Science.gov

Sample records for oilseeds boast feedstock

  1. New oilseeds boast feedstock potential

    SciTech Connect

    Not Available

    1982-03-24

    Researchers in the United States are investigating the chemical potential of the Chinese tallow tree and the buffalo gourd. It is estimated that the Houston area of Texas could yield up to 70lb of seeds per tree per year. The oily component of the seed is recovered by solvent extraction and the product may some day compete with petroleum-based waxes or fats. In contrast to the Chinese tallow tree, which grows near swamps and marshes, the buffalo gourd is a desert plant. Experiments are underway aimed at improving the yield of the plant by hybridization and other genetic manipulations, and also to come up with an efficient harvesting technique.

  2. Biodiesel From Alternative Oilseed Feedstocks: Production and Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters were prepared and evaluated as potential biodiesel fuels from several alternative oilseed feedstocks, which included camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field mustard (Brassica juncea L.), field pennycress (Thlaspi arvense L.), and meadowfoam (L...

  3. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  4. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  5. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  6. BOAST 98-MC: A Probabilistic Simulation Module for BOAST 98

    SciTech Connect

    Aiysha Sultana; Anne Oudinot; Reynaldo Gonzalez; Scott Reeves

    2006-09-08

    This work was performed by Advanced Resources International (ARI) on behalf of the United States Department of Energy (DOE) in order to develop a user-friendly, PC-based interface that couples DOE's BOAST 98 software with the Monte Carlo simulation technique. The objectives of the work were to improve reservoir management and maximize oil recoveries by understanding and quantifying reservoir uncertainty as well as improving the capabilities of DOE's BOAST 98 software by incorporating a probabilistic module in the simulator. In this model, probability distributions can be assigned to unknown input parameters such as permeability, porosity, etc. Options have also been added to the input file to be able to vary relative permeability curves as well as well spacing. Hundreds of simulations can then automatically be run to explore the many combinations of uncertain reservoir parameters across their spectrum of uncertainty. Output data such as oil rate and water rate can then be plotted. When historical data are available, they can be uploaded and a least-square error-function run between the simulation data and the history data. The set of input parameters leading to the best match is thus determined. Sensitivity charts (Tornado plots) that rank the uncertain parameters according to the impact they have on the outputs can also be generated.

  7. Potential of genetically modified oilseed rape for biofuels in Austria: Land use patterns and coexistence constraints could decrease domestic feedstock production

    PubMed Central

    Moser, Dietmar; Eckerstorfer, Michael; Pascher, Kathrin; Essl, Franz; Zulka, Klaus Peter

    2013-01-01

    Like other EU Member States, Austria will meet the substitution target of the EU European Renewable Energy Directive for transportation almost exclusively by first generation biofuels, primarily biodiesel from oilseed rape (OSR). Genetically modified (GM) plants have been promoted as a new option for biofuel production as they promise higher yield or higher quality feedstock. We tested implications of GM OSR application for biodiesel production in Austria by means of high resolution spatially explicit simulation of 140 different coexistence scenarios within six main OSR cropping regions in Austria (2400 km2). We identified structural land use characteristics such as field size, land use diversity, land holding patterns and the proportion of the target crop as the predominant factors which influence overall production of OSR in a coexistence scenario. Assuming isolation distances of 800 m and non-GM-OSR proportions of at least 10% resulted in a loss of area for cultivation of OSR in all study areas ranging from −4.5% to more than −25%, depending on the percentage of GM farmers and on the region. We could show that particularly the current primary OSR cropping regions are largely unsuitable for coexistence and would suffer from a net loss of OSR area even at isolation distances of 400 or 800 m. Coexistence constraints associated with application of GM OSR are likely to offset possible GM gains by substantially reducing farmland for OSR cultivation, thus contradicting the political aim to increase domestic OSR area to meet the combined demands of food, feed and biofuel production. PMID:26109750

  8. Oilseeds for use in biodiesel and drop-in renewable jet fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseeds, primarily soybean and canola, are currently used as feedstocks for biodiesel production. Oilseeds can also be used to produce drop-in renewable jet fuel and diesel products. While soybean and canola are the most common oilseed crops used for renewable fuel production in the U.S., many othe...

  9. Windblown soil surface characteristics of a wheat-oilseed-fallow cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of biofuels is dependent upon oilseed feedstocks in the Pacific Northwest United States (PNW), but evidence suggests that wind erosion may be enhanced as a result of growing oilseeds in conventional wheat rotations. Little is known concerning the impact of growing oilseeds on soil cha...

  10. Ongoing development of dryland oilseed production systems in the northwestern region of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report addresses the development of dryland oilseed crops to provide feedstock for production of biofuels in semiarid portions of the northwestern United States. Bioenergy feedstocks derived from Brassica oilseed crops have been considered for production of hydrotreated renewable jet fuel, but...

  11. Volume 1C. Modification of BOAST II-PC - BOAST III

    SciTech Connect

    Sawyer, Walter K.; Schenewerk, Philip A.; Kimbrell, W. Clay

    1995-12-31

    A readily available public reservoir simulation model BOAST II was modified to simulate accurately the conditions encountered in steeply dipping high permeability reservoirs. The modifications also involved the development and integration of post processing programs. The modified model was evaluated, modified, and validated against commercial reservoir models.

  12. BOAST II for the IBM 3090 and RISC 6000

    SciTech Connect

    Hebert, P.; Bourgoyne, A.T. Jr.; Tyler, J.

    1993-05-01

    BOAST II simulates isothermal, darcy flow in three dimensions. It assumes that reservoir liquids can be described in three fluid phases (oil, gas, and water) of constant composition, with physical properties that depend on pressure, only. These reservoir fluid approximations are acceptable for a large percentage of the world's oil and gas reservoirs. Consequently, BOAST II has a wide range of applicability. BOAST II can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and capillary imbibition mechanisms. Typical field production problems that BOAST II can handle include primary depletion studies, pressure maintenance by water and/or gas injection, and evaluation of secondary recovery waterflooding and displacement operations. Technically, BOAST II is a finite, implicit pressure, explicit saturation (IMPES) numerical simulator. It applies both direct and iterative solution techniques for solving systems of algebraic equations. The well model allows specification of rate or pressure constraints on well performance, and the user is free to add or to recomplete wells during the simulation. In addition, the user can define multiple rock and PVT regions and can choose from three aquifer models. BOAST II also provides flexible initialization, a bubble-point tracking scheme, automatic time-step control, and a material balance check on solution stability. The user controls output, which includes a run summary and line-printer plots of fieldwide performance.

  13. Nitrogen use in durum and selected Brassicaceae oilseeds in two-year rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassicaceae oilseeds can serve as potential feedstocks for renewable biofuels to offset demand for petroleum-based alternatives. However, little is known about oilseed crop yield potential and N use in semiarid, wheat (Triticum spp.)-based cropping systems that dominate the northern Great Plains (N...

  14. Crop yield and quality, weeds, insects, and water use of durum and selected brassicaceae oilseeds in two-year rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cool-season oilseeds are potential feedstock for biofuel production, but few studies have compared oilseed-durum (Triticum durum Desf.) rotations. We conducted a field trial under dryland conditions for 2007-2010 near Froid, Montana, comparing productivity, water balance, and key weed and arthropod...

