstones in the Frasnian-Famennian Tomachi Formation contain oil-prone organic matter (hydrogen index = 400-600 mg HC/g TOC). Our calculated source prolificity indices for this interval in these wells (SPI = 15-18 tons of hydrocarbons per square meter of source rock) exceed that for the Upper Jurassic in Central Saudi Arabia. The Tomachi interval is lithologically equivalent to the Colpacucho Formation in the northern Altiplano, the Iquiri Formation in the Cordillera Oriental, and is coeval with other excellent source rocks in North America, Africa, and Eurasia. All of these rocks were deposited under conditions favorable for accumulation of organic matter, including a global highstand and high productivity. However, the Madre de Dios basin was situated at high latitude during the Late Devonian and some of the deposits are interpreted to be of glacial origin, indicating conditions not generally associated with organic-rich deposition. A biomarker and palynological study of Upper Devonian rocks in the Pando-1X well suggests deposition under conditions similar to certain modern fjords. High productivity resulted in preservation of abundant organic matter in the bottom sediments despite a cold, toxic water column. Low-sulfur crude oil produced from the Pando-1X well is geochemically similar to, but more mature than, extracts from associated organic-rich Tomachi samples, and was generated from deeper equivalents of these rocks.

  15. Log evaluation of oil-bearing igneous rocks

    SciTech Connect

    Khatchikian, A.

    1983-12-01

    The evaluation of porosity, water saturation and clay content of oilbearing igneous rocks with well logs is difficult due to the mineralogical complexity of this type of rocks. The log responses to rhyolite and rhyolite tuff; andesite, dacite and zeolite tuff; diabase and basalt have been studied from examples in western Argentina and compared with values observed in other countries. Several field examples show how these log responses can be used in a complex lithology program to make a complete evaluation.

  16. Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province, New Mexico and Colorado. Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995. There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  17. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    SciTech Connect

    Newell, K.D.; Watney, W.L.; Hatch, J.R.; Xiaozhong, G.

    1986-05-01

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. When estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.

  18. Correlating biodegradation to magnetization in oil bearing sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Emmerton, Stacey; Muxworthy, Adrian R.; Sephton, Mark A.; Aldana, Milagrosa; Costanzo-Alvarez, Vincenzo; Bayona, German; Williams, Wyn

    2013-07-01

    A relationship between hydrocarbons and their magnetic signatures has previously been alluded to but this is the first study to combine extensive geochemical and magnetic data of hydrocarbon-associated samples. We report a detailed study that identifies a connection between magnetic mineralogy and oil biodegradation within oil-bearing sedimentary units from Colombia, Canada Indonesia and the UK. Geochemical data reveal that all the oil samples are derived from mature type-II kerogens deposited in oxygen-poor environments. Biodegradation is evident to some extent in all samples and leads to a decrease in oil quality through the bacterially mediated conversion of aliphatic hydrocarbons to polar constituents. The percentage of oil components and the biodegradation state of the samples were compared to the magnetic susceptibility and magnetic mineralogy. A distinct decrease in magnetic susceptibility is correlated to decreasing oil quality and the amount of extractable organic matter present. Further magnetic characterization revealed that the high quality oils are dominated by pseudo-single domain grains of magnetite and the lower quality oils by larger pseudo-single domain to multidomain grains of magnetite and hematite. Hence, with decreasing oil quality there is a progressive dominance of multidomain magnetite as well as the appearance of hematite. It is concluded that biodegradation is a dual process, firstly, aliphatic hydrocarbons are removed thereby reducing oil quality and secondly, magnetic signatures are both created and destroyed. This complex relationship may explain why controversy has plagued previous attempts to resolve the connection between magnetics and hydrocarbon deposits. These findings reinforce the importance of bacteria within petroleum systems as well as providing a platform for the use of magnetization as a possible exploration tool to identify subsurface reservoirs and a novel proxy of hydrocarbon migration.

  19. Significance of oil-like hydrocarbons in metamorphic and ore-deposit rocks

    SciTech Connect

    Price, L.C.

    1996-10-01

    Carbonaceous rocks (0.7-45.0% carbon content) from both greenschist metamorphism and hydrothermal-ore deposition were solvent-extracted and the resulting extracts characterized by standard analyses. Blank runs showed no contamination from laboratory procedures. The recovered HCS are in low, but significant, concentrations (0.5-50 ppm, rock weight). Moreover, the composition of these HCS (including biomarkers) resemble that of mature crude oils and do not have the ultra-mature characteristics expected from their high temperature environs. This strongly suggests that HCS will survive in even higher-rank rocks. These data contradict petroleum-geochemical paradigm regarding an inferred thermal instability of HCS and also bear on natural gas origins (e.g. - the hypothesized cracking of oil to gas), rock-water-HC interactions, petroleum-geochemical models, and other related topics.

  20. Red Sea/Gulf of Aden source rock geochemical evaluation

    SciTech Connect

    Ducreux, C.; Mathurin, G.; Latreille, M. )

    1991-08-01

    The potential of hydrogen generation in the Red Sea and Gulf of Aden was studied by geochemical analyses of 2,271 samples from 23 wells drilled in 6 countries within the area. Selection of candidate source beds was primarily a function of the sedimentary column penetrated by drilling (i.e., whereas sub-Tertiary sediments are accessible in Somalia and Yemen in the Gulf of Aden, sampling below the thick Neogene evaporitic sequence in the Red Sea could not be achieved due to a general lack of penetration to such levels). Organic matter content and type, maturity levels, petroleum potential of the rock analyzed, and its capacity to have generated liquid or gaseous hydrocarbons are the basic results provided by the analyses. Geochemical well correlations within and between subbasins are presented using the two most representative parameters: total organic carbon (TOC) and Petroleum Potential (PP = S{sub 1} + S{sub 2}), expressed in kilograms of hydrocarbons per ton of rock. In general, results obtained in the two rift basins, with sampling mostly in Neogene sediments in the Red Sea and in sub-Tertiary and Tertiary sediments in the Gulf of Aden, indicate the presence of favorable sources preferentially in this sub-Tertiary succession. It is stressed that geochemical analysis results are from wells whose locations are generally on structural highs and, therefore, are not representative (especially in terms of maturation) of conditions in adjacent depressions, particularly where the difference in structural level is great. Sound simulation modeling makes possible the reconstruction regional thermal and burial history and, thus, identification of maturation kitchens.

  1. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  2. Seismic monitoring of heavy oil reservoirs: Rock physics and finite element modelling

    NASA Astrophysics Data System (ADS)

    Theune, Ulrich

    In the past decades, remote monitoring of subsurface processes has attracted increasing attention in geophysics. With repeated geophysical surveys one attempts to detect changes in the physical properties in the underground without directly accessing the earth. This technique has been proven to be very valuable for monitoring enhanced oil recovery programs. This thesis presents an modelling approach for the feasibility analysis for monitoring of a thermal enhanced oil recovery technique applied to heavy oil reservoirs in the Western Canadian Sedimentary Basin. In order to produce heavy oil from shallow reservoirs thermal oil recovery techniques such as the Steam Assisted Gravity Drainage (SAGD) are often employed. As these techniques are expensive and technically challenging, early detection of operational problems is without doubt of great value. However, the feasibility of geophysical monitoring depends on many factors such as the changes in the rock physical properties of the target reservoir. In order to access the feasibility of seismic monitoring for heavy oil reservoirs, a fluid-substitutional rock physical study has been carried out to simulate the steam injection. The second modelling approach is based on a modified finite element algorithm to simulate the propagation of elastic waves in the earth, which has been developed independently in the framework of this thesis. The work summarized in this thesis shows a possibility to access the feasibility of seismic monitoring for heavy oil reservoirs through an extensive rock-physical study. Seismic monitoring is a useful tool in reservoir management decision process. However, the work reported here suggests that seismic monitoring of SAGD processes in the heavy oil reservoirs of the Western Canadian Sedimentary Basin is only feasible in shallow, unconsolidated deposits. For deeper, but otherwise geological similar reservoirs, the SAGD does not create a sufficient change in the rock physical properties to be

  3. Source rock in the Lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-09-01

    Amoco drilled three wells in the deep-water Gulf of Mexico in 1993. One well, in Mississippi Canyon Block 84 (W.D. 5200 ft), drilled a structural feature. The well penetrated Cretaceous section and crossed the middle Cenomanian unconformity. Six sidewall cores from 14,230-15,200 ft (subsea) contained TOC values from 2.6 to 5.2% with hydrogen indices front 360 to 543 ppm in lower Tertiary and Cretaceous shales. All six cores were thermally immature, for oil generation, based on biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous had biomarker characteristics similar to oil reservoired in the Miocene. The oil was probably generated from a similar, but more mature, source rock. The high structural position of the well prevented the lower Tertiary and Upper Cretaceous section from entering the oil window at this location. There are over 2000 ft of structural relief and an additional 6000-8000 ft of Lower Cretaceous section below the level penetrated by the well. It is probable that an equivalent section off structure is in the oil window. Prior to drilling, estimates of expected thermal maturities and temperatures were made using {sub BASINMOD}, a hydrocarbon generation/expulsion modeling package. The model predicted higher well temperatures (e,g., 225{degrees}F vs. 192{degrees}F) and lower vitrinite maturity (0.44% vs. 0.64%) than encountered in the well. Vitrinite reflectance equivalents of 0.41% and 0.43% were calculated from biomarker ratios of the Cretaceous core extracts, matching the {sub BASINMOD} predicted value of 0.44%.

  4. Petroleum Source Rock Maturation Data Constrain Predictions of Natural Hydrocarbon Seepage into the Atmosphere

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.

    2013-12-01

    Natural seepage of methane from the lithosphere to the atmosphere occurs in regions with large natural gas deposits. According to some authors, it accounts for roughly 5% of the global methane budget. I explore a new approach to estimate methane fluxes based on the maturation of kerogen, which is the hydrocarbon polymer present in petroleum source rocks, and whose pyrolysis leads to the formation of oil and natural gas. The temporal change in the atomic H/C ratio of kerogen lets us estimate the total carbon mass released by it in the form of oil and natural gas. Then the time interval of active kerogen pyrolysis lets us estimate the average annual formation rate of oil and natural gas in any given petroleum system. Obviously, this is an upper bound to the average annual rate at which natural gas seeps into the atmosphere. After adjusting for bio-oxidation of natural gas, I conclude that the average annual seepage rate in the Uinta Basin of eastern Utah is not greater than (3100 × 900) tonne/y. This is (0.5 × 0.15)% of the total flux of methane into the atmosphere over the Basin, as measured during aircraft flights. I speculate about the difference between the regional 0.5% and the global 5% estimates.

  5. Middle Ordovician Kanosh Formation: Remaining source rock potential

    SciTech Connect

    McDowell, R.R. )

    1988-10-01

    The Kanosh Formation is an early Middle Ordovician, mixed clastic an carbonate sequence exposed in Basin and Range uplifts throughout the eastern Great Basin. The initiation of Kanosh deposition corresponds to shelf-wide change from shallow-water carbonate to relatively deeper, fine-grained siliciclastic sedimentation. Thickest accumulations of the Kanosh Formation lie within a northeast-southwest elongate, intrashelf basin that may represent a re-activated, Middle Cambrian, tectonic basin. Total organic carbon content (TOC) of the Kanosh ranges from 0.02 to 5.66% (mean 0.33%). Equivalent vitrinite reflectances (R{sub o}) for the unit indicate pervasive over-maturation with respect to oil throughout most of the eastern Great Basin; however, much of this area has remaining potential for gas and gas condensate. An east-west trending corridor in southwestern Utah and southeastern Nevada had R{sub o} valves ranging from I to 2, suggesting that gas and some oil could be preserved in this trend. This corridor also approximately corresponds to the areas of highest TOCs and thickest continuous shale; consequently, it is the most favorable petroleum source area.

  6. Factors limiting potential of evaporites as hydrocarbon source rocks

    SciTech Connect

    Katz, B.J.; Bissada, K.K.; Wood, J.W.

    1987-05-01

    It is well established that evaporite-bearing sequences account for a substantial proportion of petroleum occurrences. Examples can be cited from the Mesozoic of the Middle East, the Cretaceous of Latin America, and many others. An examination of effective source rocks within these provinces reveals that carbonate facies generate the bulk of the hydrocarbons. The higher evaporites (gypsum, anhydrate, halite, etc) seldom contribute to the resource base. Geochemical analyses of the higher evaporites reveal low organic carbon contents and imperceptible pyrolysis yields. These observations are not consistent with many of the current concepts of organic matter accumulation in evaporite environments, which suggests that hypersalinity should be especially favorable because abundant nutrient supply enhances primary productivity and elevated salt content enhances preservation efficiency. Their recent studies on oxidation of labile phytoplankton remains and relative sedimentation rates of organic and inorganic constituents in hypersaline brines suggest that three factors contribute to the observed low concentrations of hydrogen-enriched organic matter in the higher evaporites: (1) the density contrast between hypersaline brines and suspended organic matter retards the settling rate of the organic matter and prolongs its exposure to oxidative processes; (2) high concentrations of sulfates, and possibly nitrates, provide a secondary oxidizer for labile phytoplankton remains; and (3) high precipitation rates of the evaporite minerals dilute any organic matter which reaches the sediment-water interface. This paper will examine these factors in the modern and ancient record and discuss their influence on source-bed distribution through time and space.

  7. Enigmatic organosiliceous rocks in the 2000 Ma petrified oil field in Russian Fennoscandia

    NASA Astrophysics Data System (ADS)

    Deines, Yu.; Melezhik, V.; Lepland, A.; Filippov, M.; Romashkin, A.; Rychanchik, D.

    2009-04-01

    could explain the source, and joint transport of two major components, namely silica and OM. We propose a model involving a hydrothermal system initiated by heat produced during the emplacement of numerous mafic intrusive bodies. Such heat may have created the necessary temperature gradient for earlier oil generation, thermal oil to gas cracking, and initiation of shallow-seated, sub-surface, hydrothermal circulation. The proposed result would have been the mingling of silica leached from mafic rocks with hydrocarbon, and gas (primarily CO2, CH4) extracted from the host sedimentary rocks. Such a gas-rich C-Si-H2O substance would have migrated into permeable beds. A high sedimentation rate, as expected in many turbiditic depositional environments, would have produced a high lithostatic pressure on to unlithified beds during the course of the basin subsidence. This would have forced gas-rich C-Si-H2O fluids that moved either laterally along permeable beds or vertically along zones of weakness. In the first case, sediments 'impregnated' with gas-rich C-Si-H2O fluids would have formed stratigraphic beds of OSR, whereas in the second case the result would been crosscutting veins. Beds may retain some primary layering, whereas veins do not. If veins reached the seafloor, the sediment - C-Si-H2O mush would have extruded in the form of a mud volcano / hydrothermal mound, and thus formed a cupola-like morphology. During the course of compression, the sediment - C-Si-H2O mush might have experienced several stages of partial lithification, as well as fluidisation processes leading to the formation of several generations of micro- and macro-brecciated rocks. The large d13C range of reduced carbon in the OSR suggests a complex maturation process of the biogenic OM. Further detailed microstructural, geochemical, isotopic and biomarker studies are planned for distinguishing between biological and abiological processes involved in the formation of the enigmatic OSR.

  8. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil.

    PubMed

    da Cunha, Claudia Duarte; Rosado, Alexandre S; Sebastián, Gina V; Seldin, Lucy; von der Weid, Irene

    2006-12-01

    Sixteen spore forming Gram-positive bacteria were isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. These strains were identified as belonging to the genus Bacillus using classical biochemical techniques and API 50CH kits, and their identity was confirmed by sequencing of part of the 16S rRNA gene. All strains were tested for oil degradation ability in microplates using Arabian Light and Marlin oils and only seven strains showed positive results in both kinds of oils. They were also able to grow in the presence of carbazole, n-hexadecane and polyalphaolefin (PAO), but not in toluene, as the only carbon sources. The production of key enzymes involved with aromatic hydrocarbons biodegradation process by Bacillus strains (catechol 1,2-dioxygenase and catechol 2,3-dioxygenase) was verified spectrophotometrically by detection of cis,cis-muconic acid and 2-hydroxymuconic semialdehyde, and results indicated that the ortho ring cleavage pathway is preferential. Furthermore, polymerase chain reaction (PCR) products were obtained when the DNA of seven Bacillus strains were screened for the presence of catabolic genes encoding alkane monooxygenase, catechol 1,2-dioxygenase, and/or catechol 2,3-dioxygenase. This is the first study on Bacillus strains isolated from an oil reservoir in Brazil.

  9. Mineralogy and source rock evaluation of the marine Oligo-Miocene sediments in some wells in the Nile Delta and North Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El sheikh, Hassan; Faris, Mahmoud; Shaker, Fatma; Kumral, Mustafa

    2016-06-01

    This paper aims to study the mineralogical composition and determine the petroleum potential of source rocks of the Oligocene-Miocene sequence in the Nile Delta and North Sinai districts. The studied interval in the five wells can be divided into five rock units arranged from the top to base; Qawasim, Sidi Salem, Kareem, Rudeis, and Qantara formations. The bulk rock mineralogy of the samples was investigated using X-Ray Diffraction technique (XRD). The results showed that the sediments of the Nile Delta area are characterized by the abundance of quartz and kaolinite with subordinate amounts of feldspars, calcite, gypsum, dolomite, and muscovite. On the other hand, the data of the bulk rock analysis at the North Sinai wells showed that kaolinite, quartz, feldspar and calcite are the main constituents associated with minor amounts of dolomite, gypsum, mica, zeolite, and ankerite. Based on the organic geochemical investigations (TOC and Rock-Eval pyrolysis analyses), all studied formations in both areas are thermally immature but in the Nile delta area, Qawasim, Sidi Salem and Qantara formations (El-Temsah-2 Well) are organically-rich and have a good petroleum potential (kerogen Type II-oil-prone), while Rudeis Formation is a poor petroleum potential source rock (kerogen Type III-gas-prone). In the North Sinai area, Qantara Formation has a poor petroleum potential (kerogen Type III-gas-prone) and Sidi Salem Formation (Bardawil-1 Well) is a good petroleum potential source rock (kerogen Type II-oil-prone).

  10. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin of Tibet

    NASA Astrophysics Data System (ADS)

    Ding, Wenlong; Wan, Huan; Zhang, Yeqian; Han, Guangzhi

    2013-04-01

    We have evaluated the hydrocarbon-bearing potential of Middle Jurassic marine source rocks in the Qiangtang Basin, Tibet, through a comprehensive study of samples from a large number of surface outcrops in different structural units, and from the Qiang-D2 Well in the southern Qiangtang Depression. Data that were acquired, including the depositional environment, thickness of sedimentary units, and organic geochemistry, are used to identify the principal controlling factors and predict the location of favorable hydrocarbon kitchens. The source rocks are mainly platform limestone of the Middle Jurassic Buqu Formation. This formation comprises a suite of intra-platform sag marls, micrites, and black shales that were deposited in a deep-water and restricted depositional environment. The marls form hydrocarbon-rich source rocks with organic matter that is mainly type II and in the mature to highly mature stage. In the Dongco-Hulu Lake and Tupoco-Baitan Lake deep sags, limestone also forms a medium-level source rock. In the Qiangtang Basin, limestone is the favorable source rock kitchen and is more significant in this regard than mudstone. The results provide important constraints on evaluating the hydrocarbon potential of Jurassic marine source rocks and for locating petroleum resources in the Qiangtang Basin.

  11. Explosion Source Characteristics in Frozen and Unfrozen Rock

    DTIC Science & Technology

    2008-09-30

    can alter seismic yield. Central Alaska has abrupt lateral boundaries in discontinuous permafrost , and we detonated 3 shots in frozen, saturated rock...Central Alaska has abrupt lateral boundaries in discontinuous permafrost , Q) and we detonated 3 shots in frozen, saturated rock and 3 shots nearby in...rock. To find a possible location for the experiment, we consulted the permafrost map of Alaska (Ferrians, 1965) for regions of discontinuous permafrost

  12. Executive summary--2002 assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado: Chapter 1 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province (5022), New Mexico and Colorado (fig. 1). Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995 (Gautier and others, 1996). There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  13. VOC signatures from North American oil and gas sources (Invited)

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Marrero, J.; Blake, N. J.; Barletta, B.; Hartt, G.; Meinardi, S.; Schroeder, J.; Apel, E. C.; Hornbrook, R. S.; Blake, D. R.

    2013-12-01

    Between 2008 and 2013 UC Irvine has used its whole air sampling (WAS) technique to investigate VOC source signatures from a range of oil and gas sources in North America, including five separate field campaigns at the Alberta oil sands (1 airborne, 4 ground-based); the 2010 Deepwater Horizon oil spill (airborne and ship-based); the 2012 airborne Deep Convective Clouds and Chemistry Project (DC3) mission over oil and gas wells in Colorado, Texas and Oklahoma; and the 2013 ground-based Barnett Shale Campaign in Texas. Each campaign has characterized more than 80 individual C1-C10 VOCs including alkanes, alkenes and aromatics. For example, oil sands are an extra-heavy, unconventional crude oil that is blended with diluent in order to flow, and upgraded into synthetic crude oil. The VOC signature at the oil sands mining and upgrading facilities is alkane-rich, and the fuel gas associated with these operations has an i-butane/n-butane ratio similar to that of liquefied petroleum gas (LPG). In addition to light alkanes, enhanced levels of benzene were observed over US oil and natural gas wells during DC3, likely because of its use in hydrofracking fluid. A series of VOC emission ratios from North American petrochemical sources will be presented and compared, including oil sands, conventional oil and hydrofracking operations.

  14. Source of shallow Simpson Group Oil in Murray County, Oklahoma

    SciTech Connect

    Zemmels, I.; Tappmeyer, D.M.; Walters, C.C. )

    1987-02-01

    Oils produced from the Simpson Group (Middle Ordovician) in three shallow fields located north of the Arbuckle Mountains in Murray County, Oklahoma, have widely differing compositions: SW Sandy Creek, 28.9{degree} API, 0.57% sulfur; Davis NE, 25.9{degree} API, 0.72% sulfur; Sulfur NW, 16.4{degree} API, 1.44% sulfur. From gas chromatography and biomarker analysis, they determined that the oils were derived from the same source and that the differences in composition are due to biodegradation of the oils in the shallow reservoirs. A comparison of the biomarker assemblage of the Simpson Group oils to several other oils produced in the Arbuckle Mountain area showed that the Simpson Group assemblage highly resembled the assemblage of a Woodford Formation oil (Devonian) but had no similarity to a Viola Formation oil (upper Middle Ordovician). The Simpson Group oils also differed markedly from an oil produced from the Arbuckle Group (Lower Ordovician) in the nearby, shallow Southeast Hoover field. Their data suggest that the source of the shallow Simpson Group oils is the Woodford Formation located in the downthrown Mill Creek syncline south and west of these fields. A large vertical migration along faults or within the fault block is implied by this geometry. However, the Arbuckle Group oil from the Southeast Hoover field, south of the syncline, has a different source.

  15. Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock

    NASA Astrophysics Data System (ADS)

    Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J.

    2016-03-01

    We have investigated the effect of wettability of carbonate rocks on the morphologies of remaining oil after sequential oil and brine injection in a capillary-dominated flow regime at elevated pressure. The wettability of Ketton limestone was altered in situ using an oil phase doped with fatty acid which produced mixed-wet conditions (the contact angle where oil contacted the solid surface, measured directly from the images, θ=180°, while brine-filled regions remained water-wet), whereas the untreated rock (without doped oil) was weakly water-wet (θ=47 ± 9°). Using X-ray micro-tomography, we show that the brine displaces oil in larger pores during brine injection in the mixed-wet system, leaving oil layers in the pore corners or sandwiched between two brine interfaces. These oil layers, with an average thickness of 47 ± 17 µm, may provide a conductive flow path for slow oil drainage. In contrast, the oil fragments into isolated oil clusters/ganglia during brine injection under water-wet conditions. Although the remaining oil saturation in a water-wet system is about a factor of two larger than that obtained in the mixed-wet rock, the measured brine-oil interfacial area of the disconnected ganglia is a factor of three smaller than that of oil layers.

  16. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Rui; Huang, Jian-Ping; Li, Zhen-Chun; Yang, Qin-Yong; Sun, Qi-Xing; Cui, Wei

    2015-03-01

    Brittleness analysis becomes important when looking for sweet spots in tight-oil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.

  17. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  18. Extended 3β-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy; Moldowan, J. Michael; Summons, Roger E.; McCaffrey, Mark A.; Lipton, Paul; Watt, D. S.; Hope, Janet M.

    1995-09-01

    In oils and Precambrian- to Miocene-age source rocks from varying depositional environments, we have conclusively identified several novel 3-alkyl sterane and triaromatic steroid series, including (1) 3β-n-pentyl steranes, (2) 3β-isopentyl steranes, (3) 3β-n-hexyl steranes, (4) 3β-n-heptyl steranes, (5) 3,4-dimethyl steranes, (6) 3β-butyl,4-methyl steranes, (7) triaromatic 3-n-pentyl steroids, and (8) triaromatic 3-isopentyl steroids. We have also tentatively identified additional homologs with 3-alkyl substituents as large as C11. The relative abundances of these compounds vary substantially between samples, as indicated by (1) the ratio of 3β-n-pentyl steranes to 3β-isopentyl steranes and (2) the ratio of 3-n-pentyl triaromatic steroids to 3-isopentyl triaromatic steroids. These data suggest possible utility for these parameters as tools for oil-source rock correlations and reconstruction of depositional environments. Although no 3-alkyl steroid natural products are currently known, several lines of evidence suggest that 3β-alkyl steroids result from bacterial side-chain additions to diagenetic Δ2-sterenes.

  19. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks: A potential climate feedback mechanism?

    NASA Astrophysics Data System (ADS)

    Kroeger, K. F.; Funnell, R. H.

    2012-02-01

    Earth surface temperatures, including in the deep sea increased by 5-10°C from the late Paleocene ca. 58 Myr ago to the Early Eocene Climatic Optimum (EECO) centered at about 51 Myr ago. A large (˜2.5‰) drop in δ13C of carbonate spans much of this interval. This suggests a long-term increase in the net flux of 13C-depleted carbon to the ocean and atmosphere that is difficult to explain by changes in surficial carbon cycling alone. We reveal a relationship between surface temperature increase and increased petroleum generation in sedimentary basins operating on 100 kyr to Myr time scales. We propose that early Eocene warming has led to a synchronization of periods of maximum petroleum generation and enhanced generation in otherwise unproductive basins through extension of the volume of source rock within the oil and gas window across hundreds of sedimentary basins globally. Modelling the thermal evolution of four sedimentary basins in the southwest Pacific predicted an up to 50% increase in petroleum generation that would have significantly increased leakage of light hydrocarbons and oil degeneration products into the atmosphere. Extrapolating our modelling results to hundreds of sedimentary basins worldwide suggests that globally increased leakage could have caused a climate feedback effect, driving or enhancing early Eocene climate warming.

  20. Transgenic plants as a sustainable, terrestrial source of fish oils.

    PubMed

    Napier, Johnathan A; Usher, Sarah; Haslam, Richard P; Ruiz-Lopez, Noemi; Sayanova, Olga

    2015-09-01

    1An alternative, sustainable source of omega-3 long chain polyunsaturated fatty acids is widely recognized as desirable, helping to reduce pressure on current sources (wild capture fisheries) and providing a de novo source of these health beneficial fatty acids. This review will consider the efforts and progress to develop transgenic plants as terrestrial sources of omega-3 fish oils, focusing on recent developments and the possible explanations for advances in the field. We also consider the utility of such a source for use in aquaculture, since this industry is the major consumer of oceanic supplies of omega-3 fish oils. Given the importance of the aquaculture industry in meeting global requirements for healthy foodstuffs, an alternative source of omega-3 fish oils represents a potentially significant breakthrough for this production system. Transgenic Camelina seeds engineered to accumulate the omega-3 fatty acids EPA and DHA, represent a sustainable alternative to fish oils.

  1. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine.

    PubMed

    Bradshaw, Heather B; Leishman, Emma

    2016-05-01

    Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.

  2. Lower Cody Shale (Niobrara equivalent) in the Bighorn Basin, Wyoming and Montana: thickness, distribution, and source rock potential

    USGS Publications Warehouse

    Finn, Thomas M.

    2014-01-01

    The lower shaly member of the Cody Shale in the Bighorn Basin, Wyoming and Montana is Coniacian to Santonian in age and is equivalent to the upper part of the Carlile Shale and basal part of the Niobrara Formation in the Powder River Basin to the east. The lower Cody ranges in thickness from 700 to 1,200 feet and underlies much of the central part of the basin. It is composed of gray to black shale, calcareous shale, bentonite, and minor amounts of siltstone and sandstone. Sixty-six samples, collected from well cuttings, from the lower Cody Shale were analyzed using Rock-Eval and total organic carbon analysis to determine the source rock potential. Total organic carbon content averages 2.28 weight percent for the Carlile equivalent interval and reaches a maximum of nearly 5 weight percent. The Niobrara equivalent interval averages about 1.5 weight percent and reaches a maximum of over 3 weight percent, indicating that both intervals are good to excellent source rocks. S2 values from pyrolysis analysis also indicate that both intervals have a good to excellent source rock potential. Plots of hydrogen index versus oxygen index, hydrogen index versus Tmax, and S2/S3 ratios indicate that organic matter contains both Type II and Type III kerogen capable of generating oil and gas. Maps showing the distribution of kerogen types and organic richness for the lower shaly member of the Cody Shale show that it is more organic-rich and more oil-prone in the eastern and southeastern parts of the basin. Thermal maturity based on vitrinite reflectance (Ro) ranges from 0.60–0.80 percent Ro around the margins of the basin, increasing to greater than 2.0 percent Ro in the deepest part of the basin, indicates that the lower Cody is mature to overmature with respect to hydrocarbon generation.

  3. Paleocene-Eocene potential source rocks in the Avengco Basin, Tibet: Organic geochemical characteristics and their implication for the paleoenvironment

    NASA Astrophysics Data System (ADS)

    Han, Zhongpeng; Xu, Ming; Li, Yalin; Wei, Yushuai; Wang, Chengshan

    2014-10-01

    The Avengco Basin is located in the western part of the Tibetan Plateau and is similar to the Nima Basin in the central part of the plateau and the Lunpola Basin in the eastern part in terms of sedimentary characteristics and tectonic settings, which are well known to provide a good source rock potential. However, the organic geochemical characteristics of the Paleocene-Eocene potential source rocks in the Avengco Basin have been under debate. Thirty-four marl and mudstone outcrop samples of the Niubao Formation in the Avengco Basin were collected and subjected to the following analyses: total organic carbon (TOC), Rock-Eval pyrolysis, stable carbon isotopes of kerogen, gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Here, we present the results indicating the organic matter of the upper Niubao Formation is mainly composed of Type II kerogen with a mixed source, which is dominated by algae. However, the lower Niubao Formation has the less oil-prone Type II-III kerogen, and the sources of the organic matter are mainly terrestrial plants with less plankton. In addition, the samples are thermally immature to marginally mature. The Niubao Formation was deposited in an anoxic-oxic environment which was brackish with an imperceptible stratified water column. The upper Niubao Formation has a medium to good hydrocarbon-generating potential. However, the lower Niubao Formation has a zero to poor hydrocarbon-generating potential.

  4. Effect of Brine Composition on Wettability Alteration and Oil Recovery from Oil-wet Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Purswani, P.; Karpyn, Z.

    2016-12-01

    Brine composition is known to affect the effectiveness of waterflooding during enhanced oil recovery from carbonate reservoirs. Recent studies have identified Mg2+, Ca2+ and SO42- as critical ions, responsible for incremental oil recovery via wettability alteration. To investigate the underlying mechanism of wettability alteration and, to evaluate the individual contribution of these ions towards improving oil recovery, a series of coreflooding experiments are performed. Various characterization techniques like zeta potential (ZP), drop angle analysis and inductively coupled plasma mass spectrometry (ICP MS) analysis are performed to evaluate the surface interactions taking place at the carbonate core samples, brine solution and crude oil interfaces. Total dissolved solids and electrical conductivity measurements confirm the ionic strength of the brine samples. Acid number calculations, ZP and contact angle measurements confirm the initial oil-wetting state of the core. ICP MS analysis of the effluent brine, confirm the relationship between the ionic interactions and oil recovery.

  5. Thermal maturation and organic richness of potential petroleum source rocks in Proterozoic Rice Formation, North American Mid-Continent rift system, northeastern Kansas

    SciTech Connect

    Newell, K.D. ); Burruss, R.C.; Palacas, J.G. )

    1993-11-01

    A recent well in northeastern Kansas penetrated 296 ft (90.2 m) of dark gray siltstone in the Precambrian Mid-Continent rift (Proterozoic Rice Formation). Correlations indicate this unit may be as thick as 600 ft (183 m) and is possibly time-equivalent to the Nonesuch Shale (Middle Proterozoic) in the Lake Superior region. The upper half of this unit qualifies as a lean source rock (averaging 0.66 wt.% TOC), and organic matter in it is in the transition stage between oil and wet gas generation. The presence of the gray siltstone in this well and similar lithologies in other wells is encouraging because it indicates the source rock deposition may be common along the Mid-Continent rift, and that parts of the rift may remain thermally within the oil and gas window. Microscopic examination of calcite veins penetrating the dark gray siltstone reveals numerous oil-filled and subordinate aqueous fluid inclusions. Homogenization temperatures indicate these rocks have been subjected to temperature of at least 110-115[degrees]C (230-239[degrees]F). Burial during the Phanerozoic is inadequate to account for the homogenization temperatures and thermal maturity of the Precambrian rocks. With the present geothermal gradient, at least 8250 ft (2.5 km) of burial is necessary, but lesser burial may be likely with probably higher geothermal gradients during rifting. Fluorescence colors and gas chromatograms indicate compositions of oils in the fluid inclusions vary. However, oils in the fluid inclusions are markedly dissimilar to the nearest oils produced from Paleozoic rocks.

  6. Sulfidogenesis and Control in Fractured Rock: Laboratory Experiments and Implication for Souring Intervention in Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Hubbard, C. G.; Geller, J. T.; Ajo Franklin, J. B.

    2016-12-01

    Microbial sulfidogenesis in oil reservoirs, referred to as souring, is commonly encountered during sea water flooding. A better understanding of the souring process and effective control is of great interest to the oil industry. While a large fraction of global oil reserve is found in fractured rock, understanding of sulfidogenesis and control in fractured rock is next to non-existent. Complex and contrasting flow properties between fracture and matrix result in heterogeneous thermal and reaction gradients, posing great challenges to both experimental and modeling studies. We conducted the first experiment on biogenic sulfidogenesis and control in fractured rock. A 2D flow cell was used and straight fractures were created in order to reduce complexity, producing datasets more amenable to models. Heating was applied to simulate temperature gradients from colder sea-water injection. Perchlorate treatment was performed following sulfidogenesis as a thermodynamic control strategy. Synthetic sea water (SSW) with acetate was used as the growth media. Inoculations were carried out with sulfate reducing and perchlorate reducing microbes. A set of control and monitoring methods was applied including temperature, optical and infrared imaging, distributed galvanic sensing and fluid sampling as well as influent/effluent monitoring. Tracer tests were conducted before and after the experiment. Our experiment captured the dynamics of sulfur cycling in fractured rocks. Time-lapse optical imaging recorded the evolution of microbial biomass. Infrared imaging revealed the thermal gradient and the impacts from flow. Such data was essential for the identification of a mesophilic zone and it's co-location with sufidogenesis. Galvanic-potential signals provided the critical dataset for tracking spatial sulfide distribution over time. Our experiment demonstrated for the first time the role of heterogeneous flow and temperature controlling sulfidogenesis and treatment in fractured rock

  7. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean.

    PubMed

    Dold, B; Gonzalez-Toril, E; Aguilera, A; Lopez-Pamo, E; Cisternas, M E; Bucchi, F; Amils, R

    2013-06-18

    Here we describe biogeochemical processes that lead to the generation of acid rock drainage (ARD) and rock weathering on the Antarctic landmass and describe why they are important sources of iron into the Antarctic Ocean. During three expeditions, 2009-2011, we examined three sites on the South Shetland Islands in Antarctica. Two of them displayed intensive sulfide mineralization and generated acidic (pH 3.2-4.5), iron-rich drainage waters (up to 1.78 mM Fe), which infiltrated as groundwater (as Fe(2+)) and as superficial runoff (as Fe(3+)) into the sea, the latter with the formation of schwertmannite in the sea-ice. The formation of ARD in the Antarctic was catalyzed by acid mine drainage microorganisms found in cold climates, including Acidithiobacillus ferrivorans and Thiobacillus plumbophilus. The dissolved iron (DFe) flux from rock weathering (nonmineralized control site) was calculated to be 0.45 × 10(9) g DFe yr(-1) for the nowadays 5468 km of ice-free Antarctic rock coastline which is of the same order of magnitude as glacial or aeolian input to the Southern Ocean. Additionally, the two ARD sites alone liberate 0.026 and 0.057 × 10(9) g DFe yr(-1) as point sources to the sea. The increased iron input correlates with increased phytoplankton production close to the source. This might even be enhanced in the future by a global warming scenario, and could be a process counterbalancing global warming.

  8. Reconnaissance studies of potential petroleum source rocks in the Middle Jurassic Tuxedni Group near Red Glacier, eastern slope of Iliamna Volcano

    USGS Publications Warehouse

    Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun

    2013-01-01

    Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.

  9. Source Rock (shales) Pore Space Transformation during Hydrocarbon Generation

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.; Sudin, V. V.

