Science.gov

Sample records for oil structured lipid

  1. Structure of some intact lipids of petrel stomach oils.

    PubMed

    Watts, R; Warham, J

    1976-06-01

    The stomach or proventricular oils from 16 species of petrel have been analyzed and the carbon number distributions of the wax esters, triglycerides, and diacylglyceryl ethers are reported. The wax esters have been fractionated further into less and more polar species. To determine whether any intermolecular specificity existed, carbon number distributions for each lipid class were calculated, assuming random esterifications. The tirglyceride and diacylglyceryl ether compositions observed were all found to aggree closely with those calculated. The wax esters from three petrel species were found to have greater proportions of the middle range species with carbon numbers 34-38 than calculated. However, most of the lipids examined had random structures which have been found to be characteristic of marine sources. The results in general support the belief that the oils are derived directly from dietary sources rather than synthesis by the proventricular glands.

  2. Characterization of a rice bran oil structured lipid.

    PubMed

    Jennings, Brenda H; Akoh, Casimir C

    2009-04-22

    Rice bran oil (RBO) was enzymatically modified in a continuous packed bed bioreactor to incorporate caprylic acid with Lipozyme RM IM as biocatalyst. The reaction product was purified by short-path distillation. Rice bran oil structured lipid (RBOSL) contained 32.1 mol % caprylic acid. Positional analysis revealed 0.7 mol % caprylic acid at the sn-2 position and 47.8 mol % caprylic acid at the sn-1,3 positions. Composition of free fatty acids and smoke point of RBO and RBOSL were not significantly different. Saponification value, iodine value, and viscosity of RBO were significantly different from those of RBOSL. The color of RBOSL was darker, more yellow and less green than RBO. Volatile compounds in RBO and RBOSL were determined by GC-MS. Melting onset temperatures of RBO and RBOSL were not significantly different, while melting end point temperatures and melting enthalpies were significantly different. This characterization study results will help determine potential food applications of RBOSL.

  3. Effect of emulsifier on oxidation properties of fish oil-based structured lipid emulsions.

    PubMed

    Fomuso, Lydia B; Corredig, Milena; Akoh, Casimir C

    2002-05-08

    The effects of the emulsifiers lecithin, Tween 20, whey protein isolate, mono-/diacylglycerols, and sucrose fatty acid ester on oxidation stability of a model oil-in-water emulsion prepared with enzymatically synthesized menhaden oil-caprylic acid structured lipid were evaluated. Oxidation was monitored by measuring lipid hydroperoxides, thiobarbituric acid reactive substances, and the ratio of combined docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents to palmitic acid in the emulsion. After high-pressure homogenization, all emulsions, except those prepared with lecithin, had similar droplet size distributions. All structured lipid emulsions, except for the lecithin-stabilized emulsions, were stable to creaming over the 48-day period studied. Emulsifier type and concentration affected oxidation rate, with 0.25% emulsifier concentration generally having a higher oxidation rate than 1% emulsifier concentration. Overall, oxidation did not progress significantly enough in 48 days of storage to affect DHA and EPA levels in the emulsion.

  4. Study of structured lipid-based oil-in-water emulsion prepared with sophorolipid and its oxidative stability

    USDA-ARS?s Scientific Manuscript database

    In this study, the stability of oil-in-water (O/W) emulsions prepared with structured lipids (SLs) were evaluated in which the SLs were produced through lipase-catalyzed interesterification between soybean oil and rice bran oil. After interesterification reaction, the major triacylglycerol (TAG) sp...

  5. Co-administration of trientine and flaxseed oil on oxidative stress, serum lipids and heart structure in diabetic rats.

    PubMed

    Rezaei, Ali; Heidarian, Esfandiar

    2013-08-01

    The administration of flaxseed oil or flaxseed oil plus trientine in diabetic rats reduced triglyceride, very low density lipoprotein, and total cholesterol. Furthermore, the combined treatment significantly increased superoxide dismutase activity and attenuated serum Cu2+. The results suggest that the administration of flaxseed oil plus trientine is useful in controlling serum lipid abnormalities, oxidative stress, restoring heart structure, and reducing serum Cu2+ in diabetic rats.

  6. Enzymatic incorporation of caffeoyl into castor oil to prepare the novel castor oil-based caffeoyl structured lipids.

    PubMed

    Sun, Shangde; Wang, Ping; Zhu, Sha

    2017-05-10

    In this work, a novel castor oil-based caffeoyl structured lipids was successfully prepared by the enzymatic transesterification using castor oil (CO) as caffeoyl acceptor. During the structured lipids preparation, two competitive reactions, the hydrolysis of CO to form hydrophilic caffeoyl glycerols (CG)+dicaffeoyl glycerols (DCG) and the transesterification of CO with ethyl caffeate (EC) to form lipophilic caffeoyl mono- and di-acylglycerols (CMAG and CDAG), were found. Reaction progress was monitored using HPLC-ESI-MS and HPLC-UV. The effects of by-product ethanol removal and reaction variables on the transesterification and reaction selectivity were evaluated. Results showed that, the activation energies for the transesterification and for the selective formations of CMAG+CDAG and CG+DCG were 57.60kJ/mol, 58.86kJ/mol, and 60.53kJ/mol, respectively. Under the optimal reaction conditions (enzyme load 23%, 90°C, 1:3 molar ratio of EC to CO, and 46.5h), EC conversion and the yield of CMAG+CDAG were 93.68±2.52% and 78.11±1.35%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species.

    PubMed Central

    Tzen, JTC.; Cao, Yz.; Laurent, P.; Ratnayake, C.; Huang, AHC.

    1993-01-01

    Oil bodies isolated from the mature seeds of rape (Brassica napus L.), mustard (Brassica juncea L.), cotton (Gossypium hirsutum L.), flax (Linus usitatis simum), maize (Zea mays L.), peanut (Arachis hypogaea L.), and sesame (Sesamum indicum L.) had average diameters that were different but within a narrow range (0.6-2.0 [mu]m), as measured from electron micrographs of serial sections. Their contents of triacylglycerols (TAG), phospholipids, and proteins (oleosins) were correlated with their sizes. The correlation fits a formula that describes a spherical particle surrounded by a shell of a monolayer of phospholipids embedded with oleosins. Oil bodies from the various species contained substantial amounts of the uncommon negatively charged phosphatidylserine and phosphatidylinositol, as well as small amounts of free fatty acids. These acidic lipids are assumed to interact with the basic amino acid residues of the oleosins on the surface of the phospholipid layer. Isoelectrofocusing revealed that the oil bodies from the various species had an isoelectric point of 5.7 to 6.6 and thus possessed a negatively charged surface at neutral pH. We conclude that seed oil bodies from diverse species are very similar in structure. In rapeseed during maturation, TAG and oleosins accumulated concomitantly. TAG-synthesizing acyltransferase activities appeared at an earlier stage and peaked during the active period of TAG accumulation. The concomitant accumulation of TAG and oleosins is similar to that reported earlier for maize and soybean, and the finding has an implication for the mode of oil body synthesis during seed maturation. PMID:12231682

  8. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy.

    PubMed

    Jores, Katja; Mehnert, Wolfgang; Drechsler, Markus; Bunjes, Heike; Johann, Christoph; Mäder, Karsten

    2004-03-05

    Recently, colloidal dispersions made from mixtures of solid and liquid lipids were described to combine controlled release characteristics with higher drug loading capacities than solid lipid nanoparticles (SLN). It has been proposed that these nanostructured lipid carriers (NLC) are composed of oily droplets which solubilize the drug and which are embedded in a solid lipid matrix. The structures of SLN and NLC based on glyceryl behenate and medium chain triglycerides were characterized by photon correlation spectroscopy (PCS) and laser diffraction (LD), field-flow fractionation (FFF) with multi-angle light scattering detection (MALS), and cryo transmission electron microscopy (cryo TEM). PCS indicates that SLN and NLC differ from a nanoemulsion with respect to Brownian motion due to asymmetric particle shapes. Non-spherical particles, in case of SLN and NLC, lead to higher polydispersity indices compared to the nanoemulsion. In FFF, the nanodroplets elute much earlier than SLN- and NLC-platelets although their PCS and LD data show similar particle sizes. In TEM platelet (for SLN), oil loaded platelet ("nanospoons"; for NLC) and droplet (for nanoemulsion) structures were observed. In contrast to literature reports, the investigated SLN appear as thin platelets. NLC are found to be lipid platelets with oil spots sticking on the surface. Very short diffusion pathways in platelets, increased water-lipid interfaces and low drug incorporation in crystalline lipids are the drawback of SLN and NLC compared to conventional nanoemulsions.

  9. Synthesis and Characterization of Canola Oil-Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application

    USDA-ARS?s Scientific Manuscript database

    Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candi...

  10. trans-Free margarines prepared with canola oil/palm stearin/palm kernel oil-based structured lipids.

    PubMed

    Kim, Byung Hee; Lumor, Stephen E; Akoh, Casimir C

    2008-09-10

    Structured lipids (SLs) for formulating trans-free margarines were synthesized by lipase-catalyzed interesterification of the blends of canola oil (CO), palm stearin (PS), and palm kernel oil (PKO) in weight ratios (CO/PS/PKO) of 40:60:0, 40:50:10, 40:40:20, 40:30:30, 50:30:20, and 60:25:15. The atherogenicity was determined using fatty acid profiles. We also determined the physical properties (melting/crystallization profiles, solid fat content, polymorphism, and microstructure) of SLs and the textural properties of margarines made with the SLs. The SLs from the 50:30:20 and 60:25:15 blends had atherogenic indices similar to or lower than those of the commercial trans (CTMF) and similar to the trans-free margarine fats (CTFMF). SLs from the blends with PKO contained a wide range of fatty acids (C6-C20) and had more beta' than beta polymorphs. Margarines made with SLs from 50:30:20 and 60:25:15 blends possessed similar hardness, adhesiveness, or cohesiveness to margarines made with CTMF and CTFMF, respectively. Therefore, CO/PS/PKO-based SLs were suitable for formulating trans-free margarines with low atherogenicity and desirable textural properties.

  11. Administration of structured lipid composed of MCT and fish oil reduces net protein catabolism in enterally fed burned rats.

    PubMed

    Teo, T C; DeMichele, S J; Selleck, K M; Babayan, V K; Blackburn, G L; Bistrian, B R

    1989-07-01

    The effects of enteral feeding with safflower oil or a structured lipid (SL) derived from 60% medium-chain triglyceride (MCT) and 40% fish oil (MCT/fish oil) on protein and energy metabolism were compared in gastrostomy-fed burned rats (30% body surface area) by measuring oxygen consumption, carbon dioxide production, nitrogen balance, total liver protein, whole-body leucine kinetics, and rectus muscle and liver protein fractional synthetic rates (FSR, %/day). Male Sprague-Dawley rats (195 +/- 5g) received 50 ml/day of an enteral regimen containing 50 kcal, 2 g amino acids, and 40% nonprotein calories as lipid for three days. Protein kinetics were estimated by using a continuous L-[1-14C] leucine infusion technique on day 2. Thermally injured rats enterally fed MCT/fish oil yielded significantly higher daily and cumulative nitrogen balances (p less than or equal to 0.025) and rectus muscle (39%) FSR (p less than or equal to 0.05) when compared with safflower oil. MCT/fish oil showed a 22% decrease (p less than or equal to 0.005) in per cent flux oxidized and a 7% (p less than or equal to 0.05) decrease in total energy expenditure (TEE) versus safflower oil. A 15% increase in liver FSR was accompanied by a significant elevation (p less than or equal to 0.025) in total liver protein with MCT/fish oil. This novel SL shares the properties of other structured lipids in that it reduces the net protein catabolic effects of burn injury, in part, by influencing tissue protein synthetic rates. The reduction in TEE is unique to MCT/fish oil and may relate to the ability of fish oil to diminish the injury response.

  12. Administration of structured lipid composed of MCT and fish oil reduces net protein catabolism in enterally fed burned rats.

    PubMed Central

    Teo, T C; DeMichele, S J; Selleck, K M; Babayan, V K; Blackburn, G L; Bistrian, B R

    1989-01-01

    The effects of enteral feeding with safflower oil or a structured lipid (SL) derived from 60% medium-chain triglyceride (MCT) and 40% fish oil (MCT/fish oil) on protein and energy metabolism were compared in gastrostomy-fed burned rats (30% body surface area) by measuring oxygen consumption, carbon dioxide production, nitrogen balance, total liver protein, whole-body leucine kinetics, and rectus muscle and liver protein fractional synthetic rates (FSR, %/day). Male Sprague-Dawley rats (195 +/- 5g) received 50 ml/day of an enteral regimen containing 50 kcal, 2 g amino acids, and 40% nonprotein calories as lipid for three days. Protein kinetics were estimated by using a continuous L-[1-14C] leucine infusion technique on day 2. Thermally injured rats enterally fed MCT/fish oil yielded significantly higher daily and cumulative nitrogen balances (p less than or equal to 0.025) and rectus muscle (39%) FSR (p less than or equal to 0.05) when compared with safflower oil. MCT/fish oil showed a 22% decrease (p less than or equal to 0.005) in per cent flux oxidized and a 7% (p less than or equal to 0.05) decrease in total energy expenditure (TEE) versus safflower oil. A 15% increase in liver FSR was accompanied by a significant elevation (p less than or equal to 0.025) in total liver protein with MCT/fish oil. This novel SL shares the properties of other structured lipids in that it reduces the net protein catabolic effects of burn injury, in part, by influencing tissue protein synthetic rates. The reduction in TEE is unique to MCT/fish oil and may relate to the ability of fish oil to diminish the injury response. PMID:2500898

  13. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases.

    PubMed

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30-50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4-10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.

  14. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil.

    PubMed

    Sun, Shangde; Zhu, Sha; Bi, Yanlan

    2014-09-01

    A novel enzymatic route of feruloylated structured lipids synthesis by the transesterification of ethyl ferulate (EF) with castor oil, in solvent-free system, was investigated. The transesterification reactions were catalysed by Novozym 435, Lipozyme RMIM, and Lipozyme TLIM, among which Novozym 435 showed the best catalysis performance. Effects of feruloyl donors, reaction variables, and ethanol removal on the transesterification were also studied. High EF conversion (∼100%) was obtained under the following conditions: enzyme load 20% (w/w, relative to the weight of substrates), reaction temperature 90 °C, substrate molar ratio 1:1 (EF/castor oil), 72 h, vacuum pressure 10 mmHg, and 200 rpm. Under these conditions, the transesterification product consisted of 62.6% lipophilic feruloylated structured lipids and 37.3% hydrophilic feruloylated lipids.

  15. Potential Use of Avocado Oil on Structured Lipids MLM-Type Production Catalysed by Commercial Immobilised Lipases

    PubMed Central

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil. PMID:25248107

  16. Influence of emulsifier structure on lipid bioaccessibility in oil-water nanoemulsions.

    PubMed

    Speranza, A; Corradini, M G; Hartman, T G; Ribnicky, D; Oren, A; Rogers, M A

    2013-07-03

    The influence of several nonionic surfactants (Tween-20, Tween-40, Tween-60, Span-20, Span-60, or Span-80) and anionic surfactants (sodium lauryl sulfate, sodium stearoyl lactylate, and sodium stearyl fumarate) showed drastic differences in the rank order of lipase activity/lipid bioaccessibility. The biophysical composition of the oil and water interface has a clear impact on the bioaccessibility of fatty acids (FA) by altering the interactions of lipase at the oil-water interface. It was found that the bioaccessibility was positively correlated with the hydrophilic/lipophilic balance (HLB) of the surfactant and inversely correlated to the surfactant aliphatic chain length. Furthermore, the induction time in the jejunum increased as the HLB value increased and decreased with increasing aliphatic chain length. The rate of lipolysis slowed in the jejunum with increasing HLB and with increasing aliphatic chain length.

  17. Lipid peroxidation of fish oils.

    PubMed

    Godwin, Angela; Prabhu, H Ramachandra

    2006-03-01

    Fish and fish oils are the richest sources of ω-3 fatty acids. However, they are susceptible to lipid peroxidation due to their high degree of unsaturation. In the present study, the level of thiobarbituric acid reactive material in various fish oils available in the market with and without added Vitamin E was determined. The peroxide levels in fish oil heated to food frying temperature of 180°C and the effect of addition of vitamin E has also been studied. The results indicate that the peroxide levels in almost all the products available in the market were abnormally high irrespective of their Vitamin E content. This might be due to the inefficient methods used for processing and storage of fish oils. Addition of vitamin E was found to have a significant effect in lowering the rate of peroxidation of fish oil during thermal stress, showing that association of antioxidants with ω-3 fatty acids lowers the rate of lipid peroxidation.

  18. Empty nano and micro-structured lipid carriers of virgin coconut oil for skin moisturisation.

    PubMed

    Noor, Norhayati Mohamed; Khan, Abid Ali; Hasham, Rosnani; Talib, Ayesha; Sarmidi, Mohamad Roji; Aziz, Ramlan; Aziz, Azila Abd

    2016-08-01

    Virgin coconut oil (VCO) is the finest grade of coconut oil, rich in phenolic content, antioxidant activity and contains medium chain triglycerides (MCTs). In this work formulation, characterisation and penetration of VCO-solid lipid particles (VCO-SLP) have been studied. VCO-SLP were prepared using ultrasonication of molten stearic acid and VCO in an aqueous solution. The electron microscopy imaging revealed that VCO-SLP were solid and spherical in shape. Ultrasonication was performed at several power intensities which resulted in particle sizes of VCO-SLP ranged from 0.608 ± 0.002 µm to 44.265 ± 1.870 µm. The particle size was directly proportional to the applied power intensity of ultrasonication. The zeta potential values of the particles were from -43.2 ± 0.28 mV to -47.5 ± 0.42 mV showing good stability. The cumulative permeation for the smallest sized VCO-SLP (0.608 µm) was 3.83 ± 0.01 µg/cm(2) whereas for larger carriers it was reduced (3.59 ± 0.02 µg/cm(2)). It is concluded that SLP have the potential to be exploited as a micro/nano scale cosmeceutical carrying vehicle for improved dermal delivery of VCO.

  19. Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions.

    PubMed

    Celus, Miete; Salvia-Trujillo, Laura; Kyomugasho, Clare; Maes, Ine; Van Loey, Ann M; Grauwet, Tara; Hendrickx, Marc E

    2018-02-15

    The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe(2+)), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Achene Structure, Development and Lipid Accumulation in Sunflower Cultivars Differing in Oil Content at Maturity

    PubMed Central

    MANTESE, ANITA I.; MEDAN, DIEGO; HALL, ANTONIO J.

    2006-01-01

    • Background and Aims Sunflower cultivars exhibit a wide range of oil content in the mature achene, but the relationship between this and the dynamics of oil deposition in the achene during grain filling is not known. Information on the progress, during the whole achene growth period, of the formation of oil bodies in the components of the achene and its relationship with variations in final oil content is also lacking. • Methods The biomass dynamics of achene components (pericarp, embryo, oil) in three cultivars of very different final oil concentration (30–56 % oil) were studied. In parallel, anatomical sections were used to follow the formation of oil and protein bodies in the embryo, and to observe pericarp anatomy. • Key Results In all cultivars, oil bodies were first observed in the embryo 6–7 daa after anthesis (daa). The per-cell number of oil bodies increased rapidly from 10–12 daa until 25–30 daa. Oil bodies were absent from the outer cell layers of young fruit and from mature pericarps. In mature embryos, the proportion of cell cross-sectional area occupied by protein bodies increased with decreasing embryo oil concentration. The sclerenchymatic layer of the mature pericarp decreased in thickness and number of cell layers from the low-oil cultivar to the high-oil cultivar. Different patterns of oil accumulation in the embryo across cultivars were also found, leading to variations in ripe embryo oil concentration. In the high-oil cultivar, the end of oil deposition coincided with cessation of embryo growth, while in the other two cultivars oil ceased to accumulate before the embryo achieved maximum weight. • Conclusions Cultivar differences in mature achene oil concentration reflect variations in pericarp proportion and thickness and mature embryo oil concentration. Cultivar differences in protein body proportion and embryo and oil mass dynamics during achene growth underlie variations in embryo oil concentration. PMID:16675608

  1. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine.

    PubMed

    Bradshaw, Heather B; Leishman, Emma

    2016-05-01

    Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.

  2. Early enteral feeding in postsurgical cancer patients. Fish oil structured lipid-based polymeric formula versus a standard polymeric formula.

    PubMed Central

    Kenler, A S; Swails, W S; Driscoll, D F; DeMichele, S J; Daley, B; Babineau, T J; Peterson, M B; Bistrian, B R

    1996-01-01

    OBJECTIVES: The authors compared the safety, gastrointestinal tolerance, and clinical efficacy of feeding an enteral diet containing a fish oil/medium-chain triglyceride structured lipid (FOSL-HN) versus an isonitrogenous, isocaloric formula (O-HN) in patients undergoing major abdominal surgery for upper gastrointestinal malignancies. SUMMARY BACKGROUND DATA: Previous studies suggest that feeding with n-3 fatty acids from fish oil can alter eicosanoid and cytokine production, yielding an improved immunocompetence and a reduced inflammatory response to injury. The use of n-3 fatty acids as a structured lipid can improve long-chain fatty acid absorption. METHODS: This prospective, blinded, randomized trial was conducted in 50 adult patients who were jejunally fed either FOSL-HN or O-HN for 7 days. Serum chemistries, hematology, urinalysis, gastrointestinal complications, liver and renal function, plasma and erythrocyte fatty acid analysis, urinary prostaglandins, and outcome parameters were measured at baseline and on day 7. Comparisons were made in 18 and 17 evaluable patients based a priori on the ability to reach a tube feeding rate of 40 mL/hour. RESULTS: Patients receiving FOSL-HN experienced no untoward side effects, significant incorporation of eicosapentaenoic acid into plasma and erythrocyte phospholipids, and a 50% decline in the total number of gastrointestinal complications and infections compared with patients given O-HN. The data strongly suggest improved liver and renal function during the postoperative period in the FOSL-HN group. CONCLUSION: Early enteral feeding with FOSL-HN was safe and well tolerated. Results suggest that the use of such a formula during the postoperative period may reduce the number of infections and gastrointestinal complications per patient, as well as improve renal and liver function through modulation of urinary prostaglandin levels. Additional clinical trials to fully quantify clinical benefits and optimize nutritional

  3. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    NASA Astrophysics Data System (ADS)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p<0.05). In contrast, G3, G4, G5 and G6 showed significant difference (p<0.05) with weight loss by 2.16 g, 10.71g, 7.27 g and 3.23 g respectively 7.27 g and 3.23 g respectively after the treatment. Biochemical analyses on the ratsplasma lipid revealed that the total blood cholesterol content of rats fed with either low

  4. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine

    PubMed Central

    Leishman, Emma

    2016-01-01

    Background Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methods Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Results Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Conclusions Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil. PMID:26565552

  5. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    PubMed Central

    2011-01-01

    Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC. PMID:21247503

  6. Tracking Structural Changes in Lipid-based Multicomponent Food Materials due to Oil Migration by Microfocus Small-Angle X-ray Scattering.

    PubMed

    Reinke, Svenja K; Roth, Stephan V; Santoro, Gonzalo; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2015-05-13

    One of the major problems in the confectionery industry is chocolate fat blooming, that is, the formation of white defects on the chocolate surface due to fat crystals. Nevertheless, the mechanism responsible for the formation of chocolate fat blooming is not fully understood yet. Chocolate blooming is often related to the migration of lipids to the surface followed by subsequent recrystallization. Here, the migration pathway of oil into a cocoa butter matrix with different dispersed particles was investigated by employing microfocus small-angle X-ray scattering and contact angle measurements. Our results showed that the chocolate powders get wet by the oil during the migration process and that the oil is migrating into the pores within seconds. Subsequently, cocoa butter is dissolved by the oil, and thus, its characteristic crystalline structure is lost. The chemical process provoked by the dissolution is also reflected by microscopical changes of the surface morphology of chocolate model samples after several hours from the addition of oil to the sample. Finally, the surface morphology was investigated before and after oil droplet exposure and compared to that of water exposure, whereby water seems to physically migrate through the particles, namely cocoa powder, sucrose, and milk powder, which dissolve in the presence of water.

  7. Rheology of Structured Oils

    NASA Astrophysics Data System (ADS)

    Kelbaliev, G. I.; Rasulov, S. R.; Rzaev, A. G.; Mustafaeva, G. R.

    2017-07-01

    Rheological models of structured oils are proposed and compared with available experimental data on oils from different deposits. It is shown that structured oils can possess properties of Bingham and power-law non-Newtonian fluids.

  8. Infrared spectroscopy used to determine effects of chia and olive oil incorporation strategies on lipid structure of reduced-fat frankfurters.

    PubMed

    Herrero, A M; Ruiz-Capillas, C; Pintado, T; Carmona, P; Jimenez-Colmenero, F

    2017-04-15

    This article reports an infrared spectroscopic study, using attenuated total reflectance (ATR-FTIR), on the structural characteristics of lipids in frankfurters as affected by different strategies to replace animal fat with chia flour and olive oil. Three incorporation strategies were considered: direct addition (FCO) and addition in a conventional emulsion (non-gelled) (FCE) or an emulsion gel using alginate as a gelling agent (FCEG). Reduced-fat (all-pork-fat) frankfurters (FP) were used as reference. Proximate composition and specific technological properties (pH, processing loss, texture) were also evaluated. FCE and FCEG frankfurters showed a shift to higher frequencies and the highest (p<0.05) half-bandwidth in the νasCH2 and νsCH2 bands. These spectroscopic results could be related to the fact that the lipid chain was more disorderly in these samples, presumably because there were more lipid interactions than in the reference frankfurter. These features of lipid structure correlated significantly with processing loss and textural behaviour.

  9. LMSD: LIPID MAPS structure database

    PubMed Central

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Brown, Alex; Dennis, Edward A.; Glass, Christopher K.; Merrill, Alfred H.; Murphy, Robert C.; Raetz, Christian R. H.; Russell, David W.; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS Structure Database (LMSD) is a relational database encompassing structures and annotations of biologically relevant lipids. Structures of lipids in the database come from four sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) computationally generated structures for appropriate lipid classes; (iv) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT and other public sources. All the lipid structures in LMSD are drawn in a consistent fashion. In addition to a classification-based retrieval of lipids, users can search LMSD using either text-based or structure-based search options. The text-based search implementation supports data retrieval by any combination of these data fields: LIPID MAPS ID, systematic or common name, mass, formula, category, main class, and subclass data fields. The structure-based search, in conjunction with optional data fields, provides the capability to perform a substructure search or exact match for the structure drawn by the user. Search results, in addition to structure and annotations, also include relevant links to external databases. The LMSD is publicly available at PMID:17098933

  10. Dietary rosemary oil alleviates heat stress-induced structural and functional damage through lipid peroxidation in the testes of growing Japanese quail.

    PubMed

    Türk, Gaffari; Çeribaşı, Ali O; Şimşek, Ülkü G; Çeribaşı, Songül; Güvenç, Mehmet; Özer Kaya, Şeyma; Çiftçi, Mehmet; Sönmez, Mustafa; Yüce, Abdurrauf; Bayrakdar, Ali; Yaman, Mine; Tonbak, Fadime

    2016-01-01

    Supplementation of natural antioxidants to diets of male poultry has been reported to be effective in reducing or completely eliminating heat stress (HS)-induced reproductive failures. In this study, the aim is to investigate whether rosemary oil (RO) has a protective effect on HS-induced damage in spermatozoa production, testicular histologic structures, apoptosis, and androgenic receptor (AR) through lipid peroxidation mechanisms in growing Japanese quail. Male chicks (n=90) at 15-days of age were assigned to two groups. The first group (n=45) was kept in a thermo-neutral (TN) room at 22°C for 24h/d. The second group (n=45) was kept in a room with a greater ambient temperature of 34°C for 8h/d (from 9:00 AM to 5:00 PM) and 22°C for 16h/d. Animals in each of these two groups were randomly assigned to three subgroups (RO groups: 0, 125, 250ppm), consisting of 15 chicks (six treatment groups in 2×3 factorial design). Each of subgroups was replicated three times with each replicate including five chicks. The HS treatment significantly reduced the testicular spermatogenic cell counts, amount of testicular Bcl-2 (anti-apoptotic marker) and amount of AR. In addition, it significantly increased testicular lipid peroxidation, Bax (apoptotic marker) immunopositive staining, and the Bax/Bcl-2 ratio in conjunction with some histopathologic damage. Dietary supplementation of RO to diets of quail where the HS treatment was imposed alleviated HS-induced almost all negative changes such as increased testicular lipid peroxidation, decreased numbers of spermatogenic cells, and decreased amounts of Bcl-2 and AR, increased ratio of Bax/Bcl-2 and some testicular histopathologic lesion. In conclusion, dietary supplementation of RO for growing male Japanese quail reared in HS environmental conditions alleviates the HS-induced structural and functional damage by providing a decrease in lipid peroxidation.

  11. Performance of structured lipids incorporating selected phenolic and ascorbic acids.

    PubMed

    Gruczynska, Eliza; Przybylski, Roman; Aladedunye, Felix

    2015-04-15

    Conditions applied during frying require antioxidant which is stable at these conditions and provides protection for frying oil and fried food. Novel structured lipids containing nutraceuticals and antioxidants were formed by enzymatic transesterification, exploring canola oil and naturally occurring antioxidants such as ascorbic and selected phenolic acids as substrates. Lipozyme RM IM lipase from Rhizomucor miehei was used as biocatalyst. Frying performance and oxidative stability of the final transesterification products were evaluated. The novel lipids showed significantly improved frying performance compared to canola oil. Oxidative stability assessment of the structured lipids showed significant improvement in resistance to oxidative deterioration compared to original canola oil. Interestingly, the presence of ascorbic acid in an acylglycerol structure protected α-tocopherol against thermal degradation, which was not observed for the phenolic acids. Developed structured lipids containing nutraceuticals and antioxidants may directly affect nutritional properties of lipids also offering nutraceutical ingredients for food formulation.

  12. Relationships between molecular structure and kinetic and thermodynamic controls in lipid systems. Part I: propensity for oil loss of saturated triacylglycerols.

    PubMed

    Bouzidi, Laziz; Omonov, Tolibjon S; Garti, Nissim; Narine, Suresh S

    2013-01-01

    Pure saturated triacylglycerols (TAGs) in canola oil were used as model systems to analyse oil loss in structured oil both from thermodynamic and kinetic perspectives. Two important parameters which effectively and predictively measure the relative propensity of a solid network to lose/hold oil were defined: (1) the rate of oil loss, K, which is a quantified representation of the kinetics of oil loss and (2) the initial amount of oil susceptible to be lost, i.e., the propensity for oil loss (POL), which is a representation of the thermodynamics of oil binding. It was found that the POL and K values do not always trend in the same fashion, suggesting that the mechanism of oil binding is complex, depending on the structurant's crystalline form locked within the oil network. The two parameters were, however, correlated to the melting and thermal behavior of the structurants, to the polymorphic structures that are obtained during the cooling process and to the habit (shape, size and morphology) of the crystalline phase in the oil. Both POL and K had a strong correlation to the oil loss.

  13. Palm olein oil produces less lipid peroxidation products than soya bean oil.

    PubMed

    Zaiton, Z; Merican, Z; Khalid, B A; Mohamed, J B; Baharom, S

    1997-06-01

    The soleus muscles of hyperthyroid rats were used to investigate the effect of palm olein oil and soya bean oil on the production of lipid peroxidation products. It was found that palm olein oil but not soya bean oil significantly decreased malonaldehyde and conjugated diene levels of the soleus muscles of hyperthyroid rats. These findings suggest that palm olein per se produces less lipid peroxidation products than soya bean oil. Such an assay method gives a composite net picture of the propensity of an oil to produce lipid peroxidation products.

  14. The Potential of Microalgae Lipids for Edible Oil Production.

    PubMed

    Huang, Yanfei; Zhang, Dongmei; Xue, Shengzhang; Wang, Meng; Cong, Wei

    2016-10-01

    The objective of this study was to evaluate the potential of oil-rich green algae, Chlorella vulgaris, Scenedesmus obliquus, and Nannochloropsis oceanica, to produce edible oil with respect to lipid and residue properties. The results showed that C. vulgaris and N. oceanica had similarly much higher lipid recovery (about 50 %) in hexane extraction than that of S. obliquus (about 25 %), and C. vulgaris had the highest content of neutral lipids among the three algae. The fatty acid compositions of neutral lipids from C. vulgaris and S. obliquus were mainly C16 and C18, resembling that of vegetable oils. ARA and EPA were the specific valuable fatty acids in lipids of N. oceanica, but the content of which was lower in neutral lipids. Phytol was identified as the major unsaponifiable component in lipids of the three algae. Combined with the evaluation of the ratios in SFA/MUFA/PUFA, (n-6):(n-3) and content of free fatty acids, lipids obtained from C. vulgaris displayed the great potential for edible oil production. Lipids of N. oceanica showed the highest antioxidant activity, and its residue contained the largest amounts of protein as well as the amino acid compositions were greatly beneficial to the health of human beings.

  15. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    PubMed

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  16. Comparative plant sphingolipidomic reveals specific lipids in seeds and oil.

    PubMed

    Tellier, Frédérique; Maia-Grondard, Alessandra; Schmitz-Afonso, Isabelle; Faure, Jean-Denis

    2014-07-01

    Plant sphingolipids are a highly diverse family of structural and signal lipids. Owing to their chemical diversity and complexity, a powerful analytical method was required to identify and quantify a large number of individual molecules with a high degree of structural accuracy. By using ultra-performance liquid chromatography with a single elution system coupled to electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) in the positive multiple reaction monitoring (MRM) mode, detailed sphingolipid composition was analyzed in various tissues of two Brassicaceae species Arabidopsis thaliana and Camelina sativa. A total of 300 molecular species were identified defining nine classes of sphingolipids, including Cers, hCers, Glcs and GIPCs. High-resolution mass spectrometry identified sphingolipids including amino- and N-acylated-GIPCs. The comparative analysis of seedling, seed and oil sphingolipids showed tissue specific distribution suggesting metabolic channeling and compartmentalization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Nanostructured lipid carriers (NLC) on the basis of Siberian pine (Pinus sibirica) seed oil.

    PubMed

    Averina, E S; Seewald, G; Müller, R H; Radnaeva, L D; Popov, D V

    2010-01-01

    Nanostructured lipid carriers (NLC) are new drug systems composed of physiological lipid materials. The possibility of including different types of lipids into the NLC structure revealed the wide prospects for using biologically active natural oils for the development of the cutaneous preparations. In this study the formulation parameters of NLC on the basis of Siberian pine seed oil were evaluated including concentration of lipids, types of surfactants and storage conditions (4 degrees C, 20 degrees C, 40 degrees C). Size distribution and storage stability of formulations produced by hot high pressure homogenisation were investigated by laser diffractometry and photon correlation spectroscopy. The NLC were characterised by their melting behaviour using differential scanning calorimetry. The obtained data indicated the high physical stability of the developed NLC formulations.

  18. Virgin coconut oil improves hepatic lipid metabolism in rats--compared with copra oil, olive oil and sunflower oil.

    PubMed

    Arunima, S; Rajamohan, T

    2012-11-01

    Effect of virgin coconut oil (VCO) on lipid levels and regulation of lipid metabolism compared with copra oil (CO), olive oil (OO), and sunflower oil (SFO) has been reported. Male Sprague-Dawley rats were fed different oils at 8% level for 45 days along with synthetic diet. Results showed that VCO feeding significantly lowered (P < 0.05) levels of total cholesterol, LDL+ VLDL cholesterol, Apo B and triglycerides in serum and tissues compared to rats fed CO, OO and SFO, while HDL-cholesterol and Apo A1 were significantly (P < 0.05) higher in serum of rats fed VCO than other groups. Hepatic lipogenesis was also down regulated in VCO fed rats, which was evident from the decreased activities of enzymes viz., HMG CoA reductase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase and malic enzyme. In addition, VCO significantly (P < 0.05) increased the activities of lipoprotein lipase, lecithin cholesterol acyl transferase and enhanced formation of bile acids. Results demonstrated hypolipidemic effect of VCO by regulating the synthesis and degradation of lipids.

  19. Alternative lipid emulsions versus pure soy oil based lipid emulsions for parenterally fed preterm infants.

    PubMed

    Kapoor, Vishal; Glover, Rebecca; Malviya, Manoj N

    2015-12-02

    The pure soybean oil based lipid emulsions (S-LE) conventionally used for parenteral nutrition (PN) in preterm infants have high polyunsaturated fatty acid (PUFA) content. The newer lipid emulsions (LE) from alternative lipid sources with reduced PUFA content may improve clinical outcomes in preterm infants. To determine the safety and efficacy of the newer alternative LE compared with the conventional S-LE for PN in preterm infants. We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG) to search the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 7), MEDLINE (1946 to 31 July 2015), EMBASE (1947 to 31 July 2015), CINAHL (1982 to 31 July 2015), Web of Science (31 July 2015), conference proceedings, trial registries (clinicaltrials.gov, controlled-trials.com, WHO's ICTRP), and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. Randomised or quasi-randomised controlled trials in preterm infants (< 37 weeks), comparing newer alternative LE with S-LE. Data collection and analysis conformed to the methods of the CNRG. We assessed the quality of evidence for important outcomes using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, in addition to reporting the conventional statistical significance of results. Fifteen studies (N = 979 infants) are included in this review. Alternative LE including medium chain triglycerides/long chain triglycerides (MCT/LCT) LE (3 studies; n = 108), MCT-olive-fish-soy oil-LE (MOFS-LE; 7 studies; n = 469), MCT-fish-soy oil-LE (MFS-LE; 1 study; n = 60), olive-soy oil-LE (OS-LE; 7 studies; n = 406), and borage-soy oil-LE (BS-LE; 1 study; n = 34) were compared with S-LE. The different LE were also considered together to compare 'all fish oil containing-LE' versus S-LE (7 studies; n = 499) and 'all alternative LE' versus S-LE (15 studies; n = 979). Some studies had multiple intervention arms and were included in

  20. Lipid classification, structures and tools☆

    PubMed Central

    Fahy, Eoin; Cotter, Dawn; Sud, Manish; Subramaniam, Shankar

    2012-01-01

    The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell biology, physiology and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively involved in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinformatics infrastructure involving a clearly defined classification of lipids, a state-of-the-art database system for molecular species and experimental data and a suite of user-friendly tools to assist lipidomics researchers. Herein, we discuss a number of recent developments by the LIPID MAPS bioinformatics core in pursuit of these objectives. This article is part of a Special Issue entitled Lipodomics and Imaging Mass Spectrometry. PMID:21704189

  1. Seed structure characteristics to form ultrahigh oil content in rapeseed.

    PubMed

    Hu, Zhi-Yong; Hua, Wei; Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding.

  2. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  3. Oleaster oil positively modulates plasma lipids in humans.

    PubMed

    Belarbi, Meriem; Bendimerad, Soraya; Sour, Souad; Soualem, Zoubida; Baghdad, Choukri; Hmimed, Sara; Chemat, Farid; Visioli, Francesco

    2011-08-24

    The olive tree had been domesticated during the early Neolithic in the Near East, and more than 1000 different cultivars have been identified to date. However, examples of wild olive trees (Olea europaea oleaster) can still be found in the Mediterranean basin. Evidence of oleaster use for oil production can be found in historical and sacred texts, such as the Odyssey, the Holey Koran, and the Holey Bible. While the nutritional and healthful properties of olive oil are actively being explored, there are no data on the human actions of oleaster oil. Therefore, we investigated the effect of prolonged, i.e., 1 month, consumption of oleaster oil on the lipid profile of a 40 healthy Algerian subjects (aged 27.9 ± 3.85 years), as compared to nonconsumers from the same area. Plasma urea, creatinine, and uric acid concentrations and glycemia did not significantly differ, at the end of the study, between controls and oleaster-oil-supplemented subjects. Conversely, we recorded significant decreases of plasma triglyceride concentration (-24.8%; p < 0.05), total cholesterol (-12.13%; p < 0.05), and low-density lipoprotein-cholesterol (LDL-C) (-24.39%; p < 0.05) in oleaster-oil-treated subjects. Concomitantly, high-density lipoprotein-cholesterol (HDL-C) concentrations were significantly increased (17.94%; p < 0.05) by oleaster oil administration. In conclusion, we show that oil obtained from feral olive trees, i.e., oleasters, improves the plasma lipid profile of healthy volunteers.

  4. Intravenous fish oil lipid emulsion promotes a shift toward anti-inflammatory proresolving lipid mediators

    PubMed Central

    Kalish, Brian T.; Le, Hau D.; Fitzgerald, Jonathan M.; Wang, Samantha; Seamon, Kyle; Gura, Kathleen M.; Gronert, Karsten

    2013-01-01

    Parenteral nutrition (PN)-associated liver disease (PNALD) is a life-threatening complication of the administration of PN. The development of PNALD may be partly due to the composition of the lipid emulsion administered with PN: soybean oil-based lipid emulsions (SOLE) are associated with liver disease, while fish oil-based lipid emulsions (FOLE) are associated with prevention and improvement of liver disease. The objective of this study was to determine how the choice of lipid emulsion modified the production of bioactive lipid mediators (LMs). We utilized a mouse model of steatosis to study the differential effect of FOLE and SOLE. We subsequently validated these results in serum samples from a small cohort of human infants transitioning from SOLE to FOLE. In mice, FOLE was associated with production of anti-inflammatory, proresolving LMs; SOLE was associated with increased production of inflammatory LMs. In human infants, the transition from SOLE to FOLE was associated with a shift toward a proresolving lipidome. Together, these results demonstrate that the composition of the lipid emulsion directly modifies inflammatory homeostasis. PMID:24091595

  5. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils

    PubMed Central

    Budilarto, Elizabeth S; Kamal-Eldin, Afaf

    2015-01-01

    The microenvironment formed by surface active compounds is being recognized as the active site of lipid oxidation. Trace amounts of water occupy the core of micro micelles and several amphiphilic minor components (e.g., phospholipids, monoacylglycerols, free fatty acids, etc.) act as surfactants and affect lipid oxidation in a complex fashion dependent on the structure and stability of the microemulsions in a continuous lipid phase such as bulk oil. The structures of the triacylglycerols and other lipid-soluble molecules affect their organization and play important roles during the course of the oxidation reactions. Antioxidant head groups, variably located near the water-oil colloidal interfaces, trap and scavenge radicals according to their location and concentration. According to this scenario, antioxidants inhibit lipid oxidation not only by scavenging radicals via hydrogen donation but also by physically stabilizing the micelles at the microenvironments of the reaction sites. There is a cut-off effect (optimum value) governing the inhibitory effects of antioxidants depending inter alias on their hydrophilic/lipophilic balance and their concentrations. These complex effects, previously considered as paradoxes in antioxidants research, are now better explained by the supramolecular chemistry of lipid oxidation and antioxidants, which is discussed in this review. PMID:26448722

  6. Oil is on the agenda: Lipid turnover in higher plants.

    PubMed

    Kelly, Amélie A; Feussner, Ivo

    2016-09-01

    Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Structured lipids via lipase-catalyzed incorporation of eicosapentaenoic acid into borage (Borago officinalis L.) and evening primrose (Oenothera biennis L.) oils.

    PubMed

    Senanayake, S P J Namal; Shahidi, Fereidoon

    2002-01-30

    Enzymatic acidolysis of borage oil (BO) or evening primrose oil (EPO) with eicosapentaenoic acid (20:5n-3; EPA) was studied. Of the six lipases that were tested in the initial screening, nonspecific lipase PS-30 from Pseudomonas sp. resulted in the highest incorporation of EPA into both oils. This enzyme was further studied for the influence of enzyme load, temperature, time, type of organic solvent, and mole ratio of substrates. The products from the acidolysis reaction were analyzed by gas chromatography (GC). The highest incorporation of EPA in both oils occurred at 45-55 degrees C and at 150-250 enzyme activity units. One unit of lipase activity was defined as nanomoles of fatty acids (oleic acid equivalents) produced per minute per gram of enzyme. Time course studies indicated that EPA incorporation was increased up to 26.8 and 25.2% (after 24 h) in BO and EPO, respectively. Among the solvents examined, n-hexane served best for the acidolysis of EPA with both oils. The effect of the mole ratio of oil to EPA was studied from 1:1 to 1:3. As the mole ratio of EPA increased, the incorporation increased from 25.2-26.8 to 37.4-39.9% (after 24 h). The highest EPA incorporations of 39.9 and 37.4% in BO and EPO, respectively, occurred at the stoichiometric mole ratio of 1:3 for oil to EPA.

  8. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems.

    PubMed

    Salminen, Hanna; Gömmel, Christina; Leuenberger, Bruno H; Weiss, Jochen

    2016-01-01

    We investigated the influence of physicochemical properties of encapsulated functional lipids--vitamin A, β-carotene and ω-3 fish oil--on the structural arrangement of solid lipid nanoparticles (SLN). The relationship between the crystal structure and chemical stability of the incorporated bioactive lipids was evaluated with different emulsifier compositions of a saponin-rich, food-grade Quillaja extract alone or combined with high-melting or low-melting lecithins. The major factors influencing the structural arrangement and chemical stability of functional lipids in solid lipid dispersions were their solubility in the aqueous phase and their crystallization temperature in relation to that of the carrier lipid. The results showed that the stabilization of the α-subcell crystals in the lattice of the carrier lipid is a key parameter for forming stable solid lipid dispersions. This study contributes to a better understanding of SLN as a function of the bioactive lipid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil

    PubMed Central

    Keshvari, Mahtab; Asgary, Sedigheh; Jafarian-dehkordi, Abbas; Najafi, Somayeh; Ghoreyshi-Yazdi, Seyed Mojtaba

    2013-01-01

    BACKGROUND Lipid oxidation is the main deterioration process that occurs in vegetable oils. This process was effectively prevented by natural antioxidants. Cinnamomum zeylanicum (Cinnamon) is rich with antioxidants. The present study was conducted to evaluate the effect of cinnamon on malondialdehyde (MDA) rate production in two high consumption oils in Iranian market. METHODS Chemical composition of cinnamon essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). 200 µl each oil, 50 µl tween 20, and 2 ml of 40 Mm AAPH solutions were mixed and the prepared solution was divided into four glass vials. Respectively, 50 µl of 500, 1000 and 2000 ppm of cinnamon essential oil were added to three glass vials separately and one of the glass vials was used as the control. All of the glass vials were incubated at 37° C water bath. Rate of MDA production was measured by thiobarbituric acid (TBA) test at the baseline and after the 0.5, 1, 2, 3 and 5 hours. RESULTS Compounds of cinnamon essential oil by GC-MS analysis such as cinnamaldehyde (96.8%), alpha-capaene (0.2%), alpha-murolene (0.11%), para-methoxycinnamaldehyde (0.6%) and delta-cadinen (0.4%) were found to be the major compounds. For both oils, maximum rate of MDA production was achieved in 5th hours of heating. Every three concentrations of cinnamon essential oil significantly decreased MDA production (P < 0.05) in comparison with the control. CONCLUSION Essential oil of cinnamon considerably inhibited MDA production in studied oils and can be used with fresh and heated oils for reduction of lipid peroxidation and adverse free radicals effects on body. PMID:24302936

  10. The Effect of Fish Oil-Based Lipid Emulsion and Soybean Oil-Based Lipid Emulsion on Cholestasis Associated with Long-Term Parenteral Nutrition in Premature Infants

    PubMed Central

    Wang, Leilei; Zhang, Jing; Gao, Jiejin; Qian, Yan; Ling, Ya

    2016-01-01

    Purpose. To retrospectively study the effect of fish oil-based lipid emulsion and soybean oil-based lipid emulsion on cholestasis associated with long-term parenteral nutrition in premature infants. Methods. Soybean oil-based lipid emulsion and fish oil-based lipid emulsion had been applied in our neonatology department clinically between 2010 and 2014. There were 61 qualified premature infants included in this study and divided into two groups. Soybean oil group was made up of 32 premature infants, while fish oil group was made up of 29 premature infants. Analysis was made on the gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, age at which feeding began, usage of lipid emulsions, and incidence of cholestasis between the two groups. Results. There were no statistical differences in terms of gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, and age at which feeding began. Besides, total incidence of cholestasis was 21.3%, and the days of life of occurrence of cholestasis were 53 ± 5.0 days. Incidence of cholestasis had no statistical difference in the two groups. Conclusion. This study did not find the different role of fish oil-based lipid emulsions and soybean oil-based lipid emulsions in cholestasis associated with long-term parenteral nutrition in premature infants. PMID:27110237

  11. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice.

    PubMed

    Tillander, Veronika; Bjørndal, Bodil; Burri, Lena; Bohov, Pavol; Skorve, Jon; Berge, Rolf K; Alexson, Stefan Eh

    2014-01-01

    Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in the early steps of

  12. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice

    PubMed Central

    2014-01-01

    Background Marine derived oils are rich in long-chain polyunsaturated omega-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have long been associated with health promoting effects such as reduced plasma lipid levels and anti-inflammatory effects. Krill oil (KO) is a novel marine oil on the market and is also rich in EPA and DHA, but the fatty acids are incorporated mainly into phospholipids (PLs) rather than triacylglycerols (TAG). This study compares the effects of fish oil (FO) and KO on gene regulation that influences plasma and liver lipids in a high fat diet mouse model. Methods Male C57BL/6J mice were fed either a high-fat diet (HF) containing 24% (wt/wt) fat (21.3% lard and 2.3% soy oil), or the HF diet supplemented with FO (15.7% lard, 2.3% soy oil and 5.8% FO) or KO (15.6% lard, 2.3% soy oil and 5.7% KO) for 6 weeks. Total levels of cholesterol, TAG, PLs, and fatty acid composition were measured in plasma and liver. Gene regulation was investigated using quantitative PCR in liver and intestinal epithelium. Results Plasma cholesterol (esterified and unesterified), TAG and PLs were significantly decreased with FO. Analysis of the plasma lipoprotein particles indicated that the lipid lowering effect by FO is at least in part due to decreased very low density lipoprotein (VLDL) content in plasma with subsequent liver lipid accumulation. KO lowered plasma non-esterified fatty acids (NEFA) with a minor effect on fatty acid accumulation in the liver. In spite of a lower omega-3 fatty acid content in the KO supplemented diet, plasma and liver PLs omega-3 levels were similar in the two groups, indicating a higher bioavailability of omega-3 fatty acids from KO. KO more efficiently decreased arachidonic acid and its elongation/desaturation products in plasma and liver. FO mainly increased the expression of several genes involved in fatty acid metabolism, while KO specifically decreased the expression of genes involved in

  13. Structure and properties of oil bodies in diatoms.

    PubMed

    Maeda, Yoshiaki; Nojima, Daisuke; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2017-09-05

    Diatoms accumulate triacylglycerols in spherical organelles called oil bodies when exposed to nutrient deprivation conditions. Oil body biology in diatoms has attracted significant attention due to the complexity of the intracellular organelles and the unique combination of genes generated by the evolutionary history of secondary endosymbiosis. The demand for biofuel production has further increased the interest in and importance of a better understanding of oil body biology in diatoms, because it could provide targets for genetic engineering to further enhance their promising lipid accumulation. This review describes recent progress in studies of the structure and properties of diatom oil bodies. Firstly, the general features of diatom oil bodies are described, in particular, their number, size and morphology, as well as the quantity and quality of lipids they contain. Subsequently, the diatom oil body-associated proteins, which were recently discovered through oil body proteomics, are introduced. Then, the metabolic pathways responsible for the biogenesis and degradation of diatom oil bodies are summarized. During biogenesis and degradation, oil bodies interact with other organelles, including chloroplasts, the endoplasmic reticulum and mitochondria, suggesting their dynamic nature in response to environmental changes. Finally, the functions of oil bodies in diatoms are discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  14. Development of Extraction Techniques for the Detection of Signature Lipids from Oil

    SciTech Connect

    Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

    2010-05-17

    Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

  15. Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions.

    PubMed

    Krasodomska, Olga; Paolicelli, Patrizia; Cesa, Stefania; Casadei, Maria Antonietta; Jungnickel, Christian

    2016-10-01

    In this paper, we focused on the development of nanostructured lipid carriers (NLCs) for dermal application. The NLC matrix was designed as a protective reservoir of biological active compounds that naturally occur in domestic fruit seed oils. Over the years, emulsions, as a popular physicochemical form of personal care products, were refined in order to obtain the best possible penetration into the skin of any bioactive compound introduced in the formulation, such as polyunsaturated fatty acids (PUFAs). In fact, the bioactive components are useful only if they are able to penetrate the skin unchanged. Therefore, an alternate way to deliver naturally occurring PUFAs is needed. NLCs present a novel delivery and protection system for the PUFAs. The cold pressed fruit seed oils obtained from waste material were used in this paper: blackcurrant, blackberry, raspberry, strawberry and plum. Thermodynamic (DSC) and structural techniques ((1)H NMR) were applied in order to characterize the obtained systems in terms of seed oil incorporation into the NLC, and oxidative stability tests were used to confirm the protective quality of the systems. During the formulation optimization process the most stable nanosuspension with the best seed oil incorporation was a mixture of 4% nonionic emulsifiers, 88% water and 6% lipids with a ratio of 6:2, wax:oil. The oxidative stability tests showed that the NLC was an effective method of protection of the PUFAs.

  16. Comparison of Pure Palm Olein Oil, Hydrogenated Oil-Containing Palm, and Canola on Serum Lipids and Lipid Oxidation Rate in Rats Fed with these Oils.

    PubMed

    Amini, Seyed-Asadollah; Ghatreh-Samani, Keihan; Habibi-Kohi, Arash; Jafari, Laleh

    2017-02-01

    Due to increased consumption of canola oil and hydrogenated oil containing palm and palm olein, and their possible effects on serum lipoproteins, the present study was conducted to determine the effects of these oils on lipids and lipid oxidation level. In this experimental study, 88 Wistar rats were randomly assigned to four groups. Control group (A) was on a normal diet. Groups B, C, and D, in addition to normal diet, were fed with hydrogenated oil-contained palm oil, pure palm olein oil, and canola oil, respectively for 4 weeks. Serum Biochemical factors [total cholesterol (TC), triglyceride (TG), LDL, HDL, LDL/HDL ratio, oxLDL, paraoxanase-1 (PON1), and malondialdehyde (MDA)] were measured. The lowest mean serum TC was seen in the control group and the highest in the group B. There were differences in TC, TG, HDL, MDA, and PON1 between the control group and other groups (P<0.001). The lowest and highest LDL/HDL ratios were observed in the group C and the control group, respectively. Significant differences were seen in OxLDL and PON1 between the control group and other three groups (P<0.05), while there were no significant differences in oxLDL and PON1 among the other three groups (P>0.05). MDA was higher in groups C and D. Canola oil, hydrogenated oil-containing palm and palm olein may increase atherosclerosis risk through decreasing PON1 activity and elevating oxLDL. Palm olein oils in rats' diets cause a considerable decrease in LDL and help to increase HDL.

  17. Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast.

    PubMed

    Froissard, Marine; D'andréa, Sabine; Boulard, Céline; Chardot, Thierry

    2009-05-01

    Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies.

  18. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

    PubMed Central

    Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye

    2016-01-01

    BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice. PMID:27698954

  19. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions.

    PubMed

    Kargar, Maryam; Spyropoulos, Fotios; Norton, Ian T

    2011-05-15

    A novel approach to reduce lipid oxidation in oil-in-water emulsions has been taken and involves the manipulation of the emulsions' interfacial microstructure. Oil-in-water emulsions stabilised by sodium caseinate (CAS), Tween 20 and silica particles were prepared and their lipid oxidation stability was assessed over a week. Lipid oxidation was monitored by measuring the concentration of primary lipid oxidation product, using the peroxide value method and secondary lipid oxidation products formation were evaluated with the p-anisidine technique. Oil-phase volume fraction and emulsifier type both play key roles in influencing the rate of lipid oxidation. Decreasing the oil fraction from 30% to 5% was found to promote lipid oxidation as a result of an increase in the amount of pro-oxidant iron per gram of oil. It was further shown that, CAS in the continuous phase reduces lipid oxidation at pH 7 due to its metal chelating ability. In addition, the results show that, emulsions stabilised with silica particles (at pH 2) inhibit lipid oxidation to a greater extent than emulsions stabilised with surfactants alone. The present study demonstrates that emulsions' physical properties such as oil-phase volume fraction, droplet size and droplet interfacial microstructure are all formulation parameters that can be used to significantly reduce the rate of lipid oxidation. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Lipid oxidation in fish oil enriched mayonnaise: calcium disodium ethylenediaminetetraacetate, but not gallic acid, strongly inhibited oxidative deterioration.

    PubMed

    Jacobsen, C; Hartvigsen, K; Thomsen, M K; Hansen, L F; Lund, P; Skibsted, L H; Hølmer, G; Adler-Nissen, J; Meyer, A S

    2001-02-01

    The antioxidative effects of gallic acid, EDTA, and extra emulsifier Panodan DATEM TR in mayonnaise enriched with 16% fish oil were investigated. EDTA reduced the formation of free radicals, lipid hydroperoxides, volatiles, and fishy and rancid off-flavors. The antioxidative effect of EDTA was attributed to its ability to chelate free metal ions and iron from egg yolk located at the oil-water interface. Gallic acid reduced the levels of both free radicals and lipid hydroperoxides but promoted slightly the oxidative flavor deterioration in mayonnaise and influenced the profile of volatiles. Gallic acid may therefore promote the decomposition of lipid hydroperoxides to volatile oxidation products. Addition of extra emulsifier reduced the lipid hydroperoxide levels but did not influence the level of free radicals or the oxidative flavor deterioration in mayonnaisse; however, it appeared to alter the profile of volatiles. The effect of the emulsifier on the physical structure and rheological properties depended on the presence of antioxidants.

  1. Vegetable oil blends with α-linolenic acid rich Garden cress oil modulate lipid metabolism in experimental rats.

    PubMed

    Umesha, S S; Naidu, K Akhilender

    2012-12-15

    Vegetable oil blends with modified fatty acid profile are being developed to improve n-6/n-3 polyunsaturated fatty acid (PUFAs) ratio in edible oils. The objective of this study is to develop vegetable oil blends with α-linolenic acid (ALA) rich Garden cress oil (GCO) and assess their modulatory effect on lipid metabolism. Sunflower oil (SFO), Rice bran oil (RBO), Sesame oil (SESO) were blended with GCO at different ratios to obtain n-6/n-3 PUFA ratio of 2.3-2.6. Native and GCO blended oils were fed to Wistar rats at 10% level in the diet for 60 days. Serum and liver lipids showed significant decrease in Total cholesterol (TC), Triglyceride (TG), LDL-C levels in GCO and GCO blended oil fed rats compared to native oil fed rats. ALA, EPA, DHA contents were significantly increased while linoleic acid (LA), arachidonic acid (AA) levels decreased in different tissues of GCO and GCO blended oils fed rats. In conclusion, blending of vegetable oils with GCO increases ALA, decreases n-6 to n-3 PUFA ratio and beneficially modulates lipid profile.