  15. Boasting and Bragging: "Black" and "White." Working Papers in Sociolinguistics, No. 58.

    ERIC Educational Resources Information Center

    Kochman, Thomas

    This paper draws from a number of sources, from Muhammad Ali to TV commercials, to demonstrate the quite different conceptions that black and white Americans have of the meaning of boasting and bragging. For blacks, boasting and bragging are two distinct ways of speaking and communication. Boasting is a joking, playful verbal bahavior, not to be…

  16. Biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many forms of feedstocks for biofuel production. Animal manures and municipal solid wastes have been used to generate methane for on-farm and municipality energy uses. Fuel ethanol has been produced commercially using plant-derived starch and sugar feedstocks. Technologies for productio...

  17. Oilseed cuphea tolerates bromoxynil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed management is a critical feature of all crop production, but especially for new and alternative crops with which most growers have little experience. Oilseed cuphea is a new annual crop for temperate regions and, at present, it is known to tolerate only a narrow spectrum of herbicides. Addition...

  18. Cost implications of feedstock combinations for community sized biodiesel production

    SciTech Connect

    Weber, J.A.; Van Dyne, D.L.

    1993-12-31

    Biodiesel can be processed from oilseeds or animal fats and used in unmodified diesel engines. This fuel has been produced commercially in Europe for three years. Research indicates that biodiesel can replace diesel fuel without causing harmful effects to an unmodified engine and can reduce harmful emissions . Some European biodiesel plants operate at the community level effectively supplying both fuel and animal feeds. This study examines multiple feedstocks that could be utilized by a community sized biodiesel plant. The model plant used is a 500,000 gallon processing facility. The model plant is assumed to be installed in an existing grain handling facility or feed mill. Animal fats would be purchased from outside sources and oilseeds would be provided by area producers. Producers would retain ownership of the oilseeds and pay a processing fee to the cooperative. Oilseeds would be extruded before being separated into meal and crude oil. The crude oil would be esterified into biodiesel using continuous flow esterification technology. This study concludes under specific conditions, biodiesel can be processed economically at the community level. The results indicate that without farm program benefits to minor oilseeds, soybeans are the most economic feedstock to use in a community based operation. Realistic price information suggests that biodiesel (from soybeans) could be produced for $1.26 per gallon. If producers participate in government programs and are capable of growing minor oilseeds, canola may represent a better feedstock than soybeans. Achieving the lowest costs of production depends on the value assigned to co-product credits such as oilseed meal. The more producers pay for high protein meal for their livestock and poultry, the lower the residual price of biodiesel.

  19. Oilseeds for renewable jet fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-disciplinary research project was initiated to investigate the agronomic performance of different oilseed species under varying conditions across the western U.S. wheat belt, provide regionalized strategies to integrate sustainable oilseed production into existing land uses, and provide stra...

  20. Biodiesel from alternative oilseed feedstocks: camelina and field pennycress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, defined as mono-alkyl esters derived from plant oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, usually methanol, biodiesel possesses several technical advanta...

  1. BOAST II for the IBM 3090 and RISC 6000. Final report

    SciTech Connect

    Hebert, P.; Bourgoyne, A.T. Jr.; Tyler, J.

    1993-05-01

    BOAST II simulates isothermal, darcy flow in three dimensions. It assumes that reservoir liquids can be described in three fluid phases (oil, gas, and water) of constant composition, with physical properties that depend on pressure, only. These reservoir fluid approximations are acceptable for a large percentage of the world`s oil and gas reservoirs. Consequently, BOAST II has a wide range of applicability. BOAST II can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and capillary imbibition mechanisms. Typical field production problems that BOAST II can handle include primary depletion studies, pressure maintenance by water and/or gas injection, and evaluation of secondary recovery waterflooding and displacement operations. Technically, BOAST II is a finite, implicit pressure, explicit saturation (IMPES) numerical simulator. It applies both direct and iterative solution techniques for solving systems of algebraic equations. The well model allows specification of rate or pressure constraints on well performance, and the user is free to add or to recomplete wells during the simulation. In addition, the user can define multiple rock and PVT regions and can choose from three aquifer models. BOAST II also provides flexible initialization, a bubble-point tracking scheme, automatic time-step control, and a material balance check on solution stability. The user controls output, which includes a run summary and line-printer plots of fieldwide performance.

  2. Seashore mallow (Kosteletzkya pentacarpos) as a salt-tolerant feedstock for production of biodiesel and ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore mallow (Kosteletzkya pentacarpos) is a non-invasive perennial nonclonal halophytic oilseed-producing dicot that was investigated as a feedstock for production of biodiesel from seeds and ethanol from residual stem biomass. Seashore mallow seeds contained 19.3 mass % oil, which after extract...

  3. Analyzing hydrotreated renewable jet fuel (HRJ) feedstock availability using crop simulation modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While hydrotreated renewable jet fuel (HRJ) has been demonstrated for use in commercial and military aviation, a challenge to large-scale adoption is availability of cost competitive feedstocks. Brassica oilseed crops like Brassica napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina s...

  4. Balancing limiting factors and economic drivers for sustainable midwestern U.S. agricultural residue feedstock supplies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading the soil and other natural resources. This review examine...

  5. Weed Control Systems for Peanut (Arachis hypogaea L.) Grown as a Biofuel Feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) has not been utilized as a true oilseed crop, especially for the production of fuel. However, peanut makes a superior feedstock for biodiesel, especially in on-farm or small cooperative business plans, where producers can dictate the cost of making their own fuel. Fiel...

  6. The Anglo-Saxon Boast: A Study in the Archaeology of a Speech Genre.

    ERIC Educational Resources Information Center

    Conquergood, Dwight

    Based on the premise that the examination of primordial and universal genres of utterance illuminates universal principles of speaking and meaning, this paper examines the Anglo-Saxon boast, a common form of speaking among Germanic warrior societies during the early middle ages. It tells how Old English literature provides evidence from which the…

  7. Feedstock Supply System Logistics

    SciTech Connect

    2006-06-01

    Feedstock supply is a significant cost component in the production of biobased fuels, products, and power. The uncertainty of the biomass feedstock supply chain and associated risks are major barriers to procuring capital funding for start-up biorefineries.

  8. Planting depth for oilseed calendula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calendula (Calendula officinalis L.) is not only a popular ornamental plant in temperate climates, but also a potential oilseed crop. Its seed oil has high levels of calendic acid, which makes it a highly valued drying oil with important industrial applications. Much basic agronomic information on c...

  9. Lignocellulosic feedstock resource assessment

    SciTech Connect

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  10. Articulating feedstock delivery device

    SciTech Connect

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  11. Oilseed crops as renewable sources of industrial chemicals

    SciTech Connect

    McKeon, T.A.; Lin, Jiann-Tsyh; Goodrich-Tanrikulu, M.

    1995-12-01

    The presence of specific functional groups on a fatty acid confers value for industrial uses. The plant kingdom contains numerous examples of plants that produce seed oils containing fatty acids with epoxy groups, hydroxyl groups, triple bonds or with unusual double bond positions. These fatty acids can be used directly or are readily modified for use in specialty lubricants, plastics and coatings. Many of these plants are not cultivated in the U.S. due to unsuitable climate or growth habit. Such plants provide a source of genes coding for enzymes that will carry out the desired fatty acid modification. Genetic technology allows the transfer of these genes into domestically grown crops such as rapeseed or soybean, with consequent production of the desired fatty acid in the seed oil. One biotechnology company has commercialized a transgenic oilseed crop with an altered fatty acid composition. This talk will review current and projected plans for developing oilseed crops to serve as renewable resources that meet current industrial needs or provide chemical feedstocks for new uses.