    2015-12-01

    The main objective of this investigations is to study the factors controlling changes in rock structure during catagenetic transformation of organic matter. Hydrocarbon generation and primary migration can be controlled by numerous parameters; the most important are temperature, pressure, hydrocarbon composition, and organic matter type and content. Several experimental studies focused on the influence of these main parameters. However few dedicated works investigated how the primary structure characteristic and organic matter content affects the pore space transformation of rocks. For this purpose we simulated the primary migration processes in laboratory conditions (pyrolises and CT scanning) in order to observe the dynamics of pore space transformation. Our experiments demonstrate that after each stage of heating the rocks change their original morphology with the formation of new pores and conduits connecting the primary voids. The samples with relatively low content in organic matter revealed fewer changes in pore space morphology, in contrast to rocks rich in organic content. Our results also highlight that the newly formed pore structures are directly related with the original structure of the unaltered rocks and the primary connectivity of the organics. Most of the structural changes were observed during the sequential heating between 260 - 430 ° C; within this interval also occur the most intense reactions for hydrocarbons formation.

  10. Oil-source correlation for the paleo-reservoir in the Majiang area and remnant reservoir in the Kaili area, South China

    NASA Astrophysics Data System (ADS)

    Fang, Yunxin; Liao, Yuhong; Wu, Liangliang; Geng, Ansong

    2011-05-01

    There are different viewpoints on the oil-source correlation of the Majiang paleo-reservoir and the neighbouring Kaili remnant reservoir in the Southern Guizhou Depression of China. Three potential source rocks in this depression could be inferred: the Lower-Cambrian marine mudstone, Lower-Silurian shale and Lower-Permian mudstone. Most of the potential source rocks are of high maturity. The solid bitumens and oil seepages in the Southern Guizhou Depression suffered severe secondary alterations, such as thermal degradation and biodegradation. The solid bitumens of the Majiang paleo-reservoir are also of high maturity. The oil seepages and soft bitumen of the Kaili remnant reservoir were severely biodegraded. All these secondary alterations may obscure oil-source correlations by routine biomarkers. Thus, it is very important to select appropriate biomarker parameters for the oil-source correlation. In this work, biomarkers resistant to thermal degradation and biodegradation and the data of organic carbon isotopic compositions were used for the correlation. The δ 13C values of n-alkanes in asphaltene pyrolysates were also used to make oil-oil and oil-source correlations between severely biodegraded oils. The results indicate that the Lower-Cambrian marine mudstones are the main source for the Ordovician-Silurian (O-S) solid bitumens of the Majiang area and the Ordovician-Silurian oil seepages and soft bitumens of the Kaili area. Remnant reservoir in the eastern Kaili area might have been charged at least twice by the oil generated from the Lower-Cambrian marine source rocks.

  11. Laser microprobe analysis of trace element composition in quartz silt for source rock determination

    SciTech Connect

    Gerber, D. . Dept. of Geology); Kennedy, S.K. . Dept. of Geology RJ Lee Group, Monroeville, PA )

    1992-01-01

    Provenance and source rock determination is one of the major problems that sedimentologists address. Undulatory extinction and polycrystallinity have been used to extract provenance information from sand-size quartz, but these are less informative with silt-size quartz. It is known that quartz contains trace elements which might be related to source rock. The purpose of this study was first to determine if the laser microprobe can detect trace elements in natural quartz, and second to determine if the quartz released from different crystalline source rocks have sufficiently different trace element composition to differentiate them. Ten silt samples from 5 source rocks (Pedlar Formation, Lovingston Fm. granitic gneiss, Lovingston Fm. mylonitic gneiss, an unnamed Precambrian layered granulite gneiss, and cataclastic rocks) of the Greenfield and Sherando Quadrangles of Virginia. Forty quartz grains for each sample were analyzed. The laser microprobe was able to detect Na, Mg, Al, K, Ca, Ti, Mn and Fe. Al and Fe were the most commonly observed trace element. The trace element content within quartz from each individual source was not uniform; one or more trace elements were detected in some grains while none were detected in others. In addition, there was overlap in the trace element distribution among the sources and quartz cannot be uniquely assigned to a source rock based on trace element composition. However, quartz from the Pedlar Fm. contains Al less frequently and quartz from the cataclastics and the layered granulite gneiss contains Fe more frequently than does quartz from the other sources. These results put some constraints on source rock interpretation and the analysis of more dissimilar rocks may show greater differences.

  12. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    SciTech Connect

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  13. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks

    NASA Astrophysics Data System (ADS)

    Hughes, William B.; Holba, Albert G.; Dzou, Leon I. P.

    1995-09-01

    The ratio of dibenzothiophene to phenanthrene and the ratio of pristane to phytane, when coupled together, provide a novel and convenient way to infer crude oil source rock depositional environments and lithologies. Such knowledge can significantly assist in identifying the source formation(s) in a basin thereby providing valuable guidance for further exploration. The ability to infer this information from analysis of a crude oil is especially valuable as frequently the earliest samples in a new area may be shows and/or drill stem test samples from exploratory wells which are characteristically drilled on structural highs stratigraphically remote from the source formation(s). A cross-plot of dibenzothiophene/phenanthrene versus the pristane/phytane ratios measured on seventy-five crude oils from forty-one known source rocks ranging in age from Ordovician to Miocene consistently classified the oils into the following environment/ lithology groups: marine carbonate; marine carbonate/ mixed and lacustrine sulfate-rich; lacustrine sulfate-poor; marine and lacustrine shale; and fluvial/deltaic carbonaceous shale and coal. The dibenzothiophene/phenanthrene ratio alone is an excellent indicator of source rock lithology with carbonates having ratios > 1 and shales having ratios < 1. The dibenzothiophene to phenanthrene and the pristane to phytane ratios can also be used to classify source rock paleodepositional environments. The classification scheme is based on the premise that these ratios reflect the different Eh-pH regimes resulting from the significant microbiological and chemical processes occurring during deposition and early diagenesis of sediments. The dibenzothiophene/phenanthrene ratio assesses the availability of reduced sulfur for incorporation into organic matter and the pristane/phytane ratio assesses the redox conditions within the depositional environment. Interpretation of these ratios has been aided by quantitative biomarker analysis and by carbon

  14. Organic petrology and geochemistry of Eocene Suzak bituminous marl, north-central Afghanistan: Depositional environment and source rock potential

    USGS Publications Warehouse

    Hackley, Paul C.; Sanfilipo, John

    2016-01-01

    Organic geochemistry and petrology of Eocene Suzak bituminous marl outcrop samples from Madr village in north-central Afghanistan were characterized via an integrated analytical approach to evaluate depositional environment and source rock potential. Multiple proxies suggest the organic-rich (TOC ∼6 wt.%) bituminous marls are ‘immature’ for oil generation (e.g., vitrinite Ro < 0.4%, Tmax < 425 °C, PI ≤ 0.05, C29 ααα S/S + R ≤ 0.12, C29 ββS/ββS+ααR ≤ 0.10, others), yet oil seeps are present at outcrop and live oil and abundant solid bitumen were observed via optical microscopy. Whole rock sulfur content is ∼2.3 wt.% whereas sulfur content is ∼5.0–5.6 wt.% in whole rock extracts with high polar components, consistent with extraction from S-rich Type IIs organic matter which could generate hydrocarbons at low thermal maturity. Low Fe-sulfide mineral abundance and comparison of Pr/Ph ratios between saturate and whole extracts suggest limited Fe concentration resulted in sulfurization of organic matter during early diagenesis. From these observations, we infer that a Type IIs kerogen in ‘immature’ bituminous marl at Madr could be generating high sulfur viscous oil which is seeping from outcrop. However, oil-seep samples were not collected for correlation studies. Aluminum-normalized trace element concentrations indicate enrichment of redox sensitive trace elements Mo, U and V and suggest anoxic-euxinic conditions during sediment deposition. The bulk of organic matter observed via optical microscopy is strongly fluorescent amorphous bituminite grading to lamalginite, possibly representing microbial mat facies. Short chain n-alkanes peak at C14–C16 (n-C17/n-C29 > 1) indicating organic input from marine algae and/or bacterial biomass, and sterane/hopane ratios are low (0.12–0.14). Monoaromatic steroids are dominated by C28clearly indicating a marine setting. High gammacerane index values (∼0.9) are consistent with

  15. Strontium isotopic evidence for an enriched source for post-subduction volcanic rocks, Dominican Republic

    SciTech Connect

    Wertz, W.K.; Perfit, M.R.; Shuster, R.D.

    1985-01-01

    Later Cenozoic volcanic rocks from the eastern Las Cuevas region (ELCR), Dominican Republic are dominantly shoshonitic and are associated with a series of east-west trending faults. The ELCR rocks are highly enriched in Sr, Ba, and light REE, but contain relatively low amounts of Rb and HFS ions. Several basalts appear to be unfractionated and have Mg-numbers of >75. These transitional to alkalic volcanic rocks are atypical of Caribbean igneous rocks and are more similar to alkaline centers associated with late-stage, island arc volcanism in other regions. Elevated /sup 87/Sr//sup 86/Sr ratios (0.7041-0.7048) are high in comparison to most other igneous rocks from the Caribbean region and indicate that they were derived from a source relatively enriched in LIL and REE in comparison to the sources which gave rise to the majority of Caribbean igneous rocks. /sup 87/Sr//sup 86/Sr values increase linearly with increasing Sr contents, suggesting mixing of sources with relatively low Sr contents and depleted /sup 87/Sr//sup 86/Sr with material that is highly enriched in Sr and with /sup 87/Sr//sup 86/Sr values around 0.706. This enriched component may be a fluid derived from melting/dehydrating subducted oceanic crust and sediment which metasomatically veined the sub-arc mantle. Small degrees of partial melting (<7%) of this source may be responsible for the unusual and enriched chemical composition of the ELCR volcanic rocks.

  16. Petroleum source rock evaluation of the Sebahat and Ganduman Formations, Dent Peninsula, Eastern Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Mustapha, Khairul Azlan; Abdullah, Wan Hasiah

    2013-10-01

    The Sebahat (Middle Miocene to Early Pliocene) and Ganduman (Early Pliocene to Late Pliocene) Formations comprise part of the Dent Group. The onshore Sebahat and Ganduman Formations form part of the sedimentary sequence within the Sandakan sub-basin which continues offshore in the southern portion of the Sulu Sea off Eastern Sabah. The Ganduman Formation lies conformably on the Sebahat Formation. The shaly Sebahat Formation represents a distal holomarine facies while the sandy Ganduman Formation represents the proximal unit of a fluvial-deltaic system. Based on organic geochemical and petrological analyses, both formations posses very variable TOC content in the range of 0.7-48 wt% for Sebahat Formation and 1-57 wt% for Ganduman Formation. Both formations are dominated by Type III kerogen, and are thus considered to be gas-prone based on HI vs. Tmax plots. Although the HI-Tmax diagram indicates a Type III kerogen, petrographic observations indicate a significant amount of oil-prone liptinite macerals. Petrographically, it was observed that significant amounts (1-17% by volume) of liptinite macerals are present in the Ganduman Formation with lesser amounts in the Sebahat Formation. Both formations are thermally immature with vitrinite reflectance values in the range of 0.20-0.35%Ro for Ganduman Formation and 0.25-0.44%Ro for Sebahat Formation. Although these onshore sediments are thermally immature for petroleum generation, the stratigraphic equivalent of these sediments offshore are known to have been buried to deeper depth and could therefore act as potential source rocks for gas with minor amounts of oil.

  17. Structurally dependent source rock maturity and kerogen facies, Estancia Basin, New Mexico

    SciTech Connect

    Broadhead, R.F.

    1995-06-01

    The Estancia basin of central New Mexico is an asymmetric, north-south trending structural depression that originated during the Pennsylvanian. The present-day basin covers 1,600 mi{sup 2} (4,100 km{sup 2}). It is bounded on the east by the late Paleozoic Pedernal uplift, on the west by the Tertiary-age Manzano and Los Pinos Mountains, on the north by the Espanola basin, and on the south by Chupadera Mesa. Depth to Precambrian basement ranges from 9,000 ft (2,700 m) in a narrow graben in the eastern part of the basin to less than 1,500 ft (460 m) on a shelf to the west. Basin fill consists primarily of Pennsylvanian and Wolfcampian sandstones and shales in the graben and sandstones, shales, and marine limestones on the shelf Mature to marginally mature dark-gray to black Pennsylvanian shales are probable source rocks. Thermal Alteration Index ranges from 2.0 to 3.2. Shales become thermally mature with depth in the eastern graben. On the western shelf, shales become mature to the west as a result of increased heating from the Rio Grande rift. Total organic carbon exceeds 0.5% in many shales, sufficient for hydrocarbon generation. Kerogen types are mixed algal, herbaceous, and woody, indicating that gas, or possibly gas mixed with oil, was generated. Kerogens in shales of the eastern graben are entirely continental, gas-prone types. In limestones and shales of the western shelf, kerogens have a mixed marine and continental provenance, indicating that both oil and gas may have been generated on thermally mature parts of the shelf.

  18. Cretaceous source rock sedimentation and its relation to transgressive peaks and geodynamic events for the Central Tethys

    SciTech Connect

    Flexer, A. ); Honigstein, A.; Rosenfeld, A. ); Lipson, S. ); Tarnenbaum, E. )

    1993-02-01

    The reconstruction of the Mesozoic continents shows a wide triangle-shaped Tethys (or Neotethys) between Africa and Eurasia. The Arabian Craton comprised the central part of its southern margins. The Cretaceous period started with extension, volcanism, continued by accelerated divergence during Aptian-Turonian and terminated by convergence and folding. The sea level stand, after a major fall at the commencement, is characterized by a steady stepwise rise with some minor retreats. The global oceanic anoxic events correspond to large-extent transgressions and associated with organic rich sedimentation. The accelerated building up of mid-oceanic ridges is possibly connected to a mantle plume, active around 120-80 Ma. Sea level rise and sea floor spreading is felt mainly at these times in the passive southern margins of the central Tethys. The Senonian compressive tectonic regime transforms them into active margins (destruction of oceanic crust, obduction and thrusting); sea level highstands control dysoxic sedimentation. Dysoxic sediments were observed in the Gevaram shales (Tithonian-Hauterivian). Talme Yafe marls (Late Aptian-Albian), Daliyya Formation (latest Cenomanian-Turonian) and the Mount Scopus Group (Santonian-Maastrichtian). The organic matter in the Gevaram shales is mixed marine and terrestrial (2.6% TOC) and in the Daliyya marls mostly marine (2.5% TOC). Both units have source rock possibilities and yield petroleum upon appropriate burial. The Senonian bituminous rocks (oil shales) are rich in marine organic matter (20% TOC) and are excellent source rocks in the Dead Sea area.

  19. Real-time oil-saturation monitoring in rock cores with low-field NMR.

    PubMed

    Mitchell, J; Howe, A M; Clarke, A

    2015-07-01

    Nuclear magnetic resonance (NMR) provides a powerful suite of tools for studying oil in reservoir core plugs at the laboratory scale. Low-field magnets are preferred for well-log calibration and to minimize magnetic-susceptibility-induced internal gradients in the porous medium. We demonstrate that careful data processing, combined with prior knowledge of the sample properties, enables real-time acquisition and interpretation of saturation state (relative amount of oil and water in the pores of a rock). Robust discrimination of oil and brine is achieved with diffusion weighting. We use this real-time analysis to monitor the forced displacement of oil from porous materials (sintered glass beads and sandstones) and to generate capillary desaturation curves. The real-time output enables in situ modification of the flood protocol and accurate control of the saturation state prior to the acquisition of standard NMR core analysis data, such as diffusion-relaxation correlations. Although applications to oil recovery and core analysis are demonstrated, the implementation highlights the general practicality of low-field NMR as an inline sensor for real-time industrial process control.

  20. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine

    PubMed Central

    Leishman, Emma

    2016-01-01

    Background Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methods Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Results Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Conclusions Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil. PMID:26565552

  1. Determination of a rock physics model for the carbonate Fahliyan Formation in two oil wells in southwestern Iran

    NASA Astrophysics Data System (ADS)

    Mahbaz, SeyedBijan; Sardar, Hadi; Memarian, Hossein

    2012-02-01

    Geophysical methods, especially seismic inversion, have improved considerably in recent years. The prediction of elastic behaviour is important to decrease risk in mining operations. The investigation of rock physics is a way to predict rock behaviours, especially reservoir geomechanical parameters. The first step in rock physics studies is to diagnose and introduce a suitable rock physics model. In this paper, we review rock physics models, such as the Rymer-Greenberg-Castagna model, and we compare them with real data trends in two oil wells of a carbonate reservoir (the Fahliyan Formation) in the Zagros Basin of southwestern Iran using sonic, density and porosity logs. After omitting the effect of water saturation and clay content, the best model for clean carbonate of the Fahliyan Formation was developed in two oil wells (A1 and A2).

  2. Biodegradation reduces magnetization in oil bearing rocks: magnetization results of a combined chemical and magnetic study

    NASA Astrophysics Data System (ADS)

    Emmerton, S.; Muxworthy, A. R.; Sephton, M. A.; Williams, W.

    2012-12-01

    A relationship between hydrocarbons and their magnetic signatures has been alluded to for decades but this is the first study to combine geochemical and magnetic data. We report an extended study that identifies a definitive connection between magnetic mineralogy and biodegradation within oil-bearing rocks. Samples from Colombia, Canada Indonesia and the UK were collected and magnetically characterized. A negative linear regression in log space between magnetic susceptibility and the percentage of extractable organic matter was observed for individual reservoirs. To determine if this relationship is due to the activity of bacteria or migration of the oil, the percentage of oil components; aliphatic, aromatics, polars and resins and the biodegradation state of the samples were compared to the magnetic susceptibility and magnetic mineralogy of the samples. Geochemical biomarker data revealed that all oil samples were derived from mature type-II kerogen, which was deposited in oxygen-poor environments allowing for an investigation into biodegradation variations. Biodegradation is the decrease of oil quality through the conversion of aliphatic hydrocarbons to polar constituents mainly through the activity of bacteria. A distinct decrease in magnetic susceptibility was correlated to decreasing oil quality (loss of aliphatic hydrocarbons, more biodegraded), which cannot be rejected at 99% confidence. Further magnetic characterization revealed that the high quality, low biodegradation oils from Colombia have a higher magnetic susceptibility (10-3-10-4 m3kg-1) and are dominated by pseudo-single domain grains of magnetite. The lower quality oils i.e., the UK, Canadian and Indonesian samples, displayed decreased magnetic susceptibility (10-5-10-6 m3kg-1) and pseudo-single domain to multidomain grains of magnetite and hematite. Magnetite and pyrrhotite framboidal material were found in all but the Canadian samples. Therefore, with decreasing oil quality there is a progressive

  3. Unconventional neutron sources for oil well logging

    NASA Astrophysics Data System (ADS)

    Frankle, C. M.; Dale, G. E.

    2013-09-01

    Americium-Beryllium (AmBe) radiological neutron sources have been widely used in the petroleum industry for well logging purposes. There is strong desire on the part of various governmental and regulatory bodies to find alternate sources due to the high activity and small size of AmBe sources. Other neutron sources are available, both radiological (252Cf) and electronic accelerator driven (D-D and D-T). All of these, however, have substantially different neutron energy spectra from AmBe and thus cause significantly different responses in well logging tools. We report on simulations performed using unconventional sources and techniques to attempt to better replicate the porosity and carbon/oxygen ratio responses a well logging tool would see from AmBe neutrons. The AmBe response of these two types of tools is compared to the response from 252Cf, D-D, D-T, filtered D-T, and T-T sources.

  4. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation.

    PubMed

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.

  5. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation

    PubMed Central

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil. PMID:28066378

  6. Application of uniaxial confining-core clamp with hydrous pyrolysis in petrophysical and geochemical studies of source rocks at various thermal maturities

    USGS Publications Warehouse

    Lewan, Michael D.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Understanding changes in petrophysical and geochemical parameters during source rock thermal maturation is a critical component in evaluating source-rock petroleum accumulations. Natural core data are preferred, but obtaining cores that represent the same facies of a source rock at different thermal maturities is seldom possible. An alternative approach is to induce thermal maturity changes by laboratory pyrolysis on aliquots of a source-rock sample of a given facies of interest. Hydrous pyrolysis is an effective way to induce thermal maturity on source-rock cores and provide expelled oils that are similar in composition to natural crude oils. However, net-volume increases during bitumen and oil generation result in expanded cores due to opening of bedding-plane partings. Although meaningful geochemical measurements on expanded, recovered cores are possible, the utility of the core for measuring petrophysical properties relevant to natural subsurface cores is not suitable. This problem created during hydrous pyrolysis is alleviated by using a stainless steel uniaxial confinement clamp on rock cores cut perpendicular to bedding fabric. The clamp prevents expansion just as overburden does during natural petroleum formation in the subsurface. As a result, intact cores can be recovered at various thermal maturities for the measurement of petrophysical properties as well as for geochemical analyses. This approach has been applied to 1.7-inch diameter cores taken perpendicular to the bedding fabric of a 2.3- to 2.4-inch thick slab of Mahogany oil shale from the Eocene Green River Formation. Cores were subjected to hydrous pyrolysis at 360 °C for 72 h, which represents near maximum oil generation. One core was heated unconfined and the other was heated in the uniaxial confinement clamp. The unconfined core developed open tensile fractures parallel to the bedding fabric that result in a 38 % vertical expansion of the core. These open fractures did not occur in the

  7. Major element variation and possible source materials of apollo 12 crystalline rocks.

    PubMed

    Kushiro, I; Haramura, H

    1971-03-26

    Nine different crystalline rocks of the Apollo 12 samples have been analyzed with conventional chemical rock analysis methods. Five of the rocks have normative quartz, whereas the others have normative olivine and hypersthene. The rocks show a wide range in the ratio of iron to magnesium, and their compositions fall on relatively smooth curves in the oxide variation diagram. It is suggested that these rocks, with one exception, represent different parts of a differentiated magmatic body, in which magmatic differentiation by crystallization and settling of olivine was most effective. The source material of the original magma may be peridotite with or without minor amounts of plagioclase or spinel or garnet, with the presence or absence of these minerals dependent on the depth of magma generation.

  8. Mesozoic hydrocarbon source rock studies of north Tarim, south Junggar, and Turpan basins, Xinjiang Uygur autonomous region, northwestern China

    SciTech Connect

    Hendrix, M.S.; Xiao, Z.; Liang, Y.; Graham, S.A.; Carroll, A.R.; Chu, J.; McKnight, C.

    1989-03-01

    Ongoing outcrop and accompanying pyrolysis studies of Mesozoic strata of the north Tarim, south Junggar, and Turpan retroarc foreland basins, northwestern China, have demonstrated the existence of potential oil-prone and gas-prone petroleum source rocks. Lithologies include Jurassic coals from all three basins and Triassic coals from Tarim. Jurassic coals collected from the Mesozoic depocenters of the Junggar and Tarim basins are oil prone, yielding S/sub 2//S/sub 2+3/ values that range from 0.80 to 0.99 and average 0.96, hydrogen index (HI) values that range from 117.9 to 213.4 and average 150.8, and oxygen index (OI) values that range from 1.1 to 31.6 and average 7.67. In contrast, Triassic coals of Tarim and Jurassic coals of Turpan contain more conventional type III gas-prone kerogens and yield S/sub 2//S/sub 2+3/ values ranging from 0.04 to 0.52 and averaging 0.22, HI values ranging from 3.2 to 130.2 with a mean of 33.6, and OI values ranging from 30.9 to 223.7 and averaging 115.9. Coals of all three basins are slightly immature to mature with respect to oil generation, as indicated by T/sub max/ values ranging from 425/degrees/ to 449/degrees/C (average = 343/degrees/C) and vitrinite reflectance values ranging from 0.51 to 0.64 (average = 0.57). Thus, given the widespread abundance and significant thicknesses of Mesozoic and especially Jurassic coals in all three basins, it is very likely that Mesozoic contributions to Xinjiang's oil and gas reserves are significant. This is particularly important in the north Tarim basin, where recent Chinese oil and gas discoveries have been made and the existence of significant pre-Mesozoic source beds remains unproven.

  9. Evidence for Cambrian petroleum source rocks in the Rome trough of West Virginia and Kentucky, Appalachian basin: Chapter G.8 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Harris, David C.; Gerome, Paul; Hainsworth, Timothy J.; Burruss, Robert A.; Lillis, Paul G.; Jarvie, Daniel M.; Pawlewicz, Mark J.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The bitumen extract from the Rogersville Shale compares very closely with oils or condensates from Cambrian reservoirs in the Carson Associates No. 1 Kazee well, Homer gas field, Elliott County, Ky.; the Inland No. 529 White well, Boyd County, Ky.; and the Miller No. 1 well, Wolfe County, Ky. These favorable oil-source rock correlations suggest a new petroleum system in the Appalachian basin that is characterized by a Conasauga Group source rock and Rome Formation and Conasauga Group reservoirs. This petroleum system probably extends along the Rome trough from eastern Kentucky to at least central West Virginia.

  10. Combining molecular fingerprints with multidimensional scaling analyses to identify the source of spilled oil from highly similar suspected oils.

    PubMed

    Zhou, Peiyu; Chen, Changshu; Ye, Jianjun; Shen, Wenjie; Xiong, Xiaofei; Hu, Ping; Fang, Hongda; Huang, Chuguang; Sun, Yongge

    2015-04-15

    Oil fingerprints have been a powerful tool widely used for determining the source of spilled oil. In most cases, this tool works well. However, it is usually difficult to identify the source if the oil spill accident occurs during offshore petroleum exploration due to the highly similar physiochemical characteristics of suspected oils from the same drilling platform. In this report, a case study from the waters of the South China Sea is presented, and multidimensional scaling analysis (MDS) is introduced to demonstrate how oil fingerprints can be combined with mathematical methods to identify the source of spilled oil from highly similar suspected sources. The results suggest that the MDS calculation based on oil fingerprints and subsequently integrated with specific biomarkers in spilled oils is the most effective method with a great potential for determining the source in terms of highly similar suspected oils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Detailed Study of Seismic Wave Attenuation in Carbonate Rocks: Application on Abu Dhabi Oil Fields

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.; Matsushima, J.

    2015-12-01

    Seismic wave attenuation is a promising attribute for the petroleum exploration, thanks to its high sensitivity to physical properties of subsurface. It can be used to enhance the seismic imaging and improve the geophysical interpretation which is crucial for reservoir characterization. However getting an accurate attenuation profile is not an easy task, this is due to complex mechanism of this parameter, although that many studies were carried out to understand it. The degree of difficulty increases for the media composed of carbonate rocks, known to be highly heterogeneous and with complex lithology. That is why few attenuation studies were done successfully in carbonate rocks. The main objectives of this study are, Getting an accurate and high resolution attenuation profiles from several oil fields. The resolution is very important target for us, because many reservoirs in Abu Dhabi oil fields are tight.Separation between different modes of wave attenuation (scattering and intrinsic attenuations).Correlation between the attenuation profiles and other logs (Porosity, resistivity, oil saturation…), in order to establish a relationship which can be used to detect the reservoir properties from the attenuation profiles.Comparison of attenuation estimated from VSP and sonic waveforms. Provide spatial distribution of attenuation in Abu Dhabi oil fields.To reach these objectives we implemented a robust processing flow and new methodology to estimate the attenuation from the downgoing waves of the compressional VSP data and waveforms acquired from several wells drilled in Abu Dhabi. The subsurface geology of this area is primarily composed of carbonate rocks and it is known to be highly fractured which complicates more the situation, then we separated successfully the intrinsic attenuation from the scattering. The results show that the scattering is significant and cannot be ignored. We found also a very interesting correlation between the attenuation profiles and the

  12. Loss of volatile hydrocarbons from an LNAPL oil source

    USGS Publications Warehouse

    Baedecker, M.J.; Eganhouse, R.P.; Bekins, B.A.; Delin, G.N.

    2011-01-01

    The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene ≫ o-xylene, benzene, C6 and C10–12n-alkanes > C7–C9n-alkanes > m-xylene, cyclohexane, and 1- and 2-methylnaphthalene > 1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water–oil and air–water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C6–C9n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29 years or an average annual loss of 0.06–0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.

  13. Loss of volatile hydrocarbons from an LNAPL oil source

    NASA Astrophysics Data System (ADS)

    Baedecker, Mary Jo; Eganhouse, Robert P.; Bekins, Barbara A.; Delin, Geoffrey N.

    2011-11-01

    The light nonaqueous phase liquid (LNAPL) oil pool in an aquifer that resulted from a pipeline spill near Bemidji, Minnesota, was analyzed for volatile hydrocarbons (VHCs) to determine if the composition of the oil remains constant over time. Oil samples were obtained from wells at five locations in the oil pool in an anaerobic part of the glacial outwash aquifer. Samples covering a 21-year period were analyzed for 25 VHCs. Compared to the composition of oil from the pipeline source, VHCs identified in oil from wells sampled in 2008 were 13 to 64% depleted. The magnitude of loss for the VHCs analyzed was toluene ≫ o-xylene, benzene, C 6 and C 10-12n-alkanes > C 7-C 9n-alkanes > m-xylene, cyclohexane, and 1- and 2-methylnaphthalene > 1,2,4-trimethylbenzene and ethylbenzene. Other VHCs including p-xylene, 1,3,5- and 1,2,3-trimethylbenzenes, the tetramethylbenzenes, methyl- and ethyl-cyclohexane, and naphthalene were not depleted during the time of the study. Water-oil and air-water batch equilibration simulations indicate that volatilization and biodegradation is most important for the C 6-C 9n-alkanes and cyclohexanes; dissolution and biodegradation is important for most of the other hydrocarbons. Depletion of the hydrocarbons in the oil pool is controlled by: the lack of oxygen and nutrients, differing rates of recharge, and the spatial distribution of oil in the aquifer. The mass loss of these VHCs in the 5 wells is between 1.6 and 7.4% in 29 years or an average annual loss of 0.06-0.26%/year. The present study shows that the composition of LNAPL changes over time and that these changes are spatially variable. This highlights the importance of characterizing the temporal and spatial variabilities of the source term in solute-transport models.

  14. Geochemical modelling of the principal source rocks of the Barinas and Maracaibo basins, western Venezuela

    SciTech Connect

    Tocco, R.; Gallango, O.; Parnaud, F.

    1996-08-01

    This study presents a geochemical modelling of the principal source rocks in the western Venezuelan Basins. The area covers more than 100,000 km{sup 2}, and includes Lake Maracaibo and Barinas Basins. The geochemical modelling recognizes three source rocks: (1) A principal, K3-K4-K5 Cretaceous sequences, represented by La Luna, Capacho and Navay formations, (2) a secondary, corresponding to the T4 Oligocene sequence, represent by the Carbonera Formation, and (3) an accessory source rock, K7-K8 Paleocene sequences, represented by the carbonaceous shales and coals of the Orocue Group and Marcelina Formation. Three periods of hydrocarbon expulsion were defined for La Luna Formation (Early Eocene-Late Eocene, Middle Miocene-Early Miocene and Early Miocene-Holocene) and a principal period of hydrocarbon expulsion for Orocue Group and Carbonera Formation (Plio-Pleistocene and Middle Miocene Plio-Pleistocene). The 90% of hydrocarbons generated correspond to the principal source rock La Luna Formation, and the 10% to Tertiary source rocks (Carbonera Formation and Orocue Group). Five petroleum systems were identified: Lake Maracaibo, southwest of the Lake Maracaibo Basin, the Lara nappes, the extensive basins of eastern Zulia and the Barinas subbasin.

  15. [The evaluation of hydrocarbon potential generation for source rocks by near-infrared diffuse reflection spectra].

    PubMed

    Zhang, Yu-Jia; Xu, Xiao-Xuan; Song, Ning; Wu, Zhong-Chen; Zhou, Xiang; Chen, Jin; Cao, Xue-Wei; Wang, Bin

    2011-04-01

    Near-infrared (NIR) and mid-infrared (MIR) diffuse reflection spectra were compared and evaluated for hydrocarbon potential generation of source rocks. Near-infrared diffuse reflectance often exhibits significant differences in the spectra due to the non-homogeneous distribution of the particles, so the signal-to-noise ratio of NIR is much lower than MIR It is too difficult to get accurate results by NIR without using a strong spectral preprocessing method to remove systematic noise such as base-line variation and multiplicative scatter effects. In the present paper, orthogonal signal correction (OSC) and an improved algorithm of it, i.e. direct orthogonal signal correction (DOSC), are used as different methods to preprocess both the NIR and MIR spectra of the hydrocarbon source rocks. Another algorithm, wavelet multi-scale direct orthogonal signal correction (WMDOSC), which is a combination of discrete wavelet transform (DWT) and DOSC, is also used as a preprocessing method. Then, the calibration model of hydrocarbon source rocks before and after pretreatment was established by interval partial least square (iPLS). The experimental results show that WMDOSC is more successfully applied to preprocess the NIR spectra data of the hydrocarbon source rocks than other two algorithms, and NIR performed as good as MIR in the analysis of hydrocarbon potential generation of source rocks with WMDOSC-iPLS pretreatment calibration model.

  16. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    PubMed

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter.

  17. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  18. Source rock potential analysis using rock physics approach and 2D seismic data inversion: case study of Great Australian Bight

    NASA Astrophysics Data System (ADS)

    Shulakova, V.

    2015-12-01

    The quantity of total organic carbon (TOC) and its type determine the ability of source rocks to generate hydrocarbons. Thus, the quantification of TOC content is an essential part of any reservoir characterisation project. Traditionally TOC is estimated from geochemical analysis of core samples. In this case the results are limited spatially by a well location as well as vertically by a number of tested samples. At the same time TOC vertical variability might be very high, changing every 1-3 m. The several methods have been deployed to estimate TOC from well-log data which provides continuous vertical profile estimations. The basin wide information might be provided by the utilization of seismic surveys. The methodology of mapping source rocks based on seismic data has been lately reported to be successful for the thick source rocks (>20 m) with relatively high TOC values up to 3-4% (Løseth et al., 2011). We employ the described approach and demonstrate our findings for a case study from Ceduna Basin (Great Australian Bight, Australia). The reported TOC values estimated from the cores go up to only 1.3%. The organic matter is contained in thin layers of claystones interlayered with sandstones. The workflow included TOC estimation from the well-log data and then seismic data inversion performed in JasonTM software. The inverted acoustic impedance decreases nonlinearly with increasing TOC content. The obtained results comprises 2D section of TOC distribution. The calculated TOC values are in a good agreement with the results of laboratory measurements. The results of this study show that TOC can be successfully estimated from seismic data inversion even in the case of low organic matter values. Further work has to be done to understand whether this approach works for different types of organic matter and stages of its maturation. Løseth H., Wensaas L., Gading M., Duffaut K., Springer M. 2001. Can hydrocarbon source rocks be identified on seismic data? Geology 39/12.

  19. Tectonic and sedimentary evolution from the Late Sinian to Early Cambrian and their control on hydrocarbon source rocks in Tarim Basin, Western China

    NASA Astrophysics Data System (ADS)

    Wu, Lin

    2017-04-01

    The lower Cambrian black shale is widely distributed all over the world, but due to the deep buried depth of Cambrian in the Tarim Basin, the black shale, as high-quality source rocks, has never been found in the interior of the basin. Through further survey on outcrops in the periphery of the Tarim Basin, a set of hydrocarbon source rocks with high-quality was found developed at the bottom of the lower Cambrian Yuertusi formation in Tarim basin. Lithology of the source rock is black shale. Its organic carbon (TOC) mainly ranges 2-10%, organic carbon of black shale layer reaches 17%, and the thickness of outcrop is 10-15m in Aksu area. This discovery of hydrocarbon source rocks draws much attention to the oil and gas exploration in Cambrian. The author, integrating with seismic, drilling and geological data, analyzes the tectonic sedimentary evolution in late Sinian-early Cambrian in the basin and its control on formation and distribution of hydrocarbon source rocks in Early Cambrian in this paper. The Nanhua - early Sinian clastic rocks rift basin formed on the basement on Tarim under the control of Rodinia supercontinent tectonic movement. Post-rifting marine carbonate siliceous shale deposited from the late Sinian to Early Cambrian rifting. Wide transgression in Tarim in the late Sinian departed Tarim into two patterns in North and South with the central land as a boundary with structural features: higher topography in middle and lower topography in two sides. There was no change in the pattern of basin during the late Sinian tectonic movement, and the Cambrian sediments deposited and filled the basin in this period. The central ancient land with structural high topography formed angular unconformity, while the basin with low topography formed parallel unconformity. Therefore, the Early Cambrian sedimentary filling in the late Sinian basin overlapped from low topography to high topography. Their distribution patterns were similar, both of which were of great

  20. Investigation of conjugated soybean oil as drying oils and CLA sources

    USDA-ARS?s Scientific Manuscript database

    A promising pound-scale production method for the conjugation of soybean oil (SBO) using iodine under photochemical reaction conditions is reported. Variations in catalyst loading, SBO concentration, light source, free radical catalyst source, solvent, and temperature were studied. A quantitative ...

  1. Oil, gas dominant sources of energy in U. S

    SciTech Connect

    Ivanhoe, L.F. )

    1991-09-30

    This paper reports on the U.S. oil and gas industry which has a major problem in how to communicate with the general public about the importance of oil and gas to the economy. Oil is the country's basic fuel, so ubiquitous that it is taken for granted like water. Discussions of energy problems should accordingly begin with the global supply and price of crude rather than with the merits of solar or wind power. Petroleum geologists have done such a good job of finding oil and gas that it looks as easy as growing crops, and engineers deliver the petroleum products like clockwork. Novel alternate energy sources of only token significance to the national economy get equal or greater media coverage than the giant but unglamorous and routine petroleum operations until a spill or other accident occurs.

  2. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks

    SciTech Connect

    Hughes, W.B.; Holba, A.G.; Dzou, L.I.P.