  2. Effect of essential oil of Hyssopus officinalis on the lipid composition of Aspergillus fumigatus.

    PubMed

    Ghfir, B; Fonvieille, J L; Koulali, Y; Ecalle, R; Dargent, R

    1994-06-01

    Addition of the essential oil of Hyssopus officinalis to the culture medium of Aspergillus fumigatus induced alterations in both growth and lipid composition of this mould. Total lipids and sterols were reduced, whereas total phospholipids were increased. There were alterations in the proportions of fatty acids, neutral lipid and phospholipid fractions.

  3. Effects of rice bran oil enriched with n-3 PUFA on liver and serum lipids in rats.

    PubMed

    Chopra, Rajni; Sambaiah, Kari

    2009-01-01

    Lipase-catalyzed interesterification was used to prepare different structured lipids (SL) from rice bran oil (RBO) by replacing some of the fatty acids with alpha-linolenic acid (ALA) from linseed oil (LSO) and n-3 long chain polyunsaturated fatty acids (PUFA) from cod liver oil (CLO). In one SL, the ALA content was 20% whereas in another the long chain n-3 PUFA content was 10%. Most of the n-3 PUFA were incorporated into the sn-1 and sn-3 positions of triacylglycerol. The influence of SL with RBO rich in ALA and EPA + DHA was studied on various lipid parameters in experimental animals. Rats fed RBO showed a decrease in total serum cholesterol by 10% when compared to groundnut oil (GNO). Similarly structured lipids with CLO and LSO significantly decreased total serum cholesterol by 19 and 22% respectively compared to rice bran oil. The serum TAGs level of rats fed SLs and blended oils were also significantly decreased by 14 and 17% respectively compared to RBO. Feeding of an n-3 PUFA rich diet resulted in the accumulation of long chain n-3 PUFA in various tissues and a reduction in the long chain n-6 PUFA. These studies indicate that the incorporation of ALA and EPA + DHA into RBO can offer health benefits.

  4. Comprehensive analysis of lipid composition in crude palm oil using multiple lipidomic approaches.

    PubMed

    Cheong, Wei Fun; Wenk, Markus R; Shui, Guanghou

    2014-05-20

    Palm oil is currently the leading edible oil consumed worldwide. Triacylglycerol (TAG) and diacylglycerol (DAG) are the dominant lipid classes in palm oil. Other lipid classes present in crude palm oil, such as phospholipids and galactolipids, are very low in abundance. These low-abundance lipids constitute key intermediates in lipid biosynthesis. In this study, we applied multiple lipidomic approaches, including high-sensitivity and high-specificity multiple reaction monitoring, to comprehensively quantify individual lipid species in crude palm oil. We also established a new liquid chromatography-coupled mass spectrometry method that allows direct quantification of low-abundance galactolipids in palm oil without the need for sample pretreatment. As crude palm oil contains large amounts of neutral lipids, our direct-detection method circumvents many of the challenges encountered with conventional lipid quantification methods. This approach allows direct measurement of lipids with no hassle during sample preparation and is more accurate and precise compared with other methods. Copyright © 2014. Published by Elsevier Ltd.

  5. Intradialytic parenteral nutrition: comparison of olive oil versus soybean oil-based lipid emulsions.

    PubMed

    Cano, Noël J M; Saingra, Yannick; Dupuy, Anne-Marie; Lorec-Penet, Anne-Marie; Portugal, Henri; Lairon, Denis; Cristol, Jean-Paul; Come, Adrien; Le Brun, Alexia; Atlan, Philippe; Leverve, Xavier M

    2006-01-01

    Lipid, oxidative and inflammatory parameters are frequently altered in dialysis patients and may be worsened by intravenous lipid emulsions (ILE). We assessed the efficacy and tolerance of olive as compared with standard soybean oil-based ILE during intradialytic parenteral nutrition (IDPN). IDPN mixtures containing amino acids, glucose, and either olive oil (OO group, n 17) or soybean oil-based ILE (SO group, n 18) were administered in a 5-week randomized, double-blind study. On days 0 and 35, patients' nutritional status was assessed by BMI, normalized protein catabolic rate, predialytic creatinine, serum albumin and transthyretin; lipid metabolism by plasma LDL- and HDL-cholesterol, triacylglycerols, phospholipids, apo A-I, A-II, B, C-II, C-III, E and lipoprotein (a); oxidative status by alpha-tocopherol, retinol, selenium, glutathione peroxidase, malondialdehyde and advanced oxidized protein products; inflammatory status by serum C-reactive protein, orosomucoid, IL-2 and IL-6. No serious adverse event was observed. Significant changes were observed from day 0 to day 35 (P<0.05): nutritional criteria improved (albumin in OO; albumin, transthyretin and creatinine in SO); LDL-cholesterol, apo B, C-II, C-III and apo A-I/A-II ratio increased in both groups. HDL-cholesterol decreased in OO; apo E increased and lipoprotein (a) decreased in SO; alpha-tocopherol/cholesterol ratio increased in OO; malondialdehyde decreased in both groups; IL-2 increased in both groups. The between-group comparison only showed the following differences: alpha-tocopherol/cholesterol increased in OO; lipoprotein (a) decreased in SO. From these data, it was concluded that OO- and SO-based IDPNs similarly improved nutritional status and influenced plasma lipid, oxidative, inflammatory and immune parameters.

  6. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism.

    PubMed

    Nguyen, Hoa M; Baudet, Mathieu; Cuiné, Stéphan; Adriano, Jean-Marc; Barthe, Damien; Billon, Emmanuelle; Bruley, Christophe; Beisson, Fred; Peltier, Gilles; Ferro, Myriam; Li-Beisson, Yonghua

    2011-11-01

    Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥ 2 peptides) identified by LC-MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl-lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol-3-phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.

  7. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    SciTech Connect

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  8. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    NASA Astrophysics Data System (ADS)

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  9. Minor components in food oils: a critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions.

    PubMed

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2011-12-01

    Food oils are primarily composed of triacylglycerols (TAG), but they may also contain a variety of other minor constituents that influence their physical and chemical properties, including diacylglycerols (DAG), monoacylglycerols (MAG), free fatty acids (FFA), phospholipids (PLs), water, and minerals. This article reviews recent research on the impact of these minor components on lipid oxidation in bulk oils and oil-in-water emulsions. In particular, it highlights the origin of these minor components, the influence of oil refining on the type and concentration of minor components present, and potential physicochemical mechanisms by which these minor components impact lipid oxidation in bulk oils and emulsions. This knowledge is crucial for designing food, pharmaceutical, personal care, and other products with improved stability to lipid oxidation.

  10. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus

    PubMed Central

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus. PMID:26635841

  11. Lipid self-assembled structures for reactivity control in food.

    PubMed

    Sagalowicz, L; Moccand, C; Davidek, T; Ghanbari, R; Martiel, I; Negrini, R; Mezzenga, R; Leser, M E; Blank, I; Michel, M

    2016-07-28

    Lipid self-assembled structures (SASs) have recently gained considerable interest for their potential applications, especially for sustained nutrient release and protein crystallization. An additional property, which is underexploited, is their ability to control chemical reactions in food products. Here, we concentrate on SASs formed by phospholipids (PLs) and monoglycerides (MGs), those compounds being the most natural surfactants and therefore, the best compatible with food products, in view of providing new functionalities through the formation of SASs. In this work, the phase behaviour of these amphiphiles when mixed with oil and water is described and compared. Subsequently, we address the influence of these structures to the oxidation and Maillard-type reactions. Finally, we show that SASs formed by MGs can strongly increase the yield of key aroma impact compounds generated by Maillard-type reactions when compared with the reaction performed in aqueous precursor solutions. Various SASs are compared. In particular, addition of oil to a reversed bicontinuous structure formed by MG leads to a reversed microemulsion, which, considering its low viscosity, is particularly suitable for food products and act as a very efficient reactor system. The influence of oil and precursors on phase behaviour is discussed and related to the efficiency of the Maillard reactions.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. © 2016 The Author(s).

  12. Structure of Cholesterol in Lipid Rafts

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  13. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility.

    PubMed

    Ozturk, Bengu; Argin, Sanem; Ozilgen, Mustafa; McClements, David Julian

    2015-11-15

    The influence of carrier oil type on the bioaccessibility of vitamin D3 encapsulated within oil-in-water nanoemulsions prepared using a natural surfactant (quillaja saponin) was studied using a simulated gastrointestinal tract (GIT) model: mouth; stomach; small intestine. The rate of free fatty acid release during lipid digestion decreased in the following order: medium chain triglycerides (MCT) > corn oil ≈ fish oil > orange oil > mineral oil. Conversely, the measured bioaccessibility of vitamin D3 decreased in the following order: corn oil ≈ fish oil > orange oil > mineral oil > MCT. These results show that carrier oil type has a considerable impact on lipid digestion and vitamin bioaccessibility, which was attributed to differences in the release of bioactives from lipid droplets, and their solubilization in mixed micelles. Nanoemulsions prepared using long chain triglycerides (corn or fish oil) were most effective at increasing vitamin bioaccessibility.

  14. Olive and sesame oil effect on lipid profile in hypercholesterolemic patients, which better?

    PubMed

    Namayandeh, Seyedeh Mahdieh; Kaseb, Fatemeh; Lesan, Soheila

    2013-09-01

    The study on natural substances especially, dietary components such as liquid oils affecting cholesterol can be important for therapeutic propose. Sesame seeds with various biomedical actions can be control the hypercholesterolemia. On the other hand, olive oil has a wide range of therapeutic effect on lipid profile in human. The aim of this study is to evaluate and compare lipid profile changes after olive and sesame oils consumption in hypercholesterolemia. This study was a clinical randomized trial that was performed via parallel design on 48 patients. The patients were randomly allocated in to two groups: A: olive oil and B: sesame oil. After 1 month prescription of Step I National Cholesterol Education Program diet, patients consumed 4 table spoons aprox. 60 g) of refined olive or sesame oil daily as an exchange of other oils, for 1 month. Lipid profiles The P < 0.05 was considered as significant difference. Out of 48 patients, 24 (50%) were men. The mean age was 41.7 ± 8.3 years. The mean of total cholesterol, triglyceride (TG), low density lipoprotein (LDL), cholesterol, and high density lipoprotein (HDL) cholesterol, before oil consumption was 224.5 ± 22, 256 ± 132, 132.6 ± 9, and 44.5 ± 11 mg/dl. After olive oil consumption cholesterol, TG, LDL-C, weight, waist and BMI were decreased and HDL-C was increased. After sesame oil consumption cholesterol, TG, LDL-C were significantly decreased. Weight, waist were decreased and HDL-C was increased (P > 0.05). Sesame oil had equivalent effect on lipid profile in comparison olive oil and lipid profile improvement was better in sesame oil in LDL-C and TG.

  15. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    PubMed

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  16. Palm oil versus hydrogenated soybean oil: effects on serum lipids and plasma haemostatic variables.

    PubMed

    Pedersen, Jan I; Muller, Hanne; Seljeflot, Ingebjorg; Kirkhus, Bente

    2005-01-01

    The purpose of this study was to test if replacement of trans fatty acids by palmitic acid in an experimental margarine results in unfavourable effects on serum lipids and haemostatic factors. We have compared the effects of three different margarines, one based on palm oil (PALM-margarine), one based on partially hydrogenated soybean oil (TRANS- margarine) and one with a high content of polyunsaturated fatty acids (PUFA-margarine), on serum lipids in 27 young women. In nine of the participants fasting levels and diurnal postprandial levels of haemostatic variables on the 3 diets were compared. The sum of 12:0, 14:0, 16:0 provided 11% of energy (E%) in the PALM diet, the same as the sum of 12:0, 14:0, 16:0 and trans fatty acids in the TRANS-diet. Oleic acid provided 10-11E% in all three diets, while PUFA provided 5.7, 5.5 and 10.2 E%, respectively. Total fat provided 30-31% and the test margarines 26% of total energy in all three diets. Each of the diets was consumed for 17 days in a crossover design. There were no significant differences in total cholesterol, LDL-cholesterol and apoB between the TRANS- and the PALM-diet. HDL-cholesterol and apoA-I were significantly higher on the PALM-diet compared to the TRANS-diet while the ratio of LDL- to HDL-cholesterol was lower, although not significantly (P = 0.077) on the PALM-diet. Total cholesterol, LDL-cholesterol and apoB were significantly lower on the PUFA-diet compared to the two other diets. HDL-cholesterol was not different on the PALM- and the PUFA-diet while it was significantly lower on the TRANS-diet compared to the PUFA-diet. Triglycerides and Lp(a) were not different among the three diets. The diurnal postprandial state level of tissue plasminogen activator (t-PA) activity was significantly decreased on the TRANS-diet compared to the PALM-diet. t-PA activity was also decreased on the PUFA-diet compared to PALM-diet although not significantly (P=0.07). There were no significant differences in neither fasting

  17. Inhibition of lipid oxidation by formation of caseinate-oil-oat gum complexes

    USDA-ARS?s Scientific Manuscript database

    Lipid oxidation, particularly oxidation of unsaturated fatty acids such as omega-3 fatty acids, has posed a serious challenge to the food industry trying to incorporate heart-healthy oil products into their lines of healthful foods and beverages. In this study, model plant oil was dispersed into so...

  18. Lipid uptake and skin occlusion following topical application of oils on adult and infant skin.

    PubMed

    Stamatas, Georgios N; de Sterke, Johanna; Hauser, Matthias; von Stetten, Otto; van der Pol, André

    2008-05-01

    Topical application of oils and oil-based formulations is common practice in skin care for both adults and infants. Only limited knowledge however is available regarding skin penetration and occlusive potential of oils and common methods for measuring skin moisturization fall short when it comes to the moisturizing effect of oils. In this study we used in vivo confocal Raman microspectroscopy to test the efficacy of paraffin oil (mineral oil) and two vegetable oils in terms of skin penetration and occlusion. Petrolatum was used as a positive control. The products were applied topically on the forearms of nine volunteers and seven infants and Raman spectra were acquired before and at 30 and 90 min following application. Depth concentration profiles for lipid and water were calculated from the Raman spectra. Skin occlusion was assessed from the amount of stratum corneum (SC) swelling measured from the water concentration profiles. The paraffin oil and the vegetable oils penetrate the top layers of the SC with similar concentration profiles, a result that was confirmed both for adult and infant skin. The three oils tested demonstrated modest SC swelling (10-20%) compared to moderate swelling (40-60%) for petrolatum. These data indicate that there is no statistical difference between the paraffin oil and vegetable oils in terms of skin penetration and skin occlusion. The results for petrolatum show that in vivo confocal Raman microspectroscopy is sensitive and specific enough to measure both lipid uptake and skin occlusion events following topical application.

  19. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil.

    PubMed

    Shi, Feng; Zhao, Ji-Hui; Liu, Ying; Wang, Zhi; Zhang, Yong-Tai; Feng, Nian-Ping

    2012-01-01

    The aim of the present study was to prepare solid lipid nanoparticles (SLNs) for the oral delivery of frankincense and myrrh essential oils (FMO). Aqueous dispersions of SLNs were successfully prepared by a high-pressure homogenization method using Compritol 888 ATO as the solid lipid and soybean lecithin and Tween 80 as the surfactants. The properties of the SLNs such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE) were investigated. The morphology of SLNs was observed by transmission electron microscopy (TEM). The crystallinity of the formulation was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). In addition, drug evaporation release and antitumor activity were also studied. Round SLNs with a mean size of 113.3 ± 3.6 nm, a ZP of -16.8 ± 0.4 mV, and an EE of 80.60% ± 1.11% were obtained. DSC and XRD measurements revealed that less ordered structures were formed in the inner cores of the SLN particles. Evaporation loss of the active components in FMO could be reduced in the SLNs. Furthermore, the SLN formulation increased the antitumor efficacy of FMO in H22-bearing Kunming mice. Hence, the presented SLNs can be used as drug carriers for hydrophobic oil drugs extracted from traditional Chinese medicines.

  20. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil

    PubMed Central

    Shi, Feng; Zhao, Ji-Hui; Liu, Ying; Wang, Zhi; Zhang, Yong-Tai; Feng, Nian-Ping

    2012-01-01

    The aim of the present study was to prepare solid lipid nanoparticles (SLNs) for the oral delivery of frankincense and myrrh essential oils (FMO). Aqueous dispersions of SLNs were successfully prepared by a high-pressure homogenization method using Compritol 888 ATO as the solid lipid and soybean lecithin and Tween 80 as the surfactants. The properties of the SLNs such as particle size, zeta potential (ZP), and drug encapsulation efficiency (EE) were investigated. The morphology of SLNs was observed by transmission electron microscopy (TEM). The crystallinity of the formulation was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). In addition, drug evaporation release and antitumor activity were also studied. Round SLNs with a mean size of 113.3 ± 3.6 nm, a ZP of −16.8 ± 0.4 mV, and an EE of 80.60% ± 1.11% were obtained. DSC and XRD measurements revealed that less ordered structures were formed in the inner cores of the SLN particles. Evaporation loss of the active components in FMO could be reduced in the SLNs. Furthermore, the SLN formulation increased the antitumor efficacy of FMO in H22-bearing Kunming mice. Hence, the presented SLNs can be used as drug carriers for hydrophobic oil drugs extracted from traditional Chinese medicines. PMID:22619540

  1. Impact of Providing a Combination Lipid Emulsion Compared With a Standard Soybean Oil Lipid Emulsion in Children Receiving Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    PubMed

    Finn, Kristen Lawler; Chung, Mei; Rothpletz-Puglia, Pamela; Byham-Gray, Laura

    2015-08-01

    Soybean oil lipid emulsion may compromise immune function and promote hepatic damage due to its composition of long-chain fatty acids, phytosterols, high proportion of ω-6 fatty acids, and low α-tocopherol levels. Combination lipid emulsions have been developed using medium-chain triglyceride oil, fish oil, and/or olive oil, which provide adequate essential fatty acids, a smaller concentration of ω-6 fatty acids, and lower levels of phytosterols. The purpose of this systematic review is to determine if combination lipid emulsions have a more favorable impact on bilirubin levels, triglyceride levels, and incidence of infection compared with soybean oil lipid emulsions in children receiving parenteral nutrition. This study comprises a systematic review of published studies. Data were sufficient and homogeneous to conduct a meta-analysis for total bilirubin and infection. Nine studies met the inclusion criteria. Meta-analysis showed that combination lipid emulsion decreased total bilirubin by a mean difference of 2.09 mg/dL (95% confidence interval, -4.42 to 0.24) compared with soybean oil lipid emulsion, although the result was not statistically significant (P = .08). Meta-analysis revealed no statistically significant difference in incidence of infection between the combination lipid emulsion and the soybean oil lipid emulsion groups (P = .846). None of the 4 studies that included triglyceride as an outcome detected a significant difference in triglyceride levels between the combination lipid emulsion and soybean oil lipid emulsion groups. There is inadequate evidence that combination lipid emulsions offer any benefit regarding bilirubin levels, triglyceride levels, or incidence of infection compared with soybean oil lipid emulsions. © 2014 American Society for Parenteral and Enteral Nutrition.

  2. Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review.

    PubMed

    Suárez-Jiménez, Guadalupe Miroslava; López-Saiz, Carmen María; Ramírez-Guerra, Hugo Enrique; Ezquerra-Brauer, Josafat Marina; Ruiz-Cruz, Saul; Torres-Arreola, Wilfrido

    2016-11-24

    In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils.

  3. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    PubMed

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  4. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars.

    PubMed

    Katavic, Vesna; Agrawal, Ganesh Kumar; Hajduch, Martin; Harris, Stefan L; Thelen, Jay J

    2006-08-01

    Oil bodies were purified from mature seed of two Brassica napus crop cultivars, Reston and Westar. Purified oil body proteins were subjected to both 2-DE followed by LC-MS/MS and multidimensional protein identification technology. Besides previously known oil body proteins oleosin, putative embryo specific protein ATS1, (similar to caleosin), and 11-beta-hydroxysteroid dehydrogenase-like protein (steroleosin), several new proteins were identified in this study. One of the identified proteins, a short chain dehydrogenase/reductase, is similar to a triacylglycerol-associated factor from narrow-leafed lupin while the other, a protein annotated as a myrosinase associated protein, shows high similarity to the lipase/hydrolase family of enzymes with GDSL-motifs. These similarities suggest these two proteins could be involved in oil body degradation. Detailed analysis of the two other oil body components, polar lipids (lipid monolayer) and neutral lipids (triacylglycerol matrix) was also performed. Major differences were observed in the fatty acid composition of polar lipid fractions between the two B. napus cultivars. Neutral lipid composition confirmed erucic acid and oleic acid accumulation in Reston and Westar seed oil, respectively.

  5. Comparative studies on rabbit plasma lipid profile fed with Silybum marianum oil, sunflower oil and vegetable ghee.

    PubMed

    Lutfullah, Ghosia; Rahman, Azizur; Ahmad, Aftab; Ahmad, Taufiq; Ali, Amjad; Alam, Jan

    2017-05-01

    Present work is aimed to compare the physicochemical characterization and biochemical effects of oil extracted from Silybum Marianum and Sunflower oil, collected from Peshawar (Pakistan). To investigate the comparative effects on the body weight, organ weight and lipid profile, the crude oil of Silybum marianum, edible sunflower oil and vegetable ghee were given to three groups of rabbits under study. Percent proximate composition and food consumption of all rabbits were determined which showed no significant statistical variation. There is no data available about Silybum marianum oil on animal model in literature. This study clearly revealed that oil from Silybum marianum significantly reduces plasma cholesterol level in rabbits. A threefold higher Triglyceride levels was observed in vegetable ghee feeding groups compared with the sunflower and Silybum marianum oil feeding groups. The crude oil of Silybum marianum was found to be safe in rabbits compared with sunflower oil and vegetable ghee. The results of these studies revealed most valuable information and also support the refining and purification to convert this non-edible oil to edible oil.

  6. Effect of cocoa butter structure on oil migration.

    PubMed

    Maleky, Fatemeh; McCarthy, Kathryn L; McCarthy, Michael J; Marangoni, Alejandro G

    2012-03-01

    Oil migration from a high oil content filling into adjacent chocolate causes changes in product quality. The objective of this study was to quantify the oil migration from a cream filling system into cocoa butter, which provided a model for the behavior of chocolate-enrobed confectionery products with a soft, creamy center. Magnetic resonance imaging (MRI) was used to monitor spatial and temporal changes of liquid lipid content. A multislice spin echo pulse sequence was used to acquire images with a 7.8 ms echo time and a 200 ms repetition time using a 1.03 T Aspect Imaging MRI spectrometer. Samples were prepared as a 2-layer model system of cocoa butter and model cream filling. Three methods were used to prepare the cocoa butter: static, seeded, and sheared. Samples were stored at 25 °C for a time frame of 56 d. The rate of oil migration was quantified by a kinetic expression based on the linear dependence of oil uptake by cocoa butter and the square root of the time. Samples showed distinctly different rates of oil migration, as evidenced by quantitative differences in the kinetic rate constant. Practical Application:  This work will be helpful to elucidate the influence of crystallization process and structural properties such as crystal nanostructure and crystal habit on the migration of oil through a crystalline fat matrix.

  7. Oil and lipids biocatalysis: Past, present and future prospects

    USDA-ARS?s Scientific Manuscript database

    Biocatalysts (enzymes) for both petroleum oil and vegetable oils are quite similar. In the 1960s, scientists were trying to convert the excess petroleum oil into single cell protein. After 1970, scientists focused on converting petroleum products to value-added products such as oxygenated products...

  8. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    PubMed

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Effect of Camellia Seed Oil Intake on Lipid Metabolism in Mice.

    PubMed

    Satou, Tadaaki; Sato, Naoko; Kato, Haruyo; Kawamura, Mana; Watanabe, Sanae; Koike, Kazuo

    2016-04-01

    Camellia seed oil has mainly been applied to the production of cosmetics, and research into its dietary effects is required. Alterations in lipid metabolism by the intake of camellia seed oil were investigated. Health parameters such as diet intake, weight gain, fat mass, and plasma cholesterol and triglyceride levels were measured in mice fed a high fat diet containing camellia seed oil; comparisons were made to a normal diet and a high fat diet containing either soybean oil or olive oil as controls. No significant differences in weight gain and diet intake were observed between the groups. However, the camellia seed oil diet suppressed epididymal fat weight similarly to the olive oil diet. In total cholesterol and HDL (high density lipoprotein) cholesterol levels, the soybean oil, olive oil and camellia seed oil diet groups showed significant increases compared with the normal diet. However, increases in LDL (low density lipoprotein) cholesterol levels were inhibited by the camellia seed oil diet similarly to the olive oil diet. As the high oleic acid content of camellia seed oil is similar to that of olive oil, it is proposed that its presence mitigated fat accumulation and plasma cholesterol levels.

  10. Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1974-01-01

    Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.

  11. Coconut oil predicts a beneficial lipid profile in pre-menopausal women in the Philippines

    PubMed Central

    Feranil, Alan B.; Duazo, Paulita L.; Kuzawa, Christopher W.; Adair, Linda S.

    2011-01-01

    Coconut oil is a common edible oil in many countries, and there is mixed evidence for its effects on lipid profiles and cardiovascular disease risk. Here we examine the association between coconut oil consumption and lipid profiles in a cohort of 1,839 Filipino women (age 35–69 years) participating in the Cebu Longitudinal Health and Nutrition Survey, a community based study in Metropolitan Cebu City. Coconut oil intake was measured as individual coconut oil intake calculated using two 24-hour dietary recalls (9.54 ± 8.92 grams). Cholesterol profiles were measured in plasma samples collected after an overnight fast. Mean lipid values in this sample were total cholesterol (TC) (186.52 ± 38.86 mg/dL), high density lipoprotein cholesterol (HDL-c) (40.85 ± 10.30 mg/dL), low density lipoprotein cholesterol (LDL-c) (119.42 ± 33.21 mg/dL), triglycerides (130.75 ± 85.29 mg/dL) and the TC/HDL ratio (4.80 ± 1.41). Linear regression models were used to estimate the association between coconut oil intake and each plasma lipid outcome after adjusting for total energy intake, age, body mass index (BMI), number of pregnancies, education, menopausal status, household assets and urban residency. Dietary coconut oil intake was positively associated with HDL-c levels. PMID:21669587

  12. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion.

    PubMed

    Singh, Harjinder; Ye, Aiqian; Horne, David

    2009-03-01

    The importance of nutrient lipids in the human diet has led to major advances in understanding the mechanisms of lipid digestion and absorption. With these advances has come new recognition that the matrix in which lipids are presented (i.e. food structure) in the diet could influence the rate of lipid digestion and hence the bioavailability of fatty acids. As a consequence, there is growing interest in understanding how food material properties can be manipulated under physiological conditions to control the uptake of lipids and lipid-soluble components. The lipids in many, if not most, processed foods are normally present as emulsions, which can be end products in themselves or part of a more complex food system. In this review, we discuss the formation and properties of oil-in-water (O/W) emulsions, especially how these emulsions are modified as they traverse through the gastrointestinal tract. Among other factors, the changes in the nature of the droplet adsorbed layer and the droplet size play a major role in controlling the action of lipases and lipid digestion. Greater knowledge and understanding of how the digestive system treats, transports and utilizes lipids will allow the microstructural design of foods to achieve a specific, controlled physiological response.

  13. Double emulsions to improve frankfurter lipid content: impact of perilla oil and pork backfat.

    PubMed

    Freire, María; Bou, Ricard; Cofrades, Susana; Solas, María Teresa; Jiménez-Colmenero, Francisco

    2016-02-01

    The technology involving the use of water-in-oil-in-water double emulsions (DEs) offers an interesting approach to improve the fat content of foods. With this aim, the effect on frankfurter properties of replacing pork backfat with two different DEs prepared using perilla oil and pork backfat as lipid phases was assessed. This strategy was compared with straightforward addition of the lipid source and addition by means of an oil-in-water (O/W) emulsion. As compared with all-pork-fat frankfurters, the ones with perilla oil had a higher proportion of n-3 polyunsaturated fatty acids. Reduced-fat frankfurters had similar water- and fat-binding properties irrespective of the lipid source or the technological strategy used to incorporate it. Moreover, the oil source but not its mode of incorporation determined the oxidation levels of frankfurters. In reduced-fat samples, except in the case of frankfurters formulated with a perilla oil-in-water emulsion, hardness was unaffected either by the type of fat or by its mode of incorporation. The replacement of pork backfat by perilla oil reduced the overall acceptability of products when perilla oil was added by means of the O/W emulsion and DE approaches. This technology is suitable for labelling meat products with specific nutritional and health claims. © 2015 Society of Chemical Industry.

  14. Structural proteomics: Topology and relative accessibility of plant lipid droplet associated proteins.

    PubMed

    Jolivet, Pascale; Aymé, Laure; Giuliani, Alexandre; Wien, Frank; Chardot, Thierry; Gohon, Yann

    2017-09-14

    Lipid droplets are the major stock of lipids in oleaginous plant seeds. Despite their economic importance for oil production and biotechnological issues (biofuels, lubricants and plasticizers), numerous questions about their formation, structure and regulation are still unresolved. To determine water accessible domains of protein coating at lipid droplets surface, a structural proteomic approach has been performed. This technique relies on the millisecond timescale production of hydroxyl radicals by the radiolysis of water using Synchrotron X-ray white beam. Thanks to the evolution of mass spectrometry analysis techniques this approach allows the creation of a map of the solvent accessibility for proteins difficult to study by other means. Using these results, a S3 oleosin water accessibility map is proposed. This is the first time that such a map on an oleosin co-purified with plant lipid droplets and other associated protein is presented. Lipid droplet associated proteins function is linked to stability, structure and probably formation and lipid mobilization of droplets. Structure of these proteins in their native environment, at the interface between bulk water and the lipidic core of these organelles is only based on hydrophobicity plot. Using hydroxyl radical footprinting and proteomics approaches we studied water accessibility of one major protein in these droplets: S3 oleosin of Arabidopsis thaliana seeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice

    PubMed Central

    2013-01-01

    Background In an effort to identify new alternatives for long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) supplementation, the effect of three sources of omega 3 fatty acids (algae, fish and Echium oils) on lipid profile and inflammation biomarkers was evaluated in LDL receptor knockout mice. Methods The animals received a high fat diet and were supplemented by gavage with an emulsion containing water (CON), docosahexaenoic acid (DHA, 42.89%) from algae oil (ALG), eicosapentaenoic acid (EPA, 19.97%) plus DHA (11.51%) from fish oil (FIS), and alpha-linolenic acid (ALA, 26.75%) plus stearidonic acid (SDA, 11.13%) from Echium oil (ECH) for 4 weeks. Results Animals supplemented with Echium oil presented lower cholesterol total and triacylglycerol concentrations than control group (CON) and lower VLDL than all of the other groups, constituting the best lipoprotein profile observed in our study. Moreover, the Echium oil attenuated the hepatic steatosis caused by the high fat diet. However, in contrast to the marine oils, Echium oil did not affect the levels of transcription factors involved in lipid metabolism, such as Peroxisome Proliferator Activated Receptor α (PPAR α) and Liver X Receptor α (LXR α), suggesting that it exerts its beneficial effects by a mechanism other than those observed to EPA and DHA. Echium oil also reduced N-6/N-3 FA ratio in hepatic tissue, which can have been responsible for the attenuation of steatosis hepatic observed in ECH group. None of the supplemented oils reduced the inflammation biomarkers. Conclusion Our results suggest that Echium oil represents an alternative as natural ingredient to be applied in functional foods to reduce cardiovascular disease risk factors. PMID:23510369

  16. Effects of coconut oil, butter, and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels.

    PubMed

    Cox, C; Mann, J; Sutherland, W; Chisholm, A; Skeaff, M

    1995-08-01

    The physiological effects of coconut oil, butter, and safflower oil on lipids and lipoproteins have been compared in moderately hypercholesterolemic individuals. Twenty eight participants (13 men, 15 women) followed three 6-week experimental diets of similar macronutrient distribution with the different test fats providing 50% total dietary fat. Total cholesterol and low density lipoprotein cholesterol were significantly higher (P < 0.001) on the diet containing butter [6.8 +/- 0.9, 4.5 +/- 0.8 mmol/l] (mean +/- SD), respectively than on the coconut oil diet (6.4 +/- 0.8; 4.2 +/- 0.7 mmol/l) when levels were significantly higher (P < 0.01) than on the safflower diet (6.1 +/- 0.8; 3.9 +/- 0.7 mmol/l). Findings with regard to the other measures of lipids and lipoproteins were less consistent. Apolipoprotein A-I was significantly higher on coconut oil (157 +/- 17 mg/dl) and on butter (141 +/- 23 mg/dl) than on safflower oil (132 +/- 22 mg/dl). Apolipoprotein B was also higher on butter (86 +/- 20 mg/dl) and coconut oil (91 +/- 32 mg/dl) than on safflower oil (77 +/- 19 mg/dl). However gender differences were apparent. In the group as a whole, high density lipoprotein did not differ significantly on the three diets whereas levels in women on the butter and coconut oil diet were significantly higher than on the safflower oil diet. Triacylglycerol was higher on the butter diet than on the safflower and coconut oil diets but the difference only reached statistical significance in women. Cholesteryl ester transfer activity was significantly higher on butter than safflower oil in the group as a whole and in women.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The effect of adlay oil on plasma lipids, insulin and leptin in rat.

    PubMed

    Huang, B W; Chiang, M T; Yao, H T; Chiang, W

    2005-06-01

    This study was designed to investigate the effect of dietary adlay oil on plasma lipids, insulin and lipid peroxidation levels in rats. Twenty-four male Wistar rats fed diet containing adlay oil and cholesterol were studied for 4 weeks. The animals were divided into three groups: (1) 10% lard (control) group; (2) 5% lard + 5% adlay oil (5% adlay oil) group; and (3) 10% adlay oil group. Although there was no significant difference in body weight at the end of the feeding study, rats fed a diet containing adlay oil showed a significant decrease in adipose tissue weight and relative adipose weight. In addition, the rats fed the adlay oil showed significantly decreased low-density lipoprotein cholesterol (LDL-C), insulin, leptin and thiobarbituric acid reactive substance (TBARS) concentrations after 4 weeks of the feeding study. Although a significant decrease in total plasma cholesterol was observed in rats fed the 5% adlay oil diet, no significant difference was observed between the 10% adlay oil and control groups, and neither was a significant difference in liver TBARS concentration found between the dietary groups. Results from this study suggest that dietary adlay oil can reduce leptin, adipose tissue and LDL-C levels in rats.

  18. Encapsulation of fish oil into hollow solid lipid micro- and nanoparticles using carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2017-09-15

    Fish oil was encapsulated in hollow solid lipid micro- and nanoparticles formed from fully hydrogenated soybean oil (FHSO) using a novel green method based on atomization of supercritical carbon dioxide (SC-CO2)-expanded lipid. The highest fish oil loading efficiency (97.5%, w/w) was achieved at 50%, w/w, initial fish oil concentration. All particles were spherical and in the dry free-flowing form; however, less smooth surface with wrinkles was observed when the initial fish oil concentration was increased up to 50%. With increasing initial fish oil concentration, melting point of the fish oil-loaded particles shifted to lower onset melting temperatures, and major polymorphic form transformed from α to β and/or β'. Oxidative stability of the loaded fish oil was significantly increased compared to the free fish oil (p<0.05). This innovative method forms free-flowing powder products that are easy-to-use solid fish oil formulation, which makes the handling and storage feasible and convenient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements.

    PubMed

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. The peroxide values were in the range 1.04-10.38 meq/kg for omega-3 supplements and in the range 0.60-5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23-932.19 nmol/mL for omega-3 supplements and 33.24-119.04 nmol/mL for vegetable oils. After heating, a 2.9-11.2 fold increase in alkenal concentration was observed for vegetable oils. The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  20. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    PubMed Central

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    Background There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. Results The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed. PMID:21691461

  1. Bacterial membrane lipids: diversity in structures and pathways.

    PubMed

    Sohlenkamp, Christian; Geiger, Otto

    2016-01-01

    For many decades, Escherichia coli was the main model organism for the study of bacterial membrane lipids. The results obtained served as a blueprint for membrane lipid biochemistry, but it is clear now that there is no such thing as a typical bacterial membrane lipid composition. Different bacterial species display different membrane compositions and even the membrane composition of cells belonging to a single species is not constant, but depends on the environmental conditions to which the cells are exposed. Bacterial membranes present a large diversity of amphiphilic lipids, including the common phospholipids phosphatidylglycerol, phosphatidylethanolamine and cardiolipin, the less frequent phospholipids phosphatidylcholine, and phosphatidylinositol and a variety of other membrane lipids, such as for example ornithine lipids, glycolipids, sphingolipids or hopanoids among others. In this review, we give an overview about the membrane lipid structures known in bacteria, the different metabolic pathways involved in their formation, and the distribution of membrane lipids and metabolic pathways across taxonomical groups.

  2. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits

    PubMed Central

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Cheng Yuon, Lau

    2012-01-01

    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil. PMID:22685623

  3. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties.

  4. [Effects of silkworm pupa oil on serum lipids level and platelet function in rats].

    PubMed

    Yang, Xuefeng; Huang, Lianzhen; Hu, Jianping; Li, Tao

    2002-08-01

    To observe the effects of silkworm pupa oil on serum lipids level and platelet function in rats, according to serum TG, TC level, 40 male Wistar rats are divided into four groups (normal control group, high fat control group, silkworm pupa oil group and silkworm pupa oil + VE group). The rats are fed different diets and six weeks later, serum lipids level and platelet function are measured. The results show that (1) Compared with high fat control group, serum TC, TG, LDL-C level, AI value, Platelet aggregability, plasma TXB2 level and T/P ratio decrease significantly while HDL-C level and 6-k-PGF1 level increase in silkworm pupa oil group; (2) Serum TC, LDL-C level, T/P ratio and platelet aggregability are significantly lower in silkworm pupa oil + VE group than in silkworm pupa oil group. It is suggested that silkworm pupa oil rich in alpha-linolenic acid can reduce serum lipids level and inhibit platelet aggregation, which is more effective with the supplementation with VE.

  5. Kdo2-lipid A: structural diversity and impact on immunopharmacology

    PubMed Central

    Wang, Xiaoyuan; Quinn, Peter J; Yan, Aixin

    2015-01-01

    3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development. PMID:24838025

  6. Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii1

    PubMed Central

    Goold, Hugh Douglas; Légeret, Bertrand; Liang, Yuanxue; Brugière, Sabine; Auroy, Pascaline; Tardif, Marianne; Jones, Brian; Peltier, Gilles

    2016-01-01

    Enriching algal biomass in energy density is an important goal in algal biotechnology. Nitrogen (N) starvation is considered the most potent trigger of oil accumulation in microalgae and has been thoroughly investigated. However, N starvation causes the slow down and eventually the arrest of biomass growth. In this study, we show that exposing a Chlamydomonas reinhardtii culture to saturating light (SL) under a nonlimiting CO2 concentration in turbidostatic photobioreactors induces a sustained accumulation of lipid droplets (LDs) without compromising growth, which results in much higher oil productivity than N starvation. We also show that the polar membrane lipid fraction of SL-induced LDs is rich in plastidial lipids (approximately 70%), in contrast to N starvation-induced LDs, which contain approximately 60% lipids of endoplasmic reticulum origin. Proteomic analysis of LDs isolated from SL-exposed cells identified more than 200 proteins, including known proteins of lipid metabolism, as well as 74 proteins uniquely present in SL-induced LDs. LDs induced by SL and N depletion thus differ in protein and lipid contents. Taken together, lipidomic and proteomic data thus show that a large part of the sustained oil accumulation occurring under SL is likely due to the formation of plastidial LDs. We discuss our data in relation to the different metabolic routes used by microalgae to accumulate oil reserves depending on cultivation conditions. Finally, we propose a model in which oil accumulation is governed by an imbalance between photosynthesis and growth, which can be achieved by impairing growth or by boosting photosynthetic carbon fixation, with the latter resulting in higher oil productivity. PMID:27297678

  7. Effects of alpha-tocopherol, beta-carotene, and soy isoflavones on lipid oxidation of structured lipid-based emulsions.

    PubMed

    Osborn-Barnes, Hannah T; Akoh, Casimir C

    2003-11-05

    Structured lipids (SLs) are triacylglycerols that have been modified to change the fatty acid composition and/or positional distribution in the glycerol backbone by chemically and/or enzymatically catalyzed reactions and/or genetic engineering. Ten percent oil-in-water emulsions were formulated with a canola oil/caprylic acid SL and stabilized with 0.5% whey protein isolate (WPI) or sucrose fatty acid ester (SFE). The effects of alpha-tocopherol, beta-carotene, genistein, and daidzein (added at 0.02 wt % of oil) on lipid oxidation were evaluated over a 15-day period in emulsion samples. Significantly (p < 0.05) less total oxidation (calculated from peroxide value and anisidine value measurements) occurred in the WPI emulsions compared to their SFE counterparts. In this study, alpha-tocopherol, beta-carotene, and both soy isoflavones exhibited prooxidant activities in SFE emulsions. Because of their ability to exhibit prooxidant activity under certain conditions, manufacturers must experiment with these compounds before adding them to SL-based products as functional ingredients.

  8. Lipid profile of rats fed blends of rice bran oil in combination with sunflower and safflower oil.

    PubMed

    Sunitha, T; Manorama, R; Rukmini, C

    1997-01-01

    This study was undertaken to assess the effect of blended oils, i.e., polyunsaturated fatty acid (PUFA) rich vegetable oils like safflower oil (SFO) and sunflower oil (SNO) with the unconventional and hypocholesterolemic rice bran oil (RBO) on the serum lipid profile of rats. Rats fed RBO+SNO/SFO at 70:30 ratio for a period of 28 days showed significantly (p < 0.05) lower levels of total cholesterol (TC), triglycerides (TG) and low density lipoprotein (LDL) cholesterol and increased high density lipoprotein (HDL) cholesterol in animals fed a high cholesterol diet (HCD) and cholesterol free diet (CFD). Liver total cholesterol (TC) and triglycerides (TG) were also reduced. Fecal excretion of neutral sterols and bile acids was increased with use of RBO blends. RBO, which is rich in tocopherols and tocotrienols, may improve the oxidative stability of the blends. Tocotrienols are known to inhibit 3-hydroxy, 3-methyl, glutaryl CoA (HMG-COA) reductase (rate limiting enzyme in cholesterol biosynthesis), resulting in hypocholesterolemia. In addition to improving the lipid profile by lowering TC, TG and LDL-C and increasing HDL-C, blending of RBO with other oils can result in an economic advantage of lower prices.

  9. Investigation of natural lipid-phenolic interactions on biological properties of virgin olive oil.

    PubMed

    Alu'datt, Muhammad H; Rababah, Taha; Ereifej, Khalil; Gammoh, Sana; Alhamad, Mohammad N; Mhaidat, Nizar; Kubow, Stan; Johargy, Ayman; Alnaiemi, Ola J

    2014-12-10

    There is limited knowledge regarding the impact of naturally occurring lipid-phenolic interactions on the biological properties of phenolics in virgin olive oil. Free and bound phenolics were isolated via sequential methanolic extraction at 30 and 60 °C, and were identified and quantified using reversed phase high performance liquid chromatography, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and gas chromatography. Decreased oleic acid concentrations and increased concentrations of palmitoleic acid, stearic, linoleic, and linolenic acids were observed in virgin olive oil after removal of free and bound lipid phenolic compounds. The presence of p-hydroxybenzoic acid and tyrosol bound to glycerides was determined via LC-MS/MS, which indicates natural lipid-phenolic interactions in virgin olive oil. Both free and lipid bound phenolic extracts exerted antiproliferative activities against the CRC1 and CRC5 colorectal cancer cell lines. The present work indicates that naturally occurring lipid-phenolic interactions can affect the biological properties of phenolics in virgin olive oil.

  10. Essential oils as active ingredients of lipid nanocarriers for chemotherapeutic use.

    PubMed

    Severino, Patricia; Andreani, Tatiana; Chaud, Marco V; Benites, Cibelem I; Pinho, Samantha C; Souto, Eliana B

    2015-01-01

    Essential oils have increased interest as promising ingredients for novel pharmaceutical dosage forms. These oils are reported to provide synergistic effects of their active ingredients, in parallel with their biodegradable properties. In addition, essential oils may also have therapeutic effects in diabetes, inflammation, cancer and to treat microbial infections. However, there are some physicochemical properties that may limit their use as active compounds in several formulations, such as high volatility, low-appealing organoleptic properties, low bioavailability and physicochemical instability, as result of exposure to light, oxygen and high temperatures. To overcome these limitations, lipid colloidal carriers (e.g. liposomes, solid lipid nanoparticles (SLN), self nanoemulsified drug delivery systems (SNEDDS)) have been pointed out as suitable carriers to improve bioavailability, low solubility, taste, flavor and long-term storage of sensitive compounds. This paper reviews the potential beneficial effects of formulating essential oils in pharmaceutical applications using colloidal carriers as delivery systems.

  11. Analysis of persistent halogenated hydrocarbons in fish feeds containing fish oil and other alternative lipid sources.

    PubMed

    You, Jing; Kelley, Rebecca A; Crouse, Curtis C; Trushenski, Jesse T; Lydy, Michael J

    2011-09-15

    A trade-off exists between beneficial n-3 long-chain polyunsaturated acids and toxic persistent halogenated hydrocarbons (PHHs), both of which primarily originate from fish oil commonly used in fish feeds. Alternative lipid sources are being investigated for use in fish feeds to reduce harmful contaminant accumulation, hence, research is needed to evaluate PHHs in fish feeds with various lipid compositions. An analytical method was developed for PHHs including nine organochlorine insecticides (OCPs), 26 polychlorinated biphenyls (PCBs) and seven polybrominated diphenyl ethers (PBDEs) in fish feeds with differing proportions of fish oils and alternative lipid sources by GC-ECD after accelerated solvent extraction, gel permeation chromatography (GPC), and sulfuric acid cleanup. The GPC removed the majority of the neutral lipids and sulfuric acid treatment effectively destroyed the polar lipids. Thus, the combination of the two methods removed approximately 99.7% of the lipids in the extracts. The method detection limits were less than 5 ng/g dry weight (dw) for most PHHs, while recoveries were 75-118%, 67-105%, 69-92%, 63-100% and 94-144% with relative standard deviations of 0.2-39%, 0.3-20%, 0.5-12%, 1.5-18% and 1.5-15% for PHHs in five types of fish feeds made from different lipid sources. Although the source of lipid showed no impact on cleanup efficiency and the developed method worked well for all feeds, fish feeds with 100% fish oil contained background PHHs and more interference than feeds containing alternative lipids. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Modulation of human lipids and lipoproteins by dietary palm oil and palm olein: a review.

    PubMed

    Sundram, K

    1997-03-01

    Several human clinical trials have now evaluated palm oil's effects on blood lipids and lipoproteins. These studies suggest that palm oil and palm olein diets do not raise plasma TC and LDL-cholesterol levels to the extent expected from its fatty acid composition. With maximum substitution of palm oil in a Western type diet some coronary heart disease risk factors were beneficially modulated: HDL2-cholesterol was significantly increased while the apolipoprotein B/A1 ratio was beneficially lowered by palm oil. Comparison of palm olein with a variety of monounsaturated edible oils including rapeseed, canola, and olive oils has shown that plasma and LDL-cholesterol were not elevated by palm olein. To focus these findings, specific fatty acid effects have been evaluated. Myristic acid may be the most potent cholesterol raising saturated fatty acid. Palmitic acid effects were largely comparable to the monounsaturated oleic acid in normolipidaemic subjects while trans fatty acids detrimentally increased plasma cholesterol, LDL-cholesterol, lipoprotein Lp(a) and lowered the beneficial HDL-cholesterol. Apart from these fatty acids there is evidence that the tocotrienols in palm oil products may have a hypocholesterolaemic effect. This is mediated by the ability of the tocotrienols to suppress HMG-CoA reductase. These new findings on palm oil merit a scientific reexamination of the classical saturated fat-lipid hypothesis and its role in lipoprotein regulation.

  13. Why Fish Oil Fails: A Comprehensive 21st Century Lipids-Based Physiologic Analysis

    PubMed Central

    Peskin, B. S.

    2014-01-01

    The medical community suffered three significant fish oil failures/setbacks in 2013. Claims that fish oil's EPA/DHA would stop the progression of heart disease were crushed when The Risk and Prevention Study Collaborative Group (Italy) released a conclusive negative finding regarding fish oil for those patients with high risk factors but no previous myocardial infarction. Fish oil failed in all measures of CVD prevention—both primary and secondary. Another major 2013 setback occurred when fish oil's DHA was shown to significantly increase prostate cancer in men, in particular, high-grade prostate cancer, in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) analysis by Brasky et al. Another monumental failure occurred in 2013 whereby fish oil's EPA/DHA failed to improve macular degeneration. In 2010, fish oil's EPA/DHA failed to help Alzheimer's victims, even those with low DHA levels. These are by no means isolated failures. The promise of fish oil and its so-called active ingredients EPA / DHA fails time and time again in clinical trials. This lipids-based physiologic review will explain precisely why there should have never been expectation for success. This review will focus on underpublicized lipid science with a focus on physiology. PMID:24551453

  14. Liquid domains of lipid monolayers on the surface of oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Pontani, Lea-Laetitia; Bargteil, Dylan; Haase, Martin; Brujic, Jasna; Biophysics and Jamming Team

    2014-03-01

    Immiscible lipids spontaneously decompose into domains, both in cellular membranes and monolayers of amphiphilic films. Here we show that they also form on the surface of oil in water droplets, produced by a microfluidic device. In this case, curvature induced instabilities are balanced by surface tension to produce diverse surface morphologies, such as spots, stripes and hemispheres. Surprisingly, the ternary phase diagram shows that these structures are present even in binary mixtures and can be stable over weeks. We investigate the origin of domain stability by tuning the parameters of the forces that play a role in this process, such as the electrostatic repulsion between the domains, the surface tension of each phase or the size, i.e. the curvature of the droplets. Understanding those mechanisms will not only shed light on the physics of lipid domains in biological membranes but will also allow us to tune this stability to produce droplets with a given number of patches that can then be functionalized for self-assembly with controlled valency.

  15. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration

    PubMed Central

    Tichota, Deise Michele; Silva, Ana Catarina; Sousa Lobo, José Manuel; Amaral, Maria Helena

    2014-01-01

    Given its advantages in skin application (eg, hydration, antiaging, and protection), argan oil could be used in both dermatological and cosmetic formulations. Therefore, the preparation of nanostructured lipid carriers (NLCs) using argan oil as a liquid lipid is a promising technique, since the former constitute well-established systems for dermal delivery. The aim of this work was to develop a topical formulation of argan oil NLCs to improve skin hydration. Firstly an NLC dispersion was developed and characterized, and afterward an NLC-based hydrogel was prepared. The in vivo evaluation of the suitability of the prepared formulation for the proposed application was assessed in volunteers, by measuring different skin-surface parameters for 1 month. An argan oil NLC-based hydrogel formulation was successfully prepared and characterized. Moreover, the entrapment of the NLCs in the hydrogel net did not affect their colloidal sizes. Additionally, it was observed that this formulation precipitated an increase in skin hydration of healthy volunteers. Therefore, we concluded that the preparation of NLC systems using argan oil as the liquid lipid is a promising strategy, since a synergistic effect on the skin hydration was obtained (ie, NLC occlusion plus argan oil hydration). PMID:25143733

  16. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration.

    PubMed

    Tichota, Deise Michele; Silva, Ana Catarina; Sousa Lobo, José Manuel; Amaral, Maria Helena

    2014-01-01

    Given its advantages in skin application (eg, hydration, antiaging, and protection), argan oil could be used in both dermatological and cosmetic formulations. Therefore, the preparation of nanostructured lipid carriers (NLCs) using argan oil as a liquid lipid is a promising technique, since the former constitute well-established systems for dermal delivery. The aim of this work was to develop a topical formulation of argan oil NLCs to improve skin hydration. Firstly an NLC dispersion was developed and characterized, and afterward an NLC-based hydrogel was prepared. The in vivo evaluation of the suitability of the prepared formulation for the proposed application was assessed in volunteers, by measuring different skin-surface parameters for 1 month. An argan oil NLC-based hydrogel formulation was successfully prepared and characterized. Moreover, the entrapment of the NLCs in the hydrogel net did not affect their colloidal sizes. Additionally, it was observed that this formulation precipitated an increase in skin hydration of healthy volunteers. Therefore, we concluded that the preparation of NLC systems using argan oil as the liquid lipid is a promising strategy, since a synergistic effect on the skin hydration was obtained (ie, NLC occlusion plus argan oil hydration).

  17. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    PubMed Central

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  18. Lipid recovery from a vegetable oil emulsion using microbial enrichment cultures.

    PubMed

    Tamis, Jelmer; Sorokin, Dimitry Y; Jiang, Yang; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2015-01-01

    Many waste streams have a relatively high vegetable oil content, which is a potential resource that should be recovered. Microbial storage compound production for the recovery of lipids from lipid-water emulsions with open (unsterilized) microbial cultures was investigated in a sequencing batch reactor using a diluted vegetable oil emulsion as model substrate. After feeding, triacylglycerides (TAG) were accumulated intracellular by the microbial enrichment culture and subsequently used for growth in the remainder of the sequencing batch cycle. Roughly 50% of the added TAG could be recovered as intracellular lipids in this culture. The maximum lipid storage capacity of the enrichment culture was 54% on volatile suspended solids (VSS) mass basis in a separate fed-batch accumulation experiment. The microbial community was dominated by a lipolytic fungus, Trichosporon gracile, that was responsible for intracellular lipid accumulation but also a significant fraction of lipolytic and long chain fatty-acid-utilizing bacteria was present. Herewith, we demonstrate an effective strategy for enrichment of a microbial community that can accumulate significant amounts of lipids from wastewaters without the need for sterilization of substrates or equipment. Further optimization of this process will make recovery of lipids from wastewater possible.

  19. Analysis of Lipoplex Structure and Lipid Phase Changes

    SciTech Connect

    Koynova, Rumiana

    2012-07-18

    Efficient delivery of genetic material to cells is needed for tasks of utmost importance in the laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising nonviral gene carriers. They form complexes (lipoplexes) with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection) is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for a rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. A viewpoint now emerging is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar phase transition upon mixing with cellular lipids and were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release. Thus, understanding the lipoplex structure and the phase changes upon interacting with membrane lipids is important for the successful application of the cationic lipids as gene carriers.

  20. Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review

    PubMed Central

    Suárez-Jiménez, Guadalupe Miroslava; López-Saiz, Carmen María; Ramírez-Guerra, Hugo Enrique; Ezquerra-Brauer, Josafat Marina; Ruiz-Cruz, Saul; Torres-Arreola, Wilfrido

    2016-01-01

    In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils. PMID:27886145

  1. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage.

    PubMed

    Lu, F S H; Bruheim, I; Haugsgjerd, B O; Jacobsen, C

    2014-08-15

    The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40 °C) for 28 or 42 days. The oxidative stability of krill oil was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature firstly increased the lipid oxidation in krill oil and subsequently the non-enzymatic browning reactions. The occurrence of these reactions was most likely due to the reaction between α-dicarbonyl or carbonyl compounds with amino acids or ammonia. In addition to tocopherol and astaxanthin esters, the formation of pyrroles might help to protect the krill oil against lipid oxidation.

  2. [Effects of vegetal oil supplementation on the lipid profile of Wistar rats ].

    PubMed

    Poveda, Elpidia; Ayala, Paola; Milena, Rodríguez; Ordóñez, Edgar; Baracaldo, Cesar; Delgado, Willman; Guerra, Martha

    2005-03-01

    Dietary tocopherols, tocotrienols and saturated, mono and polyunsaturated fatty acids have been reported to have an effect on blood lipid profiles. In Colombia, vegetable oils (palm, soy, corn, sunflower, and canola) are a common dietary constituent and consumed in high quantities. In the current study, the effects of vegetable oil consumption was examined by measuring blood concentrations of triglycerides (TG), total cholesterol (TC) and HDL cholesterol (HDL-C) in male Wistar rats. The concentrations of tocopherols, tocotrienols, and fatty acids in each oil was quantified by High Performance Liquid Chromatography (HPLC). Each rat diet was supplemented with 0.2 ml/day with one oil type. Over a 4-week period, groups of animals were sacrificed weekly and blood samples were obtained to quantify TC, TG and HDL-C for each oil class. Statistical analyses included mean, standard deviation, ANOVA and Bonferroni comparisons tests. Triglyceride content was not affected except in the control and the soy group in the third treatment week, although a tendency for decreased TG was noted in the palm oil group and for increased TG in the sunflower oil and canola oil groups. No significant differences in total cholesterol were observed. In HDL-C, significant differences were present for every treatment week (p = 0.005); this represented a decreasing trend in palm oil group and an increasing trend in the sunflower and corn oil groups. The oils effected changes in the blood lipid profile. A small amount of saturated fatty acids (tocopherol and tocotrienol) were favourable for the HDL-C increase. The presenct of tocorienols tended to decrease the TG and probably helped attenuate the unfavorable effects of the saturated fatty acids.

  3. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  4. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain.

    PubMed

    Helal, G A; Sarhan, M M; Abu Shahla, A N K; Abou El-Khair, E K

    2006-01-01

    The mycelial growth of Aspergillus niger van Tieghem was completely inhibited using 1.5 (microl/ml or 2.0 (microl/ml of Cymbopogon citratus essential oil applied by fumigation or contact method in Czapek liquid medium, respectively. This oil was found also to be fungicidal at the same concentrations. The sublethal doses 1.0 and 1.5 (microl/ml inhibited about 70% of fungal growth after five days of incubation and delayed conidiation as compared with the control. Microscopic observations using Light Microscope (LM), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were carried out to determine the ultra structural modifications of A. niger hyphae after treatment with C. citratus essential oil. The hyphal diameter and hyphal wall appeared markedly thinner. This oil also caused plasma membrane disruption and mitochondrial structure disorganization. Moreover, Ca+2, K+ and Mg+2 leakages increased from the fumigated mycelium and its total lipid content decreased, while the saturated fatty acids decreased and unsaturated fatty acids increased. These findings increase the possibility of exploiting C. citratus essential oil as an effective inhibitor of biodegrading and storage contaminating fungi and in fruit juice preservation.

  5. Fish oil supplementation attenuates changes in plasma lipids caused by dexamethasone treatment in rats.

    PubMed

    Barbosa, Amanda Marreiro; Francisco, Priscila de Cássia; Motta, Katia; Chagas, Thayz Rodrigues; Dos Santos, Cristiane; Rafacho, Alex; Nunes, Everson Araújo

    2016-04-01

    Dexamethasone is an anti-inflammatory glucocorticoid that may alter glucose and lipid homeostasis when administered in high doses or for long periods of time. Omega-3 fatty acids, present in fish oil (FO), can be used as potential modulators of intermediary glucose and lipid metabolism. Herein, we evaluate the effects of FO supplementation (1 g·kg(-1) body weight (BW)) on glucose and lipid metabolism in rats treated with dexamethasone (0.5 mg·kg(-1) BW) for 15 days. Adult male Wistar rats were distributed among 4 groups: control (saline, 1 mL·kg(-1) BW and mineral oil, 1 g·kg(-1) BW), DEX (dexamethasone and mineral oil), FO (fish oil and saline), and DFO (fish oil and dexamethasone). Dexamethasone and saline were administered intraperitoneally, and fish oil and mineral oil were administered by gavage. We evaluated functional and molecular parameters of lipid and glycemic profiles at 8 days and at the end of treatment. FO supplementation increased hepatic docosahexaenoic acid (DEX: 5.6% ± 0.7%; DFO: 10.5% ± 0.8%) and eicosapentaenoic acid (DEX: 0.3% ± 0.0%; DFO: 1.3% ± 0.1%) contents and attenuated the increase of plasma triacylglycerol, total cholesterol, and non-high-density lipoprotein cholesterol concentrations in DFO rats compared with DEX rats. These effects seem not to depend on hepatic expression of insulin receptor substrate 1, protein kinase B, peroxisome proliferator-activated receptor γ coactivator 1-α, and peroxisome proliferator-activated receptor γ. There was no effect of supplementation on body weight loss, fasting glycemia, and glucose tolerance in rats treated with dexamethasone. In conclusion, we show that FO supplementation for 15 days attenuates the dyslipidemia induced by dexamethasone treatment.