  12. Feedstock Sugar Interface

    SciTech Connect

    2006-06-01

    To access enough biomass to meet petroleum displacement goals, a variety of feedstock and delivery systems are needed. Selection of the feedstock and delivery system for a biorefinery is important because it can affect the physical and chemical properties of the biomass input.

  13. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  14. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  15. Carbonization of petroleum feedstocks

    SciTech Connect

    Eser, S.

    1987-01-01

    The properties of the petroleum cokes are determined by their crystalline structure, which principally depends on the nature of the mesophase formed during the liquid-phase carbonization of the precursors. This study was aimed at investigating the relationships between the chemical nature of the petroleum feedstocks and the mesophase development during carbonization. Ashland 240 pitch and a range of petroleum heavy residua were characterized by solvent fractionation, elemental analysis, Fourier Transform Infrared Spectroscopy, H and TC Nuclear Magnetic Resonance Spectroscopy. The semi-coke (pyridine insolubles) formation from the feedstocks and their asphaltene fractions was found to be first-order with respect to the concentration of pyridine solubles over a wide conversion range. An inverse relationship was observed between the rate of carbonization of the asphaltenes and the degree of mesophase development. The degree of mesophase development during the carbonization of the feedstock asphaltenes increased consistently with the increasing hydrogen aromaticity over the whole range of the feedstocks used. The principal conclusion from this study is that the mesophase development during carbonization critically depends on the chemical constitution of the petroleum feedstocks. The molecular nature of the asphaltene fractions determines the extent of mesophase development during the carbonization of the petroleum heavy residua. In this respect, the hydrogen aromaticity of the asphaltenes appears to be a good measure for the feedstock quality in terms of resulting coke structure and properties.

  16. Mycotoxin production on rice, pulses and oilseeds

    NASA Astrophysics Data System (ADS)

    Begum, Fouzia; Samajpati, N.

    Mycotoxin-producing fungi were isolated from contaminated grains of rice, pulses and oilseeds sold in the local markets of Calcutta for human consumption. It was found that aflatoxin B1 was produced by Aspergillus flavus and Aspergillus parasiticus, aflatoxin G1 by A. flavus, ochratoxin by Aspergillus ochraceous, sterigmatocystin by Aspergillus japonicus and citrinin by Penicillium citrinum. Aflatoxin B1 (333-10416μg/kg) was produced by Aspergillus spp. in rice, pulses and oilseeds.

  17. Potential feedstock supply and costs for biodiesel production

    SciTech Connect

    Nelson, R.G.; Howell, S.A.; Weber, J.A.

    1994-12-31

    Without considering technology constraints, tallows and waste greases have definite potential as feedstocks for the production of biodiesel in the United States. These materials are less expensive than most oils produced from oilseed crops such as soybeans, sunflowers, canola and rapeseed. At current crude petroleum prices, biodiesel derived from any of these materials will be more expensive than diesel derived from petroleum. However, when compared to other clean burning alternate fuels, recent data suggest biodiesel blends produced from any of these feedstocks may be the lowest total cost alternative fuel in certain areas of the United States. Economic feasibility analyses were performed to investigate the cost of producing biodiesel ($/gallon) subject to variances in feedstock cost, by-product credit (glycerol and meal) and capital costs. Cost of production per gallon of esterified biodiesel from soybean, sunflower, tallow and yellow grease ranged from $0.96 to $3.39 subject to feedstock and chemical costs, by-product credit and system capital cost.

  18. Biodiesel from conventional feedstocks.

    PubMed

    Du, Wei; Liu, De-Hua

    2012-01-01

    At present, traditional fossil fuels are used predominantly in China, presenting the country with challenges that include sustainable energy supply, energy efficiency improvement, and reduction of greenhouse gas emissions. In 2007, China issued The Strategic Plan of the Mid-and-Long Term Development of Renewable Energy, which aims to increase the share of clean energy in the country's energy consumption to 15% by 2020 from only 7.5% in 2005. Biodiesel, an important renewable fuel with significant advantages over fossil diesel, has attracted great attention in the USA and European countries. However, biodiesel is still in its infancy in China, although its future is promising. This chapter reviews biodiesel production from conventional feedstocks in the country, including feedstock supply and state of the art technologies for the transesterification reaction through which biodiesel is made, particularly the enzymatic catalytic process developed by Chinese scientists. Finally, the constraints and perspectives for China's biodiesel development are highlighted.

  19. Estimate feedstock processability

    SciTech Connect

    Amorelli, A.; Amos, Y.D.; Halsig, C.P. ); Kosman, J.J. ); Jonker, R.J.; de Wind, M.; Vrieling, J. )

    1992-06-01

    Currently, one of the major environmental pressures is to further reduce sulfur levels in middle distillate products. This paper reports that the key to this is understanding reactivities of individual sulfur components in the feedstocks to be treated. The major sulfur species in middle distillates is aromatic compounds, predominantly benzothiophenes and dibenzothiophenes. However, in straight run materials, significant quantities of aliphatic sulfur compounds and further higher boiling benzothiophenes are also expected. Simultaneous simulated distillation with a gas chromatograph microwave-induced plasma atomic emission detector (SIMDIS/AED) is used for middle distillate characterization of sulfur distribution as a function of boiling point. It is able to discriminate between middle distillate feed types such as cracked and straight run gas oils, and has shown that similar feeds, with different total sulfur contents (unevenly distributed throughout a feedstock), have the same normalized sulfur distribution.

  20. Oilseed Productivity Under Varying Water Availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseeds for biofuel production may serve as one of the alternative energy strategies that the United States will employ in the future. Biodiesel can be produced from oil extracted from canola, mustard, camelina, sunflower, safflower, and soybean. This paper compares soil water extraction and water ...

  1. Breeding oilseed crops for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseed crops are the basis for biological systems that produce edible oils, contribute to renewable energy production, help stabilize greenhouse gases, and mitigate the risk of climate change. Their response to climate change will be dictated by reactions to temperature, carbon dioxide, solar radia...

  2. A Distributed Model of Oilseed Biorefining, via Integrated Industrial Ecology Exchanges

    NASA Astrophysics Data System (ADS)

    Ferrell, Jeremy C.

    As the demand for direct petroleum substitutes increases, biorefineries are poised to become centers for conversion of biomass into fuels, energy, and biomaterials. A distributed model offers reduced transportation, tailored process technology to available feedstock, and increased local resilience. Oilseeds are capable of producing a wide variety of useful products additive to food, feed, and fuel needs. Biodiesel manufacturing technology lends itself to smaller-scale distributed facilities able to process diverse feedstocks and meet demand of critical diesel fuel for basic municipal services, safety, sanitation, infrastructure repair, and food production. Integrating biodiesel refining facilities as tenants of eco-industrial parks presents a novel approach for synergistic energy and material exchanges whereby environmental and economic metrics can be significantly improved upon compared to stand alone models. This research is based on the Catawba County NC EcoComplex and the oilseed crushing and biodiesel processing facilities (capacity-433 tons biodiesel per year) located within. Technical and environmental analyses of the biorefinery components as well as agronomic and economic models are presented. The life cycle assessment for the two optimal biodiesel feedstocks, soybeans and used cooking oil, resulted in fossil energy ratios of 7.19 and 12.1 with carbon intensity values of 12.51 gCO2-eq/MJ and 7.93 gCO2-eq/MJ, respectively within the industrial ecology system. Economic modeling resulted in a biodiesel conversion cost of 1.43 per liter of fuel produced with used cooking oil, requiring a subsidy of 0.58 per liter to reach the break-even point. As subsidies continue significant fluctuation, metrics other than operating costs are required to justify small-scale biofuel projects.