    1995-09-01

    The ratio of dibenzothiophene to phenanthrene and the ratio of pristane to phytane, when coupled together, provide a novel and convenient way to infer crude oil source rock depositional environments and lithologies. Such knowledge can significantly assist in identifying the source formation(s) in a basin thereby providing valuable guidance for further exploration. The ability to infer this information from analysis of a crude oil is especially valuable as frequently the earliest samples in a new area may be shows and/or drill stem test samples from exploratory wells which are characteristically drilled on structural highs stratigraphically remote from the source formation(s). A cross-plot of dibenzothiophene/phenanthrene versus the pristane/phytane ratios measured on seventy-five crude oils from forty-one known source rocks ranging in age from Ordovician to Miocene consistently classified the oils into the following environment/lithology groups: marine carbonate; marine carbonate/mixed and lacustrine sulfate-rich; lacustrine sulfate-poor; marine and lacustrine shale; and fluvial/deltaic carbonaceous shale and coal. The dibenzothiophene to phenanthrene and the pristane to phytane ratios can also be used to classify source rock paleodepositional environments. The classification scheme is based on the premise that these ratios reflect the different Eh-pH regimes resulting from the significant microbiological and chemical processes occurring during deposition and early diagenesis of sediments. The dibenzothiophene/phenanthrene ratio assesses the availability of reduced sulfur for incorporation into organic matter and the pristane/phytane ratio assesses the redox conditions within the depositional environment. Interpretation of these ratios has been aided by quantitative biomarker analysis and by carbon isotope data for pristane and phytane obtained by gas chromatography-isotope ratio mass spectrometry.

  3. True in situ oil shale retorting experiment at Rock Springs site 12

    SciTech Connect

    Long, A. Jr.; Merriam, N.W.; Virgona, J.E.; Parrish, R.L.

    1980-05-01

    A true in situ oil shale fracturing and retorting experiment was conducted near Rock Springs, Wyoming in 1977, 1978, and 1979. A 20-foot (6.1 m) thick zone of oil shale located 200 feet (61 m) below surface was hydraulically and explosively fractured. The fractured oil shale was extensively evaluated using flow tests, TV logging, caliper logging, downhole flow logging, core samples, and tracer tests. Attempts to conduct true in situ retorting tests in portions of the pattern with less than 5 percent void space as measured by caliper logs and less than 1 percent active void space measured by tracer test were curtailed when air could not be injected at desired rates. It is thought the fractures plugged as a result of thermal swelling of the oil shale. Air was injected at programmed rates in an area with 10 percent void measured by caliper log and 1.4 pecent active void measured by tracer test. A burn front was propagated in a narrow path moving away from the location of the production well. The vertical sweep of the burn front was measured at less than 4 feet (1.3 m). The burn front could not be sustained beyond 10 days without use of supplemental fuel. The authors recommend a minimum of 5 percent well-distributed void for attempts to retort 20 gpt (81 L/m ton) oil shale in confined beds. A void space of 5 percent may be roughly equivalent to 5 to 10 percent measured by caliper log and 1.4 percent or more by tracer test.

  4. Plant Oils as Potential Sources of Vitamin D

    PubMed Central

    Baur, Anja C.; Brandsch, Corinna; König, Bettina; Hirche, Frank; Stangl, Gabriele I.

    2016-01-01

    To combat vitamin D insufficiency in a population, reliable diet sources of vitamin D are required. The recommendations to consume more oily fish and the use of UVB-treated yeast are already applied strategies to address vitamin D insufficiency. This study aimed to elucidate the suitability of plant oils as an alternative vitamin D source. Therefore, plant oils that are commonly used in human nutrition were first analyzed for their content of vitamin D precursors and metabolites. Second, selected oils were exposed to a short-term UVB irradiation to stimulate the synthesis of vitamin D. Finally, to elucidate the efficacy of plant-derived vitamin D to improve the vitamin D status, we fed UVB-exposed wheat germ oil (WGO) for 4 weeks to mice and compared them with mice that received non-exposed or vitamin D3 supplemented WGO. Sterol analysis revealed that the selected plant oils contained high amounts of not only ergosterol but also 7-dehydrocholesterol (7-DHC), with the highest concentrations found in WGO. Exposure to UVB irradiation resulted in a partial conversion of ergosterol and 7-DHC to vitamin D2 and D3 in these oils. Mice fed the UVB-exposed WGO were able to improve their vitamin D status as shown by the rise in the plasma concentration of 25-hydroxyvitamin D [25(OH)D] and the liver content of vitamin D compared with mice fed the non-exposed oil. However, the plasma concentration of 25(OH)D of mice fed the UVB-treated oil did not reach the values observed in the group fed the D3 supplemented oil. It was striking that the intake of the UVB-exposed oil resulted in distinct accumulation of vitamin D2 in the livers of these mice. In conclusion, plant oils, in particular WGO, contain considerable amounts of vitamin D precursors which can be converted to vitamin D via UVB exposure. However, the UVB-exposed WGO was less effective to improve the 25(OH)D plasma concentration than a supplementation with vitamin D3. PMID:27570765

  5. Cold stage scanning electron microscopy of crude oil and brine in rock

    SciTech Connect

    Pesheck, P.S.; Davis, H.T.; Scriven, L.E.

    1981-01-01

    A study of the distribution and morphology of inclusions of liquid phases in the pore space of rock using a scanning electron microscopic method requires rapid cooling of the sample, its cracking and maintenance of sufficiently low temperatures during preparation and study of the sample to avoid sublimation of the frozen fluids. The cooling system developed to satisfy these and other specifications was tested in studying samples of Eldorado brine and crude oil in lumps of Biri sandstone 3 millimeters in diameter. The elements of the sample holder in the designed system are made of highly conducting silver, copper and aluminum with a minimal number of contacts which reduce the thermal resistance and are isolated from the body by the cryogenic panel. Methods are developed for preparing and installing samples and the effects of sublimation and heat radiation were studied in experiments. Based on measurements of the temperature of the thermocouple, the first stage of freezing began at -140C when a 2 percent solution of NaCl was sublimated, while the oil was not sublimated. Sublimation was not noted in the second stage with a reduction in the thermal resistance and a temperature of -179C. Moreover, thermal radiation is fixed on the surface of a crack in the sample. The microphotographs of the oil in the brine emulsion and in the free phase of the brine in the Biri sandstones showed that the use of the method may produce good results in studying the interaction of stratum fluids.

  6. Source Determinations for Oil and Gas Industries

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  7. Application of sequence stratigraphy to reservoir and hydrocarbon source rock prediction in the Cretaceous carbonate platforms of Maracaibo Basin, Venezuela

    SciTech Connect

    Murat, B.; Azpiritxaga, I. )

    1993-02-01

    Prediction of reservoir and source rocks is enhanced by an understanding of the sequential organization of the sedimentary units. In the Maracaibo Basin, the carbonate Cogollo Group and the basal part of the Shaly La Luna Formation (Upper Barremian to Lower Cenomanian) have been subdivided into a hierarchy of cycles ranging from parasequences (4th and 5th order) up to Regressive-Transgressive cycles (2nd order). Sedimentation during this period on a passive platform under the influence of eustatic sea level fluctuations, led to a succession of about twenty 3rd order sequences (depending on their location on the platform) composed of Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST). Their boundaries and maximum flooding surfaces can be traced on wireline logs and on cored material. These sequences belong to three Regressive-Transgressive 2nd order cycles showing a 3-stage evolution of infill, aggradation and backstepping. Sedimentary facies vary laterally within systems tracts and vertically from one cycle to another. Most basal TST units display high energy sediments prone to porosity development, whereas the basal HST units are generally characterized by muddier sediments. The best reservoirs are at the top of HST units, with development of both early dolomite and grainy packstones with moderate reservoir quality. Maximum oil productivity occurs where matrix porosity is associated with fractures, which are always best developed within the aggrading stage. Finally, source-rock intervals coincide with the maximum flooding surfaces which limit second order cycles.

  8. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    SciTech Connect

    Villamil, T.; Arango, C.

    1996-12-31

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  9. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    SciTech Connect

    Villamil, T.; Arango, C. )

    1996-01-01

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  10. Source-rock evaluation of outcrop samples from Vanuatu (Malakula, Espiritu Santo, Maewo, and Pentecost)

    USGS Publications Warehouse

    Buchbinder, Binyamin; Halley, Robert B.

    1988-01-01

    The samples collected for the present study represent only a portion of the sedimentary column in the various sedimentary basins of Vanuatu.  The characterize only the outer margins of the sedimentary basins and do not necessarily reflect the source-rock potential of the deeper (offshore) parts of the basins.

  11. Natural Offshore Oil Seepage and Related Tarball Accumulation on the California Coastline - Santa Barbara Channel and the Southern Santa Maria Basin: Source Identification and Inventory

    USGS Publications Warehouse

    Lorenson, T.D.; Hostettler, Frances D.; Rosenbauer, Robert J.; Peters, Kenneth E.; Dougherty, Jennifer A.; Kvenvolden, Keith A.; Gutmacher, Christina E.; Wong, Florence L.; Normark, William R.

    2009-01-01

    seafloor was mapped by sidescan sonar, and numerous lines of high -resolution seismic surveys were conducted over areas of interest. Biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs mainly from coastal California. These samples were used to construct a chemometric fingerprint (multivariate statistics) decision tree to classify 288 additional samples, including tarballs of unknown origin collected from Monterey and San Mateo County beaches after a storm in early 2007. A subset of 9 of 23 active offshore platform oils and one inactive platform oil representing a few oil reservoirs from the western Santa Barbara Channel were used in this analysis, and thus this model is not comprehensive and the findings are not conclusive. The platform oils included in this study are from west to east: Irene, Hildago, Harvest, Hermosa, Heritage, Harmony, Hondo, Holly, Platform A, and Hilda (now removed). The results identify three 'tribes' of 13C-rich oil samples inferred to originate from thermally mature equivalents of the clayey-siliceous, carbonaceous marl, and lower calcareous-siliceous members of the Monterey Formation. Tribe 1 contains four oil families having geochemical traits of clay-rich marine shale source rock deposited under suboxic conditions with substantial higher-plant input. Tribe 2 contains four oil families with intermediate traits, except for abundant 28,30-bisnorhopane, indicating suboxic to anoxic marine marl source rock with hemipelagic input. Tribe 3 contains five oil families with traits of distal marine carbonate source rock deposited under anoxic conditions with pelagic but little or no higher-plant input. Tribes 1 and 2 occur mainly south of Point Conception in paleogeographic settings where deep burial of the Monterey Formation source rock favored generation from all thre

  12. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect

    Mancini, E.A; Tew, B.H.; Mink, R.M. )

    1991-03-01

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  13. Estimation of Physical Property Changes by Oil Saturation in Carbonates and Sandstone Using Computational Rock Physics Methods

    NASA Astrophysics Data System (ADS)

    Lee, M.; Keehm, Y.

    2010-12-01

    Carbonate Reservoirs are drawing a great attention as global energy demands and consumption increase rapidly, since more than 60% of oil and 40% of gas of world reserves are in carbonate rocks. However, most of them are hard to develop mainly due to their complexity and heterogeneity, especially at the pore scale. In this study, we perform computational rock physics modeling (numerical simulations on pore microstructures of carbonate rocks) and compare the results with those from sandstone. The brief procedure of the method is (1) to obtain high-resolution pore microstructure with a spatial resolution of 1-2 micron by X-ray microtomography technique, (2) to perform two-phase lattice-Boltzmann (LB) flow simulation to obtain various oil and water saturations, then (3) to calculate physical properties, such as P-wave velocity and electrical conductivity through pore-scale property simulation techniques. For the carbonate rock, we identified much more isolated pores than sandstone by investigating pore microstructures. Thus permeability and electrical conductivity were much smaller than those of sandstone. The electrical conductivity versus oil saturation curve of the carbonate rock showed sharper decrease at low oil saturation, but similar slope at higher oil saturation. We think that higher complexity of pore connectivity is responsible for this effect. The P-wave velocity of the carbonate rock was much higher than sandstone and the it did not show any significant changes during the change of oil saturation. Therefore, we think that fluid discrimination by seismic data with P-wave velocity alone would pose a greate challenge in most carbonate reservoirs. In addition, the S-wave velocity seems not to be sensitive either, which suggest that the AVO-type analysis would also be difficult, though requires more researches. On the other hand, our computational rock physics approach can be useful in preliminary analysis of carbonate reservoirs since it can determine the

  14. Evaporites as a source for oil. Final report, July 15, 1988--February 28, 1994

    SciTech Connect

    Schreiber, B.C.; Benalihioulhaj, S.; Philp, R.P.

    1994-02-01

    The space/time relationship between evaporites and organic matter documented in the geological record and the understanding that extremely high biological activity is associated with evaporites forming in modern settings has led to an increasing consideration of evaporites as a potential source rock for crude oil and gas. The ida that favorable conditions for the accumulation and preservation of organic matter exists in evaporative environments, and probably occurred repeatedly in the geological record, is supported by two branches of study. The first concerns the type and quantity of organic matter associated with recent evaporitic environments. The other documents the biochemical characterization of immature organic-rich rocks and sediments, as well as oils, related to evaporitic systems. As part of the investigation of the relationship between organic matter and evaporites, the authors examined organic matter from modern evaporative settings, in evaporative sedimentary sections in immature Messinian deposits of the Mediterranean region, in Cretaceous shelf and tectonic basins of Morocco, and then in an ancient Rift Basin (Late Triassic) of New Jersey. In this regard they studied both the organic matter and the sedimentary and diagenetic history of the basins, in an effort to put reasonable parameters on maturation and expected burial/maturation history of different types of organic-rich basins. Results are summarized.

  15. Waste cooking oil as source for renewable fuel in Romania

    NASA Astrophysics Data System (ADS)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  16. An analytical scheme for determining forms of sulphur in oil shales and associated rocks

    USGS Publications Warehouse

    Tuttle, M.L.; Goldhaber, M.B.; Williamson, D.L.

    1986-01-01

    An analytical scheme for determining various forms of sulphur in oil shales and associated rocks is presented. Acid-soluble sulphate, sulphur contained in monosulphide and in disulphide minerals, and organically-bound sulphur are all quantitatively recovered as separate fractions. Finely-ground oil-shale samples are treated in an inert atmosphere with 6M hydrochloric acid to dissolve the acid-soluble sulphate minerals and form H2S from the decomposition of monosulphide minerals. The acid-soluble sulphate is precipitated as barium sulphate and the H2S is collected and weighed as silver sulphide. Disulphide minerals in the solid residue from the acid treatment are reduced by an acidified Cr(II) solution in an inert atmosphere, releasing the sulphide as H2S. The H2S is collected as silver sulphide. An Eschka fusion oxidizes and solubilizes all sulphur remaining within the Cr(II)-treated residue. This sulphate represents organically-bound sulphur and is collected as barium sulphate. The analytical procedures have been verified by using 57Fe Mo??ssbauer spectroscopy. Good agreement between the chemical and Mo??ssbauer data substantiated the sequential removal of the forms of sulphur and also demonstrated the ability of Mo??ssbauer spectroscopy to determine the absolute quantities of iron present in specific minerals. ?? 1986.

  17. Enriching acid rock drainage related microbial communities from surface-deposited oil sands tailings.

    PubMed

    Dean, Courtney; Xiao, Yeyuan; Roberts, Deborah J

    2016-10-01

    Little is known about the microbial communities native to surface-deposited pyritic oil sands tailings, an environment where acid rock drainage (ARD) could occur. The goal of this study was to enrich sulfur-oxidizing organisms from these tailings and determine whether different populations exist at pH levels 7, 4.5, and 2.5. Using growth-based methods provides model organisms for use in the future to predict potential activities and limitations of these organisms and to develop possible control methods. Thiosulfate-fed enrichment cultures were monitored for approximately 1 year. The results showed that the enrichments at pH 4.5 and 7 were established quicker than at pH 2.5. Different microbial community structures were found among the 3 pH environments. The sulfur-oxidizing microorganisms identified were most closely related to Halothiobacillus neapolitanus, Achromobacter spp., and Curtobacterium spp. While microorganisms related to Chitinophagaceae and Acidocella spp. were identified as the only possible iron-oxidizing and -reducing microbes. These results contribute to the general knowledge of the relatively understudied microbial communities that exist in pyritic oil sands tailings and indicate these communities may have a potential role in ARD generation, which may have implications for future tailings management.

  18. An analytical scheme for determining forms of sulphur in oil shales and associated rocks.

    PubMed

    Tuttle, M L; Goldhaber, M B; Williamson, D L

    1986-12-01

    An analytical scheme for determining various forms of sulphur in oil shales and associated rocks is presented. Acid-soluble sulphate, sulphur contained in monosulphide and in disulphide minerals, and organically-bound sulphur are all quantitatively recovered as separate fractions. Finely-ground oil-shale samples are treated in an inert atmosphere with 6M hydrochloric acid to dissolve the acid-soluble sulphate minerals and form H(2)S from the decomposition of monosulphide minerals. The acid-soluble sulphate is precipitated as barium sulphate and the H(2)S is collected and weighed as silver sulphide. Disulphide minerals in the solid residue from the acid treatment are reduced by an acidified Cr(II) solution in an inert atmosphere, releasing the sulphide as H(2)S. The H(2)S is collected as silver sulphide. An Eschka fusion oxidizes and solubilizes all sulphur remaining within the Cr(II)-treated residue. This sulphate represents organically-bound sulphur and is collected as barium sulphate. The analytical procedures have been verified by using (57)Fe Mössbauer spectroscopy. Good agreement between the chemical and Mössbauer data substantiated the sequential removal of the forms of sulphur and also demonstrated the ability of Mössbauer spectroscopy to determine the absolute quantities of iron present in specific minerals.

  19. Source terrains and diagenetic imprints of Cretaceous marine rocks of the Cordillera Oriental, Colombia

    SciTech Connect

    Segall, M.P.; Allen, R.B. ); Rubiano, J.; Sarmiento, L. )

    1993-02-01

    Cretaceous marine rocks of the western Cordillera Oriental of Colombia are exposed in stratigraphic sections which reveal multiple source terrains and variable diagenetic histories that were imposed by later thrusting XRD and petrographic analyses indicate that earliest Cretaceous rocks were derived from a nearly plutonic source (Triassic-Jurassic Ibague Batholith of the Cordillera Central) which provided feldspathic lithic fragments and clay-sized illite. High smectite concentrations in the overlying Hauterivian-Barremian strata reflect contemporaneous volcanism, possibly in the Cordillera Central. This signal decreased upsection to the upper Aptian, where detrital clays (kaolinite, chlorite, feldspar, amphibole) indicate a shift to a cratonic source, probably the Guayana Shield. Cratonic detrital input continues into the Turonian-Coniacian and is accompanies by high concentrations of smectite representing another period of volcanic activity. Later tectonic activity divided the area into two regions, each with unique diagenetic signatures. Three primary clastic sources are inferred for the section east of the thrust belt, however, the mineral assemblage is masked by later diagenesis. Sediments within the thrust belt show greater variability in the relative abundance of mineral assemblages and more poorly crystallized illite than occurs to the east of the thrust section. The preservation of much of the original mineralogic components within the thrust section indicates that these sediments have experienced only limited diagenetic overprinting as a result of a relatively short burial history. These contrasting signatures have important implications for hydrocarbon maturation within Cretaceous source rocks in a structurally complex region.

  20. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams.

  1. Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, Kent C.

    1988-01-01

    Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.

  2. Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, K.C.

    1986-01-01

    Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)

  3. Quantifying Sources of Methane in the Alberta Oil Sands

    NASA Astrophysics Data System (ADS)

    Baray, S.; Darlington, A. L.; Gordon, M.; Hayden, K.; Li, S. M.; Mittermeier, R. L.; O'brien, J.; Staebler, R. M.; McLaren, R.

    2015-12-01

    In the summer of 2013, an aircraft measurement campaign led by Environment Canada with participation from university researchers took place to investigate the sources and transformations of gas pollutants in the Alberta oil sands region close to Fort McMurray, Alberta. Apart from its ability to change the radiative forcing of the atmosphere, methane is also a significant precursor to the formation of formaldehyde, an important radical source. Thus, emissions of methane from facilities need to be understood since they can have air quality implications through alteration of the radical budget and hence, the oxidation capacity of the air mass. Methane was measured, along with other gases, via a cavity ring-down spectroscopy instrument installed on the Convair-580 aircraft. In total, there were 22 flights with 82 hours of measurements in the vicinity of oil sands facilities between August 13 and September 7, 2013. Various tools have been used to visualize the spatial and temporal variation in mixing ratios of methane and other trace gases in order to identify possible sources of methane. Enhancements of methane from background levels of 1.9 ppm up to ~4 ppm were observed close to energy mining facilities in the oil sands region. Sources of methane identified include open pit mining, tailings ponds, upgrader stacks and in-situ mining operations. Quantification of the emission rates of methane from distinct sources has been accomplished from box flights and downwind screen flights by identifying the ratios of trace gases emitted and through use of the Top-down Emission Rate Retrieval Algorithm (TERRA). Methane emission rates for some of these sources will be presented.

  4. A study of the growth of Pseudallescheria boydii isolates from sewage sludge and clinical sources on tributyrin, rapeseed oil, biodiesel oil and diesel oil.

    PubMed

    Janda-Ulfig, Katarzyna; Ulfig, Krzysztof; Cano, Josep; Guarro, Josep

    2008-01-01

    The study compared the growth of Pseudallescheria boydii isolates from sewage sludge and from clinical sources on tributyrin, rapeseed oil, biodiesel oil and diesel oil agars. The isolates grew on all substrates tested. The highest growth was observed on rapeseed oil agar, while the lowest on diesel agar. On tributyrin agar, hydrolysis zones were observed around or underneath the colonies. On rapeseed oil agar, no hydrolysis zones were formed, while most isolates formed such a zone on biodiesel oil agar. Rapeseed oil and biodiesel oil stimulated the growth of P. boydii isolates, while tributyrin inhibited fungal growth. The stimulation or inhibition effect of diesel oil was dependent on the specified strain. In clinical isolates, fungal growth and activity were found to be more variable compared to sludge isolates. The data suggest that contamination of the environment with these oils could favor the growth of P. boydii. However, no association was found between the growth and oil utilization by this fungus and its pathogenicity.

  5. Modified method for estimating petroleum source-rock potential using wireline logs, with application to the Kingak Shale, Alaska North Slope

    USGS Publications Warehouse

    Rouse, William A.; Houseknecht, David W.

    2016-02-11

    In 2012, the U.S. Geological Survey completed an assessment of undiscovered, technically recoverable oil and gas resources in three source rocks of the Alaska North Slope, including the lower part of the Jurassic to Lower Cretaceous Kingak Shale. In order to identify organic shale potential in the absence of a robust geochemical dataset from the lower Kingak Shale, we introduce two quantitative parameters, $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$, estimated from wireline logs from exploration wells and based in part on the commonly used delta-log resistivity ($\\Delta \\text{ }log\\text{ }R$) technique. Calculation of $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ is intended to produce objective parameters that may be proportional to the quality and volume, respectively, of potential source rocks penetrated by a well and can be used as mapping parameters to convey the spatial distribution of source-rock potential. Both the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters show increased source-rock potential from north to south across the North Slope, with the largest values at the toe of clinoforms in the lower Kingak Shale. Because thermal maturity is not considered in the calculation of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$, total organic carbon values for individual wells cannot be calculated on the basis of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$ alone. Therefore, the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters should be viewed as first-step reconnaissance tools for identifying source-rock potential.

  6. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  7. Organic petrology, thermal maturity, geology, and petroleum source rock potential of Lower Permian coal, Karoo supersystem, Zambia

    SciTech Connect

    Utting, J. ); Wielens, H. )

    1992-10-01

    This paper reports on data concerning organic petrology and thermal maturity of Lower Karoo coal measures (Lower Permian) which are of considerable importance in determining the hydrocarbon potential of sediments in the rift-valley and half-graben complexes of the Luangwa and Zambezi valleys of eastern and southern Zambia, respectively, and in the extensive sedimentary basin developed on relatively stable Precambrian basement in western Zambia, a total area in excess of 3000 km{sup 2}. Samples from seven outcrop and subsurface localities situated in the northeast (northern Luangwa Valley), east (mid-Luangwa Valley), south (mid-Zambezi Valley), and the Western Province of Zambia were studied. The coal measures are from 9 to 280 m thick, but individual coal seams are generally less than 6 m. The coal macerals contain an average of 60% vitrinite and 9% liptinite, enough to have potential to generate hydrocarbon. A few samples contain twice this amount of liptinite. Reflected-light microscopy and the thermal alteration index of spores were used to determine the thermal maturity. The organic matter in samples studied is within the oil generation zone (thermal alteration index 2{minus} to 2+; %R{sub 0} max = 0.5-0.9). The petrological and palynological data indicate that the organic matter consists of Types II (generally approximately 25% in carbonaceous shale samples), III, and IV, indicating source rock potential. Late Karoo ( ) and post-Karoo fault blocks with differential vertical displacements may have produced structural traps suitable for oil and gas accumulation.

  8. Pore-space alteration in source rock (shales) during hydrocarbons generation: laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.; Nadezhkin, D. V.

    2013-12-01

    Hydrocarbons (HC) are generated from solid organic matter (kerogen) due to thermocatalytic reactions. The rate of such reactions shows direct correlation with temperature and depends on the depth of source rock burial. Burial of sedimentary rock is also inevitably accompanied by its structural alteration owing to compaction, dehydration and re-crystallization. Processes of HC generation, primary migration and structural changes are inaccessible for direct observation in nature, but they can be studied in laboratory experiments. Experiment was carried out with a clayey-carbonate rock sample of the Domanik Horizon taken from boreholes drilled in the northeastern part of the south Tatar arch. The rock chosen fits the very essential requirements - high organic matter content and its low metamorphic grade. Our work aimed at laboratory modeling of HC generation in an undisturbed rock sample by its heating in nitrogen atmosphere based on a specified temperature regime and monitoring alterations in the pore space structure. Observations were carried out with a SkyScan-1172 X-ray microtomography scanner (resulting scan resolution of 1 μm). A cylinder, 44 mm in diameter, was prepared from the rock sample for the pyrolitic and microtomographic analyses. Scanning procedures were carried out in 5 runs. Temperature interval for each run had to match the most important stage of HC generation in the source rock, namely: (1) original structure; (2) 100-300°C - discharge of free and adsorbed HC and water; (3) 300-400°C - initial stage of HC formation owing to high-temperature pyrolysis of the solid organic matter and discharge of the chemically bound water; (4) 400-470°C - temperature interval fitting the most intense stage of HC formation; (5) 470-510°C - final stage of HC formation. Maximum sample heating in the experiment was determined as temperature of the onset of active decomposition of carbonates, i.e., in essence, irreversible metamorphism of the rock. Additional

  9. A Procedure to Determine the Optimal Sensor Positions for Locating AE Sources in Rock Samples

    NASA Astrophysics Data System (ADS)

    Duca, S.; Occhiena, C.; Sambuelli, L.

    2015-03-01

    Within a research work aimed to better understand frost weathering mechanisms of rocks, laboratory tests have been designed to specifically assess a theoretical model of crack propagation due to ice segregation process in water-saturated and thermally microcracked cubic samples of Arolla gneiss. As the formation and growth of microcracks during freezing tests on rock material is accompanied by a sudden release of stored elastic energy, the propagation of elastic waves can be detected, at the laboratory scale, by acoustic emission (AE) sensors. The AE receiver array geometry is a sensitive factor influencing source location errors, for it can greatly amplify the effect of small measurement errors. Despite the large literature on the AE source location, little attention, to our knowledge, has been paid to the description of the experimental design phase. As a consequence, the criteria for sensor positioning are often not declared and not related to location accuracy. In the present paper, a tool for the identification of the optimal sensor position on a cubic shape rock specimen is presented. The optimal receiver configuration is chosen by studying the condition numbers of each of the kernel matrices, used for inverting the arrival time and finding the source location, and obtained for properly selected combinations between sensors and sources positions.

  10. The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco

    SciTech Connect

    Moretti, I.; Montemurro, G.; Aguilera, E.; Perez, M.; Martinez, E.Diaz

    1996-08-01

    A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mg HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.

  11. Evaluating Local Elastic Anisotropy of Rocks and Sediments by Means of Optoacoustics While Drilling Oil and Gas Boreholes

    NASA Astrophysics Data System (ADS)

    Gladilin, A. V.; Egerev, S. V.; Ovchinnikov, O. B.

    2014-12-01

    The optoacoustic method is used to evaluate local elastic anisotropy of rocks and sediments. The method is based on laser sound generation by irradiating a spot on the wall of the oil or gas borehole. The optoacoustic method offers an advantage of precise non-contact placing of a short-pulse point sound source. Pulses of a compression wave, shear waves, and a surface wave are induced in the formation as a result of optoacoustic conversion. The surface trace of the bulk compression wave propagating along the borehole surface has a velocity corresponding to that of a bulk wave. Hence, measurements of the trace propagation time along several predetermined paths on the surface of a borehole provide evaluation of local elastic anisotropy in situ. The pick-up is provided with a piezoelectric ceramic transducer positioned at a predetermined point on the surface of the borehole. The optoacoustic conversion regime parameters were chosen to provide separation of the trace pulse of another surface perturbance at the travel distance of about 0.1 m. The local measurements on the borehole wall are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting seismic data where they are present.

  12. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    PubMed

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  13. Structural factors affecting pore space transformation during hydrocarbon generation in source rock (shales): laboratory experiments and X-ray microtomography/SEM study

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, Dina; Korost, Dmitry; Gerke, Kirill

    2015-04-01

    Oil and gas generation is a complex superposition of processes which take place in the interiors and are not readily observable in nature in human life time-frames. During burial of the source rocks organic matter is transformed into a mixture of high-molecular compounds - precursors of oil and gas (kerogen). Specific thermobaric conditions trigger formation of low molecular weight hydrocarbon compounds. Generation of sufficient quantities of hydrocarbons leads to the primary fluid migration. For series of our experiments we selected mainly siliceous-carbonate composition shale rocks from Domanic horizon of South-Tatar arch. Rock samples were heated in the pyrolyzer to temperatures closely corresponding to different catagenesis stages. X-ray microtomography method was used to monitor changes in the morphology of the pore space within studied shale rocks. By routine measurements we made sure that all samples (10 in total) had similar composition of organic and mineral phases. All samples in the collection were grouped according to initial structure and amount of organics and processed separately to: 1) study the influence of organic matter content on the changing morphology of the rock under thermal effects; 2) study the effect of initial structure on the primary migration processes for samples with similar organic matter content. An additional experiment was conducted to study the dynamics of changes in the structure of the pore space and prove the validity of our approach. At each stage of heating the morphology of altered rocks was characterized by formation of new pores and channels connecting primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. Second part of the study also revealed significant differences in resulting pore structures depending on initial structure of the unaltered rocks and connectivity of original

  14. Characterizing the hypersiliceous rocks of Belgium used in (pre-)history: a case study on sourcing sedimentary quartzites

    NASA Astrophysics Data System (ADS)

    Veldeman, Isis; Baele, Jean-Marc; Goemaere, Eric; Deceukelaire, Marleen; Dusar, Michiel; De Doncker, H. W. J. A.

    2012-08-01

    Tracking raw material back to its extraction source is a crucial step for archaeologists when trying to deduce migration patterns and trade contacts in (pre-)history. Regarding stone artefacts, the main rock types encountered in the archaeological record of Belgium are hypersiliceous rocks. This is a newly introduced category of rock types comprising those rocks made of at least 90% silica. These are strongly silicified quartz sands or sedimentary quartzites, siliceous rocks of chemical and biochemical origin (e.g. flint), very pure metamorphic quartzites and siliceous volcanic rocks (e.g. obsidian). To be able to distinguish between different extraction sources, ongoing research was started to locate possible extraction sources of hypersiliceous rocks and to characterize rocks collected from these sources. Characterization of these hypersiliceous rocks is executed with the aid of optical polarizing microscopy, optical cold cathodoluminescence and scanning-electron microscopy combined with energy-dispersive x-ray spectrometry and with back-scatter electron imaging. In this paper, we focus on various sedimentary quartzites of Paleogene stratigraphical level.

  15. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    SciTech Connect

    Penner, S.S.

    1982-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  16. Organic facies and systems tracts: Implications for source rock preservation and prediction

    SciTech Connect

    Kosters, E.C.; Vanderzwaan, F.J.; Gijsbert, J. )

    1993-09-01

    Sequence stratigraphy is concerned with making predictions about reservoirs ahead of the drill, however, little attention has been paid to the configuration of organic-rich facies of source rock quality. We suggest that preservation of source rock type facies in clastic systems is mutually exclusive and time successive. The main database is a collection of cores and other samples through the Holocene Rhone delta. The early Holocene Transgressive Systems Tract (TST) contains five levels of channelization. The most significant peat bed is located immediately landward of the shoreline of maximum transgression (SMT). The Highstand Systems Tract (HST) consists of two parasequences, containing mostly laterally continuous strandplain complexes without peat. In addition to sufficient accommodation space, an important control on formation of fresh-water peats and organic-rich shelf muds is availability of river-induced nutrients. Peat quality, however, is best without riverine clastics. In a delta plain, a balance between these two controls may be reached when river-fed nutrients are trapped there indirectly. The potential for such a condition arises in a TST setting. On the shelf, eutrophication of marine habitats is also controlled by river-fed nutrients, but excess river clastics are detrimental to marine source rock quality. A balance between these two controls may be reached in HST settings where fine-grained riverine clastics are forced onto the shelf rather than in the delta plain. In this case, nutrient supply to the shelf results in large quantities of marine biomass. This biomass becomes sufficiently concentrated due to moderate fine-grained riverine sedimentation which guarantees burial and preservation. Thus, varying river-water and nutrient supply in TST and HST settings seems to control large-scale preservation patterns of both continental and marine organics. This hypothesis suggests further potential for using sequence stratigraphy for source rock occurrence.

  17. Characterization of French Coriander Oil as Source of Petroselinic Acid.

    PubMed

    Uitterhaegen, Evelien; Sampaio, Klicia A; Delbeke, Elisabeth I P; De Greyt, Wim; Cerny, Muriel; Evon, Philippe; Merah, Othmane; Talou, Thierry; Stevens, Christian V

    2016-09-08

    Coriander vegetable oil was extracted from fruits of French origin in a 23% yield. The oil was of good quality, with a low amount of free fatty acids (1.8%) and a concurrently high amount of triacylglycerols (98%). It is a rich source of petroselinic acid (C18:1n-12), an important renewable building block, making up 73% of all fatty acids, with also significant amounts of linoleic acid (14%), oleic acid (6%), and palmitic acid (3%). The oil was characterized by a high unsaponifiable fraction, comprising a substantial amount of phytosterols (6.70 g/kg). The main sterol markers were β-sitosterol (35% of total sterols), stigmasterol (24%), and Δ⁷-stigmastenol (18%). Squalene was detected at an amount of 0.2 g/kg. A considerable amount of tocols were identified (500 mg/kg) and consisted mainly of tocotrienols, with γ-tocotrienol as the major compound. The phospholipid content was low at 0.3%, of which the main phospholipid classes were phosphatidic acid (33%), phosphatidylcholine (25%), phosphatidylinositol (17%), and phosphatidylethanolamine (17%). About 50% of all phospholipids were non-hydratable. The β-carotene content was low at 10 mg/kg, while a significant amount of chlorophyll was detected at about 11 mg/kg. An iron content of 1.4 mg/kg was determined through element analysis of the vegetable oil. The influence of fruit origin on the vegetable oil composition was shown to be very important, particularly in terms of the phospholipids, sterols, and tocols composition.

  18. Chitinozoan biostratigraphy - a good correlation tool for Ordovician rocks: Case study of baltoscandian oil shale interval

    SciTech Connect

    Bauert, C. ); Bauert, H. )

    1993-08-01

    Chitinozoans are organic-walled microfossils known from marine sedimentary rocks of Ordovician to Devonian age. In Baltoscandia, chitinozoans have been extensively studied since the 1930s and chitinozoan biostratigraphy of Ordovician-Silurian succession is quite well established. Because the Ordovician-Silurian carbonate sequence contains only a scarce graptolite fauna, chitinozoans and conodonts are considered the most valuable faunal groups for stratigraphic correlation, with the chitinozoans offering even better temporal resolution due to their widespread occurrence, planktonic origin, and relatively easy taxonomy. Also, small samples (100-300 g) can yield several hundreds of chitinozoans. In this study, chitinozoan distribution is compared in two Middle Ordovician (Llanvirn to Caradoc) core sections: Tamsalu-565 (central Estonia) and Bliudziai-150 (southern Lithuania). The distance between studied sections is about 470 km. The studied intervals are 51 and 27 m thick in the Tamsalu-565 and Bliudziai-150 cores, respectively. Both sections are highly condensed with numerous hardgrounds, but without major hiatuses. The Tamsalu-565 borehole was drilled in the Tapa oil shale deposits and contains 17 kukersite-type oil shale beds up to 2.3 m thick. Both sections yielded a numerous and diverse chitinozoan fauna. Altogether, 14 genera and 55 species were recorded. Although many chitinozoan species are long ranging, several with limited vertical range are useful biostratigraphically and suggest a good correlation between the studied sections. Chitinozoans can be regarded as a perspective faunal group in the United States for correlating subtidal to basin carbonate sediments, particularly when small sample size is a critical factor.

  19. Hydrocarbon potential evaluation of the source rocks from the Abu Gabra Formation in the Sufyan Sag, Muglad Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Qiao, Jinqi; Liu, Luofu; An, Fuli; Xiao, Fei; Wang, Ying; Wu, Kangjun; Zhao, Yuanyuan

    2016-06-01

    The Sufyan Sag is one of the low-exploration areas in the Muglad Basin (Sudan), and hydrocarbon potential evaluation of source rocks is the basis for its further exploration. The Abu Gabra Formation consisting of three members (AG3, AG2 and AG1 from bottom to top) was thought to be the main source rock formation, but detailed studies on its petroleum geology and geochemical characteristics are still insufficient. Through systematic analysis on distribution, organic matter abundance, organic matter type, organic matter maturity and characteristics of hydrocarbon generation and expulsion of the source rocks from the Abu Gabra Formation, the main source rock members were determined and the petroleum resource extent was estimated in the study area. The results show that dark mudstones are the thickest in the AG2 member while the thinnest in the AG1 member, and the thickness of the AG3 dark mudstone is not small either. The AG3 member have developed good-excellent source rock mainly with Type I kerogen. In the Southern Sub-sag, the AG3 source rock began to generate hydrocarbons in the middle period of Bentiu. In the early period of Darfur, it reached the hydrocarbon generation and expulsion peak. It is in late mature stage currently. The AG2 member developed good-excellent source rock mainly with Types II1 and I kerogen, and has lower organic matter abundance than the AG3 member. In the Southern Sub-sag, the AG2 source rock began to generate hydrocarbons in the late period of Bentiu. In the late period of Darfur, it reached the peak of hydrocarbon generation and its expulsion. It is in middle mature stage currently. The AG1 member developed fair-good source rock mainly with Types II and III kerogen. Throughout the geological evolution history, the AG1 source rock has no effective hydrocarbon generation or expulsion processes. Combined with basin modeling results, we have concluded that the AG3 and AG2 members are the main source rock layers and the Southern Sub-sag is

  20. Soils, slopes and source rocks: Application of a soil chemistry model to nutrient delivery to rift lakes

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas B.; Tucker, Gregory E.