  6. Lipid emulsions containing fish oil protect against PN-induced cholestatic liver disease in preterm piglets

    USDA-ARS?s Scientific Manuscript database

    During their first weeks of life preterm infants are dependent on parenteral nutrition (PN). However, PN is associated with the development of cholestasis (PN Associated Liver Disease PNALD). Studies in children showed that fish oil-based lipid emulsions can reverse PNALD; whether they prevent PNALD...

  7. Evening primrose oil in rheumatoid arthritis: changes in serum lipids and fatty acids.

    PubMed Central

    Jäntti, J; Nikkari, T; Solakivi, T; Vapaatalo, H; Isomäki, H

    1989-01-01

    The serum concentration of lipids and composition of fatty acids after overnight fasting were studied in 18 patients with rheumatoid arthritis treated for 12 weeks with either 20 ml of evening primrose oil containing 9% of gamma-linolenic acid or olive oil. The serum concentrations of oleic acid, eicosapentaenoic acid, and apolipoprotein B decreased and those of linoleic acid, gamma-linolenic acid, dihomo-gamma-linolenic acid, and arachidonic acid increased during treatment with evening primrose oil. During olive oil treatment the serum concentration of eicosapentaenoic acid decreased and those of high density lipoprotein-cholesterol and apolipoprotein A-I increased slightly. The decrease in serum eicosapentaenoic acid and the increase in arachidonic acid concentrations induced by evening primrose oil may not be favourable effects in patients with rheumatoid arthritis in the light of the roles of these fatty acids as precursors of eicosanoids. PMID:2649022

  8. Influences of the Structure of Lipids on Thermal Stability of Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Hai, Nan-Nan; Zhou, Xin; Li, Ming

    2015-08-01

    The binding free energy (BFE) of lipid to lipid bilayer is a critical factor to determine the thermal or mechanical stability of the bilayer. Although the molecular structure of lipids has significant impacts on BFE of the lipid, there lacks a systematic study on this issue. In this paper we use coarse-grained molecular dynamics simulation to investigate this problem for several typical phospholipids. We find that both the tail length and tail unsaturation can significantly affect the BFE of lipids but in opposite way, namely, BFE decreases linearly with increasing length, but increases linearly with addition of unsaturated bonds. Inspired by the specific structure of cholesterol which is a crucial component of biomembrane, we also find that introduction of carbo-ring-like structures to the lipid tail or to the bilayer may greatly enhance the stability of the bilayer. Our simulation also shows that temperature can influence the bilayer stability and this effect can be significant when the bilayer undergoes phase transition. These results may be helpful to the design of liposome or other self-assembled lipid systems. Support by the National Natural Science Foundation of China under Grant Nos. 91027046 and 11105218.

  9. Development of lycopene-loaded nanostructured lipid carriers: effect of rice oil and cholesterol.

    PubMed

    Riangjanapatee, P; Müller, R H; Keck, C M; Okonogi, S

    2013-09-01

    Nanostructured lipid carriers (NLC) were developed using a skin-compatible surfactant and natural lipid materials (rice oil, cholesterol) to incorporate lycopene. Characteristics of the NLC were explored in comparison with nanoemulsions and solid-lipid nanoparticles (SLN). Photon correlation spectroscopy, laser diffractometry (LD) and differential scanning calorimetry were used to determine particle size and thermal stability. Particle size expressed as LD (0.99) was 405 nm for the SLN, 350 nm for the NLC without cholesterol and 287 nm for the NLC with cholesterol. Rice oil and cholesterol enabled the formation of smaller particles, but cholesterol also reduced drug stability in the NLC. To preserve chemical stability of lycopene in the NLC, cholesterol should be avoided and storage should be at 4 degrees C or at room temperature.

  10. Effects of crude rapeseed oil on lipid composition in Arctic charr Salvelinus alpinus.

    PubMed

    Pettersson, A; Pickova, J; Brännäs, E

    2009-10-01

    This study investigated the effects of crude rapeseed oil (RO) on lipid content and composition in muscle and liver of Arctic charr Salvelinus alpinus. Triplicate groups were fed diets containing fish oil (FO):RO ratio of 100:0, 75:25, 50:50 and 25:75 until two-fold mass increase. Total lipid content increased significantly in the liver with higher proportion of RO in the diet. Profound effects were seen in the fatty acid composition in the analysed tissues with a reduction in 20:5n-3 and 22:6n-3 and an increase in 18:2n-6 with higher RO content in the diets. A drop in cholesterol content was seen at 25% inclusion of RO in both tissues. Wild-caught fish contained a considerably higher amount of 20:4n-6 in both storage and membrane lipids of white muscle compared with the experimental fish.

  11. Oil Red O-positive lipid in peritoneal fluid from a horse with a rectal tear.

    PubMed

    Brown, Jennifer S; Johnson, Mark C; Sims, Will P; Boone, Lindsey H; Swor, Tamara M; Weeks, Bradley R

    2011-06-01

    A 4-year-old Quarter Horse mare was presented to the Texas A&M University Veterinary Medical Teaching Hospital for evaluation of a rectal tear. On initial evaluation, rectal palpation and colonoscopy revealed a grade IIIb rectal tear. Analysis of peritoneal fluid revealed a modified transudate. Preliminary supportive care included fluid therapy and mineral oil administration via nasogastric tube. Approximately 48 hours after presentation, a second abdominocentesis was performed, and cytologic examination of the fluid revealed a marked suppurative exudate. Round clear nonrefractile material observed within neutrophils and macrophages and in the background stained bright pink to red with Oil Red O, confirming the material as lipid, likely from leakage of mineral oil through the rectal tear. The condition of the mare deteriorated and euthanasia was elected due to the poor prognosis. At necropsy, gross and histologic findings included peritoneal effusion and a full-thickness rectal tear with transmural necrotizing pyogranulomatous colitis and fibrinous peritonitis. To the authors' knowledge, this is the first reported case of Oil Red O-positive lipid vacuoles in the peritoneal fluid of a horse from presumed leakage of mineral oil through a transmural rectal perforation. The frequency of this occurrence in horses is unknown, but it is important for cytopathologists to be familiar with the appearance and significance of lipid-type droplets in phagocytic cells in cytologic fluid analysis specimens.

  12. Lipid composition of Castanea sativa Mill. and Aesculus hippocastanum fruit oils.

    PubMed

    Zlatanov, Magdalen D; Antova, Ginka A; Angelova-Romova, Maria J; Teneva, Olga T

    2013-02-01

    Sweet and horse chestnut fruit contain carbohydrates, fibers, proteins, lipids, vitamins, glycosides and coumarin. The lipids are rich in biologically active substances as fatty acids, phospholipids, sterols and tocopherols. The fruit has been used as food, and for medicinal purposes to treat inflammatory and vascular problems. The fruits of sweet and horse chestnut contain 20 and 81 g kg(-1) glyceride oil respectively. The content of phospholipids in the oils was 49 and 3 g kg(-1). Sterols were found to be 8 and 12 g kg(-1). In the tocopherol fraction (1920 and 627 mg kg(-1)) γ-tocopherol predominated in the sweet chestnut oil (927 g kg(-1)); γ-tocopherol (591 g kg(-1)) and α-tocopherol (402 g kg(-1)) in horse chestnut oil. Palmitic, oleic and linoleic acids predominated in the triacylglycerols. Higher quantities of palmitic and oleic acids were established in the phospholipids and sterol esters. The fruits of horse and sweet chestnut have a close lipid composition. The oils are rich in essential fatty acids, such as linoleic and linolenic, as well as biologically active substances: phospholipids, sterols and tocopherols. This fact determines the good food value of sweet chestnut fruit and the possibilities for use of horse chestnuts in pharmacy and for technical purposes. © 2012 Society of Chemical Industry.

  13. Paclitaxel-loaded lipid nanoparticles for topical application: the influence of oil content on lipid dynamic behavior, stability, and drug skin penetration

    NASA Astrophysics Data System (ADS)

    Tosta, Fabiana Vaz; Andrade, Lígia Marquez; Mendes, Lívia Palmerston; Anjos, Jorge Luiz V.; Alonso, Antonio; Marreto, Ricardo Neves; Lima, Eliana Martins; Taveira, Stephânia Fleury

    2014-12-01

    Paclitaxel (PAC) has shown potential for regulating hyperkeratosis in skin diseases and its encapsulation in lipid nanoparticles could improve topical treatments. So, solid lipid nanoparticles (SLN) and nanostructured lipid carriers with 12.5 % (NLC1) and 25 % (NLC2) oil content were obtained and characterized. Lipid dynamic behavior was investigated through electron paramagnetic resonance spectroscopy (EPR) and comparative evaluations of EPR, and stability and skin permeation studies were performed. High entrapment efficiency was obtained for all formulations (over 90 %). The absence (SLN) or addition of 12.5 % oil (NLC1) did not significantly alter nanoparticle mean diameter, but 25 % oil (NLC2) produced smaller particles (270.6 ± 13.5 nm). EPR studies showed that 12.5 % oil increased NLC1 fluidity at the surface. Surprisingly, more oil increased NLC2 superficial rigidity, due to the decrease in nanoparticle mean diameter and additional PAC accumulation in the superficial environment. The oil in lipid matrices improved the physicochemical stability of NLC formulations, and drug-oil chemical affinity prevented PAC expulsion during storage time. NLC2 improved PAC skin penetration and was the only formulation capable of enhancing PAC penetration to deeper skin layers (about 6.48 ± 1.39 µg/cm2). PAC-NLC2 seemed to be very promising nanocarriers for the topical delivery of PAC.

  14. The olive oil-based lipid clinoleic blocks leukocyte recruitment and improves survival during systemic inflammation: a comparative in vivo study of different parenteral lipid emulsions.

    PubMed

    Buschmann, Kirsten; Poeschl, Johannes; Braach, Natascha; Hudalla, Hannes; Kuss, Navina; Frommhold, David

    2015-01-01

    Although fish oil-based and olive oil-based lipid emulsions have been shown to exert anti-inflammatory functions, the immunomodulating properties of lipids are still controversial. Therefore, we investigated the anti-inflammatory effect of three different parenterally administered lipid emulsions in vivo: olive oil-based Clinoleic, fish oil-based Smoflipid, and soybean oil-based Lipofundin. We observed leukocyte recruitment in inflamed murine cremaster muscle using intravital microscopy and survival in a murine model of LPS-induced systemic inflammation and analyzed expression of leukocyte and endothelial adhesion molecules. Olive oil-based Clinoleic and fish oil-based Smoflipid profoundly inhibited leukocyte adhesion compared to Lipofundin during LPS-induced inflammation of the murine cremaster muscle. In the trauma model of cremaster muscle inflammation, Lipofundin was the only lipid emulsion that even augmented leukocyte adhesion. In contrast to Smoflipid and Lipofundin, Clinoleic effectively blocked leukocyte recruitment and increased survival during lethal endotoxemia. Flow chamber experiments and analysis of adhesion molecule expression suggest that both endothelial and leukocyte driven mechanisms might contribute to anti-inflammatory effects of Clinoleic. We conclude that the anti-inflammatory properties of Clinoleic are superior to those of Smoflipid and Lipofundin even during systemic inflammation. Thus, these results should stimulate further studies investigating parenteral lipids as an anti-inflammatory strategy in critically ill patients.

  15. Effects of extra virgin olive oil and fish oil on lipid profile and oxidative stress in patients with metabolic syndrome.

    PubMed

    Venturini, Danielle; Simão, Andréa Name Colado; Urbano, Mariana Ragassi; Dichi, Isaias

    2015-06-01

    The aim of this study was to verify if extra virgin olive oil and fish oil have a synergistic effect on lipid and oxidative stress parameters in patients with metabolic syndrome (MetS). This intervention study included 102 patients (81 women and 21 men) with MetS (mean age 51.45 ± 8.27 y) from the ambulatory center of the University Hospital of Londrina, Paraná, Brazil. Patients were randomly assigned to one of four groups: Patients in the control group (CG) were instructed to maintain their usual diet; the second group (fish oil group [FO]) received 3 g/d of fish oil ω-3 fatty acids (10 capsules); the third group (extra virgin olive oil group [OO]) received 10 mL/d of extra virgin olive oil at lunch and dinner; and the fourth group (fish oil and extra virgin olive oil group [FOO]) received 3 g/d of fish oil ω-3 fatty acids and 10 mL/d of extra virgin olive oil. MetS related markers and oxidative stress were measured at baseline and after 90 d. Differences across treatment groups showed a statistically significant decrease (P < 0.05) in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) when FOO was compared with CG and OO, respectively. Hydroperoxides showed a significant decrease (P < 0.05) when FOO was compared with CG, whereas there was an increase in total peroxyl radical-trapping antioxidant potential/advanced oxidation protein products (TRAP/AOPP; P < 0.05) in FOO when compared with FO. In relation to baseline values, there was a significant decrease (P < 0.05) in LDL-C values, and TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C indexes in FOO. There was also a decrease (P < 0.05) in hydroperoxides, in AOPP and in AOPP/TRAP index in FOO, and an increase (P < 0.05) in TRAP/AOPP index in FOO and in TRAP/uric acid ratio in OO. The present study provides evidence that increased dietary ω-3 polyunsaturated fatty acids and extra virgin olive oil have beneficial synergistic effects on lipid metabolism and oxidative stress in

  16. Lipids for Health and Beauty: Enzymatic Modification of Vegetable Oil

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid has been extensively investigated for its potential as a cosmetic and pharmaceutical agent. We have prepared lipophilic derivatives of ferulic acid by a simple, enzyme-catalyzed transesterification reaction of ethyl ferulate with vegetable oils. Immobilized Candida antarctica lipase B...

  17. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids.

    PubMed

    Zeb, Alam; Ullah, Sana

    2015-11-01

    Thermally oxidized vegetable ghee was fed to the rabbits for 14 days with specific doses of sea buckthorn seed oil (SO). The ghee and SO were characterized for quality parameters and fatty acid composition using GC-MS. Rabbits serum lipid profile, hematology and histology were investigated. Major fatty acids were palmitic acid (44%) and oleic acid (46%) in ghee, while SO contains oleic acid (56.4%) and linoleic acid (18.7%). Results showed that oxidized vegetable ghee increases the serum total cholesterol, LDL-cholesterols, triglycerides and decrease the serum glucose. Oxidized ghee produced toxic effects in the liver and hematological parameters. Sea buckthorn oil supplementation significantly lowered the serum LDL-cholesterols, triglycerides and increased serum glucose and body weight of the animals. Sea buckthorn oil was found to reduce the toxic effects and degenerative changes in the liver and thus provides protection against the thermally oxidized lipids induced oxidative stress.

  18. Characterization of lipid oxidation in plant oils by micro-calorimetry.

    PubMed

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Gargouri, Mohamed; Leal-Calderon, Fernando; Cansell, Maud

    2016-04-15

    A new experimental device was developed, based on the measurement of the heat flux dissipated during chemical reactions. The technique was exploited for real time monitoring of lipid oxidation in plant oils. The thermopiles were used in adiabatic configuration in order to measure the entire heat flux and improve sensitivity. Measurements were operated with a resolution of few μW as required to follow low exothermic reactions like oxidation. The validation of the device was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions. Our experimental approach involved several plant oils analyzed in isothermal conditions. This novel technique provides a versatile, sensitive, solvent-free and yet low-cost method to assess lipid oxidation stability, particularly suitable for the fast screening of plant oils.

  19. The essential oil secretory structures of Prostanthera ovalifolia (Lamiaceae).

    PubMed

    Gersbach, P V

    2002-03-01

    The structure of the essential oil secretory tissues of Prostanthera ovalifolia R.Br was investigated using bright- and dark-field optical microscopy, and scanning and transmission electron microscopy. The leaves of P. ovalifolia have glandular trichomes of the peltate type common to many Lamiaceae species. The trichomes consist of a basal cell embedded in the epidermis, a stalk cell with heavily cutinized walls and a 16-celled secretory head, but they differ from those of many previously reported Lamiaceae species in their morphological form defined by the elevated cuticle. The sub-cuticular space contains a mixture of lipid and aqueous phases. Secretory cells have dense cytoplasm with many leucoplasts present. Volatile terpenoids are eliminated from the cytoplasm into the sub-cuticular space, the site of essential oil accumulation, via granulocrine secretion.

  20. Characterization and cytotoxicity of nanostructured lipid carriers formulated with olive oil, hydrogenated palm oil, and polysorbate 80.

    PubMed

    How, Chee W; Rasedee, Abdullah; Abbasalipourkabir, Roghayeh

    2013-06-01

    Nanostructured lipid carriers (NLC) composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Before NLC can be used as drug carriers, the cytotoxicity of their components must be ascertained. The cytotoxicity of solid lipids (trilaurin, palmitin, docosanoid acid, and hydrogenated palm oil [HPO]) and surfactants (Polysorbate 20, 80, and 85) were determined on BALB/c 3T3 cells. The HPO and Polysorbate 80 were least cytotoxic and used with olive oil in the formulation of NLC. The particle size, polydispersity index, zeta potential, specific surface area, and crystallinity index of the NLC were 61.14 nm, 0.461, -25.4 mV, and 49.07 m(2) and 27.12% respectively, while the melting point was 4.3 °C lower than of HPO. Unlike in serum-free, NLC incubated in fetal bovine serum-supplemented medium did not show particle growth, suggesting that serum proteins in medium inhibit nanoparticles aggregation. The study also showed that NLC was less toxic to BALB/c 3T3 cells than Polysorbate 80. Thus, NLC with olive oil, HPO, and Polysorbate 80 as components are potentially good drug carriers with minimal cytotoxicity on normal cells.

  1. The embryo and the endosperm contribute equally to argan seed oil yield but confer distinct lipid features to argan oil.

    PubMed

    Errouane, Kheira; Doulbeau, Sylvie; Vaissayre, Virginie; Leblanc, Olivier; Collin, Myriam; Kaid-Harche, Meriem; Dussert, Stéphane

    2015-08-15

    In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The characteristics and potential applications of structural lipid droplet proteins in plants.

    PubMed

    Laibach, Natalie; Post, Janina; Twyman, Richard M; Gronover, Christian Schulze; Prüfer, Dirk

    2015-05-10

    Plant cytosolic lipid droplets are storage organelles that accumulate hydrophobic molecules. They are found in many tissues and their general structure includes an outer lipid monolayer with integral and associated proteins surrounding a hydrophobic core. Two distinct types can be distinguished, which we define here as oleosin-based lipid droplets (OLDs) and non-oleosin-based lipid droplets (NOLDs). OLDs are the best characterized lipid droplets in plants. They are primarily restricted to seeds and other germinative tissues, their surface is covered with oleosin-family proteins to maintain stability, they store triacylglycerols (TAGs) and they are used as a source of energy (and possibly signaling molecules) during the germination of seeds and pollen. Less is known about NOLDs. They are more abundant than OLDs and are distributed in many tissues, they accumulate not only TAGs but also other hydrophobic molecules such as natural rubber, and the structural proteins that stabilize them are unrelated to oleosins. In many species these proteins are members of the rubber elongation factor superfamily. NOLDs are not typically used for energy storage but instead accumulate hydrophobic compounds required for environmental interactions such as pathogen defense. There are many potential applications of NOLDs including the engineering of lipid production in plants and the generation of artificial oil bodies. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Coconut oil is associated with a beneficial lipid profile in pre-menopausal women in the Philippines.

    PubMed

    Feranil, Alan B; Duazo, Paulita L; Kuzawa, Christopher W; Adair, Linda S

    2011-01-01

    Coconut oil is a common edible oil in many countries, and there is mixed evidence for its effects on lipid profiles and cardiovascular disease risk. Here we examine the association between coconut oil consumption and lipid profiles in a cohort of 1,839 Filipino women (age 35-69 years) participating in the Cebu Longitudinal Health and Nutrition Survey, a community based study in Metropolitan Cebu. Coconut oil intake was estimated using the mean of two 24-hour dietary recalls (9.5±8.9 grams). Lipid profiles were measured in morning plasma samples collected after an overnight fast. Linear regression models were used to estimate the association between coconut oil intake and each plasma lipid outcome after adjusting for total energy intake, age, body mass index (BMI), number of pregnancies, education, menopausal status, household assets and urban residency. Dietary coconut oil intake was positively associated with high density lipoprotein cholesterol especially among pre-menopausal women, suggesting that coconut oil intake is associated with beneficial lipid profiles. Coconut oil consumption was not significantly associated with low density lipoprotein cholesterol or triglyceride values. The relationship of coconut oil to cholesterol profiles needs further study in populations in which coconut oil consumption is common.

  4. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism.

    PubMed

    Michalski, M C; Genot, C; Gayet, C; Lopez, C; Fine, F; Joffre, F; Vendeuvre, J L; Bouvier, J; Chardigny, J M; Raynal-Ljutovac, K

    2013-10-01

    On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A blend of sesame oil and rice bran oil lowers blood pressure and improves the lipid profile in mild-to-moderate hypertensive patients.

    PubMed

    Devarajan, Sankar; Singh, Ravinder; Chatterjee, Biprabuddha; Zhang, Bo; Ali, Amanat

    2016-01-01

    Sesame oil and rice bran oil are known for their unsaturated fatty acids and antioxidants contents and have been reported to reduce the cardiovascular risk. To determine the effect of a blend of 20% unrefined cold-pressed lignans-rich sesame oil and 80% physically refined γ-oryzanol-rich rice bran oil (Vivo) as cooking oil in mild-to-moderate hypertensive patients. In this prospective, open-label dietary approach, 300 hypertensive patients and 100 normotensives were divided into groups as: (1) normotensives treated with sesame oil blend, (2) hypertensives treated with sesame oil blend, (3) hypertensives treated with nifedipine, a calcium channel blocker (20 mg/d), and (4) hypertensives receiving the combination of sesame oil blend and nifedipine (20 mg/d). Sesame oil blend was supplied to respective groups, and they were instructed to use it as the only cooking oil for 60 days. Resting blood pressure was measured at days 0, 15, 30, 45, and 60, whereas the fasting lipid profile was measured at days 0 and 60. Significant reduction in blood pressure (systolic, diastolic, and mean arterial) from days 0 to 15, 30, 45, and 60 were observed in hypertensives treated with sesame oil blend alone (P < .001), nifedipine alone (P < .001), and combination of sesame oil blend and nifedipine (P < .001). Sesame oil blend with nifedipine-treated group showed greatest reduction in blood pressure. Total cholesterol, low-density lipoprotein cholesterol, triglycerides, and non-high-density lipoprotein cholesterol levels reduced, whereas high-density lipoprotein cholesterol levels increased significantly only in hypertensives treated with sesame oil blend alone and the combination of sesame oil blend and nifedipine (P < .001). We demonstrate for the first time that using a blend of sesame oil and rice bran oil as cooking oil showed a significant antihypertensive and lipid-lowering action and had noteworthy additive effect with antihypertensive medication. Copyright © 2016 National

  6. The effect of consuming oxidized oil supplemented with fiber on lipid profiles in rat model*

    PubMed Central

    Shafaeizadeh, Shila; Jamalian, Jalal; Owji, Ali Akbare; Azadbakht, Leila; Ramezani, Roghayeh; Karbalaei, Narges; Rajaeifard, Abdolreza; Tabatabai, Negar

    2011-01-01

    BACKGROUND: This study was conducted to evaluate the effects of consuming thermally oxidized oil supplemented with pectin on liver glutathione peroxidase activity, serum malondialdehyde and lipid profiles in male Sprague-Dawley rats. METHODS: Fifty growing male Sprague-Dawley rats were randomly divided into different groups. The diets differed only in their fat and pectin content. The diets had fresh sunflower oil or thermally oxidized sunflower oil. The diets were supplemented with pectin in the amount of 50 g/kg diet or not supplemented. Thus, there were four experimental groups: “fresh oil”, “oxidized oil”, “fresh oil + pectin”, “oxidized oil + pectin”. Study duration was 42 days. Non parametric, Kruskal-Wallis and Mann-Whitney tests were used to evaluate mean values of variables in groups. RESULTS: In oil consumption, peroxide, p- Anisidine, thiobarbituric acid, free fatty acid values and total polar compounds increased but iodine value was decreased. In the oxidized oil group compared to the fresh oil group, total cholesterol, high density lipoprotein cholesterol and malondialdehyde increased (p < 0.05). Serum malondialdehyde was decreased in the “oxidized oil + pectin” group compared to the oxidized oil alone (2.82 ± 0.51 vs. 3.61 ± 0.72 nmol/ml; p < 0.05). Total cholesterol decreased in both groups containing pectin compared to their respective diets without supplementation (70.10 ± 10.75 vs. 81.20 ± 13.10 mg/dl; p < 0.05). CONCLUSIONS: Pectin consumption could decrease serum malondialdehyde and cholesterol in the diet that contains oxidized oil. Pectin supplementation could decrease the detrimental effects of thermally oxidized oil. PMID:22973361

  7. Structure of Rhomboid Protease in a Lipid Environment

    PubMed Central

    Vinothkumar, Kutti R.

    2011-01-01

    Structures of the prokaryotic homologue of rhomboid proteases reveal a core of six transmembrane helices, with the active-site residues residing in a hydrophilic cavity. The native environment of rhomboid protease is a lipid bilayer, yet all the structures determined thus far are in a nonnative detergent environment. There remains a possibility of structural artefacts arising from the use of detergents. In an attempt to address the effect of detergents on the structure of rhomboid protease, crystals of GlpG, an Escherichia coli rhomboid protease in a lipid environment, were obtained using two alternative approaches. The structure of GlpG refined to 1. 7-Å resolution was obtained from crystals grown in the presence of lipid bicelles. This structure reveals well-ordered and partly ordered lipid molecules forming an annulus around the protein. Lipid molecules adapt to the surface features of protein and arrange such that they match the hydrophobic thickness of GlpG. Virtually identical two-dimensional crystals were also obtained after detergent removal by dialysis. A comparison of an equivalent structure determined in a completely delipidated detergent environment provides insights on how detergent substitutes for lipid. A detergent molecule is also observed close to the active site, helping to postulate a model for substrate binding and hydrolysis in rhomboids. PMID:21256137

  8. Lipids in photosynthetic reaction centres: structural roles and functional holes.

    PubMed

    Jones, Michael R

    2007-01-01

    Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.

  9. Additive effect of linseed oil supplementation on the lipid profiles of older adults.

    PubMed

    Avelino, Ana Paula A; Oliveira, Gláucia M M; Ferreira, Célia C D; Luiz, Ronir R; Rosa, Glorimar

    2015-01-01

    Linseed oil has been investigated as a rich source of n-3 series polyunsaturated fatty acids, which mainly produce a non-atherogenic lipid profile. The objective of this study was to investigate the effect of linseed oil supplementation associated with nutritional guidelines on the lipid profiles of older adults, according to the intake of saturated fatty acids (SFA). We conducted a double-blind, placebo-controlled clinical trial with 110 older adults randomized in two groups: placebo and linseed oil. The linseed oil group received supplementation with 3 g of linseed oil. Both groups received nutritional guidance and were supplemented for 90 days with monthly blood collection for biochemical analysis. The dietary intake of saturated fat was subdivided into low (<7% SFA/day of the total energy value) and high consumption groups (>7% SFA/day of the total energy value). Low SFA (<7% SFA/day of total energy value) consumption was associated with lower total cholesterol concentrations. However, we observed that the linseed oil group, including older adults who consumed >7% SFA/day, had a greater reduction in total cholesterol than the placebo group (P=0.020). The same was observed for low-density lipoprotein (LDL) cholesterol (P<0.050), suggesting an additive effect of linseed oil and diet. High-density lipoprotein (HDL) cholesterol concentrations were increased significantly in only the linseed group, suggesting that the nutritional intervention alone did not improve HDL cholesterol. The results suggest that the nutritional intervention was effective, but linseed oil showed notable effects by increasing the HDL cholesterol concentration. In addition, consumption of <7% SFA/day of the total energy value increased the effect of linseed oil, demonstrating the importance of reducing the consumption of saturated fat.

  10. Additive effect of linseed oil supplementation on the lipid profiles of older adults

    PubMed Central

    Avelino, Ana Paula A; Oliveira, Gláucia MM; Ferreira, Célia CD; Luiz, Ronir R; Rosa, Glorimar

    2015-01-01

    Background Linseed oil has been investigated as a rich source of n-3 series polyunsaturated fatty acids, which mainly produce a non-atherogenic lipid profile. The objective of this study was to investigate the effect of linseed oil supplementation associated with nutritional guidelines on the lipid profiles of older adults, according to the intake of saturated fatty acids (SFA). Methods We conducted a double-blind, placebo-controlled clinical trial with 110 older adults randomized in two groups: placebo and linseed oil. The linseed oil group received supplementation with 3 g of linseed oil. Both groups received nutritional guidance and were supplemented for 90 days with monthly blood collection for biochemical analysis. The dietary intake of saturated fat was subdivided into low (<7% SFA/day of the total energy value) and high consumption groups (>7% SFA/day of the total energy value). Results Low SFA (<7% SFA/day of total energy value) consumption was associated with lower total cholesterol concentrations. However, we observed that the linseed oil group, including older adults who consumed >7% SFA/day, had a greater reduction in total cholesterol than the placebo group (P=0.020). The same was observed for low-density lipoprotein (LDL) cholesterol (P<0.050), suggesting an additive effect of linseed oil and diet. High-density lipoprotein (HDL) cholesterol concentrations were increased significantly in only the linseed group, suggesting that the nutritional intervention alone did not improve HDL cholesterol. Conclusion The results suggest that the nutritional intervention was effective, but linseed oil showed notable effects by increasing the HDL cholesterol concentration. In addition, consumption of <7% SFA/day of the total energy value increased the effect of linseed oil, demonstrating the importance of reducing the consumption of saturated fat. PMID:26543357

  11. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides.

    PubMed

    Xia, Chunjie; Zhang, Jianguo; Zhang, Weidong; Hu, Bo

    2011-06-02

    The recent energy crisis has triggered significant attention on the microbial synthesis of lipids, which comprise the raw material for biodiesel production. Microbial oil accumulation with filamentous fungi has great potential because filamentous fungi can form pellets during cell growth, and these pellets are much easier to harvest from cell broth. This paper focuses on the cell pelletization process of the oleaginous Mucor circinelloides. We have studied the effect of various cultural conditions on pelletized cell growth and lipid accumulation. This study is the first to report that pH adjustment during cell growth plays a key role in pellet formation of M. circinelloides and describes a handy method by which to induce cell pelletization in submerged fungal cultivation. Our study reveals that cell growth and lipid production are not significantly affected by pelletization and that lipid accumulation is triggered at stressed conditions, such as a high carbon-to-nitrogen ratio and high temperature.

  12. Effects of rice bran oil on plasma lipid concentrations, lipoprotein composition, and glucose dynamics in mares.

    PubMed

    Frank, N; Andrews, F M; Elliott, S B; Lew, J; Boston, R C

    2005-11-01

    Plasma lipid concentrations, lipoprotein composition, and glucose dynamics were measured and compared between mares fed diets containing added water, corn oil (CO), refined rice bran oil (RR), or crude rice bran oil (CR) to test the hypothesis that rice bran oil lowers plasma lipid concentrations, alters lipoprotein composition, and improves insulin sensitivity in mares. Eight healthy adult mares received a basal diet fed at 1.5 times the DE requirement for maintenance and each of the four treatments according to a repeated 4 x 4 Latin square design consisting of four 5-wk feeding periods. Blood samples were collected for lipid analysis after mares were deprived of feed overnight at 0 and 5 wk. Glucose dynamics were assessed at 0 and 4 wk in fed mares by combined intravenous glucose-insulin tolerance tests. Plasma glucose and insulin concentrations were measured, and estimated values of insulin sensitivity (SI), glucose effectiveness, and net insulin response were obtained using the minimal model. Mean BW increased (P = 0.014) by 29 kg (range = 10 to 50 kg) over 5 wk. Mean plasma concentrations of NEFA, triglyceride (TG), and very low-density lipoprotein (VLDL) decreased (P < 0.001) by 55, 30, and 39%, respectively, and plasma high-density lipoprotein and total cholesterol (TC) concentrations increased (P < 0.001) by 15 and 12%, respectively, over 5 wk. Changes in plasma NEFA (r = 0.58; P < 0.001) and TC (r = 0.44; P = 0.013) concentrations were positively correlated with weight gain over 5 wk. Lipid components of VLDL decreased (P < 0.001) in abundance over 5 wk, whereas the relative protein content of VLDL increased by 39% (P < 0.001). Addition of oil to the basal diet instead of water lowered plasma NEFA and TG concentrations further (P = 0.002 and 0.020, respectively) and increased plasma TC concentrations by a greater magnitude (P = 0.072). However, only plasma TG concentrations and VLDL free cholesterol content were affected (P = 0.024 and 0.009, respectively

  13. Bioactive lipids, radical scavenging potential, and antimicrobial properties of cold pressed clove (Syzygium aromaticum) oil.

    PubMed

    Assiri, Adel Mohamad Ali; Hassanien, Mohamed F R

    2013-11-01

    Health promoting cold pressed oils may improve human health and prevent certain diseases. It is hard to find any research concerning the composition and functional properties of cold pressed clove (Syzygium aromaticum) oil (CO). Cold pressed CO was evaluated for its lipid classes, fatty acid profiles, and tocol contents. In addition, antiradical and antimicrobial properties of CO were evaluated. The amounts of neutral lipids in CO was the highest (∼94.7% of total lipids), followed by glycolipids and phospholipids. The main fatty acids in CO were linoleic and oleic, which comprise together ∼80% of total fatty acids. Stearic and palmitic acids were the main saturated fatty acids. α- and γ-tocopherols and δ-tocotrienol were the main detected tocols. CO had higher antiradical action against DPPH• and galvinoxyl radicals than virgin olive oil. The results of antimicrobial properties revealed that CO inhibited the growth of all tested microorganisms. CO had a drastic effect on the biosynthesis of proteins and lipids in cells of Bacillus subtilis. In consideration of potential utilization, detailed knowledge on the composition and functional properties of CO is of major importance.

  14. Lipid oxidation in algae oil-in-water emulsions stabilized by bovine and caprine caseins.

    PubMed

    Mora-Gutierrez, Adela; Attaie, Rahmat; Farrell, Harold M

    2010-04-28

    Caseins (alpha(s1)-, alpha(s2)-, and beta-casein) are phosphoproteins that are capable of binding transition metals and scavenging free radicals; this property makes them good candidates to be used as natural antioxidants in oil-in-water emulsions. Caprine casein exhibits variability in alpha(s1)-casein content generated by genetic polymorphism. This variability in composition could lead to altered antioxidant properties. Thus, the ability of two caprine caseins differing in alpha(s1)-casein content to inhibit lipid oxidation in algae oil-in-water emulsions at 5% oil was investigated and compared to bovine caseinate. All caseins inhibited the formation of lipid oxidation at pH 7.0 as determined by lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS). However, caprine caseins were in general more effective inhibitors of lipid oxidation than the bovine caseins, which may be attributed to their altered casein amino acid content and/or metal binding capabilities. The combination of the carotenoids with bovine and caprine caseins was highly effective at repressing oxidation leading to the speculation that the caseins may inhibit the loss of the carotenoids and/or react with and enhance the carotenoid activity; again some differences between bovine and caprine caseins were observed with caprine caseins being slightly more effective in the presence of carotenoids.

  15. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    USDA-ARS?s Scientific Manuscript database

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  16. Effect of composition on biological fate of oil particles after intravenous injection of O/W lipid emulsions.

    PubMed

    Sakaeda, T; Hirano, K

    1998-01-01

    Plasma concentrations of oil particles after intravenous injection of oil-in-water (O/W) lipid emulsions were monitored based on the plasma concentration of phospholipids (PL) and triglycerides (TG), and the light scattering intensity (LSI) of plasma. Previously, we found that their time profiles after injection of the standard O/W lipid emulsion composed of soybean oil (SO) and egg yolk phosphatides (EYP) were similar and suggested that the oil particles with diameter of about 200 nm were entrapped by reticuloendothelial system (RES). Herein, in order to develop a delivery system to avoid the RES uptake by using the lipid emulsions, biological fate of lipid emulsions with oil particles of various sizes or those emulsified by surfactants with polyoxyethylene segments were subjected to the investigations. Lipid emulsions with oil particles of various sizes (about 150-550 nm) were prepared by altering EYP content. The oil particles were stable in plasma in vitro, but oil particle size decreased time-dependently after intravenous injection. Plasma clearance of oil particles depended on their initial size and was decreased by pretreatment with dextran sulfate 500 (DS500), a known RES suppressor. These results suggested that oil particles are still entrapped by RES, even for small-sized oil particles (about 150 nm). Lipid emulsion with small-sized oil particles was also prepared using medium chain triglycerides. The oil particles were stable in vitro, but the time profiles of plasma concentrations of PL and TG, and LSI of plasma were different, and oil particle size decreased time-dependently after intravenous injection. Plasma clearance of the oil particles also depended on their initial size and was decreased by DS500, suggesting that in vivo instability could be due to RES-mediated processes. Artificial surfactants with polyoxyethylene segments, HCO-60 (HCO60) and polysorbate 80 (PS80), were used for RES avoidance. HCO60 resulted in drastic reduction of the plasma

  17. [STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].

    PubMed

    Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D

    2016-07-01

    There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.

  18. Adsorption of polar lipids at the water-oil interface.

    PubMed

    Reis, P; Miller, R; Leser, M; Watzke, H; Fainerman, V B; Holmberg, K

    2008-06-03

    Dietary fat has long been recognized as an essential component in nutrition. However, most of the lipids present in food need to be converted into more bioavailable compounds. Lipases have a crucial role in converting triglycerides into more polar lipids with increased water solubility and a tendency to form micelles. However, the surface active molecules generated by lipolysis may have a detrimental effect on the interfacial biocatalysis. In the present work we evaluate the interfacial properties of lipase-generated molecules during fat digestion. By using the pendant drop technique we assessed the amphiphilic character of fatty acid salts, monoglycerides, and diglycerides as individual surfactants and mixtures. The experimental results are fitted with a mathematical model, which assists in the determination of the interfacial properties of the surfactants. Our results show that monoglycerides have considerably higher interfacial activity than fatty acid salts and diglycerides. Therefore, the interface will soon be dominated by monoglycerides. The pH dependency of the interfacial activity of fatty acids is also explored in the current work. We believe that our results can contribute to a better understanding of the complex interfacial phenomena occurring during fat digestion.

  19. Lipid-gramicidin interactions: dynamic structure of the boundary lipid by 2D-ELDOR.

    PubMed

    Costa-Filho, Antonio J; Crepeau, Richard H; Borbat, Petr P; Ge, Mingtao; Freed, Jack H

    2003-05-01

    The use of 2D-electron-electron double resonance (2D-ELDOR) for the characterization of the boundary lipid in membrane vesicles of DPPC and gramicidin A' (GA) is reported. We show that 2D-ELDOR, with its enhanced spectral resolution to dynamic structure as compared with continuous-wave electron spin resonance, provides a reliable and useful way of studying lipid-protein interactions. The 2D-ELDOR spectra of the end-chain spin label 16-PC in DPPC/GA vesicles is composed of two components, which are assigned to the bulk lipids (with sharp auto peaks and crosspeaks) and to the boundary lipids (with broad auto peaks). Their distinction is clearest for higher temperatures and higher GA concentrations. The quantitative analysis of these spectra shows relatively faster motions and very low ordering for the end chain of the bulk lipids, whereas the boundary lipids show very high "y-ordering" and slower motions. The y-ordering represents a dynamic bending at the end of the boundary lipid acyl chain, which can then coat the GA molecules. These results are consistent with the previous studies by Ge and Freed (1999) using continuous-wave electron spin resonance, thereby supporting their model for GA aggregation and H(II) phase formation for high GA concentrations. Improved instrumental and simulation methods have been employed.

  20. Direct technique for monitoring lipid oxidation in water-in-oil emulsions based on micro-calorimetry.

    PubMed

    Dridi, Wafa; Toutain, Jean; Sommier, Alain; Essafi, Wafa; Leal-Calderon, Fernando; Cansell, Maud

    2017-09-01

    An experimental device based on the measurement of the heat flux dissipated during chemical reactions, previously validated for monitoring lipid oxidation in plant oils, was extended to follow lipid oxidation in water-in-oil emulsions. Firstly, validation of the approach was performed by correlating conjugated diene concentrations measured by spectrophotometry and the heat flux dissipated by oxidation reactions and measured directly in water-in-oil emulsions, in isothermal conditions at 60°C. Secondly, several emulsions based on plant oils differing in their n-3 fatty acid content were compared. The oxidability parameter derived from the enthalpy curves reflected the α-linolenic acid proportion in the oils. On the whole, the micro-calorimetry technique provides a sensitive method to assess lipid oxidation in water-in-oil emulsions without requiring any phase extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Changes in plasma lipid composition induced by coconut oil. Effects of dipyridamole.

    PubMed

    García-Fuentes, E; Gil-Villarino, A; Zafra, M F; García-Peregrín, E

    2002-03-01

    The comparative effects of 10-20% coconut oil feeding on fatty acid composition of the main lipid classes of chick plasma have been studied with and without simultaneous treatment with dipyridamole in order to clarify the hypolipidemic role of this drug. Coconut oil drastically increased the percentages of lauric and myristic acids in free fatty acid and triacylglycerol fractions, whereas these changes were less pronounced in phospholipids and cholesterol esters. The percentage of arachidonic acid was higher in plasma phospholipids than in the other fractions and was significantly decreased by coconut oil feeding. Linoleic acid, the main fatty acid of cholesterol esters, was drastically increased by coconut oil feeding. Changes induced by the simultaneous administration of dipyridamole were more pronounced in the phospholipids and cholesterol esters than in the other fractions. The fall observed in linoleic acid levels after dipyridamole treatment may be of interest for a lower production of its derived eicosanoids, especially in plasma phospholipids and cholesterol esters.

  2. Modulatory effects and molecular mechanisms of olive oil and other dietary lipids in breast cancer.

    PubMed

    Escrich, Eduard; Solanas, Montserrat; Moral, Raquel; Escrich, Raquel

    2011-01-01

    Breast cancer is the most common cancer among women worldwide. In addition to genetic and endocrine factors, the environment, and specifically dietary habits, plays a key role in the aetiology of this malignancy. Epidemiological and, especially, experimental studies have shown a relationship between dietary lipids and breast cancer although there are conflicting results concerning their potential to modify cancer risk in humans. Abundant data have attributed a potential chemopreventive effect to extra-virgin olive oil (EVOO), the main source of fat in the Mediterranean diet, which is associated with low incidence and mortality rates from cardiovascular disease and some cancers, including that of the breast. It is well-established that the healthy effects of EVOO can be attributed both to its particular fatty acid composition (a high content in oleic acid (OA), a suitable quantity of essential polyunsaturated fatty acids (PUFA) and a relatively low n-6 PUFA/n-3 PUFA ratio) and its richness in minor bioactive compounds such as squalene and phenolic antioxidants. The specific mechanisms by which EVOO and other dietary lipids may exert their modulatory effects on cancer are not fully understood although abundant research has proposed the following: They influence in the stages of the carcinogenesis process, oxidative stress, alteration of the hormonal status, modification of the structure and function of cell membranes, modulation of cell signalling transduction pathways, regulation of gene expression and influence in the immune system. This article will explore the current knowledge of these mechanisms, including our own results in the context of the international literature.

  3. Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production.

    PubMed

    Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S

    2017-06-25

    As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  4. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana*

    PubMed Central

    Hayashi, Yasuko; Otomo, Masayoshi; Mano, Shoji; Oikawa, Kazusato; Hayashi, Makoto; Nishimura, Mikio

    2016-01-01

    Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis. Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis. PMID:27466365

  5. Effects of acylation on the structure, lipid binding, and transfer activity of wheat lipid transfer protein.

    PubMed

    Pato, Christine; Tran, Vinh; Marion, Didier; Douliez, Jean Paul

    2002-03-01

    Study of the effect of protein chemical acylation on their functional properties or activity often brings valuable information regarding structure-function relationships. We performed such work on wheat lipid transfer protein, LTP1, to investigate the role of grafted acyl chains on the lipid binding and transfer properties. LTP1 was acylated by using anhydride derivatives of various chain lengths from C2 to C6. Only the chemical modifications with hexanoic acid yielded a marked effect on the tertiary structure and a slight change in the secondary structure. The affinity of the modified proteins for myristoyl-lysophosphatidylcholine was similar to that of the native protein accompanied by a slight decrease in stoichiometry. Interestingly, the acylation of LTP1 enhanced the lipid transfer activity by at least a factor of 10 for hexanoic chain length. Finally, the grafting of acyl chains was investigated by means of molecular modelling, and an attempt is made to correlate with our experimental data.

  6. Modulation of hepatic lipid metabolism by olive oil and its phenols in nonalcoholic fatty liver disease.

    PubMed

    Priore, Paola; Cavallo, Alessandro; Gnoni, Antonio; Damiano, Fabrizio; Gnoni, Gabriele V; Siculella, Luisa

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease in western countries, being considered the hepatic manifestation of metabolic syndrome. Cumulative lines of evidence suggest that olive oil, used as primary source of fat by Mediterranean populations, may play a key role in the observed health benefits on NAFLD. In this review, we summarize the state of the art of the knowledge on the protective role of both major and minor components of olive oil on lipid metabolism during NAFLD. In particular, the biochemical mechanisms responsible for the increase or decrease in hepatic lipid content are critically analyzed, taking into account that several studies have often provided different and/or conflicting results in animal models fed on olive oil-enriched diet. In addition, new findings that highlight the hypolipidemic and the antisteatotic actions of olive oil phenols are presented. As mitochondrial dysfunction plays a key role in the pathogenesis of NAFLD, the targeting of these organelles with olive oil phenols as a powerful therapeutic approach is also discussed.

  7. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Development of an up-grading process to produce MLM structured lipids from sardine discards.

    PubMed

    Morales-Medina, R; Munio, M; Guadix, A; Guadix, E M

    2017-08-01

    The aim of the work was to produce MLM structured lipids with caprylic acid (M) as medium chain fatty acid located at the external bonds of the glycerol backbone and concentrated polyunsaturated fatty acids (L) from sardine discards (Sardine pilchardus) in the central bond of the glycerol. To that end, the following steps were conducted: (i) fish oil extraction, (ii) Omega-3 free fatty acids (FFA) concentration (low temperature winterization), (iii) two-steps enzymatic esterification and (iv) triacylglycerols (TAG) purification (liquid column chromatography). The resultant purified triacylglycerols accomplished with the oxidative state (peroxide and anisidine value, PV and AV) required for refined oils. As enzymatic treatment, Omega-3 concentrate FFA (Omega-3>600mg Omega-3 per g oil) were esterified with dicaprylic glycerol employing Novozyme 435. This process presented high regioselectivity, with ∼80mol% of concentrated fatty acids esterified at the sn-2 position. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of Repeatedly Heated Palm Oil on Serum Lipid Profile, Lipid Peroxidation and Homocysteine Levels in a Post-Menopausal Rat Model

    PubMed Central

    Adam, Siti Khadijah; Soelaiman, Ima Nirwana; Umar, Nor Aini; Mokhtar, Norhayati; Mohamed, Norazlina; Jaarin, Kamsiah

    2008-01-01

    Oxidized unsaturated fatty acids may contribute to the pathogenesis of atherosclerosis. In the present study, we examined the effects of heated palm oil mixed with 2% cholesterol diet on serum lipid profile, homocysteine and thiobarbituric acid reactive substances (TBARS) levels in estrogen-deficient rats. Twenty-four female Sprague Dawley rats were ovariectomized and then were divided equally into four groups. The control group was given 2% cholesterol diet only throughout the study period. The three treatment groups received 2% cholesterol diet fortified with fresh, once-heated or five-times-heated palm oil, respectively. Serum TBARS, lipid profile and homocysteine levels were measured prior to ovariectomy and at the end of four months of the study. Five-times-heated palm oil caused a significant increase in TBARS and total cholesterol (TC) compared to control (F = 22.529, p < 0.05). There was a significant increase in serum homocysteine in the control as well as five-times heated palm oil group compared to fresh and once-heated palm oil groups (F = 4.432, p < 0.05). The findings suggest that repeatedly heated palm oil increase lipid peroxidation and TC. Ovariectomy increases the development of atherosclerosis as seen in this study. Feeding with fresh and once-heated palm oil does not cause any deleterious effect but repeatedly heated oil may be harmful because it causes oxidative damage thereby predisposing to atherosclerosis. PMID:19148313

  10. Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L. from the White Sea.

    PubMed

    Fokina, N N; Bakhmet, I N; Shklyarevich, G A; Nemova, N N

    2014-12-01

    A study on the effect oil pollution under normal and reduced salinity had on blue mussels Mytilus edulis L. from the White Sea in an aquarium-based experiment and in the natural habitat revealed a change in gill total lipids as a compensatory response. The cholesterol concentration and the cholesterol/phospholipids ratio in gills were found to reflect the impact of the environmental factors (oil pollution and desalination), and evidence adaptive changes in the cell membrane structure. An elevated content of storage lipids (chiefly triacylglycerols) in the mussels in the aquarium experiment indicates, first of all, the uptake and accumulation of oil products in gill cells under both normal and reduced seawater salinity, while high triacylglycerols level in gill littoral mussels from 'control' biotope in the Gulf of Kandalaksha is primarily associated with the mussel׳s pre-spawning period.

  11. Structural Requirements of the Fructan-Lipid Interaction

    PubMed Central

    Vereyken, Ingrid J.; van Kuik, J. Albert; Evers, Toon H.; Rijken, Pieter J.; de Kruijff, Ben

    2003-01-01

    Fructans are a group of fructose-based oligo- and polysaccharides. They are proposed to be involved in membrane protection of plants during dehydration. In accordance with this hypothesis, they show an interaction with hydrated lipid model systems. However, the structural requirements for this interaction are not known both with respect to the fructans as to the lipids. To get insight into this matter, the interaction of several inulins and levan with lipids was investigated using a monomolecular lipid system or the MC 540 probe in a bilayer system. MD was used to get conformational information concerning the polysaccharides. It was found that levan-type fructan interacted comparably with model membranes composed of glyco- or phospholipids but showed a preference for lipids with a small headgroup. Furthermore, it was found that there was an inulin chain-length-dependent interaction with lipids. The results also suggested that inulin-type fructan had a more profound interaction with the membrane than levan-type fructan. MD simulations indicated that the favorable conformation for levan is a helix, whereas inulin tends to form random coil structures. This suggests that flexibility is an important determinant for the fructan-lipid interaction. PMID:12719244

  12. Structure-activity relationship in cationic lipid mediated gene transfection.

    PubMed

    Niculescu-Duvaz, Dan; Heyes, James; Springer, Caroline J

    2003-07-01

    Non-viral synthetic vectors for gene delivery represent a safer alternative to viral vectors. Their main drawback is the low transfection efficiency, especially in vivo. Among the non-viral vectors currently in use, the cationic liposomes composed of cationic lipids are the most common. This review discusses the physicochemical properties of cationic lipids, the formation, macrostructure and specific parameters of the corresponding formulated liposomes, and the effect of all these parameters on transfection efficiency. The optimisation of liposomal vectors requires both the understanding of the biological variables involved in the transfection process, and the effect of the structural elements of the cationic lipids on these biological variables. The biological barriers relevant for in vitro and in vivo transfection are identified, and solutions to overcome them based on rational design of the cationic lipids are discussed. The review focuses on the relationship between the structure of the cationic lipid and the transfection activity. The structure is analysed in a modular manner. The hydrophobic domain, the cationic head group, the backbone that acts as a scaffold for the other domains, the linkers between backbone, hydrophobic domain and cationic head group, the polyethyleneglycol chains and the targeting moiety are identified as distinct elements of the cationic lipids used in gene therapy. The main chemical functionalities used to built these domains, as well as overall molecular features such as architecture and geometry, are presented. Studies of structure-activity relationships of each cationic lipid domain, including the authors', and the trends identified by these studies, help furthering the understanding of the mechanism governing the formation and behaviour of cationic liposomes in gene delivery, and therefore the rational design of new improved cationic lipids vectors capable of achieving clinical significance.

  13. Structural Diversity of the Membrane Core Lipids of Extreme Halophiles.

    PubMed

    Morita, M; Yamauchi, N; Eguchi, T; Kakinuma, K

    1998-01-01

    The structural diversity of the core lipids of extreme halophiles Haloarcula japonica and Halobacterium halobium was investigated. The most significant difference is that Ha. japonica contains sn-2,3-di-O-phytanylglycerol exclusively as the core lipid, whereas Hb. halobium contains both sn-2,3-di-O-phytanylglycerol and sn-2-O-sesterterpanyl (3,7,11,15,19-pentamethyleicosanyl)-3-O-phytanylglycerol.

  14. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    PubMed

    Dai, Yu-Jie; Sun, Li-Li; Li, Meng-Ying; Ding, Cui-Ling; Su, Yu-Cheng; Sun, Li-Juan; Xue, Sen-Hai; Yan, Feng; Zhao, Chang-Hai; Wang, Wen

    2016-03-01

    Many studies have reported that olive oil-based lipid emulsion (LE) formulas of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) may be a viable alternative for parenteral nutrition. However, some randomized controlled clinical trials (RCTs) have raised concerns regarding the nutritional benefits and safety of SMOFs. We searched principally the MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials databases from inception to March 2014 for the relevant literature and conducted a meta-analysis of 15 selected RCTs that 1) compared either olive oil- or SMOF-based LEs with soybean oil-based LEs and 2) reported plasma concentrations of α-tocopherol, oleic acid, and ω-6 (n-6) and ω-3 (n-3) long-chain polyunsaturated fatty acids (PUFAs) and liver concentrations of total bilirubin and the enzymes alanine transaminase, aspartate transaminase, alkaline phosphatase, and γ-glutamyl transferase. The meta-analysis suggested that SMOF-based LEs were associated with higher plasma concentrations of plasma α-tocopherol, oleic acid, and the ω-3 PUFAs eicosapentaenoic and docosahexaenoic acid. Olive oil- and SMOF-based LEs correlated with lower plasma concentrations of long-chain ω-6 PUFAs and were similar to soybean oil-based LEs with regard to their effects on liver function indicators. In summary, olive oil- and SMOF-based LEs have nutritional advantages over soybean oil-based LEs and are similarly safe. However, their performance in clinical settings requires further investigation.

  15. Influence of aqueous phase emulsifiers on lipid oxidation in water-in-walnut oil emulsions.

    PubMed

    Yi, Jianhua; Zhu, Zhenbao; McClements, D Julian; Decker, Eric A

    2014-03-05

    Effects of selected aqueous phase emulsifiers on lipid oxidative stability of water-in-walnut oil (W/O) emulsions stabilized by polyglycerol polyricinoleate (PGPR) were evaluated. The formation of primary oxidation products (lipid hydroperoxides) and secondary oxidation products (headspace hexanal) increased with increasing dodecyltrimethylammonium bromide (DTAB) concentration (0.1-0.2 wt % of emulsions). In contrast, the addition of sodium dodecyl sulfate (SDS) in the aqueous phase reduced lipid hydroperoxide and hexanal formation. In addition, the presence of Tween 20 in the aqueous phase did not significantly influence lipid oxidation rates in W/O emulsions compared to the control (without Tween 20). Whey protein isolate (WPI) was observed to inhibit lipid oxidation in the W/O emulsions (0.05-0.2 wt % of emulsions). Aqueous phase pH had an important impact on the antioxidant capability of WPI, with higher pH improving its ability to inhibit lipid oxidation. The combination of WPI and DTAB in the aqueous phase suppressed the prooxidant effect of DTAB. The combination of WPI and SDS resulted in improved antioxidant activity, with inhibition being greater at pH 7.0 than at pH 3.0. These results suggest that the oxidative stability of W/O emulsions could be improved by the use of suitable emulsifiers in the aqueous phase.

  16. Effect of replacement of fish oil with camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua).

    PubMed

    Hixson, Stefanie M; Parrish, Christopher C; Anderson, Derek M

    2013-12-01

    Camelina (Camelina sativa) oil was tested as a replacement for fish oil in diets for farmed Atlantic cod (Gadus morhua). Camelina differs from other plant oilseeds previously used in aquaculture with high lipid (40 %), α-linolenic acid (40 %), antioxidants and low proportions of saturated fats. Dietary treatments were fed to cod (19 g fish⁻¹ initial weight) for 9 weeks and included a fish oil control (FO), 40 % (CO40) and 80 % (CO80) replacement of fish oil with camelina oil. There was no effect of replacing fish oil with camelina oil included at levels up to 80 % on the growth performance. Cod fed CO80 stored more lipid in the liver (p < 0.01), including more neutral lipid (p < 0.05) and triacylglycerol (p < 0.05). Cod fed CO80 decreased in total polyunsaturated fatty acids (PUFAs) in muscle compared to CO40 and FO (p < 0.05), increased in monounsaturated fatty acids (p < 0.01), decreased in total ω3 fatty acids (FO > CO40 > CO80; p < 0.01) and increased in total ω6 fatty acids (FO < CO40 < CO80; p < 0.01). In the liver, long-chain (LC) PUFA such as 20:4ω6, 20:5ω3, 22:5ω3 and 22:6ω3 decreased when fish oil was removed from the diet (p < 0.05), and increased in 18-carbon fatty acids (p < 0.01). Camelina oil can reduce the amount of fish oil needed to meet lipid requirements, although replacing 80 % of fish oil reduced LC PUFAs in both tissues. A comparison of BF₃ and H₂SO₄ as catalysts to transmethylate cod liver and muscle lipids revealed small but significant differences in some fatty acid proportions.

  17. Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)--effects of capelin oil, palm oil, and oleic acid-enriched sunflower oil as dietary lipid sources.