  3. Biohydrogen production from lignocellulosic feedstock.

    PubMed

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  4. Plasma spraying with wire feedstock

    SciTech Connect

    Scholl, M.

    1994-12-31

    Plasma spraying has been limited to using powder feedstocks for a number of reasons. One limitation has been the low energy output of conventional plasma guns. The advent of high energy plasma spraying (HEPS) devices and the associated technology has effectively removed this functional limitation. With HEPS, the combination of high gas velocities and high thermal plasma temperatures coupled with a large exit gas volume enables wire and rod feedstocks to be effectively utilized. Rather than a bulk melting mechanism, a model based on ablation phenomena is considered. The paper examines an analysis of melting phenomena and presents a simple model for molten droplet formation for plasma spraying using wire feedstocks.

  5. Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China and other regions of the world. Two formulations of oilseed rape seed containing the plant-growth promoting bacterium Bacillus megaterium A6 were evaluated for suppression of this pathogen on oilseed rap...

  6. Cooperative involvement and opportunities in oilseeds

    SciTech Connect

    Dunn, J.R.; Reynolds, B.J.; Eversull, E.E.; Skinner, R.A.; Thurston, S.K.

    1982-01-01

    This report focuses on the opportunities for US cooperatives to improve their position in the oilseeds complex as they face increasing vertical integration and restructuring by large, competing noncooperative firms. Cooperatives operated 38 oilseed processing plants, 19 of them soybean plants, 17 cottonseed plants, 1 peanut plant, and 1 sunflower/flaxseed plant. Total cooperative soybean crushing capacity was 280 million bushels in 1979-1980, representing a 20.7% share of US crushing capacity and an 8.2% share of world crushing capacity. Cooperative soybean crushing capacity increased by 75% during the 1970's. The four largest soybean processing firms in terms of crushing capacity operated 54.5% of total US capacity. The top eight firms operated 75.1%, and the top 20 firms operated 96.4%. Eight of the top 20 soybean processing firms are cooperatives. Cooperatives operated 17 of the 78 cottonseed mills active in 1979. These mills had a total capacity of 6690 tons per day for a 35% share of total US cottonseed crushing capacity. 28 references, 11 figures, 44 tables.

  7. Big bluestem and switchgrass feedstock harvest timing: Nitrous oxide response to feedstock harvest timing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alter...

  8. Wind erosion potential from oilseed cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Energy Independence and Security Act of 2007 mandates the use of 36 billion gallons of biofuel by 2022 with 21 billion gallons being derived from advanced biofuel feedstocks. To meet this goal, the United States Department of Agriculture developed a strategy entitled “A USDA region...

  9. Fatty acid profile of unconventional oilseeds.

    PubMed

    Sabikhi, Latha; Sathish Kumar, M H

    2012-01-01

    The continued increase in human population has resulted in the rise in the demand as well as the price of edible oils, leading to the search for alternative unconventional sources of oils, particularly in the developing countries. There are hundreds of un- or underexplored plant seeds rich in oil suitable for edible or industrial purposes. Many of them are rich in polyunsaturated essential fatty acids, which establish their utility as "healthy oils." Some agrowaste products such as rice bran have gained importance as a potential source of edible oil. Genetic modification has paved the way for increasing the oil yields and improving the fatty acid profiles of traditional as well as unconventional oilseeds. Single cell oils are also novel sources of edible oil. Some of these unconventional oils may have excellent potential for medicinal and therapeutic uses, even if their low oil contents do not promote commercial production as edible oils.

  10. 2009 Feedstocks Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  11. Survey of alternative feedstocks for biodiesel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  12. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop.

    PubMed

    Zhang, Yang; Mulpuri, Sujatha; Liu, Aizhong

    2016-05-01

    Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.

  13. Process for desulfurizing petroleum feedstocks

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  14. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  15. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  16. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    SciTech Connect

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen; David J. Muth; Jane M. F. Johnson; John M. Baker; Hero T. Gollany; Jeff M. Novak; Diane E. Stott; Gary E. Varvel

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soil water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.

  17. Comparison of oilseed yields: a preliminary review

    SciTech Connect

    Duke, J.A.; Bagby, M.O.

    1982-01-01

    It was assumed that for most oilseed crops, 90% of the oil yield might be considered as profit. To compare oil seeds, pertinent portions of the yield and energy paragraphs from a summary published by Dr. Duke for DOE Grant No. 59-2246-1-6-054-0 with Dr. Bagby as ADODR were reproduced. The seed yields ranged from 200 to 14,000 kg/ha, the low one too low to consider and the high one suspiciously high. The yield of 14,000 kg oil per hectare is equivalent to more than 30 barrels of oil per hectare. The energy species included ambrette, tung-oil tree, cashew, wood-oil tree, mu-oil tree, peanut, mustard greens; rape, colza; black mustard, turnip, safflower, colocynth, coconut, crambe, African oil palm, soybean, cotton, sunflower, Eastern black walnut, Engligh walnut, meadow foam, flax, macadamia nuts, opium poppy, perilla, almond, castorbean, Chinese tallow tree, sesame, jojoba, yellow mustard, stokes' aster, and Zanzibar oilvine. 1 table. (DP)

  18. Synthesizing Diamond from Liquid Feedstock

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua

    2005-01-01

    A relatively economical method of chemical vapor deposition (CVD) has been developed for synthesizing diamond crystals and films. Unlike prior CVD methods for synthesizing diamond, this method does not require precisely proportioned flows of compressed gas feedstocks or the use of electrical discharges to decompose the feedstocks to obtain free radicals needed for deposition chemical reactions. Instead, the feedstocks used in this method are mixtures of common organic liquids that can be prepared in advance, and decomposition of feedstock vapors is effected simply by heating. The feedstock used in this method is a solution comprising between 90 and 99 weight percent of methanol and the balance of one or more other oxyhydrocarbons that could include ethanol, isopropanol, and/or acetone. This mixture of compounds is chosen so that dissociation of molecules results in the desired proportions of carbon-containing radicals (principally, CH3) and of OH, H, and O radicals. Undesirably, the CVD temperature and pressure conditions thermodynamically favor the growth of graphite over the growth of diamond. The H radicals are desirable because they help to stabilize the growing surface of diamond by shifting the thermodynamic balance toward favoring the growth of diamond. The OH and O radicals are desirable because they preferentially etch graphite and other non-diamond carbon, thereby helping to ensure the net deposition of pure diamond. The non-methanol compounds are included in the solution because (1) methanol contains equal numbers of C and O atoms; (2) an excess of C over O is needed to obtain net deposition of diamond; and (3) the non-methanol molecules contain multiple carbon atoms for each oxygen atom and thus supply the needed excess carbon A typical apparatus used in this method includes a reservoir containing the feedstock liquid and a partially evacuated stainless-steel reaction chamber. The reservoir is connected to the chamber via tubing and a needle valve or

  19. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  20. Synthetic carbonaceous fuels and feedstocks

    DOEpatents

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  1. [Gene flow and its ecological risks of transgenic oilseed rape ( Brassica napus)].

    PubMed

    Tang, Guixiang; Song, Wenjian; Zhou, Weijun

    2005-12-01

    Transgenic oilseed rape Brassica napus, one of the first genetically modified crops, has now been released to commercial use in Canada and Australia. As a cross-pollinating crop, its natural crossing rate is 30%, and it is liable to cross with other Brassica species. The ecological risk of transgenic oilseed rape has been concerned by the scientists all over the world. There are two ways for the pollens flow of transgenic oilseed rape, one takes place between transgenic oilseed rape and other related wild species, and the other occurs between transgenic and nontransgenic oilseed rape. The gene may flow to other related wild species, but it is unlikely to get hybrids in field. Because the gene can really flow to the conventional oilseed rape, it is necessary to have a sufficient isolation distance in cultivating transgenic oilseed rape.