    2015-06-01

    rift. These simulations demonstrate that evolving topography during rift development can significantly influence nutrient concentrations in groundwater and, if these nutrients flow into rift lakes and stimulate organic productivity, account for the deposition of rich oil-prone source rocks in late rift stages.

  1. Hydrocarbon source-rock evaluation - Solor Church Formation (middle Proterozoic, Keweenawan Supergroup), southeastern Minnesota

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1984-01-01

    In the type section (Lonsdale 65-1 core, Rice County, Minnesota) the Solor Church Formation (Middle Proterozoic, Keweenawan Supergroup) consists primarily of reddish-brown mudstone and siltstone and pale reddish-brown sandstone. The sandstone and siltstone are texturally and mineralogically immature. Hydrocarbon source-rock evaluation of bluish-gray, greenish-gray and medium-dark-gray to grayish-black beds, which primarily occur in the lower 104 m (340 ft) of this core, shows: (1) the rocks have low organic carbon contents (<0.5 percent for 22 of 25 samples); (2) the organic matter is thermally very mature (Tmax = 494°C, sample 19) and is probably near the transition between the wet gas phase of catagenesis and metagenesis (dry gas zone); and (3) the rocks have minimal potential for producing additional hydrocarbons (genetic potential <0.30 mgHC/gm rock). Although no direct evidence exists from which to determine maximum depths of burial, the observed thermal maturity of the organic matter requires significantly greater depths of burial and(or) higher geothermal gradients. It is likely, at least on the St. Croix horst, that thermal alteration of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early thermal alteration were probably lost prior to deposition of the overlying Fond du Lac Formation (Middle Proterozoic, Keweenawan Supergroup).

  2. Geological setting of oil shales in the Permian phosphoria formation and some of the geochemistry of these rocks

    USGS Publications Warehouse

    Maughan, E.K.

    1983-01-01

    Recent studies of the Meade Peak and the Retort Phosphatic Shale Members of the Phosphoria Formation have investigated the organic carbon content and some aspects of hydrocarbon generation from these rocks. Phosphorite has been mined from the Retort and Meade Peak members in southeastern Idaho, northern Utah, western Wyoming and southwestern Montana. Organic carbon-rich mudstone beds associated with the phosphorite in these two members also were natural sources of petroleum. These mudstone beds were differentially buried throughout the region so that heating of these rocks has been different from place to place. Most of the Phosphoria source beds have been deeply buried and naturally heated to catagenetically form hydrocarbons. Deepest burial was in eastern Idaho and throughout most of the northeastern Great Basin where high ambient temperatures have driven the catagenesis to its limit and beyond to degrade or to destroy the hydrocarbons. In southwest Montana, however, burial in some areas has been less than 2 km, ambient temperatures remained low and the kerogen has not produced hydrocarbons (2). In these areas in Montana, the kerogen in the carbonaceous mudstone has retained the potential for hydrocarbon generation and the carbon-rich Retort Member is an oil shale from which hydrocarbons can be synthetically extracted. The Phosphoria Formation was deposited in a foreland basin between the Cordilleran geosyncline and the North American craton. This foreland basin, which coincides with the area of deposition of the two organic carbon-rich mudstone members of the Phosphoria, has been named the Sublett basin (Maughan, 1979). The basin has a northwest-southeast trending axis and seems to have been deepest in central Idaho where deep-water sedimentary rocks equivalent to the Phosphoria Formation are exceptionally thick. The depth of the basin was increasingly shallower away from central Idaho toward the Milk River uplift - a land area in Montana, the ancestral Rocky

  3. Wetting behavior of selected crude oil/brine/rock systems. Topical report, March 1, 1995--March 31, 1996

    SciTech Connect

    Zhou, X.; Morrow, N.R.; Ma, S.

    1996-12-31

    Previous studies of crude oil/brine/rock (COBR) and related ensembles showed that wettability and its effect on oil recovery depend on numerous complex interactions. In the present work, the wettability of COBR ensembles prepared using Prudhoe Bay crude oil, a synthetic formation brine, and Berea Sandstone was varied by systematic change in initial water saturation and length of aging time at reservoir temperature (88 C). All displacement tests were run at ambient temperature. Various degrees of water wetness were achieved and quantified by a modified Amott wettability index to water, the relative pseudo work of imbibition, and a newly defined apparent advancing dynamic contact angle. Pairs of spontaneous imbibition (oil recovery by spontaneous imbibition of water) and waterflood (oil recovery vs. pore volumes of water injected) curves were measured for each of the induced wetting states. Several trends were observed. Imbibition rate, and hence water wetness, decreased with increase in aging time and with decrease in initial water saturation. Breakthrough recoveries and final oil recovery by waterflooding increased with decrease in water wetness. Correlations between water wetness and oil recovery by waterflooding and spontaneous imbibition are presented.

  4. Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts

    NASA Astrophysics Data System (ADS)

    Budzinski, H.; Garrigues, Ph.; Connan, J.; Devillers, J.; Domine, D.; Radke, M.; Oudins, J. L.

    1995-05-01

    Methylphenanthrene (MP), dimethylphenanthrene (DMP), and trimethylphenanthrene (TMP) distributions have been determined in crude oils and rock extracts from different origins at various stages of thermal maturity. A methodological approach combining Correspondence Factor Analysis and Nonlinear Mapping (NLM) was used for extracting origin/maturity information from these data. It allowed to benefit from the advantages of both methods. The use of such a multivariate data analysis appeared much more efficient than the use of molecular ratios that can be too restrictive and mask specific distribution patterns. This approach performed on the set of natural samples clearly demonstrated the discrimination between the samples through the presence of specific methyl-, dimethyl-, and trimethylphenanthrene isomers as origin/maturity markers. Based on MP, DMP, and TMP distributions, it is possible to distinguish the variations in organic matter type from the effects of thermal maturation. Some substituted phenanthrenes in each isomer series appear as characteristic of the two studied systems: The Aquitaine basin as representative of a marine carbonate environment and the Mahakam delta as representative of a terrestrial environment (higher plants). These compounds could be tentatively related to natural precursors such as triterpenoids or hopanoids.

  5. A plan for hydrologic investigations of in situ, oil-shale retorting near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, Kent C.; Zimmerman, E.A.; Larson, L.R.; Wallace, J.C.

    1982-01-01

    The recovery of shale oil by the in-situ retort process may cause hydrologic impacts, the most significant being ground-water contamination and possible transport of contaminants into surrounding areas. Although these impacts are site-specific, many of the techniques used to investigate each retort operation commonly will be the same. The U.S. Geological Survey has begun a study of hydrologic impacts in the area of an in-situ retort near Rock Springs, Wyoming, as a means of refining and demonstrating these techniques. Geological investigations include determining the areal extent and thickness of aquifers. Emphasis will be placed on determining lithologic variations from geophysical logging. Hydrologic investigations include mapping of potentiometric surfaces, determining rates of ground-water discharge, and estimating aquifer properties by analytical techniques. Water-quality investigations include monitoring solute migration from the retort site and evaluating sampling techniques by standard statistical procedures. A ground-water-flow and solute-transport model will be developed to predict future movement of the water plume away from the retort. (USGS)

  6. Characterization of oil source strata organic matter of Jurassic age and its contribution to the formation of oil and gas deposits

    NASA Astrophysics Data System (ADS)

    Pronin, Nikita; Nosova, Fidania; Plotnikova, Irina

    2013-04-01

    Within the frames of this work we carried out comprehensive geochemical study of high-carbon rocks samples taken from the three segments of the Jurassic system - from the lower (Kotuhtinskaya suite), from the medium (Tyumenskaya suite) and from the upper (Vasyuganskaya, Georgievskaya and the Bazhenovskaya suites), all within the north-eastern part of the Surgut oil and gas region. Altogether we investigated 27 samples. The complex study of the organic matter (OM) of these strata included the following: chloroform extraction of bitumen, the determination of the group and element composition, gas chromatography (GC) and gas chromatomass-spectrometry (GC/MS). These methods allow giving high quality assessments of the potential oil and gas source strata and thus identifying the possible oil and gas generating strata among them, ie, those strata that could be involved in the formation of oil and gas within the area. As a result of this work we identified various biomarkers that allow characterizing each oil and gas source strata under the study in the open-cast of the Jurassic system: 1. Kotuhtinskaya Suite. The build-up of this suite took place in the coastal marine weakly reducing conditions. In their composition these deposits contain some highly transformed humus organic matter (gradation of catagenesis MK3). 2. Tyumenskaya Suite. Accumulation of OM in these deposits occured mainly in the coastal marine environment with the influx of a large number of terrestrial vegetation in the basin of deposition. As for the type of agents - it is a humus or sapropel-humus OM with a rich content of continental organics. Source type of this OM is mixed - bacterial and algal. OM of the rocks of Tyumenskaya suite is situated in the area of high maturity (stage of catagenesis at MK3 level). 3. Vasyuganskaya Suite. In this case the accumulation of OM occurred mainly in the laguna (lake-delta) weak-reduction close to oxidative conditions with the influx of bacterial matter and the

  7. Well-log signatures of alluvial-lacustrine reservoirs and source rocks, Lagoa-Feia Formations, Lower Cretaceous, Campos Basin, offshore Brazil

    SciTech Connect

    Abrahao, D.; Warme, J.E.

    1988-01-01

    The Campos basin is situated in offshore southeastern Brazil. The Lagoa Feia is the basal formation in the stratigraphic sequence of the basin, and was deposited during rifting in an evolving complex of lakes of different sizes and chemical characteristics, overlying and closely associated with rift volcanism. The stratigraphic sequence is dominated by lacustrine limestones and shales (some of them organic-rich), and volcaniclastic conglomerates deposited on alluvial fans. The sequence is capped by marine evaporites. In the Lagoa Feia Formation, complex lithologies make reservoirs and source rocks unsuitable for conventional well-log interpretation. To solve this problem, cores were studied and the observed characteristics related to log responses. The results have been extended through the entire basin for other wells where those facies were not cored. The reservoir facies in the Lagoa Feia Formation are restricted to levels of pure pelecypod shells (''coquinas''). Resistivity, sonic, neutron, density, and gamma-ray logs were used in this work to show how petrophysical properties are derived for the unconventional reservoirs existing in this formation. The same suite of logs was used to develop methods to define geochemical characteristics where source rock data are sparse in the organic-rich lacustrine shales of the Lagoa Feia Formation. These shales are the main source rocks for all the oil discovered to date in the Campos basin.

  8. Selection of Bacteria with Favorable Transport Properties Through Porous Rock for the Application of Microbial-Enhanced Oil Recovery

    PubMed Central

    Jang, Long-Kuan; Chang, Philip W.; Findley, John E.; Yen, Teh Fu

    1983-01-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species—Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum—potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate (∼106/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium. PMID:16346414

  9. Organic geochemistry and hydrocarbon potential contrasts among lithologically different source rocks in the Qingxi Sag, Jiuquan Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Huang, Zhilong; Gao, Gang; Yin, Yue; Li, Tianjun

    2017-04-01

    an average of 1.5% (wt). From geochemical testing results, both LSA and LSB contain high organic matter abundance with even higher organic matter abundance in the former. And it is suggested in the result of hydrocarbon generation modeling that the average liquid hydrocarbon yields of LSA and LSB are respectively 75kg/t TOC, 52kg/t TOC, both demonstrating good hydrocarbon potential. For the LSA and LSB samples, the GC-MS features are diametrically different: the distribution pattern for C27, C28, and C29 regular sterane in the LSA sample is "L"-shaped, indicating the parental material dominance of bacteria and lacustrine phytoplankton algae. And the asymmetry "V"-shaped distribution pattern for C27, C28, and C29 regular sterane in the LSB sample indicates that the dominance of terrestrial higher plant, which agrees with the analytical result of kerogen type. Therefore, LSA and LSB are the major source rocks in the Qingxi sag, with the mudstone being the secondary. In summary, the source rocks are controlled by the distribution of lithofacies; and the LSA was mainly deposited in the center of the sag and in the deep lake facies accompanied by the venting of volcanic thermal fluid, which favors the boom of lacustrine algae because of the enhancement of nutrients provided by volcanic material. The LSB was mainly in the outer periphery of the sag center and in the semi-deep lacustrine facies. From the analysis of oil-source correlation, the crude oils discovered in the Xiagou Formation show obvious stratabound features, namely they are self-generated and self-stored source-reservoir configuration relationship. The oils were mainly discovered in the K1g0, K1g1, and K1g2, which corresponds to the K1g0, K1g1, and K1g2 source rocks. It is of significance for the study of hydrocarbon potential for the thermally-deposited carbonate, thus providing experiences and practices for the future petroleum exploration in the domain of carbonate rocks.

  10. Evidence of oil and gas hydrates within planet Mars: early biogenic or thermogenic sources from the Martian soils and deeper sediments near the deltas

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Prasanta K.

    2012-10-01

    The presence of water (in liquid form) within the gullies of the Newton Crater from Mars (near the equator), oil-like hydrocarbons on the surface, gas hydrates in the deeper zones on Mars, and a list of publications on the geochemistry and astrobiology of carbonaceous chondrites have indicated that these petroleum hydrocarbons are closely related to the complex biological species similar to our terrestrial environment. Recent evidence of the possible presence of bacterial globule associated with carbonate minerals in the geological history of Mars may have indicated the link between possible bacterial growth and generation of petroleum hydrocarbons on Mars. Recent evidence of the possible presence of bacterially derived source rocks (organic rich black carbonaceous rocks) and heat flow distribution within Eberswalde and Holden areas of Mars during the earlier Martian geological time (possibly within the first 2 Ga) may have been originated from both biogeneic and thermogenic oil and gas hydrates. The thermal evolution of this biological geopolymer (source rock) could be observed in our earlier findings within the carbonaceous chondrites which show three distinct thermal events. Based on the current knowledge gained from carbonaceous chondrites, deltas, and hydrocarbons present within Mars, the methane on Mars may have been derived from the following sources: (1) deeper gas hydrates; (b) from the cracking of oil to gas within deeper oil or gas bearing reservoirs from a higher reservoir temperature; and (c) the high temperature conversion of current bacterial bodies within the upper surface of Mars.

  11. Source characteristics of long runout rock avalanches triggered by the 2008 Wenchuan earthquake, China

    NASA Astrophysics Data System (ADS)

    Qi, Shengwen; Xu, Qiang; Zhang, Bing; Zhou, Yuande; Lan, Hengxing; Li, Lihui

    2011-03-01

    The May 12, 2008 Wenchuan, China Earthquake which measured M w = 8.3 according to Chinese Earthquake Administration - CEA ( M w = 7.9 according to the USGS) directly triggered many landslides, which caused about 20,000 deaths, a quarter of the total. Rock avalanches were among the most destructive landslides triggered by this seismic event, and have killed more people than any other type of landslide in this earthquake. The Donghekou rock avalanche, one example of a catastrophic avalanche triggered by the Wenchuan earthquake, occurred in Qingchuan and buried one primary school and 184 houses, resulting in more than 780 deaths, and in addition, caused the formation of two landslide dams, which formed barrier lakes. Combining aerial images (resolution of 0.5 m) with field investigations, this paper lists some parameters of 66 cases in one table, and details source characteristics of six typical cases. It has been found that most of the long runout rock avalanches have source areas with high relief and steep inclination, causing the debris in the travel courses to accelerate. There was also a large amount of saturated Holocene-age loose deposits formed by a river or gully that existed in the travel courses. Comparison studies indicate that saturated Holocene loose deposits in the travel courses could be the most important factor for the causes of the long runout characteristic of the rock avalanches especially when they traveled over gentle or even flat ground surfaces. Furthermore, the relationships among the relief slope gradient, runout and covered area are investigated, and a threshold line for predicting the maximum horizontal runout distance under certain change in elevation is presented.

  12. Calcium isotope analytical technique for mafic rocks and its applications on constraining the source of Cenozoic ultra-potassic rocks in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, Z.; Xu, J.

    2013-12-01

    Ca isotope analytical technique for mafic rocks has been recently developed and set up at our lab. About mg level of a mafic rock sample was digested, and then a sub portion of the solution contains about 100ug Ca was spiked with a 42Ca-43Ca double spike and went through the column chemistry. Generally the Ca recovery is almost 100% and the procedure blank is about 50-150ng. Finally, about 5-10ug of the collected Ca cut was measured on our Triton TIMS. The precision of the data was around 0.1 per mil and the data we collected for standards are consistent with those reported by previous studies. There are two groups of Cenozoic ultra-potassic rocks that are widespread in Tibetan Plateau: a northern group in Songpan-Ganzi and Qiangtang Terranes and a southern group in Lhasa Terrane. Previous petrology evidence, such as a relative enrichment in large ion lithophile element (LILE); negative Ta,Nb and Ti anomalies and high LREE/HREE ratio, support that those rocks are both derived from sub-continental lithospheric mantle (SCLM). However, differences between these two groups of rocks do exist: the southern group has higher K2O, Rb, Zr, Th, contents and a higher Rb/Ba, coupled with lower Al2O3, CaO, Na2O, Sr; the southern 87Sr/86Sr ratios are higher while the 143Nd/144Nd ratios are lower, etc. These suggest that the rocks could be derived from different mantle sources or produced by different geological processes. Ca isotope is chosen in this study to better understand the source of the ultra-potassic rocks because Ca isotope has been a great tracer of different geological reservoirs and the isotopic compositions of Ca may represent different genesic processes. We propose that the ultra-potassic rocks in the Tibet should have significant 40Ca enrichments due to the decay from 40K to 40Ca, therefore the variation of Ca isotopic compositions among these ultra-potassic rocks could be obvious. We believe that based on our calcium data together with earlier Sr, Nd, Pb data

  13. Changes in composition and pore space of sand rocks in the oil water contact zone (section YU1 3-4, Klyuchevskaya area, Tomsk region)

    NASA Astrophysics Data System (ADS)

    Nedolivko, N.; Perevertailo, T.; Pavlovec, T.

    2016-09-01

    The article provides an analysis of specific features in changes of rocks in the oil water contact zone. The object of study is the formation YU1 3-4 (J3o1) of Klyuchevskaya oil deposit (West Siberian oil-gas province, Tomsk region). The research data allow the authors to determine vertical zoning of the surface structure and identify the following zones: oil saturation (weak alteration), bitumen-content dissolution, non-bitumen-content dissolution, cementation, including rocks not affected by hydrocarbon deposit. The rocks under investigation are characterized by different changes in composition, pore space, as well as reservoir filtration and volumetric parameters. Detection of irregularity in distribution of void- pore space in oil-water contact zones is of great practical importance. It helps to avoid the errors in differential pressure drawdown and explain the origin of low-resistivity collectors.

  14. Rock Valley Source Physics Experiment Preparation: Earthquake Relocation and Attenuation Structure Characterization

    NASA Astrophysics Data System (ADS)

    Pyle, M. L.; Walter, W. R.; Myers, S.; Pasyanos, M. E.; Smith, K. D.

    2012-12-01

    The science of nuclear test monitoring relies on seismic methods to distinguish explosion from earthquakes sources. Unfortunately, the physics behind how an explosion generates seismic waves, particularly shear waves, remains incompletely understood. The Source Physics Experiments (SPE) are an ongoing series of chemical explosions designed to address this problem and advance explosion monitoring physics and associated simulation codes. The current series of explosions are located in the Climax Stock granite on the Nevada National Security Site (NNSS). A future candidate for the SPEs would allow us to make a direct comparison of earthquake and explosion sources by detonating an explosion at a well constrained earthquake hypocenter and recording the resulting signals from each source at common receivers. This possibility arises from an area of unusually shallow seismicity in the Rock Valley area of the southern NNSS. While most tectonic earthquakes occur at depths greater than 5 km, a sequence of unusually shallow earthquakes with depths of 1-2 km occurred in Rock Valley in May of 1993. The main shock had a magnitude of approximately 3.7 and 11 more events in the sequence had magnitudes over 2. The shallow depths of these events were well constrained by temporary stations deployed at the time by the University of Nevada-Reno (UNR). As part of a feasibility study for a future Rock Valley SPE, LLNL, UNR and NSTec are working to re-instrument and improve our understanding of the Rock Valley region. Rock Valley is a complex set of left oblique-slip segmented fault blocks; it is a regular source region for small magnitude shallow earthquakes. A dense seismic network was operated in the southern NNSS through the Yucca Mountain project (1992-2010). Although much of the older network has been removed, six new Rock Valley telemetered seismic stations located at both original 1993 sites and additional sites, have been installed and operating since early 2011. In order to

  15. Chemistry and mineralogy of natural bitumens and heavy oils and their reservoir rocks from the United States, Canada, Trinidad and Tobago, and Venezuela

    USGS Publications Warehouse

    Hosterman, John W.; Meyer, R.F.; Palmer, C.A.; Doughten, M.W.; Anders, D.E.

    1990-01-01

    Twenty-one samples from natural bitumen and heavy oil deposits in seven States of the United States and six samples from outside the United States form the basis of this initial study. This Circular gives the mineral content of the reservoir rock, the trace-element distribution in the reservoir rock and hydrocarbons, and the composition of the heavy oil and natural bitumen. The reservoir rock and sediment residues from California contain more trace-element maximum amounts than any of the other rock samples. These relatively high concentrations of trace elements may be due, in part, to the low quartz content of the rock and to the presence of heulandite, cristobalite, siderite, and pyrite. The reservoir rock and sediment residues from Oklahoma contain more minimum amounts of trace elements than any of the other rock samples. This pattern probably results from the large amount of quartz in four of the samples and a large amount of calcite in the other sample. The maximum and minimum amounts of trace elements in the bitumen and heavy oil do not correlate with those in the reservoir rocks. The bitumen from Utah contains the greatest number of trace-element maxima, whereas there is no trend in the trace-element minima in the bitumen and heavy oil.

  16. Generation of oil-like pyrolyzates from organic-rich shales.

    PubMed

    Lewan, M D; Winters, J C; McDonald, J H

    1979-03-02

    Pyrolyzates similar to natural crude oils were generated from organic-rich shales by hydrous pyrolysis. With this type of pyrolysis it is possible to make more sophisticated correlations between crude oils and their source rocks, evaluate the hydrocarbon potential of a source rock, and elucidate the variables involved in the natural oil-generating process.

  17. Sedimentary environments for the massive formation of the lacustrine organic rich petroleum source rocks of late Cretaceous from Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Zhiguang, S.

    2009-12-01

    Songliao Basin is the major oil-bearing and production basin in China and containing two major sets of excellent organic matter rich source rocks developed during the two related short periods of later Cretaceous time. For a long time, these source rocks were considered unquestionably being formed under fresh or brackish lacustrine environment. However, increasing evidence and studies suggest that this may be not the case anymore, as possible marine transgression and much high salinity lacustrine environment has been suggested or implied from a number of recent studies for Songliao Basin. Here, we show our recent extensive organic geochemical studies carried out on the core samples of Nenjiang formation from a newly drilled scientific exploration well of No. 1 in Songliao Basin. The overall evidence of organic matter and biomarkers suggest that: 1) the main source rocks were likely formed under a much saline(even mesosaline) lacustrine environment, as the existence of a number high saline related biomarkers and their ratios such Pr/Ph, MTTCI, α-MTTC/δ-MTTC, α-MTTC /γ-MTTC, Gammacerane/C30hop are in favor of a mesosaline to saline environments; 2) during the major source rocks formation periods, a photic zone oxygen depletion and stratified water column was suggested by the strong occurrence of a series of aryl isoprenoids and Isorenieratane; 3) a general mild to strong reduced sedimentary environments were concluded from the consistent of a number of index. Fig 1 Correlation between MTTCI vs Pr/Ph ratios with indication of salinity fields (after SCHWARK et al., 1998)

  18. Sensitivity of the close-in seismic source function to rock properties. (Condensed version)

    SciTech Connect

    App, F.N.

    1993-11-01

    This paper presents a condensed version of a full report of the same title by App, 1993, which details work in progress on the systematic investigation of parameters affecting remote identification of underground nuclear tests. The objective of this investigation is to determine and evaluate how rock properties near the source of an explosion influence the close-in seismic source function. In this study, the overshoot and steady state value of the reduced displacement potential (RDP) and the corner frequency and rolloff of the reduced velocity potential (RVP) spectra are properties of the source function used to measure effect. A series of one-dimensional calculations are made with the computational mesh divided into six phenomenological regions.

  19. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits. Copyright © 2014

  20. The study on thermal evolution modeling of source rocks In Neopaleozoic of Hangjinqi Region in Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhao, G.

    2016-12-01

    As the one of the gas exploration key region in Ordos Basin, the challenge in Hangjinqi Region is that the understanding of the thermal evolution of source rocks is still limited. Taking the measured Ro values which reflected the characteristics of thermal evolution degree of source rocks as calibration, the thermal evolution history of source rocks of Taiyuan Formation and Member1 ,2 of Shanxi Formation In Neopaleozoic age was modeled through erosion thickness restoration, selection of ancient terrestrial heat flow, using more than 70 well logging data of different strata lithology, and establishing the corresponding geological modeling. The results show that the time when Ro values reached 0.65% meaning that the source rocks entered the threshold of hydrocarbon generation was mid-late stage of Late Triassic period in Nanzhao, shilijiahan, Azhen and Gaoraozhao areas of western and southern Hangjinqi. The time of Ro reaching 0.65% in Gongkahan Shiguhao areas in northern of Hangjinqi was early Jurassic. On the plane, the hydrocarbon source rock thermal evolution degree was characterized by the trend of gradually decreasing of Ro values from southwest to northeast. The Maximum Ro values in Xinzhao, southern part of Shilijiahan are 1.43% and 1.46% respectively, reaching over-mature stage of evolution. however, the Ro values in Shiguhao and Azhen located in the northern and eastern part of Hangjinqi are between 0.85%~1.0%, showing that the source rocks are still in the early stage of peak period of hydrocarbon generation.

  1. Clay mineralogy of the malmian source rock of the Vienna Basin: Effects on shale gas exploration?

    NASA Astrophysics Data System (ADS)

    Schicker, Andrea; Gier, Susanne; Herzog, Ulrich

    2010-05-01

    In an unique opportunity the diagenetic changes of clay minerals of a marlstone formation with only minor differences in provenance and depositional environment was studied from shallow (1400 m) to very deep (8550 m) burial. The clay mineralogy of 46 core samples from ten wells was quantified with X-ray diffraction in applying the mineral intensity factor (MIF)-method of Moore and Reynolds (1997). The clay fraction of the marlstone contains a prominent illite/smectite (I/S) mixed-layer mineral (20 to 70 wt%), illite (20 to 70 wt%), chlorite (0.5 to 12 wt%) and kaolinite (2 to 17 wt%). The amounts of I/S and kaolinite decrease with depth, whereas illite and chlorite increase. A gradual transformation of smectite to illite through mixed-layer I/S intermediates is recognized. With increasing depth the illite content in I/S intermediates increases from 25% to 90% in parallel the ordering of the mixed layer I/S changes from R0 (25% illite in I/S) to R1 (60-80% illite in I/S) to R3 (90% illite in I/S). R3 ordering prevails at depths greater than 4000 m and implies that the effect of the expandable mineral smectite is negligible. This paper covers a part of a shale gas feasibility study on the main Vienna Basin hydrocarbon source rock (Mikulov Formation, a Malmian marlstone) recently performed by OMV. Shale gas production usually is enabled by pumping fluids (mainly water) into a gas-mature source rock in order to generate fracture permeability. Expandable clays within the source rock can dramatically reduce stimulation effectiveness and gas production. Moore and Reynolds (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, 378 p.

  2. 70 million years of coastal upwelling in California; source rocks and paleoceanography

    SciTech Connect

    Fonseca, C.

    1996-12-31

    The Late Mesozoic-Cenozoic marine sequence of California displays a unique record of coastal upwelling and productivity in the form of distinctive diatomaceous and organic-rich deposits including the upper Cretaceous-lower Paleocene Moreno Formation, the Eocene Kreyenhagen Formation and the Miocene Monterey Formation. Unique sedimentological characteristics of these ancient upwelling systems include (a) Finely laminated biosiliceous-rich shales (>30% biogenic silica content), (b) Distinctive laminae composed by monospecific diatom resting spores, (c) Good source rock quality (>300 mg HC/mg org C), and (d) High accumulation rates in mid water anoxic conditions. Detailed study of individual laminae in sediments of these formations revealed concentration of monospecific diatom resting spores and an abundance of Stephanopyxis sp. and Coscinodiscus sp. Like Recent upwelling systems, preserved laminations of monospecific resting spores reflect strong seasonal upwelling that lead to high organic matter production and enhancement of anoxia. The presence of spores in the ancient and modern upwelling systems is evidence that diatoms have adapted and successfully competed in the highly productive California Margin since the Late Cretaceous. The Moreno, the Kreyenhagen and the Monterey Formation account for a significant portion of major petroleum source beds in California and contain an important record of coastal upwelling and paleoceanographic change in the northeastern Pacific Ocean over the past 70 million years. It is suggested that potential Late Maestrichtian source rocks could have been deposited along other favorable upwelling areas of the Eastern Pacific Rim.

  3. 70 million years of coastal upwelling in California; source rocks and paleoceanography

    SciTech Connect

    Fonseca, C. )

    1996-01-01

    The Late Mesozoic-Cenozoic marine sequence of California displays a unique record of coastal upwelling and productivity in the form of distinctive diatomaceous and organic-rich deposits including the upper Cretaceous-lower Paleocene Moreno Formation, the Eocene Kreyenhagen Formation and the Miocene Monterey Formation. Unique sedimentological characteristics of these ancient upwelling systems include (a) Finely laminated biosiliceous-rich shales (>30% biogenic silica content), (b) Distinctive laminae composed by monospecific diatom resting spores, (c) Good source rock quality (>300 mg HC/mg org C), and (d) High accumulation rates in mid water anoxic conditions. Detailed study of individual laminae in sediments of these formations revealed concentration of monospecific diatom resting spores and an abundance of Stephanopyxis sp. and Coscinodiscus sp. Like Recent upwelling systems, preserved laminations of monospecific resting spores reflect strong seasonal upwelling that lead to high organic matter production and enhancement of anoxia. The presence of spores in the ancient and modern upwelling systems is evidence that diatoms have adapted and successfully competed in the highly productive California Margin since the Late Cretaceous. The Moreno, the Kreyenhagen and the Monterey Formation account for a significant portion of major petroleum source beds in California and contain an important record of coastal upwelling and paleoceanographic change in the northeastern Pacific Ocean over the past 70 million years. It is suggested that potential Late Maestrichtian source rocks could have been deposited along other favorable upwelling areas of the Eastern Pacific Rim.

  4. Possible New Well-Logging Tool Using Positron Annihilation Spectroscopy to Detect TOC in Source Rocks

    NASA Astrophysics Data System (ADS)

    Patterson, Casey; Quarles, C. A.; Breyer, J. A.

    2001-10-01

    Possible New Well-Logging Tool Using Positron Annihilation Spectroscopy to Detect Total Organic Carbon (TOC) in Source Rocks PATTERSON, C., Department of Geology, Department of Physics, Texas Christian University, QUARLES, C.A., Department of Physics, Texas Christian University, Fort Worth, Texas, BREYER, J.A., Department of Geology, Texas Christian University, Fort, Worth, Texas. The positron produces two gamma rays upon annihilation with an electron. Depending on the momentum of the electron, the two resulting photons are shifted from the initial electron rest mass energy by the Doppler effect. We measure the distribution of gamma ray energies produced by annihilation on a petroleum source rock core. Core from the Mitchell Energy well T.P. Sims 2 of the Barnett Shale located in Wise County, Texas, is under study. Apparatus for the experiment consists of an Ortec Ge detector. The source used for the experiment is Ge68, which undergoes beta decay and produces the positrons that penetrate the core. It is placed on the middle of the core and covered with a small, annealed NiCu plate to prevent unnecessary background from the positrons annihilating with electrons other than in the core. Distance between the source and the detector is fixed at 6.75 inches. Measurements were made in specific locations at 2 inch increments for approximately an hour and a half where the predetermined Total Organic Carbon (TOC) values were made. Future studies involve an overall correlation of the core between experimental readings and TOC, including corrections for changes in grain size and lithology. Additional research has shown no distinct correlation between grain size and distribution of energies across the targeted spectrum. Additional corrections should be made for the decay in activity of the source. Future research also includes the determination for optimum time and distance for the source from the core. A long-term goal for the experiment is to develop an effective down

  5. Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from early Paleozoic mafic rocks of the South China Block

    NASA Astrophysics Data System (ADS)

    Xu, Wenjing; Xu, Xisheng; Zeng, Gang

    2017-08-01

    Several recent studies have documented that the silicic rocks (SiO2 > 65 wt.%) comprising Silicic Large Igneous Provinces are derived from partial melting of the crust facilitated by underplating/intraplating of ;hidden; large igneous province-scale basaltic magmas. The early Paleozoic intracontinental magmatic rocks in the South China Block (SCB) are dominantly granitoids, which cover a combined area of 22,000 km2. In contrast, exposures of mafic rocks total only 45 km2. These mafic rocks have extremely heterogeneous isotopic signatures that range from depleted to enriched (whole rock initial 87Sr/86Sr = 0.7041-0.7102; εNd(t) = - 8.4 to + 1.8; weighted mean zircon εHf(t) = - 7.4 to + 5.2), show low Ce/Pb and Nb/U ratios (0.59-13.1 and 3.5-20.9, respectively), and variable Th/La ratios (0.11-0.51). The high-MgO mafic rocks (MgO > 10 wt.%) tend to have lower εNd(t) values (<- 4) and Sm/Nd ratios (< 0.255), while the majority of the low-MgO mafic rocks (MgO < 10 wt.%) have higher εNd(t) values (>- 4) and Sm/Nd ratios (> 0.255). The differences in geochemistry between the high-MgO and low-MgO mafic rocks indicate greater modification of the compositions of high-MgO mafic magmas by crustal material. In addition, generally good negative correlations between εNd(t) and initial 87Sr/86Sr ratios, MgO, and K2O, along with the presence of inherited zircons in some plutons, indicate that the geochemical and isotopic compositions of the mafic rocks reflect significant crustal contamination, rather than an enriched mantle source. The results show that high-MgO mafic rocks with fertile isotopic compositions may be indicative of crustal contamination in addition to an enriched mantle source, and it is more likely that the lithospheric mantle beneath the SCB during the early Paleozoic was moderately depleted than enriched by ancient subduction processes.

  6. Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types.

    PubMed

    Naderi, Khosrow; Babadagli, Tayfun

    2010-03-01

    Oil saturated cylindrical sandstone cores were placed into imbibition cells where they contacted with an aqueous phase and oil recovery performances were tested with and without ultrasonic radiation keeping all other conditions and parameters constant. Experiments were conducted for different initial water saturation, oil viscosity and wettability. The specifications of acoustic sources such as ultrasonic intensity (45-84W/sqcm) and frequency (22 and 40kHz) were also changed. An increase in recovery was observed with ultrasonic energy in all cases. This change was more remarkable for the oil-wet medium. The additional recovery with ultrasonic energy became lower as the oil viscosity increased. We also designed a setup to measure the ultrasonic energy penetration capacity in different media, namely air, water, and slurry (sand+water mixture). A one-meter long water or slurry filled medium was prepared and the ultrasonic intensity and frequency were monitored as a function of distance from the source. The imbibition cells were placed at certain distances from the sources and the oil recovery was recorded. Then, the imbibition recovery was related to the ultrasonic intensity, frequency, and distance from the ultrasonic source.

  7. Geochemistry and argon thermochronology of the Variscan Sila Batholith, southern Italy: source rocks and magma evolution

    USGS Publications Warehouse

    Ayuso, R.A.; Messina, A.; de Vivo, B.; Russo, S.; Woodruff, L.G.; Sutter, J.F.; Belkin, H.E.

    1994-01-01

    The Sila batholith is the largest granitic massif in the Calabria-Peloritan Arc of southern Italy, consisting of syn to post-tectonic, calc-alkaline and metaluminous tonalite to granodiorite, and post-tectonic, peraluminous and strongly peraluminous, two-mica??cordierite??Al silicate granodiorite to leucomonzogranite. Mineral 40Ar/39Ar thermochronologic analyses document Variscan emplacement and cooling of the intrusives (293-289 Ma). SiO2 content in the granitic rocks ranges from ???57 to 77 wt%; cumulate gabbro enclaves have SiO2 as low as 42%. Variations in absolute abundances and ratios involving Hf, Ta, Th, Rb, and the REE, among others, identify genetically linked groups of granitic rocks in the batholith: (1) syn-tectonic biotite??amphibole-bearing tonalites to granodiorites, (2) post-tectonic two-mica??Al-silicate-bearing granodiorites to leucomonzogranites, and (3) post-tectonic biotite??hornblende tonalites to granodiorites. Chondrite-normalized REE patterns display variable values of Ce/Yb (up to ???300) and generally small negative Eu anomalies. Degree of REE fractionation depends on whether the intrusives are syn- or post-tectonic, and on their mineralogy. High and variable values of Rb/Y (0.40-4.5), Th/Sm (0.1-3.6), Th/Ta (0-70), Ba/Nb (1-150), and Ba/Ta (???50-2100), as well as low values of Nb/U (???2-28) and La/Th (???1-10) are consistent with a predominant and heterogeneous crustal contribution to the batholith. Whole rock ??18O ranges from ???+8.2 to +11.7???; the mafic cumulate enclaves have the lowest ??18O values and the two-mica granites have the highest values. ??18O values for biotite??honblende tonalitic and granodioritic rocks (9.1 to 10.8???) overlap the values of the mafic enclaves and two-mica granodiorites and leucogranites (10.7 to 11.7???). The initial Pb isotopic range of the granitic rocks (206Pb/204Pb ???18.17-18.45, 207Pb/204Pb ???15.58-15.77, 208Pb/204Pb ???38.20-38.76) also indicates the predominance of a crustal source

  8. Hydrocarbon prospectivity in the Hellenic trench system: organic geochemistry and source rock potential of upper Miocene-lower Pliocene successions in the eastern Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Zelilidis, A.; Tserolas, P.; Chamilaki, E.; Pasadakis, N.; Kostopoulou, S.; Maravelis, A. G.