    PubMed

    Torstensen, B E; Lie, O; Frøyland, L

    2000-06-01

    Triplicate groups of Atlantic salmon (Salmo salar L.) were fed four diets containing different oils as the sole lipid source, i.e., capelin oil, oleic acid-enriched sunflower oil, a 1:1 (w/w) mixture of capelin oil and oleic acid-enriched sunflower oil, and palm oil (PO). The beta-oxidation capacity, protein utilization, digestibility of dietary fatty acids and fatty acid composition of lipoproteins, plasma, liver, belly flap, red and white muscle were measured. Further, the lipid class and protein levels in the lipoproteins were analyzed. The different dietary fatty acid compositions did not significantly affect protein utilization or beta-oxidation capacity in red muscle. The levels of total cholesterol, triacylglycerols, and protein in very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL), and plasma were not significantly affected by the dietary fatty acids. VLDL, LDL, and HDL fatty acid compositions were decreasingly affected by dietary fatty acid composition. Dietary fatty acid composition significantly affected both the relative fatty acid composition and the amount of fatty acids (mg fatty acid per g tissue, wet weight) in belly flap, liver, red and white muscle. Apparent digestibility of the fatty acids, measured by adding yttrium oxide as inert marker, was significantly lower in fish fed the PO diet compared to the other three diets.

  18. Method of X-Ray Anomalous Diffraction for Lipid Structures

    PubMed Central

    Wang, Wangchen; Pan, Deng; Song, Yang; Liu, Wenhan; Yang, Lin; Huang, Huey W.

    2006-01-01

    The structures of the unit cells of lipid phases that exhibit long-range crystalline order but short-range liquid-like disorder are of biological interests. In particular, the recently discovered rhombohedral phase has a unit cell containing either the structure of a membrane fusion intermediate state or that of a peptide-induced transmembrane pore, depending on the lipid composition and participating peptides. Diffraction from such systems generally presents a difficult phase problem. The existing methods of phase determination all have their limitations. Therefore it is of general interest to develop a new phasing method. The method of multi-wavelength anomalous dispersion is routinely used in protein crystallography, but the same method is difficult for lipid systems for the practical reason that the commonly used lipid samples for diffraction do not have a well-defined thickness. Here we describe a practical approach to use the multi-wavelength anomalous dispersion method for lipid structures. The procedure is demonstrated with the lamellar phase of a brominated lipid. The method is general to all phases as long as anomalous diffraction is applicable. PMID:16632507

  19. Evaluation of Lipid Content in Microalgae Biomass Using Palm Oil Mill Effluent (Pome)

    NASA Astrophysics Data System (ADS)

    Kamyab, Hesam; Chelliapan, Shreeshivadasan; Shahbazian-Yassar, Reza; Din, Mohd Fadhil Md; Khademi, Tayebeh; Kumar, Ashok; Rezania, Shahabaldin

    2017-08-01

    The scope of this study is to assess the main component of palm oil mill effluent (POME) to be used as organic carbon for microalgae. The applicable parameters such as optical density, chlorophyll content, mixed liquor suspended solid, mixed liquor volatile suspended solid, cell dry weight (CDW), carbon:total nitrogen ratio and growth rate were also investigated in this study. The characteristics and morphological features of the isolates showed similarity with Chlorella. Chlorella pyrenoidosa ( CP) was found to be a dominant species in POME and Chlorella vulgaris ( CV) could grow well in POME. Furthermore, the optimal lipid production was obtained at the ratio 95:05 CDW with highest lipid production by CP compared to CV. At day 20, CDW for CV species was obtained at 193 mg/L and with lipid content at 56 mg/L. Finally, the concentration ratio at 50:50 showed a higher absorbance of chlorophyll a for both strains.

  20. Short-Term Use of Parenteral Nutrition With a Lipid Emulsion Containing a Mixture of Soybean Oil, Olive Oil, Medium-Chain Triglycerides, and Fish Oil

    PubMed Central

    Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    Background: For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Methods: Double-blind, controlled study in 53 neonates (<34 weeks’ gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1–3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6–14. Results: Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). Conclusions: The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile. PMID:22237883

  1. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2016-09-14

    Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.

  2. Antioxidant coating of micronsize droplets for prevention of lipid peroxidation in oil-in-water emulsion.

    PubMed

    Lomova, Maria V; Sukhorukov, Gleb B; Antipina, Maria N

    2010-12-01

    Fast lipid peroxidation in emulsified oils results in carcinogens formation and product rancidity. Prevention of oxidative degradation in oil-in-water emulsion has been achieved by encapsulating of each droplet of dispersed phase in antioxidant multilayer coating shell. The fabrication comprised placing a surface-active ionic emulsifier at the oil/water interface followed by stepwise alternate adsorption a biocompatible polyelectrolyte and antioxidant layers. Uncoupled polyelectrolyte macromolecules and antioxidant were thoroughly removed from formulation, thus the protection was entirely attributed to the droplets' shell. The experiments were performed using linseed oil, the richest source of highly unstable omega-3 alpha linolenic essential fatty acid. Bovine serum albumin (BSA) was exploited as an anionic emulsifier. The biodegradable coating shell was formed of poly-l-arginine (PARG) and dextran sulfate (DS) applied as a polycation and a polyanion respectively. Tannic acid (TA) known as a natural antioxidant and possessing antimicrobial properties was used as a protective remedy. Oil microdroplets coated with TA-containing shell displayed physical-chemical and mechanical stability in aqueous phase and over freeze-drying process as determined by ζ-potential measurements, dynamic light scattering (DLS), and confocal laser scanning microscopy (CLSM). Oxidation of emulsified oil was monitored by formation of malondialdehyde (MDA) in the samples quantified by Thiobarbituric Acid Reactive Substances (TBARS) assay. Coating shell with an incorporated layer of TA effectively suppressed oxidation in water-dispersed oil droplets and affected iron-catalyzed oxidation over 15 days of incubation at 37 °C in 0.3 mM FeBr2 solution. Antioxidant activity of TA-containing shell assembled around each oil droplet was found to be higher than that of mixed tocopherols (MT) added to linseed oil in concentration of 10000 ppm.

  3. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    PubMed

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  4. Effects of dietary sesame oil on growth performance, chemical composition, lipid oxidation, and sensory characteristics of rainbow trout Oncorhynchus mykiss.

    PubMed

    Hematzadeh, Azar; Jalali Sayed, Mohamad Ali

    2017-09-28

    The present study, the effects of dietary sesame oil (SO) on growth performance and fillet composition of rainbow trout (Oncorhynchus mykiss) were investigated. Twenty-five fish were randomly allocated in three groups by three replication, in mean initial weight 53.3 g in each tank. Experimental diets consisted of fish oil (FO), sesame oil (SO) and 1:1 blends of two oils, fish oil and sesame oil (FOSO). Dietary sesame oil had no significant effect on growth rate or feed conversion ratio. Similarly, no significant differences were observed between dietary treatments for ash content in fillet of fish. The fillet lipid content was lower in fish fed by sesame oil, but the moisture and the protein were higher. Furthermore, Thiobarbituric acid (TBA) test was changed in different groups and it was lower in SO. The organoleptic indices were affected by dietary oils and FO group had more fishy flavour.

  5. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability.

    PubMed

    Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna

    2013-06-03

    The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies

  6. Membrane Structure: Lipid-Protein Interactions in Microsomal Membranes*

    PubMed Central

    Trump, Benjamin F.; Duttera, Sue M.; Byrne, William L.; Arstila, Antti U.

    1970-01-01

    The relationships of phospholipid to membrane structure and function were examined in hepatic microsomes. Findings indicate that normal microsomal membrane structure is dependent on lipid-protein interactions and that it correlates closely with glucose-6-phosphatase activity. Modification of most phospholipid with phospholipase-C is associated with widening of the membrane which can be reversed following readdition of phospholipid. Images PMID:4317915

  7. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease.

    PubMed

    Mehlem, Annika; Hagberg, Carolina E; Muhl, Lars; Eriksson, Ulf; Falkevall, Annelie

    2013-06-01

    Excess lipid accumulation in peripheral tissues is a key feature of many metabolic diseases. Therefore, techniques for imaging and quantifying lipids in various tissues are important for understanding and evaluating the overall metabolic status of a research subject. Here we present a protocol that detects neutral lipids and lipid droplet (LD) morphology by oil red O (ORO) staining of sections from frozen tissues. The method allows for easy estimation of tissue lipid content and distribution using only basic laboratory and computer equipment. Furthermore, the procedure described here is well suited for the comparison of different metabolically challenged animal models. As an example, we include data on muscular and hepatic lipid accumulation in diet-induced and genetically induced diabetic mice. The experimental description presents details for optimal staining of lipids using ORO, including tissue collection, sectioning, staining, imaging and measurements of tissue lipids, in a time frame of less than 2 d.

  8. Antioxidant activities of essential oil mixtures toward skin lipid squalene oxidized by UV irradiation.

    PubMed

    Wei, Alfreda; Shibamoto, Takayuki

    2007-01-01

    Antioxidant activities of essential oil mixtures--thyme or clove leaf with cinnamon leaf, rose, or parsley seed--toward skin lipid, squalene oxidized by UV irradiation were investigated using the malonaldehyde/gas chromatography assay. At all concentrations (50, 100, or 500 mug/mL) tested, thyme oil mixed with 500 mug/mL clove oil showed over 90% inhibitory effect against malonaldehyde formation. The order of potency of all oils mixed together at 500 mug/mL was thyme/clove leaf (93%) > clove leaf/parsley seed = clove leaf /rose (87%) > thyme/parsley seed (83%) > clove leaf/cinnamon leaf (77%) > thyme/parsley seed (71%) > thyme/cinnamon leaf (7%). In comparison, the inhibitory activities of 500 microg/mL of BHT or alpha-tocopheroltoward malonaldehyde formation were 85% and 76%, respectively. Pro-oxidant effects were observed for some mixtures of thyme with cinnamon leaf or rose oils. The potent antioxidant effects resulting from a mixture of thyme and clove leaf oils may be due to the presence of thymol and eugenol.

  9. Contrasting effects of fish oil and safflower oil on hepatic peroxisomal and tissue lipid content.

    PubMed

    Neschen, Susanne; Moore, Irene; Regittnig, Werner; Yu, Chun Li; Wang, Yanlin; Pypaert, Marc; Petersen, Kitt Falk; Shulman, Gerald I

    2002-02-01

    To examine the mechanism by which fish oil protects against fat-induced insulin resistance, we studied the effects of control, fish oil, and safflower oil diets on peroxisomal content, fatty acyl-CoA, diacylglycerol, and ceramide content in rat liver and muscle. We found that, in contrast to control and safflower oil-fed rats, fish oil feeding induced a 150% increase in the abundance of peroxisomal acyl-CoA oxidase and 3-ketoacyl-CoA thiolase in liver but lacked similar effects in muscle. This was paralleled by an almost twofold increase in hepatic peroxisome content (both P < 0.002 vs. control and safflower). These changes in the fish oil-fed rats were associated with a more than twofold lower hepatic triglyceride/diacylglycerol, as well as intramuscular triglyceride/fatty acyl-CoA, content. In conclusion, these data strongly support the hypothesis that n-3 fatty acids protect against fat-induced insulin resistance by serving as peroxisome proliferator-activated receptor-alpha ligands and thereby induce hepatic, but not intramuscular, peroxisome proliferation. In turn, an increased hepatic beta-oxidative capacity results in lower hepatic triglyceride/diacylglycerol and intramyocellular triglyceride/fatty acyl-CoA content.

  10. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    PubMed

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  11. A Comparison of Fish Oil Sources for Parenteral Lipid Emulsions in a Murine Model

    PubMed Central

    Fell, Gillian L.; Cho, Bennet S.; Pan, Amy; Nose, Vania; Anez-Bustillos, Lorenzo; Dao, Duy; Baker, Meredith A.; Nandivada, Prathima; Gura, Kathleen M.; Puder, Mark

    2017-01-01

    Background Parenteral fat emulsions are important components of parenteral nutrition (PN). For patients who develop PN-associated liver disease (PNALD), use of fish oil (FO) fat emulsions reverses cholestasis. The European Pharmacopeia contains two FO monographs. One is “fish oil; rich in omega-3 fatty acids,” (NFO). The other is “omega-3 acids,” (PFO) derived from NFO but enriched in omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The purpose of this study is to compare the effects of 20% NFO and PFO emulsions produced in the laboratory and tested in a murine model. Methods Lipid emulsions (20% oil) were compounded containing different oils: United States Pharmacopoeia (USP)-grade soybean oil (SO), NFO, PFO with 66% of the purified fatty acids in triglyceride form (PFO66), and PFO with 90% of the purified fatty acids in triglyceride form (PFO90). Chow-fed C57BL/6 mice received saline, one of the above emulsions, or a commercial FO (OM) by tail vein injection (2.4g/kg/day) for 19 days. Effects after each dose were recorded. On day 19, animals were euthanized and livers, spleens, and lungs were procured for histologic analysis. Results Animals administered OM, SO, NFO, and PFO90 tolerated injections well clinically, while those administered PFO66 developed tachypnea and lethargy for ~1 minute following injections. At euthanasia, PFO66- and PFO90-treated animals had organomegaly compared to the other groups. On histologic analysis, PFO66 and PFO90 groups had splenic fat-laden macrophages and hepatic sinusoidal lipid-laden Kupffer cells with no inflammation or necrosis. Lungs in these groups had scattered fat deposits. All other groups had normal-appearing livers, spleens, and lungs. Conclusions Use of PFO lipid emulsions is an attractive possibility for improving systemic inflammation in PN-dependent patients and optimizing management of PNALD by concentrating anti-inflammatory EPA and DHA. However, when

  12. Shorthand notation for lipid structures derived from mass spectrometry.

    PubMed

    Liebisch, Gerhard; Vizcaíno, Juan Antonio; Köfeler, Harald; Trötzmüller, Martin; Griffiths, William J; Schmitz, Gerd; Spener, Friedrich; Wakelam, Michael J O

    2013-06-01

    There is a need for a standardized, practical annotation for structures of lipid species derived from mass spectrometric approaches; i.e., for high-throughput data obtained from instruments operating in either high- or low-resolution modes. This proposal is based on common, officially accepted terms and builds upon the LIPID MAPS terminology. It aims to add defined levels of information below the LIPID MAPS nomenclature, as detailed chemical structures, including stereochemistry, are usually not automatically provided by mass spectrometric analysis. To this end, rules for lipid species annotation were developed that reflect the structural information derived from the analysis. For example, commonly used head group-specific analysis of glycerophospholipids (GP) by low-resolution instruments is neither capable of differentiating the fatty acids linked to the glycerol backbone nor able to define their bond type (ester, alkyl-, or alk-1-enyl-ether). This and other missing structural information is covered by the proposed shorthand notation presented here. Beyond GPs, we provide shorthand notation for fatty acids/acyls (FA), glycerolipids (GL), sphingolipids (SP), and sterols (ST). In summary, this defined shorthand nomenclature provides a standard methodology for reporting lipid species from mass spectrometric analysis and for constructing databases.

  13. Skin lipid structure controls water permeability in snake molts.

    PubMed

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat.

  14. Combining micro-structures and micro-algae to increase lipid production for bio-fuel

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhu, Emilly; Mestler, Troy; Estévez-Torres, André.; Austin, Robert

    2011-03-01

    3rd generation bio-fuels like lipid producing micro-algae are a promising source of energy that could replace our dependence on petroleum. However, until there are improvements in algae oil yields, and a reduction in the energy needed for processing, algae bio-fuels are not economically competitive with petroleum. Here, we describe our work combining micro-fabricated devices with micro-algae Neochloris oleoabundans, a species first isolated on the sand dunes of Saudi Arabia. Inserting micro-algae of varying fitness into a landscape of micro-habitats allows us to evolve and select them based on a variety of conditions like specific gravity, starvation response and Nile Red fluorescence (which is a marker for lipid production). Hence, we can both estimate the production of lipids and generate conditions that allow the creation and isolation of algae which produce higher amounts of lipids, while discarding the rest. Finally, we can use micro-fabricated structures and flocculation to de-water these high lipid producing algae, reducing the need for expensive centrifugation and filtration.

  15. Comparative study of tissue deposition of omega-3 fatty acids from polar-lipid rich oil of the microalgae Nannochloropsis oculata with krill oil in rats.

    PubMed

    Kagan, Michael L; Levy, Aharon; Leikin-Frenkel, Alicia

    2015-01-01

    Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) exert health benefits which are dependent upon their incorporation into blood, cells and tissues. Plasma and tissue deposition of LC n-3 PUFA from oils extracted from the micro-algae Nannochloropsis oculata and from krill were compared in rats. The algal oil provides eicosapentaenoic acid (EPA) partly conjugated (15%) to phospholipids and glycolipids but no docosahexaenoic acid (DHA), whereas krill oil provides both EPA and DHA conjugated in part (40%) to phospholipids. Rats fed a standard diet received either krill oil or polar-lipid rich algal oil by gavage daily for 7 days (5 ml oil per kg body weight each day). Fatty acid concentrations were analyzed in plasma, brain and liver, and two adipose depots since these represent transport, functional and storage pools of fatty acids, respectively. When measuring total LC n-3 PUFA (sum of EPA, docosapentaenoic acid (DPA) and DHA), there was no statistically significant difference between the algal oil and krill oil for plasma, brain, liver and gonadal adipose tissue. Concentrations of LC n-3 PUFA were higher in the retroperitoneal adipose tissue from the algal oil group. Tissue uptake of LC n-3 PUFA from an algal oil containing 15% polar lipids (glycolipids and phospholipids) was found to be equivalent to krill oil containing 40% phospholipids. This may be due to glycolipids forming smaller micelles during ingestive hydrolysis than phospholipids. Ingestion of fatty acids with glycolipids may improve bioavailability, but this needs to be further explored.

  16. Chemical composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil from Cynomorium coccineum L.

    PubMed

    Rosa, Antonella; Rescigno, Antonio; Piras, Alessandra; Atzeri, Angela; Scano, Paola; Porcedda, Silvia; Zucca, Paolo; Assunta Dessì, M

    2012-10-01

    Cynomorium coccineum L. is a non-photosynthetic plant, spread over Mediterranean countries, amply used in traditional medicine. We investigated the composition and effect on intestinal Caco-2 cell viability and lipid profile of fixed oil obtained from dried stems of the plant. Oil isolation has been performed by supercritical fractioned extraction with CO2. 13C NMR spectroscopy has been used to study the molecular composition of oil lipids; fatty acid composition was identified using GC and HPLC techniques. The fixed oil was composed mainly by triacylglycerols and derivates. The main fatty acids were 18:1 n-9 (38%), 18:2 n-6 (20%), 16:0 (15%), and 18:3 n-3 (10.8%). The oil showed a significant in vitro inhibitory effect on the growth of colon cancer undifferentiated Caco-2 cells. Moreover, cell viability, lipid composition, and lipid peroxidation were measured in intestinal epithelial cells (differentiated Caco-2 cells) after 24 h incubation with fixed oil. The oil did not show a toxic effect on colon epithelial cell viability but induced a significant change in fatty acid composition, with a significant accumulation of the essential fatty acids 18:3 n-3 and 18:2 n-6. The results showed remarkable biological activity of Maltese mushroom oil, and qualify it as a potential resource for food/pharmaceutical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Non-lamellar lipid liquid crystalline structures at interfaces.

    PubMed

    Chang, Debby P; Barauskas, Justas; Dabkowska, Aleksandra P; Wadsäter, Maria; Tiberg, Fredrik; Nylander, Tommy

    2015-08-01

    The self-assembly of lipids leads to the formation of a rich variety of nano-structures, not only restricted to lipid bilayers, but also encompassing non-lamellar liquid crystalline structures, such as cubic, hexagonal, and sponge phases. These non-lamellar phases have been increasingly recognized as important for living systems, both in terms of providing compartmentalization and as regulators of biological activity. Consequently, they are of great interest for their potential as delivery systems in pharmaceutical, food and cosmetic applications. The compartmentalizing nature of these phases features mono- or bicontinuous networks of both hydrophilic and hydrophobic domains. To utilize these non-lamellar liquid crystalline structures in biomedical devices for analyses and drug delivery, it is crucial to understand how they interact with and respond to different types of interfaces. Such non-lamellar interfacial layers can be used to entrap functional biomolecules that respond to lipid curvature as well as the confinement. It is also important to understand the structural changes of deposited lipid in relation to the corresponding bulk dispersions. They can be controlled by changing the lipid composition or by introducing components that can alter the curvature or by deposition on nano-structured surface, e.g. vertical nano-wire arrays. Progress in the area of liquid crystalline lipid based nanoparticles opens up new possibilities for the preparation of well-defined surface films with well-defined nano-structures. This review will focus on recent progress in the formation of non-lamellar dispersions and their interfacial properties at the solid/liquid and biologically relevant interfaces. Copyright © 2014. Published by Elsevier B.V.

  18. Fish oil improves lipid profile in juvenile rats with intrauterine growth retardation by altering the transcriptional expression of lipid-related hepatic genes.

    PubMed

    Chen, Lian-Hui; Liang, Li; Fang, Yan-Lan; Wang, Ying-Min; Zhu, Wei-Fen

    2016-10-01

    To determine whether maternal intrauterine undernutrition and post-weaning fish oil intake influence lipid profile in juvenile offspring, and explore the possible mechanisms at transcriptional levels. After weaning, 32 control offspring and 24 intrauterine growth retardation (IUGR) offspring were randomly allocated to standard chow or fish oil diet. At 10 weeks, fasting plasma glucose, triglycerides, total cholesterol and expressions of related hepatic genes were examined. IUGR offspring without catch-up growth tended to develop hyperglycemia, dyslipidemia and hepatic steatosis. Down-regulation of CPT-1 and LDLR at transcriptional levels were found in IUGR offspring. Early short-term fish oil intervention reversed these unfavorable changes in juvenile rats with IUGR. The mechanisms might be mediated by decreased expression of ACC-1, increased expression of CPT-1, LDLR and ABCG5. These data suggest that IUGR offspring already present lipid abnormality in juvenile stage, and early short-term fish oil consumption is beneficial to prevent these unfavorable changes.

  19. Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities.

    PubMed

    Nasopoulou, Constantina; Smith, Terry; Detopoulou, Maria; Tsikrika, Constantina; Papaharisis, Leonidas; Barkas, Dimitris; Zabetakis, Ioannis

    2014-02-15

    The purpose of this study was to structurally characterise the polar lipids of sea bass (Dicentrarchus labrax), fed with an experimental diet containing olive pomace (OP), that exhibit cardioprotective activities. OP has been added to conventional fish oil (FO) feed at 4% and this was the OP diet, having been supplemented as finishing diet to fish. Sea bass was aquacultured using either FO or OP diet. At the end of the dietary experiment, lipids in both samples of fish muscle were quantified and HPLC fractionated. The in vitro cardioprotective properties of the polar lipid fractions, using washed rabbit's platelets, have been assessed and the two most biologically active fractions were further analysed by mass spectrometry. The gas-chromatrograpy-mass spectrometric data shows that these two fractions contain low levels of myristic (14:0), oleic (18:1 cis ω-9) and linoleic acids (18:2 ω-6), but high levels of palmitic (16:0) and stearic acids (18:0) as well as eicosadienoic acid (20:2 ω-6). The first fraction (MS1) also contained significant levels of arachidonic acid (20:4 ω-6) and the omega-3 fatty acids: eicosapentaenoic acid (22:5) and docosahexaenoic acid (22:6). Electrospray-mass spectrometry elucidated that the lipid composition of the two fractions contained various diacyl-glycerophospholipids species, where the majority of them have either 18:0 or 18:1 fatty acids in the sn-1 position and either 22:6 or 20:2 fatty acids in the sn-2 position for MS1 and MS2, respectively. Our research focuses on the structure/function relationship of fish muscle polar lipids and cardiovascular diseases and structural data are given for polar lipid HPLC fractions with strong cardioprotective properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.

    PubMed

    Khot, Mahesh; Ghosh, Debashish

    2017-04-01

    This study analyzes the single cell oil (SCO), fatty acid profile, and biodiesel fuel properties of the yeast Rhodotorula mucilaginosa IIPL32 grown on the pentose fraction of acid pre-treated sugarcane bagasse as a carbon source. The yeast biomass from nitrogen limiting culture conditions (15.3 g L(-1) ) was able to give the SCO yield of 0.17 g g(-1) of xylose consumed. Acid digestion, cryo-pulverization, direct in situ transesterification, and microwave assisted techniques were evaluated in comparison to the Soxhlet extraction for the total intracellular yeast lipid recovery. The significant differences were observed among the SCO yield of different methods and the in situ transesterification stood out most for effective yeast lipid recovery generating 97.23 mg lipid as FAME per gram dry biomass. The method was fast and consumed lesser solvent with greater FAME yield while accessing most cellular fatty acids present. The yeast lipids showed the major presence of monounsaturated fatty esters (35-55%; 18:1, 16:1) suitable for better ignition quality, oxidative stability, and cold-flow properties of the biodiesel. Analyzed fuel properties (density, kinematic viscosity, cetane number) of the yeast oil were in good agreement with international biodiesel standards. The sugarcane bagasse-derived xylose and the consolidated comparative assessment of lab scale SCO recovery methods highlight the necessity for careful substrate choice and validation of analytical method in yeast oil research. The use of less toxic co-solvents together with solvent recovery and recycling would help improve process economics for sustainable production of biodiesel from the hemicellulosic fraction of cheap renewable sources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection.

    PubMed

    Wang, Jhi-Joung; Liu, Kuo-Sheng; Sung, K C; Tsai, Chia-Yin; Fang, Jia-You

    2009-09-10

    Buprenorphine is a promising drug for the treatment of chronic pain and opioid dependence. The aim of the present work was to evaluate the feasibility of lipid nanoparticles with different oil/fatty ester ratios for injection of buprenorphine. To improve the release properties and analgesic duration of the drug, ester prodrugs were also incorporated into the nanoparticles for evaluation. Linseed oil and cetyl palmitate were respectively chosen as the liquid lipid and solid lipid in the inner phase of the nanoparticulate systems. Differential scanning calorimetry (DSC) was performed, and the particle size, zeta potential, molecular environment, and lipid/water partitioning were determined to characterize the state of the drug/prodrug and lipid modification. The in vitro release kinetics were measured by a Franz assembly. DSC showed that systems without oil (solid lipid nanoparticles, SLNs) had a more ordered crystalline lattice in the inner matrix compared to those with oil (nanostructured lipid carriers, NLCs and lipid emulsion, LE). The mean diameter of the nanoparticles ranged between 180 and 200nm. The in vitro drug/prodrug release occurred in a delayed manner in decreasing order as follows: SLN>NLC>LE. It was found that the release rate was reduced following an increase in alkyl ester chains in the prodrugs. The in vivo antinociception was examined by a cold ethanol tail-flick test in rats. Compared to an aqueous solution, a prolonged analgesic duration was detected after an intravenous injection of buprenorphine-loaded SLNs and buprenorphine propionate (Bu-C3)-loaded NLCs (with 10% linseed oil in the lipid phase). The Bu-C3 in NLCs even showed a maximum antinociceptive activity for 10h. In vitro erythrocyte hemolysis and lactate dehydrogenase (LDH) release from neutrophils demonstrated a negligible toxicity of these carriers. Our results indicate the feasibility of using lipid nanoparticles, especially SLNs and NLCs, as parenteral delivery systems for

  2. Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition

    PubMed Central

    Nasseri, Mahboobeh; Golmohammadzadeh, Shiva; Arouiee, Hossein; Jaafari, Mahmoud Reza; Neamati, Hossein

    2016-01-01

    Objective(s): The aim of the present study was to prepare, characterize, and evaluate solid lipid nanoparticles (SLNs) containing Zataria multiflora essential oil (ZEO). Materials and Methods: In this study, Z. multiflora essential oil-loaded solid lipid nanoparticles (ZE-SLNs) were prepared to improve its efficiency in controlling some fungal pathogens. SLNs containing Z. multiflora essential oil were prepared by high shear homogenization and ultra sound technique. ZEO-SLNs contained 0.03% ZEO in 5% of lipid phase (Glyceryl monostearate-GMS and Precirol® ATO 5). Tween 80 and Poloxamer 188 (2.5% w/v) were used as surfactant in the aqueous phase. The antifungal efficacy of ZE-SLNs and ZEO was compared under in vitro conditions. Results: The particle size of ZE-SLNs was around 255.5±3 nm with PDI of 0.369±0.05 and zeta potential was about -37.8±0.8 mV. Encapsulation efficacy of ZE-SLNs in crystalline form was 84±0.92%. The results showed that the ZEO and ZE-SLNs had 54 and 79% inhibition on the growth of fungal pathogens, respectively. The minimum inhibitory concentration (MIC) under in vitro conditions for the ZEO on the fungal pathogens of Aspergillus ochraceus, Aspergillus niger, Aspergillus flavus, Alternaria solani, Rhizoctonia solani, and Rhizopus stolonifer was 300, 200, 300, 200, 200 and 200 ppm, respectively, for ZE-SLNs, it was 200, 200, 200, 100, 50 and 50 ppm. The antifungal efficacy of ZE-SLNs was significantly more than ZEO. Conclusion: Our results showed that the SLNs were suitable carriers for Z. multiflora essential oil in controlling the fungal pathogens and merits further investigation. PMID:27917280

  3. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    PubMed

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  4. Effect of Variable Solvents on Particle Size of Geranium Oil-Loaded Solid Lipid Nanoparticle (Ge-SLN) For Mosquito Repellent Applications

    NASA Astrophysics Data System (ADS)

    Asnawi, Syalwati; Aziz, Azila A.; Aziz, Ramlan A.

    2009-06-01

    A new delivery system for insect repellent is proposed by the incorporation of geranium oil into solid lipid nanoparticle (SLN). A variety of solvents which act as co-surfactants, were introduced to increase the particle size of GE-SLN. Ethanol, which has a high boiling point and a long chain alcohol produced larger particle than dichloromethane. The structure of SLN was not stable when methanol and acetone were used as co-solvents. Concentration of solvents can also influence the size of SLN. In vitro release experiments showed that SLN was able to reduce the rapid evaporation of geranium oil.

  5. Structure of Lipid Tubules Formed from a Polymerizable Lecithin

    DTIC Science & Technology

    1985-01-01

    Structural errecui cochleate cylinders derives from the fact that when the ntepoodmezoafbsaammrns.I i.Ch’.Sc Ca i chlatd ay fom he hosbatiylsrin. lrge 104...q~ Th ... .... -- STRUCTURE OF LIPID TUBULES FORMED N F ROMN A POLYMIERIZABLE LECITHIN NPAUL YAGER,* PAULL E. SCHOEN,* CAROL DAVIES.: RONALD...phospholipids in aqueous the chemistry and structure of DC:PC. including monitor- dispersion (Bangham et al., 1965), pure tecithins have ing the

  6. Minor Constituents in Rice Bran Oil and Sesame Oil Play a Significant Role in Modulating Lipid Homeostasis and Inflammatory Markers in Rats.

    PubMed

    Yalagala, Poorna C R; Sugasini, Dhavamani; Ramaprasad, Talahalli Ravichandra; Lokesh, Belur Ramaswamy

    2017-07-01

    The effects of feeding rats with groundnut oil (GNO), rice bran oil (RBO), and sesame oil (SESO) on serum lipids, liver lipids, and inflammatory markers were evaluated in rats. Male Wistar rats were fed with AIN-93 diet supplemented with 10 wt% of GNO, RBO, and SESO in the form of native (N) and minor constituent-removed (MCR) oils. Rats given RBO and SESO showed significant reduction in serum and liver lipids, 8-hydroxy-2-deoxyguanosine, cytokines in liver, and eicosanoids in leukocytes as compared with the rats given GNO and MCR oils. The rats fed with native oils of RBO and SESO showed an upregulation of sterol regulatory element-binding protein (SREBP)-2 and peroxisome proliferator-activated receptor gamma (PPARγ) and downregulation of nuclear factor-kappa B (NF-κB) p65. These effects of native oil were significantly compromised when rats were given MCR oils. In conclusion, the minor constituents significantly support the hypolipidemic and anti-inflammatory properties of RBO and SESO.

  7. Quantitation of Monophosphorylated Lipid A in the Oil-in-Water Adjuvant Delivery Systems Using Transesterification and GC-MS.

    PubMed

    Masood, M Athar; Blonder, Josip; Veenstra, Timothy D

    2017-07-01

    Vaccine delivery systems play pivotal role in effective antigen delivery. These systems often contain adjuvants that stimulate specific immune response and are important for vaccines' efficacy and safety. Oil-in-water vaccine delivery lipid emulsion systems containing monophosphoryl lipid A (MPLA) as immune modulator have been extensively investigated in vaccine trials. Herein, we describe a simple orthogonal method, for quantitative measurement of MPLA in an oil-in-water lipid delivery system using direct transesterification reaction followed by gas-chromatography-mass spectrometry analysis. In this protocol, the transesterification reaction results in the release of fatty acid methyl esters followed by gas-chromatography-mass spectrometry-based targeted quantification of the specific 3-hydroxytetradecanoate fatty acid methyl ester to measure the concentration of MPLA in an oil-in-water lipid emulsion system. Published by Elsevier Inc.

  8. Forensic identification of seal oils using lipid profiles and statistical models.

    PubMed

    Broadwater, Margaret H; Seaborn, Gloria T; Schwacke, John H

    2013-03-01

    Seal blubber oils are used as a source of omega-3 polyunsaturated fatty acids in Canada but prohibited in the United States and (FA) European Union. Thus, a reliable method is needed to identify oils originating from seals versus fish. Two lipid profiling methods, fatty acid analysis using gas chromatography and triacylglycerol (TAG) analysis using liquid chromatography and mass spectrometry, were applied with statistical models to discriminate commercial oils and blubber samples harvested from marine fish and seals. Significant differences were observed among FA profiles, and seal samples differed from each of the fish oils (p ≤ 0.001). FA and TAG profiles were used to discriminate sample groups using a random forest classifier; all samples were classified correctly as seals versus fish using both methods. We propose a two-step method for the accurate identification of seal oils, with preliminary identification based on FA profile analysis and confirmation with TAG profiles. © 2012 American Academy of Forensic Sciences.

  9. Effect of dietary supplementation with fish oil lipids on mild asthma.

    PubMed

    Arm, J P; Horton, C E; Mencia-Huerta, J M; House, F; Eiser, N M; Clark, T J; Spur, B W; Lee, T H

    1988-02-01

    Recruitment of inflammatory leucocytes to the airways may play a part in the pathogenesis of asthma. As dietary enrichment with fish oil lipids can suppress leucocyte function, the effect of these lipids on asthma control and neutrophil function was studied in 20 subjects with mild asthma. Twelve subjects received capsules containing 3.2 g of eicosapentaenoic acid and 2.2 g of docosahexaenoic acid daily and eight subjects received placebo capsules containing olive oil for 10 weeks in a double blind fashion. Baseline specific airways conductance, airways responsiveness to histamine and exercise, diurnal peak expiratory flow, symptom scores, and bronchodilator use were measured. Neutrophil fatty acid composition was evaluated by gas chromatography, calcium ionophore induced neutrophil leukotriene (LT)B4 and LTB5 generation were measured by reverse phase high performance liquid chromatography and radioimmunoassay, and neutrophil chemotactic responses to formyl-methionyl-leucyl-phenylalanine (FMLP) and LTB4 were assessed by a microchemotaxis technique. Although the fish oil supplemented diet produced a greater than 10 fold increase in the eicosapentaenoic acid content of neutrophil phospholipids, there was no significant change in airways responsiveness to histamine or any change in any of the clinical measurements. After dietary supplementation with fish oil there was a 50% inhibition of total LTB (LTB4 + LTB5) generation by ionophore stimulated neutrophils and neutrophil chemotaxis was substantially suppressed. Neutrophil function remained unchanged in the placebo group. It is concluded that in subjects with mild asthma a fish oil enriched diet attenuates neutrophil function without changing the severity of asthma.

  10. Effect of dietary supplementation with fish oil lipids on mild asthma.

    PubMed Central

    Arm, J P; Horton, C E; Mencia-Huerta, J M; House, F; Eiser, N M; Clark, T J; Spur, B W; Lee, T H

    1988-01-01

    Recruitment of inflammatory leucocytes to the airways may play a part in the pathogenesis of asthma. As dietary enrichment with fish oil lipids can suppress leucocyte function, the effect of these lipids on asthma control and neutrophil function was studied in 20 subjects with mild asthma. Twelve subjects received capsules containing 3.2 g of eicosapentaenoic acid and 2.2 g of docosahexaenoic acid daily and eight subjects received placebo capsules containing olive oil for 10 weeks in a double blind fashion. Baseline specific airways conductance, airways responsiveness to histamine and exercise, diurnal peak expiratory flow, symptom scores, and bronchodilator use were measured. Neutrophil fatty acid composition was evaluated by gas chromatography, calcium ionophore induced neutrophil leukotriene (LT)B4 and LTB5 generation were measured by reverse phase high performance liquid chromatography and radioimmunoassay, and neutrophil chemotactic responses to formyl-methionyl-leucyl-phenylalanine (FMLP) and LTB4 were assessed by a microchemotaxis technique. Although the fish oil supplemented diet produced a greater than 10 fold increase in the eicosapentaenoic acid content of neutrophil phospholipids, there was no significant change in airways responsiveness to histamine or any change in any of the clinical measurements. After dietary supplementation with fish oil there was a 50% inhibition of total LTB (LTB4 + LTB5) generation by ionophore stimulated neutrophils and neutrophil chemotaxis was substantially suppressed. Neutrophil function remained unchanged in the placebo group. It is concluded that in subjects with mild asthma a fish oil enriched diet attenuates neutrophil function without changing the severity of asthma. PMID:3353893

  11. The changes of oil palm roots cell wall lipids during pathogenesis of Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Alexander, A.; Dayou, J.; Abdullah, S.; Chong, K. P.

    2017-07-01

    One of the first physical defences of plants against fungal infection is their cell wall. Interaction between combinations of metabolism enzymes known as the “weapons” of pathogen and the host cell wall probably determines the fate of possible invasion of the pathogen in the host. The present work aims to study the biochemical changes of cell wall lipids of oil palm roots and to determine novel information on root cell wall composition during pathogenesis of Ganoderma boninense by using Gas Chromatography Mass Spectrometry. Based on Total Ion Chromatogram analysis, 67 compounds were found more abundant in the roots infected with G. boninense compared to the healthy roots (60 compounds). Interestingly, nine new compounds were identified from the cell wall lipids of roots infected with G. boninense. These includes Cyclohexane, 1,2-dimethyl-, Methyl 2-hydroxy 16-methyl-heptadecanoate, 2-Propenoic acid, methyl ester, Methyl 9-oxohexacosanoate, 5-[(3,7,11,15-Tetramethylhexadecyl)oxy]thiophene-2carboxylic acid, Ergosta-5,7,22,24(28)-tetraen-3beta-ol, 7-Hydroxy-3',4'-methylenedioxyflavan, Glycine and (S)-4'-Hydroxy-4-methoxydalbergione, this may involve as response to pathogen invasion. This paper provides an original comparative lipidomic analysis of oil palm roots cell wall lipids in plant defence during pathogenesis of G. boninense.

  12. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly.

    PubMed

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-06-01

    Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops.

  13. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops. PMID:12023882

  14. Evaluating the safety of phytosterols removed perilla seed oil-based lipid emulsion.

    PubMed

    Yang, Zhenhua; Ren, Tianyang; Lu, De; Guo, Haiyan; Li, Wanqiu; Huang, Chenglong; He, Haibing; Liu, Dongchun; Tang, Xing

    2016-10-01

    The aim of this study was to ascertain the potential toxicity of perilla seed oil-based lipid emulsion (POLE) caused by phytosterols and confirm the efficacy of the technique for removing phytosterols from perilla seed oil, and evaluate the safety of a low phytosterol POLE in a long-term tolerance study in dogs. A comparison between a soybean oil lipid emulsion (Intralipid group A) and POLE with high (group B) versus low (group C) levels of phytosterols was made with regard to their effects on the general condition, hematological and biochemical parameters, urinalysis and histopathological changes in nine dogs receiving daily infusions for four weeks at dosage levels of 6, 6, 9 g fat /kg. Dogs in group A and group C remained in good condition and gained weight during the infusion period and no diarrhea or gastrointestinal bleeding occurred. Only a moderate degree of anemia was observed, the biochemical parameters changed only slightly and returned to normal after treatment had ceased. However, the dogs in group B exhibited significant symptoms of 'fat overload syndrome'. Vomiting, diarrhoea and blood in the faeces were observed. Moreover, triglyceridemia, cholesteremia, and dark urine as well as microscopic signs of liver and gastrointestinal tract damage and generalized jaundice were clearly seen. Phytosterols promote 'fat overload syndrome' in long-term tolerance studies of POLE in dogs by producing cholestatic liver injury and interfering with fat metabolism. And the toxicity of POLE was reduced by removing phytosterols.

  15. Serum lipid profile and inflammatory markers in the aorta of cholesterol-fed rats supplemented with extra virgin olive oil, sunflower oils and oil-products.

    PubMed

    Katsarou, Ageliki I; Kaliora, Andriana C; Papalois, Apostolos; Chiou, Antonia; Kalogeropoulos, Nick; Agrogiannis, George; Andrikopoulos, Nikolaos K

    2015-01-01

    Extra virgin olive oil (EVOO) major and minor component anti-inflammatory effect on aorta was evaluated; Wistar rats were fed (9 weeks) on either a high-cholesterol diet (HCD) or a HCD supplemented with oils, i.e. EVOO, sunflower oil (SO), high-oleic sunflower oil (HOSO), or oil-products modified to their phenolic content, i.e. phenolics deprived-EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], HOSO enriched with the EVOO phenolics [HOSO(+)]. HCD induced dyslipidemia and resulted in higher aorta adhesion molecules levels at euthanasia. Groups receiving EVOO, EVOO(-), HOSO, HOSO(+) presented higher serum TC and LDL-c levels compared to cholesterol-fed rats; attenuation of aorta E-selectin levels was also observed. In EVOO/EVOO(-) groups, aorta vascular endothelial adhesion molecule-1 (VCAM-1) was lower compared to HCD animals. SO/SO(+) diets had no effect on endothelial dysfunction amelioration. Overall, our results suggest that major and/or minor EVOO constituents improve aorta E-selectin and VCAM-1, while serum lipids do not benefit.

  16. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B

    PubMed Central

    Fan, Junping; Jiang, Daohua; Zhao, Yan; Liu, Jianfeng; Zhang, Xuejun Cai

    2014-01-01

    Membrane-integrated type II phosphatidic acid phosphatases (PAP2s) are important for numerous bacterial to human biological processes, including glucose transport, lipid metabolism, and signaling. Escherichia coli phosphatidylglycerol-phosphate phosphatase B (ecPgpB) catalyzes removing the terminal phosphate group from a lipid carrier, undecaprenyl pyrophosphate, and is essential for transport of many hydrophilic small molecules across the membrane. We determined the crystal structure of ecPgpB at a resolution of 3.2 Å. This structure shares a similar folding topology and a nearly identical active site with soluble PAP2 enzymes. However, the substrate binding mechanism appears to be fundamentally different from that in soluble PAP2 enzymes. In ecPgpB, the potential substrate entrance to the active site is located in a cleft formed by a V-shaped transmembrane helix pair, allowing lateral movement of the lipid substrate entering the active site from the membrane lipid bilayer. Activity assays of point mutations confirmed the importance of the catalytic residues and potential residues involved in phosphate binding. The structure also suggests an induced-fit mechanism for the substrate binding. The 3D structure of ecPgpB serves as a prototype to study eukaryotic PAP2 enzymes, including human glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentrations. PMID:24821770

  17. Crystal structure of lipid phosphatase Escherichia coli phosphatidylglycerophosphate phosphatase B.

    PubMed

    Fan, Junping; Jiang, Daohua; Zhao, Yan; Liu, Jianfeng; Zhang, Xuejun Cai

    2014-05-27

    Membrane-integrated type II phosphatidic acid phosphatases (PAP2s) are important for numerous bacterial to human biological processes, including glucose transport, lipid metabolism, and signaling. Escherichia coli phosphatidylglycerol-phosphate phosphatase B (ecPgpB) catalyzes removing the terminal phosphate group from a lipid carrier, undecaprenyl pyrophosphate, and is essential for transport of many hydrophilic small molecules across the membrane. We determined the crystal structure of ecPgpB at a resolution of 3.2 Å. This structure shares a similar folding topology and a nearly identical active site with soluble PAP2 enzymes. However, the substrate binding mechanism appears to be fundamentally different from that in soluble PAP2 enzymes. In ecPgpB, the potential substrate entrance to the active site is located in a cleft formed by a V-shaped transmembrane helix pair, allowing lateral movement of the lipid substrate entering the active site from the membrane lipid bilayer. Activity assays of point mutations confirmed the importance of the catalytic residues and potential residues involved in phosphate binding. The structure also suggests an induced-fit mechanism for the substrate binding. The 3D structure of ecPgpB serves as a prototype to study eukaryotic PAP2 enzymes, including human glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentrations.

  18. Studies on structures of lipid A-monophosphate clusters

    NASA Astrophysics Data System (ADS)

    Faunce, Chester A.; Reichelt, Hendrik; Paradies, Henrich H.

    2011-03-01

    Single crystalline clusters of lipid A-monophosphate were grown from organic dispersions containing 5-15% (v/v) water at various volume fractions, ϕ, and temperatures. The morphology of the single lipid A-monophosphate crystals was either rhombohedral or hexagonal. The hexagonal crystals were needlelike or cylindrical in shape, with the long dimension parallel to the c axis of the unit cell. The crystalline clusters were studied using electron microscopy and x-ray powder diffraction. Employing molecular location methods following a Rietveld refinement and whole-pattern refinement revealed two monoclinic crystal structures in the space groups P21 and C2, both converged with RF = 0.179. The two monoclinic crystal structures were packing (hydrocarbon chains) and conformational (sugar) polymorphs. Neither of these two structures had been encountered previously. Only intramolecular hydrogen bonding was observed for the polymorphs, which were located between the amide and the carboxyl groups. Another crystalline structure was found in the volume-fraction range 2.00 × 10-3 ≤ ϕ ≤ 2.50 × 10-3, which displayed hexagonal symmetry. The hexagonal symmetry of the self-assembled lipid A-monophosphate crystalline phase might be reconciled with the monoclinic symmetry found at low-volume-fractions. Therefore, lowering the symmetry from cubic, i.e., Ia overline 3d, to rhombohedral R overline 3 m, and finally to the monoclinic space group C2 was acceptable if the lipid A-monophosphate anion was completely orientationally ordered.

  19. Effects of 7-hydroxycalamenene isolated from Croton cajucara essential oil on growth, lipid content and ultrastructural aspects of Rhizopus oryzae.

    PubMed

    Azevedo, Mariana M B; Almeida, Catia A; Chaves, Francisco C M; Campos-Takaki, Galba M; Rozental, Sonia; Bizzo, Humberto R; Alviano, Celuta S; Alviano, Daniela S

    2014-05-01

    The leaves and bark of Croton cajucara, a shrub from the Amazon region, have been used in folk medicine to treat diabetes, malaria, and gastrointestinal and liver disorders. The essential oil from the leaves, rich in linalool, presented antileishmanial and antimicrobial activities. A chemotype of this species was found with an essential oil rich in 7-hydroxycalamenene. During our studies of the C. cajucara essential oil, we isolated 7-hydroxycalamenene at > 98 % purity. The minimum inhibitory concentration of 7-hydroxycalamenene against Absidia cylindrospora, Cunninghamella elegans, Mucor circinelloides, Mucor circinelloides f. circinelloides, Mucor mucedo, Mucor plumbeus, Mucor ramosissimus, Rhizopus microsporus, Rhizopus oryzae, and Syncephalastrum racemosum ranged from 19.53 to 2500 µg/mL. The reference drug used, amphotericin B, presented a minimum inhibitory concentration ranging from 0.085 µg/mL to 43.87 µg/mL. 7-Hydroxycalamenene also altered spore differentiation and total lipid content. Ultrastructural analysis by transmission electron microscopy showed significant alterations in the cellular structure of R. oryzae.

  20. Reversed lipid-based nanoparticles dispersed in oil for malignant tumor treatment via intratumoral injection.

    PubMed

    Shen, Liao; Zhang, Zhen; Wang, Tao; Yang, Xi; Huang, Ri; Quan, Dongqin

    2017-11-01

    Intratumoral injection of anticancer drugs directly delivers chemotherapeutics to the tumor region, offering an alternative strategy for cancer treatment. However, most hydrophilic drugs spread quickly from the injection site into systemic circulation, leading to inferior antitumor activity and adverse effects in patients. Therefore, we developed novel reversed lipid-based nanoparticles (RLBN) as a nanoscale drug carrier. RLBNs differ from traditional nanoscale drug carriers in that they possess a reversed structure consisting of a polar core and lipophilic periphery, leading to excellent solubility and stability in hydrophobic liquids; therefore, hydrophilic drugs can be entrapped in RLBNs and dispersed in oil. In vivo studies in tumor-bearing Balb/c nude mice indicated remarkable antitumor activity of RLBN-DOX after a single injection, with effective tumor growth inhibition for at least 17 days; the inhibition rate was ∼80%. These results can be attributed to the long-term retention and sustained drug release of RLBN-DOX in the tumor region. In contrast, intratumoral injection of free DOX showed weaker antitumor activity than RLBN-DOX did, with the tumor size doubling by day 11 and tripling by day 17. Further, the initial burst of drug released from free DOX could produce detrimental systemic effects, such as weight loss. Histological analyses by TUNEL staining showed apoptosis after treatment with RLBN-DOX, whereas tumor cell viability was high in the free DOX group. Current results indicate that RLBNs show sustained delivery of hydrophilic agents to local areas resulting in therapeutic efficacy, and they may be a promising drug delivery system suitable for intratumoral chemotherapy.

  1. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  2. Differential molecular regulation of bile acid homeostasis by soy lipid induced phytosterolemia and fish oil lipid emulsions in TPN-fed preterm pigs

    USDA-ARS?s Scientific Manuscript database

    Prolonged total parenteral nutrition (PN) may lead to cholestasis and liver disease (PNALD). The soybean oil-based lipid emulsion (Intralipid) and its constituent phytosterols have been implicated in PNALD. Phytosterols may induce cholestasis by antagonism of the nuclear bile-acid receptor, FXR, lea...

  3. Structural studies of aliphatic substituted phthalocyanine-lipid multilayers.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Mills, David; Webster, John R P

    2010-10-05

    A Langmuir-Blodgett film of aliphatic substituted phthalocyanines on a C18 silane supporting layer coupled onto a silicon substrate has been investigated using neutron reflectometry. This multilayer structure is seen as a possible candidate for phthalocyanine-lipid biosensor devices. The results show the suitability of the C18 ligands as an anchoring layer for the phthalocyanines. The scattering length density profiles demonstrate the effectiveness of a lipid monolayer in partitioning the composition of phthalocyanine layers from that of the bulk liquid. The effectiveness of this barrier is a critical factor in the efficiency of such devices.

  4. Crystal structure of nonspecific lipid transfer protein from Solanum melongena.

    PubMed

    Jain, Abha; Salunke, Dinakar M

    2017-10-01

    Lipids are considered to protect protein allergens from proteolysis and are generally seen to exist in a bound form. One of the well-known plant protein families with bound lipids is non-specific lipid transfer proteins (nsLTPs). Structure-function relationships in the case of the members of non-specific lipid transfer protein family are not clearly understood. As part of exploring the seed proteome, we have analyzed the proteome of a member of Solanaceae family, Solanum melongena (eggplant) and a non-specific lipid transfer protein from S. melongena, SM80.2 was purified, crystallized and the structure was determined at 1.87 Å resolution. Overall, the tertiary structure is a cluster of α-helices forming an internal hydrophobic cavity. Absence of conserved Tyr79, known to govern the plasticity of hydrophobic cavity, and formation of hydrogen bond between Asn79 and Asn36 further reduced the pocket size. Structural analysis of SM80.2 thus gives insight about a new hydrogen bond mediated mechanism followed in closure of the binding pocket. Extra electron densities observed at two different places on the protein surface and not in the cavity could provide interesting physiological relevance. In light of allergenic properties, probably overlapping of epitopic region and ligand binding on surface could be a main reason. This work shows first crystal structure of A-like nsLTP with a close binding pocket and extra density on the surface suggesting a plausible intermediate state during transfer. © 2017 Wiley Periodicals, Inc.

  5. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    PubMed Central

    Cheng, Sara Y.; Chou, George; Buie, Creighton; Vaughn, Mark W.; Compton, Campbell; Cheng, Kwan H.

    2016-01-01

    This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes. PMID:27054174

  6. Consumption of Argan Oil Improves Anti-Oxidant and Lipid Status in Hemodialysis Patients.

    PubMed

    Eljaoudi, Rachid; Elkabbaj, Driss; Bahadi, Abdelali; Ibrahimi, Azeddine; Benyahia, Mohammed; Errasfa, Mourad

    2015-10-01

    Virgin Argan oil (VAO) is of interest in oxidative stress and lipid profile because of its fat composition and antioxidant compounds. We investigated the effect of VAO consumption on lipid profile and antioxidant status in hemodialysis patients after a 4-week period of consumption. In a crossover, controlled trial, 37 patients (18 men, 19 women) with end-stage renal disease on maintenance hemodialysis, were randomly assigned to a 4-week VAO diet. Fasting plasma lipids, vitamin E and oxidized LDL (ox-LDL) were analyzed. Malondialdehyde (MDA) was determined before and after hemodialysis session. There was no significant change in serum total cholesterol and ox-LDL. However, VAO consumption decreased the levels of triglyceride (p = 0.03), total cholesterol (p = 0.02) and low-density lipoprotein (p = 0.03) and increased the levels of high-density lipoprotein (p = 0.01). Plasma vitamin E contents significantly increased from baseline only in VAO-group (p < 0.001). Hemodialysis session increased MDA levels, but the increase in VAO group was less than in control group. VAO consumption improved lipid profile and oxidative stress status in hemodialysis patients. Copyright © 2015 John Wiley & Sons, Ltd.

  7. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes.

    PubMed

    Boulard, Céline; Bardet, Michel; Chardot, Thierry; Dubreucq, Bertrand; Gromova, Marina; Guillermo, Armel; Miquel, Martine; Nesi, Nathalie; Yen-Nicolaÿ, Stéphanie; Jolivet, Pascale

    2015-07-01

    The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.

  8. Improving Flavonoid Bioaccessibility using an Edible Oil-Based Lipid Nanoparticle for Oral Delivery.

    PubMed

    Ban, Choongjin; Park, So Jeong; Lim, Seokwon; Choi, Seung Jun; Choi, Young Jin

    2015-06-03

    To enhance the oral bioaccessibility of flavonoids, including quercetin, naringenin, and hesperetin, we prepared an edible oil-based lipid nanoparticle (LNP) system. Flavonoid-loaded LNPs were similar to the blank LNP in physicochemical characteristics (z average <154.8 nm, polydispersity index <0.17, and ζ potential < -40.8 mV), and their entrapment efficiency was >81% at 0.3 wt % flavonoid concentration of the lipid phase. In the simulated digestion assay (mouth, stomach, and small intestine), LNPs were hydrolyzed under small intestine conditions and protected successfully incorporated flavonoids (≥94%). Moreover, the relative bioaccessibility of flavonoids was >71%, which was otherwise <15%, although flavonoids were released rapidly from LNPs into the medium. In conclusion, since the flavonoids incorporated in LNPs were preserved well during oral digestion and had improved bioaccessibility, the designed LNP system may serve as an encapsulation strategy to enhance the bioavailability of nonbioaccessible nutraceuticals in foods.

  9. [Effect of sacha inchi oil (plukenetia volúbilis l) on the lipid profile of patients with hyperlipoproteinemia].

    PubMed

    Garmendia, Fausto; Pando, Rosa; Ronceros, Gerardo

    2011-12-01

    We performed a pilot, experimental, open study in order to know the effect, effective dosage and secondary effects of sacha inchi´s (Plukenetia Huallabamba) [corrected] oil on the lipid profiles of patients with hypercholesterolemia. We included 24 patients of ages 35 to 75, to whom we measured total cholesterol (TC), HDL, triglycerides (Tg), glucose (G), non-esterified fatty acids (NEFA) and insulin (I) levels in blood, then we randomized them to receive sacha inchi oil orally 5 ml or 10 ml of a suspension of sacha inchi oil (2gr/5ml) for four months. The oil intake produced a decrease in the mean values of TC, and NEFA, and a rise in HDL in both subgroups. The subgroup receiving 10 ml was associated to an increase in the insulin levels. Sacha inchi oil appears to have beneficial effects on the lipid profile of patients with dyslipidemia, but their efficacy and security should be evaluated in randomized clinical trials.

  10. Structural analysis of DNA complexation with cationic lipids

    PubMed Central

    Marty, Regis; N'soukpoé-Kossi, Christophe N.; Charbonneau, David; Weinert, Carl Maximilian; Kreplak, Laurent; Tajmir-Riahi, Heidar-Ali

    2009-01-01

    Complexes of cationic liposomes with DNA are promising tools to deliver genetic information into cells for gene therapy and vaccines. Electrostatic interaction is thought to be the major force in lipid–DNA interaction, while lipid-base binding and the stability of cationic lipid–DNA complexes have been the subject of more debate in recent years. The aim of this study was to examine the complexation of calf-thymus DNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant DNA concentration and various lipid contents. Fourier transform infrared (FTIR), UV-visible, circular dichroism spectroscopic methods and atomic force microscopy were used to analyse lipid-binding site, the binding constant and the effects of lipid interaction on DNA stability and conformation. Structural analysis showed a strong lipid–DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of KChol = 1.4 (±0.5) × 104 M−1, KDDAB = 2.4 (±0.80) × 104 M−1, KDOTAP = 3.1 (±0.90) × 104 M−1 and KDOPE = 1.45 (± 0.60) × 104 M−1. The order of stability of lipid–DNA complexation is DOTAP>DDAB>DOPE>Chol. Hydrophobic interactions between lipid aliphatic tails and DNA were observed. Chol and DOPE induced a partial B to A-DNA conformational transition, while a partial B to C-DNA alteration occurred for DDAB and DOTAP at high lipid concentrations. DNA aggregation was observed at high lipid content. PMID:19103664

  11. The effect of olive oil-based ketogenic diet on serum lipid levels in epileptic children.

    PubMed

    Güzel, Orkide; Yılmaz, Unsal; Uysal, Utku; Arslan, Nur

    2016-03-01

    Ketogenic diet (KD) is one of the most effective therapies for intractable epilepsy. Olive oil is rich in monounsaturated fatty acids and antioxidant molecules and has some beneficial effects on lipid profile, inflammation and oxidant status. The aim of this study was to evaluate the serum lipid levels of children who were receiving olive oil-based KD for intractable seizures at least 1 year. 121 patients (mean age 7.45 ± 4.21 years, 57 girls) were enrolled. At baseline and post-treatment 1, 3, 6, and 12 months body mass index-SDS, total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride levels were measured. Repeated measure ANOVA with post hoc Bonferroni correction was used for data analysis. The mean duration of KD was 15.4 ± 4.1 months. Mean total cholesterol, LDL-cholesterol and triglyceride levels were significantly higher at 1st, 3rd, 6th and 12th months of the KD treatment, compared to pre-treatment levels (p = 0.001), but showed no difference among during-treatment measurements. Mean body mass index-SDS and HDL-cholesterol levels were not different among the baseline and follow-up time points (p = 0.113 and p = 0.067, respectively). No child in this study discontinued the KD because of dyslipidemia. Even if rich in olive oil, high-fat KD causes significant increase in LDL-cholesterol and triglyceride levels. More studies are needed to determine the effect of KD on serum lipids in children using different fat sources in the diet.