  2. Platform Chemicals from an Oilseed Biorefinery

    SciTech Connect

    Tupy, Mike; Schrodi Yann

    2006-11-06

    The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the

  3. Industrial oilseeds bolster "hub" crop yields when used in rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lack of agroecosystem diversity across the U.S. agricultural landscape is linked to several environmental issues associated with air, water, and soil quality and biodiversity. Several new industrial oilseed crops with commercial potential, offer farmers new economic opportunities and a portfolio of ...

  4. Green solvents and technologies for oil extraction from oilseeds.

    PubMed

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  5. Present and potential future oilseed production systems for biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. agriculture is now depended on to produce renewable energy in addition to food, feed, and fuel, which if not properly managed could threaten long-term sustainability of our agricultural lands. Biofuels produced from oilseed crops, primarily biodiesel, will be an important addition to the renewa...

  6. Flowering dynamics and pollinator visitation of oilseed echium (Echium plantagineum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Echium (Echium plantagineum L.) is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. We examined flowering dynamics, polli...

  7. Evolution and Development of Effective Feedstock Specifications

    SciTech Connect

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  8. Transgenic Biofuel Feedstocks and Strategies for Biocontainment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are several reasons to believe that transgenic plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels. Much of the commercialization potential for the use of transgenic plant cellulosic feedstocks may be impacted by regulatio...

  9. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    SciTech Connect

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  10. Method of removing contaminant from a feedstock stream

    SciTech Connect

    Holland, E. O.; Johnson, M. M.

    1981-05-26

    Contaminants such as petroleum sulfonates, anticorrosion amines, and silicone oils are removed from a contaminated feedstock stream by contacting said feedstock stream with an adsorbent comprising bauxite. In a further aspect, a thus purified petroleum feedstock stream is hydrodesulfurized.

  11. Method of removing contaminant from a feedstock stream

    SciTech Connect

    Holland, E.O.; Johnson, M.M.

    1982-08-10

    Contaminants such as petroleum sulfonates, anticorrosion amines, and silicone oils are removed from a contaminated feedstock stream by contacting said feedstock stream with an adsorbent comprising bauxite. In a further aspect, a thus purified petroleum feedstock stream is hydrodesulfurized.

  12. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.

  13. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  14. World oilseed situation and U. S. export opportunities, December 1983. Foreign agriculture circular

    SciTech Connect

    Not Available

    1983-12-01

    A slight increase in world oilseed production above last month's forecast, to 163.0 million tons, still leaves 1983/84 production over 9 percent below last year. Forecast utilization of oilseeds and products remain essentially unchanged from last month. Despite the relatively unchanged world oilseed and product balance, prices have weakened in recent weeks, raising expectations that additional price strength will be needed to bring about the required rationing of reduced world supplies. The other major element of uncertainty is Southern Hemisphere oilseed production, especially the Brazilian and Argentine 1984 soybean crops.

  15. Economic feasibility of diesel fuel substitutes from oilseeds in New York State

    SciTech Connect

    Lazarus, W.F.; Pitt, R.E.

    1984-11-01

    The feasibility of producing oilseeds for feed and for a diesel fuel substitute has primarily been discussed in terms of the major oilseed producing areas. The Northeast region of the United States is a major agricultural producing area which imports large quantities of soybean meal for cattle feed. This paper considers the technical and economic feasibility of producing oilseeds for feed and fuel in New York State, which is selected as a case study for the region. The possible crops considered for expanded production are sunflowers, soybeans, and flax. It is found that if enough oilseeds are grown to replace 25% of the diesel fuel used on farms, then at most 5% of the cropland would have to be converted to oilseeds, and meal would not be produced in excess of the amount currently used. The cost of producing oil is calculated as the cost of producing the seed plus the cost of processing minus the value of the meal. Enterprise budgets are developed for estimating oilseed production costs in New York State. The cost of processing is estimated for both an industrial-size plant, which does not now exist in New York, and a small on-farm plant. It is found that the diesel fuel and vegetable oil prices would have to rise substantially before oilseeds were produced in the Northeast region for feed and fuel. Moreover, the construction of an oilseed processing facility would not necessarily stimulate production of oilseeds in the region. 22 references.

  16. Occurrence of aflatoxins in oilseeds providing cocoa-butter substitutes.

    PubMed

    Kershaw, S J

    1982-05-01

    Four oilseeds providing cocoa-butter substitutes--shea, pentadecima, illipe, and salseed--when tested as substrates for aflatoxin production by two strains of Aspergillus parasiticus, gave varying levels of aflatoxin. Aflatoxins were found at low levels occurring naturally in moldy shea-nuts, but none of 21 commercial shea-nut samples contained greater than 20 micrograms of aflatoxin B1 per kg.

  17. Antimicrobial polyphenols from small tropical fruits, tea and spice oilseeds.

    PubMed

    Aman, Sahar; Naim, Asma; Siddiqi, Rahmanullah; Naz, Shahina

    2014-06-01

    The polyphenolic fractions of fruits: Terminalia catappa, Carissa carandas, Ziziphus nummularia; spice oilseeds: thymol, mustard, fenugreek and poppy seeds; and herb: green and black teas were analyzed for their total phenolics, flavonoids and antimicrobial potential. All fractions from fruits, except anthocyanin of C. carandas, displayed substantial antibacterial activity in accordance to their phenolic contents, the difference in activity being quite significant (p < 0.05), highest for T. catappa (minimum inhibitory concentration, MIC: 7.8-1000 microg/mL) and lowest for C. carandas (MIC: 62.5-1000 microg/mL). With few exceptions, both green and black teas' fractions inhibited the tested strains, however, green tea fractions (MIC: 15.63-125 microg/mL) were more active than black (MIC: 31.25-1000 microg/mL) and neutral were more active than their corresponding acidic fractions. Oil fractions of all oilseeds were found to be more active than their polyphenolic fractions, their antibacterial action decreased in the order thymol > mustard > fenugreek > poppy seeds (p < 0.05). Though the fruits used for the study are underutilized and have been emphasized for processed products, they may potentially be important to fight against pathogenic bacteria in view of their MICs. The teas and oilseeds, though a small part of total food intake, are more functional and active against the tested bacterial species and may find potential applications in therapeutics and food preservation.

  18. 2011 Biomass Program Platform Peer Review: Feedstock

    SciTech Connect

    McCann, Laura

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  19. CARBONIZER TESTS WITH LAKELAND FEEDSTOCKS

    SciTech Connect

    C. Lu; Z. Fan; R. Froehlich; A. Robertson

    2003-09-01

    Research has been conducted under United States Department of Energy Contract (USDOE) DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant, called a Second Generation Pressurized Fluidized Bed Combustion Plant (2nd Gen PFB), offers the promise of efficiencies greater than 48%, with both emissions and a cost of electricity that are significantly lower than those of conventional pulverized coal-fired (PC) plants with wet flue gas desulfurization/scrubbers. The 2nd Gen PFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized (PCFB) bed boiler, and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2700 F and higher. Under the USDOE Clean Coal V Demonstration Plant Program, a nominal 260 MWe plant demonstrating 2nd Gen PFB technology has been proposed for construction at the McIntosh Power Plant of the City of Lakeland, Florida. In the September-December 1997 time period, four test runs were conducted in Foster Wheeler's 12-inch diameter carbonizer pilot plant in Livingston New Jersey to ascertain carbonizer performance characteristics with the Kentucky No. 9 coal and Florida limestone proposed for use in the Lakeland plant. The tests were of a short-term nature exploring carbonizer carbon conversions, sulfur capture efficiencies and syngas alkali levels. The tests were successful; observed carbonizer performance was in agreement with predictions and no operating problems, attributed to the planned feedstocks, were encountered. The results of the four test runs are reported herein.