    2016-09-01

    Results of the current and already published studies suggest that the Tortonian in age deposits could serve a major source rocks (for both oil and gas) beneath the Messinian evaporites in the Hellenic trench system. Additionally, the strong terrestrial input in Pliocene deposits could lead to the production of biogenic gas, similar to the Po basin in Adriatic Sea (Italy). In the current study, fourteen samples from late Miocene Faneromeni section and twelve samples from the early Pliocene Makrilia section in eastern Crete were collected in order to evaluate their hydrocarbon generation potential. For this purpose, Rock-Eval analysis and characterization of the organic matter were performed. The results document a clear distinction between the two sections. Faneromeni section contains organic matter of kerogen type III, whereas the Makrilia section contains organic matter of kerogen type IV. The HI/TOC plot diagram, in both sections, indicates poor oil generating potential, with the exception of several samples showing fair to good gas and oil potential. Although thermal maturities of the samples from the two successions are similar, according to the T max values, samples from Faneromeni succession exhibit higher hydrogen index values, indicating a better quality of organic matter in terms of hydrocarbon generation. Very low obtained concentrations of bitumen (mg/g of rock), as well as the predominance of NSO compounds, compared to the saturates and aromatics, indicate low maturation level. The n-alkanes profiles exhibit a bimodal distribution, indicating a mixed origin (marine and terrestrial) of the organic matter in both areas. Terrestrial organic matter input is more pronounced in Makrilia section. The analysis of saturated biomarkers indicates that Faneromeni deposits were accumulated under constant organic matter input in an environment influenced by cyclic changes (from marine to lagoon origin and vice versa). Faneromeni section corresponds to a restricted

  9. Searching for a Safe Source of Castor Oil Production through Metabolic Engineering

    USDA-ARS?s Scientific Manuscript database

    Castor oil contains 90% ricinoleate (12-hydroxy-oleate) which has numerous industrial uses. The production of castor oil is hampered by the presence of the toxin ricin and hyper-allergenic 2S albumins in its seed. We are developing a safe source of castor oil by two approaches: blocking gene expres...

  10. Petroleum source rock evaluations of the Cretaceous Newark Canyon Formation in north-central Nevada

    SciTech Connect

    Mullarkey, J.C.; Wendlandt, R.F. ); Clayton, J.L.; Daws, T.A. )

    1991-03-01

    The petroleum source rock potential of the Cretaceous Newark Canyon Formation, Eureka and Elko counties, Nevada, has been determined by integrated field and subsurface sampling and mapping and by geochemical analyses. Geologic mapping was supplemented by measurement of a reference stratigraphic section and four hand-held gamma-ray traverses. Cores and cuttings from three wells provide subsurface control. Sixty-six outcrop and ten subsurface Newark Canyon samples were collected and pyrolyzed (Rock-Eval II) to determine hydrocarbon yield, total organic carbon content (TOC), and thermal maturity. Two samples were solvent extracted for gas chromatography and mass spectrometry analyses to evaluate the environment of deposition. The Newark Canyon Formation is 2055 ft thick in the Cortez Range and contains 115 ft of limestone and calcareous shale with an average TOC of 2.5 weight % of type II/III kerogen (hydrogen indices 7-424 mg hydrocarbon/g TOC). The correlative section in the Pinon Range contains {approximately}200 ft of calcareous shale averaging 8% TOC (ranging up to 23.5%) of type I/II kerogen (hydrogen indices 457-912 mg hydrocarbon/g TOC). Subsurface samples are similar to the Cortez Range samples in organic content and kerogen type. The Newark Canyon Formation is marginally mature to mature with respect to petroleum generation (average T{sub max} values = {approximately}440C). This data indicates the Newark Canyon Formation is an excellent potential source rock. Saturated hydrocarbon distributions confirm field observations that indicate deposition of the Newark Canyon's organic-rich facies in a low-energy lacustrine environment.

  11. Thermochronology of lower Cretaceous source rocks in the Idaho-Wyoming thrust belt

    SciTech Connect

    Burtner, R.L.; Nigrini, A.; Donelick, R.A.

    1994-10-01

    Lower Cretaceous organic-rich source rocks that are thermally mature to postmature crop out on the Absaroka, Darby, and Prospect plates in linear belts that run parallel to the trace of the thrusts in the Idaho-Wyoming portion of the Idaho-Wyoming-Utah thrust belt. Although the common assumption is that burial by thrust plates and the synorogenic sediments derived from them have been responsible for thermal maturation of the organic-rich strata, commercial amounts of hydrocarbons have not been found in structural traps in this portion of the thrust belt. In a companion paper, Burtner and Nigrini demonstrated that gravity-driven fluid flow in the Idaho-Wyoming portion of the thrust belt was responsible for moving large amounts of heat from the depths of the Early Cretaceous foreland basin eastward toward the stable platform. In this paper we demonstrate, through the application of organic maturation indicators and a new refinement of the apatite fission track technique, that this process heated Lower Cretaceous organic-rich source rocks to temperatures sufficient to generate hydrocarbons. Hydrocarbon generation and migration occurred prior to the development of the thrusts that are often assumed to have played a major role in the generation and entrapment of hydrocarbons in this portion of the thrust belt.

  12. Petroleum source rock potential and thermal maturity, Palo Duro Basin, Texas

    SciTech Connect

    Dutton, S.P.

    1980-01-01

    Samples collected from 20 geographically widespread wells in the sparsely drilled Palo Duro Basin were analyzed for total organic carbon content (TOC). Highest values of TOC, up to 6.9%, occur in Upper Permian San Andres dolomite in the southern part of the basin. Pennsylvanian and Lower Permian (Wolfcampian) basinal shales contain up to 2.4% TOC and are fair to very good source rocks. Kerogen color and vitrinite reflectance, which indicate maximum paleotemperatures, were analyzed in all samples containing greater than 0.5% TOC. Pennsylvanian and Wolfcampian kerogen is yellow orange to orange, an indication that temperatures were sufficiently high to begin to generate hydrocarbons from lipid-rich organic material. Palo Duro Basin samples have a broad range of vitrinite reflectance values, but populations with the lowest reflectance probably indicate the true temperatures that were reached in the basin. Average reflectance in representative Pennsylvanian vitrinite is 0.52%; in Wolfcampian samples the average reflectance is 0.48%. These values are consistent with kerogen color and suggest that basinal source rocks may have begun to generate hydrocarbons.

  13. Pore Scale Observations of Trapped CO2 in Mixed-Wet Carbonate Rock: Applications to Storage in Oil Fields.

    PubMed

    Al-Menhali, Ali S; Menke, Hannah P; Blunt, Martin J; Krevor, Samuel C

    2016-09-20

    Geologic CO2 storage has been identified as a key to avoiding dangerous climate change. Storage in oil reservoirs dominates the portfolio of existing projects due to favorable economics. However, in an earlier related work ( Al-Menhali and Krevor Environ. Sci. Technol. 2016 , 50 , 2727 - 2734 ) , it was identified that an important trapping mechanism, residual trapping, is weakened in rocks with a mixed wetting state typical of oil reservoirs. We investigated the physical basis of this weakened trapping using pore scale observations of supercritical CO2 in mixed-wet carbonates. The wetting alteration induced by oil provided CO2-wet surfaces that served as conduits to flow. In situ measurements of contact angles showed that CO2 varied from nonwetting to wetting throughout the pore space, with contact angles ranging 25° < θ < 127°; in contrast, an inert gas, N2, was nonwetting with a smaller range of contact angle 24° < θ < 68°. Observations of trapped ganglia morphology showed that this wettability allowed CO2 to create large, connected, ganglia by inhabiting small pores in mixed-wet rocks. The connected ganglia persisted after three pore volumes of brine injection, facilitating the desaturation that leads to decreased trapping relative to water-wet systems.

  14. Advance Notice of Proposed Rule Making for Minor Source Permitting in Indian Country - Oil and Gas

    EPA Pesticide Factsheets

    Advance Notice of Proposed Rulemaking to solicit broad feedback on the most effective and efficient means of implementing the EPA's Indian Country Minor New Source Review program for sources in the oil and natural gas production segment.

  15. Moringa Oleifera Oil: A Possible Source of Biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a v...

  16. Effect of oil source and peroxidation status on broiler performance and oxidative stress

    USDA-ARS?s Scientific Manuscript database

    Oil source has been shown to affect broiler performance and oxidative status. Lipid peroxidation may also affect animal performance and oxidative status through the generation and degradation of peroxidation compounds which differ according to oil source and temperature and length of heating. The ob...

  17. Geology and oil and gas assessment of the Todilto Total Petroleum System, San Juan Basin Province, New Mexico and Colorado: Chapter 3 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    USGS Publications Warehouse

    Ridgley, J.L.; Hatch, J.R.

    2013-01-01

    Organic-rich, shaly limestone beds, which contain hydrocarbon source beds in the lower part of the Jurassic Todilto Limestone Member of the Wanakah Formation, and sandstone reservoirs in the overlying Jurassic Entrada Sandstone, compose the Todilto Total Petroleum System (TPS). Source rock facies of the Todilto Limestone were deposited in a combined marine-lacustrine depositional setting. Sandstone reservoirs in the Entrada Sandstone were deposited in eolian depositional environments. Oil in Todilto source beds was generated beginning in the middle Paleocene, about 63 million years ago, and maximum generation of oil occurred in the middle Eocene. In the northern part of the San Juan Basin, possible gas and condensate were generated in Todilto Limestone Member source beds until the middle Miocene. The migration distance of oil from the Todilto source beds into the underlying Entrada Sandstone reservoirs was short, probably within the dimensions of a single dune crest. Traps in the Entrada are mainly stratigraphic and diagenetic. Regional tilt of the strata to the northeast has influenced structural trapping of oil, but also allowed for later introduction of water. Subsequent hydrodynamic forces have influenced the repositioning of the oil in some reservoirs and flushing in others. Seals are mostly the anhydrite and limestone facies of the Todilto, which thin to as little as 10 ft over the crests of the dunes. The TPS contains only one assessment unit, the Entrada Sandstone Conventional Oil Assessment Unit (AU) (50220401). Only four of the eight oil fields producing from the Entrada met the 0.5 million barrels of oil minimum size used for this assessment. The AU was estimated at the mean to have potential additions to reserves of 2.32 million barrels of oil (MMBO), 5.56 billion cubic feet of natural gas (BCFG), and 0.22 million barrels of natural gas liquids (MMBNGL).

  18. Specific features of catagenetically transformed oil shales on an example of organogenous rocks of East Siberia and the Arctic

    SciTech Connect

    Urov, K.E. )

    1989-01-01

    Little known organic rocks of sapropelic origin from East Siberia and the Arctic have been investigated; these caustobioliths are characterized by a high degree of maturation. The content of organic solvent-soluble compounds (bitumens) in the organic matter of the shales is determined by the competitive processes of their formation and emigration. Differences between the composition of bitumen and semicoking oil diminish with increasing maturity of the shale. In the bitumens of the highly transformed shales investigated little altered compounds of biological origin were identified. It is probable that the bulk of these bitumens has been formed later, after the high-temperature stage, a result of microbial activity on the basis of kerogen as substrate and other hypergenetic factors. With increasing degree of shale thermal transformation of the hydrocarbon part of its semicoking oil and gas becomes more saturated.

  19. Water Sources for Cyanobacteria Below Desert Rocks in the Negev Desert Determined by Conductivity

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community are consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm) the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  20. Organic geochemistry and source rock characteristics of the Zagros Petroleum Province, southwest Iran

    SciTech Connect

    Ala, M.A.; Kinghorn, R.R.F.; Rahman, M.

    1980-07-01

    The Zagros sector of SW Iran and its continuation into N Iraq forms the tectonized NE margin of the Middle East basin. Sedimentation in the Zagros began in the late Precambrian and continued with comparatively few interruptions until the Pliocene, when strong earth movements affected the area and gave rise to the present day large, elongated NW-SE trending structures. Some of the world's largest structurally-controlled oil fields are located in the Zagros. The most productive pay zone is the Oligo-Miocene Asmari Formation, although significant oil pools are present also in the Cenomanian-Turonian Sarvak limestone and in the Neocomian-Jurassic Khami Group carbonates. Recently, large gas deposits have been discovered in the Permo-Triassic carbonates assigned to the Deh Ram Group. Geochemical studies were carried out in five potential source beds of Eocene-Palaeocene (Pabdeh Formation), Maestrichtian-Campanian (Gurpi Formation), Albian (Kazhdumi Formation), Coniacian-Neocomian (Garau Formation) and Silurian (Gahkum Formation) age. The results showed that the organic matter in these formations is almost exclusively of marine algal origin, and that the Kazhdumi is the major source of the hydrocarbons in the Asmari and Sarvak reservoirs. The origin of the hydrocarbons in the Khami and Deh Ram reservoirs is at present speculative. 19 figures, 1 table.

  1. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Watson, R.W.; Ertekin, T.; Owolabi, O.O.

    1992-12-31

    The overall objectives of the project are: To develop a better understanding of some important but not really well investigated rock/pore properties such as: tortuosity, pore-size distribution. surface area, and wettability, and a better insight on capillary pressure variation with respect to wettability and pore geometry of sandstone and limestone. To improve the understanding of fluid flow in porous media under conditions of secondary and tertiary recovery, through the laboratory study of the performance of enhanced recovery methods such as waterflooding. To develop empirical relationships between residual oil saturation and oil recovery at breakthrough and the uncommon rock/pore properties. Develop relationships between residual oil saturation and ultimate-oil recovery at floodout and the uncommon rock/pore properties for the different porous media. Furthermore, variations of irreducible water saturation, porosity and absolute permeability with respect to the uncommon rock/pore properties, residual oil saturation and oil recovery will be investigated. During the current quarter, the mercury porosimetry experiments on limestone core-plug samples were completed. The experimental data were also fully analyzed.

  2. Non-Edible Plant Oils as New Sources for Biodiesel Production

    PubMed Central

    Chhetri, Arjun B.; Tango, Martin S.; Budge, Suzanne M.; Watts, K. Chris; Islam, M. Rafiqul

    2008-01-01

    Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi) and jatropha (jatropha curcas, L.) are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME) from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil. PMID:19325741

  3. Moringa oleifera oil: a possible source of biodiesel.

    PubMed

    Rashid, Umer; Anwar, Farooq; Moser, Bryan R; Knothe, Gerhard

    2008-11-01

    Biodiesel is an alternative to petroleum-based conventional diesel fuel and is defined as the mono-alkyl esters of vegetable oils and animal fats. Biodiesel has been prepared from numerous vegetable oils, such as canola (rapeseed), cottonseed, palm, peanut, soybean and sunflower oils as well as a variety of less common oils. In this work, Moringa oleifera oil is evaluated for the first time as potential feedstock for biodiesel. After acid pre-treatment to reduce the acid value of the M. oleifera oil, biodiesel was obtained by a standard transesterification procedure with methanol and an alkali catalyst at 60 degrees C and alcohol/oil ratio of 6:1. M. oleifera oil has a high content of oleic acid (>70%) with saturated fatty acids comprising most of the remaining fatty acid profile. As a result, the methyl esters (biodiesel) obtained from this oil exhibit a high cetane number of approximately 67, one of the highest found for a biodiesel fuel. Other fuel properties of biodiesel derived from M. oleifera such as cloud point, kinematic viscosity and oxidative stability were also determined and are discussed in light of biodiesel standards such as ASTM D6751 and EN 14214. The 1H NMR spectrum of M. oleifera methyl esters is reported. Overall, M. oleifera oil appears to be an acceptable feedstock for biodiesel.

  4. DRIFT spectroscopic study of diagenetic organic-clay interactions in argillaceous source rocks.

    PubMed

    Li, Yingli; Cai, Jingong; Song, Guoqi; Ji, Junfeng

    2015-09-05

    Thermo diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to study the diagenetic organic-clay interactions in argillaceous source rocks from the Dongying Depression, Bohai Bay Basin, China. The results indicated that aliphatic organic matter (OM) represented the most prominent organic functional groups in the spectra, with two CH2 stretching vibrations at approximately 2926 cm(-1) and 2852 cm(-1). The peak areas of these vibrations correlated well with the amount of total organic carbon (TOC), indicating that the OM evolution may be represented by the variation in CH2 with depth. Infrared spectra obtained from samples that were heated to 105 °C, 250 °C and 550 °C suggest that the aliphatic OM consists of two fractions: combined OM and free OM. The former was more stable between 250 °C and 550 °C. This phenomenon was correlated with the H2O stretching vibration near 3300 cm(-1), indicating that this OM was bonded to the clay via H2O bridges. The location of the broad H2O stretching band gradually shifted with depth from 3298 cm(-1) to a higher wavenumber of 3305 cm(-1), whereas the corresponding bending band shifted rapidly from 1640 cm(-1) to 1605 cm(-1), indicating a weakening of the hydrogen bond and a decrease in the combined OM fraction. The correlation between the diagenetic smectite illitization and the decrease in the amount of combined OM leads to the conclusion that the smectite illitization may be a driving force for the OM desorption. This study demonstrates the usefulness of the thermo-DRIFT approach for exploring diagenetic OM-clay interactions in argillaceous source rocks. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Evidence of a deep mantle source for Eoarchean ultramafic rocks of Nulliak

    NASA Astrophysics Data System (ADS)

    Morino, P.; Caro, G.; Reisberg, L. C.

    2016-12-01

    The coupled 146,147Sm-142,143Nd system provides a powerful tool for constraining the timing of the earliest events in Earth history. The Nulliak assemblage of the Saglek Block of Labrador includes remarkably well-preserved ultramafic rocks that are ideally suited for the application of this tool. We obtained a 147Sm-143Nd isochron yielding a 3.78±0.09 Ga age for these rocks. The positive initial ɛ143Nd value of the isochron (1.5±0.2), coupled with the consistent positive µ142Nd anomaly (8.6±2 ppm) of these samples, allowed calculation of a model differentiation age for the Nulliak mantle source of 4.40±0.05 Ga (assuming a BSE with chondritic Sm/Nd and ɛ142Nd=0). This age is consistent with two model ages obtained from coupled 142-143Nd systematics applied to Eoarchean metasediments [1] and amphibolites [2] of the Isua Supracrustal Belt of Greenland. More surprisingly, it is also consistent with the mantle differentiation age calculated for the 2.7 Ga Theo's flow (Abitibi) [3], inviting discussion of the mechanism for creating positive ɛ142Nd in the early mantle. While Nd isotope systematics provide important information about the timing of early events in the silicate Earth, taken alone, they do not constrain the dominant differentiation process. For this reason, we have decided to couple our Nd isotopic study of the Nulliak samples with Hf isotopic analyses. In fact, crustal extraction is expected to yield positive correlations between Nd and Hf isotopes, as seen in modern basalts, while fractional crystallization of a basal magma ocean (BMO) should yield negative correlations. Our preliminary ɛ176Hfi results are coherent with the latter hypothesis, yielding values consistent with the extents of BMO perovskite fractionation constrained by modeling of the Nulliak Sm-Nd data. More generally we aim to establish the first coherent Hf-143Nd-144Nd isotope dataset on Nulliak ultramafic rocks, in order to better understand the processes that shaped their mantle

  6. Elucidating carbon sources driving microbial metabolism during oil sands reclamation.

    PubMed

    Bradford, Lauren M; Ziolkowski, Lori A; Goad, Corey; Warren, Lesley A; Slater, Gregory F

    2017-03-01

    Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of H2S had indicated the occurrence of microbial sulphate reduction. The reclamation project involved construction of a three compartment system consisting of a freshwater wetland on top of a sand cap overlying a composite tailings (CT) deposit. Radiocarbon analysis demonstrated that both dissolved and sediment associated organic carbon associated with the deepest compartments (the CT and sand cap) was primarily fossil (Δ(14)C = -769 to -955‰) while organic carbon in the overlying peat was hundreds to thousands of years old (Δ(14)C = -250 to -350‰). Radiocarbon contents of sediment associated microbial phospholipid fatty acids (PLFA) were consistent with the sediment bulk organic carbon pools (Peat: Δ(14)CPLFA = -257‰; Sand cap Δ(14)CPLFA = -805‰) indicating that these microbes were using sediment associated carbon. In contrast, microbial PLFA grown on biofilm units installed in wells within the deepest compartments contained much more modern carbon that the associated bulk carbon pools. This implied that the transfer of relatively more modern carbon was stimulating the microbial community at depth within the system. Correlation between cellular abundance estimates based on PLFA concentrations and the Δ(14)CPLFA indicated that the utilization of this more modern carbon was stimulating the microbial community at depth. These results highlight the importance of understanding the occurrence and potential outcomes

  7. Venezuela No. 1 oil import source in S. America

    SciTech Connect

    Not Available

    1992-08-10

    This paper reports that with the exception of Venezuela, the U.S. is likely to import much oil from South American countries through 2010, the General Accounting Office reports. GAO, a congressional watchdog agency, noted the U.S. imports about 4% of its oil from Colombia, Ecuador, and Trinidad and Tobago and possibly could import from Argentina, Bolivia, Brazil, Chile, and Peru in the future. It the the eight countries' crude oil reserves are expected to increase about 30% by 2000, then slide about 2% by 2010. Their oil production is expected to climb about 21% over 1990 by 2000, then level off until 2010.

  8. Effects of source and thermal maturity on the distribution of aromatics and biomarkers in artificially generated oils

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Ju

    2010-05-01

    Ying-Ju Chang (1), Wuu-Liang Huang (2), Suh-Huey Wu (3), Cheng-Lung Kuo (3) (1) Department of Geosciences, National Taiwan University, Taipei, Taiwan (r93224103@ntu.edu.tw); (2) Department of Geosciences, National Taiwan University, Taipei, Taiwan; (3) Exploration and Development Research Institute, Chinese Petroleum Corp., Taiwan Oils generated from isolated kerogens from a variety of source rocks, including two marine shales, two terrestrial coals, and three lacustrine oil shales were characterized for the effects of source and maturity on the distributions of hydrocarbons compounds. Experiments were conducted by confined pressure (gold-tube) pyrolysis at 320 deg. Celsius at four laboratory maturities (0.79, 0.95, 1.10, 1.34 Easy%Ro). The results show that normal alkane distribution in oils from different kerogens exhibit distinct preference in carbon number and predominance in specific compounds. The carbon preference index (CPI) and odd-even predominance (OEP) ratios tend to approach to 1 with increasing maturity. Oils from two terrestrial kerogens show higher Pr/n-C17 ratio than lacustrine kerogens (Green-river oil shale, GR) and vice versa for Ph/n-C18 ratio. Both ratios decrease with increasing maturity but show distinct trends for different kerogens. The (Pr/n-C17) and (Ph/n-C18) ratios for the lamosite, torbanite, and two marine kerogens are very low at all studied maturities. The pristane/phytane (Pr/Ph) and [(Pr/C17)/(Ph/C18)] ratios in oils from three major kerogen types vary barely with maturity but are discernible in diverse organic types, implying good source indication. The methylphenanthrene ratios (MPR) for most kerogens, which vary significantly only at maturities higher than 1.0 %Ro, are suitable for high maturity indication. The methylphenanthrene distribution fraction (MPDF), in general, increases slightly with increasing maturity, except in torbanite. The MPDF parameter for GR kerogen exhibits best linear correlation with maturity whereas

  9. Burial history, thermal history and hydrocarbon generation modelling of the Jurassic source rocks in the basement of the Polish Carpathian Foredeep and Outer Carpathians (SE Poland)

    NASA Astrophysics Data System (ADS)

    Kosakowski, Paweł; Wróbel, Magdalena

    2012-08-01

    Burial history, thermal maturity, and timing of hydrocarbon generation were modelled for the Jurassic source rocks in the basement of the Carpathian Foredeep and marginal part of the Outer Carpathians. The area of investigation was bounded to the west by Kraków, to the east by Rzeszów. The modelling was carried out in profiles of wells: Będzienica 2, Dębica 10K, Góra Ropczycka 1K, Goleszów 5, Nawsie 1, Pławowice E1 and Pilzno 40. The organic matter, containing gas-prone Type III kerogen with an admixture of Type II kerogen, is immature or at most, early mature to 0.7 % in the vitrinite reflectance scale. The highest thermal maturity is recorded in the south-eastern part of the study area, where the Jurassic strata are buried deeper. The thermal modelling showed that the obtained organic matter maturity in the initial phase of the "oil window" is connected with the stage of the Carpathian overthrusting. The numerical modelling indicated that the onset of hydrocarbon generation from the Middle Jurassic source rocks was also connected with the Carpathian thrust belt. The peak of hydrocarbon generation took place in the orogenic stage of the overthrusting. The amount of generated hydrocarbons is generally small, which is a consequence of the low maturity and low transformation degree of kerogen. The generated hydrocarbons were not expelled from their source rock. An analysis of maturity distribution and transformation degree of the Jurassic organic matter shows that the best conditions for hydrocarbon generation occurred most probably in areas deeply buried under the Outer Carpathians. It is most probable that the "generation kitchen" should be searched for there.

  10. Sources of Mesoproterozoic igneous rocks and formation time of the continental crust of the Kokchetav Massif (Northern Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Tretyakov, A. A.; Kovach, V. P.; Degtyarev, K. E.; Shatagin, K. N.

    2016-12-01

    Within the Kokchetav massif (Northern Kazakhstan), Mesoproterozoic granites and acid volcanics are widespread: these are the youngest Precambrian igneous rocks forming basement of the region. The Nd isotopic characteristics (ɛNd( t)-4.4 ÷-9.6, t Nd(DM) 2.1-2.6 Ga) obtained for these rocks indicate that the source of their melts was the Early Precambrian continental crust. Thus, the continental crust of the Kokchetav Massif had basically been formed by the beginning of the Mesoproterozoic and during the Late Precambrian: later it became a source for the granitoid melts.

  11. Growing Pebbles and Conceptual Prisms - Understanding the Source of Student Misconceptions about Rock Formation.

    ERIC Educational Resources Information Center

    Kusnick, Judi

    2002-01-01

    Analyzes narrative essays--stories of rock formation--written by pre-service elementary school teachers. Reports startling misconceptions among preservice teachers on pebbles that grow, human involvement in rock formation, and sedimentary rocks forming as puddles as dry up, even though these students had completed a college level course on Earth…

  12. Growing Pebbles and Conceptual Prisms - Understanding the Source of Student Misconceptions about Rock Formation.

    ERIC Educational Resources Information Center

    Kusnick, Judi

    2002-01-01

    Analyzes narrative essays--stories of rock formation--written by pre-service elementary school teachers. Reports startling misconceptions among preservice teachers on pebbles that grow, human involvement in rock formation, and sedimentary rocks forming as puddles as dry up, even though these students had completed a college level course on Earth…

  13. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes.

    PubMed

    Ramsey, Elijah; Meyer, Buffy M; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E; Bannister, Terri

    2014-12-15

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore-interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy.

  14. Oil source-fingerprinting in support of polarimetric radar mapping of Macondo-252 oil in Gulf Coast marshes

    USGS Publications Warehouse

    Ramsey III, Elijah W.; Meyer, Buffy M.; Rangoonwala, Amina; Overton, Edward; Jones, Cathleen E.; Bannister, Terri

    2014-01-01

    Polarimetric synthetic aperture radar (PolSAR) data exhibited dramatic, spatially extensive changes from June 2009 to June 2010 in Barataria Bay, Louisiana. To determine whether these changes were associated with the Deepwater Horizon (DWH) oil spill, twenty-nine sediment samples were collected in 2011 from shoreline and nearshore–interior coastal marsh locations where oil was not observed visually or with optical sensors during the spill. Oil source-fingerprinting and polytopic vector analysis were used to link DWH oil to PolSAR changes. Our results prove that DWH oil extended beyond shorelines and confirm the association between presence of DWH oil and PolSAR change. These results show that the DWH oil spill probably affected much more of the southeastern Louisiana marshland than originally concluded from ground and aerial surveys and verify that PolSAR is a powerful tool for tracking oil intrusion into marshes with high probability even where contamination is not visible from above the canopy.

  15. By-products: oil sorbents as a potential energy source.

    PubMed

    Karakasi, Olga K; Moutsatsou, Angeliki

    2013-04-01

    The present study investigated the utilization of an industrial by-product, lignite fly ash, in oil pollution treatment, with the further potential profit of energy production. The properties of lignite fly ash, such as fine particle size, porosity, hydrophobic character, combined with the properties, such as high porosity and low specific gravity, of an agricultural by-product, namely sawdust, resulted in an effective oil-sorbent material. The materials were mixed either in the dry state or in aqueous solution. The oil sorption behaviour of the fly ash-sawdust mixtures was investigated in both marine and dry environments. Mixtures containing fly ash and 15-25% w/w sawdust performed better than each material alone when added to oil spills in a marine environment, as they formed a cohesive semi-solid phase, adsorbing almost no water, floating on the water surface and allowing total oil removal. For the clean-up of an oil spill 0.5 mm thick with surface area 1000 m(2), 225-255 kg of lignite fly ash can be utilized with the addition of 15-25% w/w sawdust. Fly ash-sawdust mixtures have also proved efficient for oil spill clean-up on land, since their oil sorption capacity in dry conditions was at least 0.6-1.4 g oil g(-1) mixture. The higher calorific value of the resultant oil-fly ash-sawdust mixtures increased up to that of bituminous coal and oil and exceeded that of lignite, thereby encouraging their utilization as alternative fuels especially in the cement industry, suggesting that the remaining ash can contribute in clinker production.

  16. Interaction of Escherichia coli B and B/4 and Bacteriophage T4D with Berea Sandstone Rock in Relation to Enhanced Oil Recovery

    PubMed Central

    Chang, Philip L.; Yen, Teh Fu

    1984-01-01

    Much research and development is needed to recover oil reserves presently unattainable, and microbially enhanced oil recovery is a technology that may be used for this purpose. To address the problem of bacterial contamination in an oil field injection well region, we connected each end of a Teflon-sleeved Berea sandstone rock to a flask containing nutrient medium. By inoculating one flask with Escherichia coli B, we could observe bacterial growth in the uninoculated flask resulting from the transport and establishment of cells across the rock. Differences in bacterial populations occurred depending on whether bacteriophage T4D was first adsorbed to the rock. The results of these experiments indicate that the inhibition of bacterial establishment within a rock matrix is possible via lytic interaction. Some nonlytic effects are also implied by experiments with B/4 cells, which are T4D-resistant mutants of E. coli B. A 10 to 40% retention of T4 by the rock occurred when it was loaded with 105 to 106 PFU. We also describe a lysogenic system for possible use in microbially enhanced oil recovery techniques. PMID:16346492

  17. Nanoscale Compositional Relations in Lunar Rock Patina: Deciphering Sources for Patina Components on an Apollo 17 Station 6 Boulder

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Noble, S. K.; Keller, L. P.

    2014-01-01

    Space weathering on the Moon and other airless bodies modifies the surfaces of regolith grains as well as the space-exposed surfaces of larger rocks and boulders. As space weathering witness plates, rocks and boulders are distinguished from regolith grains based on their ability to persist as physically intact substrates over longer time scales before being disaggregated by impact processes. Because lunar surfaces, including exposed rocks, quickly develop an optically thick layer of patina, it is important to understand the compositional relationship between patinas and their underlying rock substrates, particularly to support remote-sensing of rocky lunar terrains. Based on analytical TEM techniques, supported by focused ion beam (FIB) cross-sectioning, we have begun to systematize the multi-layer microstructural complexity of patinas on rock samples with a range of space exposure histories. Our on-going work has particularly focused on lunar rock 76015, both because it has a long (approx. 22 my) exposure history, and because its surface was exposed to patina development approximately 1 m off the regolith surface on a boulder in the Apollo 17 Station 6 boulder field. Potential sources for the 76015 patina therefore include impact-melted and vaporized material derived from the local rock substrate, as well as from the mix of large boulders and regolith in the Station 6 area. While similar, there are differences in the mineralogy and chemistry of the rocks and regolith at Station 6. We were interested to see if these, or other sources, could be distinguished in the average composition, as well as the compositional nanostratigraphy of the 76015 patina. To date we have acquired a total of 9 TEM FIB cross-sections from the 76015 patina, giving us reasonable confidence of being able to arrive at an integrated average for the patina major element composition based on analytical TEM methods.

  18. EFFECTS OF NITROGEN SOURCE ON CRUDE OIL BIODEGRADATION

    EPA Science Inventory

    The effects of NH4Cl and KNO3 on biodegradation of light Arabian crude oil by an oil-degrading enrichment culture were studied in respirometers. In poorly buffered sea salts medium, the pH decreased dramatically in cultures that contained NH4Cl, b...

  19. Essential Oils: Sources of Antimicrobials and Food Preservatives

    PubMed Central

    Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.

    2017-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324

  20. Essential Oils: Sources of Antimicrobials and Food Preservatives.

    PubMed

    Pandey, Abhay K; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N; Bajpai, Vivek K

    2016-01-01

    Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future.

  1. EFFECTS OF NITROGEN SOURCE ON CRUDE OIL BIODEGRADATION

    EPA Science Inventory

    The effects of NH4Cl and KNO3 on biodegradation of light Arabian crude oil by an oil-degrading enrichment culture were studied in respirometers. In poorly buffered sea salts medium, the pH decreased dramatically in cultures that contained NH4Cl, b...

  2. Restoration and source identification of polycyclic aromatic hydrocarbons after the Wu Yi San oil spill, Korea.

    PubMed

    Jang, Yu Lee; Lee, Hyo Jin; Jeong, He Jin; Park, Shin Yeong; Yang, Won Ho; Kim, Heung-Yun; Kim, Gi Beum

    2016-10-15

    On January 31, 2014, an oil spill accident occurred in Yeosu, South Korea. A total 800-899kl of oil from the pipeline was spilled into the sea. After the oil spill, the KIOST (Korea Institute of Ocean Science & Technology) researched PAHs (polycyclic aromatic hydrocarbons) in various media, but sedimentary PAHs were not analyzed despite their longer persistency than in other media. Therefore, this study examined PAH levels in intertidal sediments around Gwangyang Bay and identified PAH sources using oil fingerprinting. PAH residual levels showed a dramatic decrease during the four months after the accident and then remained at a relatively constant level. Analysis through regression equations indicate that this study area is likely to be restored to the PAH levels prior to the accident. Furthermore, the source analysis and oil fingerprinting analysis showed that PAH contamination in this study was unlikely to have originated from the spilled oil. Copyright © 2016. Published by Elsevier Ltd.

  3. Oxygen isotope geochemistry of the silicic volcanic rocks of the Etendeka-Parana province: Source constraints

    SciTech Connect

    Harris, C.; Milner, S.C.; Armstrong, R.A. ); Whittingham, A.M. )

    1990-11-01

    Oxygen isotope ratios of pyroxene phenocrysts in the silicic volcanic rocks from the Cretaceous Etendeka-Parana flood basalt province (Namibia, South America) are believed to reflect the {delta}{sup 18}O values of the original magmas. The authors recognize a high {delta}{sup 18}O value type ({delta}{sup 18}O pyroxene {approximately} +10{per thousand}) found in the south of both regions, and a low {delta}{sup 18}O value type ({delta}{sup 18}O pyroxene {approximately} +6.5{per thousand}) found in the north. Other differences between thee two rhyolite types include higher concentrations of incompatible elements and lower initial {sup 87}Sr/{sup 86}Sr ratios in the low {delta}{sup 18}O value type. The authors suggest that the regional distribution of rhyolite types reflects differences in source composition, which can best be explained if the sources are lower crustal, Late Proterozoic mobile belt material (high {delta}{sup 18}O) and Archean lower crust (low {delta}{sup 18}O).

  4. Hydrothermal origin of oil and gas reservoirs in basement rock of the South Vietnam continental shelf

    SciTech Connect

    Dmitriyevskiy, A.N.; Kireyev, F.A.; Bochko, R.A.; Fedorova, T.A. )

    1993-07-01

    Oil-saturated granites, with mineral parageneses typical of hydrothermal metasomatism and leaching haloes, have been found near faults in the crystalline basement of the South Vietnam continental shelf. The presence of native silver, barite, zincian copper, and iron chloride indicates a deep origin for the mineralizing fluids. Hydrothermally altered granites are a new possible type of reservoir and considerably broaden the possibilities of oil and gas exploration. 15 refs., 22 figs., 1 tab.

  5. Carbon Sources to Authigenic Carbonate Rock at Chemosynthetic Communities: Lower Slope of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sassen, R.; Jung, W.; Zhang, C.; Defreitas, D. A.

    2004-12-01

    Flux of biogenic methane, crude oil and associated hydrocarbon gases occurs from the deep subsurface to the seafloor, water column, and atmosphere of the Gulf of Mexico slope. Chemosynthetic communities occur at sites of relatively high gas flux, frequently with gas hydrate, but always with authigenic carbonate rock \\(ACR\\). ACR contains carbonate carbon derived from microbial hydrocarbon oxidation that geologically sequesters much fossil carbon, perturbing the carbon cycle. ACR was collected using the ALVIN from sites with chemosynthetic communities in Alaminos Canyon, Atwater Valley, and the Florida Escarpment areas at water depths as much as 3.3 km. Bulk δ 13C was measured and carbonate petrology used to identify carbonate cements, normal marine carbonate, and non-carbonate components such as metal oxides and sulfides. ACR is depleted in 13C. However, the δ 13C of major hydrocarbon types is typically more depleted in 13C than the associated ACR. For example, the mean δ 13C of biogenic methane seeps in the Gulf slope is -74.0\\permil PDB but the lightest bulk ACR measured in the study area is -46.6\\permil PDB. Carbonate cements from hydrocarbon oxidation are shown to enclose skeletal remains of chemosynthetic fauna such as mussels, clams, as well as other fauna characterized by normal marine carbonate \\(\\sim 0\\permil PDB\\). The best explanation of why the δ 13C of ACR does not closely correspond to that of the hydrocarbon starting products is that normal marine carbon dilutes the δ 13C from hydrocarbon oxidation and thus affects the bulk isotopic properties of ACR.