  12. Structure and shear response of lipid monolayers

    SciTech Connect

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension.

  13. The Effects of Polyunsaturated Lipid Components on bilayer Structure

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Kiss, A.; Nguyen, Lam T.; Yuan, J.; Hirst, Linda S.

    2007-03-01

    Polyunsaturated fatty acids (PUFAs), such as DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) have been the focus of much research attention in recent years, due to their apparent health benefits and effects on cell physiology. They are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, particularly in the retinal rod cells and the central nervous system. In this work lipid bilayer structure has been investigated in lipid mixtures, incorporating polyunsaturated fatty acid moieties. The structural effects of increasing concentrations of both symmetric and asymmetric PUFA materials on the bilayer structure are investigated via synchrotron x-ray diffraction on solution samples. We observe bilayer spacings to increase with the percentage of unsaturated fatty acid lipid in the membrane, whilst the degree of ordering significantly decreases. In fact above 20% of fatty acid, well defined bilayers are no longer observed to form. Evidence of phase separation can be clearly seen from these x-ray results and in combination with AFM measurements.

  14. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    PubMed Central

    Andersson, Jakob; Köper, Ingo

    2016-01-01

    Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties. PMID:27249006

  15. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils.

    PubMed

    Perona, Javier S

    2017-09-01

    The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Exogenous lipid pneumonia related to smoking weed oil following cadaveric renal transplantation.

    PubMed

    Vethanayagam, D; Pugsley, S; Dunn, E J; Russell, D; Kay, J M; Allen, C

    2000-01-01

    A 30-year-old female presented shortly after cadaveric renal transplantation with respiratory distress typical of a bacterial infection. Following initial improvement, she developed progressive respiratory failure, initially felt to be secondary to cytomegalovirus infection. Two bronchoalveolar lavages were nondiagnostic, and an open lung biopsy was performed, which revealed a pulmonary alveolar proteinosis (PAP) reaction and exogenous lipid pneumonia (ELP). The ELP was considered to be secondary to the use of marijuana, in the form of weed oil, that was smoked daily for over 10 years and stopped just before renal transplantation. This is the first description of both PAP and ELP following renal transplantation, and the first description of ELP related to smoking weed oil. Physicians should be aware of the different forms of marijuana available and of their potential medical complications.

  17. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana.

    PubMed

    Cui, Songkui; Hayashi, Yasuko; Otomo, Masayoshi; Mano, Shoji; Oikawa, Kazusato; Hayashi, Makoto; Nishimura, Mikio

    2016-09-16

    Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Argan Oil Exerts an Antiatherogenic Effect by Improving Lipids and Susceptibility of LDL to Oxidation in Type 2 Diabetes Patients.

    PubMed

    Ould Mohamedou, M M; Zouirech, K; El Messal, M; El Kebbaj, M S; Chraibi, A; Adlouni, A

    2011-01-01

    In this study, we investigate the effect of argan oil consumption on serum lipids, apolipoproteins (AI and B), CRP, and LDL susceptibility to oxidation in type 2 diabetic patients which are known to have a high level of cardiovascular risk due to lipid abnormalities and lipid peroxidation. For that, 86 type 2 diabetic patients with dyslipidemia were randomized to one group consuming 25 mL/day of argan oil during 3 weeks and control group consuming 20 g/day of butter in breakfast. After argan oil intervention, serum triglycerides decreased by 11.84%, (P = 0.001), total chol by 9.13%, (P = 0.01), and LDL-chol by 11.81%, (P = 0.02). However, HDL-chol and Apo AI increased (10.51%, P = 0.01 and 9.40%,  P = 0.045, resp.). Susceptibility of LDL to lipid peroxidation was significantly reduced by increasing of 20.95%, (P = 0.038) in lag phase after argan oil consumption. In conclusion, we show for the first time that consumption of argan oil may have an antiatherogenic effect by improving lipids, and the susceptibility of LDL to oxidation in type 2 diabetes patients with dyslipidemia, and can therefore be recommended in the nutritional management of type 2 diabetes.

  19. Argan Oil Exerts an Antiatherogenic Effect by Improving Lipids and Susceptibility of LDL to Oxidation in Type 2 Diabetes Patients

    PubMed Central

    Ould Mohamedou, M. M.; Zouirech, K.; El Messal, M.; El Kebbaj, M. S.; Chraibi, A.; Adlouni, A.

    2011-01-01

    In this study, we investigate the effect of argan oil consumption on serum lipids, apolipoproteins (AI and B), CRP, and LDL susceptibility to oxidation in type 2 diabetic patients which are known to have a high level of cardiovascular risk due to lipid abnormalities and lipid peroxidation. For that, 86 type 2 diabetic patients with dyslipidemia were randomized to one group consuming 25 mL/day of argan oil during 3 weeks and control group consuming 20 g/day of butter in breakfast. After argan oil intervention, serum triglycerides decreased by 11.84%, (P = 0.001), total chol by 9.13%, (P = 0.01), and LDL-chol by 11.81%, (P = 0.02). However, HDL-chol and Apo AI increased (10.51%, P = 0.01 and 9.40%,  P = 0.045, resp.). Susceptibility of LDL to lipid peroxidation was significantly reduced by increasing of 20.95%, (P = 0.038) in lag phase after argan oil consumption. In conclusion, we show for the first time that consumption of argan oil may have an antiatherogenic effect by improving lipids, and the susceptibility of LDL to oxidation in type 2 diabetes patients with dyslipidemia, and can therefore be recommended in the nutritional management of type 2 diabetes. PMID:22114593

  20. Structural Basis for Antibody Recognition of Lipid A

    PubMed Central

    Haji-Ghassemi, Omid; Müller-Loennies, Sven; Rodriguez, Teresa; Brade, Lore; Kosma, Paul; Brade, Helmut; Evans, Stephen V.

    2015-01-01

    Septic shock is a leading cause of death, and it results from an inflammatory cascade triggered by the presence of microbial products in the blood. Certain LPS from Gram-negative bacteria are very potent inducers and are responsible for a high percentage of septic shock cases. Despite decades of research, mAbs specific for lipid A (the endotoxic principle of LPS) have not been successfully developed into a clinical treatment for sepsis. To understand the molecular basis for the observed inability to translate in vitro specificity for lipid A into clinical potential, the structures of antigen-binding fragments of mAbs S1–15 and A6 have been determined both in complex with lipid A carbohydrate backbone and in the unliganded form. The two antibodies have separate germ line origins that generate two markedly different combining-site pockets that are complementary both in shape and charge to the antigen. mAb A6 binds lipid A through both variable light and heavy chain residues, whereas S1–15 utilizes exclusively the variable heavy chain. Both antibodies bind lipid A such that the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains the lack of LPS recognition. Longstanding reports of polyspecificity of anti-lipid A antibodies toward single-stranded DNA combined with observed homology of S1–15 and A6 and the reports of several single-stranded DNA-specific mAbs prompted the determination of the structure of S1–15 in complex with single-stranded DNA fragments, which may provide clues about the genesis of autoimmune diseases such as systemic lupus erythematosus, thyroiditis, and rheumatic autoimmune diseases. PMID:26085093

  1. Dietary effects of bitter gourd oil on blood and liver lipids of rats.

    PubMed

    Noguchi, R; Yasui, Y; Suzuki, R; Hosokawa, M; Fukunaga, K; Miyashita, K

    2001-12-15

    Bitter gourd is widely used as an edible plant in Asia. In this study, we evaluated the effects of bitter gourd oil (BGO) on the blood and liver lipids of rats. Three groups of rats were given a basal diet (AIN-93G) containing 7% fat by weight. The dietary fat consisted of soybean oil (control), soybean oil + BGO (6.5:0.5, w/w; 0.5% BGO), or soybean oil + BGO (5:2, w/w; 2.0% BGO). This fat treatment gave 3.4 and 15.4% of cis(c)9,trans(t)11,t13-18:3 in the dietary fat of 0.5 and 2.0% BGO, respectively. Fatty acid analysis showed the occurrence of c9,t11-18:2 in the liver of rats fed BGO diets, whereas this conjugated linoleic acid (CLA) isomer was not detected in the liver of rats fed the control diet. Furthermore, dietary BGO decreased the concentration of 18:2n-6 and increased the concentration of 22:6n-3. The formation of the CLA isomer in the liver lipids of rats fed BGO diets could be explained by either of the following two metabolic pathways, namely, enzymatic biohydrogenation of c9,t11,t13-18:3 or enzymatic isomerization of c9,c12-18:2. The BGO diets had significantly reduced free cholesterol levels with a trend toward an increase in HDL cholesterol, but there was no significant change in the total cholesterol. The dietary BGO also affected the level of plasma hydroperoxides. A slight but significant increase in hydroperoxides was found in the rats fed 2.0% BGO. This may be attributed to the lower oxidative stability of c9,t11,t13-18:3 in BGO.

  2. [Tissue distribution of solid lipid nanoparticles loaded garlic oil in rats].

    PubMed

    Sun, Xue-hui; Guo, Tao; He, Jin; Zhao, Ming-hong; Nie, Shu-fang

    2008-12-01

    To investigate the tissue distribution of the diallyl disulfide (DADS) and diallyl trisulfide (DATS) in solid lipid nanoparticles loaded garlic oil (GO-SLN) in rats. The gas chromatography-electron capture detection (GC-ECD) method was established to determined the DADS and DATS simultaneously in the biological samples of rats after administration of 0.5 mL garlic oil injection or GO-SLN (containing about 10 mg garlic oil) via jugular vein cannula. The conditions for gas chromatographic separation were as follows. The oven temperature was set at 110 degrees C and maintained for 15 min. Temperatures at the injection port and detector were 180 degrees C and 300 degrees C, respectively. Ultra-pure nitrogen (purity > 99.999%, Shenyang Kerui Special Gases Co. Ltd., China) was used as a carrier gas and made-up gas at flow-rates of 1 mL x min(-1) and 60 mL x min(-1), respectively. All injections were carried out in the split injection mode with a split ratio of 1:10. The GC-ECD method was fit for determing the concentration of DADS and DATS in garlic oil. The distribution character of GO-SLN in rats had changed to some extent and the concentration of GO-SLN in tissues was higher than that of GO-Injection. The SLN can elevate the passive targeting of drugs and lengthen their action time in tissues.

  3. Surface-active solid lipid nanoparticles as Pickering stabilizers for oil-in-water emulsions.

    PubMed

    Gupta, Renuka; Rousseau, Dérick

    2012-03-01

    Oil-in-water (O/W) emulsions solely stabilized by surface-active solid lipid nanoparticles (SLNs) were developed. The SLNs were generated by quench-cooling hot O/W nanoemulsions consisting of 7.5% glyceryl stearyl citrate (GSC) dispersed in water. Their initial volume-weighted mean particle diameter (∼152 nm) and zeta potential (ca.-49 mV) remained unchanged for 24 weeks. O/W emulsions (oil phase volume fraction: 0.2) containing 7.5% (w/w) GSC SLNs in the aqueous phase were kinetically-stable for 12 weeks and did not visually phase-separate over 24 weeks. The O/W emulsions generated with solid-state GSC SLNs had a volume-weighted mean oil droplet diameter of ∼459 nm and a zeta potential of ca.-43 mV. Emulsion microstructure evaluated with TEM revealed dispersed oil droplets sparsely covered with adsorbed Pickering-type SLNs as well aggregated SLNs present in the continuous phase. Gradual emulsion destabilization resulted from GSC SLN dissolution during the experimental timeframe. Overall, surface-active SLNs developed via nanoemulsions effectively kinetically stabilized O/W emulsions.

  4. Dipyridamole prevents the coconut oil-induced hypercholesterolemia. A study on lipid plasma and lipoprotein composition.

    PubMed

    García-Fuentes, Eduardo; Gil-Villarino, Almudena; Zafra, Ma Flor; García-Peregrín, Eduardo

    2002-03-01

    For a better understanding of the hypolipidemic function of dipyridamole, we have studied the comparative effects of diet supplementation with 10% coconut oil with and without dipyridamole on the lipid plasma and lipoprotein composition in chicks. This study was performed under postprandial and food-deprivation (12h) conditions. Coconut oil induced a clear hypercholesterolemia under both feeding conditions. Simultaneous administration of dipyridamole maintained total and esterified cholesterol at levels similar to those observed in control animals sacrificed under postprandial conditions. Under these conditions, our results also show that dipyridamole significantly reduced cholesterol levels in all the chick plasma lipoproteins that were increased by coconut oil administration. Nevertheless, it should be emphasised that the levels of total cholesterol found in intermediate- and very-low-density lipoproteins were lower than in control. All chemical components of these fractions were significantly decreased by dipyridamole. The effects were not significant in chicks deprived of food. In conclusion, our results show that the hypercholesterolemia induced by coconut oil was prevented by dipyridamole. To our knowledge, this is one of the first reports on the antihypercholesterolemic effects of dipyridamole.

  5. Fatty Acid Composition and Lipid Profile of Diospyros mespiliformis, Albizia lebbeck, and Caesalpinia pulcherrima Seed Oils from Nigeria

    PubMed Central

    Oderinde, Rotimi Ayodele

    2014-01-01

    The screening of lesser-known underutilized seeds as source of food has been a way of finding solution to food insecurity in developing nations. In this regard, oil as a class of food was extracted from the seeds of Diospyros mespiliformis  (4.72 ± 0.2%), Albizia lebbeck  (6.40 ± 0.60%), and Caesalpinia pulcherrima  (7.2 ± 0.30%). The oils were finally analyzed for their fatty acid composition, lipid classes, fatty acid distribution in the lipid fractions, and molecular speciation of the triacylglycerols, glycolipids, and phospholipids. The fatty acid composition of the oils varied with C18:2 fatty acid being the most dominant in the oils. Neutral lipids were the most abundant lipid class found in the oils while molecular species of the triacylglycerol with equivalent carbon chain number C40 was majorly present in the oils of Diospyros mespiliformis and Caesalpinia pulcherrima. The present study presents lesser-known underutilized seeds as possible sources of food. PMID:26904625

  6. The effect of a herbal paste and oil extract on the lipid content of canine hair fibres.

    PubMed

    Momota, Yutaka; Shimada, Kenichiro; Kadoya, Chihiro; Gin, Azusa; Kobayashi, Jun; Nakamura, Yuka; Matsubara, Takako; Sako, Toshinori

    2017-08-01

    Application of herbal paste and oil to a dog's coat and body before rinsing (often combining with shampooing) is a cosmetic therapy available in Japan. It is highly appreciated by users, who claim that the treatment makes the coat shinier, improves volume and eliminates tangles. However, there has been no scientific evaluation of such treatments. Improvement of hair condition is derived from oils such as sebum and conditioning oils because chemicals are not used. Therefore, we examined nonpolar lipids (the primary lipids in dog hair) and the botanical oils used in this therapy. Hair samples were obtained from six beagle dogs. Groups were based on different combinations of the following processes: rinsing, shampooing, herbal therapy and herbal therapy with oil extract. Analysis of lipids was performed by high performance thin layer chromatography. The processes of shampooing and herbal therapy were associated with an equivalent reduction in cholesterol ester and triglyceride (TG). However, hair treated by herbal therapy combined with oil extract had an almost three-fold higher TG content, even after shampooing. This study demonstrated that the herbal therapy was able to coat hair samples with TG that was not removed with rinsing. Further investigation is required to evaluate the possible benefits of the application of botanical products containing lipids, such as TG, on hair coat quality in dogs. © 2017 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  7. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.

    PubMed

    Göpfrich, Kerstin; Zettl, Thomas; Meijering, Anna E C; Hernández-Ainsa, Silvia; Kocabey, Samet; Liedl, Tim; Keyser, Ulrich F

    2015-05-13

    Self-assembled DNA nanostructures have been used to create man-made transmembrane channels in lipid bilayers. Here, we present a DNA-tile structure with a nominal subnanometer channel and cholesterol-tags for membrane anchoring. With an outer diameter of 5 nm and a molecular weight of 45 kDa, the dimensions of our synthetic nanostructure are comparable to biological ion channels. Because of its simple design, the structure self-assembles within a minute, making its creation scalable for applications in biology. Ionic current recordings demonstrate that the tile structures enable ion conduction through lipid bilayers and show gating and voltage-switching behavior. By demonstrating the design of DNA-based membrane channels with openings much smaller than that of the archetypical six-helix bundle, our work showcases their versatility inspired by the rich diversity of natural membrane components.

  8. Addition of electrophilic lipids to actin alters filament structure

    SciTech Connect

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores . E-mail: dperezsala@cib.csic.es

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} (15d-PGJ{sub 2}) and PGA{sub 1} in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA{sub 1} and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ{sub 2} or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ{sub 2} at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  9. Addition of electrophilic lipids to actin alters filament structure.

    PubMed

    Gayarre, Javier; Sánchez, David; Sánchez-Gómez, Francisco J; Terrón, María C; Llorca, Oscar; Pérez-Sala, Dolores

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and PGA(1) in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA(1) and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ(2) or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ(2) at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  10. Structural investigations on lipid nanoparticles containing high amounts of lecithin.

    PubMed

    Schubert, Martin Alexander; Harms, Meike; Müller-Goymann, Christel Charlotte

    2006-02-01

    Solid lipid nanoparticles (SLN), an alternative colloidal drug delivery system to polymer nanoparticles, emulsions and liposomes, possess inherent low incorporation rates resulting from the crystalline structure of the solid lipid. To increase the drug loading capacity of SLN, matrix modification by incorporation of the amphiphilic lipid lecithin within the lipid matrices has been proposed as a promising alternative. The objective of this work is to investigate the effects of the lecithin on the microstructure of matrix modified SLN. In addition, these systems were checked for the existence of aggregates like mixed micelles, liposomes, etc., which could possibly be formed by lecithin leakage into the aqueous phase during the preparation process. For this purpose, laser diffraction, photon correlation spectroscopy (PCS), small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) were performed to investigate the structure, mobility, and molecular environment of the compounds. Lecithin incorporation within the lipid matrices resulted in a concentration dependent decrease in particle size up to a critical concentration of 30%. Lecithin incorporation up to 50% was investigated but caused no further particle size decrease. TEM revealed anisometrical and crystalline platelets of ellipsoidal to disc-like shape. Furthermore, SAXS and TEM showed no signs of lecithin and nonionic emulsifier derived aggregates in the aqueous phase. This points in agreement with NMR measurements to a strong attachment of both substances to the SLN surfaces. The proposed structure of the particles after melt emulsification consists of two different layers: a crystalline triglyceride-rich core is covered in dependence of the lecithin content either by a monomolecular or multimolecular lecithin/Solutol HS15 (SOL) layer.

  11. Structure and Biosynthesis of Cuticular Lipids

    PubMed Central

    Kolattukudy, P. E.; Croteau, Rodney; Brown, Linda

    1974-01-01

    The structure and composition of the cutin monomers from the flower petals of Vicia faba were determined by hydrogenolysis (LiAlH4) or deuterolysis (LiAlD4) followed by thin layer chromatography and combined gas-liquid chromatography and mass spectrometry. The major components were 10, 16-dihydroxyhexadecanoic acid (79.8%), 9, 16-dihydroxyhexadecanoic acid (4.2%), 16-hydroxyhexadecanoic acid (4.2%), 18-hydroxyoctadecanoic acid (1.6%), and hexadecanoic acid (2.4%). These results show that flower petal cutin is very similar to leaf cutin of V. faba. Developing petals readily incorporated exogenous [1-14C]palmitic acid into cutin. Direct conversion of the exogeneous acid into 16-hydroxyhexadecanoic acid, 10, 16-dihydroxy-, and 9, 16-dihydroxyhexadecanoic acid was demonstrated by radio gas-liquid chromatography of their chemical degradation products. About 1% of the exogenous [1-14C]palmitic acid was incorporated into C27, C29, and C31n-alkanes, which were identified by combined gas-liquid chromatography and mass spectrometry as the major components of the hydrocarbons of V. faba flowers. The radioactivity distribution among these three alkanes (C27, 15%; C29, 48%; C31, 38%) was similar to the per cent composition of the alkanes (C27, 12%; C29, 43%; C31, 44%). [1-14C]Stearic acid was also incorporated into C27, C29, and C31n-alkanes in good yield (3%). Trichloroacetate, which has been postulated to be an inhibitor of fatty acid elongation, inhibited the conversion of [1-14C]stearic acid to alkanes, and the inhibition was greatest for the longer alkanes. Developing flower petals also incorporated exogenous C28, C30, and C32 acids into alkanes in 0.5% to 5% yields. [G-3H]n-octacosanoic acid (C28) was incorporated into C27, C29, and C31n-alkanes. [G-3H]n-triacontanoic acid (C30) was incorporated mainly into C29 and C31 alkanes, whereas [9, 10, 11-3H]n-dotriacontanoic acid (C32) was converted mainly to C31 alkane. Trichloroacetate inhibited the conversion of the exogenous

  12. Higher docosahexaenoic acid, lower arachidonic acid and reduced lipid tolerance with high doses of a lipid emulsion containing 15% fish oil: a randomized clinical trial.

    PubMed

    D'Ascenzo, Rita; Savini, Sara; Biagetti, Chiara; Bellagamba, Maria P; Marchionni, Paolo; Pompilio, Adriana; Cogo, Paola E; Carnielli, Virgilio P

    2014-12-01

    Lipid emulsions containing fish oil, as source of long chain omega 3 fatty acids, have recently became available for parenteral nutrition in infants, but scanty data exist in extremely low birth weight preterms. The objective of this study was to compare plasma fatty acids and lipid tolerance in preterm infants receiving different doses of a 15% fish oil vs. a soybean oil based lipid emulsion. Preterm infants (birth weight 500-1249 g) were randomized to receive parenteral nutrition with MOSF (30% Medium-chain triglycerides, 25% Olive oil, 30% Soybean oil, 15% Fish oil) or S (S, 100% Soybean oil) both at two levels of fat intake: 2.5 or 3.5 g kg(-1) d(-1), named 2.5Fat and 3.5Fat respectively. Plasma lipid classes and their fatty acid composition were determined on postnatal day 7 and 14 by gas chromatography together with routine biochemistry. We studied 80 infants. MOSF infants had significantly higher plasma phospholipid Docosahexaenoic acid and Eicosapentaenoic and lower Arachidonic acid. Plasma phospholipids, triglycerides and free cholesterol were all significantly higher in the MOSF-3.5Fat group, while cholesterol esters were lower with MOSF than with S. The area under the curve of total bilirubin was significantly lower with MOSF than with S. The use of a lipid emulsion with 15% FO resulted in marked changes of plasma long-chain fatty acids. Whether the benefits of increasing Docosahexaenoic acid outweigh the potential negative effect of reduced Arachidonic acid should be further studied. MOSF patients exhibited reduced lipid tolerance at 3.5 g kg(-1) d(-1) fat intake. The trial was conducted between January 2008 and December 2012 so we had not registered it in a public trials registry as it is now required for trials that started after July 2008. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  13. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba).

    PubMed

    Albalat, Amaya; Nadler, Lauren E; Foo, Nicholas; Dick, James R; Watts, Andrew J R; Philp, Heather; Neil, Douglas M; Monroig, Oscar

    2016-12-01

    In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as "tails-only" for the scampi trade. In the "tailing" process, the "head" (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes in

  14. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba)

    PubMed Central

    Albalat, Amaya; Nadler, Lauren E.; Foo, Nicholas; Dick, James R.; Watts, Andrew J. R.; Philp, Heather; Neil, Douglas M.; Monroig, Oscar

    2016-01-01

    In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as “tails-only” for the scampi trade. In the “tailing” process, the “head” (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and

  15. Thermal Oxidation Induces Lipid Peroxidation and Changes in the Physicochemical Properties and β-Carotene Content of Arachis Oil

    PubMed Central

    Falade, Ayodeji Osmund

    2015-01-01

    This study sought to investigate the effect of thermal oxidation on the physicochemical properties, malondialdehyde, and β-carotene content of arachis oil. Pure arachis oil was heated for 20 mins with a corresponding temperature of 220°C. Thereafter, changes in the physicochemical properties (acid, iodine, and peroxide values) of the oil samples were determined. Subsequently, the level of lipid peroxidation was determined using change in malondialdehyde content. Then, the total carotenoid and β-carotene contents were evaluated using spectrophotometric method and high performance liquid chromatography, respectively. The results of the study revealed a significant increase (P < 0.05) in the acid and peroxide values and malondialdehyde concentration of the heated oil when compared with the fresh arachis oil. In contrast, a significant decrease (P < 0.05) was observed in the iodine value, total carotenoid, 13-cis-, 15-cis-, trans-, and 9-cis-β-carotene, and total β-carotene content of the heated oil. Hence, thermal oxidation induced lipid peroxidation and caused changes in the physicochemical properties and carotenoid contents of arachis oil, thereby reducing its nutritive value and health benefit. Therefore, cooking and frying with arachis oil for a long period might not be appropriate as this might lead to a loss of significant amount of the insignificant β-carotene in arachis oil. PMID:26904665

  16. Cold fluorescent light as major inducer of lipid oxidation in soybean oil stored at household conditions for eight weeks.

    PubMed

    Pignitter, Marc; Stolze, Klaus; Gartner, Stephanie; Dumhart, Bettina; Stoll, Christiane; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-03-12

    Light, temperature, and oxygen availability has been shown to promote rancidity in vegetable oils. However, the contribution of each of these environmental factors to lipid oxidation in oil stored under household conditions is not known. We aimed to identify the major inducer of oxidative deterioration of soybean oil stored at constant (67.0 mL) or increasing (67.0-283 mL) headspace volume, 22 or 32 °C, with or without illumination by cold fluorescent light for 56 days by means of fatty acid composition, peroxide value, formation of conjugated dienes, lipid radicals, hexanal, and the decrease in the contents of tocopherols. Soybean oil stored in the dark for 56 days showed an increase of the peroxide value by 124 ± 0.62% (p = 0.006), whereas exposure of the oil to light in a cycle of 12 h light alternating with 12 h darkness for 56 days led to a rise of the peroxide value by 1473 ± 1.79% (p ≤ 0.001). Little effects on the oxidative status of the oil were observed after elevating the temperature from 22 to 32 °C and the headspace volume from 67.0 to 283 mL during 56 days of storage. We conclude that storing soybean oil in transparent bottles under household conditions might pose an increased risk for accelerated lipid oxidation induced by exposure to cold fluorescent light.

  17. Zone I of Tear Microdesiccates Is a Lipid-Containing Structure.

    PubMed

    Traipe, Felipe; Traipe, Leonidas; Salinas-Toro, Daniela; López, Daniela; Valenzuela, Felipe; Pérez, Claudio; Cartes, Cristian; Zuazo, Francisca; Varela, Patricia; Toledo-Araya, Héctor; López-Solís, Remigio

    2017-02-01

    Morphological features of tear microdesiccates on glass surfaces have been associated with tear fluid status. Tear-film lipids play a critical role in the pathophysiology of some ocular surface disorders. Tear microdesiccates display 4 distinctive morphological domains (zones I, II, III, and transition band). In this study, we investigated the lipid location in tear microdesiccates. Tear from individual healthy eyes (assessed by symptoms, signs, and slit-lamp examination) was collected using absorbing minisponges. One-µL aliquots were allowed to dry under ambient conditions on microscope slides. Tear microdesiccates were examined by various transmitted light microscopy methods. Tear lipids were located both by partition experiments using 2 lipophilic dyes (Oil red O and Nile blue A) mixed with tear fluid under conditions preserving morphological features of microdesiccates and by assessing the effect of 2 solvents markedly differing in polarity (water and ethanol) on the morphology of particular domains of preformed microdesiccates. During desiccation, both Nile blue A and Oil red O became preferentially located in the outermost domain of tear microdesiccates (zone I) without affecting the formation of major fern-like crystalloids (zones II and III). Low volumes of water drastically affected fern-like crystalloids, whereas the gross morphology of zone I was maintained. Contrarily, ethanol, a less polar solvent, was a fixative for fern-like crystalloids, although it markedly affected the bulk of zone I by extracting liquid droplets out of microdesiccates and visibilizing some filamentous subcomponents. Zone I is a hydrophobic domain, whereas zones II and III are highly hydrophilic domains of tear microdesiccates. Zone I represents a lipid-rich structure.

  18. Zone I of Tear Microdesiccates Is a Lipid-Containing Structure.

    PubMed

    Traipe, Felipe; Traipe, Leonidas; Salinas-Toro, Daniela; López, Daniela; Valenzuela, Felipe; Pérez, Claudio; Cartes, Cristian; Zuazo, Francisca; Varela, Patricia; Toledo-Araya, Héctor; López-Solís, Remigio

    2016-11-23

    Morphological features of tear microdesiccates on glass surfaces have been associated with tear fluid status. Tear-film lipids play a critical role in the pathophysiology of some ocular surface disorders. Tear microdesiccates display 4 distinctive morphological domains (zones I, II, III, and transition band). In this study, we investigated the lipid location in tear microdesiccates. Tear from individual healthy eyes (assessed by symptoms, signs, and slit-lamp examination) was collected using absorbing minisponges. One-µL aliquots were allowed to dry under ambient conditions on microscope slides. Tear microdesiccates were examined by various transmitted light microscopy methods. Tear lipids were located both by partition experiments using 2 lipophilic dyes (Oil red O and Nile blue A) mixed with tear fluid under conditions preserving morphological features of microdesiccates and by assessing the effect of 2 solvents markedly differing in polarity (water and ethanol) on the morphology of particular domains of preformed microdesiccates. During desiccation, both Nile blue A and Oil red O became preferentially located in the outermost domain of tear microdesiccates (zone I) without affecting the formation of major fern-like crystalloids (zones II and III). Low volumes of water drastically affected fern-like crystalloids, whereas the gross morphology of zone I was maintained. Contrarily, ethanol, a less polar solvent, was a fixative for fern-like crystalloids, although it markedly affected the bulk of zone I by extracting liquid droplets out of microdesiccates and visibilizing some filamentous subcomponents. Zone I is a hydrophobic domain, whereas zones II and III are highly hydrophilic domains of tear microdesiccates. Zone I represents a lipid-rich structure.

  19. Comparative effects of short- and long-term feeding of safflower oil and perilla oil on lipid metabolism in rats.

    PubMed

    Ihara, M; Umekawa, H; Takahashi, T; Furuichi, Y

    1998-10-01

    Diets high in linoleic acid (20% safflower oil contained 77.3% linoleic acid, SO-diet) and alpha-linolenic acid (20% perilla oil contained 58.4% alpha-linolenic acid, PO-diet) were fed to rats for 3, 7, 20, and 50 days, and effects of the diets on lipid metabolism were compared. Levels of serum total cholesterol and phospholipids in the rats fed the PO-diet were markedly lower than those fed the SO-diet after the seventh day. In serum and hepatic phosphatidylcholine and phosphatidylethanolamine, the proportion of n-3 fatty acids showed a greater increase in the PO group than in the SO group in the respective feeding-term. At the third and seventh days after the commencement of feeding the experimental diets, expressions of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA were significantly higher in the SO group than those in the PO group, although the difference was not observed in the longer term. There were no significant differences in the LDL receptor mRNA levels between the two groups through the experimental term, except 3-days feeding. These results indicate that alpha-linolenic acid has a more potent serum cholesterol-lowering ability than linoleic acid both in short and long feeding-terms.

  20. A bicontinuous tetrahedral structure in a liquid-crystalline lipid

    NASA Astrophysics Data System (ADS)

    Longley, William; McIntosh, Thomas J.

    1983-06-01

    The structure of most lipid-water phases can be visualized as an ordered distribution of two liquid media, water and hydrocarbons, separated by a continuous surface covered by the polar groups of the lipid molecules1. In the cubic phases in particular, rod-like elements are linked into three-dimensional networks1,2. Two of these phases (space groups Ia3d and Pn3m) contain two such three-dimensional networks mutually inter-woven and unconnected. Under the constraints of energy minimization3, the interface between the components in certain of these `porous fluids' may well resemble one of the periodic minimal surface structures of the type described mathematically by Schwarz4,5. A structure of this sort has been proposed for the viscous isotropic (cubic) form of glycerol monooleate (GMO) by Larsson et al.6 who suggested that the X-ray diagrams of Lindblom et al.7 indicated a body-centred crystal structure in which lipid bilayers might be arranged as in Schwarz's octahedral surface4. We have now found that at high water contents, a primitive cubic lattice better fits the X-ray evidence with the material in the crystal arranged in a tetrahedral way. The lipid appears to form a single bilayer, continuous in three dimensions, separating two continuous interlinked networks of water. Each of the water networks has the symmetry of the diamond crystal structure and the bilayer lies in the space between them following a surface resembling Schwarz's tetrahedral surface4.

  1. Effects of dietary oregano essential oil and vitamin E on the lipid oxidation stability of cooked chicken breast meat.

    PubMed

    Avila-Ramos, F; Pro-Martínez, A; Sosa-Montes, E; Cuca-García, J M; Becerril-Pérez, C M; Figueroa-Velasco, J L; Narciso-Gaytán, C

    2012-02-01

    The antioxidant effect of oregano essential oil and vitamin E was evaluated in cooked chicken breast meat. In total, 480 broilers were randomly assigned to 6 treatments and 4 replications. Broilers were raised with a corn-soybean meal diet including either crude soybean oil or acidulated soybean oil soapstock, each supplemented with vitamin E at 10 or 100 mg or oregano essential oil at 100 mg/kg of feed. At 42 d, broilers were slaughtered and their breast meat was prepared into strips (1.5 × 10 cm) or patties (150 g). Fatty acid composition of the muscle was determined. For lipid oxidation stability, both meat strips and patties were cooked to an internal temperature of 74°C and malonaldehyde contents were assessed during 0, 3, 6, and 9 d of storage at 4°C. Each storage day had 4 replications per treatment. The meat lipid oxidative stability was estimated by content of malonaldehyde values. Results showed that feed consumption, weight gain, and feed conversion were not affected by the dietary oils or antioxidants, except for the mortality in acidulated soybean oil soapstock with the 10-mg vitamin E treatment. The fatty acid composition of the meat was similar between the 2 diets given the same antioxidant supplement. The oxidation stability of meat lipids in both types of meats showed a significant (P < 0.05) interaction between oils, antioxidants, and storage time. In the crude soybean oil oil diet, the malonaldehyde value in the 10-mg vitamin E treatment was the highest, followed by oregano essential oil, and then the 100-mg vitamin E treatment at 9 d of storage, whereas the value of oregano essential oil in the acidulated soybean oil soapstock diet was the highest, followed by the 10-mg vitamin E, and then the 100-mg vitamin E treatment during the 9 d of storage. In conclusion, the dietary oils and antioxidants used can be included in broiler diets without negative effects on their productivity. The antioxidant effect of vitamin E was higher with a higher

  2. Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats.

    PubMed

    Fu, Jing; Wang, Baogui; Gong, Deming; Zeng, Cheng; Jiang, Yihao; Zeng, Zheling

    2015-08-01

    The total and positional fatty acid composition in camphor tree (Cinnamomum camphora) seed kernel oil (CKO) were analyzed, and for the first time, the effect of CKO on body fat deposition and blood lipids in rats was studied. The major fatty acids in CKO were determined to be decanoic acid (C10:0, 51.49%) and dodecanoic acid (C12:0, 40.08%), and uniformly distributed at Sn-1, 3, and Sn-2 positions in triglyceride (TG). Rats were randomly divided into control, CKO, lard, and soybean oil groups. At the end of the experiment, levels of blood lipids and the fats of abdomen in the rats were measured. The main organ were weighted and used for the histological examination. The results showed that body weight and fat deposition in CKO group were significantly lower than the lard and soybean groups. Moderate consumption of CKO was found to improve the levels of blood TG and low density lipoprotein cholesterol. © 2015 Institute of Food Technologists®

  3. Lipid digestibility and energy content of distillers' corn oil in swine and poultry.

    PubMed

    Kerr, B J; Dozier, W A; Shurson, G C

    2016-07-01

    Two experiments were conducted to determine the DE and ME and apparent total tract digestibility of ether extract of 3 distillers' corn oil (DCO; 4.9, 12.8, or 13.9% free fatty acids [FFA]) samplescompared with a sample of refined corn oil (CO; 0.04% FFA) and an industrially hydrolyzed high-FFA DCO (93.8% FFA) in young pigs and growing broilers. In Exp. 1, 54 barrows (initial age = 28 d) were fed a common diet for 7 d and then fed their allotted dietary treatment (either 100% basal diet or 1 of 5 test diets consisting of 90% basal diet plus 10% test lipid) for the next 7 d in group pens (9 pigs/pen). For the next 10 d, pigs were moved to individual metabolism crates for continued diet and crate adaptation and to a twice-daily feeding regimen. Pigs remained on their respective diets for a 4-d total fecal and urine collection period. For Exp. 2, 567 male broilers were obtained from a commercial hatchery (1 d of age) and reared in grower battery cages that contained 9 chicks per cage. Broilers were fed a common corn-soybean meal starter diet from placement until the beginning of the trial (19 d of age). Birds were then randomly assigned to 1 of 6 dietary treatments (94% basal diet plus 6% dextrose or 94% basal diet plus 6% test lipid substituted for dextrose) on d 19 and were allowed an 8-d dietary acclimation period followed by a 48-h energy balance assay. In Exp. 1, the DCO sample with 12.8% FFA contained the lowest ( < 0.05) DE (8,036 kcal/kg) content compared with the 0.04% refined CO sample and the 4.9 or 93.8% FFA DCO samples (8,814, 8,828, and 8,921 kcal/kg, respectively), with the DCO source containing 13.9% FFA having intermediate DE (8,465 kcal/kg) content. The ME content of these lipid sources also differed among treatments ( < 0.01), following trends similar to their DE values, with no differences noted for ME as a percentage of DE ( > 0.35) content among the lipids evaluated. In Exp. 2, lipids containing 0.04, 4.9, 12.8, and 13.9% FFA had similar nitrogen

  4. Biobased oil structure on amphiphilic and tribological properties

    USDA-ARS?s Scientific Manuscript database

    Biobased oils are those derived from farm-based renewable raw materials. Most are vegetable oils (such as soybean, canola, corn, etc.) or chemical modifications of vegetable oils. They have a number of interesting structural features that impact their amphiphilic and lubrication properties. The basi...

  5. Impact of intravenous lipid emulsions on liver function tests: Contribution of parenteral fish oil.

    PubMed

    Badia-Tahull, Maria B; Llop-Talaveron, Josep; Leiva-Badosa, Elisabet

    2015-09-01

    Lipids in parenteral nutrition (PN) have been linked to liver damage. The aim of this study is to 1) determine whether the incidence of alterations in liver function tests (LFTs) changes over time among hospitalized adult patients receiving PN; 2) evaluate whether the alteration in LFTs varies with the pattern of lipid administration; and 3) study the relationship between LFT alterations and fish oil (FO) emulsions. Patients treated with PN over 4 y were included. Demographic, clinical, nutritional, and analytical variables were collected. LFTs (γ-glutamyl transferase [GGT], alkaline phosphatase [AP], alanine aminotransferase [ALT], and total bilirubin [BIL]) were collected during PN treatment. Differences in LFTs were studied with t tests for paired samples. To match the type of lipid with each of the LFTs studied, four multivariate statistical models were performed. Significance was reported with the 95% confidence interval (CI) at p < 0.05 (two-tailed). We studied 1555 patients. LFT alterations at baseline were high and increased during PN treatment except ALT. GGT and AP showed significant increases from baseline values. In the multivariate study, daily dose of FO (g·kg(-1)·d(-1)) was associated with a significant decrease in GGT (B = -11.189; 95% CI, -19.799 to -2.578) and in AP (B = -5.250; 95% CI, -10.263 to -0.237). Daily dose of vegetal oil (g/kg) had a tendency for a significant increase in GGT (B = 0.441; 95% CI, -0.107 to 1.039) and AP (B = 0.312; 95% CI, -0.023 to 0.648). GGT and AP increased throughout the clinical course of PN administration. These alterations had a multifactorial component. The administration of FO was associated with a significant decrease in the levels of GGT and AP. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds

    PubMed Central

    McDaniel, Jodi C.; Massey, Karen; Nicolaou, Anna

    2013-01-01

    Chronic wounds often result from prolonged inflammation involving excessive polymorphonuclear leukocyte activity. Studies show that the ω-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in fish oils generate bioactive lipid mediators that reduce inflammation and polymorphonuclear leukocyte recruitment in numerous inflammatory disease models. This study’s purpose was to test the hypotheses that boosting plasma levels of EPA and DHA with oral supplementation would alter lipid mediator levels in acute wound microenvironments and reduce polymorphonuclear leukocyte levels. Eighteen individuals were randomized to 28 days of either EPA + DHA supplementation (Active Group) or placebo. After 28 days, the Active Group had significantly higher plasma levels of EPA (p < 0.001) and DHA (p < 0.001) than the Placebo Group and significantly lower wound fluid levels of two 15-lipoxygenase products of ω-6 polyunsaturated fatty acids (9-hydroxyoctadecadienoic acid [p=0.033] and 15-hydroxyeicosatrienoic acid [p=0.006]), at 24 hours postwounding. The Active Group also had lower mean levels of myeloperoxidase, a leukocyte marker, at 12 hours and significantly more reepithelialization on Day 5 postwounding. We suggest that lipid mediator profiles can be manipulated by altering polyunsaturated fatty acid intake to create a wound microenvironment more conducive to healing. PMID:21362086

  7. Lipid transfer proteins: classification, nomenclature, structure, and function.

    PubMed

    Salminen, Tiina A; Blomqvist, Kristina; Edqvist, Johan

    2016-11-01

    The non-specific lipid transfer proteins (LTPs) constitute a large protein family found in all land plants. They are small proteins characterized by a tunnel-like hydrophobic cavity, which makes them suitable for binding and transporting various lipids. The LTPs are abundantly expressed in most tissues. In general, they are synthesized with an N-terminal signal peptide that localizes the protein to spaces exterior to the plasma membrane. The in vivo functions of LTPs are still disputed, although evidence has accumulated for a role in the synthesis of lipid barrier polymers, such as cuticular waxes, suberin, and sporopollenin. There are also reports suggesting that LTPs are involved in signaling during pathogen attacks. LTPs are considered as key proteins for the plant's survival and colonization of land. In this review, we aim to present an overview of the current status of LTP research and also to discuss potential future applications of these proteins. We update the knowledge on 3D structures and lipid binding and review the most recent data from functional investigations, such as from knockout or overexpressing experiments. We also propose and argument for a novel system for the classification and naming of the LTPs.

  8. Preparation of solid lipid nanoparticles loaded with garlic oil and evaluation of their in vitro and in vivo characteristics.

    PubMed

    Wencui, Z; Qi, Z; Ying, W; Di, W

    2015-10-01

    Solid lipid nanoparticles (SLN) are colloidal drug carriers and may be suitable for delivery of garlic oil, a nutraceutical with medicinal properties, whose use has been limited by its poor solubility. We tested whether poor solubility of garlic oil would be overcome by complexing with SLN by high-pressure homogenization and ultrasound techniques. The effects of lipid phase, surfactant mixture and loading concentration of garlic oil on particle size and distribution were also investigated. High pressure homogenization technique was used to prepare SLN, using orthogonal experiment method to optimize entrapment efficiency, loading efficiency, and recovery of SLN. Pharmacokinetics of garlic oil loaded solid lipid nanoparticles after oral administration to rats was studied by using LC/MS/MS method. Mean particle size and zeta potential of SLN were, respectively, 106.5 ± 40.3 nm and -30.2 mv. The majority of SLN had a less ordered arrangement of crystals at room temperature, which was beneficial for increasing the drug loading capacity. Drug entrapment efficiency was > 90 percent and showed a relatively long-term physical stability. It was feasible to prepare a lyophilized product with good long-term stability. When 10% trehalose and 5% sucrose were used as cryopreservants, SNL particle size increased from 106.5 nm prior to lyophilisation to 155.3 nm after reconstitution. The garlic oil content in SLN decreased to about 85% (respectively, 34.3 vs. 39.4 mg/mL prior to lyophilisation) due to volatility of garlic oil. Pharmacokinetic studies in rats demonstrated that distribution and elimination of diallyl trisulfide (DATS) and diallyl disulfide (DADS) in garlic oil were rapid. Additionally, elimination of garlic oil-SLN complex is faster than that of garlic oil alone, probably, due to phagocytosis. An SLN complex with garlic oil exhibits characteristics similar to those of parenteral emulsions, even after lyophilization and reconstitution.

  9. Bead milling for lipid recovery from thraustochytrid cells and selective hydrolysis of Schizochytrium DT3 oil using lipase.

    PubMed

    Byreddy, Avinesh R; Barrow, Colin J; Puri, Munish

    2016-01-01

    Marine microalgae present a renewable alternative source for sustainable production of omega-3 fatty acids, as compared to conventional sources such as krill oil and fish oil. In this study, we optimised a method for lipid extraction from marine thraustochytrids using a bead mill and enzymatic concentration of omega-3 fatty acids from the thraustochytrid oil. The optimised lipid extraction conditions were, bead size 0.4-0.6μm, 4500rpm, 4min of processing time at 5g biomass concentration. The maximum lipid yield (% dry weight basis) achieved at optimum conditions were 40.5% for Schizochytrium sp. S31 (ATCC) and 49.4% for Schizochytrium sp. DT3 (in-house isolate). DT3 oil contained 39.8% docosahexaenoic acid (DHA) as a percentage of lipid, a higher DHA percentage than S31. Partial hydrolysis of DT3 oil using Candida rugosa lipase was performed to enrich omega-3 polyunsaturated fatty acids (PUFAs) in the glyceride portion. Total omega-3 fatty acid content was increased to 88.7%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Lipid composition and structure of commercial parenteral emulsions.

    PubMed

    Férézou, J; Nguyen, T L; Leray, C; Hajri, T; Frey, A; Cabaret, Y; Courtieu, J; Lutton, C; Bach, A C

    1994-07-14

    In order to study the influence of the phospholipid/triacylglycerol (PL/TG) ratio of parenteral emulsions on the distribution and the physico-chemical properties of their fat particles, commercial 10, 20 or 30% fat formulas were fractionated by centrifugation into an upper lipid cake (resuspended in aqueous glycerol) and a subnatant or mesophase, from which a PL-rich subfraction (d = 1.010-1.030 g/l) was purified by density gradient ultracentrifugation. Chemical and 31P-NMR analyses of these fractions indicated that at least two types of fat particles coexist in parenteral emulsions: (i) TG-rich particles (mean diameter: 330, 400, 470 nm in the 10, 20, 30% emulsion) which contain practically all the TG and esterified phytosterols of native emulsions, but only a fraction of their PL, unesterified cholesterol and phytosterols, and other minor lipids; (ii) PL-bilayer particles or liposomes (mean diameter: 80-100 nm) which are constituted with the remaining PL and relatively very small amounts of TG and other lipids. The higher the oil content of the emulsion, the lower the amount of these PL-rich particles, which represent the major particle population of the mesophase. Indeed, minute amounts of TG-rich particles (probably the smallest ones) are also present in the mesophase, even in the PL-rich subfraction which contains the bulk of liposomal PL. Since the PL-rich particles of the infused emulsion generate lipoprotein X-like particles, only the large TG-rich particles can be considered as true chylomicron counterparts.

  11. Lipid formation and γ-linolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil

    PubMed Central

    Tauk-Tornisielo, Sâmia M.; Arasato, Luciana S.; de Almeida, Alex F.; Govone, José S.; Malagutti, Eleni N.

    2009-01-01

    The fungi strains were tested in Bioscreen automated system to select the best nutritional source. Following, shaking submserse cultures were studied in media containing sole carbon or nitrogen source. The growth of these strains improved in media containing vegetable oil, with high concentration of lipids. The high concentration of γ-linolenic acid was obtained with M. circinelloides in culture containing sesame oil. PMID:24031370

  12. [Fish oil containing lipid emulsions in critically ill patients: Critical analysis and future perspectives].

    PubMed

    Manzanares, W; Langlois, P L

    2016-01-01

    Third-generation lipid emulsions (LE) are soybean oil sparing strategies with immunomodulatory and antiinflammatory effects. Current evidence supporting the use of intravenous (i.v) fish oil (FO) LE in critically ill patients requiring parenteral nutrition or receiving enteral nutrition (pharmaconutrient strategy) mainly derives from small phase ii clinical trials in heterogenous intensive care unit patient's population. Over the last three years, there have been published different systematic reviews and meta-analyses evaluating the effects of FO containing LE in the critically ill. Recently, it has been demonstrated that i.v FO based LE may be able to significantly reduce the incidence of infections as well as mechanical ventilation days and hospital length of stay. Nonetheless, more robust evidence is required before giving a definitive recommendation. Finally, we strongly believe that a dosing study is required before new phase iii clinical trials comparing i.v FO containing emulsions versus other soybean oil strategies can be conducted. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  13. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil

    PubMed Central

    Leonova, Svetlana; Grimberg, Åsa; Marttila, Salla; Stymne, Sten; Carlsson, Anders S.

    2010-01-01

    Since the cereal endosperm is a dead tissue in the mature grain, β-oxidation is not possible there. This raises the question about the use of the endosperm oil in cereal grains during germination. In this study, mobilization of lipids in different tissues of germinating oat grains was analysed using thin-layer and gas chromatography. The data imply that the oat endosperm oil [triacylglycerol (TAG)] is not a dead-end product as it was absorbed by the scutellum, either as free fatty acids (FFAs) released from TAG or as intact TAG immediately degraded to FFAs. These data were supported by light and transmission electron microscopy (LM and TEM) studies where close contact between endosperm lipid droplets and the scutellum was observed. The appearance of the fused oil in the oat endosperm changed into oil droplets during germination in areas close to the aleurone and the scutellar epithelium. However, according to the data obtained by TEM these oil droplets are unlikely to be oil bodies surrounded by oleosins. Accumulation of FFA pools in the embryo suggested further transport of FFAs from the scutellum. Noticeably high levels of TAG were also accumulated in the embryo but were not synthesized by re-esterification from imported FFAs. Comparison between two oat cultivars with different amounts of oil and starch in the endosperm suggests that an increased oil to starch ratio in oat grains does not significantly impact the germination process. PMID:20497973

  14. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil.

    PubMed

    Leonova, Svetlana; Grimberg, Asa; Marttila, Salla; Stymne, Sten; Carlsson, Anders S

    2010-06-01

    Since the cereal endosperm is a dead tissue in the mature grain, beta-oxidation is not possible there. This raises the question about the use of the endosperm oil in cereal grains during germination. In this study, mobilization of lipids in different tissues of germinating oat grains was analysed using thin-layer and gas chromatography. The data imply that the oat endosperm oil [triacylglycerol (TAG)] is not a dead-end product as it was absorbed by the scutellum, either as free fatty acids (FFAs) released from TAG or as intact TAG immediately degraded to FFAs. These data were supported by light and transmission electron microscopy (LM and TEM) studies where close contact between endosperm lipid droplets and the scutellum was observed. The appearance of the fused oil in the oat endosperm changed into oil droplets during germination in areas close to the aleurone and the scutellar epithelium. However, according to the data obtained by TEM these oil droplets are unlikely to be oil bodies surrounded by oleosins. Accumulation of FFA pools in the embryo suggested further transport of FFAs from the scutellum. Noticeably high levels of TAG were also accumulated in the embryo but were not synthesized by re-esterification from imported FFAs. Comparison between two oat cultivars with different amounts of oil and starch in the endosperm suggests that an increased oil to starch ratio in oat grains does not significantly impact the germination process.

  15. Is oil consumption constrained by industrial structure? Evidence from China

    NASA Astrophysics Data System (ADS)

    Jia, Y. Q.; Duan, H. M.

    2017-08-01

    This paper examines whether oil consumption is constrained by output value, applying a cointegration test and an ECM to the primary, secondary, and tertiary sectors in China during 1985-2013. The empirical results indicate that oil consumption in China is constrained by the industrial structure both in the short run and in the long run. Regardless of the time horizon considered, the oil consumption constraint is the lowest for the primary sector as well as the highest for the tertiary sector. This is because the long-term industrial structure formation and the technological level of each sector underlines the existence of long run equilibrium and short run fluctuations of output value and oil consumption, with the latter being constrained by adjustments in industrial structure. In order to decrease the constraining effect of output value on oil consumption, the government should take some measures to improve the utilization rate, reducing the intensity of oil consumption, and secure the supply of oil.

  16. Chemical Structure of Lipid A Isolated from Flavobacterium meningosepticum Lipopolysaccharide

    PubMed Central

    Kato, Hitomi; Haishima, Yuji; Iida, Takatoshi; Tanaka, Akira; Tanamoto, Ken-ichi

    1998-01-01

    The chemical structure of the lipid A of the lipopolysaccharide component isolated from Flavobacterium meningosepticum IFO 12535 was elucidated. Methylation and nuclear magnetic resonance analyses showed that two kinds of hydrophilic backbone exist in the free lipid A: a β (1→6)-linked 2-amino-2-deoxy-d-glucose, which is usually present in enterobacterial lipid A’s, and a 2-amino-6-O-(2,3-diamino-2,3-dideoxy-β-d-glucopyranosyl)-2-deoxy-d-glucose, in a molar ratio of 1.00:0.35. Both backbones were α-glycosidically phosphorylated in position 1, and the hydroxyl groups at positions 4, 4′, and 6′ were unsubstituted. Liquid secondary ion-mass spectrometry revealed a pseudomolecular ion at m/z 1673 [M-H]− as a major monophosphoryl lipid A component carrying five acyl groups. Fatty acid analysis showed that the lipid A contained 1 mol each of amide-linked (R)-3-OH iC17:0, ester-linked (R)-3-OH iC15:0, amide-linked (R)-3-O-(iC15:0)-iC17:0, and both amide- and ester-linked (R)-3-OH C16:0. Fatty acid distribution analyses using several mass spectrometry determinations demonstrated that the former two constituents were distributed on positions 2 and 3 of the reducing terminal unit of the backbones and that the latter two were attached to the 2′ and 3′ positions in the nonreducing terminal residue. PMID:9683486

  17. Oxidative stability of structured lipid-based infant formula emulsion: effect of antioxidants.

    PubMed

    Zou, Long; Akoh, Casimir C

    2015-07-01

    The effect of permitted antioxidants, including α-tocopherol, β-carotene, ascorbyl palmitate, ascorbic acid, citric acid, and their combinations, on the lipid oxidation of structured lipid (SL)-based infant formula (IF) was evaluated. The 3.5% oil-in-water IF emulsion was formulated with a human milk fat analogue enriched with docosahexaenoic acid and stearidonic acid, and the antioxidants were added at 0.005% and 0.02% of the oil. The peroxide value, anisidine value, and hexanal concentration of emulsion samples were measured over a 28-day period. The results showed that whether a compound exhibited antioxidant behavior depended on its mechanism of action, polarity, concentration, and environmental conditions. The most effective antioxidant was ascorbyl palmitate at 0.005%, and a synergistic antioxidant effect was found between α-tocopherol and β-carotene. A high correlation was observed between anisidine value and hexanal content. Our findings have important implications for the successful incorporation of SL into IF products for infant nutrition and health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of green tea extract and α-tocopherol on the lipid oxidation rate of omega-3 oils, incorporated into table spreads, prepared using multiple emulsion technology.

    PubMed

    Dwyer, Sandra P O'; O'Beirne, David; Ní Eidhin, Deirdre; O'Kennedy, Brendan T

    2012-12-01

    This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)-3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil-in-water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil-in-water-in-oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α-Tocopherol), or both. Spreads containing α-Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5°C, while p-Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G' values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). © 2012 Institute of Food Technologists®

  19. Structural changes of lipoprotein lipids by 1H NMR

    NASA Astrophysics Data System (ADS)

    Ala-Korpela, M.; Oja, J.; Lounila, J.; Jokisaari, J.; Savolainen, M. J.; Kesäniemi, Y. A.

    1995-08-01

    A new procedure for detecting structural changes of lipoprotein lipids is introduced and applied to study native low (LDL) and high density lipoprotein (HDL) particles. The method involves lineshape fitting analyses of specific resonances in proton nuclear magnetic resonance spectra together with numerical derivation of the obtained intensity curves with respect to temperature. In addition to the well-known phase transition of the LDL core cholesterol esters, a novel structural change was revealed in the phospholipid monolayer of both native LDL and HDL particles. The attributes of this phenomenon are discussed.

  20. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production.

    PubMed

    Liu, Jin; Huang, Junchao; Sun, Zheng; Zhong, Yujuan; Jiang, Yue; Chen, Feng

    2011-01-01

    The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L(-1) of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel.

  1. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    PubMed Central

    Tsai, Hui-Hsu Gavin; Lee, Jian-Bin; Huang, Jian-Ming; Juwita, Ratna

    2013-01-01

    Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC), lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC) lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications. PMID:23571494

  2. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil.

    PubMed

    Toral, P G; Bernard, L; Belenguer, A; Rouel, J; Hervás, G; Chilliard, Y; Frutos, P

    2016-01-01

    Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2.2% fish oil (FO), or a diet containing 5.3% sunflower oil and additional starch (+38%; SOS) according to a 3 × 3 Latin square design with 25-d experimental periods. On the last day of each period, fatty acid composition (by gas chromatography) and bacterial community (by terminal-RFLP), as well as fermentation characteristics, were measured in rumen fluid samples. Results showed significant differences in the response of cows and goats to dietary treatments, although variations in some fermentation parameters (e.g., decreases in the acetate-to-propionate ratio due to FO or SOS) were similar in both species. Main alterations in ruminal BH pathways potentially responsible for MFD on the SOS diet (i.e., the shift from trans-11 to trans-10 18:1 and related increases in trans-10,cis-12 18:2) tended to be more pronounced in cows, which is consistent with an associated MFD only in this species. However, changes linked to FO-induced MFD (e.g., decreases in 18:0 and increases in total trans-18:1) were stronger in caprine rumen fluid, which may explain their unexpected susceptibility (although less marked than in bovine) to the negative effect of FO on milk fat content. Altogether, these results suggest that distinct ruminal mechanisms lead to each type of diet-induced MFD and confirm a pronounced interaction with species. With regard to microbiota, differences between cows and goats in the composition of the rumen bacterial community might be behind the disparity in the microorganisms

  3. The influence of membrane lipid structure on plasma membrane Ca2+ -ATPase activity.

    PubMed

    Tang, Daxin; Dean, William L; Borchman, Douglas; Paterson, Christopher A

    2006-03-01

    Lipid composition and Ca(2+)-ATPase activity both change with age and disease in many tissues. We explored relationships between lipid composition/structure and plasma membrane Ca(2+)-ATPase (PMCA) activity. PMCA was purified from human erythrocytes and was reconstituted into liposomes prepared from human ocular lens membrane lipids and synthetic lipids. Lens lipids were used in this study as a model for naturally ordered lipids, but the influence of lens lipids on PMCA function is especially relevant to the lens since calcium homeostasis is vital to lens clarity. Compared to fiber cell lipids, epithelial lipids exhibited an ordered to disordered phase transition temperature that was 12 degrees C lower. Reconstitution of PMCA into lipids was essential for maximal activity. PMCA activity was two to three times higher when the surrounding phosphatidylcholine molecules contained acyl chains that were ordered (stiff) compared to disordered (fluid) acyl chains. In a completely ordered lipid hydrocarbon chain environment, PMCA associates more strongly with the acidic lipid phosphatidylserine in comparison to phosphatidylcholine. PMCA associates much more strongly with phosphatidylcholine containing disordered hydrocarbon chains than ordered hydrocarbon chains. PMCA activity is influenced by membrane lipid composition and structure. The naturally high degree of lipid order in plasma membranes such as those found in the human lens may serve to support PMCA activity. The absence of PMCA activity in the cortical region of human lenses is apparently not due to a different lipid environment. Changes in lipid composition such as those observed with age or disease could potentially influence PMCA function.