  20. Sugarcane and other crops as fuel feedstocks

    SciTech Connect

    Irvine, J.E.

    1980-07-01

    The use of sugarcane as a feedstock for fuel alcohol production in Brazil, and in Zimbabwe Rhodesia and Panama stimulated tremendous interest in the potential of agricultural crops for renewable energy sources. The cost of the feedstock is important. Corn, the current major agricultural feedstock in US fuel alcohol production, costs 60 to 80% of the selling price of the alcohol produced from it. Production costs for sugarcane and sugarbeets are higher than for corn. Sugarcane and sugarbeets, yield more fermentable carbohydrates per acre than any other crop. Sugarcane has the distinct advantage of containing a large amount of fiber in the harvested portion. The feedstock cost of sugarcane can be reduced by producing more cane per acre. Sweet sorghum has been discussed as a fuel crop. Cassana, the tapioca source, is thought to be a fuel crop of major potential. Feedstock cost can also be reduced through management decisions that reduce costly practices. Cultivation and fertilizer costs can be reduced. The operating cost of the processing plant is affected by the choice of crops grown for feedstock, both by their cost and by availability. (DP)

  1. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape During In Vitro Culture

    SciTech Connect

    Schwender, Jorg; Hebbelmann, Inga; Heinzel, Nicholas; Hildebrandt, Tatjana; Rogers, Alistair; Naik, Dhiraj; Klapperstuck, Matthias; Braun, Hans -Peter; Schreiber, Falk; Denolf, Peter; Borisjuk, Ljudmilla; Rolletschek, Hardy

    2015-07-01

    Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. We observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Also, quantitative data were used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3',5'-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism..

  2. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture.

    PubMed

    Schwender, Jörg; Hebbelmann, Inga; Heinzel, Nicolas; Hildebrandt, Tatjana; Rogers, Alistair; Naik, Dhiraj; Klapperstück, Matthias; Braun, Hans-Peter; Schreiber, Falk; Denolf, Peter; Borisjuk, Ljudmilla; Rolletschek, Hardy

    2015-07-01

    Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. Overall, we observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Quantitative data were also used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3',5'-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism.

  3. Development of an efficient regeneration and transformation method for the new potential oilseed crop Lepidium campestre

    PubMed Central

    2013-01-01

    Background Lepidium campestre is an undomesticated oilseed species with a great potential to become a new crop for both food and industrial feedstocks production. Genetic modification is needed for further improving the oil quantity and quality of Lepidium. Studies on in vitro shoot regeneration of Lepidium are very limited and there is no transformation protocol available. Results We have investigated the effects of different factors, especially the type, concentration and combination of plant growth regulators (PGRs) on in vitro shoot regeneration of Lepidium. The results showed that the 2,4-D treatment was crucial to shoot regeneration from different explants. The duration of 2,4-D exposure between 2-4 days did not show significant difference in shoot regeneration, while the effect of 2,4-D concentration varied greatly depending on the type of explants and cytokinins used, for example, the low concentration of 2,4-D combined with TDZ significantly increased the regeneration frequency of hypocotyls. Cotyledon and hypocotyl explants responded differently to cytokinin, for example, TDZ was more effective than zeatin in promoting shoot regeneration from hypocotyls, but did not affect the regeneration of cotyledons which was more affected by high concentration of zeatin. The results also showed that NAA was not effective for shoot regeneration. Germination in light increased the regeneration frequency compared to that in dark. After optimization of the different conditions, an efficient regeneration protocol was developed with the regeneration efficiency of 92.7%. Using this protocol, the transformation frequency of 6% in average was achieved. The presence of transgenes in the transgenic lines was confirmed by GUS staining, PCR and Southern blot analyses. Conclusion Through systematic investigation of important factors affecting in vitro shoot regeneration, we have developed an efficient regeneration and transformation protocol for the genetic modification of

  4. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal doubled oilseed rape seed yield (P < 0.0001) rela...

  5. 7 CFR 93.15 - Fees for analytical testing of oilseeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Fees for analytical testing of oilseeds. 93.15 Section 93.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING....15 Fees for analytical testing of oilseeds. The fee charged for any laboratory analysis for...

  6. 7 CFR 93.15 - Fees for analytical testing of oilseeds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Fees for analytical testing of oilseeds. 93.15 Section 93.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING....15 Fees for analytical testing of oilseeds. The fee charged for any laboratory analysis for...

  7. 7 CFR 93.15 - Fees for analytical testing of oilseeds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Fees for analytical testing of oilseeds. 93.15 Section 93.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING....15 Fees for analytical testing of oilseeds. The fee charged for any laboratory analysis for...

  8. 7 CFR 93.15 - Fees for analytical testing of oilseeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fees for analytical testing of oilseeds. 93.15 Section 93.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING....15 Fees for analytical testing of oilseeds. The fee charged for any laboratory analysis for...

  9. 7 CFR 93.15 - Fees for analytical testing of oilseeds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Fees for analytical testing of oilseeds. 93.15 Section 93.15 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING....15 Fees for analytical testing of oilseeds. The fee charged for any laboratory analysis for...

  10. Soil characteristics and associated wind erosion potential altered by oilseeds in wheat-based cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseeds are integral to the production of biofuels and diversifying rainfed cropping systems in the Pacific Northwest. However, there is evidence to suggest greater potential for wind erosion when growing oilseeds in wheat-based rotations when tillage is used during fallow. Little is known concerni...

  11. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are developing a collection of Bacillus strains, isolated from different environments, for use in controlling Sclerotinia sclerotiorum on oilseed rape in China and elsewhere. Strain BY-2, isolated from internal tissues of an oilseed rape root, was demonstrated to be Bacillus subtilis based on bi...

  12. A normalized difference yellowness index for modeling yield of Brassica oilseeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conspicuous yellow flowers that are present in a Brassica oilseed crop such as canola require careful consideration when selecting a spectral index for yield estimation. This study evaluated spectral indices for multispectral sensors that correlate with the seed yield of Brassica oilseed crops. A ...

  13. Windblown soil surface characteristics altered by oilseeds in a wheat-fallow cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseeds are integral to the production of biofuels and diversifying rainfed cropping systems in the Pacific Northwest United States (PNW). However, there is evidence to suggest greater potential for wind erosion when growing oilseeds in wheat rotations. Little is known concerning the impact of grow...

  14. Windblown dust potential from oilseed cropping systems in the Pacific Northwest United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The volatility of petroleum reserves and prices coupled with concerns over greenhouse gas emissions and climate change has created a worldwide interest in renewable fuels. Although advances are being made in growing oilseeds for advanced biofuels, little is known about the impact of growing oilseed ...

  15. 40 CFR 63.2855 - How do I determine the quantity of oilseed processed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as received basis refers to the oilseed chemical and physical characteristics as initially received.... (b) Use Equation 1 of this section to determine the quantity of each oilseed type processed at your affected source during normal operating periods recorded within a calendar month. Equation 1 of...