  6. Sources of Paleozoic granitic rocks and isotopic heterogeneity of the continental crust of the Aktau-Dzhungar microcontinent, Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Degtyarev, K. E.; Shatagin, K. N.; Tret'yakov, A. A.

    2016-10-01

    Several generations of Paleozoic granitic rocks are studied with Sm-Nd isotopic methods in the northwestern part of the Aktau-Dzhungar microcontinent of Central Kazakhstan (Atasu-Mointy divide). The initial Nd isotopic composition of the granitic rocks varies in a relatively narrow range from-0.1 to-3.5ɛ; the Nd model ages are also similar (1.11-1.46 Ga). These results indicate that the crustal source of all the Paleozoic granitic rocks of the region had similar composition and, probably, age. It is shown that the t Nd(DM) values of the Paleozoic granites reflect different proportions between ancient and juvenile material in the crustal source.

  7. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland)

    NASA Astrophysics Data System (ADS)

    Kosakowski, Paweł; Kotarba, Maciej J.; Piestrzyński, Adam; Shogenova, Alla; Więcław, Dariusz

    2016-05-01

    We present geochemical characteristics of the Lower Palaeozoic shales deposited in the Baltic Basin and Podlasie Depression. In the study area, this strata are represented by the Upper Cambrian-Lower Ordovician Alum Shale recognized in southern Scandinavia and Polish offshore and a equivalent the Lower Tremadocian Dictyonema Shale from the northern Estonia and the Podlasie Depression in Poland. Geochemical analyses reveal that the Alum Shale and Dictyonema Shale present high contents of organic carbon. These deposits have the best source quality among the Lower Palaeozoic strata, and they are the best source rocks in the Baltic region. The bituminous shales complex has TOC contents up to ca. 22 wt%. The analysed rocks contain low-sulphur, oil-prone Type-II kerogen deposited in anoxic or sub-oxic conditions. The maturity of the Alum and Dictyonema Shales changes gradually, from the east and north-east to the west and south-west, i.e. in the direction of the Tornquist-Teisseyre Zone. Samples, located in the seashore of Estonia and in the Podlasie region, are immature and in the initial phase of "oil window". The mature shales were found in the central offshore part of the Polish Baltic Basin, and the late mature and overmature are located in the western part of the Baltic Basin. The Alum and Dictyonema Shales are characterized by a high grade of radioactive elements, especially uranium. The enrichment has a syngenetic or early diagenetic origin. The measured content of uranium reached up to 750 ppm and thorium up to 37 ppm.

  8. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland)

    NASA Astrophysics Data System (ADS)

    Kosakowski, Paweł; Kotarba, Maciej J.; Piestrzyński, Adam; Shogenova, Alla; Więcław, Dariusz

    2017-03-01

    We present geochemical characteristics of the Lower Palaeozoic shales deposited in the Baltic Basin and Podlasie Depression. In the study area, this strata are represented by the Upper Cambrian-Lower Ordovician Alum Shale recognized in southern Scandinavia and Polish offshore and a equivalent the Lower Tremadocian Dictyonema Shale from the northern Estonia and the Podlasie Depression in Poland. Geochemical analyses reveal that the Alum Shale and Dictyonema Shale present high contents of organic carbon. These deposits have the best source quality among the Lower Palaeozoic strata, and they are the best source rocks in the Baltic region. The bituminous shales complex has TOC contents up to ca. 22 wt%. The analysed rocks contain low-sulphur, oil-prone Type-II kerogen deposited in anoxic or sub-oxic conditions. The maturity of the Alum and Dictyonema Shales changes gradually, from the east and north-east to the west and south-west, i.e. in the direction of the Tornquist-Teisseyre Zone. Samples, located in the seashore of Estonia and in the Podlasie region, are immature and in the initial phase of "oil window". The mature shales were found in the central offshore part of the Polish Baltic Basin, and the late mature and overmature are located in the western part of the Baltic Basin. The Alum and Dictyonema Shales are characterized by a high grade of radioactive elements, especially uranium. The enrichment has a syngenetic or early diagenetic origin. The measured content of uranium reached up to 750 ppm and thorium up to 37 ppm.

  9. Oil sands operations as a large source of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M.; Stroud, Craig; Darlington, Andrea; Drollette, Brian D.; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G.; Wang, Danny; O'Brien, Jason; Mittermeier, Richard L.; Brook, Jeffrey R.; Lu, Gang; Staebler, Ralf M.; Han, Yuemei; Tokarek, Travis W.; Osthoff, Hans D.; Makar, Paul A.; Zhang, Junhua; L. Plata, Desiree; Gentner, Drew R.

    2016-06-01

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  10. Oil sands operations as a large source of secondary organic aerosols.

    PubMed

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M; Stroud, Craig; Darlington, Andrea; Drollette, Brian D; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G; Wang, Danny; O'Brien, Jason; Mittermeier, Richard L; Brook, Jeffrey R; Lu, Gang; Staebler, Ralf M; Han, Yuemei; Tokarek, Travis W; Osthoff, Hans D; Makar, Paul A; Zhang, Junhua; Plata, Desiree L; Gentner, Drew R

    2016-06-02

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  11. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA

    USGS Publications Warehouse

    Smith, C.N.; Kesler, S.E.; Blum, J.D.; Rytuba, J.J.

    2008-01-01

    We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300??m) and silica-carbonate deposits that extend to depths of 1000??m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions (??202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although ??202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean ??202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ?? 0.5???) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO2 vapor

  12. Distribution of naphthalenes in crude oils from the Java Sea: Source and maturation effects

    NASA Astrophysics Data System (ADS)

    Radke, M.; Rullkötter, J.; Vriend, S. P.

    1994-09-01

    Amounts and distributions of C1-C3 naphthalenes and cadalene were determined by capillary gas chromatography in sixty crude oil samples from the Java Sea, southeast Asia and in a sample of Talang Akar (Oligocene) resinite supposed to be a major contributor of hydrocarbons to oils in that area. Maturity of the oils was assessed by the Methylphenanthrene Index (MPI-1). Source effects discovered by scatterplots were scrutinized by Principal Component Analysis (PCA). Based on empirical relationships with C27-C29 steranes (measured by gas chromatography-mass spectrometry), dimethylnaphthalenes in oils from the Ardjuna and Jatibarang (sub-)basins are mainly derived from terrestrial sources. Transition to a marine depositional environment in the Sunda basin, as indicated by a decrease in C29 sterane relative abundance from 70 to 30%, results in a decrease of total dimethylnaphthalene (DMN) concentrations from 20 to less than 3 mg/g oil. This is due, mainly, to a decrease in the concentration of the dominant 1,6-DMN. Thus, terrestrial Ardjuna or Jatibarang oils rich in 1,6-DMN (2-15 mg/g oil) are readily discriminated from marine Sunda oils (0.2-2 mg 1,6-DMN/g oil). Resinite of the Talang Akar type (1.4 mg 1,6-DMN/g total organic matter [TOM]) appears to be a significant contributor of 1,6-DMN to oils in the Ardjuna basin. Terrestrial affinities are inferred also for cadalene from concentration levels that are higher in terrestrial oils (1-3 mg/g oil) and Talang Akar resinite (6 mg/g TOM) than in the marine oils (0.1-1 mg/g oil). Ardjuna basin oils have the highest concentrations of cadalene, hence supporting resinite of the Talang Akar type as a possible source. However, 1,6-DMN and cadalene are likely to be derived from different terrestrial organic matter sources, because they load on different factors in PCA. Maturity levels of the oils in the range of 0.6-0.9% calculated vitrinite reflectance (Rcb), as inferred from the Trimethylnaphthalene Ratio (TNR-2), are in

  13. Mechanical study of the Chartreuse Fold-and-Thrust Belt: relationships between fluids overpressure and decollement within the Toarcian source-rock

    NASA Astrophysics Data System (ADS)

    Berthelon, Josselin; Sassi, William; Burov, Evgueni

    2016-04-01

    the decollement layer. In turn, with the FLAMAR geo-mechanical models it is shown that for key mechanical parameters within the Chartreuse mechanical stratigraphy (such as friction coefficient, cohesion and viscosity properties), the mechanical boundary conditions to activate, localize and propagate shear thrust in the toarcian source-rock can be found to discuss on the hydro-mechanics of the structural evolution: the very weak mechanical properties that must be attributed to the source-rock to promote the formation of a decollement tend to justify the hypothesis of high fluids pressures in it. In FLAMAR, the evolution of the toarcian source-rock mechanical properties, calibrated on the temperature of kerogen-to-gas transformation, can be introduced to allow its activation as a decollement at a burial threshold. However, without hydro-mechanical coupling, it is not possible to predict where the overpressured regions that localised these changes are positioned. As such, this work also highlights the need for a fully-coupled hydro-mechanical model to further investigate the relationship between fluids and deformations in FTB and accretionary prisms. Burov, E., Francois, T., Yamato, P., & Wolf, S. (2014). Mechanisms of continental subduction and exhumation of HP and UHP rocks. Gondwana Research, 25(2), 464-493. Faille, I., Thibaut, M., Cacas, M.-C., Havé, P., Willien, F., Wolf, S., Agelas, L., Pegaz-Fiornet, S., 2014. Modeling Fluid Flow in Faulted Basins. Oil Gas Sci. Technol. - Rev. d'IFP Energies Nouv. 69, 529-553.

  14. On the location of microseismic sources in instable rock slope areas: heterogeneous vs. homogenous 3D velocity models

    NASA Astrophysics Data System (ADS)

    Coviello, Velio; Manconi, Andrea; Occhiena, Cristina; Arattano, Massimo; Scavia, Claudio

    2013-04-01

    Rock-falls are one of the most common and hazardous phenomena occurring in mountainous areas. The formation of cracks in rocks is often accompanied by a sudden release of energy, which propagates in form of elastic waves and can be detected by a suitable transducer array. Therefore, geophones are among the most effective monitoring devices to investigate eventual precursors of rock-fall phenomena. However, the identification of an efficient procedure to forecast rock-fall occurrence in space and time is still an open challenge. In this study, we aim at developing an efficient procedure to locate microseismic sources relevant to cracking mechanisms, and thus gather indications on eventual precursors of rock-fall phenomena. Common seismic location tools usually implement homogeneous or multilayered velocity models but, in case of high slope gradients and heavily fractured rock masses, these simplifications may lead to errors on the correct estimation of the source location. Thus, we analyzed how the consideration of 3D material properties on the propagation medium may influence the location. In the framework of the Alcotra 2007-2013 Project MASSA (Medium And Small Size rock-fall hazard Assessment), a monitoring system composed by 8 triaxial geophones was installed in 2010 at the J.A. Carrel hut (3829 m a.s.l., Matterhorn, NW Italian Alps) and during the first year of operation the network recorded more than 600 natural events that exceeded a fixed threshold [1]. Despite the harsh environmental conditions of the study area, eighteen points distributed as uniformly as possible in space were selected for hammering. The artificial source dataset of known coordinates was used to constrain a 3D heterogeneous velocity model through a Simultaneous Iterative Reconstructive Technique. In order to mitigate the intrinsic uncertainties of the inversion procedure, bootstrapping was performed to extend the dataset and a statistical analysis was issued to improve the model

  15. Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer

    NASA Astrophysics Data System (ADS)

    Diener, Johann F. A.; White, Richard W.; Hudson, Timothy J. M.

    2014-07-01

    Ascent of granitic melt initiates under suprasolidus conditions in the mid- to lower crust before continuing through subsolidus rocks to higher crustal levels. Whereas migration of melt in suprasolidus rocks can occur in pervasive net-like structures and involve relatively small melt volumes, ascent through the subsolidus crust requires more focused, dyke-like structures and larger volumes to prevent freezing. Migmatites in the Aus granulite terrain, southern Namibia, preserve evidence that large-scale melt redistribution and accumulation occurred in the near-source region under suprasolidus conditions. Melt that was mainly produced in metapelitic rocks utilised pervasive small-scale leucosome networks to migrate to areas surrounding pre-tectonic granite sheets. These areas are dominated by metapsammitic rocks, and abundant and voluminous leucogranite sheets attest to melt accumulation and residence occurring over a protracted period while the area was undergoing anatexis. However, the leucogranites have an anhydrous mineralogy and the surrounding rocks only preserve evidence for limited, high-temperature retrogression, consistent with substantial melt loss from the accumulation structures. We speculate that melt batches leaving the accumulation sites are likely to have been large, allowing for substantially more efficient ascent through subsolidus crust. Our results suggest that a degree of near-source melt accumulation is likely to occur during the early stages of meltmigration, and that this can significantly enhance the effectiveness of subsequent melt ascent.

  16. Natural arsenic in Triassic rocks: A source of drinking-water contamination in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Heinrichs, Gerold; Udluft, Peter

    The aquifer system of the Upper Triassic Keuper Sandstone, an important source of drinking water in northern Bavaria, is affected by elevated arsenic concentrations. Within the study area of 8000km2, no evidence exists for any artificial source of arsenic. Data from about 500 deep water wells show that in approximately 160 wells arsenic concentrations are 10-150μg/L. The regional distribution of arsenic in the groundwater shows that elevated arsenic concentrations are probably related to specific lithofacies of the aquifers that contain more sediments of terrestrial origin. Geochemical measurements on samples from four selected well cores show that arsenic has accumulated in the rocks. This indigenous arsenic is the source of arsenic in the groundwater of certain facies of the middle unit of the Keuper Sandstone. Résumé Le système aquifère des grès du Keuper, ressource en eau potable importante du nord de la Bavière, est marqué par des concentrations en arsenic élevées. Dans la région étudiée, qui s'étend sur 8000km2, il n'existe aucun indice d'une source artificielle d'arsenic. Les données provenant d'environ 500 puits profonds montrent que dans environ 160 puits les concentrations en arsenic sont comprises entre 10-150μg/L. La distribution régionale de l'arsenic dans les eaux souterraines montre que les concentrations élevées en arsenic sont probablement associées à des lithofaciès spécifiques qui contiennent plus de sédiments d'origine continentale. Des analyses géochimiques sur des échantillons provenant des carottes de quatre puits sélectionnés montrent que l'arsenic s'est accumulé dans ces roches. L'arsenic autochtone est la source de l'arsenic dans les eaux souterraines de certains faciès de l'unité médiane des grès du Keuper.

  17. Natural cleanup of heavy fuel oil on rocks: an in situ experiment.

    PubMed

    Jézéquel, R; Menot, L; Merlin, F-X; Prince, R C

    2003-08-01

    Changes in the chemical composition of a heavy fuel oil, Bunker C, exposed to the elements for 556 days in the vicinity of Brest Harbour (France, (48 degrees 18(') N, 4 degrees 32(') W)) have been studied. Samples with exposure to full or reflected sunlight, and in the dark, were analysed by thin layer chromatography and gas chromatography coupled with mass spectrometry and compared with the initial oil. Using hopane as a conserved internal standard, an average of more than 56% of the total hydrocarbon in the residual stranded oil had been removed in the 556 days. The results indicate that dissolution, biodegradation and photooxidation all play important roles in the weathering process, with their respective contributions depending on the exposure.

  18. Mineralogy of Apollo 15415 ?genesis rock' - Source of anorthosite on moon.

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.

    1971-01-01

    Results of electron microprobe analyses of plagioclase points and pyroxene grains of Apollo 15415 ?genesis rock.' It is pointed out that no evidence of cumulate textures has yet appeared to support suggestions of extensive crystal-liquid differentiation producing an anorthositic crust or a lunar crust composed of a mixture of plagioclase-rich rock, basalts and minor ultramafic material, which require that plagioclase crystals float in a basaltic liquid. The plagioclase in 15415 does not show cumulate texture either. It is noted that it remains to be seen whether rock 15415 is correctly named the ?genesis rock.'

  19. Evaporites as a source for oil. Progress report, November 15, 1988--November 15, 1992

    SciTech Connect

    Schreiber, B.C.; Benalihioulhaj, S.; Philp, R.P.

    1993-02-01

    Organic matter, present in some sediments, acts as the source for hydrocarbons and has been studied at great length, but organic-rich sediments from hypersaline environments are just beginning to be understood. Many types of organic matter from such restricted environments have been identified, and in this study their maturation pathways and products are being explored. By collecting biologically-identified organic matter produced within modern evaporative environments from a number of different marine and nonmarine settings and carrying out detailed geochemical examination of samples we are gradually beginning to understand these materials. The organic samples collected were from evaporative marine, sabkha, and lacustrine deposits, and have been subjected to two types of artificial maturation, hydrous and confined pyrolysis, over a fairly wide range of temperatures (1500 to 350{degrees}C). The biomarker products of these treatments are being analyzed and followed in great detail. Analyses of saturate and aromatic hydrocarbons as well as sulfur compounds in the original and the matured samples provide a comprehensive view of the biomarker assemblages associated with these different depositional environments at different stages of maturity. Infrared spectroscopy and Rock Eval pyrolysis of both the isolated kerogens from both the original and pyrolyzed samples has permitted us to clearly characterize the functional groupings on the one hand and the free hydrocarbons, the potential hydrocarbons, and the oxygenated compounds on the other hand. We have thus been able to demonstrate the potential of the organic matter associated with the different evaporitic environments to act as a good source for oil generation.

  20. SW New Mexico Oil Well Formation Tops

    SciTech Connect

    Shari Kelley

    2015-10-21

    Rock formation top picks from oil wells from southwestern New Mexico from scout cards and other sources. There are differing formation tops interpretations for some wells, so for those wells duplicate formation top data are presented in this file.

  1. Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill.

    PubMed

    Wang, Zhendi; Yang, C; Yang, Z; Sun, J; Hollebone, B; Brown, C; Landriault, M

    2011-11-01

    This paper presents a case study in which integrated forensic oil fingerprinting and data interpretation techniques were used to characterize the chemical compositions and determine the source of the 2009 Sarnia (Ontario) oil spill incident. The diagnostic fingerprinting techniques include determination of hydrocarbon groups and semi-quantitative product-type screening via gas chromatography (GC), analysis of oil-characteristic biomarkers and the extended suite of parent and alkylated PAH (polycyclic aromatic hydrocarbon) homologous series via gas chromatography-mass spectrometry (GC-MS), determination and comparison of a variety of diagnostic ratios of "source-specific marker" compounds, and determination of the weathering degree of the spilled oil, and whether the spilled oil hydrocarbons have been mixed with any other "background" chemicals (biogenic and/or pyrogenic hydrocarbons). The detailed chemical fingerprinting data and results reveal the following: (1) all four samples are mixtures of diesel and lubricating oil with varying percentages of diesel to lube oil. Both samples 1460 and 1462 are majority diesel-range oil mixed with a smaller portion of lube oil. Sample 1461 contains slightly less diesel-range oil. Sample 1463 is majority lubricating-range oil. (2) The diesel in the four diesel/lube oil mixture samples was most likely the same diesel and from the same source. (3) The spill sample 1460 and the suspected-source sample 1462 have nearly identical concentrations and distribution patterns of target analytes including TPHs, n-alkane, PAHs and biomarker compounds; and have nearly identical diagnostic ratios of target compounds as well. Furthermore, a perfect "positive match" correlation line (with all normalized ratio data points falling into the straight correlation line) is clearly demonstrated. It is concluded that the spill oil water sample 1460 (#1, from the water around the vessel enclosed by a boom) matches with the suspected source sample 1462

  2. Rocks of the Thirtynine Mile volcanic field as possible sources of uranium for epigenetic deposits in central Colorado, USA.

    USGS Publications Warehouse

    Dickinson, K.A.

    1987-01-01

    The most likely volcanic source rock for uranium in epigenetic deposits of the Tallahassee Creek uranium district and nearby areas is the Wall Mountain Tuff. The widespread occurrence of the Tuff, its high apparent original uranium content, approx 11 ppm, and its apparent loss of uranium from devitrification and other alteration suggest its role in providing that element. An estimate of the original Th/U ratio is based on the present thorium and uranium contents of the basal vitrophyre of the Tuff from Castle Rock Gulch, Hecla Junction and other areas.-from Author

  3. The origin, source, and cycling of methane in deep crystalline rock biosphere

    PubMed Central

    Kietäväinen, Riikka; Purkamo, Lotta

    2015-01-01

    The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites. PMID:26236303

  4. Cretaceous source rock characterization of the Atlantic Continental margin of Morocco

    SciTech Connect

    Jabour, H. )

    1993-02-01

    Characterization of the petroleum potential for the Atlantic margin of Morocco has been based primarily on limited, antiently acquired organic geochemical data. These indicate the area of drilling behind the paleoshelf edge to be only fair in organic carbon and C15+ extract values with predominantly terrestrial kerogen types. Recently acquired geochemical data obtained from relatively recent drilling both behind and beyond the paleoshelf edge indicate 4 depositional facies containing hydrogen rich amorphous kerogen assemblages. These are: (1) Lower to Mid Jurassic inner shelf facies probably deposited in algal rich lagoon-like, (2) Lower Cretaceous non marine coaly facies probably deposited in algal rich swamplike environments, (3) Middle Cretaceous facies characterized by restrited anoxic environment with sediments rich in marine kerogen types deposited under sluggish wather circulation, (4) Upper Cretaceous to Tertiary outer-shelf to Upper slope facies probably deposited under algal-rich upwelling systems. Of these, the Cretaceous facies is the most widespread and represents the best source rock potential characteristics. Correlation of these facies to recently acquired good quality seismic packages allows for extrapolation of probable organic facies distribution throughout the continental margin. This should enhance the hydrocarbon potential of the Mesozoic and Cenozoic sediments both landward and seaward of the paleoshelf edge and thus permits refinement of strategies for hydrocarbon exploration in the area.

  5. The origin, source, and cycling of methane in deep crystalline rock biosphere.

    PubMed

    Kietäväinen, Riikka; Purkamo, Lotta

    2015-01-01

    The emerging interest in using stable bedrock formations for industrial purposes, e.g., nuclear waste disposal, has increased the need for understanding microbiological and geochemical processes in deep crystalline rock environments, including the carbon cycle. Considering the origin and evolution of life on Earth, these environments may also serve as windows to the past. Various geological, chemical, and biological processes can influence the deep carbon cycle. Conditions of CH4 formation, available substrates and time scales can be drastically different from surface environments. This paper reviews the origin, source, and cycling of methane in deep terrestrial crystalline bedrock with an emphasis on microbiology. In addition to potential formation pathways of CH4, microbial consumption of CH4 is also discussed. Recent studies on the origin of CH4 in continental bedrock environments have shown that the traditional separation of biotic and abiotic CH4 by the isotopic composition can be misleading in substrate-limited environments, such as the deep crystalline bedrock. Despite of similarities between Precambrian continental sites in Fennoscandia, South Africa and North America, where deep methane cycling has been studied, common physicochemical properties which could explain the variation in the amount of CH4 and presence or absence of CH4 cycling microbes were not found. However, based on their preferred carbon metabolism, methanogenic microbes appeared to have similar spatial distribution among the different sites.

  6. REDBACK: an Open-Source Highly Scalable Simulation Tool for Rock Mechanics with Dissipative Feedbacks

    NASA Astrophysics Data System (ADS)

    Poulet, T.; Veveakis, M.; Paesold, M.; Regenauer-Lieb, K.

    2014-12-01

    Multiphysics modelling has become an indispensable tool for geoscientists to simulate the complex behaviours observed in their various fields of study where multiple processes are involved, including thermal, hydraulic, mechanical and chemical (THMC) laws. This modelling activity involves simulations that are computationally expensive and its soaring uptake is tightly linked to the increasing availability of supercomputing power and easy access to powerful nonlinear solvers such as PETSc (http://www.mcs.anl.gov/petsc/). The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite-element, multiphysics framework (http://mooseframework.org) that can harness such computational power and allow scientists to develop easily some tightly-coupled fully implicit multiphysics simulations that run automatically in parallel on large clusters. This open-source framework provides a powerful tool to collaborate on numerical modelling activities and we are contributing to its development with REDBACK (https://github.com/pou036/redback), a module for Rock mEchanics with Dissipative feedBACKs. REDBACK builds on the tensor mechanics finite strain implementation available in MOOSE to provide a THMC simulator where the energetic formulation highlights the importance of all dissipative terms in the coupled system of equations. We show first applications of fully coupled dehydration reactions triggering episodic fluid transfer through shear zones (Alevizos et al, 2014). The dimensionless approach used allows focusing on the critical underlying variables which are driving the resulting behaviours observed and this tool is specifically designed to study material instabilities underpinning geological features like faulting, folding, boudinage, shearing, fracturing, etc. REDBACK provides a collaborative and educational tool which captures the physical and mathematical understanding of such material instabilities and provides an easy way to apply this knowledge to realistic

  7. Petrogenetic modeling of a potential uranium source rock, Granite Mountains, Wyoming

    USGS Publications Warehouse

    Stuckless, J.S.; Miesch, A.T.

    1981-01-01

    Previous studies of the granite of Lankin Dome have led to the conclusion that this granite was a source for the sandstone-type uranium deposits in the basins that surround the Granite Mountains, Wyo. Q-mode factor analysis of 29 samples of this granite shows that five bulk compositions are required to explain the observed variances of 33 constituents in these samples. Models presented in this paper show that the origin of the granite can be accounted for by the mixing of a starting liquid with two ranges of solid compositions such that all five compositions are granitic. There are several features of the granite of Lankin Dome that suggest derivation by partial melting and, because the proposed source region was inhomogeneous, that more than one of the five end members may have been a liquid. Data for the granite are compatible with derivation from rocks similar to those of the metamorphic complex that the granite intrudes. Evidence for crustal derivation by partial melting includes a strongly peraluminous nature, extremely high differentiation indices, high contents of incompatible elements, generally large negative Eu anomalies, and high initial lead and strontium isotopic ratios. If the granite of Lankin Dome originated by partial melting of a heterogeneous metamorphic complex, the initial magma could reasonably have been composed of a range of granitic liquids. Five variables were not well accounted for by a five-end-member model. Water, CO 2 , and U0 2 contents and the oxidation state of iron are all subject to variations caused by near-surface processes. The Q-mode factor analysis suggests that these four variables have a distribution determined by postmagmatic processes. The reason for failure of Cs0 2 to vary systematically with the other 33 variables is not known. Other granites that have lost large amounts of uranium possibly can be identified by Q-mode factor analysis.

  8. 4D reservoir characterization using well log data for feasible CO2-enhanced oil recovery at Ankleshwar, Cambay Basin - A rock physics diagnostic and modeling approach

    NASA Astrophysics Data System (ADS)

    Ganguli, Shib Sankar; Vedanti, Nimisha; Dimri, V. P.

    2016-12-01

    In recent years, rock physics modeling has become an integral part of reservoir characterization as it provides the fundamental relationship between geophysical measurements and reservoir rock properties. These models are also used to quantify the effect of fluid saturation and stress on reservoir rocks by tracking the changes in elastic properties during production. Additionally, various rock physics models can be applied to obtain the information of rock properties away from existing drilled wells, which can play a crucial role in the feasibility assessment of CO2-enhanced oil recovery (EOR) operation at field. Thus, the objective of this study is to develop a rock-physics model of the Ankleshwar reservoir to predict the reservoir response under CO2-EOR. The Ankleshwar oil field is a mature field situated in Cambay Basin (Western India) that witnessed massive peripheral water flooding for around 40 years. Since the field was under water flooding for a long term, reasonable changes in reservoir elastic properties might have occurred. To identify potential reservoir zone with significant bypassed (or residual) oil saturation, we applied the diagnostic rock physics models to two available wells from the Ankleshwar oil field. The results clearly indicate transitions from clean sands to shaly sands at the base, and from sandy shale to pure shale at the top of the reservoir pay zone, suggesting a different seismic response at the top when compared to the base of the reservoir in both the wells. We also found that clay content and sorting affects the elastic properties of these sands, indicating different depositional scenario for the oil sands encountered in the Ankleshwar formation. Nevertheless, the rock physics template (RPT) analysis of the well data provides valuable information about the residual oil zone, a potential target for CO2-EOR. Further, a 4D reservoir characterization study has been conducted to assess the seismic detectability of CO2-EOR, and we

  9. Research on anisotropy of shale oil reservoir based on rock physics model

    NASA Astrophysics Data System (ADS)

    Guo, Zhi-Qi; Liu, Cai; Liu, Xi-Wu; Dong, Ning; Liu, Yu-Wei

    2016-06-01

    Rock physics modeling is implemented for shales in the Luojia area of the Zhanhua topographic depression. In the rock physics model, the clay lamination parameter is introduced into the Backus averaging theory for the description of anisotropy related to the preferred alignment of clay particles, and the Chapman multi-scale fracture theory is used to calculate anisotropy relating to the fracture system. In accordance with geological features of shales in the study area, horizontal fractures are regarded as the dominant factor in the prediction of fracture density and anisotropy parameters for the inversion scheme. Results indicate that the horizontal fracture density obtained has good agreement with horizontal permeability measured from cores, and thus confirms the applicability of the proposed rock physics model and inversion method. Fracture density can thus be regarded as an indicator of reservoir permeability. In addition, the anisotropy parameter of the P-wave is higher than that of the S-wave due to the presence of horizontal fractures. Fracture density has an obvious positive correlation with P-wave anisotropy, and the clay content shows a positive correlation with S-wave anisotropy, which fully shows that fracture density has a negative correlation with clay and quartz contents and a positive relation with carbonate contents.

  10. Origin of continental arc andesites: The composition of source rocks is the key

    NASA Astrophysics Data System (ADS)

    Chen, Long; Zhao, Zi-Fu

    2017-09-01

    The generation of continental arc andesites is generally attributed to subduction of oceanic slabs beneath continental margins, but the origin of crustal components in andesites and the petrogenetic processes of andesites remain widely debated. Common hypotheses include differentiation and crustal contamination of the mantle-derived basaltic magmas, subducted oceanic igneous rock melting and subsequent melt-peridotite interaction, relamination and melting of the subducted sediment, and partial melting of the hydrous mantle wedge peridotite. Because the relatively enriched signature of radiogenic isotope composition is generally comparable between andesites and their emplaced continental crust, the crustal contamination at the crust-mantle transition zone is often envisaged in the hypotheses for andesite petrogenesis. However, these hypotheses are not compatible with quantitative constraints from the mass balance of major elements, trace elements and their pertinent radiogenic isotopes in andesites. On the other hand, source mixing is another possible mechanism for incorporation of crustal components into the mantle source of andesitic magmas. This is realized by reaction of the mantle wedge peridotite with hydrous felsic melts that derived from partial melting of the subducted oceanic crust. Based on compilation and analysis of the geochemical data for basaltic and andesitic volcanics from the Middle and Lower Yangtze Valley, a SARSH (subduction, anataxis, reaction, storage and heating) model is advocated for andesite petrogenesis above oceanic subduction zones. According to this model, the sediment weathered from the overlying continental margin was subducted with the oceanic slab, and it then underwent dehydration and melting at subarc depths. This gives rise to the hydrous felsic melts for crustal metasomatism of the mantle wedge, generating the mantle source that is mafic in lithochemistry and enriched in trace elements and their pertinent radiogenic isotopes

  11. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect

    Liberatore, Matthew; Herring, Andy; Prasad, Manika; Dorgan, John; Batzle, Mike

    2012-10-30

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation's vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  12. Lavandula luisieri essential oil as a source of antifungal drugs.

    PubMed

    Zuzarte, M; Gonçalves, M J; Cruz, M T; Cavaleiro, C; Canhoto, J; Vaz, S; Pinto, E; Salgueiro, L

    2012-12-01

    This work reports the antifungal activity of Lavandula luisieri essential oils against yeast, dermatophyte and Aspergillus strains responsible for human infections and food contamination. The oil's cytotoxicity and its effect on the yeast-mycelium transition in Candida albicans, an important virulence factor, were also evaluated. Analyses by GC and GC/MS showed a peculiar composition of irregular monoterpenes. Significant differences between the samples occurred in the amounts of 1,8-cineole, fenchone and trans-α-necrodyl acetate. The oil with higher amounts of irregular monoterpenes was the most effective. The influence of the oils on the dimorphic transition in C. albicans was also studied through the germ tube inhibition assay. Filamentation was completely inhibited at concentrations sixteen times lower than the minimal inhibitory concentration. The results support the use of L. luiseiri essential oils in the development of new phytopharmaceuticals and food preservatives and emphasise its antifungal properties at concentrations not cytotoxic or with very low detrimental effects on mammalian cells.

  13. Kuwaiti oil fires — Source estimates and plume characterization

    NASA Astrophysics Data System (ADS)

    Husain, Tahir

    Just before the conclusion of the Gulf War, more than 800 wells detonated with explosives were ignited by the Iraqi forces, out of which more than 650 wells burned with flames for several months and the remainder gushed oil forming lakes and pools. It is estimated that more than one billion barrels of crude oil was lost which amounts to about 1.5 2, of the oil reserve in Kuwait. The burning wells in Kuwait produced large amounts of gases such as sulfur dioxide (SO 2), carbon monoxide (CO), hydrogen sulfide (H 2S), carbon dioxide (CO 2), and the oxides of nitrogen (NO 3) as well as particulates containing partially burned hydrocarbons and metals, all of which were potential for affecting human health and vegetation. In this paper, information on the statistics of the Kuwaiti oil wells fires, the data on Kuwaiti crude oil properties and the estimates on flow rates, emission of gaseous pollutants and particulates are presented. The remote sensing technique used at an early stage at the Research Institute, King Fahd University of Petroleum and Minerals (KFUPM RI) in identifying the distribution of burning wells in different fields is also highlighted in the paper. The paper also summarizes the smoke plume information and characterization.

  14. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    NASA Astrophysics Data System (ADS)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  15. Comparison of GC-MS, GC-MRM-MS, and GC × GC to characterise higher plant biomarkers in Tertiary oils and rock extracts

    NASA Astrophysics Data System (ADS)

    Eiserbeck, Christiane; Nelson, Robert K.; Grice, Kliti; Curiale, Joseph; Reddy, Christopher M.

    2012-06-01

    Higher plant biomarkers occur in various compound classes with an array of isomers that are challenging to separate and identify. Traditional one-dimensional (1D) gas chromatographic (GC) techniques achieved impressive results in the past, but have reached limitations in many cases. Comprehensive two-dimensional gas chromatography (GC × GC) either coupled to a flame ionization detector (GC × GC-FID) or time-of-flight mass spectrometer (GC × GC-TOFMS) is a powerful tool to overcome the challenges of 1D GC, such as the resolution of unresolved complex mixture (UCM). We studied a number of Tertiary, terrigenous oils, and source rocks from the Arctic and Southeast Asia, with special focus on angiosperm biomarkers, such as oleanoids and lupanoids. Different chromatographic separation and detection techniques such as traditional 1D GC-MS, metastable reaction monitoring (GC-MRM-MS), GC × GC-FID, and GC × GC-TOFMS are compared and applied to evaluate the differences and advantages in their performance for biomarker identification. The measured 22S/(22S + 22R) homohopane ratios for all applied techniques were determined and compare exceptionally well (generally between 2% and 10%). Furthermore, we resolved a variety of angiosperm-derived compounds that co-eluted using 1D GC techniques, demonstrating the superior separation power of GC × GC for these biomarkers, which indicate terrigenous source input and Cretaceous or younger ages. Samples of varying thermal maturity and biodegradation contain higher plant biomarkers from various stages of diagenesis and catagenesis, which can be directly assessed in a GC × GC chromatogram. The analysis of whole crude oils and rock extracts without loss in resolution enables the separation of unstable compounds that are prone to rearrangement (e.g. unsaturated triterpenoids such as taraxer-14-ene) when exposed to fractionation techniques like molecular sieving. GC × GC-TOFMS is particularly valuable for the successful separation of

  16. Fractured-rock aquifers, understanding an increasingly important source of water

    USGS Publications Warehouse

    Shapiro, Allen M.

    2002-01-01

    Ground water is one of the Nation?s most important natural resources. It provides drinking water to communities, supports industry and agriculture, and sustains streams and wetlands. A long record of contributions exists in understanding ground-water movement in sand and gravel aquifers; historically, these aquifers were easily accessible and the first to be investigated. With increased demand for water, communities are looking to fractured-rock aquifers, where water moves through fractures in the rock. Frac-tures, however, may not always convey or store large quantities of water. Understanding ground-water flow through fractured-rock aquifers is an area of ground-water research that will have increasing importance to our Nation over the coming years. Many areas of the United States rely on fractured-rock aquifers for water supply. In addition, areas experiencing population growth in the Northeast, Southeast, and mountainous regions of the West are likely to rely heavily on water supplies from fractured-rock aquifers. Finding water for thirsty communities, however, is not the only societal issue requiring an understanding of ground-water flow in fractured rock. Land-use practices affect water quality in fractured-rock aquifers, particularly where ground water flows rapidly through fractures. Fractured rock aquifers also are viewed as potential repositories for radioactive and other types of waste, where it is desirable for the ground water to be inaccessible or move at a very slow rate.

  17. Geochemical evidence for Paleozoic oil in Lower Cretaceous O Sandstone, northern Denver basin

    USGS Publications Warehouse

    Clayton, J.L.