  4. Combined "de novo" and "ex novo" lipid fermentation in a mix-medium of corncob acid hydrolysate and soybean oil by Trichosporon dermatis.

    PubMed

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Qi, Gao-Xiang; Xiong, Lian; Lin, Xiao-Qing; Wang, Can; Li, Hai-Long; Chen, Xin-De

    2017-01-01

    Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways ("de novo" lipid fermentation and "ex novo" lipid fermentation). To date, most of the research on lipid fermentation has focused mainly on only one fermentation pathway and little work was carried out on both "de novo" and "ex novo" lipid fermentation simultaneously; thus, the advantages of both lipid fermentation cannot be fulfilled comprehensively. In this study, corncob acid hydrolysate with soybean oil was used as a mix-medium for combined "de novo" and "ex novo" lipid fermentation by oleaginous yeast Trichosporon dermatis. Both hydrophilic and hydrophobic substrates (sugars and soybean oil) in the medium can be utilized simultaneously and efficiently by T. dermatis. Different fermentation modes were compared and the batch mode was the most suitable for the combined fermentation. The influence of soybean oil concentration, inoculum size, and initial pH on the lipid fermentation was evaluated and 20 g/L soybean oil, 5% inoculum size, and initial pH 6.0 were suitable for this bioprocess. By this technology, the lipid composition of extracellular hydrophobic substrate (soybean oil) can be modified. Although adding emulsifier showed little beneficial effect on lipid production, it can modify the intracellular lipid composition of T. dermatis. The present study proves the potential and possibility of combined "de novo" and "ex novo" lipid fermentation. This technology can use hydrophilic and hydrophobic sustainable bio-resources to generate lipid feedstock for the production of biodiesel or other lipid-based chemical compounds and to treat some special wastes such as oil-containing wastewater.

  5. Pharmacopeial compliance of fish oil-containing parenteral lipid emulsion mixtures: Globule size distribution (GSD) and fatty acid analyses.

    PubMed

    Driscoll, David F; Ling, Pei-Ra; Bistrian, Bruce R

    2009-09-08

    Recently, the United States Pharmacopeia (USP) has established Chapter 729 with GSD limits for all lipid emulsions where the mean droplet size (MDS) must be <500 nm and the percent of fat larger than 5 microm (PFAT(5)) must be <0.05%, irrespective of the final lipid concentration. As well, the European Pharmacopeia (EP) Monograph no. 1352 specifies n3-fatty acid (FA) limits (EPA+DHA> or =45%; total n3 or T-n3> or =60%) for fish oil. We assessed compliance with USP physical and EP chemical limits of two fish oil-containing lipid emulsion mixtures. All lipid emulsions passed USP 729 limits. No samples tested had an MDS >302 nm or a PFAT(5) value >0.011%. Only one product met EP limits while the other failed. All emulsions tested were extremely fine dispersions and easily met USP 729 GSD limits. The n3-FAs profiles were lower in one, despite being labeled to contain 50% more fish oil than the other product. This latter finding suggests the n3-FA content of the fish oil source and/or the applied manufacturing processes in these products is different.

  6. Optimized Rapeseed Oils Rich in Endogenous Micronutrients Protect High Fat Diet Fed Rats from Hepatic Lipid Accumulation and Oxidative Stress

    PubMed Central

    Xu, Jiqu; Liu, Xiaoli; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Zhonghua; Huang, Fenghong

    2015-01-01

    Micronutrients in rapeseed exert a potential benefit to hepatoprotection, but most of them are lost during the conventional refining processing. Thus some processing technologies have been optimized to improve micronutrient retention in oil. The aim of this study is to assess whether optimized rapeseed oils (OROs) have positive effects on hepatic lipid accumulation and oxidative stress induced by a high-fat diet. Methods: Rats received experiment diets containing 20% fat and refined rapeseed oil or OROs obtained with various processing technologies as lipid source. After 10 weeks of treatment, liver was assayed for lipid accumulation and oxidative stress. Results: All OROs reduced hepatic triglyceride contents. Microwave pretreatment-cold pressing oil (MPCPO) which had the highest micronutrients contents also reduced hepatic cholesterol level. MPCPO significantly decreased hepatic sterol regulatory element-binding transcription factor 1 (SREBP1) but increased peroxisome proliferator activated receptor α (PPARα) expressions, and as a result, MPCPO significantly suppressed acetyl CoA carboxylase and induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. Hepatic catalase (CAT) and glutathione peroxidase (GPx) activities as well as reduced glutathione (GSH) contents remarkably increased and lipid peroxidation levels decreased in parallel with the increase of micronutrients. Conclusion: OROs had the ability to reduce excessive hepatic fat accumulation and oxidative stress, which indicated that OROs might contribute to ameliorating nonalcoholic fatty liver induced by high-fat diet. PMID:26473919

  7. [Influence of dietary therapy containing sunflower oil fortified with phospholipids on the lipid metabolism in patients with hypertension and obesity].

    PubMed

    Eshigina, S; Gapparov, M M; Mal'tsev, G Iu; Kulakov, S N

    2007-01-01

    It was investigated the influence of dietary therapy containing sunflower oil with phospholipids (PL) on the lipid profile of plasma and composition of fatty acids of red blood cells in patients with hypertension and obesity. The results show that after the period of three weeks for each diet the unrefined sunflower oil supplemented with PL (30 gr oil containing 10, 8 gr PL) in diet had more influence on lowering of blood pressure (specially on diastolic BP). This diet reduced serum total cholesterol, low density lipoprotein (LDL), apolipoprotein A 1, apoB and fibrinogen more than the refined sunflower oil diet. This oil presents useful source of polyunsaturated fatty acids and essential PL for diets aimed at prevention of heart disease.

  8. The dependence of lipid asymmetry upon phosphatidylcholine acyl chain structure[S

    PubMed Central

    Son, Mijin; London, Erwin

    2013-01-01

    Lipid asymmetry, the difference in inner and outer leaflet lipid composition, is an important feature of biomembranes. By utilizing our recently developed MβCD-catalyzed exchange method, the effect of lipid acyl chain structure upon the ability to form asymmetric membranes was investigated. Using this approach, SM was efficiently introduced into the outer leaflet of vesicles containing various phosphatidylcholines (PC), but whether the resulting vesicles were asymmetric (SM outside/PC inside) depended upon PC acyl chain structure. Vesicles exhibited asymmetry using PC with two monounsaturated chains of >14 carbons; PC with one saturated and one unsaturated chain; and PC with phytanoyl chains. Vesicles were most weakly asymmetric using PC with two 14 carbon monounsaturated chains or with two polyunsaturated chains. To define the origin of this behavior, transverse diffusion (flip-flop) of lipids in vesicles containing various PCs was compared. A correlation between asymmetry and transverse diffusion was observed, with slower transverse diffusion in vesicles containing PCs that supported lipid asymmetry. Thus, asymmetric vesicles can be prepared using a wide range of acyl chain structures, but fast transverse diffusion destroys lipid asymmetry. These properties may constrain acyl chain structure in asymmetric natural membranes to avoid short or overly polyunsaturated acyl chains. PMID:23093551

  9. Lipid-derived Thermoplastic Poly(ester urethane)s: Effect of Structure on Physical Properties

    NASA Astrophysics Data System (ADS)

    Shetranjiwalla, Shegufta

    Thermoplastic poly(ester urethane)s (TPEU)s derived from vegetable oils possess inferior physical properties compared to their entirely petroleum-based counterparts due to the structural limitations and lower reactivity of the precursor lipid-derived monomers. The present work shows that high molecular weight of TPEUs with enhanced performance can be obtained from lipid-derived monomers via (i) the synthesis of polyester diols with controlled molecular weights, (ii) the tuning of the functional group stoichiometry of the polyester diols and the diisocyanate during polymerization, (iii) the degree of polymerization (iv) the control of the hard segment hydrogen bond density and distribution via the use of a chain extender and (v) different polymerization protocols. Solvent-resistant TPEUs with high molecular weight displaying polyethylene-like behavior and controlled polyester and urethane segment phase separation were obtained. Structure-property investigations revealed that the thermal transition temperatures and tensile properties increased and eventually plateaued with increasing molecular weight. Novel segmented TPEUs possessed high phase separation and showed elastomeric properties such as low modulus and high elongation analogous to rubber. The response of the structurally optimized TPEUs to environmental degradation was also established by subjecting the TPEUs to hydrothermal ageing. TPEUs exhibited thermal and mechanical properties that were comparable to commercially available entirely petroleum-based counterparts, and that could be tuned in order to achieve enhanced physical properties and controlled degradability.

  10. Structural Dynamics Of The S4 Voltage-Sensor Helix In Lipid Bilayers Lacking Lipid Phosphates

    PubMed Central

    Andersson, Magnus; Freites, J. Alfredo; Tobias, Douglas J.; White, Stephen H.

    2011-01-01

    Voltage-dependent K+ (Kv) channels require lipid phosphates for functioning. The S4 helix, which carries the gating charges in the voltage-sensing domain (VSD), inserts into membranes while being stabilized by a protein-lipid interface in which lipid phosphates play an essential role. To examine the physical basis of the protein-lipid interface in the absence of lipid phosphates, we performed molecular dynamics (MD) simulations of a KvAP S4 variant (S4mut) in bilayers with and without lipid phosphates. We find that in dioleoyltrimethylammoniumpropane (DOTAP) bilayers lacking lipid phosphates, the gating charges are solvated by anionic counterions and, hence, lack the bilayer support provided by phosphate-containing palmitoyloleoylglycerophosphocholine (POPC) bilayers. The result is a water-permeable bilayer with a significantly smaller deformations around the peptide. Together, these results provide an explanation for the non-functionality of VSDs in terms of a destabilizing protein-lipid interface. PMID:21692541

  11. Effects of rice bran oil on the blood lipids profiles and insulin resistance in type 2 diabetes patients.

    PubMed

    Lai, Ming-Hoang; Chen, Yi-Ting; Chen, Ya-Yen; Chang, Jui-Hung; Cheng, Hsing-Hsien

    2012-07-01

    The aim of this study was to investigate the influence of rice bran oil consumption on plasma lipids and insulin resistance in patients with type 2 diabetes. Thirty-five patients with type 2 diabetes were randomly assigned to a placebo group or a rice bran oil group. The placebo group consumed 250 mL soybean oil-modified milk (18 g soybean oil) daily for 5 weeks, and the rice bran oil group consumed 250 mL rice bran oil modified milk (18 g rice bran oil) daily for 5 weeks. At week 0 and week 5, anthropometric measurements, hematology tests, and an oral-glucose-tolerance test were conducted. The results showed that the homeostasis model assessment index of insulin resistance, the area under the curve for postprandial serum insulin, and serum low-density-lipoprotein cholesterol concentrations increased significantly in the placebo group. In the rice bran oil group, fasting and 2-h postprandial blood glucose concentrations and the area under the curve for postprandial plasma glucose increased significantly; however, total serum cholesterol and low-density-lipoprotein cholesterol concentrations decreased significantly. However, the homeostasis model assessment index of insulin resistance was not significantly different. Consumption of 18 g rice bran oil modified milk daily for 5 weeks significantly decreased total serum cholesterol concentrations and tended to decrease low-density-lipoprotein cholesterol concentrations in patients with type 2 diabetes. However, no significant influence on insulin resistance was observed.

  12. Oil crop biomass residue-based media for enhanced algal lipid production.

    PubMed

    Wang, Zhen; Ma, Xiaochen; Zhou, Wenguang; Min, Min; Cheng, Yanling; Chen, Paul; Shi, Jian; Wang, Qin; Liu, Yuhuan; Ruan, Roger

    2013-10-01

    The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3% sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35%, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3% of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.

  13. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function

    PubMed Central

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651

  14. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function.

    PubMed

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M

    2014-01-01

    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34 ). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. © 2013. Johnson & Johnson Consumer Companies Inc.. Experimental Dermatology published by John Wiley & Sons Ltd.

  15. Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions.

    PubMed

    Cui, Leqi; Cho, Hyung Taek; McClements, D Julian; Decker, Eric A; Park, Yeonhwa

    2016-04-15

    Lipid oxidation in oil-in-water (O/W) emulsions is an important factor determining the shelf life of food products. Salts are often present in many types of emulsion based food products. However, there is limited information on influence of salts on lipid oxidation in O/W emulsions. Thus, the purpose of this study was to examine the effects of sodium and potassium chloride on lipid oxidation in O/W emulsions. Tween 20 stabilized corn O/W emulsions at pH 7.0 were prepared with different concentrations of sodium chloride with or without the metal chelators. NaCl did not cause any changes in emulsion droplet size. NaCl dose-dependently promoted lipid oxidation as measured by the lipid oxidation product, hexanal. Both deferoxamine (DFO) and ethylenediaminetetraacetic acid (EDTA) reduced lipid oxidation in emulsions with NaCl, with EDTA being more effective. Potassium chloride showed similar impact on lipid oxidation as sodium chloride. These results suggest that salts are able to promote lipid oxidation in emulsions and this effect can be controlled by metal chelators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein.

    PubMed

    Yang, Jiayi; Xiong, Youling L

    2015-10-14

    This study investigated the role of interfacial myofibrillar protein (MFP) in the oxidative stabilization of meat emulsions. Emulsions with 10% oil were prepared using either 2% (w/v) Tween 20 or 0.25, 0.5, and 1% (w/v) MFP and then subjected to hydroxyl radical oxidation at 4 °C for 0, 2, and 24 h. MFP was more readily oxidized (intrinsic fluorescence quenching, sulfur losses, and carbonyl formation) than oil [conjugated dienes and 2-thiobarbituric acid-reactive substances (TBARS)]. However, oxidized MFP in the continuous phase stimulated lipid oxidation after 24 h, sharply contrasting with interface-adsorbed MFP that inhibited TBARS formation nearly 90% (p < 0.05). Interfacial MFP from 2 h oxidized samples exhibited greater losses of fluorescence and more extensive polymerization of myosin (detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) than MFP present in the continuous phase. Results indicated that, due to the physical localization, interface-adsorbed MFP in general and myosin in particular provided accentuated protection of emulsions against oxidation.

  17. Intestinal failure-associated liver disease and the use of fish oil-based lipid emulsions.

    PubMed

    Goulet, Olivier J

    2015-01-01

    Intestinal failure (IF) is caused by the critical reduction of functional gut mass below the minimal amount necessary for adequate digestion and absorption to satisfy body nutrient and fluid requirements for maintenance in adults and growth in children. The advent of parenteral nutrition (PN) resulted in a dramatic improvement in life expectancy of patients suffering IF, but it has its own complications, such as catheter related sepsis. In pediatric patients suffering IF, intraluminal intestinal bacterial overgrowth may cause bacterial translocation and subsequent cholestasis and liver fibrosis. With our current understanding of the genesis of intestinal failure associated liver disease (IFALD), it should be prevented or at least early recognized and treated especially in patients experiencing prematurity and/or sepsis. Targeting harmful cytokine responses can be expected to reduce the severity and frequency of IFALD. In that view, prevention of sepsis, appropriate management of enteral feeding, prevention and treatment of intestinal bacterial overgrowth and the effects of fish oil, as providing omega-3 fatty with anti-inflammatory effects, are promising in avoiding or reversing cholestasis. This chapter aims to review both IF and PN related factors of liver disease with special emphasize on inflammation as cause of liver injury and on the use of fish oil based lipid emulsions as a provision of both alpha-tocopherol (200 g/l of 20% emulsion), as anti-oxidant agent and long-chain PUFAs.

  18. Nutritional intervention study with argan oil in man: effects on lipids and apolipoproteins.

    PubMed

    Derouiche, A; Cherki, M; Drissi, A; Bamou, Y; El Messal, M; Idrissi-Oudghiri, A; Lecerf, J M; Adlouni, A

    2005-01-01

    To evaluate whether the consumption of virgin argan oil (VAO) is associated with a change in serum lipids and reduces the risk of cardiovascular disease in healthy Moroccans. Sixty volunteers consumed butter (25 g/day) during 2 weeks (stabilization period) and were randomly divided into two groups: the treatment group received 25 g/day of VAO during 3 weeks (intervention period), and the control group received 25 g/day of extra virgin olive oil (EVO). Throughout the study, weight, blood pressure, and daily food intake were measured. Serum total cholesterol and low- and high-density lipoprotein cholesterol, triglycerides, and apolipoproteins A-I and B were measured at the end of each diet period. Analysis of food intake showed that the daily diet is isocaloric for the butter regimen (2,537 +/- 244 kcal/day) as well as for the VAO and EVO regimens (2,561+/- 246 and 2,560 +/- 253 kcal/day, respectively). Analysis of the lipid intake showed a reduction in saturated fatty acids with VAO and EVO regimens (27 +/- 1.4 and 26.4 +/- 3.4%, respectively) as compared with the stabilization period (41.6 +/- 2.4%). The analysis of serum lipids showed a significant increase in high-density lipoprotein cholesterol and apolipoprotein A-I in both VAO group (8.4%, p = 0.012, and 5.2%, p = 0.027, respectively) and EVO group (17.3%, p = 0.001, and 5.9%, p = 0.036, respectively). However, low-density lipoprotein cholesterol and apolipoprotein B (13.8%, p = 0.037, and 7.8%, p = 0.039, respectively) decreased significantly only in EVO group as compared with the stabilization period, while triglycerides decreased significantly by 17.5% (p = 0.039) only in VAO group. These results confirm the cholesterol-lowering effect of EVO and show for the first time the triglyceride-lowering effect of VAO in men. 2005 S. Karger AG, Basel

  19. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel.

    PubMed

    Patel, Ashok R; Dewettinck, Koen

    2015-11-01

    In lipid-based food products, fat crystals are used as building blocks for creating a crystalline network that can trap liquid oil into a 3D gel-like structure which in turn is responsible for the desirable mouth feel and texture properties of the food products. However, the recent ban on the use of trans-fat in the US, coupled with the increasing concerns about the negative health effects of saturated fat consumption, has resulted in an increased interest in the area of identifying alternative ways of structuring edible oils using non-fat-based building blocks. In this paper, we give a brief account of three alternative approaches where oil structuring was carried out using wax crystals (shellac), polymer strands (hydrophilic cellulose derivative), and emulsion droplets as structurants. These building blocks resulted in three different types of oleogels that showed distinct rheological properties and temperature functionalities. The three approaches are compared in terms of the preparation process (ease of processing), properties of the formed systems (microstructure, rheological gel strength, temperature response, effect of water incorporation, and thixotropic recovery), functionality, and associated limitations of the structured systems. The comparative evaluation is made such that the new researchers starting their work in the area of oil structuring can use this discussion as a general guideline.

  20. Fish oil improves the lipid profile and reduces inflammatory cytokines in Wistar rats with precancerous colon lesions.

    PubMed

    Rosa, Damiana Diniz; Lourenço, Fabíola Cesário; da Fonseca, Ana Carolina Machado; de Sales, Regiane Lopes; Ribeiro, Sônia Machado Rocha; Neves, Clóvis Andrade; Peluzio, Maria do Carmo Gouveia

    2012-01-01

    A fatty diet is regarded as one of the most important risk factors related to the etiology of colorectal cancer, and this effect is linked to the quantity and principal types of fatty acids consumed. In this study, the chemopreventive effects of different oils on rats were investigated. Forty Wistar rats received 1,2-dimetilhidrazine (DMH) and were divided into 4 groups fed normal lipid diets to which 4% olive, fish, flaxseed, or soybean oils (control) were added. The group fed with fish oil presented higher levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid in hepatic tissue and greater levels of linolenic acid and EPA in adipose tissue compared to the other treatments. In the proximal portion of the colon, lower levels of aberrant crypt foci were found in the fish and flaxseed oil groups; however, this behavior was not observed in the middle and distal regions. Via a benchmarking method, the fish oil group showed a greater transforming growth factor β expression and lower interleukin-8 expression in relation to the other treatments. Fish oil in a normal lipid diet demonstrated a limited protective effect on the colonic precancerous mucosa in carcinogen-treated rodents, whereas it had a beneficial effect on inflammatory modulation.

  1. Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function.

    PubMed

    Healy, D A; Wallace, F A; Miles, E A; Calder, P C; Newsholm, P

    2000-07-01

    Although essential to host defense, neutrophils are also involved in numerous inflammatory disorders including rheumatoid arthritis. Dietary supplementation with relatively large amounts of fish oil [containing >2.6 g eicosapentaenoic acid (EPA) plus 1.4 g docosahexaenoic acid (DHA) per day] can attenuate neutrophil functions such as chemotaxis and superoxide radical production. In this study, the effects of more moderate supplementation with fish oil on neutrophil lipid composition and function were investigated. The rationale for using lower supplementary doses of fish oil was to avoid adverse gastrointestinal problems, which have been observed at high supplementary concentrations of fish oil. Healthy male volunteers aged <40 yr were randomly assigned to consume one of six dietary supplements daily for 12 wk (n = 8 per treatment group). The dietary supplements included four different concentrations of fish oil (the most concentrated fish oil provided 0.58 g EPA plus 1.67 g DHA per day), linseed oil, and a placebo oil. The percentages of EPA and DHA increased (both P < 0.05) in neutrophil phospholipids in a dose-dependent manner after 4 wk of supplementation with the three most concentrated fish oil supplements. No further increases in EPA or DHA levels were observed after 4 wk. The percentage of arachidonic acid in neutrophil phospholipids decreased (P < 0.05) after 12 wk supplementation with the linseed oil supplement or the two most concentrated fish oil supplements. There were no significant changes in N-formyl-met-leu-phe-induced chemotaxis and superoxide radical production following the dietary supplementations. In conclusion, low-to-moderate amounts of dietary fish oil can be used to manipulate neutrophil fatty acid composition. However, this may not be accompanied by modulation of neutrophil functions such as chemotaxis and superoxide radical production.

  2. Effect of virgin olive oil and thyme phenolic compounds on blood lipid profile: implications of human gut microbiota.

    PubMed

    Martín-Peláez, Sandra; Mosele, Juana Ines; Pizarro, Neus; Farràs, Marta; de la Torre, Rafael; Subirana, Isaac; Pérez-Cano, Francisco José; Castañer, Olga; Solà, Rosa; Fernandez-Castillejo, Sara; Heredia, Saray; Farré, Magí; Motilva, María José; Fitó, Montserrat

    2017-02-01

    To investigate the effect of virgin olive oil phenolic compounds (PC) alone or in combination with thyme PC on blood lipid profile from hypercholesterolemic humans, and whether the changes generated are related with changes in gut microbiota populations and activities. A randomized, controlled, double-blind, crossover human trial (n = 12) was carried out. Participants ingested 25 mL/day for 3 weeks, preceded by 2-week washout periods, three raw virgin olive oils differing in the concentration and origin of PC: (1) a virgin olive oil (OO) naturally containing 80 mg PC/kg, (VOO), (2) a PC-enriched virgin olive oil containing 500 mg PC/kg, from OO (FVOO), and (3) a PC-enriched virgin olive oil containing a mixture of 500 mg PC/kg from OO and thyme, 1:1 (FVOOT). Blood lipid values and faecal quantitative changes in microbial populations, short chain fatty acids, cholesterol microbial metabolites, bile acids, and phenolic metabolites were analysed. FVOOT decreased seric ox-LDL concentrations compared with pre-FVOOT, and increased numbers of bifidobacteria and the levels of the phenolic metabolite protocatechuic acid compared to VOO (P < 0.05). FVOO did not lead to changes in blood lipid profile nor quantitative changes in the microbial populations analysed, but increased the coprostanone compared to FVOOT (P < 0.05), and the levels of the faecal hydroxytyrosol and dihydroxyphenylacetic acids, compared with pre-intervention values and to VOO, respectively (P < 0.05). The ingestion of a PC-enriched virgin olive oil, containing a mixture of olive oil and thyme PC for 3 weeks, decreases blood ox-LDL in hypercholesterolemic humans. This cardio-protective effect could be mediated by the increases in populations of bifidobacteria together with increases in PC microbial metabolites with antioxidant activities.

  3. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation.

    PubMed

    Lacatusu, I; Badea, N; Badea, G; Oprea, O; Mihaila, M A; Kaya, D A; Stan, R; Meghea, A

    2015-11-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5mg·mL(-1) has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5mg·mL(-1) lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis123

    PubMed Central

    Dai, Yu-Jie; Sun, Li-Li; Li, Meng-Ying; Ding, Cui-Ling; Su, Yu-Cheng; Sun, Li-Juan; Xue, Sen-Hai; Yan, Feng; Zhao, Chang-Hai; Wang, Wen

    2016-01-01

    Many studies have reported that olive oil–based lipid emulsion (LE) formulas of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) may be a viable alternative for parenteral nutrition. However, some randomized controlled clinical trials (RCTs) have raised concerns regarding the nutritional benefits and safety of SMOFs. We searched principally the MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials databases from inception to March 2014 for the relevant literature and conducted a meta-analysis of 15 selected RCTs that 1) compared either olive oil– or SMOF-based LEs with soybean oil–based LEs and 2) reported plasma concentrations of α-tocopherol, oleic acid, and ω-6 (n–6) and ω-3 (n–3) long-chain polyunsaturated fatty acids (PUFAs) and liver concentrations of total bilirubin and the enzymes alanine transaminase, aspartate transaminase, alkaline phosphatase, and γ-glutamyl transferase. The meta-analysis suggested that SMOF-based LEs were associated with higher plasma concentrations of plasma α-tocopherol, oleic acid, and the ω-3 PUFAs eicosapentaenoic and docosahexaenoic acid. Olive oil– and SMOF-based LEs correlated with lower plasma concentrations of long-chain ω-6 PUFAs and were similar to soybean oil–based LEs with regard to their effects on liver function indicators. In summary, olive oil– and SMOF-based LEs have nutritional advantages over soybean oil–based LEs and are similarly safe. However, their performance in clinical settings requires further investigation. PMID:26980811

  5. Benefits of structured and free monoacylglycerols to deliver eicosapentaenoic (EPA) in a model of lipid malabsorption.

    PubMed

    Cruz-Hernandez, Cristina; Thakkar, Sagar K; Moulin, Julie; Oliveira, Manuel; Masserey-Elmelegy, Isabelle; Dionisi, Fabiola; Destaillats, Frédéric

    2012-11-21

    In the present study, we used a preclinical model of induced lipolytic enzyme insufficiency, and hypothesized that the use of monoacylglycerols (MAG) will enhance their bioavailability and delivery to the tissues. Experimental diets containing 20% lipids were fed to rats for 21 days with or without Orlistat. The control diet of fish oil (FO), a source of EPA and DHA, was tested against: structured (A) vanillin acetal of sn-2 MAG (Vanil + O) and (B) diacetyl derivative of sn-2 MAG (Acetyl + O) and (C) free MAG (MAG + O). FA profiles with an emphasis on EPA and DHA levels were determined in plasma, red blood cells (RBC), liver, spleen, brain and retina. We observed significant reduction of lipid absorption when rats co-consumed Orlistat. As expected, the FO groups with and without Orlistat showed the biggest difference. The Vanil + O, Acetyl + O and MAG + O groups, demonstrated higher levels of EPA (5.5 ± 1.9, 4.6 ± 1.6 and 5.6 ± 0.6, respectively) in RBC compared with FO + O diets (3.3 ± 0.2, 2.6 ± 0.2). Levels of EPA incorporation, in plasma, were similar to those obtained for RBC, and similar trends were observed for the collected tissues and even with DHA levels. These observations with two MAG derivatives providing the fatty acid esterified in the sn-2 position, show that these molecules are efficient vehicles of EPA in malabsorption conditions which is in line with our hypothesis. Free MAG, characterized as having exclusively sn-1(3) isomers of EPA, demonstrated better absorption efficiencies and accretion to tissues when compared to structured MAG. The study demonstrated that structured and free MAG can be used efficiently as an enteral vehicle to supply bioactive fatty acids such as EPA and DHA in lipid malabsorption where diminished lipolytic activity is the underlying cause.

  6. Structural basis for the transcriptional regulation of membrane lipid homeostasis

    SciTech Connect

    Miller, Darcie J.; Zhang, Yong-Mei; Subramanian, Chitra; Rock, Charles O.; White, Stephen W.

    2010-11-09

    DesT is a transcriptional repressor that regulates the genes that control the unsaturated:saturated fatty acid ratio available for membrane lipid synthesis. DesT bound to unsaturated acyl-CoA has a high affinity for its cognate palindromic DNA-binding site, whereas DesT bound to saturated acyl-CoA does not bind this site. Structural analyses of the DesT-oleoyl-CoA-DNA and DesT-palmitoyl-CoA complexes reveal that acyl chain shape directly influences the packing of hydrophobic core residues within the DesT ligand-binding domain. These changes are propagated to the paired DNA-binding domains via conformational changes to modulate DNA binding. These structural interpretations are supported by the in vitro and in vivo characterization of site-directed mutants. The regulation of DesT by the unsaturated:saturated ratio of acyl chains rather than the concentration of a single ligand is a paradigm for understanding transcriptional regulation of membrane lipid homeostasis.

  7. Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis.

    PubMed

    Yamamoto, Shuhei; Fukuoka, Tokuma; Imura, Tomohiro; Morita, Tomotake; Yanagidani, Shusaku; Kitamoto, Dai; Kitagawa, Masaru

    2013-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by various yeasts belonging to the genus Pseudozyma, which exhibit excellent surface activities as well as versatile biochemical activities. A study on P. tsukubaensis NBRC1940 as a mono-acetylated MEL (MEL-B) producer revealed that the yeast accumulated a novel glycolipid from castor oil at a yield of 22 g/L. Its main chemical structure was identified as 1-O-β-(2'-O-alka(e)noyl-3'-O-hydroxyalka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol designated as "new MEL-B." The new MEL-B, comprising a hydroxy fatty acid had a reduced surface tension of 28.5 mN/m at a critical micelle concentration (CMC) of 2.2×10⁻⁵ M in water. The observed CMC was 5-fold higher than that of conventional MEL-B. When conventional MEL-B was dispersed in water, it self-assembled to form the lamellar (L(α)) phase at a wide range of concentrations. In contrast, new MEL-B formed spherical oily droplets similar to the sponge (L₃) phase, which is observed in aqueous solutions of di-acetylated MEL (MEL-A). The data suggest that the newly identified MEL-B is likely to have a different structure and interfacial properties compared to the conventional MELs, and could facilitate an increase in the application of glycolipid biosurfactants.

  8. Haematological parameters, serum lipid profile, liver function and fatty acid profile of broiler chickens fed on diets supplemented with pomegranate seed oil and linseed oil.

    PubMed

    Manterys, A; Franczyk-Zarow, M; Czyzynska-Cichon, I; Drahun, A; Kus, E; Szymczyk, B; Kostogrys, R B

    2016-12-01

    The objective of the present study was to determine effect of pomegranate seed oil (PSO) and linseed oil (LO) on haematological parameters, serum lipid profile and liver enzymes as well as fatty acids profile of adipose tissue in broilers. Broilers (n = 400) were fed on diets containing graded PSO levels (0.0%, 0.5%, 1.0%, 1.5%) with or without 2% LO. After 6 weeks of feeding, 6 male broilers from each group were slaughtered and abdominal fat, liver and blood samples were collected. Mixtures of pomegranate seed oil (0.5%, 1%) with linseed oil increased white blood cell level in broilers. Total cholesterol was elevated after LO supplementation whereas administration of PSO (1.5%) significantly decreased this parameter. PSO administration caused c9,t11 conjugated linoleic acid (CLA) concentration-dependent deposition in adipose tissue. By LO addition α-linolenic acid (ALA) content was enhanced, decreasing the n-6/n-3 ratio. PSO and ALA also affected oleic acid proportion in adipose tissue. Neither pomegranate seed oil nor linseed oil had any effect on liver parameters. Pomegranate seed oil had no negative effects on broiler health status and can be considered as a functional poultry meat component.

  9. Micronutrients-fortified rapeseed oil improves hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet.

    PubMed

    Xu, Jiqu; Zhou, Xiaoqi; Gao, Hui; Chen, Chang; Deng, Qianchun; Huang, Qingde; Ma, Jing; Wan, Zhengyang; Yang, Jin'e; Huang, Fenghong

    2013-03-06

    Intake of high-fat diet is associated with increased fatty livers. Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in this disease. Micronutrients polyphenols, tocopherols and phytosterols in rapeseed exert potential benefit to hepatoprotection, but most of these micronutrients are removed by the traditional refining process. The purpose of the present study was to determine whether rapeseed oil fortified with these micronutrients can decrease hepatic lipid accumulation and oxidative stress induced by high-fat diet. Sprague-Dawley rats received rodent diet contained 20% fat whose source was refined rapeseed oil (RRO) or fortified RRO with low, middle and high quantities of these micronutrients for 10 weeks. Intake of RRO caused a remarkable hepatic steatosis. Micronutrients supplementation was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. These micronutrients also significantly increased hepatic antioxidant defense capacities, as evaluated by the significant elevation in the activities of SOD and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. These findings suggest that rapeseed oil fortified with micronutrients polyphenols, tocopherols and phytosterols may contribute to prevent fatty livers such as nonalcoholic fatty liver disease by ameliorating hepatic lipid accumulation and oxidative stress.

  10. The effect of increased consumption of edible palm oil on the nutritional status, lipid profiles and lipid peroxidation among malaysian aboriginestc.

    PubMed

    Alias, Iskandar Zulkarnain; Mdisa, Zaleha; Abdulkadir, Khalid; Ali, Osman

    2002-09-01

    This study was conducted to determine the effects of increased edible palm oil consumption on community health status in the aboriginal communities in Tual Post (treatment group) and Sinderut Post (control group), Kuala Lipis, Pahang. Nutritional status, blood pressure, lipid profiles, fasting blood glucose (FBG), vitamin E (alpha-tocopherol) levels and lipid peroxidation product (malonaldehyde) levels were taken as indicators of health status. This is a pre-and post-controlled community trial in which similar variables were measured in each group. Every family of 2-6 household members was given 2-5 kg cooking palm oil per month for a period of 18 months. All subjects were measured for height (cm), weight (kg) and waist-hip ratio (WHR). For calorie intake measurement, house-to-house interviews were conducted using 24-hour dietary recall method. Blood pressure, percent body fat, lipid profiles, namely total cholesterol, high density lipoprotein cholesterol, triglyceride and fasting blood glucose (FBG) were also measured. Vitamin E (alpha-tocopherol) levels and lipid peroxidation products (MDA) were also determined. There was a significant increase (p<0.05) in percent body fat (28.1%) and calorie intake (17.2%) following palm oil consumption. The proportion of fat intake as an energy source also increased from 4.6% to 33.9%. There was a reduction in the systolic blood pressure following consumption (p<0.05). However, diastolic blood pressure did not change. A significant decrease (p<0.05) was observed in total cholesterol, low density lipoprotein and triglyceride. No particular pattern in fasting blood glucose levels was observed among the indigenous inhabitants following palm oil consumption. There was a significant increase in alpha-tocopherol levels (p<0.0001) and a decrease in MDA levels (p<0.0001) following consumption. In conclusion, high consumption of edible palm oil for 18 months was found to be not harmful to health. For the Malaysian aborigines, it serves

  11. Konjac-based oil bulking system for development of improved-lipid pork patties: technological, microbiological and sensory assessment.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Carballo, José; Jiménez-Colmenero, Francisco

    2015-03-01

    Improved-lipid pork patties were manufactured following two different reformulation strategies: fat reduction by replacement of pork backfat with konjac gel (KG), and fat reduction/lipid improvement by replacement of pork backfat with an improved oil combination (olive, linseed and fish oils) bulking system based on konjac gel (O-KG). Technological, microbiological and sensory properties were analyzed as affected by the type of formulation and by chilled storage (9days, 2°C). Fat was reduced by between 30 and 86%. In the cases where O-KG was incorporated, 12 and 41% of total fat in patties came from the oil combination. There was no observable effect on color parameters in samples with O-K. Higher KG levels produced harder cooked patties. Animal fat replacement in patties promoted an increase in lipid oxidation, which was more pronounced in samples with an oil combination. In general, during chilled storage no major changes were observed in the studied properties as a result of the different treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism.

    PubMed

    Tranbarger, Timothy J; Dussert, Stéphane; Joët, Thierry; Argout, Xavier; Summo, Marilyne; Champion, Antony; Cros, David; Omore, Alphonse; Nouy, Bruno; Morcillo, Fabienne

    2011-06-01

    Fruit provide essential nutrients and vitamins for the human diet. Not only is the lipid-rich fleshy mesocarp tissue of the oil palm (Elaeis guineensis) fruit the main source of edible oil for the world, but it is also the richest dietary source of provitamin A. This study examines the transcriptional basis of these two outstanding metabolic characters in the oil palm mesocarp. Morphological, cellular, biochemical, and hormonal features defined key phases of mesocarp development. A 454 pyrosequencing-derived transcriptome was then assembled for the developmental phases preceding and during maturation and ripening, when high rates of lipid and carotenoid biosynthesis occur. A total of 2,629 contigs with differential representation revealed coordination of metabolic and regulatory components. Further analysis focused on the fatty acid and triacylglycerol assembly pathways and during carotenogenesis. Notably, a contig similar to the Arabidopsis (Arabidopsis thaliana) seed oil transcription factor WRINKLED1 was identified with a transcript profile coordinated with those of several fatty acid biosynthetic genes and the high rates of lipid accumulation, suggesting some common regulatory features between seeds and fruits. We also focused on transcriptional regulatory networks of the fruit, in particular those related to ethylene transcriptional and GLOBOSA/PISTILLATA-like proteins in the mesocarp and a central role for ethylene-coordinated transcriptional regulation of type VII ethylene response factors during ripening. Our results suggest that divergence has occurred in the regulatory components in this monocot fruit compared with those identified in the dicot tomato (Solanum lycopersicum) fleshy fruit model.

  13. Lipid oxidation and volatile production in irradiated raw pork batters prepared with commercial soybean oil containing vitamin E

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Ahn, Dong Uk; Byun, Myung Woo

    2001-04-01

    An emulsion-type raw pork batter was prepared using 10% (meat weight) of backfat or commercial soybean oil enriched with vitamin E to determine the effect of irradiation on lipid oxidation and volatile production during storage. Batters (approximately 100 g) were vacuum- or aerobically packaged and irradiated at 0, 2.5 or 4.5 kGy. Irradiation increased lipid oxidation of aerobically packaged raw pork batters prepared with both backfat and soybean oil. Lipid oxidation of vacuum-packaged pork batters was not influenced by irradiation except for the batter prepared with backfat at day 0. Aerobically packaged batters prepared with soybean oil had lower ( P<0.05) TBARS than that with backfat, but vacuum-packaged ones were not different. The sum of volatile compounds with short retention time (<1.80) increased by irradiation, and with storage time except for aerobic packaging at day 7. The amount of total volatile compounds had an increasing trend until day 3, but not at day 7. Irradiation increased the production of total volatile compounds in the batters prepared with soybean oil and vacuum packaged, but irradiation effect on volatile production was not consistent with other treatments.

  14. Cocoa butter and safflower oil elicit different effects on hepatic gene expression and lipid metabolism in rats.

    PubMed

    Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra

    2009-11-01

    The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.

  15. Wheat germ oil and α-lipoic acid predominantly improve the lipid profile of broiler meat.

    PubMed

    Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Shahid, Muhammad

    2013-11-20

    In response to recent assertions that synthetic antioxidants may have the potential to cause toxic effects and to consumers' increased attention to consuming natural products, the poultry industry has been seeking sources of natural antioxidants, alone or in combination with synthetic antioxidants that are currently being used by the industry. The present study was conducted to determine the effect of α-lipoic acid, α-tocopherol, and wheat germ oil on the status of antioxidant enzymes, fatty acid profile, and serum biochemical profile of broiler blood. One-day-old (180) broiler birds were fed six different feeds varying in their antioxidant content: no addition (T1), natural α-tocopherol (wheat germ oil, T2), synthetic α-tocopherol (T3), α-lipoic acid (T4), α-lipoic acid together with natural α-tocopherol (T5), and α-lipoic acid together with synthetic α-tocopherol (T6). The composition of saturated and unsaturated fatty acids in the breast and leg meat was positively influenced by the different dietary supplements. The content of fatty acid was significantly greater in broilers receiving T2 both in breast (23.92%) and in leg (25.82%) meat, whereas lower fatty acid levels was found in broilers receiving diets containing T6 in the breast (19.57%) and leg (21.30%) meat. Serum total cholesterol (113.42 mg/dL) and triglycerides (52.29 mg/dL) were lowest in the group given natural α-tocopherol and α-lipoic acid. Wheat germ oil containing natural α-tocopherol alone or with α-lipoic acid was more effective than synthetic α-tocopherol in raising levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione reductase while lowering plasma total cholesterol, low-density lipoprotein, and triglycerides and raising high-density lipoprotein and plasma protein significantly. It was concluded that the combination of wheat germ oil and α-lipoic acid is helpful in improving the lipid profile of broilers.

  16. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes.

    PubMed

    Rønnest, A K; Peters, G H; Hansen, F Y; Taub, H; Miskowiec, A

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10(8)-10(9) V m(-1), which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10(8) V m(-1)) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10(8) V m(-1)) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3

  17. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-04-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 108-109 V m-1, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ˜1 V (˜2 ṡ 108 V m-1) when in the fluid phase with a monovalent counter-ion and ˜1.4 V (˜2.8 ṡ 108 V m-1) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC

  18. Effect of conventional and pressure frying on lipids and fatty acid composition of fried chicken and oil.

    PubMed

    Pawar, Deepthi P; Boomathi, S; Hathwar, Swapna C; Rai, Amit Kumar; Modi, Vinod Kumar

    2013-04-01

    Lipid class and fatty acid profile of pressure fried (PF) and conventionally fried (CF) chicken and medium of frying were evaluated. Depending on the frying cycle, neutral lipid (NL) content of PF chicken varied from 75-86% as compared to that of CF (84-90%). Similarly, glycolipid (GL) content varied from 11-21% in PF and from 9-12% in case of CF. Phospholipid (PL) was the least among lipid classes in both the products. The fresh frying medium (oil before frying cycle started), NL, GL and PL were 89, 10 and 0.33%, respectively. After the frying cycles were over, NL content of oil used for CF decreased to 82% and GL content increased from 10 to 17%. There was no significant difference (p ≥ 0.05) between the contents of lipid classes of oil used for PF or CF. Fried chicken and frying medium had higher concentration of linoleic acid and oleic acid irrespective of the frying cycle or frying method. PF chicken had moisture content in the range of 56-58% and total fat was 14% whereas in case of CF chicken it ranged from 49-52% and 18% respectively. TBA and FFA values of CF chicken and oil on repeated frying were higher (p ≤ 0.05) than PF. In comparison to conventional frying, pressure frying resulted in relatively tender and juicier product presumably due to better retention of moisture (p ≤ 0.05) and low oil uptake.

  19. Antioxidative activities of Ginkgo biloba extract on oil/water emulsion system prepared from an enzymatically modified lipid containing alpha-linolenic acid.

    PubMed

    Yang, Dan; Gan, Lu-Jing; Shin, Jung-Ah; Kim, Sunju; Hong, Soon-Taek; Park, Sang-Hyun; Lee, Jeung Hee; Lee, Ki-Teak

    2013-01-01

    The desired mix of alpha-linolenic acid (ALA)-enriched structured lipid (SL) and physically blended lipid (PB) was prepared from grape seed oil and perilla oil at a weight ratio of 3:1. The major triacylglycerol species (LnLnL) in PB was drastically increased after interesterification (SL), from 0.5% to 16.8%. After the reaction, the total unsaturated fatty acid at the sn-2 position was decreased from 98.83% in PB to 91.36% in SL. The reduction of vitamin E compounds was also observed. Compared with a PB-based emulsion, SL-based emulsions showed oxidative instability, as assessed by lipid hydroperoxide (LOOH) and 2-thiobarbituric acid-reactive substances (TBARS) values, which was mainly due to the SL which contained less LA, ALA, and ΣUSFA at the sn-2 position and less γ-tocopherol than did PB. PB-, and SL-based emulsions with Ginkgo biloba extract (GBE) which showed significantly lower values of LOOH and TBARS compared to a blank control. GBE was effective in retarding the oxidation of the emulsion by quenching the free radicals in the water phase of the emulsion and inhibiting the formation of primary and secondary oxidation products. These results indicate that GBE could be used as an antioxidant additive for stabilizing ALA-enriched emulsions. The results suggest the possibility to supplement Ginkgo biloba extract in alpha linolenic acid-enriched structured lipid-based emulsions which would increase the therapeutic value and enhance the antioxidant potential of the emulsions. © 2012 Institute of Food Technologists®

  20. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction.

    PubMed

    Li, Hao; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Lu, Haifeng; Duan, Na; Liu, Minsheng; Zhu, Zhangbing; Si, Buchun

    2014-02-01

    Hydrothermal liquefaction (HTL) is a promising technology for converting algae into biocrude oil. Here, HTL of a low-lipid high-protein microalgae (Nannochloropsis sp.) and a high-lipid low-protein microalgae (Chlorella sp.) was studied. An orthogonal design was applied to investigate the effects of reaction temperature (220-300°C), retention time (30-90 min), and total solid content (TS, 15-25%wt) of the feedstock. The highest biocrude yield for Nannochloropsis sp. was 55% at 260°C, 60 min and 25%wt, and for Chlorella sp. was 82.9% at 220°C, 90 min and 25%wt. The maximum higher heating values (HHV) of biocrude oil from both algae were ∼ 37 MJ/kg. GC-MS revealed a various distribution of chemical compounds in biocrude. In particular, the highest hydrocarbons content was 29.8% and 17.9% for Nannochloropsis and Chlorella sp., respectively. This study suggests that algae composition greatly influences oil yield and quality, but may not be in similar effects.

  1. Dietary olive oil and menhaden oil mitigate induction of lipogenesis in hyperinsulinemic corpulent JCR:LA-cp rats: microarray analysis of lipid-related gene expression.

    PubMed

    Deng, Xiong; Elam, Marshall B; Wilcox, Henry G; Cagen, Lauren M; Park, Edwards A; Raghow, Rajendra; Patel, Divyen; Kumar, Poonam; Sheybani, Ali; Russell, James C

    2004-12-01

    In the corpulent James C. Russell corpulent (JCR:LA-cp) rat, hyperinsulinemia leads to induction of lipogenic enzymes via enhanced expression of sterol-regulatory-binding protein (SREBP)-1c. This results in increased hepatic lipid production and hypertriglyceridemia. Information regarding down-regulation of SREBP-1c and lipogenic enzymes by dietary fatty acids in this model is limited. We therefore assessed de novo hepatic lipogenesis and hepatic and plasma lipids in corpulent JCR rats fed diets enriched in olive oil or menhaden oil. Using microarray and Northern analysis, we determined the effect of these diets on expression of mRNA for lipogenic enzymes and other proteins related to lipid metabolism. In corpulent JCR:LA-cp rats, both the olive oil and menhaden oil diets reduced expression of SREBP-1c, with concomitant reductions in hepatic triglyceride content, lipogenesis, and expression of enzymes related to lipid synthesis. Unexpectedly, expression of many peroxisomal proliferator-activated receptor-dependent enzymes mediating fatty acid oxidation was increased in livers of corpulent JCR rats. The menhaden oil diet further increased expression of these enzymes. Induction of SREBP-1c by insulin is dependent on liver x receptor (LXR)alpha. Although hepatic expression of mRNA for LXR itself was not increased in corpulent rats, expression of Cyp7a1, an LXR-responsive gene, was increased, suggesting increased LXR activity. Expression of mRNA encoding fatty acid translocase and ATP-binding cassette subfamily DALD member 3 was also increased in livers of corpulent JCR rats, indicating a potential role for these fatty acid transporters in the pathogenesis of disordered lipid metabolism in obesity. This study clearly demonstrates that substitution of dietary polyunsaturated fatty acid for carbohydrate in the corpulent JCR:LA-cp rat reduces de novo lipogenesis, at least in part, by reducing hepatic expression of SREBP-1c and that strategies directed toward reducing

  2. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    PubMed

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  3. State of dispersed lipid carrier and interface composition as determinants of beta-carotene stability in oil-in-water emulsions.

    PubMed

    Cornacchia, Leonardo; Roos, Yrjö H

    2011-10-01

    Liposoluble bioactive compounds are often included in foods in emulsified lipid carriers. In the present study, the impact of the physical state of the lipid carrier and the interfacial composition of oil-in-water emulsions on the stability of β-carotene was studied. Emulsions with hydrogenated palm kernel oil (HPKO) concentration of 10% (w/w) dispersing 0.05% (w/w) β-carotene, and a water phase at pH 7 containing 30% (w/w) sucrose, were stabilized by 1%, 1.5%, 2%, and 3% (w/w) whey protein isolate (WPI). Crystallization and melting behavior of emulsified and bulk HPKO were studied by differential scanning calorimetry. The hysteresis of emulsified HPKO crystallization (onset approximately 10 °C; endset approximately 6 °C) and melting (onset approximately 17 °C; endset approximately 45 °C) allowed us to operate at 15 °C on systems with identical compositions but different physical states of the same lipid phase. Surface protein coverage of emulsions was calculated and size of the dispersed particles was characterized by dynamic light scattering. β-Carotene contents of the emulsions during storage at 15 °C was analyzed spectrophotometerically. Results highlighted an impact of the phase of the lipid carrier and of the concentration of WPI on β-carotene degradation. β-Carotene loss showed zero-order kinetics. A liquid dispersed phase resulted in a low degradation rate but a high concentration of protein on a solid lipid carrier was likewise effective for β-carotene protection. Practical Application:  The inclusion of lipophilic bioactive compounds, such as carotenoids, is a current trend in the production of functional foods aiming to enhance health and well-being. However, the use of functional ingredients in food products is complicated because of the sensitivity of the active molecules to physical and chemical factors to which they are exposed during processing, storage, and consumption. The present work gives indications of the influence of the lipid

  4. Effect of alpha-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects.

    PubMed

    Karvonen, Henna M; Aro, Antti; Tapola, Niina S; Salminen, Irma; Uusitupa, Matti I j; Sarkkinen, Essi S

    2002-10-01

    Camelina sativa-derived oil (camelina oil) is a good source of alpha-linolenic acid. The proportion of alpha-linolenic acid in serum fatty acids is associated with the risk of cardiovascular diseases. We studied the effects of camelina oil on serum lipids and on the fatty acid composition of total lipids in comparison to rapeseed and olive oils in a parallel, double-blind setting. Sixty-eight hypercholesterolemic subjects aged 28 to 65 years were randomly assigned after a 2-week pretrial period to 1 of 3 oil groups: camelina oil, olive oil, and rapeseed oil. Subjects consumed daily 30 g (actual intake, approximately 33 mL) of test oils for 6 weeks. In the camelina group, the proportion of alpha-linolenic acid in fatty acids of serum lipids was significantly higher (P <.001) compared to the 2 other oil groups at the end of the study: 2.5 times higher compared to the rapeseed oil group and 4 times higher compared to the olive oil group. Respectively the proportions of 2 metabolites of alpha-linolenic acid (eicosapentaenoic and docosapentaenoic acids) increased and differed significantly in the camelina group from those in other groups. During the intervention, the serum low-density lipoprotein (LDL) cholesterol concentration decreased significantly by 12.2% in the camelina oil group, 5.4% in the rapeseed oil group, and 7.7% in the olive oil group. In conclusion, camelina oil significantly elevated the proportions of alpha-linolenic acid and its metabolites in serum of mildly or moderately hypercholesterolemic subjects. Camelina oil's serum cholesterol-lowering effect was comparable to that of rapeseed and olive oils.

  5. Crystallizing Membrane Proteins for Structure Determination using Lipidic Mesophases

    PubMed Central

    Caffrey, Martin; Porter, Christopher

    2010-01-01

    A detailed protocol for crystallizing membrane proteins by using lipidic mesophases is described. This method has variously been referred to as the lipidic cubic phase or in meso method. The method has been shown to be quite versatile in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and alpha-helical and beta-barrel proteins. Recent successes using in meso crystallization are the human engineered beta2-adrenergic and adenosine A2a G protein-coupled receptors. Protocols are presented for reconstituting the membrane protein into the monoolein-based mesophase, and for setting up crystallizations in the manual mode. Additional steps in the overall process, such as crystal harvesting, are to be addressed in future video articles. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour. PMID:21113125

  6. The effect of hydroalcoholic extract and essential oil of Heracleum persicum on lipid profile in cholesterol-fed rabbits

    PubMed Central

    Hajhashemi, Valiollah; Dashti, Gholamreza; Saberi, Salabali; Malekjamshidi, Parvin

    2014-01-01

    Objective: This study was designed to investigate the effect of hydroalcoholic extract and essential oil of Heracleum persicum (Apiaceae) on lipid profile of male hyperlipidemic rabbits. Materials and Methods: Thirty rabbits were randomly divided into six groups of five each. One group received normal diet and the other groups fed with a high cholesterol (2% W/W) diet for 7 weeks. Vehicle, hydroalcoholic extract (500 and 1000 mg/kg), essential oil (200  l/kg), and lovastatin (5 mg/kg) were administered orally to animals and their effects on lipid profile were evaluated. Results: Essential oil of H. perscum significantly (p<0.05) lowered serum triglyceride level and increased HDL-cholesterol concentration. Moreover, hydroalcoholic extract (1000 mg/kg), essential oil (200  l/kg), and lovastatin significantly (p<0.01) reduced serum concentration of total cholesterol and LDL-cholesterol. Conclusion: These findings suggest that essential oil of the plant fruits may have some benefits in reducing cardiovascular risk factors. PMID:25050312

  7. Monoacylglycerol-enriched oil increases EPA/DHA delivery to circulatory system in humans with induced lipid malabsorption conditions.

    PubMed

    Cruz-Hernandez, Cristina; Destaillats, Frédéric; Thakkar, Sagar K; Goulet, Laurence; Wynn, Emma; Grathwohl, Dominik; Roessle, Claudia; de Giorgi, Sara; Tappy, Luc; Giuffrida, Francesca; Giusti, Vittorio

    2016-12-01

    It was hypothesized that under induced lipid malabsorption/maldigestion conditions, an enriched sn-1(3)-monoacylglycerol (MAG) oil may be a better carrier for n-3 long-chain PUFAs (LC-PUFAs) compared with triacylglycerol (TAG) from fish oil. This monocentric double blinded clinical trial examined the accretion of EPA (500 mg/day) and DHA (300 mg/day) when consumed as TAG or MAG, into the erythrocytes, plasma, and chylomicrons of 45 obese (BMI ≥30 kg/m(2) and ≤40 kg/m(2)) volunteers who were and were not administered Orlistat, an inhibitor of pancreatic lipases. Intake of MAG-enriched oil resulted in higher accretion of LC-PUFAs than with TAG, the concentrations of EPA and DHA in erythrocytes being, respectively, 72 and 24% higher at 21 days (P < 0.001). In addition, MAG increased the plasma concentration of EPA by 56% (P < 0.001) as compared with TAG. In chylomicrons, MAG intake yielded higher levels of EPA with the area under the curve (0-10 h) of EPA being 55% greater (P = 0.012). In conclusion, in obese human subjects with Orlistat-induced lipid maldigestion/malabsorption conditions, LC-PUFA MAG oil increased LC-PUFA levels in erythrocytes, plasma, and chylomicrons to a greater extent than TAG. These results indicate that MAG oil might require minimal enzymatic digestion prior to intestinal uptake and transfer across the epithelial barrier.

  8. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation.

    PubMed

    Houghton, P J; Zarka, R; de las Heras, B; Hoult, J R

    1995-02-01

    Samples of the expressed fixed oil from different sources of Nigella sativa seeds were examined by thin-layer and gas chromatography for content of fixed oils and thymoquinone, and these substances were tested as possible inhibitors of eicosanoid generation and membrane lipid peroxidation. The crude fixed oil and pure thymoquinone both inhibited the cyclooxygenase and 5-lipoxygenase pathways of arachidonate metabolism in rat peritoneal leukocytes stimulated with calcium ionophore A23187, as shown by dose-dependent inhibition of thromboxane B2 and leukotriene B4, respectively. Thymoquinone was very potent, with approximate IC50 values against 5-lipoxygenase and cyclo-oxygenase of < 1 microgram/ml and 3.5 micrograms/ml, respectively. Both substances also inhibited non-enzymatic peroxidation in ox brain phospholipid liposomes, but thymoquinone was about ten times more potent. However, the inhibition of eicosanoid generation and lipid peroxidation by the fixed oil of N. sativa is greater than is expected from its content of thymoquinone (ca. 0.2% w/v), and it is possible that other components such as the unusual C20:2 unsaturated fatty acids may contribute also to its anti-eicosanoid and antioxidant activity. These pharmacological properties of the oil support the traditional use of N. sativa and its derived products as a treatment for rheumatism and related inflammatory diseases.

  9. Micellization in vegetable oils: A structural characterisation.

    PubMed

    Fadel, Ophélie; Girard, Luc; Rodrigues, Donatien Gomes; Bauduin, Pierre; Le Goff, Xavier; Rossignol-Castera, Anne; L'Hermitte, Annabelle; Diat, Olivier

    2017-03-21

    The solubilisation of polar and polyphenol antioxidant in vegetable oils was studied. It was shown that the use of a polyglyceryl-3-diisostearate (PG3DS), a bio-sourced emulsifier well known in cosmetics, increases the yield of solubilisation thanks to some aggregation properties analysed using x-ray scattering technique. We show indeed that PG3DS forms reverse aggregates with a critical concentration that depends on the oil polarity. PG3DS reverse aggregates are elongated with a polar core and cannot be really swollen by addition of water. This supramolecular organisation allows however an efficient solubilisation of polar antioxidants in vegetable oils.

  10. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure.

    PubMed

    Llobet, Enrique; Martínez-Moliner, Verónica; Moranta, David; Dahlström, Käthe M; Regueiro, Verónica; Tomás, Anna; Cano, Victoria; Pérez-Gutiérrez, Camino; Frank, Christian G; Fernández-Carrasco, Helena; Insua, José Luis; Salminen, Tiina A; Garmendia, Junkal; Bengoechea, José A

    2015-11-17

    The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.

  11. Deciphering tissue-induced Klebsiella pneumoniae lipid A structure

    PubMed Central

    Llobet, Enrique; Martínez-Moliner, Verónica; Moranta, David; Dahlström, Käthe M.; Regueiro, Verónica; Tomás, Anna; Cano, Victoria; Pérez-Gutiérrez, Camino; Frank, Christian G.; Fernández-Carrasco, Helena; Insua, José Luis; Salminen, Tiina A.; Garmendia, Junkal; Bengoechea, José A.