  16. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Kortesniemi, Maaria; Vuorinen, Anssi L; Sinkkonen, Jari; Yang, Baoru; Rajala, Ari; Kallio, Heikki

    2015-04-01

    The oilseeds of the commercially important oilseed rape (Brassica napus) and turnip rape (Brassica rapa) were investigated with (1)H NMR metabolomics. The compositions of ripened (cultivated in field trials) and developing seeds (cultivated in controlled conditions) were compared in multivariate models using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Differences in the major lipids and the minor metabolites between the two species were found. A higher content of polyunsaturated fatty acids and sucrose were observed in turnip rape, while the overall oil content and sinapine levels were higher in oilseed rape. The genotype traits were negligible compared to the effect of the growing site and concomitant conditions on the oilseed metabolome. This study demonstrates the applicability of NMR-based analysis in determining the species, geographical origin, developmental stage, and quality of oilseed Brassicas.

  17. Bioenergy Feedstock Development Program Status Report

    SciTech Connect

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  18. Olefins can limit desulfurization of reformer feedstock

    SciTech Connect

    Ali, S.A.; Anabtawi, J.A.

    1995-07-03

    Pilot plant studies have shown that the presence of even very small amounts of olefins may limit the desulfurization of reformer feedstocks to trace levels. Engineers at the Research Institute of King Fahd University of Petroleum and Minerals observed under typical industrial conditions the recombination reaction of olefins with hydrogen sulfide to form mercaptans. The results indicate that the advantage of using highly active (third generation) CoMo hydrotreating catalysts can be masked by these reactions if the olefins are not saturated. The trend in naphtha reforming is to use high-rhenium, bimetallic catalysts that display less resistance to sulfur than do balanced Pt-Re catalysts. Due consideration, therefore, should be given to these undesirable recombination reactions while designing hydrotreaters and selecting hydrodesulfurization (HDS) and reforming catalysts. The paper discusses catalysts and feedstock tests, catalyst activity, temperature effects, space velocity, feedstock effect, catalyst performance, and recommendations.

  19. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  20. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H; McMahon, Matthew

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of

  1. Wastepaper as a feedstock for ethanol production

    SciTech Connect

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  2. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  3. Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape.

    PubMed

    Riedinger, Verena; Mitesser, Oliver; Hovestadt, Thomas; Steffan-Dewenter, Ingolf; Holzschuh, Andrea

    2015-05-01

    Mass-flowering crops may affect long-term population dynamics, but effects on pollinators have never been studied across several years. We monitored wild bees in oilseed rape fields in 16 landscapes in Germany in two consecutive years. Effects on bee densities of landscape oilseed rape cover in the years of monitoring and in the previous years were evaluated with landscape data from three consecutive years. We fit empirical data to a mechanistic model to provide estimates for oilseed rape attractiveness and its effect on bee productivity in comparison to the rest of the landscape, and we evaluated consequences for pollinator densities in consecutive years. Our results show that high oilseed rape cover in the previous year enhances current densities of wild bees (except for bumble bees). Moreover, we show a strong attractiveness of and dilution on (i.e., decreasing bee densities with increasing landscape oilseed rape cover) oilseed rape for bees during flowering in the current year, modifying the effect of the previous year's oilseed rape cover in the case of wild bees (excluding Bombus). As long as other factors such as nesting sites or natural enemies do not limit bee reproduction, our findings suggest long-term positive effects of mass-flowering crops on bee populations, at least for non-Bombus generalists, which possibly help to maintain crop pollination services even when crop area increases. Similar effects are conceivable for other organisms providing ecosystem services in annual crops and should be considered in future studies.

  4. Critical period of weed control in oilseed rape in two Moroccan regions.

    PubMed

    Maataoui, A; Bouhache, M; Benbella, M; Talouizte, A

    2003-01-01

    The determination of critical period of weed control in oilseed rape is necessary to know the weed control period. To determine the critical period, two fields experiments were carried out during 1995-96 growth season in Loukkos and Saïs regions at two oilseed densities (D1 = 24 and D2 = 36 plants m(-2)). Ten treatments corresponding to plots left weed free or weeded plots until four leaves, flowers bud, flowering, puds formation, and maturity stages of oilseed rape were tested. Density and biomass of weeds were determined at each oilseed stages. Results showed that weed density and biomass were higher in Saïs than in Loukkos sites. For a 10% yield loss, critical period of weed control in Loukkos was from 458 to 720 degree days after emergence (D degrees AE) and from 480 to 720 D degrees AE in oilseed conducted at densities D1 and D2, respectively. In Saïs, critical period of weed control was from 474 to 738 D degrees AE and from 468 to 675 D degrees AE in oilseed conducted at D1 and D2, respectively. It was concluded that the length of the critical period of weed control in oilseed rape grain yield seems to be dependant of the level of the infestation.

  5. Halophytes Energy Feedstocks: Back to Our Roots

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2008-01-01

    Of the Earth s landmass, approx.43% is arid or semi-arid, and 97% of the Earth s water is seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish waters and are common feedstocks for fuel and food (fuel-food feedstocks) in depressed countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse harvesting. Benefits include available nutrients, ample water, and Sun. Careful attention to details and use of saline agriculture fuel feedstocks are required to prevent anthropogenic disasters. It is shown that the potential for fuel-food feedstock halophyte production is high; based on test plot data, it could supply 421.4 Quad, or 94% of the 2004 world energy consumption and sequester carbon, with major impact on the Triangle of Conflicts.

  6. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  7. High Yields for Enhanced Sustainable Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, humankind is in the midst of one of the greatest technological, environmental, and social transitions since the industrial revolution as we strive to replace fossil energy with renewable sources. The Billion Ton Report established a target for U.S. bioenergy feedstock production and throug...

  8. Soil management implications of producing biofuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The demand for domestic, renewable energy resources and the need for more stable and higher commodity prices for farmers and rural communities are drivers for the developing bioenergy industry. First generation feedstocks focused on corn (Zea mays L) and soybean (Glycine max. L. [Merr.]) grain in t...

  9. Balancing feedstock economics and ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this analysis is to examine the economic balance between production of cellulosic biofuel feedstocks and ecosystem services at the farm level. A literature review of the economics of ecosystem services, ecosystem service impacts of biofuel production, and economic factors influencing ...

  10. Catalytic hydroprocessing of heavy oil feedstocks

    NASA Astrophysics Data System (ADS)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  11. Dedicated herbaceous biomass feedstock genetics and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels and bio-based products can be produced from a wide variety of plant feedstocks. To supply enough biomass to meet the proposed need for a bio-based economy a suite of dedicated biomass species must be developed to accommodate a range of growing environments throughout the United States. Re...

  12. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada.