    1989-01-01

    Organic geochemical properties of the oil produced from the Lower Cretaceous O sandstone on the eastern flank of the Denver basin indicate that this oil has been derived from a different source rock than other Cretaceous oils in the basin. O sandstone oil is characterized by low pristane/phytane ratio, high isoprenoid/n-alkane ratios, high asphaltene content, high sulfur content, and slight predominance of even-carbon numbered n-alkanes in the C25+ fraction. These features are evidence of a Paleozoic source and indicate a carbonate rock is the likely source. Preliminary source rock evaluation and correlation data suggest that calcareous black shales and marls of Middle Pennsylvanian (Desmoinesian) age are the source of the O sandstone oil. This is the first reported occurrence of oil from Paleozoic source rocks in a Cretaceous reservoir in the Denver basin. -from Author

  18. Sunflower seed oil: automotive fuel source. Final technical report

    SciTech Connect

    Denny, W.M.

    1984-01-01

    The intent of this portion of the project has to demonstrate the feasibility of utilizing sunflower seed oil as an alternate fuel for the spark ignition engine. The research was limited to small, one cylinder, air-cooled engines that are very common on the market place. Conventional fuels, such as gasoline, kerosene, diesel fuel blended with the sunflower oil were used. Sunfuel, sunflower oil, is difficult to procure and relatively expensive at approximately $4.00/gal. The research was unconcerned with how readily available or how competitively priced it was against petroleum products. All of the effort was to assume it was available and cost effective. We concentrated on making it burn in the heat engine and achieved it with marginal success. The review of the literature which was carried on concurrently with the research indicates several problems associated with producing Sunfuel.

  19. Modification of egg yolk fatty acids profile by using different oil sources.

    PubMed

    Omidi, Mohsen; Rahimi, Shaban; Karimi Torshizi, Mohammad Ali

    2015-01-01

    The study was conducted to evaluate the effects of different dietary oil sources supplementation on laying hens' performance and fatty acids profile of egg yolks. Seventy-two 23-week-old laying hens (Tetra-SL) divided into six experimental diets (four replicates and three birds per replication) in a completely randomized design for nine weeks. Experimental diets were included: 1) control (no oil), 2) 3.00% fish oil, 3) 3.00% olive oil, 4) 3.00% grape seed oil, 5) 3.00% canola oil, and 6) 3.00% soybean oil. The diets were similar in terms of energy and protein. Egg production, egg mass, egg weight, feed intake, feed conversion ratio and fatty acid composition of egg yolk were determined at the end of the trial. The results indicated that the performance parameters were not significantly different between treatments in the entire period (p > 0.05). However, fatty acids profiles of yolk were affected by experimental diets (p < 0.05). Fish oil significantly reduced omega-6 fatty acids and increased docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in egg yolk. Also canola oil increased linolenic acid content in the egg yolk. In conclusion, fish oil increased omega-3 long-chain fatty acids and decreased omega-6 to omega-3 ratio in eggs which may have beneficial effects on human health.

  20. Geochemistry of oils from the Junggar basin, northwest China

    USGS Publications Warehouse

    Clayton, J.L.; Yang, J.; King, J.D.; Lillis, P.G.; Warden, A.

    1997-01-01

    The Junggar basin of northwestern China is a structural basin containing a thick sequence of Paleozoic-Pleistocene rocks with estimated oil reserves of as much as 5 billion bbl. Analyses of 19 oil samples from nine producing fields and two oil-stained cores in the Junggar basin revealed the presence of at least five genetic oil types. The geochemistry of the oils indicates source organic matter deposited in fresh to brackish lake and marine environments, including coaly organic matter sources. The volumetrically most important oil type discovered to date is produced from Late Carboniferous-Middle Triassic reservoirs in the giant Karamay field and nearby fields located along the northwestern margin of the Junggar basin. Oil produced from the Mahu field, located downdip in a depression east of the Karamay field, is from a different source than Karamay oils. Unique oil types are also produced from an upper Permian reservoir at Jimusar field in the southeastern part of the basin, and from Tertiary (Oligocene) rocks at Dushanzi field and Lower Jurassic rocks at Qigu field, both located along the southern margin of the basin. Previous studies have demonstrated the presence of Upper Permian source rocks, and the possibility of Mesozoic or Tertiary sources has been proposed, but not tested by geochemical analysis, although analyses of some possible Jurassic coal source rocks have been reported. Our findings indicate that several effective source rocks are present in the basin, including local sources of Mesozoic or younger age for oil accumulations along the southern and southeastern margins of the basin. Future exploration or assessment of petroleum potential of the basin can be improved by considering the geological relationships among oil types, possible oil source rocks, and reservoirs.

  1. Geochemistry of oils from the Junggar basin, northwest China

    SciTech Connect

    Clayton, J.L.; King, J.D.; Lillis, P.G.

    1997-11-01

    The Junggar basin of northwestern China is a structural basin containing a thick sequence of Paleozoic-Pleistocene rocks with estimated oil reserves of as much as 5 billion bbl. Analyses of 19 oil samples from nine producing fields and two oil-stained cores in the Junggar basin revealed the presence of at least five genetic oil types. The geo-chemistry of the oils indicates source organic matter deposited in fresh to brackish lake and marine environments, including coaly organic matter sources. The volumetrically most important oil type discovered to date is produced from Late Carboniferous-Middle Triassic reservoirs in the giant Karamay field and nearby fields located along the northwestern margin of the Junggar basin. Oil produced from the Mahu field, located downdip in a depression east of the Karamay field, is from a different source than Karamay oils. Unique oil types are also produced from an upper Permian reservoir at Jimusar field in the southeastern part of the basin, and from Tertiary (Oligocene) rocks at Dushanzi field and Lower Jurassic rocks at Qigu field, both located along the southern margin of the basin. Previous studies have demonstrated the presence of Upper Permian source rocks, and the possibility of Mesozoic or Tertiary sources has been proposed, but not tested by geochemical analysis, although analyses of some possible Jurassic coal source rocks have been reported. Our findings indicate that several effective source rocks are present in the basin, including local sources of Mesozoic or younger age for oil accumulations along the southern and southeastern margins of the basin. Future exploration or assessment of petroleum potential of the basin can be improved by considering the geological relationships among oil types, possible oil source rocks, and reservoirs.

  2. HYDROCARBON SOURCE ROCK EVALUATION OF MIDDLE PROTEROZOIC SOLOR CHURCH FORMATION, NORTH AMERICAN MID-CONTINENT RIFT SYSTEM, RICE COUNTY, MINNESOTA.

    USGS Publications Warehouse

    Hatch, J.R.; Morey, G.B.

    1985-01-01

    Hydrocarbon source rock evaluation of the Middle Proterozoic Solor Church Formation (Keweenawan Supergroup) as sampled in the Lonsdale 65-1 well, Rice County, shows that: the rocks are organic matter lean; the organic matter is thermally post-mature, probably near the transition between the wet gas phase of catagenesis and metagenesis; and the rocks have minimal potential for producing additional hydrocarbons. The observed thermal maturity of the organic matter requires significantly greater burial depths, a higher geothermal gradient, or both. It is likely, that thermal maturation of the organic matter in the Solor Church took place relatively early, and that any hydrocarbons generated during this early phase were probably lost prior to deposition of the overlying formation.

  3. 77 FR 49489 - Oil and Natural Gas Sector: New Source Performance Standards and National Emission Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... August 16, 2012 Part II Environmental Protection Agency 40 CFR Parts 60 and 63 Oil and Natural Gas Sector... Regulations#0;#0; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 RIN 2060-AP76 Oil and Natural Gas... the review of new source performance standards for the listed oil and natural gas source category....

  4. Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.

    2015-12-01

    Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.

  5. [DWT-iPLS applied in the infrared diffuse reflection spectrum of hydrocarbon source rocks].

    PubMed

    Song, Ning; Xu, Xiao-xuan; Wu, Zhong-chen; Zhang, Cun-zhou; Wang, Bin

    2008-08-01

    Infrared spectroscopy is useful to monitor the quality of products on-line, or to quality multivariate properties simultaneously. The IR spectrometer satisfies the requirements of users who want to have quantitative product information in real-time because the instrument provides the information promptly and easily. However, Samples that are measured using diffuse reflectance often exhibit significant differences in the spectra due to the non-homogeneous distribution of the particles. In fact, multiple spectral measurements of the same sample can look completely different. In many cases, the scattering can be an overpowering contributor to the spectrum, sometimes accounting for most of the variance in the data. Although the degree of scattering is dependent on the wavelength of the light that is used and the particle size and refractive index of the sample, the scattering is not uniform throughout the spectrum. Typically, this appears as a baseline shift, tilt and sometimes curvature, where the degree of influence is more pronounced at the longer-wavelength end of the spectrum. The diffuse reflection spectrum is unsatisfactory and the calibration may provide unsatisfactory prediction results. So we must use some methods to remove the effects of the scattering for multivariate calibration of IR spectral signals. Discrete wavelet transform (DWT) is a good method to remove the effects of the scattering for multivariate calibration of IR spectral signals. By using DWT on individual signals as a preprocessing method in regression modeling on IR spectra, good compression is achieved with almost no loss of information, the low-frequency varying background and the high-frequency noise be removed simultaneously. In this report, we use the iPLS method to establish the calibration models of hydrocarbon source rocks. iPLS is a new regression method and the authors can get better results by using DTW- iPLS.

  6. Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona

    NASA Astrophysics Data System (ADS)

    Condie, Kent C.; Noll, Phillip D.; Conway, Clay M.

    1992-04-01

    The Tonto Basin Supergroup includes up to 6.5 km of Early Proterozoic sedimentary and volcanic rocks that were deposited in a relatively short period of time at about 1.7 Ga in central Arizona. Moderate correlations of rare earth elements (REE) and Ti with Al 2O 3 and REE distributions in detrital sediments of this supergroup suggest that these elements are contained chiefly in clay-mica and/or zircon fractions. REE distributions, including negative Eu anomalies in most Tonto Basin sediments, are similar to those in Phanerozoic shales. Weak to moderate correlations of Fe, Sc, Ni, and Co to Al 2O 3 also suggest a clay-mica control of these elements. Detrital modes and geochemical characteristics of sediments indicate two dominant sources for sedimentary rocks of the Tonto Basin Supergroup: a granitoid source and a volcanic source. The granitoid source was important during deposition of the upper part of the succession (the Mazatzal Group) as shown by increases in K 2O, Al 2O 3, and Th in pelites with stratigraphic height, and increases in Zr and Hf and decreases in Eu/Eu ∗, Cr, and Ni in in pelites of the Maverick Shale. Sediment provenance characteristics and paleocurrent indicators are consistent with deposition of the supergroup in a continental-margin back-arc basin. The granitoid sediment source appears to have been the North American craton on the north, and the volcanic source a more local source from an arc on the south.

  7. Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona

    USGS Publications Warehouse

    Condie, K.C.; Noll, P.D.; Conway, C.M.

    1992-01-01

    The Tonto Basin Supergroup includes up to 6.5 km of Early Proterozoic sedimentary and volcanic rocks that were deposited in a relatively short period of time at about 1.7 Ga in central Arizona. Moderate correlations of rare earth elements (REE) and Ti with Al2O3 and REE distributions in detrital sediments of this supergroup suggest that these elements are contained chiefly in clay-mica and/or zircon fractions. REE distributions, including negative Eu anomalies in most Tonto Basin sediments, are similar to those in Phanerozoic shales. Weak to moderate correlations of Fe, Sc, Ni, and Co to Al2O3 also suggest a clay-mica control of these elements. Detrital modes and geochemical characteristics of sediments indicate two dominant sources for sedimentary rocks of the Tonto Basin Supergroup: a granitoid source and a volcanic source. The granitoid source was important during deposition of the upper part of the succession (the Mazatzal Group) as shown by increases in K2O, Al2O3, and Th in pelites with stratigraphic height, and increases in Zr and Hf and decreases in Eu/Eu*, Cr, and Ni in in pelites of the Maverick Shale. Sediment provenance characteristics and paleocurrent indicators are consistent with deposition of the supergroup in a continental-margin back-arc basin. The granitoid sediment source appears to have been the North American craton on the north, and the volcanic source a more local source from an arc on the south. ?? 1992.

  8. Paleoenvironments, organic petrology and Rock-Eval studies on source rock facies of the Lower Maastrichtian Patti Formation, southern Bida Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Akande, S. O.; Ojo, O. J.; Erdtmann, B. D.; Hetenyi, M.

    2005-06-01

    The southern Bida Basin in central Nigeria forms a part of the larger Bida or Middle Niger Basin, which is contiguous with the south east trending (petroliferous) Anambra Basin. These basins were major depocenters for Campanian-Maastrichtian sediments in southern and central Nigeria prior to the build up of the Tertiary Niger delta. The successions in the southern Bida Basin consist of the basal Lokoja Formation, overlain by the Patti Formation and capped by the Agbaja Formation. The Lokoja Formation is a sequence of matrix supported conglomerates and sandstones overlying the Pre-Cambrian to Lower Paleozoic basement. Depositional environments are predominantly within fluvial systems of a continental setting. The Patti Formation consists of dark grey carbonaceous shales; mudstone and siltstones representing flood plains to shallow marine deposits with likely organic rich intervals. The overlying Agbaja Formation is made up of ferruginised oolitic and kaolinitic mudstone of a marginal marine environment. Twenty samples of shales of the Patti Formation were studied by incident light microscopy and geochemical analysis to determine the maceral components, geochemical type and potential yield of the pyrolysate. Maceral analysis indicate a large abundance of vitrinite (50-85%; mean = 66%); moderate abundance of liptinites (10-33%; mean = 18%) and lesser amounts of inertinite (9-40%; mean = 16%). Total organic carbon (TOC) values vary from 0.17 to 3.8 wt.% (mean = 2.1 wt.%) with most samples having greater than 2 wt.% TOC. Three of the samples yield greater than 2 kg (HC)/ton of rock suggesting a fair source rock potential. Most of the samples are thermally immature to marginally mature with vitrinite reflectance ranging from 0.4 to 0.6% Rom and Tmax values of 407-426 °C. Given the prevalence of the humic Type III kerogen, maturity and hydrocarbon potential yields, we conclude that the Patti Formation source rock facies have moderate to fair potential for gaseous

  9. 77 FR 41873 - In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil... current and accurate information concerning the securities of Alternative Energy Sources, Inc. because it...

  10. Study on source apportionment of Non-Methane Hydrocarbon Compounds (NMHC) in Dagang Oil Field

    SciTech Connect

    Zhu Tan; Lin Tao; Bai Zhipeng

    1996-12-31

    To identify the sources of non-methane total hydrocarbon in atmosphere in the region of Dagang Oil Field, 35 samples were collected and 10 hydrocarbon compounds were analyzed with GC/FID. Then, the Chemical Mass Balance Receptor Model was set up and the source contributions and standard errors were determined with the effective variance weighted least squares estimation method. The sources of the non-methane total hydrocarbon in this region includes crude oil, gasoline, natural gas, liquefied petroleum gas and motor exhaust, whose contributions are 46.64%, 8.56%, 20.05%, 18.17% and 6.08% respectively. Upon these analyses, the major sources of regional non-methane total hydrocarbon are crude oil, natural gas and liquefied petroleum gas.

  11. Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar.

    PubMed

    Sun, Meiyu; Hua, Wei; Liu, Jing; Huang, Shunmou; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future.

  12. Design of New Genome- and Gene-Sourced Primers and Identification of QTL for Seed Oil Content in a Specially High-Oil Brassica napus Cultivar

    PubMed Central

    Liu, Jing; Huang, Shunmou; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong

    2012-01-01

    Rapeseed (Brassica napus L.) is one of most important oilseed crops in the world. There are now various rapeseed cultivars in nature that differ in their seed oil content because they vary in oil-content alleles and there are high-oil alleles among the high-oil rapeseed cultivars. For these experiments, we generated doubled haploid (DH) lines derived from the cross between the specially high-oil cultivar zy036 whose seed oil content is approximately 50% and the specially low-oil cultivar 51070 whose seed oil content is approximately 36%. First, to address the deficiency in polymorphic markers, we designed 5944 pairs of newly developed genome-sourced primers and 443 pairs of newly developed primers related to oil-content genes to complement the 2244 pairs of publicly available primers. Second, we constructed a new DH genetic linkage map using 527 molecular markers, consisting of 181 publicly available markers, 298 newly developed genome-sourced markers and 48 newly developed markers related to oil-content genes. The map contained 19 linkage groups, covering a total length of 2,265.54 cM with an average distance between markers of 4.30 cM. Third, we identified quantitative trait loci (QTL) for seed oil content using field data collected at three sites over 3 years, and found a total of 12 QTL. Of the 12 QTL associated with seed oil content identified, 9 were high-oil QTL which derived from the specially high-oil cultivar zy036. Two high-oil QTL on chromosomes A2 and C9 co-localized in two out of three trials. By QTL mapping for seed oil content, we found four candidate genes for seed oil content related to four gene markers: GSNP39, GSSR161, GIFLP106 and GIFLP046. This information will be useful for cloning functional genes correlated with seed oil content in the future. PMID:23077542

  13. Evolution of organo-clay composites with respect to thermal maturity in type II organic-rich source rocks

    NASA Astrophysics Data System (ADS)

    Berthonneau, Jeremie; Grauby, Olivier; Abuhaikal, Muhannad; Pellenq, Roland J.-M.; Ulm, Franz J.; Van Damme, Henri

    2016-12-01

    Among the proposed pathways of sequestration and progressive transformation of organic matter (OM) during burial, the sorptive protection mechanism explains the strong relationship between total organic carbon (TOC) and mineral surface area (MSA) noted in numerous black shales around the globe. The complete mechanistic framework of preservation and evolution of OM in organo-mineral complexes remains, however, an enigma. On one hand, smectite layers composing the clay fraction are known to have a major influence on available surface area. OM maturation occurs, on the other hand, concurrently with the smectite illitization that provokes the closure of the interlayer spaces. The potential of smectite layers in the sequestration and preservation of organic molecules and the fate of these molecules with respect to the smectite illitization were therefore addressed. Here, the mineralogy of three organic-rich source rocks of various maturities was characterized in regards with the geochemistry of their OM. A thorough examination of the clay minerals present in the clay matrices provided evidences of mixed layer minerals containing smectite and illite layers with an increasing illite component with respect to maturity. The comprehensive interpretation of the X-ray diffractograms and analytical electron microscopy results suggested the presence of organic molecules in the inter-particulate and possibly the interlayer spaces of the smectite-rich components in immature source rocks. This eventuality was further supported by the presence of intercalated clay-organic nanocomposites observed by transmitted electron microscopy coupled with energy dispersive spectroscopy. Textural observations also showed that the increased illite content found in the overmature sample led to the reorganization of the OM and the clay particles into nano-scale aggregates. These results clarify the geochemical mechanism beyond the reported relationship between TOC and MSA and allow generalizing it

  14. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods.

    PubMed

    Ruiz Ruiz, Jorge Carlos; Ortiz Vazquez, Elizabeth De La Luz; Segura Campos, Maira Rubi

    2017-05-03

    Polyunsaturated omega-3 fatty acids (PUFAs), a functional component present in vegetable oils, are generally recognized as being beneficial to health. Omega-3 PUFAs are rich in double bonds and unsaturated in nature; this attribute makes them highly susceptible to lipid oxidation and unfit for incorporation into long shelf life foods. The microencapsulation of oils in a polymeric matrix (mainly polysaccharides) offers the possibility of controlled release of the lipophilic functional ingredient and can be useful for the supplementation of foods with PUFAs. The present paper provides a literature review of different vegetable sources of omega-3 fatty acids, the functional effects of omega-3 fatty acids, different microencapsulation methods that can possibly be used for the encapsulation of oils, the properties of vegetable oil microcapsules, the effect of encapsulation on oxidation stability and fatty acid composition of vegetable oils, and the incorporation of long-chain omega-3 polyunsaturated fatty acids in foods.

  15. n-3 Oil sources for use in aquaculture--alternatives to the unsustainable harvest of wild fish.

    PubMed

    Miller, Matthew R; Nichols, Peter D; Carter, Chris G

    2008-12-01

    The present review examines renewable sources of oils with n-3 long-chain (> or = C20) PUFA (n-3 LC-PUFA) as alternatives to oil from wild-caught fish in aquafeeds. Due to the increased demand for and price of wild-caught marine sources of n-3 LC-PUFA-rich oil, their effective and sustainable replacement in aquafeeds is an industry priority, especially because dietary n-3 LC-PUFA from eating fish are known to have health benefits in human beings. The benefits and challenges involved in changing dietary oil in aquaculture are highlighted and four major potential sources of n-3 LC-PUFA for aquafeeds, other than fish oil, are compared. These sources of oil, which contain n-3 LC-PUFA, specifically EPA (20:5n-3) and DHA (22:6n-3) or precursors to these key essential fatty acids, are: (1) other marine sources of oil; (2) vegetable oils that contain biosynthetic precursors, such as stearidonic acid, which may be used by fish to produce n-3 LC-PUFA; (3) single-cell oil sources of n-3 LC-PUFA; (4) vegetable oils derived from oil-seed crops that have undergone genetic modification to contain n-3 LC-PUFA. The review focuses on Atlantic salmon (Salmo salar L.), because it is the main intensively cultured finfish species and it both uses and stores large amounts of oil, in particular n-3 LC-PUFA, in the flesh.

  16. Crustal Seismic Anisotropy Produced by Rock Fabric Terranes in the Taiwan Central Range Deformational Orogen: Integrative Study Combining Rock Physics, Structural Geology, and Passive/Active-Source Seismology

    NASA Astrophysics Data System (ADS)

    Okaya, D. A.; Ross, Z.; Christensen, N. I.; Wu, F. T.; Byrne, T. B.

    2014-12-01

    The island of Taiwan is currently under construction due to the collision of the northwestern corner of the Philippine Sea plate and the embedded Luzon island arc with the larger continental Eurasian plate. This collision is responsible for the current growth of the Central Range that dominates the eastern half of the island. An international collaboration involving several USA and Taiwan universities and academic institutions was formed to study how the orogen evolves through time and to understand the role of a colliding island arc in mountain building. The project, Taiwan Integrated Geodynamics Research (TAIGER), was funded by NSF-Continental Dynamics and Taiwan National Science Council. The Central Range grows at one of the most rapid rates of uplift in the world, exposing metamorphic rocks that were once at least 10 km deep. The range offers unique opportunities for studies of crustal seismic anisotropy for two major reasons: (1) its geological makeup is conducive for producing crustal seismic anisotropy; that is, the rocks are highly foliated; and (2) a seismological data volume of significant breadth offers extensive coverage of sources and recording stations throughout the region. We carried out a crustal shear wave splitting study by data mining 3300 local earthquakes collected in the TAIGER 2009 sea-land experiment. We used an automated P and S wave arrival time picking method (Ross and Ben-Zion, 2014) applied to over 100,000 event-station pairs. These data were analyzed for shear-wave splitting using the MFAST automated package (Savage et al., 2010), producing 3300 quality shear wave split measurements. The splitting results were then station-averaged. The results show NNE to NE orientation trends that are consistent with regional cleavage strikes. Average crustal shear wave split time is 0.244 sec. These measurements are consistent with rock physics measurements of Central Range slate and metamorphic acoustic velocities. The splits exhibit orientations

  17. High resolution study of petroleum source rock variation, Lower Cretaceous (Hauterivian and Barremian) of Mikkelsen Bay, North Slope, Alaska

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Lillis, Paul G.

    2001-01-01

    Open File Report 01-480 was designed as a large format poster for the Annual Meeting of the American Association of Petroleum Geologists and the Society for Sedimentary Geology in Denver Colorado in June 2001. It is reproduced here in digital format to make widely available some unique images of mudstones. The images include description, interpretation, and Rock-Eval data that resulted from a high-resolution study of petroleum source rock variation of the Lower Cretaceous succession of the Mobil-Phillips Mikkelsen Bay State #1 well on the North Slope of Alaska. Our mudstone samples with Rock-Eval data plus color images are significant because they come from one of the few continuously cored and complete intervals of the Lower Cretaceous succession on the North Slope. This succession, which is rarely preserved in outcrop and very rarely cored in the subsurface, is considered to include important petroleum source rocks that have not previously been described nor explained Another reason these images are unique is that the lithofacies variability within mudstone dominated successions is relatively poorly known in comparison with that observed in coarser clastic and carbonate successions. They are also among the first published scans of thin sections of mudstone, and are of excellent quality because the sections are well made, cut perpendicular to bedding, and unusually thin, 20 microns. For each of 15 samples, we show a thin section scan (cm scale) and an optical photomicrograph (mm scale) that illustrates the variability present. Several backscattered SEM images are also shown. Rock-Eval data for the samples can be compared with the textures and mineralogy present by correlating sample numbers and core depth.

  18. Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters

    USGS Publications Warehouse

    Swanson, Sharon M.; Enomoto, Catherine B.; Dennen, Kristin O.; Valentine, Brett J.; Cahan, Steven M.

    2017-02-10

    In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model that incorporates the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico basin; the TPS was defined previously by the USGS assessment team in the assessment of undiscovered hydrocarbon resources in Tertiary strata of the Gulf Coast region in 2007. One conventional assessment unit (AU), which extends from south Texas to the Florida panhandle, was defined: the Fredericksburg-Buda Carbonate Platform-Reef Gas and Oil AU. The assessed stratigraphic interval includes the Edwards Limestone of the Fredericksburg Group and the Georgetown and Buda Limestones of the Washita Group. The following factors were evaluated to define the AU and estimate oil and gas resources: potential source rocks, hydrocarbon migration, reservoir porosity and permeability, traps and seals, structural features, paleoenvironments (back-reef lagoon, reef, and fore-reef environments), and the potential for water washing of hydrocarbons near outcrop areas.In Texas and Louisiana, the downdip boundary of the AU was defined as a line that extends 10 miles downdip of the Lower Cretaceous shelf margin to include potential reef-talus hydrocarbon reservoirs. In Mississippi, Alabama, and the panhandle area of Florida, where the Lower Cretaceous shelf margin extends offshore, the downdip boundary was defined by the offshore boundary of State Waters. Updip boundaries of the AU were drawn based on the updip extent of carbonate rocks within the assessed interval, the presence of basin-margin fault zones, and the presence of producing wells. Other factors evaluated were the middle

  19. Oil recovery test using bio surfactants of indigenous bacteria in variation concentration of carbon source

    NASA Astrophysics Data System (ADS)

    Yudono, B.; Purwaningrum, W.; Estuningsih, S. P.; Kaffah, S.

    2017-05-01

    Recovery tests of crude oil by using bio surfactant of indigenous bacteria Pseudomonas peli, Pseudomonas citronellolis, Burkholderia glumae and Bacillus firmus. The bio surfactants were prepared with the variation concentrations of molasses carbon source; 0, 5, 10, 15, 20, and 25 %. The results showed that 10 g samples, which concentration 18.64% TPH could be dissolved in the bio surfactant 10%. Optimally in the molasses carbon source concentrations for each bacterium at 5, 10, 20 and 15 % with oil recovery as much as 31.92, 17.65, 22.32, and 14.38 % respectively. Oil components which extracted by bio surfactant were analyzed by using GLC (Gas Liquid Chromatography). The bio surfactants of Pseudomonas peli could dissolve oil fraction temperatures; 139.85; 144.69; 149.98; 1.55.03: 174.22 °C, Pseudomonas citronellolis could dissolve oil fraction temperatures; 139.13; 142.64;147.99; 155.03; 159.85; 164.50 °C, Burkholderia glumae could dissolve oil fraction temperatures 144.69; 149.98; 155.03; 159.85; 164.50 °C, and Bacillus firmus could dissolve oil fraction temperatures; 149.98; 155.03; 158.46; 164.50 °C.

  20. Used motor oil as a source of MTBE, TAME, and BTEX to ground water

    USGS Publications Warehouse

    Baker, R.J.; Best, E.W.; Baehr, A.L.

    2002-01-01

    Methyl tert-butyl ether (MTBE), the widely used gasoline oxygenate, has been identified as a common ground water contaminant, and BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) have long been associated with gasoline spills. Because not all instances of ground water contamination by MTBE and BTEX can be attributed to spills or leaking storage tanks, other potential sources need to be considered. In this study, used motor oil was investigated as a potential source of these contaminants. MTBE in oil was measured directly by methanol extraction and gas chromatography using a flame ionization detector (GC/FID). Water was equilibrated with oil samples and analyzed for MTBE, BTEX, and the oxygenate tert-amyl methyl ether (TAME) by purge-and-trap concentration followed by GC/FID analysis. Raoult's law was used to calculate oil-phase concentrations of MTBE, BTEX, and TAME from aqueous-phase concentrations. MTBE, TAME, and BTEX were not detected in any of five new motor oil samples, whereas these compounds were found at significant concentrations in all six samples of the used motor oil tested for MTBE and all four samples tested for TAME and BTEX. MTBE concentrations in used motor oil were on the order of 100 mg/L. TAME concentrations ranged from 2.2 to 87 mg/L. Concentrations of benzene were 29 to 66 mg/L, but those of other BTEX compounds were higher, typically 500 to 2000 mg/L.

  1. Pre-earthquake signals - Part I: Deviatoric stresses turn rocks into a source of electric currents

    NASA Astrophysics Data System (ADS)

    Freund, F. T.

    2007-09-01

    Earthquakes are feared because they often strike so suddenly. Yet, there are innumerable reports of pre-earthquake signals. Widespread disagreement exists in the geoscience community how these signals can be generated in the Earth's crust and whether they are early warning signs, related to the build-up of tectonic stresses before major seismic events. Progress in understanding and eventually using these signals has been slow because the underlying physical process or processes are basically not understood. This has changed with the discovery that, when igneous or high-grade metamorphic rocks are subjected to deviatoric stress, dormant electronic charge carriers are activated: electrons and defect electrons. The activation increases the number density of mobile charge carriers in the rocks and, hence, their electric conductivity. The defect electrons are associated with the oxygen anion sublattice and are known as positive holes or pholes for short. The boundary between stressed and unstressed rock acts a potential barrier that lets pholes pass but blocks electrons. Therefore, like electrons and ions in an electrochemical battery, the stress-activated electrons and pholes in the "rock battery" have to flow out in different directions. When the circuit is closed, the battery currents can flow. The discovery of such stress-activated currents in crustal rocks has far-reaching implications for understanding pre-earthquake signals.

  2. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  3. Vegetable Oil Deodorizer Distillate: A Rich Source of the Natural Bioactive Components.

    PubMed

    Hussain Sherazi, Syed Tufail; Mahesar, Sarfaraz Ahmed; Sirajuddin

    2016-12-01

    Deodorizer distillates are waste products of edible oil processing industries obtained during deodorization process of vegetable oils. It is very cheap source of several health beneficial components such as tocopherols, sterols, squalene as well as free fatty acids which have numerous industrial applications. These valuable components are being used in different foods, pharmaceutical formulations and cosmetics. Traditional sources of these useful components are vegetable oils, fruits, vegetables and nuts. Global need of these important components has been exceeded than their availability. The deodorizer distillates of various vegetable oils are considered to be a rich source of several valuable components. Present review will cover brief introduction of common processing stages involved in all vegetable oil processing, analytical methods for characterization of deodorizer distillates by instrumental techniques, importance and commercial value of deodorizer distillates. Future prospective of current field may leads to cost efficient processes and increased attention on the nutritional quality of deodorized oil and commercial applications of deodorizer distillates as well as their valuable components.

  4. Magnetic forward models of Cement oil field, Oklahoma, based on rock magnetic, geochemical, and petrologic constraints

    USGS Publications Warehouse

    Reynolds, R.L.; Webring, M.; Grauch, V.J.S.; Tuttle, M.

    1990-01-01

    Magnetic forward models of the Cement oil field, Oklahoma, were generated to assess the possibility that ferrimagnetic pyrrhotite related to hydrocarbon seepage in the upper 1 km of Permian strata contributes to aeromagnetic anomalies at Cement. Six bodies having different magnetizations were constructed for the magnetic models. Total magnetizations of the bodies of highest pyrrhotite content range from about 3 ?? 10-3 to 56 ?? 10-3 A/m in the present field direction and yield magnetic anomalies (at 120 m altitude) having amplitudes of less than 1 nT to ~6 to 7 nT, respectively. Numerous assumptions were made in the generation of the models, but nevertheless, the results suggest that pyrrhotite, formed via hydrocarbon reactions and within a range of concentrations estimated at Cement, is capable of causing magnetic anomalies. -from Authors

  5. Source implications for the different geochemical features of recent basaltic rocks from the northernmost part of the Cappadocian region, Turkey

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Biltan; Yurur, Tekin

    2017-04-01

    Extensive magmatic activities developed since middle-Miocene, in the Cappadocian Region of Central Anatolia in Turkey. The nature and the sources of the magmatism were well-constrained by previous studies. Even though the sources of Strato-volcanoes and monogenetic vents were briefly explained, extremely young basalts (1.22 - 0.094 Ka) situated in northernmost part of Cappadocian Region and erupted between the two extentional faults, are not deeply investigated. Karaburna and Gülşehir lavas (1.22, 0.094 Ka, respectively, Dogan, 2011) are considered as a part of the Central Anatolian Volcanic Province, with extremely young ages, generated either at the final or after the final stage of the Cappadocian systems. These lavas have similar LIL and HFS elements patterns with each other, however, Karaburna samples are more enriched in HFS elements. These basalts also display approximately similar trends in LIL elements ( except Rb) and reflect HFS depletion relative to the OIB signature, moreover, HFS are more enriched compared to the Hasandag basaltic rocks, all these features suggesting, basaltic rocks are originated from the modified mantle source. Karaburna and Gülşehir basalts have low Nb/La (0.45-0.5 ; 0.35-0.42), Nb/Y( 0.33-.39; 0.27-0.44 Nb/Th (2.75-4.6; 1.26-1.68) and high Ba/Nb (22-32; 38-43) ratios suggesting the contributions from the crustal sources, moreoever, Gülşehir basaltic rocks differ from the Karaburna lavas with relatively low Nb/U ( 4.5-6.4) and high Ba/La ( 14.67-17.20) Th/La (0.22-0.27), whereas Karaburna samples are represented by low Ba/La (10.04-14.90) and Th/La (0.09-0.16) ratios, these geochemical features reveal that these differences are originated either from the different degrees of crustal involvement or change in the nature of the source in a short time interval. Of all the most recent basaltic products generated in central Anatolia are alkaline in nature, besides, the trace element content, multi-element patterns and HFS/LIL and

  6. Oxygen isotopes as tracers of tektite source rocks: An example from the Ivory Coast tektites and Lake Bosumtwi Crater

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Koeberl, Christian; Chamberlain, C. Page

    1993-01-01

    Oxygen isotope studies of tektites and impact glasses provide an important tool to help in identifying the target lithologies for terrestrial impacts, including the K-T boundary impact. However, such studies may be complicated by modification of the original oxygen isotope values of some source rocks during the tektite formation process either by vapor fractionation or incorporation of meteoric water. To further investigate the relationship between the oxygen isotopic composition of tektites and their source rocks, Ivory Coast tektites and samples of impact glasses and bedrock lithologies from the Bosumtwi Crater in Ghana--which is widely believed to be the source crater for the Ivory Coast tektites--were studied. Our preliminary results suggest that the phyllites and metagraywackes from the Bosumtwi Crater were the predominant source materials for the impact glasses and tektites and that no significant oxygen isotope modification (less than 1 percent delta(O-18)) took place during impact melting. This contrasts with previous studies of moldavites and Australasian tektites and their sedimentary source materials which suggests a 4 to 5 percent lowering of delta(O-18) due to meteoric water incorporation during impact melting.

  7. Oxygen isotopes as tracers of tektite source rocks: An example from the Ivory Coast tektites and Lake Bosumtwi Crater

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Koeberl, Christian; Chamberlain, C. Page

    1993-01-01

    Oxygen isotope studies of tektites and impact glasses provide an important tool to help in identifying the target lithologies for terrestrial impacts, including the K-T boundary impact. However, such studies may be complicated by modification of the original oxygen isotope values of some source rocks during the tektite formation process either by vapor fractionation or incorporation of meteoric water. To further investigate the relationship between the oxygen isotopic composition of tektites and their source rocks, Ivory Coast tektites and samples of impact glasses and bedrock lithologies from the Bosumtwi Crater in Ghana--which is widely believed to be the source crater for the Ivory Coast tektites--were studied. Our preliminary results suggest that the phyllites and metagraywackes from the Bosumtwi Crater were the predominant source materials for the impact glasses and tektites and that no significant oxygen isotope modification (less than 1 percent delta(O-18)) took place during impact melting. This contrasts with previous studies of moldavites and Australasian tektites and their sedimentary source materials which suggests a 4 to 5 percent lowering of delta(O-18) due to meteoric water incorporation during impact melting.

  8. Geochemical evidence for a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Bata, Timothy; Parnell, John; Samaila, Nuhu K.; Abubakar, M. B.; Maigari, A. S.

    2015-11-01

    Paleogeographic studies have shown that Earth was covered with more water during the Cretaceous than it is today, as the global sea level was significantly higher. The Cretaceous witnessed one of the greatest marine transgressions in Earth's history, represented by widespread deposition of sands directly on underlying basement. These sand bodies hold much of the world's heavy oil. Here, we present for the first time, geochemical evidence of a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria. Bima oil sand is similar to other Cretaceous oil sands, predominantly occurring at shallow depths on basin flanks and generally lacking a seal cover, making the oil susceptible to biodegradation. The bulk properties and distribution of molecular features in oils from the Bima oil sand suggest that they are biodegraded. Sterane maturity parameters and the trisnorhopane thermal indicator for the oils suggest thermal maturities consistent with oils generated as conventional light oils, which later degraded into heavy oils. These oils also show no evidence of 25-norhopane, strongly suggesting that biodegradation occurred at shallow depths, consistent with the shallow depth of occurrence of the Bima Formation at the study locality. Low diasterane/sterane ratios and C29H/C30H ratios greater than 1 suggest a carbonate source rock for the studied oil. The Sterane distribution further suggests that the oils were sourced from marine carbonate rocks. The C32 homohopane isomerization ratios for the Bima oil sand are 0.59-0.60, implying that the source rock has surpassed the main oil generation phase, consistent with burial depths of the Fika and Gongila Formations, which are both possible petroleum source rocks in the basin.