    2015-01-01

    The outcome of an infection depends on host recognition of the pathogen, hence leading to the activation of signaling pathways controlling defense responses. A long-held belief is that the modification of the lipid A moiety of the lipopolysaccharide could help Gram-negative pathogens to evade innate immunity. However, direct evidence that this happens in vivo is lacking. Here we report the lipid A expressed in the tissues of infected mice by the human pathogen Klebsiella pneumoniae. Our findings demonstrate that Klebsiella remodels its lipid A in a tissue-dependent manner. Lipid A species found in the lungs are consistent with a 2-hydroxyacyl-modified lipid A dependent on the PhoPQ-regulated oxygenase LpxO. The in vivo lipid A pattern is lost in minimally passaged bacteria isolated from the tissues. LpxO-dependent modification reduces the activation of inflammatory responses and mediates resistance to antimicrobial peptides. An lpxO mutant is attenuated in vivo thereby highlighting the importance of this lipid A modification in Klebsiella infection biology. Colistin, one of the last options to treat multidrug-resistant Klebsiella infections, triggers the in vivo lipid A pattern. Moreover, colistin-resistant isolates already express the in vivo lipid A pattern. In these isolates, LpxO-dependent lipid A modification mediates resistance to colistin. Deciphering the lipid A expressed in vivo opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern. PMID:26578797

  12. Non-lamellar lipid assembly at interfaces: controlling layer structure by responsive nanogel particles.

    PubMed

    Dabkowska, Aleksandra P; Valldeperas, Maria; Hirst, Christopher; Montis, Costanza; Pálsson, Gunnar K; Wang, Meina; Nöjd, Sofi; Gentile, Luigi; Barauskas, Justas; Steinke, Nina-Juliane; Schroeder-Turk, Gerd E; George, Sebastian; Skoda, Maximilian W A; Nylander, Tommy

    2017-08-06

    Biological membranes do not only occur as planar bilayer structures, but depending on the lipid composition, can also curve into intriguing three-dimensional structures. In order to fully understand the biological implications as well as to reveal the full potential for applications, e.g. for drug delivery and other biomedical devices, of such structures, well-defined model systems are required. Here, we discuss the formation of lipid non-lamellar liquid crystalline (LC) surface layers spin-coated from the constituting lipids followed by hydration of the lipid layer. We demonstrate that hybrid lipid polymer films can be formed with different properties compared with the neat lipid LC layers. The nanostructure and morphologies of the lipid films formed reflect those in the bulk. Most notably, mixed lipid layers, which are composed of glycerol monooleate and diglycerol monooleate with poly(N-isopropylacrylamide) nanogels, can form films of reverse cubic phases that are capable of responding to temperature stimulus. Owing to the presence of the nanogel particles, changing the temperature not only regulates the hydration of the cubic phase lipid films, but also the lateral organization of the lipid domains within the lipid self-assembled film. This opens up the possibility for new nanostructured materials based on lipid-polymer responsive layers.

  13. Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity.

    PubMed

    Svetlichny, G; Külkamp-Guerreiro, I C; Cunha, S L; Silva, F E K; Bueno, K; Pohlmann, A R; Fuentefria, A M; Guterres, S S

    2015-03-01

    The aim of this work was to develop solid lipid nanoparticles (SLN) containing copaiba oil with and without allantoin (NCOA, NCO, respectively) and to evaluate their antifungal activity. Nanoparticle suspensions were prepared using a high homogenisation technique and characterised by dynamic light scattering, laser diffraction, nanoparticle tracking analysis, multiple light scattering analysis, high-pressure liquid chromatography, pH and rheology. The antifungal activities of the formulations were tested in vitro against the emergent yeasts Candida krusei and Candida parapsilosis, and the fungal pathogens of human skin Trichophyton rubrum and Microsporum canis. The dynamic light scattering analysis showed z-average diameters (intensity) between 118.63 ± 8.89 nm for the nanoparticles with both copaiba oil and allantoin and 126.06 ± 9.84nm for the nanoparticles with just copaiba oil. The D[4,3] determined by laser diffraction showed similar results of 123 ± 1.73 nm for the nanoparticles with copaiba oil and allantoin and 130 ± 3.6 nm for the nanoparticles with copaiba oil alone. Nanoparticle tracking analysis demonstrated that both suspensions had monomodal profiles and consequently, the nanoparticle populations were homogeneous. This analysis also corroborated the results of dynamic light scattering and laser diffraction, exhibiting a smaller mean diameter for the nanoparticles with copaiba oil and allantoin (143 nm) than for the nanoparticles with copaiba oil (204 nm). The physicochemical properties indicated that the dispersions were stable overtime. Rheology evidenced Newtonian behaviour for both suspensions. Antifungal susceptibility showed a MIC90 of 125 μg/mL (nanoparticles with copaiba oil) and 7.8 μg/mL (nanoparticles with copaiba oil and allantoin) against C. parapsilosis. The nanoparticles with copaiba oil and the nanoparticles with copaiba oil and allantoin presented a MIC90 of 500 μg/mL and 250 μg/mL, respectively, against C. krusei. The MIC90

  14. Dynamical formation of lipid bilayer vesicles from lipid-coated droplets across a planar monolayer at an oil/water interface.

    PubMed

    Ito, Hiroaki; Yamanaka, Toru; Kato, Shou; Hamada, Tsutomu; Takagi, Masahiro; Ichikawa, Masatoshi; Yoshikawa, Kenichi

    2013-10-28

    Recently, the transfer method has been shown to be useful for preparing cell-sized phospholipid bilayer vesicles, within which desired substances at desired concentrations can be encapsulated, with a desired asymmetric lipid composition. Here, we investigated the transfer process of water-in-oil (W/O) droplets coated by phospholipid monolayers across an oil/water interface by both experimental observation and theoretical modeling. Real-time experimental observation of the transfer revealed that the transfer process is characterized by three kinetic regimes: a precontact process (approaching regime), an early fast process (entering regime), and a late slow process (relaxation regime). In addition, bigger droplets require much more time to transfer than smaller droplets. We propose a theoretical model to interpret this kinetic process. Our theoretical model reproduces the essential aspects of the transfer kinetics, including its size-dependence.

  15. Structure and fluctuations of a single floating lipid bilayer.

    PubMed

    Daillant, J; Bellet-Amalric, E; Braslau, A; Charitat, T; Fragneto, G; Graner, F; Mora, S; Rieutord, F; Stidder, B

    2005-08-16

    A single lipid molecular bilayer of 17 or 18 carbon chain phosphocholines, floating in water near a flat wall, is prepared in the bilayer gel phase and then heated to the fluid phase. Its structure (electron density profile) and height fluctuations are determined by using x-ray reflectivity and non-specular scattering. By fitting the off-specular signal to that calculated for a two-dimensional membrane using a Helfrich Hamiltonian, we determine the three main physical quantities that govern the bilayer height fluctuations: The wall attraction potential is unexpectedly low; the surface tension, roughly independent on chain length and temperature, is moderate (approximately 5 x 10(-4) J.m(-2)) but large enough to dominate the intermediate range of the fluctuation spectrum; and the bending modulus abruptly decreases by an order-of-magnitude from 10(-18) J to 10(-19) J at the bilayer gel-to-fluid transition.

  16. Structure-activity relationships of polyphenols to prevent lipid oxidation in pelagic fish muscle.

    PubMed

    Pazos, Manuel; Iglesias, Jacobo; Maestre, Rodrigo; Medina, Isabel

    2010-10-27

    The influence of polymerization (number of monomers) and galloylation (content of esterified gallates) of oligomeric catechins (proanthocyanidins) on their effectiveness to prevent lipid oxidation in pelagic fish muscle was evaluated. Non-galloylated oligomers of catechin with diverse mean polymerization (1.9-3.4 monomeric units) were extracted from pine (Pinus pinaster) bark. Homologous fractions with galloylation ranging from 0.25 to <1 gallate group per molecule were obtained from grape (Vitis vinifera) and witch hazel (Hamamelis virginiana). The results showed the convenience of proanthocyanidins with medium size (2-3 monomeric units) and low galloylation degree (0.15-0.25 gallate group/molecule) to inhibit lipid oxidation in pelagic fish muscle. These optimal structural characteristics of proanthocyanidins were similar to those lately reported in fish oil-in-water emulsions using phosphatidylcholine as emulsifier. This finding suggests that the antioxidant behavior of polyphenols in muscle-based foods can be mimicked in emulsions prepared with phospholipids as emulsifier agents. The present data give relevant information to achieve an optimum use of polyphenols in pelagic fish muscle.

  17. Effects of a synthetic oil on zooplankton community structure

    SciTech Connect

    Hook, L.A.

    1988-01-01

    This study assessed the effects of a coal-derived oil on the structure of zooplankton communities of laboratory pond microcosms and outdoor experimental ponds. Several measures of community structure and multivariate statistical techniques were used to reveal changes in the patterns of zooplankton community structure caused by the perturbation. From these results the basic ecological mechanisms responsible for maintenance of zooplankton community structure were inferred. The comparison of the field, laboratory microcosm, and laboratory bioassay results for the effects of oil provided an empirical basis for predicting pollutant effects on aquatic ecosystems. The responses of the microcosm and pond zooplankton communities to oil treatment were quite similar. Changes in cladoceran densities were the most sensitive indicators of stress in the zooplankton communities. Copepods were slightly less sensitive, and rotifers were least sensitive to oil treatment.

  18. Coconut oil affects lipoprotein composition and structure of neonatal chicks.

    PubMed

    Castillo, M; Hortal, J H; García-Fuentes, E; Zafra, M F; García-Peregrín, E

    1996-04-01

    Supplementation of 10 or 20% coconut oil in the diet for 1-2 weeks produced a significant hypercholesterolemia in neonatal chicks. Plasma triacylglycerol concentration significantly increased after the addition of 20% coconut oil for 2 weeks. These results show that newborn chicks are more sensitive to saturated fatty acids from coconut oil than adult animals. The effects of this saturated fat on lipoprotein composition were studied for the first 1-2 weeks of neonatal chick life. Coconut oil supplementation in the diet (20%) for 2 weeks increased cholesterol concentration in all the lipoprotein fractions, while 10% coconut oil only increased cholesterol in low-density and very-low-density lipoproteins, an increase that was significant after 1 week of treatment. Similar results were obtained for triacylglycerol concentration after 2 weeks of treatment. Changes in phospholipid and total protein levels were less profound. Coconut oil decreased low-density and very-low-density lipoprotein fluidity, measured as total cholesterol/phospholipid ratio. Changes in esterified cholesterol/phospholipid and triacylglycerol/phospholipid ratios suggest that coconut oil affects the distribution of lipid components in the core of very-low-density particles. Likewise, the esterified cholesterol/triacylglycerol ratio was clearly increased in the low-density, and especially in the very-low-density, fraction after the first week of coconut oil feeding. Our results show that neonatal chick provides a suitable model in which to study the role of very-low-density lipoproteins in atherogenesis and the rapid response to saturated fatty acids with 12-14 carbons.

  19. The dilemma for lipid productivity in green microalgae: importance of substrate provision in improving oil yield without sacrificing growth.

    PubMed

    Tan, Kenneth Wei Min; Lee, Yuan Kun

    2016-01-01

    Rising oil prices and concerns over climate change have resulted in more emphasis on research into renewable biofuels from microalgae. Unlike plants, green microalgae have higher biomass productivity, will not compete with food and agriculture, and do not require fertile land for cultivation. However, microalgae biofuels currently suffer from high capital and operating costs due to low yields and costly extraction methods. Microalgae grown under optimal conditions produce large amounts of biomass but with low neutral lipid content, while microalgae grown in nutrient starvation accumulate high levels of neutral lipids but are slow growing. Producing lipids while maintaining high growth rates is vital for biofuel production because high biomass productivity increases yield per harvest volume while high lipid content decreases the cost of extraction per unit product. Therefore, there is a need for metabolic engineering of microalgae to constitutively produce high amounts of lipids without sacrificing growth. Substrate availability is a rate-limiting step in balancing growth and fatty acid (FA) production because both biomass and FA synthesis pathways compete for the same substrates, namely acetyl-CoA and NADPH. In this review, we discuss the efforts made for improving biofuel production in plants and microorganisms, the challenges faced in achieving lipid productivity, and the important role of precursor supply for FA synthesis. The main focus is placed on the enzymes which catalyzed the reactions supplying acetyl-CoA and NADPH.

  20. Kinetic Evaluation of Lipid Oils Conversion to Biofuel Using Layered Double Hydroxide Doped with Triazabicyclodece Catalyst

    NASA Astrophysics Data System (ADS)

    Nato Lopez, Frank D.

    Worldwide, there is an ever increasing need for sustainable, renewable fuels that will accommodate the rapidly increasing energy demand and provide independence from fossil fuels. The search for a sustainable alternative to petroleum based fuels has been a great challenge to the scientific community; therefore, great efforts are being made to overcome the fossil fuels dependence by exploring the prominent field of biofuels (bioethanol and biodiesel). Traditional biodiesel is produced from feedstocks such as vegetable oils and animal fats by converting the triglycerides with methanol in the presence of a homogeneous catalyst to produce fatty acid methyl esters (FAMEs). However, drawbacks of this process are the undesired glycerol byproduct and post reaction processing, including separation from reaction mixture, that results in high costs factors. In the present work, the reaction kinetics of a glycerol-free biodiesel method is studied. This method consists of the transesterification of a vegetable oil (i.e. canola oil) using dimethyl carbonate (DMC) as an alternative methylating agent in presence of layered double hydroxides doped with triazabicyclodecene catalyst (a basic organocatalyst). Furthermore, is theorized that this heterogeneous catalyst (TBD/LDH) simultaneously converts both FFAs and triglycerides due to acid sites formed by Al3+ active sites of the LDH structure. Additionally, the versatility of the Raman in situ technique was used as quantitative analysis tool to monitor the reaction kinetics and collect real time data.

  1. Heat flow anomalies in oil- and gas-bearing structures

    SciTech Connect

    Sergiyenko, S.I.

    1988-02-01

    The main features of the distribution of heat flow values in oil, gas and gas-condensate fields on the continents have been discussed by Makarenko and Sergiyenko. The method of analysis used made it possible to establish that the presence of hydrocarbons in formations leads to high heat-flow, regardless of the age of folding of the potentially oil- and gas-bearing zones. Only in regions adjacent to marginal Cenozoic folded mountain structures and in zones of Cenozoic volcanism is the world average higher, by 2.5 to 10%, than in the oil- and gas-bearing structures in those regions. The earlier analysis of the distribution of heat flow values in oil and gas structures was based on 403 measurements. The author now has nearly doubled the sample population, enabling him substantially to revise the ideas on the distribution of heat flow values and the development of the thermal regime of local oil and gas structures. He notes that the method previously used, comparing heat flow values on young continental platforms with values in local oil and gas structures, makes it possible to estimate the thermal effect of the presence of oil and gas. This conclusion stems from the fact that the overwhelming majority of heat flow measurements were made on various kinds of positive structural forms, and distortions of the thermal field caused by thermal anisotropy phenomena are equally characteristic of both productive and nonproductive structures. As a result, for the first time a continuous time series of heat flow measurements over oil and gas structures in various tectonic regions, with ages of consolidation ranging from the Precambrian to the Cenozoic, was established. 26 references.

  2. Preservative system development for argan oil-loaded nanostructured lipid carriers.

    PubMed

    Hommoss, A

    2011-03-01

    Nanostructured lipid carriers (NLC) are used in many dermal cosmetic formulations. To prevent microbiological spoilage of NLC suspensions preservative systems must be used. Preservatives can impair the physical stability of NLC suspensions. Therefore, a systematic screening of preservative systems should be performed and the compatibility of these preservative systems with each NLC formulation has to be investigated. In this study three Argan oil-loaded NLC formulations were developed. Ethanol, propylene glycol and pentylene glycol were admixed to these formulations as preservative systems. The physical stability of the non-preserved and preserved formulations has been investigated. Upon admixing 20% w/w ethanol to the selected formulations, immediate particle aggregation could be detected using laser diffractometry and after 24 hours gelling occurred. This was accompanied with a lowering of Zeta potential value. Samples preserved with 10% w/w propylene glycol did not show any change in particle size or in Zeta potential, in comparison to the non-preserved formulation, when measured after one day and 120 days. Samples preserved with 5% pentylene glycol proved also to be stable after 120 days and did not show any change in particle size or Zeta potential.

  3. Effects of hempseed and flaxseed oils on the profile of serum lipids, serum total and lipoprotein lipid concentrations and haemostatic factors.

    PubMed

    Schwab, Ursula S; Callaway, James C; Erkkilä, Arja T; Gynther, Jukka; Uusitupa, Matti I J; Järvinen, Tomi

    2006-12-01

    Both hempseed oil (HO) and flaxseed oil (FO) contain high amounts of essential fatty acids (FAs); i.e. linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3), but almost in opposite ratios. An excessive intake of one essential FA over the other may interfere with the metabolism of the other while the metabolisms of LA and ALA compete for the same enzymes. It is not known whether there is a difference between n-3 and n-6 FA of plant origin in the effects on serum lipid profile. To compare the effects of HO and FO on the profile of serum lipids and fasting concentrations of serum total and lipoprotein lipids, plasma glucose and insulin, and haemostatic factors in healthy humans. Fourteen healthy volunteers participated in the study. A randomised, double-blind crossover design was used. The volunteers consumed HO and FO (30 ml/day) for 4 weeks each. The periods were separated by a 4-week washout period. The HO period resulted in higher proportions of both LA and gamma-linolenic acid in serum cholesteryl esters (CE) and triglycerides (TG) as compared with the FO period (P < 0.001), whereas the FO period resulted in a higher proportion of ALA in both serum CE and TG as compared with the HO period (P < 0.001). The proportion of arachidonic acid in CE was lower after the FO period than after the HO period (P < 0.05). The HO period resulted in a lower total-to-HDL cholesterol ratio compared with the FO period (P = 0.065). No significant differences were found between the periods in measured values of fasting serum total or lipoprotein lipids, plasma glucose, insulin or hemostatic factors. The effects of HO and FO on the profile of serum lipids differed significantly, with only minor effects on concentrations of fasting serum total or lipoprotein lipids, and no significant changes in concentrations of plasma glucose or insulin or in haemostatic factors.

  4. Lipid and colour stability of M. longissimus muscle from lambs fed camelina or linseed as oil or seeds.

    PubMed

    Moloney, A P; Kennedy, C; Noci, F; Monahan, F J; Kerry, J P

    2012-09-01

    Colour and lipid stability of M. longissimus dorsi (LD) from sheep fed diets containing different lipid sources (Megalac (MG), camelina oil (CO), linseed oil (LO), NaOH-treated camelina seed (CS), NaOH-treated linseed (LS) or CO treated with ethanolamine (CA)) were examined. After 100 days on-feed, samples of LD were collected, fatty acid profile determined and colour and lipid oxidation (2-thiobarbituric acid reactive substances; TBARS) measured during retail display in high oxygen packaging. The LS ration was most effective in increasing the 18:3n-3 and conjugated linoleic acid (CLA) concentration in muscle. Within camelina, CA resulted in the highest 18:3n-3 and lowest CLA concentration in muscle. There was no difference in colour stability. Oil (seed) supplementation increased TBARS compared to MG in the early part of display while linseed-based rations tended to cause higher TBARS than camelina-based rations. Higher muscle 18:3n-3 concentration was associated with higher oxidation during early retail display but this was not reflected in a loss of colour stability.

  5. The relation between dietary intake of vegetable oils and serum lipids and apolipoprotein levels in central Iran

    PubMed Central

    Boroujeni, Hossein Khosravi; Sarrsfzadegan, Nizal; Mohammadifard, Nooshin; Sajjadi, Firoozeh; Asgary, Sedigheh; Maghroon, Maryam; Alikhassi, Hassan; Esmailzaded, Ahmad

    2012-01-01

    BACKGROUND: The detrimental effects of partially hydrogenated vegetable oils (PHVOs) on apolipoproteins have been reported from several parts of the world. However, little data is available in this regard from the understudied region of the Middle East. The present study therefore tried to evaluate the association between type of vegetable oils and serum lipids and apolipoprotein levels among Iranians. METHODS: In this cross-sectional study, data from 1772 people (795 men and 977 women) aged 19–81 years, who were selected with multistage cluster random sampling method from three cities of Isfahan, Najafabad and Arak in “Isfahan Healthy Heart Program” (IHHP) (Iran), was used. To assess participants' usual dietary intakes, a validated food frequency questionnaire was used. Hydrogenated vegetable oil (commonly consumed for cooking in Iran) and margarine were considered as the category of PHVOs. Soy, sunflower, corn, olive and canola oils were considered as non-HVOs. After an overnight fasting, serum cholesterol (total, low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol) and triglyceride as well as apolipoproteins A and B were measured using standard methods. RESULTS: Participants with the highest intakes of non-HVOs and PHVOs were younger and had lower weight than those with lowest intakes. High consumption of non-HVOs and PHVOs was associated with lower intakes of energy, carbohydrate, dietary fiber, and higher intakes of fruits, vegetables, meat, milk and grains. No overall significant differences were found in serum lipids and apolipoprotein levels across the quartiles of non-HVOs and PHVOs after controlling for potential confounding. CONCLUSION: We did not find any significant associations between hydrogenated or nonhydrogenated vegetable oil and serum lipid and apolipoprotein levels. Thus, further studies are needed in this region to explore this association. PMID:23205051

  6. The relation between dietary intake of vegetable oils and serum lipids and apolipoprotein levels in central Iran.

    PubMed

    Boroujeni, Hossein Khosravi; Sarrsfzadegan, Nizal; Mohammadifard, Nooshin; Sajjadi, Firoozeh; Asgary, Sedigheh; Maghroon, Maryam; Alikhassi, Hassan; Esmailzaded, Ahmad

    2012-01-01

    The detrimental effects of partially hydrogenated vegetable oils (PHVOs) on apolipoproteins have been reported from several parts of the world. However, little data is available in this regard from the understudied region of the Middle East. The present study therefore tried to evaluate the association between type of vegetable oils and serum lipids and apolipoprotein levels among Iranians. In this cross-sectional study, data from 1772 people (795 men and 977 women) aged 19-81 years, who were selected with multistage cluster random sampling method from three cities of Isfahan, Najafabad and Arak in "Isfahan Healthy Heart Program" (IHHP) (Iran), was used. To assess participants' usual dietary intakes, a validated food frequency questionnaire was used. Hydrogenated vegetable oil (commonly consumed for cooking in Iran) and margarine were considered as the category of PHVOs. Soy, sunflower, corn, olive and canola oils were considered as non-HVOs. After an overnight fasting, serum cholesterol (total, low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol) and triglyceride as well as apolipoproteins A and B were measured using standard methods. Participants with the highest intakes of non-HVOs and PHVOs were younger and had lower weight than those with lowest intakes. High consumption of non-HVOs and PHVOs was associated with lower intakes of energy, carbohydrate, dietary fiber, and higher intakes of fruits, vegetables, meat, milk and grains. No overall significant differences were found in serum lipids and apolipoprotein levels across the quartiles of non-HVOs and PHVOs after controlling for potential confounding. We did not find any significant associations between hydrogenated or nonhydrogenated vegetable oil and serum lipid and apolipoprotein levels. Thus, further studies are needed in this region to explore this association.

  7. Sesamin modulation of lipid class and fatty acid profile in early juvenile teleost, Lates calcarifer, fed different dietary oils.

    PubMed

    Alhazzaa, Ramez; Bridle, Andrew R; Carter, Chris G; Nichols, Peter D

    2012-10-15

    Sesamin, a major sesame seed lignan, has diverse biological functions including the modulation of molecular actions in lipid metabolic pathways and reducing cholesterol levels. Vertebrates have different capacities to biosynthesize long-chain PUFA from dietary precursors and sesamin can enhance the biosynthesis of ALA to EPA and DHA in marine teleost. Early juvenile barramundi, Lates calcarifer, were fed for two weeks on diets rich in ALA or SDA derived from linseed or Echium plantagineum, respectively. Both diets contained phytosterols and less cholesterol compared with a standard fish oil-based diet. The growth rates were reduced in the animals receiving sesamin regardless of the dietary oil. However, the relative levels of n-3 LC-PUFA in total lipid, but not the phospholipid, increased in the whole body by up to 25% in animals fed on sesamin with ALA or SDA. Sesamin reduced the relative levels of triacylglycerols and increased polar lipid, and did not affect the relative composition of phospholipid subclasses or sterols. Sesamin is a potent modulator for LC-PUFA biosynthesis in animals, but probably will have more effective impact at advanced ages. By modulating certain lipid metabolic pathways, sesamin has probably disrupted the body growth and development of organs and tissues in early juvenile barramundi.

  8. Polyoxometalate (POM) Nanocluster-Induced Phase Transition and Structural Disruption in Lipid Bilayers.

    NASA Astrophysics Data System (ADS)

    Jing, Benxin; Zhu, Y. Elaine; Hutin, Marie; Cronin, Leroy

    2012-02-01

    Polyoxometalate (POM) nanoclusters that are transition metal oxygen clusters with well defined atomic coordination structures have recently emerged as new and functional nanocolloidal materials used as catalysts, anti-cancer medicines, and building blocks for novel functional materials. However, their implications to human health and environment remain poorly investigated. In this work, we examine the interaction of highly charged anionic POM nanocluters with lipid bilayers as a model cell membrane system. It is observed that upon the adsorption of anionic POMs, lipid dynamics is significantly suppressed and lipid bilayers are disrupted with resultant pore and budding-like structural formation. Direct calorimetric experiment of POM interaction with lipid bilayers of varied lipid compositions confirms the POM-induced fluid-to-gel phase transition in lipid bilayers, due to strong electrostatic interaction between POM nanocluster and lipid head groups.

  9. A new Monte Carlo method for investigating geometrical structures of lipid membranes with atomistic detail

    NASA Astrophysics Data System (ADS)

    Cheng, Sara; Qiu, Liming; Cheng, K.; Vaughn, Mark

    2011-10-01

    The distribution statistics of the surface area, volume and voids of lipid molecules are important parameters to characterize the structures of self-assembling lipid membranes. Traditional methods are mostly based on various assumptions of the thickness of the lipid membrane and the volumes of certain types of lipid molecules. However, those methods usually lead to an over- or underestimation of the average surface area of lipid molecules when compared to the experimental results of the pure lipid systems. We developed a new Monte Carlo method that is able to estimate the distributions and averages of surface area, volume and void space of the lipid molecules in the absence and presence of proteins of the MD simulation results of lipid membranes at the atomistic scale. We successfully validated our new method on an ordered hard-sphere system and on a phospholipid/cholesterol binary lipid system, all with known structural parameters. Using this new method, the structural perturbation of the conformal annular lipids in close proximity to the embedded protein in a lipid/protein system will also be presented.

  10. Molecular and structural changes induced by essential oil treatments in Vicia faba roots detected by FTIR and FTNIR spectroscopy.

    PubMed

    Mecozzi, Mauro; Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Peleggi, Francesco

    2016-12-24

    Essential oils have recognized antimicrobial and antifungal properties which allow their utilization in agriculture like an alternative to pesticides, but their utilization requires the knowledge of all the potential structural changes and damages produced by the interaction with the vegetal organisms. In this paper, we investigated the effects of two essential oils, the tea tree oil (TTO) and the mixture of clove and rosemary oils (C + R), on the molecular structure of Vicia faba roots by Fourier transform infrared (FTIR) and Fourier near infrared transform (FTNIR) spectroscopy. FTIR spectroscopy showed structural modifications of the absorption bands related to DNA (1100 and 1050 cm(-1), carbohydrate backbones, and nucleotide bands within 900 and 850 cm(-1)), proteins (1700 and 1600 cm(-1) amide I band, 1580 and 1520 cm(-1) amide II band), and lipids (methylene group of aliphatic chains between 2950 and 2800 cm(-1)). The changes in the secondary structures of proteins consisted of a denaturation depending on increased presence of random coil structures. In addition, in the samples treated with TTO oils, we observed the presence of protein oxidation, an effect negligible instead for the C + R-treated samples. The modified shapes of the infrared methyl bands of aliphatic chains suggested an increased lipid disorder which could also determine lipid peroxidation. The changes observed for the DNA structures at the highest concentration of the above essential oils can be related to the genotoxic effect of eugenol, an important constituent of both TTO and C + R mixture oils. FTNIR spectroscopy showed the modified shape of the second overtone bands belonging to methyl and methylene groups, between 8500 and 8000 cm(-1). This confirmed the increased lipid disorders already observed by FTIR spectroscopy. The results obtained on the probe organism V. faba show that FTIR and FTNIR spectroscopy can become a useful support to the conventional cytogenetic tests used

  11. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    PubMed

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA

  12. Mugil cephalus roe oil obtained by supercritical fluid extraction affects the lipid profile and viability in cancer HeLa and B16F10 cells.

    PubMed

    Rosa, A; Piras, A; Nieddu, M; Putzu, D; Cesare Marincola, F; Falchi, A M

    2016-09-14

    We explored the changes in viability and lipid profile occurring in cancer cells, murine melanoma cells (B16F10 cells) and human cervical carcinoma cells (HeLa cells), when exposed to 24 h-treatments with an n-3 PUFA-rich oil obtained by supercritical extraction with CO2 from Mugil cephalus processed roe (bottarga). The composition of the major lipid classes of bottarga oil was determined by the (13)C NMR technique. Reversed-phase HPLC with DAD/ELSD detection was performed to analyze cells' total fatty acid profile and the levels of phospholipids, total/free cholesterol, triacylglycerols, and cholesteryl esters. Cell-based fluorescent measurements of intracellular membranes and lipid droplets were performed on bottarga oil-treated cells using the Nile red staining technique. The treatments of cancer cells with bottarga oil reduced the viability and affected the fatty acid profile, with a significant n-3 PUFA increase in treated cells. Mullet roe oil uptake modulated the cancer cell lipid composition, inducing a remarkable incorporation of health beneficial n-3 PUFA in the polar and neutral lipid fractions. Bottarga oil treatment influenced the synthesis of intracellular membranes and accumulation of cytoplasmic lipid droplets in cancer cells.

  13. Deep-fried oil consumption in rats impairs glycerolipid metabolism, gut histology and microbiota structure.

    PubMed

    Zhou, Zhongkai; Wang, Yuyang; Jiang, Yumei; Diao, Yongjia; Strappe, Padraig; Prenzler, Paul; Ayton, Jamie; Blanchard, Chris

    2016-04-28

    Deep frying in oil is a popular cooking method around the world. However, the safety of deep-fried edible oil, which is ingested with fried food, is a concern, because the oil is exposed continuously to be re-used at a high temperature, leading to a number of well-known chemical reactions. Thus, this study investigates the changes in energy metabolism, colon histology and gut microbiota in rats following deep-fried oil consumption and explores the mechanisms involved in above alterations. Deep-fried oil was prepared following a published method. Adult male Wistar rats were randomly divided into three groups (n = 8/group). Group 1: basal diet without extra oil consumption (control group); Group 2: basal diet supplemented with non-heated canola oil (NEO group); Group 3: basal diet supplemented with deep-fried canola oil (DFEO group). One point five milliliters (1.5 mL) of non-heated or heated oil were fed by oral gavage using a feeding needle once daily for 6 consecutive weeks. Effect of DFEO on rats body weight, KEGG pathway regarding lipids metabolism, gut histology and gut microbiota were analyzed using techniques of RNA sequencing, HiSeq Illumina sequencing platform, etc. Among the three groups, DFEO diet resulted in a lowest rat body weight. Metabolic pathway analysis showed 13 significantly enriched KEGG pathways in Control versus NEO group, and the majority of these were linked to carbohydrate, lipid and amino acid metabolisms. Comparison of NEO group versus DFEO group, highlighted significantly enriched functional pathways were mainly associated with chronic diseases. Among them, only one metabolism pathway (i.e. glycerolipid metabolism pathway) was found to be significantly enriched, indicating that inhibition of this metabolism pathway (glycerolipid metabolism) may be a response to the reduction in energy metabolism in the rats of DFEO group. Related gene analysis indicated that the down-regulation of Lpin1 seems to be highly associated with the inhibition

  14. Structural characterization of suppressor lipids by high-resolution mass spectrometry.

    PubMed

    Rovillos, Mary Joy; Pauling, Josch Konstantin; Hannibal-Bach, Hans Kristian; Vionnet, Christine; Conzelmann, Andreas; Ejsing, Christer S

    2016-10-30

    Suppressor lipids were originally identified in 1993 and reported to encompass six lipid classes that enable Saccharomyces cerevisiae to live without sphingolipids. Structural characterization, using non-mass spectrometric approaches, revealed that these suppressor lipids are very long chain fatty acid (VLCFA)-containing glycerophospholipids with polar head groups that are typically incorporated into sphingolipids. Here we report, for the first time, the structural characterization of the yeast suppressor lipids using high-resolution mass spectrometry. Suppressor lipids were isolated by preparative chromatography and subjected to structural characterization using hybrid quadrupole time-of-flight and ion trap-orbitrap mass spectrometry. Our investigation recapitulates the overall structural features of the suppressor lipids and provides an in-depth characterization of their fragmentation pathways. Tandem mass analysis identified the positionally defined molecular lipid species phosphatidylinositol (PI) 26:0/16:1, PI mannoside (PIM) 16:0/26:0 and PIM inositol-phosphate (PIMIP) 16:0/26:0 as abundant suppressor lipids. This finding differs from the original study that only inferred the positional isomer PI 16:0/26:0 and prompts new insight into the biosynthesis of suppressor lipids. Moreover, we also report the identification of a novel suppressor lipid featuring an amino sugar residue linked to a VLCFA-containing PI molecule. Fragmentation pathways of yeast suppressor lipids have been delineated. In addition, the fragmentation information has been added to our open source ALEX lipid database to support automated identification and quantitative monitoring of suppressor lipids in yeast and bacteria that produce similar lipid molecules. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Association of Borage Oil and Betamethasone Dipropionate in Lipid-Core Nanocapsules: Characterization, Photostability and In Vitro Irritation Test.

    PubMed

    Weber, Julia; Funk, Nadine L; Motta, Mariana H; Guedes, Alessandra M; Visintainer, Ana Paula C; Tedesco, Solange B; Da Silva, Cristiane de B

    2016-02-01

    The association of vegetable products to nanostructured systems has attracted the attention of researchers due to several advantages, such as drug photoprotection, as well as the improvement of the pharmacological and therapeutic activities because of synergistic action, which can provide their topical application. In this work, lipid-core nanocapsules containing borage oil as oil core and betamethasone dipropionate were developed, and nanocapsules without the drug were prepared for comparison. The suspensions were characterized in relation to mean particle size, zeta potential, pH, drug content, and encapsulation efficiency. A photodegradation study was carried out and the in vitro release profile as well as the irritation potential of the drug after nanoencapsulation were also evaluated. In addition, the antiproliferative activity of the free borage oil as well as loaded in nanocapsules was studied. Lipid-core nanocapsules showed nanometric mean size (185-210 nm); polydispersity index below 0.10; negative zeta potential and pH slightly acid (6.0-6.2). Moreover, the drug content was close to theoretical concentration (0.50 +/- 0.03 mg/ml of betamethasone), and the encapsulation efficiency was approximately 100%. The study of the antiproliferative activity of borage oil showed ability to reduce cell growth of Allium cepa. The nanoencapsulation of betamethasone dipropionate provided greater protection against UVC light and decreased the irritation potential of the drug. The release profile of betamethasone dipropionate from nanocapsules followed monoexponential model.

  16. [Efectiveness of long-term consumption of nuts, seeds and seeds' oil on glucose and lipid levels; systematic review].

    PubMed

    De Lira-García, C; Bacardí-Gascón, M; Jiménez-Cruz, A

    2012-01-01

    The aim of this study was to determine the effectiveness of long-term consumption of nuts, seeds and vegetable oil (NSO) on weight, glucose, and lipid levels. We searched English articles published in Pubmed and Ebsco up to May 2011. Studies were included if they were randomized clinical trials, and had an intervention period of 24 or more weeks. Search terms include: "diabetes mellitus", "Nuts", "Diet Mediterranean", "Seeds", "Oils", "Canola oil", "Olive oil","Walnut", "Almond", "Pistachio", "Paleolithic diet", "High monounsaturated diet", "High polyunsaturated diet", "Soya" and "Sunflower". Thirteen studies met the inclusion criteria; eight studies had a 24 weeks intervention period, one had 42 weeks, one had 48 weeks, and for the other three the intervention lasted 52 or more weeks. At 24 weeks a consistent increase of HDL levels and inconsistent improvement of weight, BMI, waist to hip index, A1C, total cholesterol, LDL: HDL, LDL, triglycerides, and diastolic blood pressure was observed. Four studies with an intervention ≥ 48 weeks showed no statistical difference, and in one study a reduction of weight, BMI, waist hip index, glucose, insulin, total cholesterol, HDL: cholesterol, triglycerides, and blood pressure was observed. No evidence of long-term improvement of NSO on weight, glucose or lipids in the adult population was found.

  17. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization.

    PubMed

    Lai, Francesco; Wissing, Sylvia A; Müller, Rainer H; Fadda, Anna M

    2006-01-03

    The aim of this study was to formulate a new delivery system for ecological pesticides by the incorporation of Artemisia arborescens L essential oil into solid lipid nanoparticles (SLN). Two different SLN formulations were prepared following the high-pressure homogenization technique using Compritol 888 ATO as lipid and Poloxamer 188 or Miranol Ultra C32 as surfactants. The SLN formulation particle size was determined using Photon correlation spectroscopy (PCS) and laser diffraction analysis (LD). The change of particle charge was studied by zeta potential (ZP) measurements, while the melting and recrystallization behavior was studied using differential scanning calorimetry (DSC). In vitro release studies of the essential oil were performed at 35 degrees C. Data showed a high physical stability for both formulations at various storage temperatures during 2 months of investigation. In particular, average diameter of Artemisia arborescens L essential oil-loaded SLN did not vary during storage and increased slightly after spraying the SLN dispersions. In vitro release experiments showed that SLN were able to reduce the rapid evaporation of essential oil if compared with the reference emulsions. Therefore, obtained results showed that the studied SLN formulations are suitable carriers in agriculture.

  18. Blood pressure and serum lipids from SHR after diets supplemented with evening primrose, sunflowerseed or fish oil.

    PubMed

    Singer, P; Moritz, V; Wirth, M; Berger, I; Forster, D

    1990-05-01

    Spontaneously hypertensive rats (SHR) at 4 weeks of age were fed a diet supplemented with sunflowerseed oil (SO), evening primrose oil (EPO), fish oil (FO) or EPO + FO for 22 weeks. A diet with commercially available pellets served as control. Systolic blood pressure was significantly lower during and after FO, EPO and EPO + FO, whereas the lower level after SO was not significant when compared with the controls. Serum triglycerides and total cholesterol were lowest after EPO followed FO. The combination of both EPO and FO resulted in unexpected high values of triglycerides and cholesterol. HDL-cholesterol was likewise highest after EPO + FO. The results indicate a quantitatively different depression of blood pressure and serum lipids from SHR by individual polyunsaturated fatty acids (PUFA).

  19. Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    As a prelude to detailed flux control analysis of lipid synthesis in plants, we have examined the latter in tissue cultures from two important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). Temperature was used to manipulate the overall rate of lipid formation in order to characterize and validate the system to be used for analysis. With [1-14C]acetate as a precursor, an increase in temperature from 20 to 30 degrees C produced nearly a doubling of total lipid labelling. This increase in total lipids did not change the radioactivity in the intermediate acyl-(acyl carrier protein) or acyl-CoA pools, indicating that metabolism of these pools did not exert any significant constraint for overall synthesis. In contrast, there were some differences in the proportional labelling of fatty acids and of lipid classes at the two temperatures. The higher temperature caused a decrease in polyunsaturated fatty acid labelling and an increase in the proportion of triacylglycerol labelling in both calli. The intermediate diacylglycerol was increased in olive, but not in oil palm. Overall the data indicate the suitability of olive and oil-palm cultures for the study of lipid synthesis and indicate that de novo fatty acid synthesis may exert more flux control than complex lipid assembly. In olive, diacylglycerol acyltransferase may exert significant flux control when lipid synthesis is rapid. PMID:12023881

  20. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet

    PubMed Central

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-01-01

    Abstract Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  1. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. © 2016 the Journal of Biomedical Research. All rights reserved.

  2. Structure- and oil type-based efficacy of emulsion adjuvants.

    PubMed

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  3. Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of fish oil.

    PubMed

    Hixson, Stefanie M; Parrish, Christopher C; Anderson, Derek M

    2014-01-01

    Camelina oil (CO) replaced 50 and 100 % of fish oil (FO) in diets for farmed rainbow trout (initial weight 44 ± 3 g fish(-1)). The oilseed is particularly unique due to its high lipid content (40 %) and high amount of 18:3n-3 (α-linolenic acid, ALA) (30 %). Replacing 100 % of fish oil with camelina oil did not negatively affect growth of rainbow trout after a 12-week feeding trial (FO = 168 ± 32 g fish(-1); CO = 184 ± 35 g fish(-1)). Lipid and fatty acid profiles of muscle, viscera and skin were significantly affected by the addition of CO after 12 weeks of feeding. However, final 22:6n-3 [docosahexaenoic acid (DHA)] and 20:5n-3 [eicosapentaenoic acid (EPA)] amounts (563 mg) in a 75 g fillet (1 serving) were enough to satisfy daily DHA and EPA requirements (250 mg) set by the World Health Organization. Other health benefits include lower SFA and higher MUFA in filets fed CO versus FO. Compound-specific stable isotope analysis (CSIA) confirmed that the δ(13)C isotopic signature of DHA in CO fed trout shifted significantly compared to DHA in FO fed trout. The shift in DHA δ(13)C indicates mixing of a terrestrial isotopic signature compared to the isotopic signature of DHA in fish oil-fed tissue. These results suggest that ~27 % of DHA was synthesized from the terrestrial and isotopically lighter ALA in the CO diet rather than incorporation of DHA from fish meal in the CO diet. This was the first study to use CSIA in a feeding experiment to demonstrate synthesis of DHA in fish.

  4. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    SciTech Connect

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  5. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial.

    PubMed

    Giannì, Maria Lorella; Roggero, Paola; Baudry, Charlotte; Ligneul, Amandine; Morniroli, Daniela; Garbarino, Francesca; le Ruyet, Pascale; Mosca, Fabio

    2012-10-17

    Human milk is the optimal nutrition for infants. When breastfeeding is not possible, supplementation of infant formula with long chain polyunsaturated fatty acids appears to promote neurodevelopmental outcome and visual function. Plant oils, that are the only source of fat in most of infant formulas, do not contain specific fatty acids that are present in human and cow milk and do not encounter milk fat triglyceride structure. Experimental data suggest that a mix of dairy lipids and plant oils can potentiate endogenous synthesis of n-3 long chain polyunsaturated fatty acids. This trial aims to determine the effect of an infant formula supplemented with a mixture of dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in full-term infants (primary outcome). Erythrocyte membrane long chain polyunsaturated fatty acids and fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level, the gastrointestinal tolerance, the changes throughout the study in blood fatty acids content, in growth and body composition are evaluated as secondary outcomes. In a double-blind controlled randomized trial, 75 healthy full-term infants are randomly allocated to receive for four months a formula supplemented with a mixture of dairy lipids and plant oils or a formula containing only plant oils or a formula containing plant oils supplemented with arachidonic acid and docosahexaenoic acid. Twenty-five breast-fed infants constitute the reference group. Erythrocyte membrane omega-3 fatty acid profile, long chain polyunsaturated fatty acids and the other fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level are measured after four months of intervention. Gastrointestinal tolerance, the changes in blood fatty acids content, in growth and body composition, assessed by means of an air displacement plethysmography system, are also evaluated throughout the study. The achievement of an appropriate long chain

  6. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.

    PubMed

    Gao, Yuan; Cao, Erhu; Julius, David; Cheng, Yifan

    2016-06-16

    When integral membrane proteins are visualized in detergents or other artificial systems, an important layer of information is lost regarding lipid interactions and their effects on protein structure. This is especially relevant to proteins for which lipids have both structural and regulatory roles. Here we demonstrate the power of combining electron cryo-microscopy with lipid nanodisc technology to ascertain the structure of the rat TRPV1 ion channel in a native bilayer environment. Using this approach, we determined the locations of annular and regulatory lipids and showed that specific phospholipid interactions enhance binding of a spider toxin to TRPV1 through formation of a tripartite complex. Furthermore, phosphatidylinositol lipids occupy the binding site for capsaicin and other vanilloid ligands, suggesting a mechanism whereby chemical or thermal stimuli elicit channel activation by promoting the release of bioactive lipids from a critical allosteric regulatory site.

  7. Regulation of acid phosphatase in reverse micellar system by lipids additives: structural aspects.

    PubMed

    Kudryashova, E V; Bronza, V L; Vinogradov, A A; Kamyshny, A; Magdassi, S; Levashov, A V

    2011-01-15

    Reverse micelles system is suggested as a direct tool to study the influence of membrane matrix composition on the activity and structure of membrane-associated enzymes with the use of acid phosphatase (AP) as an example. In reverse micelles the functioning of the monomeric and dimeric forms of AP could be separately observed by variation of the size of the micelles. We found that including the lipids into the micellar system can dramatically affect the enzyme functioning even at low lipid content (2% w/w), and this effect depends on the lipid nature. Structural studies using CD spectroscopy and DLS methods have shown that the influence of lipid composition on the enzyme properties might be caused by the interaction of lipids with the enzyme as well as by the influence of lipids on structure and properties of the micellar matrix. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action

    PubMed Central

    Gao, Yuan; Cao, Erhu; Julius, David; Cheng, Yifan

    2016-01-01

    When integral membrane proteins are visualized in detergents or other artificial systems, an important layer of information is lost regarding lipid interactions and their effects on protein structure. This is especially relevant to proteins for which lipids play both structural and regulatory roles. Here, we demonstrate the power of combining electron cryo-microscopy with lipid nanodisc technology to ascertain the structure of the TRPV1 ion channel in a native bilayer environment. Using this approach, we determined the locations of annular and regulatory lipids and showed that specific phospholipid interactions enhance binding of a spider toxin to TRPV1 through formation of a tripartite complex. Furthermore, phosphatidylinositol lipids occupy the binding site for capsaicin and other vanilloid ligands, suggesting a mechanism whereby chemical or thermal stimuli elicit channel activation by promoting release of bioactive lipids from a critical allosteric regulatory site. PMID:27281200

  9. Compositional Shift in Fatty Acid Profiles of Lipids Obtained from Oleaginous Yeasts upon the Addition of Essential Oil from Citrus sinensis L.

    PubMed

    Uprety, Bijaya K; Rakshit, Sudip K

    2017-05-05

    Tailoring lipids from oleaginous yeasts to contain specific types of fatty acid is of considerable interest to food, fuel, and pharmaceutical industries. In this study, the essential oil obtained from Citrus sinesus L. has been used to alter the fatty acid composition of two common oleaginous yeasts, Rhodosporidium toruloides and Cryptococcus curvatus. With increasing levels of essential oil in the medium, the metabolic flux of the fatty acid biosynthesis pathway shifted towards saturated fatty acid production. Essential oil reduced the activities of elongase and ∆9 desaturase. This made the lipid obtained from both these yeasts rich in saturated fatty acids. At certain specific concentrations of the essential oil in the medium, the lipid obtained from R. toruloides and C. curvatus cultures was similar to mahuwa butter and palm oil, respectively. Limonene is the major constituents of orange essential oil. Its effect on one of the oleaginous yeasts, R. toruloides, was also studied separately. Effects similar to orange essential oil were obtained with limonene. Thus, we can conclude that limonene in orange essential oil brings about compositional change of microbial lipid produced in this organism.

  10. Immobilized oleaginous microalgae for production of lipid and phytoremediation of secondary effluent from palm oil mill in fluidized bed photobioreactor.

    PubMed

    Cheirsilp, Benjamas; Thawechai, Tipawan; Prasertsan, Poonsuk

    2017-10-01

    Oleaginous microalga Nannochloropsis sp. was immobilized in alginate gel beads and cultivated under optimal conditions that their growth and lipid production were comparable to those of free cells. The immobilized cells were used in phytoremediation of secondary effluent from palm oil mill and easily recovered by simple sieving method. The immobilized cells contributed to removal of nitrogen and phosphorus >90% and CO2 mitigation >99%. They also gave the biomass and lipid production of 1.300±0.050g/L and 0.356±0.097g/L, respectively. The repeated-batch cultivation improved the biomass and lipid production by 2.66 folds and 1.41 folds, respectively. The scale up in 3L-fluidized bed photobioreactor gave the maximum biomass of 3.280±0.049g/L and lipid production of 0.362±0.010g/L. Fatty acid compositions of Nannochloropsis sp. lipids showed their suitability as biodiesel feedstocks. This system not only contributes as tertiary treatment of industrial effluent and CO2 mitigation but also low-cost production of renewable energy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Supercritical fluid precipitation of ketoprofen in novel structured lipid carriers for enhanced mucosal delivery--a comparison with solid lipid particles.

    PubMed

    Gonçalves, V S S; Matias, A A; Rodríguez-Rojo, S; Nogueira, I D; Duarte, C M M

    2015-11-10

    Structured lipid carriers based on mixture of solid lipids with liquid lipids are the second generation of solid lipid particles, offering the advantage of improved drug loading capacity and higher storage stability. In this study, structured lipid carriers were successfully prepared for the first time by precipitation from gas saturated solutions. Glyceryl monooleate (GMO), a liquid glycerolipid, was selected in this work to be incorporated into three solid glycerolipids with hydrophilic-lipophilic balance (HLB) ranging from 1 to 13, namely Gelucire 43/01™, Geleol™ and Gelucire 50/13™. In general, microparticles with a irregular porous morphology and a wide particle size distribution were obtained. The HLB of the individual glycerolipids might be a relevant parameter to take into account during the processing of solid:liquid lipid blends. As expected, the addition of a liquid lipid into a solid lipid matrix led to increased stability of the lipid carriers, with no significant modifications in their melting enthalpy after 6 months of storage. Additionally, Gelucire 43/01™:GMO particles were produced with different mass ratios and loaded with ketoprofen. The drug loading capacity of the structured lipid carriers increased as the GMO content in the particles increased, achieving a maximum encapsulation efficiency of 97% for the 3:1 mass ratio. Moreover, structured lipid carriers presented an immediate release of ketoprofen from its matrix with higher permeation through a mucous-membrane model, while solid lipid particles present a controlled release of the drug with less permeation capacity.

  12. Nanoscale Structure of the Oil-Water Interface

    NASA Astrophysics Data System (ADS)

    Fukuto, M.; Ocko, B. M.; Bonthuis, D. J.; Netz, R. R.; Steinrück, H.-G.; Pontoni, D.; Kuzmenko, I.; Haddad, J.; Deutsch, M.

    2016-12-01

    X-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water. The XR and MD derived depletions are much smaller than reported for the interface between solid-supported hydrophobic monolayers and water.

  13. Nanoscale structure of the oil-water interface

    SciTech Connect

    Fukuto, M.; Ocko, B. M.; Bonthuis, D. J.; Netz, R. R.; Steinrück, H. -G.; Pontoni, D.; Kuzmenko, I.; Haddad, J.; Deutsch, M.

    2016-12-15

    X-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water. As a result, the XR and MD derived depletions are much smaller than reported for the interface between solid-supported hydrophobic monolayers and water.

  14. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    NASA Astrophysics Data System (ADS)

    Schmid, Friederike; Dolezel, Stefan; Lenz, Olaf; Meinhardt, Sebastian

    2014-03-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model.

  15. The development of flow-through bio-catalyst microreactors from silica micro structured fibers for lipid transformations.

    PubMed

    Anuar, Sabiqah Tuan; Villegas, Carla; Mugo, Samuel M; Curtis, Jonathan M

    2011-06-01

    This study demonstrates the utility of a flow-through enzyme immobilized silica microreactor for lipid transformations. A silica micro structured fiber (MSF) consisting of 168 channels of internal diameter 4-5 μm provided a large surface area for the covalent immobilization of Candida antartica lipase. The specific activity of the immobilized lipase was determined by hydrolysis of p-nitrophenyl butyrate and calculated to be 0.81 U/mg. The catalytic performance of the lipase microreactor was demonstrated by the efficient ethanolysis of canola oil. The parameters affecting the performance of the MSF microreactor, including temperature and reaction flow rate, were investigated. Characterization of the lipid products exiting the microreactor was performed by non-aqueous reversed-phased liquid chromatography (NARP-LC) with evaporative light scattering detector (ELSD) and by comprehensive two-dimensional gas chromatography (GC x GC). Under optimized conditions of 1 μL/min flow rate of 5 mg/mL trioleoylglycerol (TO) in ethanol and 50 °C reaction temperature, 2-monooleoylglycerol was the main product at > 90% reaction yield. The regioselectivity of the Candida antartica lipase immobilized MSF microreactor in the presence of ethanol was found to be comparable to that obtained under conventional conditions. The ability of these reusable flow-through microreactors to regioselectively form monoacylglycerides in high yield from triacylglycerides demonstrate their potential use in small-scale lipid transformations or analytical lipids profiling.

  16. Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend.

    PubMed

    Torstensen, Bente E; Bell, J Gordon; Rosenlund, Grethe; Henderson, R James; Graff, Ingvild E; Tocher, Douglas R; Lie, Øyvind; Sargent, John R

    2005-12-28

    Atlantic salmon (Salmo salar L.) juveniles were fed either 100% fish oil (FO), 75% vegetable oil (VO), or 100% VO throughout their life cycle to harvest weight followed by a finishing diet period when all groups were fed 100% FO. The two experimental VO diets were tested at two different locations (Scotland and Norway) against the same control diet (100% FO). The VO blend was composed of rapeseed oil, palm oil, and linseed oil using capelin oil as a control for fatty acid class compositions. Flesh fatty acid profiles were measured regularly throughout the experiment, with the times of sampling determined by changes in pellet size/lipid content and fish life stage. Growth and mortality rates were not significantly affected by dietary fatty acid compositions throughout the life cycle, except during the seawater winter period in Norway when both growth and protein utilization were increased in salmon fed 100% VO compared to 100% FO. Flesh fatty acid composition was highly influenced by that of the diet, and after the finishing diet period the weekly intake recommendations of very long chain n-3 polyunsaturated fatty acid (VLCn-3 PUFA) for human health were 80 and 56% satisfied by a 200 g meal of 75% VO and 100% VO flesh, respectively. No effect on flesh astaxanthin levels was observed in relation to changing dietary oil sources. Sensory evaluation showed only minor differences between salmon flesh from the dietary groups, although prior to the finishing diet period, flesh from 100% VO had less rancid and marine characteristics and was preferred over flesh from the other dietary groups by a trained taste panel. After the finishing diet period, the levels of typical vegetable oil fatty acids in flesh were reduced, whereas those of VLCn-3 PUFA increased to levels comparable with a 100% FO fed salmon. No differences in any of the sensory characteristics were observed between dietary groups. By blending VOs to provide balanced levels of dietary fatty acids, up to 100% of

  17. Membrane Protein Crystallization in Lipidic Mesophases. Hosting Lipid Effects on the Crystallization and Structure of a Transmembrane Peptide

    SciTech Connect

    Hfer, Nicole; Aragao, David; Lyons, Joseph A.; Caffrey, Martin

    2011-09-28

    Gramicidin is an apolar pentadecapeptide antibiotic consisting of alternating d- and l-amino acids. It functions, in part, by creating pores in membranes of susceptible cells rendering them leaky to monovalent cations. The peptide should be able to traverse the host membrane either as a double-stranded, intertwined double helix (DSDH) or as a head-to-head single-stranded helix (HHSH). Current structure models are based on macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR). However, the HHSH form has only been observed by NMR. The shape and size of the different gramicidin conformations differ. We speculated therefore that reconstituting it into a lipidic mesophase with bilayers of different microstructures would preferentially stabilize one form over the other. By using such mesophases for in meso crystallogenesis, the expectation was that at least one would generate crystals of gramicidin in the HHSH form for structure determination by MX. This was tested using commercial and in-house synthesized lipids that support in meso crystallogenesis. Lipid acyl chain lengths were varied from 14 to 18 carbons to provide mesophases with a range of bilayer thicknesses. Unexpectedly, all lipids produced high-quality, structure-grade crystals with gramicidin only in the DSDH conformation.

  18. Membrane Protein Crystallization in Lipidic Mesophases. Hosting lipid affects on the crystallization and structure of a transmembrane peptide

    PubMed Central

    Höfer, Nicole; Aragão, David; Lyons, Joseph A.; Caffrey, Martin

    2012-01-01

    Gramicidin is an apolar pentadecapeptide antibiotic consisting of alternating D-and L-amino acids. It functions, in part, by creating pores in membranes of susceptible cells rendering them leaky to monovalent cations. The peptide should be able to traverse the host membrane either as a double stranded, intertwined double helix (DSDH) or as a head-to-head single stranded helix (HHSH). Current structure models are based on macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR). However, the HHSH form has only been observed by NMR. The shape and size of the different gramicidin conformations differ. We speculated therefore that reconstituting it into a lipidic mesophase with bilayers of different microstructures would preferentially stabilize one form over the other. By using such mesophases for in meso crystallogenesis the expectation was that at least one would generate crystals of gramicidin in the HHSH form for structure determination by MX. This was tested using commercial and in-house synthesised lipids that support in meso crystallogenesis. Lipid acyl chain lengths were varied from 14 to 18 carbons to provide mesophases with a range of bilayer thicknesses. Unexpectedly, all lipids produced high quality, structure-grade crystals with gramicidin only in the DSDH conformation. PMID:22933857

  19. Membrane Protein Crystallization in Lipidic Mesophases. Hosting lipid affects on the crystallization and structure of a transmembrane peptide.

    PubMed

    Höfer, Nicole; Aragão, David; Lyons, Joseph A; Caffrey, Martin

    2011-04-06

    Gramicidin is an apolar pentadecapeptide antibiotic consisting of alternating D-and L-amino acids. It functions, in part, by creating pores in membranes of susceptible cells rendering them leaky to monovalent cations. The peptide should be able to traverse the host membrane either as a double stranded, intertwined double helix (DSDH) or as a head-to-head single stranded helix (HHSH). Current structure models are based on macromolecular X-ray crystallography (MX) and nuclear magnetic resonance (NMR). However, the HHSH form has only been observed by NMR. The shape and size of the different gramicidin conformations differ. We speculated therefore that reconstituting it into a lipidic mesophase with bilayers of different microstructures would preferentially stabilize one form over the other. By using such mesophases for in meso crystallogenesis the expectation was that at least one would generate crystals of gramicidin in the HHSH form for structure determination by MX. This was tested using commercial and in-house synthesised lipids that support in meso crystallogenesis. Lipid acyl chain lengths were varied from 14 to 18 carbons to provide mesophases with a range of bilayer thicknesses. Unexpectedly, all lipids produced high quality, structure-grade crystals with gramicidin only in the DSDH conformation.

  20. Edible oil structuring: an overview and recent updates.

    PubMed

    Patel, Ashok R; Dewettinck, Koen

    2016-01-01

    In recent years, research dealing with edible oil structuring has received considerable interest from scientific community working in the area of food formulation. Much of this interest is linked to the possibility of using structured oil in development of newer product formats with improved nutritional profile (trans fat-free, low in saturated fats and high in mono and/or poly unsaturated fatty acids). In addition to the obvious industrial need of finding the alternative formulation approach, the interesting properties of structured systems (particularly, oleogels) also makes them a fascinating subject for fundamental studies. In this paper, we attempt to give a comprehensive and concise overview of the field of oil structuring with special emphasis on the updates from recent years. Specifically, several categories of food-grade oleogelators and their potential food applications are summarized with typical examples along with a discussion on the general principles and unresolved challenges related to this emerging area.

  1. Elaiophores in Gomesa bifolia (Sims) M.W. Chase & N.H. Williams (Oncidiinae: Cymbidieae: Orchidaceae): structure and oil secretion

    PubMed Central

    Aliscioni, Sandra S.; Torretta, Juan P.; Bello, Mariano E.; Galati, Beatriz G.

    2009-01-01

    Background and Aims Oils are an unusual floral reward in Orchidaceae, being produced by specialized glands called elaiophores. Such glands have been described in subtribe Oncidiinae for a few species. The aims of the present study were to identify the presence of elaiophores in Gomesa bifolia, to study their structure and to understand how the oil is secreted. Additionally, elaiophores of G. bifolia were compared with those of related taxa within the Oncidiinae. Methods Elaiophores were identified using Sudan III. Their structure was examined by using light, scanning electron and transmission electron microscopy. Key Results Secretion of oils was from the tips of callus protrusions. The secretory cells each had a large, centrally located nucleus, highly dense cytoplasm, abundant plastids containing lipid globules associated with starch grains, numerous mitochondria, an extensive system of rough and smooth endoplasmatic reticulum, and electron-dense dictyosomes. The outer tangential walls were thick, with a loose cellulose matrix and a few, sparsely distributed inconspicuous cavities. Electron-dense structures were observed in the cell wall and formed a lipid layer that covered the cuticle of the epidermal cells. The cuticle as viewed under the scanning electron microscope was irregularly rugose. Conclusions The elaiophores of G. bifolia are of the epithelial type. The general structure of the secretory cells resembles that described for other species of Oncidiinae, but some unique features were encountered for this species. The oil appears to pass through the outer tangential wall and the cuticle, covering the latter without forming cuticular blisters. PMID:19692391

  2. Calcium and zinc differentially affect the structure of lipid membranes

    DOE PAGES

    Kučerka, Norbert; Dushanov, Ermuhammad; Kholmurodov, Kholmirzo T.; ...

    2017-03-09

    Interactions of calcium (Ca2+) and zinc (Zn2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca2+ and Zn2+ cause DPPC bilayers to thicken, while further increases in Ca2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Zn2+ does not result in a furthermore » thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Lastly, the radial distribution functions reveal a strong interaction between Ca2+ and the phosphate oxygens, while Zn2+ shows a much weaker binding specificity.« less

  3. Investigating structural details of lipid-cholesterol-A β interactions

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh; Anunciado, Divina; Heller, William; O'Neill, Hugh; Urban, Volker; Qian, Shuo

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia and is predicted to affect 1 in 85 people around the world by 2050. Amyloid beta (A β) -peptide, a peptide composed of 40- 42 amino acids that is the product of cleavage from the amyloid precursor protein (APP), is regarded to play a major role in the development of AD. In addition, accumulating evidence points to a positive association between cholesterol and AD. Here, we present results from our studies about A β-peptide and cholesterol in bilayer by small-angle neutron scattering (SANS) using a combination of dimyristoyl, phosphocholine (DMPC) and partially deuterated cholesterol (cholesterol-d7) with and without A β. We compare the results using grazing incidence and transmission SANS on lipid bilayer films and unilamellar vesicles respectively. The structural details on vesicles and bilayers work in conjunction with the circular dichroism on peptide in solution and oriented circular dichroism in bilayer films. The studies confirm a positive association of A β with the membrane layers. The results from different studies will be compared and contrasted in presentation.

  4. Fabrication of Concentrated Fish Oil Emulsions Using Dual-Channel Microfluidization: Impact of Droplet Concentration on Physical Properties and Lipid Oxidation.

    PubMed

    Liu, Fuguo; Zhu, Zhenbao; Ma, Cuicui; Luo, Xiang; Bai, Long; Decker, Eric Andrew; Gao, Yanxiang; McClements, David Julian

    2016-12-21

    Chemically unstable lipophilic bioactives, such as polyunsaturated lipids, often have to be encapsulated in emulsion-based delivery systems before they can be incorporated into foods, supplements, and pharmaceuticals. The objective of this study was to develop highly concentrated emulsion-based fish oil delivery systems using natural emulsifiers. Fish oil-in-water emulsions were fabricated using a highly efficient dual-channel high-pressure microfluidizer. The impact of oil concentration on the formation, physical properties, and oxidative stability of fish oil emulsions prepared using two natural emulsifiers (quillaja saponins and rhamnolipids) and one synthetic emulsifier (Tween-80) was examined. The mean droplet size, polydispersity, and apparent viscosity of the fish oil emulsions increased with increasing oil content. However, physically stable emulsions with high fish oil levels (30 or 40 wt %) could be produced using all three emulsifiers, with rhamnolipids giving the smallest droplet size (d < 160 nm). The stability of the emulsions to lipid oxidation increased as the oil content increased. The oxidative stability of the emulsions also depended on the nature of the emulsifier coating the lipid droplets, with the oxidative stability decreasing in the following order: rhamnolipids > saponins ≈ Tween-80. These results suggest that rhamnolipids may be particularly effective at producing emulsions containing high concentrations of ω-3 polyunsaturated fatty acids-rich fish oil.

  5. Lipid Peroxidation in a Stomach Medium Is Affected by Dietary Oils (Olive/Fish) and Antioxidants: The Mediterranean versus Western Diet.

    PubMed

    Tirosh, Oren; Shpaizer, Adi; Kanner, Joseph

    2015-08-12

    Red meat is an integral part of the Western diet, and high consumption is associated with an increased risk of chronic diseases. Using a system that simulated the human stomach, red meat was interacted with different oils (olive/fish) and lipid peroxidation was determined by measuring accumulation of malondialdehyde (MDA) and lipid peroxides (LOOH). Olive oil decreased meat lipid peroxidation from 121.7 ± 3.1 to 48.2 ± 1.3 μM and from 327.1 ± 9.5 to 77.3 ± 6.0 μM as assessed by MDA and ROOH, respectively. The inhibitory effect of olive oil was attributed to oleic acid rather than its polyphenol content. In contrast, fish oils from tuna or an ω-3 supplement dramatically increased meat lipid peroxidation from 96.2 ± 3.6 to 514.2 ± 6.7 μM MDA. Vitamin E inhibited meat lipid peroxidation in the presence of olive oil but paradoxically increased peroxidation in the presence of fish oil. The inhibitory properties of oleic acid may play a key role in the health benefits of the Mediterranean diet.

  6. Accelerated separation of GC-amenable lipid classes in plant oils by countercurrent chromatography in the co-current mode.

    PubMed

    Hammann, Simon; Englert, Michael; Müller, Marco; Vetter, Walter

    2015-12-01

    Triacylglycerols represent the major part (>90%) in most plant oils and have to be eliminated, when the minor compounds such as phytosterols or tocopherols should be analyzed. Here, we used an all liquid-liquid chromatographic technique, countercurrent chromatography (CCC), to fractionate the minor lipids before gas chromatography (GC) analysis. To cover the wide range of polarity of the minor compounds, we used the co-current mode, in which both mobile and stationary phase are pumped through the system. This allowed to elute substances which partitioned almost exclusively in the stationary phase within 90 min. After testing with standard compounds, the method was applied to the separation of sesame oil and sunflower oil samples. The abundant triacylglycerols could be effectively separated from tocopherols, phytosterols, diacylglycerols, and free fatty acids in the samples, and these compounds could be analyzed (after trimethylsilylation) by GC coupled with mass spectrometry. After the enrichment caused by the CCC fractionation, we were also able to identify the tocopherol derivative α-tocomonoenol, which had not been described in sunflower oil before. Also, separation of sesame oil yielded a mixture of the polar compounds sesamin and sesamolin without further impurities.

  7. Visualizing lipid structure and raft domains in living cells with two-photon microscopy

    PubMed Central

    Gaus, Katharina; Gratton, Enrico; Kable, Eleanor P. W.; Jones, Allan S.; Gelissen, Ingrid; Kritharides, Leonard; Jessup, Wendy

    2003-01-01

    The lateral organization of cellular membranes is formed by the clustering of specific lipids, such as cholesterol and sphingolipids, into highly condensed domains (termed lipid rafts). Hence such domains are distinct from the remaining membrane by their lipid structure (liquid-ordered vs. -disordered domains). Here, we directly visualize membrane lipid structure of living cells by using two-photon microscopy. In macrophages, liquid-ordered domains are particularly enriched on membrane protrusions (filopodia), adhesion points and cell–cell contacts and cover 10–15% of the cell surface at 37°C. By deconvoluting the images, we demonstrate the existence of phase separation in vivo. We compare the properties of microscopically visible domains (<1 μm2), with those of isolated detergent-resistant membranes and provide evidence that membrane coverage by lipid rafts and their fluidity are principally governed by cholesterol content, thereby providing strong support for the lipid raft hypothesis. PMID:14673117

  8. Refined dynamic structure factor of a lipid bilayer on scales comparable to its thickness

    NASA Astrophysics Data System (ADS)

    Zakhvataev, V. E.

    2017-07-01

    The structural inhomogeneity of a lipid bilayer is an obstacle to applying the classical Canham-Helfrich model to describe its dynamics on nanometer length scales. In this paper, a refined expression for the free energy of a single-component lipid bilayer is used to describe the dynamics of lipid density fluctuations. In particular, the expression with a term involving the gradient of the area per lipid [8] is used for the free energy per lipid. A refined expression has been derived for the dynamic structure factor of a free lipid bilayer in the hydrodynamic region. It leads to differences in the interpretation and values of the bilayer parameters in comparison with the standard model.

  9. [Fatty acid composition of structural lipids of normal and abnormal wool fibres].

    PubMed

    Havryliak, V V; Tkachuk, V M

    2012-01-01

    The purpose of this study was to determine the fatty acid composition of structural lipids, isolated from normal and abnormal wool fibers. The results of these studies show that regardless of the type of wool fibers defect there are quantitative changes in their fatty acid composition. It was shown that the main fatty acid of the covalently bound lipids, isolated from the wool fibers, is 18-methyleicosanoic acid (18-MEA), comprising 40% of the total fatty acid, while its amount in free lipids in norm is less than 4%. The decrease of 18-MEA content in the covalently bound lipid both in pathological thin and entangled wool fibers was established, which is associated with damage of the cuticle layer surface. Increasing of 18-MEA content in the free lipids in the entangled wool fibers may indicate a rupture of tioester links between lipids and proteins of cuticle layer lamellar structures.

  10. Liver Disease, Systemic Inflammation, and Growth Using a Mixed Parenteral Lipid Emulsion, Containing Soybean Oil, Fish Oil, and Medium Chain Triglycerides, Compared With Soybean Oil in Parenteral Nutrition-Fed Neonatal Piglets.

    PubMed

    Turner, Justine M; Josephson, Jessica; Field, Catherine J; Wizzard, Pamela R; Ball, Ronald O; Pencharz, Paul B; Wales, Paul W

    2016-09-01

    The optimal parenteral lipid emulsion for neonates should reduce the risk of intestinal failure-associated liver disease and inflammation, while supporting growth and development. This could be best achieved by balanced content of ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Using a neonatal piglet model of parenteral nutrition (PN), we compared a 100% soy oil-based emulsion (ω-6:ω-3 PUFA: 7:1) with a mixed lipid emulsion comprising 30% soy oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (ω-6:ω-3 PUFA: approximately 2.5:1) with regard to liver disease, inflammation, and fatty acid content in plasma and brain. Neonatal piglets, 3-6 days old, underwent jugular catheter insertion for isonitrogenous, isocaloric PN delivery over 14 days. The IL group (n = 8) was treated with Intralipid; the ML group (n = 10) was treated with the mixed lipid (SMOFlipid). Bile flow, liver chemistry, C-reactive protein (CRP), and PUFA content in plasma phospholipids and brain were compared. Compared with the IL group, ML-treated piglets had increased bile flow (P = .008) and lower total bilirubin (P = .001) and CRP (P = .023) concentrations. The ω-6 long-chain PUFA content was lower in plasma and brain for the ML group. The key ω-3 long-chain PUFA for neonatal development, docosahexaenoic acid (DHA), was not different between groups. The mixed lipid, having less ω-6 PUFA and more ω-3 PUFA, was able to prevent liver disease and reduce systemic inflammation in PN-fed neonatal piglets. However, this lipid did not increase plasma or brain DHA status, which would be desirable for neonatal developmental outcomes. © 2015 American Society for Parenteral and Enteral Nutrition.

  11. Engineering lipid structure for recognition of the liquid ordered membrane phase

    SciTech Connect

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (Lo) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the Lo phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (Ld). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve Lo phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the Lo phase.

  12. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (Lo) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we foundmore » that although the lipid tails can direct selective partitioning to the Lo phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (Ld). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve Lo phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the Lo phase.« less

  13. Engineering lipid structure for recognition of the liquid ordered membrane phase

    SciTech Connect

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (Lo) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the Lo phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (Ld). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve Lo phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the Lo phase.

  14. Structure, stability, and thermodynamics of lamellar DNA-lipid complexes.

    PubMed Central

    Harries, D; May, S; Gelbart, W M; Ben-Shaul, A

    1998-01-01

    We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments. PMID:9649376

  15. MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes

    PubMed Central

    Stansfeld, Phillip J.; Goose, Joseph E.; Caffrey, Martin; Carpenter, Elisabeth P.; Parker, Joanne L.; Newstead, Simon; Sansom, Mark S.P.

    2015-01-01

    Summary There has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein. PMID:26073602

  16. Reduction of lipid oxidation by formation of caseinate-oil-oat gum emulsions

    USDA-ARS?s Scientific Manuscript database

    The concentration of oat gum, though important for formation of stable emulsion, has no effect on oxidation of Omega 3 oil; this is most prominent in fish-oil based Omega 3 oil. The optimal concentration of oat gum is about 0.2% wt for emulsion stability and visual appearance. We found that concentr...

  17. Dried flour-oil composites for lipid delivery in low-fat cake mix

    USDA-ARS?s Scientific Manuscript database

    Excess steam jet-cooked wheat flour and canola oil composites containing 30 to 55% oil were drum dried. The composites were used to replace the flour and oil in the low-fat cake mix formulations. The cake batter specific gravity and viscosity were measured. The cakes were analyzed for crumb grain...

  18. Dynamical Clustering and a Mechanism for Raft-like Structures in a Model Lipid Membrane

    PubMed Central

    Starr, Francis W.; Hartmann, Benedikt; Douglas, Jack F.

    2014-01-01

    We use molecular dynamics simulations to examine the dynamical heterogeneity of a model single-component lipid membrane using a coarse-grained representation of lipid molecules. This model qualitatively reproduces the known phase transitions between disordered, ordered, and gel membrane phases, and the phase transitions are accompanied by significant changes in the nature of the lipid dynamics. In particular, lipid diffusion in the liquid-ordered phase is hindered by the transient trapping of molecules by their neighbors, similar to the dynamics of a liquid approaching its glass transition. This transient molecular caging gives rise to two distinct mobility groups within a single-component membrane: lipids that are transiently trapped, and lipids with displacements on the scale of the intermolecular spacing. Most significantly, lipids within these distinct mobility states spatially segregate, creating transient “islands” of enhanced mobility having a size and time scale compatible with lipid “rafts,” dynamical structures thought to be important for cell membrane function. Although the dynamic lipid clusters that we observe do not themselves correspond to rafts (which are more complex, multicomponent structures), we hypothesize that such rafts may develop from the same universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. Further examination shows that mobile lipid clusters can be dissected into smaller clusters of cooperatively rearranging molecules. The geometry of these clusters can be understood in the context of branched equilibrium polymers, related to the statistics percolation theory. We discuss how these dynamical structures relate to a range observations on the dynamics of lipid membranes. PMID:24695573

  19. Echium oil reduces plasma lipids and hepatic lipogenic gene expression in apoB100-only LDL receptor knockout mice.

    PubMed

    Zhang, Ping; Boudyguina, Elena; Wilson, Martha D; Gebre, Abraham K; Parks, John S

    2008-10-01

    We tested the hypothesis that dietary supplementation with echium oil (EO), which is enriched in stearidonic acid (SDA; 18:4 n-3), the product of Delta-6 desaturation of 18:3 n-3, will decrease plasma triglyceride (TG) concentrations and result in conversion of SDA to eicosapentaenoic acid (EPA) in the liver. Mildly hypertriglyceridemic mice (apoB100-only LDLrKO) were fed a basal diet containing 10% calories as palm oil (PO) and 0.2% cholesterol for 4 weeks, after which they were randomly assigned to experimental diets consisting of the basal diet plus supplementation of 10% of calories as PO, EO or fish oil (FO) for 8 weeks. The EO and FO experimental diets decreased plasma TG and VLDL lipid concentration, and hepatic TG content compared to PO, and there was a significant correlation between hepatic TG content and plasma TG concentration among diet groups. EO fed mice had plasma and liver lipid EPA enrichment that was greater than PO-fed mice but less than FO-fed mice. Down-regulation of several genes involved in hepatic TG biosynthesis was similar for mice fed EO and FO and significantly lower compared to those fed PO. In conclusion, EO may provide a botanical alternative to FO for reduction of plasma TG concentrations.

  20. Polyunsaturated lipids and vitamin A oxidation during cod liver oil in vitro gastrointestinal digestion. Antioxidant effect of added BHT.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Guillén, María D

    2017-10-01

    The extent of cod liver oil hydrolysis and oxidation during in vitro gastrointestinal digestion was investigated by Proton Nuclear Magnetic Resonance ((1)H NMR) and Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). These techniques evidenced the degradation of polyunsaturated ω-3 and ω-6 lipids and, for the first time, that of vitamin A, naturally present in cod liver oil. Cis,trans-conjugated dienes associated with hydroperoxides, as well as monoepoxides, cis,trans-2,4-alkadienals, 4-hydroperoxy- and 4-hydroxy-2-alkenals, and several vitamin A derived metabolites were generated. Moreover, the effect of the addition of the synthetic antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT) at 20 and 800ppm was tackled. Both techniques showed BHT to be efficient in limiting oxidation reactions during digestion, almost inhibiting them at 800ppm. Therefore, the simultaneous intake of antioxidants with cod liver oil should be considered, in order to increase polyunsaturated lipid and vitamin A bioaccessibility and avoid formation of toxic oxidation compounds like oxygenated alpha,beta-unsaturated aldehydes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Inclusion of fish or fish oil in weight-loss diets for young adults: effects on blood lipids.

    PubMed

    Gunnarsdottir, I; Tomasson, H; Kiely, M; Martinéz, J A; Bandarra, N M; Morais, M G; Thorsdottir, I

    2008-07-01

    To assess the effects of fish (lean or oily) and fish oil consumption on blood lipid concentration during weight loss. Randomized, controlled 8-week trial of energy-restricted diet varying in fish and fish oil content. Subjects, 324 men and women, aged 20-40 years, body mass index 27.5-32.5 kg m(-2), from Iceland, Spain and Ireland, were randomized to one of four groups: (1) control (sunflower oil capsules, no seafood), (2) cod diet (3 x 150 g week(-1)), (3) salmon diet (3 x 150 g week(-1)), (4) fish oil (DHA/EPA capsules, no seafood). The macronutrient composition of the diets was similar between the groups and the capsule groups were single-blinded. Total cholesterol (TC), high-density lipoprotein (HDL) and low-density lipoprotein cholesterol, triacylglycerol (TG) and anthropometrics were measured at baseline and end point. The difference in logTG lowering between the control group and the cod diet, salmon diet and fish oil from baseline to end point was -0.036 (95% CI -0.079 to 0.006), -0.060 (-0.101 to -0.018) and -0.037 (-0.079 to 0.006), respectively. Reduction in TC was about 0.2 mmol l(-1) greater in the fish groups (cod and salmon) than in the control group, but only of borderline significance when adjusting for weight loss. HDL tended to decrease less in the diet groups consuming a significant amount of n-3 fatty acids (salmon and fish oil). Weight-loss diet including oily fish resulted in greater TG reduction than did a diet without fish or fish oil. Controlled trials using whole fish as a test meal are encouraged to be able to elucidate the role of different constituents of fish for human health.

  2. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    PubMed Central

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  3. Influence of fine structure of lipid A on Limulus amebocyte lysate clotting and toxic activities.

    PubMed Central

    Takayama, K; Qureshi, N; Raetz, C R; Ribi, E; Peterson, J; Cantrell, J L; Pearson, F C; Wiggins, J; Johnson, A G

    1984-01-01

    We examined the relationship between the fine structure of lipid A and the toxicity of endotoxin or lipopolysaccharides as measured by the Limulus amebocyte lysate (LAL), rabbit pyrogenicity, chicken embryo lethal dose, and dermal Shwartzman reaction tests. Lipid A and lipid A-like compounds obtained from deep-rough mutants of Salmonella spp. and Escherichia coli had a wide range of structural variations. These compounds included native lipopolysaccharides, diphosphoryl and monophosphoryl lipid A's, and lipid X (a monosaccharide). The LAL test was positive for all lipids tested with lysates from Travenol Laboratories and from Associates of Cape Cod (2.9 X 10(3) to 2.6 X 10(7) endotoxin units per mg), except for O-deacylated and dephosphorylated lipid X, which were negative. The Mallinckrodt lysate gave negative tests for lipid X. In the rabbit pyrogenicity and chicken embryo lethal dose tests, only native lipopolysaccharide and diphosphoryl lipid A's were judged toxic. The Shwartzman reaction was positive for a specific purified diphosphoryl lipid A (thin-layer chromatography-3 fraction) but negative for the purified monophosphoryl lipid A (also a thin-layer chromatography-3 fraction). These results show that the LAL test is not a valid measure of all parameters of toxicity of a lipid A or lipid A-like compound and can yield false-positive results. However, these findings are not in conflict with the widespread use of the LAL assay for pyrogens in the pharmaceutical industry since a good correlation exists between LAL results and pyrogenicity when undegraded endotoxin is evaluated in parallel assays. Images PMID:6378795

  4. Membrane proteins bind lipids selectively to modulate their structure and function

    PubMed Central

    Allison, Timothy M.; Ulmschneider, Martin B.; Degiacomi, Matteo T.; Baldwin, Andrew J.; Robinson, Carol V.

    2014-01-01

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments1-7 and that lipids can bind to specific sites, for example in potassium channels8. Fundamental questions remain however regarding the extent of membrane protein selectivity toward lipids. Here we report a mass spectrometry (MS) approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL), aquaporin Z (AqpZ), and the ammonia channel (AmtB) using ion mobility MS (IM-MS), which reports gas-phase collision cross sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas-phase. By resolving lipid-bound states we then rank bound lipids based on their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Results show that lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability, the highest-ranking lipid however is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation9. AqpZ is also stabilized by many lipids with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays, we discover that cardiolipin modulates AqpZ function. Analogous experiments identify AmtB as being highly selective for phosphatidylglycerol prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that reposition AmtB residues to interact with the lipid bilayer. Overall our results demonstrate that resistance to unfolding correlates with specific lipid-binding events enabling distinction of lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these

  5. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses.

    PubMed Central

    Koga, Y; Nishihara, M; Morii, H; Akagawa-Matsushita, M

    1993-01-01

    Complete structures of nearly 40 ether polar lipids from seven species of methanogens have been elucidated during the past 10 years. Three kinds of variations of core lipids, macrocyclic archaeol and two hydroxyarchaeols, were identified, in addition to the usual archaeol and caldarchaeol (for the nomenclature of archaeal [archaebacterial] ether lipids, see the text). Polar head groups of methanogen phospholipids include ethanolamine, serine, inositol, N-acetylglucosamine, dimethyl- and trimethylaminopentanetetrol, and glucosaminylinositol. Glucose is the sole hexose moiety of glycolipids in most methanogens, and galactose and mannose have been found in a few species. Methanogen lipids are characterized by their diversity in phosphate-containing polar head groups and core lipids, which in turn can be used for chemotaxonomy of methanogens. This was shown by preliminary simplified analyses of lipid component residues. Core lipid analysis by high-pressure liquid chromatography provides a method of determining the methanogenic biomass in natural samples. There has been significant progress in the biosynthetic studies of methanogen lipids in recent years. In vivo incorporation experiments have led to delineation of the outline of the synthetic route of the diphytanylglycerol ether core. The mechanisms of biosynthesis of tetraether lipids and various polar lipids, and cell-free systems of either lipid synthesis, however, remain to be elucidated. The significance and the origin of archaeal ether lipids is discussed in terms of the lipid composition of bacteria living in a wide variety of environments, the oxygen requirement for biosynthesis of hydrocarbon chains, and the physicochemical properties and functions of lipids as membrane constituents. PMID:8464404

  6. Effects of dietary supplementation with ghee, hydrogenated oil, or olive oil on lipid profile and fatty streak formation in rabbits

    PubMed Central

    Hosseini, Mohsen; Asgary, Sedigheh

    2012-01-01

    BACKGROUND Coronary heart disease is the leading cause of mortality worldwide. A high-fat diet, rich in saturated fatty acids and low in polyunsaturated fatty acids, is said to be an important cause of atherosclerosis and cardiovascular diseases. METHODS In this experimental study, 40 male rabbits were randomly assigned to eight groups of five to receive normal diet, hypercholesterolemic diet, normal diet plus ghee, normal diet plus olive oil, normal diet plus hydrogenated oil, hypercholesterolemic diet plus ghee, hypercholesterolemic diet plus olive oil, and hypercholesterolemic diet plus hydrogenated oil. They received rabbit chow for a period of 12 weeks. At the start and end of the study, fasting blood samples were taken from all animals to measure biochemical factors including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), fasting blood sugar (FBS), and C-reactive protein (CRP). Moreover, aorta, left and right coronary arteries were dissected at the end of the study to investigate fatty streak formation (FSF). Data was analyzed in SPSS at a significance level of 0.05. RESULTS In rabbits under normal diet, ghee significantly increased TC, LDL, and HDL compared to the beginning (P < 0.01) and also to the other two types of fat (P < 0.05). Moreover, normal diet plus olive oil significantly enhanced FSF in left coronary arteries and aorta compared to normal diet plus ghee. In groups receiving hypercholesterolemic diets, ghee significantly increased HDL and CRP (P < 0.05) and significantly decreased FBS (P < 0.01). The hypecholesterolemic diet plus olive oil significantly increased HDL (P < 0.01). Supplementation of hypecholesterolemic diet with ghee significantly increased HDL and FBS in comparison with hydrogenated oil. Significant increase of FBS was also detected with the use of ghee compared to olive oil. Ghee also significantly reduced FSF in left and right coronary arteries compared to olive oil. FSF

  7. Structural regions of MD-2 that determine the agonist-antagonist activity of lipid IVa.

    PubMed

    Muroi, Masashi; Tanamoto, Ken-ichi

    2006-03-03

    A cell surface receptor complex consisting of CD14, Toll-like receptor (TLR4), and MD-2 recognizes lipid A, the active moiety of lipopolysaccharide (LPS). Escherichia coli-type lipid A, a typical lipid A molecule, potently activates both human and mouse macrophage cells, whereas the lipid A precursor, lipid IVa, activates mouse macrophages but is inactive and acts as an LPS antagonist in human macrophages. This animal species-specific activity of lipid IVa involves the species differences in MD-2 structure. We explored the structural region of MD-2 that determines the agonistic and antagonistic activities of lipid IVa to induce nuclear factor-kappaB activation. By expressing human/mouse chimeric MD-2 together with mouse CD14 and TLR4 in human embryonic kidney 293 cells, we found that amino acid regions 57-79 and 108-135 of MD-2 determine the species-specific activity of lipid IVa. We also showed that the replacement of Thr(57), Val(61), and Glu(122) of mouse MD-2 with corresponding human MD-2 sequence or alanines impaired the agonistic activity of lipid IVa, and antagonistic activity became evident. These mutations did not affect the activation of nuclear factor-kappaB, TLR4 oligomerization, and inducible phosphorylation of IkappaBalpha in response to E. coli-type lipid A. These results indicate that amino acid residues 57, 61, and 122 of mouse MD-2 are critical to determine the agonist-antagonist activity of lipid IVa and suggest that these amino acid residues may be involved in the discrimination of lipid A structure.

  8. Raman spectroscopic study of structural changes upon chilling storage of frankfurters containing olive oil bulking agents as fat replacers.

    PubMed

    Herrero, A M; Ruiz-Capillas, C; Jiménez-Colmenero, F; Carmona, P

    2014-06-25

    Technological properties and structural characteristics of proteins and lipids, using Raman spectroscopy, of frankfurters formulated with olive oil bulking agents as animal fat replacers were examined during chilling storage. Frankfurters reformulated with oil bulking agents showed lower (P<0.05) processing loss and higher (P<0.05) hardness and chewiness. Purge loss during chilling storage was relatively low, demonstrating a good water retention in the products. β-Sheet structures were enhanced by the use of olive oil bulking agents, and this effect was more pronounced in samples containing inulin. Reformulated frankfurters contained the least turns (P<0.05). A significant decrease of β-sheets and an increase of turns were observed after 85 days of chilled storage. The lowest (P<0.05) values of IνsCH2/IνasCH2 were recorded in frankfurters reformulated with oil bulking agents, which suggests more lipid acyl chain disorder. Structural characteristics were correlated to processing losses, hardness, and chewiness.

  9. How lipid hydration and temperature affect the structure of DC-Chol DOPE/DNA lipoplexes

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Amenitsch, Heinz; Caminiti, Ruggero; Caracciolo, Giulio

    2006-05-01

    Effect of lipid hydration on the structure of lamellar lipoplexes made of the cationic lipid 3-[ N-( N, N-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), the neutral 'helper' lipid dioleoylphosphatidylethanolamine (DOPE) and calf-thymus DNA was investigated by synchrotron small angle X-ray diffraction (SAXD). Here, we show that lipid hydration is the key factor regulating the equilibrium structure of lipoplexes. Thermotropic behavior was also investigated between 5 and 65 °C. Both the membrane thickness and the water layer thickness were found to decrease linearly as a function of temperature while the one dimensional DNA rod lattice between lipid bilayers was found to enlarge. Structural results were interpreted in terms of recently proposed theoretical models.

  10. Changes in the lipid fraction of king mackerel pan fried in coconut oil and cooked in coconut milk.

    PubMed

    Lira, Giselda Macena; Cabral, Caterine Cristine Vasconcelos Quintiliano; de Oliveira, Ítalo Bruno Araújo; Figueirêdo, Bruno Chacon; Simon, Sarah Janaína Gurgel Bechtinger; Bragagnolo, Neura

    2017-11-01

    The influence of cooking on the nutritional value of king mackerel when cooked in coconut milk or pan fried in coconut oil was verified from the alterations in the fatty acid content; formation of cholesterol oxides and the nutritional quality indices of the lipids. Cooking in coconut milk caused an 11.6% reduction in the protein content and 28.3% reduction in the ash content. The lipid content increased after cooking (253%) and frying (198%) causing an increase in the caloric value. The total saturated and monounsaturated fatty acids of the cooked king mackerel increased 462% and 248%, respectively, whereas these increases were 418% and 130%, respectively, for the fried king mackerel. There were reductions of 21% and 38% in the total EPA+DHA of the pan fried and cooked samples, respectively, as compared to the fresh king mackerel. The heat treatment did not cause alterations in cholesterol content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.

    PubMed

    Bakht, Omar; Pathak, Priyadarshini; London, Erwin

    2007-12-15

    Despite the importance of lipid rafts, commonly defined as liquid-ordered domains rich in cholesterol and in lipids with high gel-to-fluid melting temperatures (T(m)), the rules for raft formation in membranes are not completely understood. Here, a fluorescence-quenching strategy was used to define how lipids with low T(m), which tend to form disordered fluid domains at physiological temperatures, can stabilize ordered domain formation by cholesterol and high-T(m) lipids (either sphingomyelin or dipalmitoylphosphatidylcholine). In bilayers containing mixtures of low-T(m) phosphatidylcholines, cholesterol, and high-T(m) lipid, the thermal stability of ordered domains decreased with the acyl-chain structure of low-T(m) lipids in the following order: diarachadonyl > diphytanoyl > 1-palmitoyl 2-docosahexenoyl = 1,2 dioleoyl = dimyristoleoyl = 1-palmitoyl, 2-oleoyl (PO). This shows that low-T(m) lipids with two acyl chains having very poor tight-packing propensities can stabilize ordered domain formation by high-T(m) lipids and cholesterol. The effect of headgroup structure was also studied. We found that even in the absence of high-T(m) lipids, mixtures of cholesterol with PO phosphatidylethanolamine (POPE) and PO phosphatidylserine (POPS) or with brain PE and brain PS showed a (borderline) tendency to form ordered domains. Because these lipids are abundant in the inner (cytofacial) leaflet of mammalian membranes, this raises the possibility that PE and PS could participate in inner-leaflet raft formation or stabilization. In bilayers containing ternary mixtures of PO lipids, cholesterol, and high-T(m) lipids, the thermal stability of ordered domains decreased with the polar headgroup structure of PO lipids in the order PE > PS > phosphatidylcholine (PC). Analogous experiments using diphytanoyl acyl chain lipids in place of PO acyl chain lipids showed that the stabilization of ordered lipid domains by acyl chain and headgroup structure was not additive. This implies

  12. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    NASA Astrophysics Data System (ADS)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  13. The effects of antioxidant combinations on color and lipid oxidation in n-3 oil fortified ground beef patties.

    PubMed

    Lee, S; Decker, E A; Faustman, C; Mancini, R A

    2005-08-01

    This study was carried out to determine an effective combination of chelators, reductants and free radical scavengers for enhancing color stability and minimizing lipid oxidation in muscle foods fortified with n-3 fatty acids. Chelators (sodium tripolyphosphate, STPP; sodium citrate, CIT), reductants (sodium erythorbate, ERY) and radical scavengers (butylhydroxyanisole, BHA; mixed tocopherols from two different sources, 30 or 95TOC; rosemary extract, ROSE) were incorporated in various combinations into ground beef (15% fat) with or without n-3 oil fortification (n=8). Individually, STPP and CIT had no significant effect on a* values except day 4, but showed higher a* values when combined with ERY (STPP+ERY and CIT+ERY) (P<0.05). CIT had lower hue angle values than STPP on days 4 and 6, but CIT+ERY showed more discoloration than STPP+ERY (P<0.05). CIT+ERY showed less lipid oxidation than CIT alone (P<0.05), whereas there was no difference between STPP and STPP+ERY. CIT+ERY+ROSE demonstrated higher a* values than CIT+ERY+95TOC on days 4 and 6 (P<0.05); there was no difference between ROSE and 95TOC groups when n-3 oil was incorporated into ground beef patties (P>0.05). The combination of ROSE and ERY appeared to be effective in slowing the decline of a* values. All antioxidant combinations were effective at delaying lipid oxidation when compared to CON or n-3. A combination of CIT, ERY and ROSE was most effective for stabilizing color and delaying lipid oxidation.

  14. Characterization of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils.

    PubMed

    Kassis, Nissan M; Gigliotti, Joseph C; Beamer, Sarah K; Tou, Janet C; Jaczynski, Jacek

    2012-01-15

    Cardiovascular disease has had an unquestioned status of the number one cause of death in the US since 1921. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have cardio-protective benefits. However, egg is typically a poor source of ω-3 PUFAs and, in general, the American diet is low in these cardio-protective fatty acids. Novel, nutritionally enhanced egg products were developed by substituting yolk with ω-3 PUFA-rich flaxseed, menhaden, algae, or krill oil. Experimental egg products matched composition of hen egg (whole egg). The experimental egg products, mixed whole egg, and a liquid egg product (Egg Beaters) were microwave-cooked and compared. Although fat, protein, and moisture contents of experimental egg products matched (P > 0.05) mixed whole egg, experimental egg products had more (P < 0.05) ω-3 PUFAs, lower (P < 0.05) ω-6/ω-3 ratio, and depending on oil added, a higher (P < 0.05) unsaturated/saturated fatty acids ratio compared to mixed whole egg. Triglycerides were the main lipid class in all experimental egg products except those developed with krill oil, which had even more phospholipids than mixed whole egg. Analysis of thiobarbituric acid reactive substances showed that lipid oxidation of experimental egg products was lower (P < 0.05) or similar (P > 0.05) to mixed whole egg, except for experimental egg products with krill oil. However, peroxide value showed that all egg samples had minimal oxidation. Experimental egg products developed with menhaden or flaxseed oil had the highest (P < 0.05) concentration of the antioxidant, ethyoxquin compared to all other egg samples. However, experimental egg products with krill oil likely contained a natural antioxidant, astaxanthin. This study demonstrated an alternative approach to developing novel, nutraceutical egg products. Instead of dietary modification of chicken feed, yolk substitution with ω-3 PUFAs oils resulted in enhancement of ω-3 PUFAs beyond levels possible to achieve by modifying

  15. High-throughput analysis of lipid hydroperoxides in edible oils and fats using the fluorescent reagent diphenyl-1-pyrenylphosphine.

    PubMed

    Santas, Jonathan; Guzmán, Yeimmy J; Guardiola, Francesc; Rafecas, Magdalena; Bou, Ricard

    2014-11-01

    A fluorometric method for the determination of hydroperoxides (HP) in edible oils and fats using the reagent diphenyl-1-pyrenylphosphine (DPPP) was developed and validated. Two solvent media containing 100% butanol or a mixture of chloroform/methanol (2:1, v/v) can be used to solubilise lipid samples. Regardless of the solvent used to solubilise the sample, the DPPP method was precise, accurate, sensitive and easy to perform. The HP content of 43 oil and fat samples was determined and the results were compared with those obtained by means of the AOCS Official Method for the determination of peroxide value (PV) and the ferrous oxidation-xylenol orange (FOX) method. The proposed method not only correlates well with the PV and FOX methods, but also presents some advantages such as requiring low sample and solvent amounts and being suitable for high-throughput sample analysis.

  16. A plural role for lipids in motor neuron diseases: energy, signaling and structure

    PubMed Central

    Schmitt, Florent; Hussain, Ghulam; Dupuis, Luc; Loeffler, Jean-Philippe; Henriques, Alexandre

    2013-01-01

    Motor neuron diseases (MNDs) are characterized by selective death of motor neurons and include mainly adult-onset amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Neurodegeneration is not the single pathogenic event occurring during disease progression. There are multiple lines of evidence for the existence of defects in lipid metabolism at peripheral level. For instance, hypermetabolism is well characterized in ALS, and dyslipidemia correlates with better prognosis in patients. Lipid metabolism plays also a role in other MNDs. In SMA, misuse of lipids as energetic nutrients is described in patients and in related animal models. The composition of structural lipids in the central nervous system is modified, with repercussion on membrane fluidity and on cell signaling mediated by bioactive lipids. Here, we review the main epidemiologic and mechanistic findings that link alterations of lipid metabolism and motor neuron degeneration, and we discuss the rationale of targeting these modifications for therapeutic management of MNDs. PMID:24600344

  17. The tardigrade cuticle. I. Fine structure and the distribution of lipids.

    PubMed

    Wright, J C

    1988-01-01

    Fine structure and lipid distribution are studied in cuticles of five tardigrade species using TEM and SEM. Double osmication using partitioning methods reveals a substantial lipid component in the intracuticle and in irregular granular regions within the procuticle. These results are substantiated by the loss of osmiophily following lipid extraction with chloroform and methanol. Other lipid components are revealed by osmication following unmasking of lipo-protein complexes with thymol. These occur in the outer epicuticle and in the trilaminar layer lying between the epi- and intracuticles. Anhydrous fixation of dehydrated tardigrades (tuns) reveals dense, superficial masses of osmiophilic material, apparently concentrated lumps of the surface mucopolysaccharide ('flocculent coat'). However, cryo-SEMs of tuns reveal similar dense aggregations which apparently exude from pores (not visible) and are removed by chloroform. These results suggest extruded lipids since the flocculent coat is unaffected by chloroform; likely functions of such lipids are discussed.

  18. Effect of Gold Nanoparticle on Structure and Fluidity of Lipid Membrane

    PubMed Central

    Mhashal, Anil R.; Roy, Sudip

    2014-01-01

    This paper deals with the effect of different size gold nanoparticles on the fluidity of lipid membrane at different regions of the bilayer. To investigate this, we have considered significantly large bilayer leaflets and incorporated only one nanoparticle each time, which was subjected to all atomistic molecular dynamics simulations. We have observed that, lipid molecules located near to the gold nanoparticle interact directly with it, which results in deformation of lipid structure and slower dynamics of lipid molecules. However, lipid molecules far away from the interaction site of the nanoparticle get perturbed, which gives rise to increase in local ordering of the lipid domains and decrease in fluidity. The bilayer thickness and area per head group in this region also get altered. Similar trend, but with different magnitude is also observed when different size nanoparticle interact with the bilayer. PMID:25469786

  19. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  20. Structure-activity investigation on the gene transfection properties of cardiolipin mimicking gemini lipid analogues.

    PubMed

    Bajaj, Avinash; Paul, Bishwajit; Kondaiah, Paturu; Bhattacharya, Santanu

    2008-06-01

    A structure-activity relationship has been explored on the gene transfection efficiencies of cardiolipin mimicking gemini lipid analogues upon variation of length and hydrophilicity of the spacer between the cationic ammonium headgroups and lipid hydrocarbon chain lengths. All the gemini lipids were found to be highly superior in gene transfer abilities as compared to their monomeric lipid and a related commercially available formulation. Pseudoglyceryl gemini lipids bearing an oxyethylene (-CH2-(CH2-O-CH2)m-CH2-) spacer were found to be superior gene transfecting agents as compared to those bearing polymethylene (-CH2)m-) spacers. The major characteristic feature of the present set of gemini lipids is their serum compatibility, which is most often the major hurdle in liposome-mediated gene delivery.

  1. Lipid-Encapsulated Echium Oil (Echium plantagineum) Increases the Content of Stearidonic Acid in Plasma Lipid Fractions and Milk Fat of Dairy Cows.

    PubMed

    Bainbridge, Melissa L; Lock, Adam L; Kraft, Jana

    2015-05-20

    The objective of this study was to evaluate the impact of feeding lipid-encapsulated echium oil (EEO) on animal performance and milk fatty acid profile. Twelve Holstein dairy cows were used in a 3 × 3 Latin Square design with 14 day periods. Treatments were a control diet (no supplemental fat), 1.5% dry matter (DM) as EEO and 3.0% DM as EEO. Treatments had no negative effect on animal performance (dry matter intake, milk yield, and fat yield). The milk fat content of total n-3 fatty acids and stearidonic acid (SDA) increased with EEO supplementation (P < 0.001). The proportion of SDA increased in all plasma lipid fractions with EEO supplementation (P < 0.001). Transfer of SDA from EEO into milk fat was 3.4 and 3.2% for the 1.5 and 3% EEO treatments, respectively. In conclusion, EEO increases the content of n-3 fatty acids in milk fat; however, the apparent transfer efficiency was low.

  2. Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice.

    PubMed

    Li, Xiaodan; Yu, Xiaoyan; Sun, Dewei; Li, Jinwei; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-01-11

    In the present study, effects of deep-fried palm oil, specifically polar compounds generated during the frying process, on animal health including lipid and glucose metabolism and liver functions were investigated. Kunming mice were fed a high-fat diet containing deep-fried palm oil or purified polar compounds for 12 weeks. Their effects on animal health including hepatic lipid profile, antioxidant enzyme activity, serum biochemistry, and glucose tolerance were analyzed. Our results revealed that the consumption of polar compounds was related to the change of lipid deposition in liver and adipose tissue, as well as glucose tolerance alteration in Kunming mice. Correspondingly, the transcription study of genes involved in lipid metabolism including PPARα, Acox1, and Cpt1α indicated that polar compounds probably facilitated the fatty acid oxidation on peroxisomes, whereas lipid oxidation in mitochondria was suppressed. Furthermore, glucose tolerance test (GTT) revealed that a high amount of polar compound intake impaired glucose tolerance, indicating its effect on glucose metabolism in vivo. Our results provide critical information on the effects of polar compounds generated from the deep-frying process of palm oil on animal health, particularly liver functions and lipid and glucose metabolism, which is important for the evaluation of the biosafety of frying oil.

  3. Effects of simultaneous dietary fish oil ingestion and sulfur amino acid supplementation on the lipid metabolism in hepatoma-bearing rats with hyperlipidemia.

    PubMed

    Kawasaki, Masashi; Miura, Yutaka; Funabiki, Ryuhei; Yagasaki, Kazumi

    2010-01-01

    The effects of simultaneous dietary fish oil ingestion and sulfur amino acid (L-methionine and L-cystine) supplementation on serum lipid concentrations and various parameters related to the lipid metabolism were studied in Donryu rats subcutaneously implanted with an ascites hepatoma cell line, AH109A. A diet containing 10% fish oil was found to reduce serum triglyceride, total cholesterol, (very-low-density lipoprotein plus low-density lipoprotein)-cholesterol, phospholipid and nonesterified fatty acid (NEFA) concentrations in these animals, and dietary supplementation of 1.2% L-methionine and L-cystine also suppressed these serum lipid concentrations. Hepatic fatty acid synthesis and the availability of serum NEFA were decreased, and epididymal adipose tissue lipoprotein lipase (LPL) activity was elevated by dietary fish oil, while LPL activity in various tissues and hepatic fatty acid oxidation were increased by dietary sulfur amino acids, resulting in a reduction in the serum triglyceride concentration by dietary fish oil and sulfur amino acids, respectively. Dietary fish oil suppressed the hepatoma-induced increase in cholesterogenesis in the host liver, and dietary methionine and cystine enhanced bile acid excretion into feces, which were the causes of the hypocholesterolemic effect. In these serum lipid concentrations, there were significant effects of fish oil ingestion and sulfur amino acid supplementation, but no significant interaction between these two factors was seen. These results indicate that dietary fish oil and sulfur amino acid, L-methionine and L-cystine, have hypolipidemic effects in cancer-related hyperlipidemia, and that the effects of these two factors on the decrease in these serum lipid concentrations are additive; these two factors may affect the lipid metabolism via different pathways and mechanisms.

  4. Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: a randomized double-blind study in preterm infants.

    PubMed

    Rayyan, Maissa; Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Double-blind, controlled study in 53 neonates (<34 weeks' gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1-3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6-14. Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile.

  5. Postprandial lipid responses of butter blend containing fish oil in a single-meal study in humans.

    PubMed

    Overgaard, Julie; Porsgaard, Trine; Guo, Zheng; Lauritzen, Lotte; Mu, Huiling

    2008-10-01

    The postprandial effects of a butter product containing fish oil were investigated in a single-meal, randomized crossover study with a commercial butter product as the control. Twelve healthy males consumed two test meals with (13)C-labelled cholesterol (45 mg) and either an interesterified butter blend with fish oil (352 mg n-3 long-chain PUFA (LCPUFA)) or the commercial butter blend. Blood samples were collected after the meals and in the fasting condition on the test day and the following morning, and were analysed for cholesterol absorption, plasma lipid profile and fatty acid composition. No significant difference in the postprandial plasma fatty acid composition was observed between the groups, neither difference in cholesterol absorption, plasma cholesterol or the cholesterol contents of plasma lipoproteins. The incorporation of fish oil in the butter resulted in a significant lower concentration of triacylglycerols in the plasma 2 h after the meal in comparison with the commercial butter blend (p = 0.02); there was, however, no significant difference 24 h after the meal. In conclusion, fish oil-enriched butter blend provides a source to increase the intake of n-3 LCPUFA in the population, but has no acute effect on cholesterol absorption and plasma cholesterol concentration in human.

  6. Differential changes in the fatty acid composition of the main lipid classes of chick plasma induced by dietary coconut oil.

    PubMed

    García-Fuentes, E; Gil-Villarino, A; Zafra, M F; García-Peregrín, E

    2002-10-01

    For a better understanding of the hyperlipidemic function of saturated fat, we have studied the comparative effects of diet supplementation with 10 and 20% coconut oil on the main lipid classes of chick plasma. Changes in fatty acid composition of free fatty acid and triglyceride fractions were parallel to that of the experimental diet. Thus, the increase in the percentages of 12:0 and 14:0 acids may contribute to the hypercholesterolemic effects of coconut oil feeding. Plasma phospholipids incorporated low levels of 12:0 and 14:0 acids whereas 18:0, the main saturated fatty acid of this fraction, also increased after coconut oil feeding. The percentage of 20:4 n-6 was higher in plasma phospholipids than in the other fractions and was significantly decreased by our dietary manipulations. Likewise, minor increases were found in the percentages of 12:0 and 14:0 acids in plasma cholesterol esters. However, the percentage of 18:2 acid significantly increased after coconut oil feeding. Our results show a relationship between fatty acid composition of diets and those of plasma free fatty acid and triglyceride fractions, whereas phospholipids and cholesterol esters are less sensitive to dietary changes.

  7. Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria.

    PubMed

    Valcourt, C; Saulnier, P; Umerska, A; Zanelli, M P; Montagu, A; Rossines, E; Joly-Guillou, M L

    2016-02-10

    The combination of essential oils (EOs) with antibiotics provides a promising strategy towards combating resistant bacteria. We have selected a mixture of 3 major components extracted from EOs: carvacrol (oregano oil), eugenol (clove oil) and cinnamaldehyde (cinnamon oil). These compounds were successfully encapsulated within lipid nanocapsules (LNCs). The EOs-loaded LNCs were characterised by a noticeably high drug loading of 20% and a very small particle diameter of 114nm. The in vitro interactions between EOs-loaded LNCs and doxycycline were examined via checkerboard titration and time-kill assay against 5 Gram-negative strains: Acinetobacter baumannii SAN, A. baumannii RCH, Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. No growth inhibition interactions were found between EOs-loaded LNCs and doxycycline (FIC index between 0.7 and 1.30). However, when bactericidal effects were considered, a synergistic interaction was observed (FBC index equal to 0.5) against all tested strains. A synergistic effect was also observed in time-kill assay (a difference of at least 3 log between the combination and the most active agent alone). Scanning electron microscopy (SEM) was used to visualise the changes in the bacterial membrane. The holes in bacterial envelope and leakage of cellular contents were observed in SE micrographs after exposure to the EOs-LNCs and the doxycycline combination.

  8. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  9. Stoichiometry of lipid interactions with transmembrane proteins--Deduced from the 3D structures.

    PubMed

    Páli, Tibor; Bashtovyy, Denys; Marsh, Derek

    2006-05-01

    The stoichiometry of the first shell of lipids interacting with a transmembrane protein is defined operationally by the population of spin-labeled lipid chains whose motion is restricted directly by the protein. Interaction stoichiometries have been determined experimentally for a wide range of alpha-helical integral membrane proteins by using spin-label ESR spectroscopy. Here, we determine the spatially defined number of first-shell lipids at the hydrophobic perimeter of integral membrane proteins whose 3D structure has been determined by X-ray crystallography and lipid-protein interactions characterized by spin-labeling. Molecular modeling is used to build a single shell of lipids surrounding transmembrane structures derived from the PDB. Constrained energy optimization of the protein-lipid assemblies is performed by molecular mechanics. For relatively small proteins (up to 7-12 transmembrane helices), the geometrical first shell corresponds to that defined experimentally by perturbation of the lipid-chain dynamics. For larger, multi-subunit alpha-helical proteins, the lipids perturbed directly by the protein may either exceed or be less in number than those that can be accommodated at the intramembranous perimeter. In these latter cases, the motionally restricted spin-labeled lipids can be augmented by intercalation, or can correspond to a specific subpopulation at the protein interface, respectively. For monomeric beta-barrel proteins, the geometrical lipid stoichiometry corresponds to that determined from lipid mobility for a 22-stranded barrel, but fewer lipids are motionally restricted than can be accommodated around an eight-stranded barrel. Deviations from the geometrical first shell, in the beta-barrel case, are for the smaller protein with a highly curved barrel.

  10. Impact of Lipid and Protein Co-oxidation on Digestibility of Dairy Proteins in Oil-in-Water (O/W) Emulsions.

    PubMed

    Obando, Mónica; Papastergiadis, Antonios; Li, Shanshan; De Meulenaer, Bruno

    2015-11-11

    Enrichment of polyunsaturated fatty acids (PUFAs) is a growing trend in the food industry. However, PUFAs are known to be susceptible to lipid oxidation. It has been shown that oxidizing lipids react with proteins present in the food and that as a result polymeric protein complexes are produced. Therefore, the aim of this work was to investigate the impact of lipid and protein co-oxidation on protein digestibility. Casein and whey protein (6 mg/mL) based emulsions with 1% oil with different levels of PUFAs were subjected to respectively autoxidation and photo-oxidation. Upon autoxidation at 70 °C, protein digestibility of whey protein based emulsions containing fish oil decreased to 47.7 ± 0.8% after 48 h, whereas in the controls without oil 67.8 ± 0.7% was observed. Upon photo-oxidation at 4 °C during 30 days, mainly casein-based emulsions containing fish oil were affected: the digestibility amounted to 43.9 ± 1.2%, whereas in the control casein solutions without oil, 72.6 ± 0.2% of the proteins were digestible. Emulsions containing oils with high PUFA levels were more prone to lipid oxidation and thus upon progressive oxidation showed a higher impact on protein digestibility.

  11. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    USDA-ARS?s Scientific Manuscript database

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  12. Approaches of Russian oil companies to optimal capital structure

    NASA Astrophysics Data System (ADS)

    Ishuk, T.; Ulyanova, O.; Savchitz, V.

    2015-11-01

    Oil companies play a vital role in Russian economy. Demand for hydrocarbon products will be increasing for the nearest decades simultaneously with the population growth and social needs. Change of raw-material orientation of Russian economy and the transition to the innovative way of the development do not exclude the development of oil industry in future. Moreover, society believes that this sector must bring the Russian economy on to the road of innovative development due to neo-industrialization. To achieve this, the government power as well as capital management of companies are required. To make their optimal capital structure, it is necessary to minimize the capital cost, decrease definite risks under existing limits, and maximize profitability. The capital structure analysis of Russian and foreign oil companies shows different approaches, reasons, as well as conditions and, consequently, equity capital and debt capital relationship and their cost, which demands the effective capital management strategy.

  13. Structural interactions between lipids, water and S1-S4 voltage-sensing domains

    PubMed Central

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J.

    2012-01-01

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains, and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids, and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains, and that these interactions have lifetimes on the timescale of 10−3s. Arg residues within S1-S4 domains are well-hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid head groups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane, yet are well-hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. PMID:22858867

  14. Interaction of cholesterol-conjugated ionizable amino lipids with biomembranes: lipid polymorphism, structure-activity relationship, and implications for siRNA delivery.

    PubMed

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-08-02

    Delivery of siRNA is a major obstacle to the advancement of RNAi as a novel therapeutic modality. Lipid nanoparticles (LNP) consisting of ionizable amino lipids are being developed as an important delivery platform for siRNAs, and significant efforts are being made to understand the structure-activity relationship (SAR) of the lipids. This article uses a combination of small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) to evaluate the interaction between cholesterol-conjugated ionizable amino lipids and biomembranes, focusing on an important area of lipid SAR--the ability of lipids to destabilize membrane bilayer structures and facilitate endosomal escape. In this study, cholesterol-conjugated amino lipids were found to be effective in increasing the order of biomembranes and also highly effective in inducing phase changes in biological membranes in vitro (i.e., the lamellar to inverted hexagonal phase transition). The phase transition temperatures, determined using SAXS and DSC, serve as an indicator for ranking the potency of lipids to destabilize endosomal membranes. It was found that the bilayer disruption ability of amino lipids depends strongly on the amino lipid concentration in membranes. Amino lipids with systematic variations in headgroups, the extent of ionization, tail length, the degree of unsaturation, and tail asymmetry were evaluated for their bilayer disruption ability to establish SAR. Overall, it was found that the impact of these lipid structure changes on their bilayer disruption ability agrees well with the results from a conceptual molecular "shape" analysis. Implications of the findings from this study for siRNA delivery are discussed. The methods reported here can be used to support the SAR screening of cationic lipids for siRNA delivery, and the information revealed through the study of the interaction between cationic lipids and biomembranes will contribute significantly to the design of more efficient si

  15. A plant oil-containing pH 4 emulsion improves epidermal barrier structure and enhances ceramide levels in aged skin.

    PubMed

    Blaak, J; Dähnhardt, D; Dähnhardt-Pfeiffer, S; Bielfeldt, S; Wilhelm, K-P; Wohlfart, R; Staib, P

    2017-06-01

    Xerosis is a serious problem among the very old. It is a dermatological challenge caused by significant alterations in stratum corneum (SC) function and structure. Two negative changes in aged skin are (i) the enhanced skin surface pH and (ii) the altered SC lipid content, composition and ordering. Therefore, we investigated the way in which an acidic skin care product with different plant oils affects SC function, structure and lipid profile in older subjects with dry skin. Before and after a 3-week application period, different biophysical measurements were performed: transepidermal water loss, SC hydration and skin surface pH. In addition, the SC lipid matrix was evaluated by analysis of the intercellular lipid lamellae and the SC lipid profile. After treatment, a significant increase in lipid lamellae in the intercellular space of the SC was observed in the area treated with the test product compared to the untreated area. Furthermore, the ceramide level was found to be increased, although ceramides were not provided by the acidic test formulation. In summary, topical application of a pH 4.0 product containing plant oils improves epidermal barrier formation and SC lipid ordering and ratio in aged dry skin. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Production and structure elucidation of di- and oligosaccharide lipids (biosurfactants) from Tsukamurella sp. nov.

    PubMed

    Vollbrecht, E; Heckmann, R; Wray, V; Nimtz, M; Lang, S

    1998-11-01

    The bacterium Tsukamurella sp. nov., isolated from soil, was found to produce novel glycolipids when grown on sunflower oil as the sole carbon source. The glycolipids were isolated by chromatography on silica columns and their structures elucidated using a combination of multidimensional NMR and MS techniques. The three main components are 2,3-di-O-acyl-alpha-D-glucopyranosyl-(1-1)-alpha-D-glucopyranose, 2,3-di-O-acyl-beta-D-glucopyranosyl-(1-2)-4,6-di-O-acyl-alpha-D- glucopyranosyl-(1-1)-alpha-D-glucopyranose and 2,3-di-O-acyl-beta-D-glucopyranosyl-(1-2)-beta-D-galactopyranosyl- (1-6)-4,6-di-O-acyl-alpha-D-glucopyranosyl-(1-1)-alpha-D- glucopyranosyl which are linked to fatty acids varying in chain length from C4 to C18. The glycolipids are mainly extracellular but are also found attached to the cell walls. During the cultivation the composition of the glycolipids changed from disaccharide- to tri- and tetrasaccharide lipids. The glycolipids show good surface-active behaviour and have antimicrobial properties.

  17. Rheological behavior and structural interpretation of waxy crude oil gels.