  9. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  10. REE enrichment in granite-derived regolith deposits of the southeast United States: Prospective source rocks and accumulation processes

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.; Simandl, G.J.; Neetz, M.

    2015-01-01

    The Southeastern United States contains numerous anorogenic, or A-type, granites, which constitute promising source rocks for REE-enriched ion adsorption clay deposits due to their inherently high concentrations of REE. These granites have undergone a long history of chemical weathering, resulting in thick granite-derived regoliths, akin to those of South China, which supply virtually all heavy REE and Y, and a significant portion of light REE to global markets. Detailed comparisons of granite regolith profiles formed on the Stewartsville and Striped Rock plutons, and the Robertson River batholith (Virginia) indicate that REE are mobile and can attain grades comparable to those of deposits currently mined in China. A REE-enriched parent, either A-type or I-type (highly fractionated igneous type) granite, is thought to be critical for generating the high concentrations of REE in regolith profiles. One prominent feature we recognize in many granites and mineralized regoliths is the tetrad behaviour displayed in REE chondrite-normalized patterns. Tetrad patterns in granite and regolith result from processes that promote the redistribution, enrichment, and fractionation of REE, such as late- to post- magmatic alteration of granite and silicate hydrolysis in the regolith. Thus, REE patterns showing tetrad effects may be a key for discriminating highly prospective source rocks and regoliths with potential for REE ion adsorption clay deposits.

  11. Molecular and isotopic evaluation of the paleo-coupling between methanogenesis and oil biodegradation in Ordovician rocks (Michigan Basin).

    NASA Astrophysics Data System (ADS)

    Jautzy, J. J.; Clark, I. D.; Ahad, J. M.; Jensen, M.

    2016-12-01

    Recent work on a low permeability (10-15≤Kh≤10-13 m.s-1) and high salinity (>5 M) aquiclude situated in the upper Ordovician in the Michigan Basin suggests a microbial origin for CH4 and CO2 based on their stable isotope values. CH4 is believed to have been produced during the early stages of burial and trapped since the Paleozoic in a relatively discrete and high organic matter (OM) horizon at the shale/carbonate transition. Questions remain regarding the origin of the substrate used by the methanogenic microbial community and the relative timing of this natural gas generation. Here we present detailed isotopic and geochemical stratigraphic profiles of OM and biomarkers, with the objective of understanding the origin of CH4. δ13C analysis on different fractions of OM revealed a 13C enrichment anomaly in the aliphatics relative to the OM above the horizon where microbial CH4 is trapped. This isotopic excursion is concomitant with a drastic change in both n-alkane concentrations and profiles. The n-alkanes shift from a distribution centered on short chain length (i.e., characteristic of marine OM sources prevailing during the Ordovician) to a distribution centered on longer chain length. This cannot be interpreted as a change of OM sources towards more terrestrial OM, as land plants were only starting to emerge during the late Ordovician. Diagnostic ratios of polycyclic aromatic hydrocarbons, relative abundances of hopanes and degraded hopanes and compound specific carbon and hydrogen isotope ratios of n-alkanes suggest a secondary microbial methanogenesis generation through biodegradation of oil within the Ordovician shales. Our results provide new insight into the stratigraphic origin of the substrate associated with microbial CH4; which includes the development of an oil biodegradation zone which fed methanogenesis in the aquiclude. This work provides essential field empirical evidence of the direct relationship between methanogenesis and crude oil

  12. Use of Various Rock Physics Models Combined with a Rock Physics Database to Better Characterize Velocity Dispersion Effects in Potential Enhanced Oil Recovery, Carbon Sequestration and Hydrothermal Sites

    NASA Astrophysics Data System (ADS)

    Purcell, C. C.; Mur, A. J.; Delany, D.; Haljasmaa, I. V.; Soong, Y.; Harbert, W.

    2011-12-01

    The exploration of velocity differences in various fluid saturated rock types under reservoir conditions should prove to be useful in seismic monitoring of sequestration and hydrothermal sites. Different saturation values, along with mixtures of other common pore fluids could help delineate various areas of a CO2 flood or enhanced geothermal pressurization, in addition to estimating a minimum saturation amount needed to be seen in seismic surveys. We also explore the effects of varying parameters on the saturated velocities, including porosity, bulk frame composition, pressure, temperature, different pore filling phases, fluid mixtures, and compliant porosity. A software toolkit is currently in development that would allow exploration of these parameters to be easily achieved and visualized. Fluid substitution using Gassmann's equation (Gassmann [1]) is an important tool in the analysis of velocity dispersion in saturated rocks. Mavko and Jizba [2] created a model of squirt dispersion for elastic wave velocities at ultrasonic frequencies that predicts total dispersion for fluid filled rocks. Gurevich et al. [3] extend the Mavko-Jizba expressions to low fluid bulk modulus situations, such as gas filled rocks. These equations are typically used to calculate velocities of rocks filled with typical pore filling phases such as brine or gas. Purcell et al. [4] compared these equations to CO2 saturated limestone samples at reservoir pressures and temperatures. This paper compares the accuracy of these equations over various pressures and temperature ranges for a variety of rock types. Dry rock ultrasonic lab measurements of velocity have been made for carbonate, sandstone, rhyolite and coal and incorporated into a rock physics database. In addition, waveforms for each measurement have been used to estimate Q. Measurements were made between 2.3 and 50 MPa with generally a minimum of 40 measurements per sample completed. Various saturating phases, including supercritical CO

  13. Petrologic and geochemical links between the post-collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks

    NASA Astrophysics Data System (ADS)

    Nabelek, Peter I.; Bartlett, Cindy D.

    1998-12-01

    The Proterozoic terrane of the Black Hills, South Dakota, includes the composite Harney Peak leucogranite and associated pegmatites that were emplaced into metamorphosed pelites and graywackes. Available dates indicate that granite generation post-dated regional metamorphism and deformation that have been attributed to collision of the Wyoming and Superior cratons at ˜1760 Ma. Previous radiogenic and stable isotope work indicates that the exposed metasedimentary rocks are equivalent to sources of the leucogranites. In this study, whole rock and mineral compositions of the metasedimentary rocks were used to calculate the likely average residue mineralogies and melt fractions that would be generated by muscovite dehydration melting of the rocks. These were then used to model observed trace element compositions of the granites using published mineral/melt distribution coefficients. Model trace element melt compositions using pelitic and graywacke protoliths yield similar results. The models reproduce well the observed depletion of transition metals and Ba in the granites relative to metasedimentary protoliths. The depletion is due mainly to high proportion of biotite with variable amounts of K-feldspar in the model residue. Sr is also depleted in the granites compared to source rocks, but to a lesser relative extent than Ba. This is because of the low biotite/melt distribution coefficient for Sr and because high proportion of plagioclase in the residue is compensated by high Sr concentrations in protoliths. Rubidium, Cs and Ta behaved as slightly compatible to incompatible elements, and therefore, were not strongly fractionated during melting. Of the considered elements, only B appears to have been highly incompatible relative to residue during melting. The protoliths had sufficient B to allow tourmaline crystallization in those parts of the Harney Peak Granite in which Ti concentration was sufficiently low not to enhance crystallization of biotite. The

  14. Effects of in-situ oil-shale retorting on water quality near Rock Springs, Wyoming, Volume 1

    SciTech Connect

    Lindner-Lunsford, J.B.; Eddy, C.A.; Plafcan, M.; Lowham, H.W.

    1990-12-01

    Experimental in-situ retorting techniques (methods of extracting shale oil without mining) were used from 1969 to 1979 by the Department of Energy's (DOE) Laramie Energy Technology Center (LETC) at a test area near Rock Springs in southwestern Wyoming. The retorting experiments at site 9 have produced elevated concentrations of some contaminants in the ground water. During 1988 and 1989, the US Geological Survey, in cooperation with the US Department of Energy, conducted a site characterization study to evaluate the chemical contamination of ground water at the site. Water samples from 34 wells were analyzed; more than 70 identifiable organic compounds were detected using a combination of gas chromatography and mass spectrometry analytical methods. This report provides information that can be used to evaluate possible remedial action for the site. Remediation techniques that may be applicable include those techniques based on removing the contaminants from the aquifer and those based on immobilizing the contaminants. Before a technique is selected, the risks associated with the remedial action (including the no-action alternative) need to be assessed, and the criteria to be used for decisions regarding aquifer restoration need to be defined. 31 refs., 23 figs., 9 tabs.

  15. Ni distribution in MORB-source-mantle pyroxenites: Traces of melt-rock reaction on a cm-scale

    NASA Astrophysics Data System (ADS)

    Sergeev, D.; Dijkstra, A.; Pettke, T.

    2010-12-01

    Introduction The origin of pyroxenites in mantle peridotites is widely discussed as they represent the most important observed lithological inhomogeneity in the upper mantle. We have studied a case of such mantle heterogeneity, consisting of 1-10 cm thick concordant layers of websteritic pyroxenites within residual MORB-source mantle peridotites, in the Jurassic Pindos Ophiolite (N. Greece). Here we report Ni concentrations in minerals in pyroxenites and we compare them with those in the enclosing peridotites We use this data to test whether these pyroxenite layers are cumulate veins, or the product of melt-rock reactions. Results Ni concentrations analysed by Laser ablation ICP-MS on single olivine grains in thick sections show values for the wall-rock peridotites 2580-3480 μg/g, while 2825-3815 μg/g are measured in pyroxenites layers. We consistently observe higher Ni concentrations (10-20%) in pyroxenites compared to peridotites and we observe the same trend in thick sections containing peridotite and pyroxenite parts. The highest Ni concentrations, up to 4145 μg/g, are found in olivine inclusions - older grains surrounded by newly formed orthopyroxene in pyroxenites. Similar elevated Ni concentrations are also characteristic for single orthopyroxene and clinopyroxene grains in pyroxenites compared to peridotites. Intermediate values are typical for transition zones, as there is no strict contact line on the thick section scale between peridotite and pyroxenite. Discussion The data is consistent with a melt-rock reaction origin for the pyroxenites. Melt-rock reaction in the upper mantle between peridotites and SiO2-rich melts would not significantly lower the whole-rock Ni concentration in the newly-formed hybrid rock (pyroxenites). The transformation of olivine to orthopyroxene would strongly concentrate Ni in the remaining olivine and would also enrich other minerals (Sobolev et al. 2007). This interpretation is fully supported by petrographical

  16. Forensic source differentiation of petrogenic, pyrogenic, and biogenic hydrocarbons in Canadian oil sands environmental samples.

    PubMed

    Wang, Zhendi; Yang, C; Parrott, J L; Frank, R A; Yang, Z; Brown, C E; Hollebone, B P; Landriault, M; Fieldhouse, B; Liu, Y; Zhang, G; Hewitt, L M

    2014-04-30

    To facilitate monitoring efforts, a forensic chemical fingerprinting methodology has been applied to characterize and differentiate pyrogenic (combustion derived) and biogenic (organism derived) hydrocarbons from petrogenic (petroleum derived) hydrocarbons in environmental samples from the Canadian oil sands region. Between 2009 and 2012, hundreds of oil sands environmental samples including water (snowmelt water, river water, and tailings pond water) and sediments (from river beds and tailings ponds) have been analyzed. These samples were taken from sites where assessments of wild fish health, invertebrate communities, toxicology and detailed chemistry are being conducted as part of the Canada-Alberta Joint Oil Sands Monitoring Plan (JOSMP). This study describes the distribution patterns and potential sources of PAHs from these integrated JOSMP study sites, and findings will be linked to responses in laboratory bioassays and in wild organisms collected from these same sites. It was determined that hydrocarbons in Athabasca River sediments and waters were most likely from four sources: (1) petrogenic heavy oil sands bitumen; (2) biogenic compounds; (3) petrogenic hydrocarbons of other lighter fuel oils; and (4) pyrogenic PAHs. PAHs and biomarkers detected in snowmelt water samples collected near mining operations imply that these materials are derived from oil sands particulates (from open pit mines, stacks and coke piles). Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Populus seed fibers as a natural source for production of oil super absorbents.

    PubMed

    Likon, Marko; Remškar, Maja; Ducman, Vilma; Švegl, Franc

    2013-01-15

    The genus Populus, which includes poplars, cottonwoods and aspen trees, represents a huge natural source of fibers with exceptional physical properties. In this study, the oil absorption properties of poplar seed hair fibers obtained from Populus nigra italica when tested with high-density motor oil and diesel fuel are reported. Poplar seed hair fibers are hollow hydrophobic microtubes with an external diameter between 3 and 12 μm, an average length of 4±1 mm and average tube wall thickness of 400±100 nm. The solid skeleton of the hollow fibers consists of lignocellulosic material coated by a hydrophobic waxy coating. The exceptional chemical, physical and microstructural properties of poplar seed hair fibers enable super-absorbent behavior with high absorption capacity for heavy motor oil and diesel fuel. The absorption values of 182-211 g heavy oil/g fiber and 55-60 g heavy oil/g fiber for packing densities of 0.005 g/cm(3) and 0.02 g/cm(3), respectively, surpass all known natural absorbents. Thus, poplar seed hair fibers obtained from Populus nigra italica and other trees of the genus Populus are an extremely promising natural source for the production of oil super absorbents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Petrogenesis and geological history of a uranium source rock: a case study in northeastern Washington, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Burruss, R.C.

    1991-01-01

    A small (4 km2) drainage basin in northeastern Washington contains highly uraniferous groundwater and highly uraniferous peaty sediments of Holocene age. The U is derived from granitic bedrock that underlies the entire drainage basin and that contains 9-16 ppm U. This local bedrock was studied by petrographic, chemical and isotopic methods to determine conditions of its petrogenesis and post-emplacement history that may have contributed to its present high U content and source-rock capability. The original magma was derived by anatexis of Precambrian continental crust of probable mixed metaigneous and metasedimentary character. Mineral-melt partitioning controlled the enrichment of U in chemically evolved phases of the crystallizing melt. Following emplacement in the upper crust at ???100 Ma, the pluton interacted with meteoric-hydrothermal water at ambient temperatures >300??C. Locally intense fracturing promoted alteration, and fracturing and alteration probably continued during later regional uplift in the Eocene. Regional uplift was followed by low-temperature alteration and weathering in the middle to late Tertiary. The combined result of hydrothermal alteration and low-temperature alteration and weathering was the redistribution of U from primary mineral hosts such as allanite to new sites on fracture surfaces and in secondary minerals such as hematite. Zones of highly fractured and altered rock show the most obvious evidence of this process. A model is proposed in which high-angle fractures beneath the drainage basin were the sites of Tertiary supergene enrichments of U. Recent glacio-isostatic uplift has elevated these older enriched zones to shallow levels where they are now being leached by oxidizing groundwater. The chemistry, mineralogy, texture and geological history of this U source-rock suggest criteria for locating other granitic terrane that may contain uraniferous waters and associated young surficial U deposits. The details of U distribution and

  19. Assessment of Hydro-Mechanical Behavior of a Granite Rock Mass for a Pilot Underground Crude Oil Storage Facility in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Li, Shucai; Qiao, Liping

    2015-11-01

    The hydro-mechanical behavior of a pilot underground crude oil storage facility in a granite host rock in China was analyzed using the finite element method (FEM). Characterization of hydro-mechanical behavior of the rock mass was performed using laboratory test, field monitoring, back analysis of field measurements and permeability tests. FEM numerical analyses were used to assess the hydro-mechanical behavior of the granite to study several design and construction issues. The containment properties of the storage facility were investigated without and with the water curtain system. Results showed that the stored oil would leak into rock mass if a water curtain system is not provided, whereas the containment property of the facility will be maintained when a water curtain system is in place. On the influence of cavern excavation sequence, it was indicated that the excavation of the caverns from left to right is a better choice than right to left for the containment property of the facility. On the influence of permeable condition, it was found that the extent of plastic zones, horizontal convergence and crown settlement under permeable condition are lower than those under impermeable condition due to the different stress paths in the rock mass experienced during excavation.

  20. The source of oil pollution on the east frisian islands in october 1989 — an exemplary case

    NASA Astrophysics Data System (ADS)

    Dahlmann, Gerhard; Müller-Navarra, Sylvin

    1997-03-01

    In October 1989, extensive oil pollution of unknown origin was detected on the islands of Nordemey, Baltrum, Langeoog, Spiekeroog and Wangerooge (East Frisian islands; “Ostfriesische Inseln”). This report describes the investigations made to trace the source of pollution. Two methods were used: simulation of the drift of oil spills by a computer-aided model and oil identification by chemical analysis. Although the report does not conceal the difficulties encountered during the investigations, it becomes obvious that the chances of tracing oil pollution sources are quite good. Those responsible for transporting oil at sea should be made aware of this.

  1. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  2. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    USGS Publications Warehouse

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    .5 ppt), are chemically wetter (C1/C1-5 values range from 0.85 to 0.95), and contain less CO2 (< 2%). These gases are interpreted to have been derived from type III kerogen dispersed in marine shales of the underlying Lewis Shale and nonmarine shales of the Fruitland Formation. In the underlying Upper Cretaceous Dakota Sandstone and Tocito Sandstone Lentil of the Mancos Shale, another gas type is produced. This gas is associated with oil at intermediate stages of thermal maturity and is isotopically lighter and chemically wetter at the intermediate stage of thermal maturity as compared with gases derived from dispersed type III kerogen and coal; this gas type is interpreted to have been generated from type II kerogen. Organic matter contained in coal beds and carbonaceous shales of the Fruitland Formation has hydrogen indexes from Rock-Eval pyrolysis between 100 and 350, and atomic H:C ratios between 0.8 and 1.2. Oxygen indexes and atomic O:C values are less than 24 and 0.3, respectively. Extractable hydrocarbon yields are as high as 7,000 ppm. These values indicate that the coal beds and carbonaceous shales have good potential for the generation of liquid hydrocarbons. Voids in the coal filled with a fluorescent material that is probably bitumen is evidence that liquid hydrocarbon generation has taken place. Preliminary oil-source rock correlations based on gas chromatography and stable carbon isotope ratios of C15+ hydrocarbons indicate that the coals and (or) carbonaceous shales in the Fruitland Formation may be the source of minor amounts of condensate produced from the coal beds at relatively low levelsof thermal maturity (Rm=0.7). ?? 1989.

  3. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    PubMed Central

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  4. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    PubMed

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m(-1), with the critical micelle concentration (CMC) of 56 mg L(-1). FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  5. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-09-27

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to the borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.

  6. Potential of Jatropha curcas as a source of renewable oil and animal feed.

    PubMed

    King, Andrew J; He, Wei; Cuevas, Jesús A; Freudenberger, Mark; Ramiaramanana, Danièle; Graham, Ian A

    2009-01-01

    Jatropha curcas (L.) is a perennial plant of the spurge family (Euphorbiaceae). Recently, it has received much attention as a potential source of vegetable oil as a replacement for petroleum, and, in particular, the production of biodiesel. Despite the interest that is being shown in the large-scale cultivation of J. curcas, genetic resources remain poorly characterized and conserved and there has been very little plant breeding for improved traits. At present, the varieties being used to establish plantations in Africa and Asia are inedible. The meal obtained after the extraction of oil cannot, therefore, be used as a source of animal feed. Naturally existing edible varieties are, however, known to occur in Mexico. The toxic components of J. curcas seeds, the potential for plant breeding to generate improved varieties, and the suitability of J. curcas oil as a feedstock for biodiesel production are discussed.

  7. Identification of source of a marine oil-spill using geochemical and chemometric techniques.

    PubMed

    Lobão, Marcio M; Cardoso, Jari N; Mello, Marcio R; Brooks, Paul W; Lopes, Claudio C; Lopes, Rosangela S C

    2010-12-01

    The current work aimed to identify the source of an oil spill off the coast of Maranhão, Brazil, in September 2005 and effect a preliminary geochemical survey of this environment. A combination of bulk analytical parameters, such as carbon isotope (δ(13)C) and Ni/V ratios, and conventional fingerprinting methods (High Resolution Gas Chromatography and Mass Spectrometry) were used. The use of bulk methods greatly speeded source identification for this relatively unaltered spill: identification of the likely source was possible at this stage. Subsequent fingerprinting of biomarker distributions supported source assignment, pointing to a non-Brazilian oil. Steranes proved the most useful biomarkers for sample correlation in this work. Distribution patterns of environmentally more resilient compound types, such as certain aromatic structures, proved inconclusive for correlation, probably in view of their presence in the background.

  8. Field studies on two rock phosphate solubilizing actinomycete isolates as biofertilizer sources

    NASA Astrophysics Data System (ADS)

    Mba, Caroline C.

    1994-03-01

    Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.

  9. Long-term field evaluation of the changes in fruit and olive oil chemical compositions after agronomic application of olive mill wastewater with rock phosphate.

    PubMed

    Tekaya, Meriem; El-Gharbi, Sinda; Chehab, Hechmi; Attia, Faouzi; Hammami, Mohamed; Mechri, Beligh

    2018-01-15

    The objectives of this study were to determine the long-term effects of agronomic application of olive mill wastewater (OMW) with rock phosphate (RP) in a field of olive trees, on olive fruits and oil quality. The results revealed that olive fruits of OMW-RP amended plants had higher contents of polyphenols and mannitol indicating that agronomic application of OMW with RP generated an oxidative stress. Land spreading of OMW with RP altered the relative proportions of individual sugars in leaves and fruits. Consequently, the oil content decreased significantly, and a marked decrease in the contents of carotenoids and chlorophylls was also observed. Changes also took place in the composition of fatty acids, particularly by the increase of linoleic acid and the decrease of oleic acid. Our results suggested that the use of OMW in combination with RP is expected to have a major negative impact on olive fruit and oil quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects Of Nutrient Source And Supply On Crude Oil Biodegradation In Continuous-Flow Beach Microcosms

    EPA Science Inventory

    Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...

  11. Effects Of Nutrient Source And Supply On Crude Oil Biodegradation In Continuous-Flow Beach Microcosms

    EPA Science Inventory

    Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...

  12. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional

  13. Organic and inorganic analyses of water samples from in-situ oil-shale retorting site near Rock Springs, Wyoming, 1989

    SciTech Connect

    Eddy, C.A.; Lindner-Lunsford, J.B.; Wallace, J.C.; Wilson, K.E.

    1990-12-01

    During the oil shortage of the 1970's, the US Department of Energy (DOE) conducted experiments to test in-situ methods of oil recovery from the large reserves of oil shale in Colorado, Wyoming, and Utah. The in-situ experiments involved different methods of fracturing the oil-shale formation and various techniques for igniting the retort chamber to extract the shale oil. These processes produced, along with the oil, a variety of organic and inorganic by-products, some of which have not been removed. On May 25, 1988, the Wyoming Department of Environmental Quality issued a notice of violation to DOE. DOE was ordered to perform a site characterization of one experimental area (site 9) near Rock Springs in southwestern Wyoming. The US Geological Survey, in cooperation with DOE, performed a site characterization as the first step in attempting to restore the ground water to its original condition. The results of that study are reported by Lindner-Lunsford and others (1991); the present volume contains copies of the original analyses of water samples collected from 37 wells for that study. 1 ref.

  14. Age and Sr isotopic composition of volcanic rocks in the Maricunga Belt, Chile: implications for magma sources

    USGS Publications Warehouse

    McKee, E.H.; Robinson, A.C.; Rybuta, J.J.; Cuitino, L.; Moscoso, R.D.

    1994-01-01

    K-Ar and 40Ar/39Ar dating of volcanic rocks from the Maricunga belt of north-central Chile indicate that igneous activity took place throughout most of Miocene time at various places in the 150 by 30 km belt. No migration patterns of volcanism appear in the Miocene rocks of the belt. Volcanic activity ceased by the end of the Miocene. All the Miocene volcanic rocks studied are calcic andesites to dacites with about 62% SiO2, 18% A12O3, 4% Fe2O3 (total), and 2% K2O. Initial 87Sr/86Sr (Sri) values fall into two groups, one of lower values around 0.7050 to the west and the other of higher values around 0.7060 to the east. It is postulated that the two Sri groups reflect two adjoining coherent lower-crustal magma sources of possibly different age and subtly different composition that form part of the western edge of the South American craton. ?? 1994.

  15. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks

    USGS Publications Warehouse

    Piper, D.Z.

    1994-01-01

    Many of the minor elements in seawater today have a concentration-depth profile similar to that of the biologically essential nutrients, NO-3 and PO3-4. They show a relative depletion in the photic zone and enrichment in the deep ocean. The difference between their surface- and deep-ocean values, normalized to the change in PO3-4, approaches the average of measured minor-element: P ratios in marine plankton, although individual analyses of the latter show extreme scatter for a variety of reasons. Despite this scatter in the minor-element analyses of plankton, agreement between the two sets of data shows unequivocally that an important marine flux of many minor elements through the ocean is in the form of biogenic matter, with a composition approaching that of plankton. This interpretation is further supported by sediment studies, particularly of sediments which accumulate in shelf-slope environments where biological productivity in the photic zone is exceptionally high and organic carbon contents of the underlying sediment elevated. The interelement relations observed for some of these sediments approach the average values of plankton. These same interelement relations are observed in many marine sedimentary rocks such as metalliferous black shales and phosphorites, rocks which have a high content of marine fractions (e.g., organic matter, apatite, biogenic silica and carbonates). Many previous studies of the geochemistry of these rocks have concluded that local hydrothermal activity, and/or seawater with an elemental content different from that of the modern ocean, was required to account for their minor-element contents. However, the similarity in several of the minor-element ratios in many of these formations to minor-element ratios in modern plankton demonstrates that these sedimentary rocks accumulated in environments whose marine chemistry was virtually identical to that seen on continental shelf-slopes, or in marginal seas, of the ocean today. The

  16. Simulation of the fluorescence evolution of “live” oils from kerogens in a diamond anvil cell: Application to inclusion oils in terms of maturity and source

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Ju; Huang, Wuu-Liang

    2008-08-01

    The evolution of fluorescence has been measured for "live" oils generated from 14 oil-prone kerogens or coals from varying depositional environments during closed system pyrolysis in a diamond anvil cell at three heating rates (3, 8, and 25 °C/min), and temperatures up to 600 °C. The measured fluorescence intensities of the samples, employing using violet excitation at 405 nm, increases significantly during maturation intervals within the oil window, while the fluorescence spectra of oils generated from all studied kerogens exhibit progressive blue-shift of peak wavelengths ( λmax) and red/green quotients ( I650/ I500) upon increasing maturity. The observed trend is consistent with a maturity dependence of the spectral shift, which is widely recognized in natural hydrocarbon inclusions and crude oils using ultraviolet (UV) excitation (365 nm). The data presented herein suggest that the λmax of spectra for inclusion oils shift in similar direction despite differences in composition or source kerogen. This implies that the reverse or anomalous trends reported for inclusion oils in nature may be attributed to other processes, which significantly alters the fluorescence properties of oils subsequent to their generation. Oils with the similar color ( λmax or I650/ I500) can be derived from diverse kerogens with maturities that vary by ±0.3% Ro, suggesting that the fluorescent colors of crude and inclusion oils are both maturity- and source-dependent, and therefore cannot be used as universal maturity indicators. In addition, the blue-shifts observed for cumulative oils generated from all kerogens approaches similar minima λmax values around the green-yellow wavelength (564 nm) and at I650/ I500 values around 0.6, at maturities close to the middle or late stage of oil generation. This suggests that most late-stage cumulative oils will exhibit similar colors. Oils generated during late-stage maturity intervals, however, can exhibit colors with shorter wavelengths.

  17. DHA-Containing Oilseed: A Timely Solution for the Sustainability Issues Surrounding Fish Oil Sources of the Health-Benefitting Long-Chain Omega-3 Oils

    PubMed Central

    Kitessa, Soressa M.; Abeywardena, Mahinda; Wijesundera, Chakra; Nichols, Peter D.

    2014-01-01

    Benefits of long-chain (≥C20) omega-3 oils (LC omega-3 oils) for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA. PMID:24858407

  18. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. II: Molecular composition of alkylated naphthalenes, phenanthrenes, benzo- and dibenzothiophenes

    NASA Astrophysics Data System (ADS)

    Leythaeuser, D.; Radke, M.; Willsch, H.

    1988-12-01

    Variations with depth in the quantitative distributions of di- and tricyclic alkylaromatic hydrocarbons and sulfur heterocycles determined for a total of thirty-two core samples from two thick shale intervals and thirteen thin interbedded shale layers of the Upper Jurassic-age Kimmeridge Clay formation, Brae field area, North Sea, reveal, in part, the effects of depletion with hydrocarbon expulsion. Trends of increasing depletion with approach to the nearest shale-sandstone contacts, as documented by a decrease in carbon-normalized yields, are more distinctive for the alkylnaphthalenes as compared to the alkylphenanthrenes and alkyldibenzothiophenes, but less drastic than previously observed for long-chain alkanes ( cf. Part I: LEYTHAEUSERet al., 1988). Lowest yields consistently were encountered at the outermost 1-2 metres of the thick shale intervals and for the thin shale layers where the relative expulsion efficiencies were much higher for C 15 to C 30n-alkanes (80-95%) than for C 2 and C 3 alkylnaphthalenes (30-40%). In contrast, C 2 and C 3 alkylbenzothiophene yields were higher in these shale portions than further inside the thick shale which is interpreted to result from a post-expulsion selective replenishment from the adjacent oil accumulation. Expulsion was not associated with any detectable fractionation among C 1 and C 3 alkylnaphthalenes or C 1 and C 2 alkylphenanthrenes, as evidenced by a mass-balance approach and concentration ratios of individual alkylaromatic isomers commonly used as maturity indicators. Based on a reconstruction of the quantitative distributions of aromatic hydrocarbons and sulfur aromatics expelled from thin shale layers from early-mature through to mature stages of thermal evolution, it was verified that the Methylphenanthrene Index (MPI 1) and methyldibenzothiophene ratio (MDR) of the expelled oil reflects the average of the maturity levels during which the source rock has expelled petroleum.

  19. Withdrawal of Source Determinations for Oil and Gas Industries

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  20. PSD Source Classification for Safety Kleen's Lubricating Oil Recovery Facility

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  1. A Transgenic Camelina sativa Seed Oil Effectively Replaces Fish Oil as a Dietary Source of Eicosapentaenoic Acid in Mice123

    PubMed Central

    Tejera, Noemi; Vauzour, David; Betancor, Monica B; Sayanova, Olga; Usher, Sarah; Cochard, Marianne; Rigby, Neil; Ruiz-Lopez, Noemi; Menoyo, David; Tocher, Douglas R; Napier, Johnathan A; Minihane, Anne Marie

    2016-01-01

    Background: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative sustainable sources are needed. Objective: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO) to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals. Methods: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil–containing control (C) diet or diets supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved in EPA and DHA biosynthesis and in modulating their cellular impact was determined. Results: The oils were well tolerated, with significantly greater weight gain in the COH and FOH groups relative to the C group (P < 0.001). Significantly lower (36–38%) blood glucose concentrations were evident in the FOH and COH mice relative to C mice (P < 0.01). Hepatic EPA concentrations were higher in all EPA groups relative to the C group (P < 0.001), with concentrations of 0.0, 0.4, 2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOH groups, respectively. Comparable dose-independent enrichments of liver DHA were observed in mice fed CO and FO diets (P < 0.001). Relative to the C group, lower fatty acid desaturase 1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome proliferator–activated receptor α (Ppara), and peroxisome proliferator–activated receptor γ (Pparg) (P < 0.005) expressions were induced by CO. No impact of treatment on liver X receptor

  2. Geochemical characterization of Lucaogou Formation and its correlation of tight oil accumulation in Jimsar Sag of Junggar Basin, Northwestern China.

    PubMed

    Qu, Jiangxiu; Ding, Xiujian; Zha, Ming; Chen, Hong; Gao, Changhai; Wang, Zimeng

    2017-01-01

    With the constant consumption of conventional oil and gas resources, unconventional oil and gas resources with great resource potential such as tight oil have gradually been valued and become the new exploration area. Jimsar Sag is the key tight oil exploration and development block in Junggar Basin of Northwestern China. Based on the data sets of geology, oil production test, logging, rock thin section, and geochemistry of Permian Lucaogou Formation (LCG), we studied the geochemical characteristics of hydrocarbon source rocks and their relation to the tight oil accumulation. Organic matter abundance of source rocks is high, the types of organic matter are mainly type I and type II, and the organic matter maturation is in the low mature stage to mature stage. Results of oil source correlation showed that the crude oil of sweet spots was mainly derived from the source rocks in the interior of the sweet spots. The LCG tight oil is mainly distributed in the plane where the source rocks have great thickness and the TOC is higher than 3.5%. It shows that the source rocks have obvious controlling on the occurrence and accumulation of tight oil.

  3. Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy).

    PubMed

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-05-01

    The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations.

  4. Overview of high-temperature batteries for geothermal and oil/gas borehole power sources

    NASA Astrophysics Data System (ADS)

    Guidotti, Ronald A.; Reinhardt, Frederick W.; Odinek, Judy

    Batteries currently used as power supplies for measurement while drilling (MWD) equipment in boreholes for oil and gas exploration use a modified lithium/thionyl chloride technology. These batteries are limited to operating temperatures below 200 °C. At higher temperatures, the batteries and the associated electronics must be protected by a dewar. Sandia National Laboratories has been actively engaged in developing suitable alternative technologies for geothermal and oil/gas borehole power sources that are based on both ionic liquid and solid-state electrolytes. In this paper, we present the results of our studies to date and the directions of future efforts.

  5. Use of ultrasonic array method for positioning multiple partial discharge sources in transformer oil.

    PubMed

    Xie, Qing; Tao, Junhan; Wang, Yongqiang; Geng, Jianghai; Cheng, Shuyi; Lü, Fangcheng

    2014-08-01

    Fast and accurate positioning of partial discharge (PD) sources in transformer oil is very important for the safe, stable operation of power systems because it allows timely elimination of insulation faults. There is usually more than one PD source once an insulation fault occurs in the transformer oil. This study, which has both theoretical and practical significance, proposes a method of identifying multiple PD sources in the transformer oil. The method combines the two-sided correlation transformation algorithm in the broadband signal focusing and the modified Gerschgorin disk estimator. The method of classification of multiple signals is used to determine the directions of arrival of signals from multiple PD sources. The ultrasonic array positioning method is based on the multi-platform direction finding and the global optimization searching. Both the 4 × 4 square planar ultrasonic sensor array and the ultrasonic array detection platform are built to test the method of identifying and positioning multiple PD sources. The obtained results verify the validity and the engineering practicability of this method.

  6. The use of predictive lithostratigraphy to significantly improve the ability to forecast reservoir and source rocks? Final CRADA report.

    SciTech Connect

    Doctor, R. D.; Moore, T. L.; Energy Systems

    2010-06-29

    The purpose of this CRADA, which ended in 2003, was to make reservoir and source rock distribution significantly more predictable by quantifying the fundamental controls on stratigraphic heterogeneity. To do this, the relationships among insolation, climate, sediment supply, glacioeustasy, and reservoir and source rock occurrence were investigated in detail. Work current at the inception of the CRADA had uncovered previously unrecognized associations among these processes and properties that produce a phenomenon that, when properly analyzed, will make lithostratigraphic variability (including texture, porosity, and permeability) substantially more understandable. Computer climate simulations of selected time periods, compared with the global distribution of paleoclimatic indicators, documented spatial and temporal climate changes as a function of insolation and provided quantitative changes in runoff, lake level, and glacioeustasy. The effect of elevation and climate on sediment yield was assessed numerically by analyzing digital terrain and climate data. The phase relationships of climate, yield, and glacioeustatic cycles from the Gulf of Mexico and/or other sedimentary basins were assessed by using lacunarity, a statistical technique.

  7. Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi.

    PubMed

    Gonçalves, Vívian N; Oliveira, Fabio S; Carvalho, Camila R; Schaefer, Carlos E G R; Rosa, Carlos A; Rosa, Luiz H

    2017-06-28

    We assessed the diversity of culturable fungi associated with rocks of continental Antarctica to evaluate their physiological opportunistic virulence potential in vitro. The seventy fungal isolates obtained were identified as nine species of Acremonium, Byssochlamys, Cladosporium, Debaryomyces, Penicillium, and Rhodotorula. Acremonium sp., D. hansenii, P. chrysogenum, P. citrinum, P. tardochrysogenum, and R. mucilaginosa were able to grow at 37 °C; in addition, B. spectabilis displayed a high level of growth at 37 and 45 °C. Thirty-one isolates of P. chrysogenum, P. citrinum, and P. tardochrysogenum were able to produce partial haemolysis on blood agar at 37 °C. Acremonium sp., P. citrinum, and P. tardochrysogenum showed spore sizes ranging from 2.81 to 5.13 µm diameters at 37 °C. Of these, P. chrysogenum and P. tardochrysogenum displayed macro- and micro morphological polymorphism. Our results suggest that rocks of the ultra-extreme cold and dry environment of Antarctica harbour cryptic fungi phylogenetically close to opportunistic pathogenic and mycotoxigenic taxa with physiologic virulence characteristics in vitro.

  8. Hydrocarbon transfer pathways from Smackover source rocks to younger reservoir traps in the Monroe gas field, NE Louisiana

    SciTech Connect

    Zimmerman, R.K. )

    1993-09-01

    The Monroe gas field contained more than 7 tcf of gas in its virgin state. Much of the original gas reserves have been produced through wells penetrating the Upper Cretaceous Monroe Gas Rock Formation reservoir. Other secondary reservoirs in the field area are Eocene Wilcox, the Upper Cretaceous Arkadelphia, Nacatoch, Ozan, Lower Cretaceous, Hosston, Jurassic Schuler, and Smackover. As producing zones, these secondary producing zones reservoirs have contributed an insignificant amount gas to the field. The source of much of this gas appears to have been in the lower part of the Jurassic Smackover Formation. Maturation and migration of the hydrocarbons from a Smackover source into Upper Cretaceous traps was enhanced and helped by igneous activity, and wrench faults/unconformity conduits, respectively. are present in the pre-Paleocene section. Hydrocarbon transfer pathways appear to be more vertically direct in the Jurassic and Lower Cretaceous section than the complex pattern present in the Upper Cretaceous section.

  9. System