    PubMed

    Yoshimura, Yasuyuki; Beckie, Hugh J; Matsuo, Kazuhito

    2006-01-01

    The occurrence of transgenic herbicide-resistant oilseed rape (Brassica napus) in ruderal (non-crop disturbed) areas has not been investigated previously in Canada. The primary objective of this study was to document their occurrence in two main ruderal areas (along railways and roads) in the province of Saskatchewan, where half of all oilseed rape is grown, and at the port of Vancouver, British Columbia on the west coast of Canada, where most oilseed rape destined for export is transported by rail. During the 2005 growing season, leaf samples of oilseed rape plants were collected at randomly-selected sites along railways and roads across Saskatchewan ecoregions and at Vancouver; infestation area, density, and plant height of oilseed rape were measured at each site. The presence of the glyphosate and glufosinate resistance traits was determined using test strips. The infestation area of oilseed rape, averaged across 155 sampled sites in the Saskatchewan survey, was markedly smaller in populations along railways than roads; in contrast, infestation area averaged across 54 sites in the Vancouver survey was greater for populations along railways than roads. In both surveys, mean plant density was greater for populations found along railways than roads. Two-thirds of oilseed rape plants sampled across Saskatchewan ecoregions and at Vancouver were transgenic, although the relative proportion of plants with the glyphosate or glufosinate resistance trait varied between surveys. Frequency of occurrence of transgenic plants in ruderal areas was similar to the proportion of the oilseed rape area planted with transgenic cultivars in the recent preceding years. A single transgenic B. rapa x B. napus hybrid was found along a road in Vancouver, confirming the relatively high probability of hybridization between these two Brassica species. With current control measures, transgenic oilseed rape populations may persist and spread in these ruderal areas.

  13. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    NASA Astrophysics Data System (ADS)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  14. Sustainable use of biotechnology for bioenergy feedstocks.

    PubMed

    Moon, Hong S; Abercrombie, Jason M; Kausch, Albert P; Stewart, C Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant's biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  15. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    SciTech Connect

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  16. 40 CFR 63.2855 - How do I determine the quantity of oilseed processed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Solvent Extraction for... processed through operations prior to solvent extraction such as screening, dehulling, cracking, drying, and... to the source's oilseed inventory that was estimated previously with indirect measurement...

  17. 40 CFR 63.2855 - How do I determine the quantity of oilseed processed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Solvent Extraction for... processed through operations prior to solvent extraction such as screening, dehulling, cracking, drying, and... to the source's oilseed inventory that was estimated previously with indirect measurement...

  18. Draft genome sequence of the oilseed species Ricinus communis.

    PubMed

    Chan, Agnes P; Crabtree, Jonathan; Zhao, Qi; Lorenzi, Hernan; Orvis, Joshua; Puiu, Daniela; Melake-Berhan, Admasu; Jones, Kristine M; Redman, Julia; Chen, Grace; Cahoon, Edgar B; Gedil, Melaku; Stanke, Mario; Haas, Brian J; Wortman, Jennifer R; Fraser-Liggett, Claire M; Ravel, Jacques; Rabinowicz, Pablo D

    2010-09-01

    Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises approximately 6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.

  19. Biomass Feedstock Composition and Property Database

    DOE Data Explorer

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.)

  20. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  1. Introduction: Integrative Approaches for Estimating Current and Future Feedstock Availability

    SciTech Connect

    West, Tristram O.

    2010-09-08

    Biomass that is used to generate energy, through conversion processes or direct combustion, is referred to as a bioenergy feedstock. Establishment of bioenergy feedstocks as an agricultural commodity has the potential to alter land management, carbon stocks, water quality, and greenhouse gas emissions over large geographic areas. Estimation of current and future feedstock availability is an essential step in assessing potential environmental and economic impacts of feedstock production. The purpose of this special issue is to communicate integrative approaches that combine data and modeling capabilities for estimation of current and future feedstock availability.

  2. Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified?

    PubMed

    Devos, Yann; Hails, Rosemary S; Messéan, Antoine; Perry, Joe N; Squire, Geoffrey R

    2012-02-01

    One of the concerns surrounding the import (for food and feed uses or processing) of genetically modified herbicide tolerant (GMHT) oilseed rape is that, through seed spillage, the herbicide tolerance (HT) trait will escape into agricultural or semi-natural habitats, causing environmental or economic problems. Based on these concerns, three EU countries have invoked national safeguard clauses to ban the marketing of specific GMHT oilseed rape events on their territory. However, the scientific basis for the environmental and economic concerns posed by feral GMHT oilseed rape resulting from seed import spills is debatable. While oilseed rape has characteristics such as secondary dormancy and small seed size that enable it to persist and be redistributed in the landscape, the presence of ferals is not in itself an environmental or economic problem. Crucially, feral oilseed rape has not become invasive outside cultivated and ruderal habitats, and HT traits are not likely to result in increased invasiveness. Feral GMHT oilseed rape has the potential to introduce HT traits to volunteer weeds in agricultural fields, but would only be amplified if the herbicides to which HT volunteers are tolerant were used routinely in the field. However, this worst-case scenario is most unlikely, as seed import spills are mostly confined to port areas. Economic concerns revolve around the potential for feral GMHT oilseed rape to contribute to GM admixtures in non-GM crops. Since feral plants derived from cultivation (as distinct from import) occur at too low a frequency to affect the coexistence threshold of 0.9% in the EU, it can be concluded that feral GMHT plants resulting from seed import spills will have little relevance as a potential source of pollen or seed for GM admixture. This paper concludes that feral oilseed rape in Europe should not be routinely managed, and certainly not in semi-natural habitats, as the benefits of such action would not outweigh the negative effects of

  3. World oilseed situation and US export opportunities, November 1983. Foreign agriculture circular

    SciTech Connect

    Not Available

    1983-11-01

    Tight supplies have continued to dominate the oilseeds and products situation since the October report, with estimated world oilseed production (including flaxseed) dropping by half a million tons. Increased projections of world soybean and peanut supplies were more than offset by reduced estimates of cottonseed output, as well as smaller reductions in prospective sunflower and rapeseed output. Forecast protein meal consumption dropped slightly from last month's level; forecast vegetable oil consumption also dropped slightly from last month's level.

  4. In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production.

    PubMed

    Olivares-Palma, S M; Meale, S J; Pereira, L G R; Machado, F S; Carneiro, H; Lopes, F C F; Maurício, R M; Chaves, A V

    2013-08-01

    Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability.

  5. In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production

    PubMed Central

    Olivares-Palma, S. M.; Meale, S. J.; Pereira, L. G. R.; Machado, F. S.; Carneiro, H.; Lopes, F. C. F.; Maurício, R. M.; Chaves, A. V.

    2013-01-01

    Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability. PMID:25049890

  6. Method and apparatus for treating a cellulosic feedstock

    DOEpatents

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  7. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect

    McFarlane, Joanna; Robinson, Sharon M

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  8. Production of bacterial cellulose from alternate feedstocks

    SciTech Connect

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  9. Development of feedstocks for cellulosic biofuels

    PubMed Central

    Somerville, Chris

    2012-01-01

    The inclusion of cellulosic ethanol in the Energy Independence and Security Act (EISA) of 2007 and the revised Renewable Fuel Standard (RFS2) has spurred development of the first commercial scale cellulosic ethanol biorefineries. These efforts have also revived interest in the development of dedicated energy crops selected for biomass productivity and for properties that facilitate conversion of biomass to liquid fuels. While many aspects of developing these feedstocks are compatible with current agricultural activities, improving biomass productivity may provide opportunities to expand the potential for biofuel production beyond the classical research objectives associated with improving traditional food and feed crops. PMID:22615716

  10. Production of Bacterial Cellulose from Alternate Feedstocks

    SciTech Connect

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  11. New process hydrotreats metal-rich feedstocks

    SciTech Connect

    Langhout, W.C.V.Z.; Ouwerkerk, C.; Pronk, K.M.A.

    1980-01-01

    Shell Internationale Petroleum Maatschappij B.V. has developed a hydroprocessing procedure suitable for heavy residual feeds with metal contents of up to about 100 ppm, and Shell plans to introduce soon a process which will enable the catalytic hydrotreating of even the heaviest metal-rich feedstocks. This new process will be studied in an experimental unit expected to be on stream by the end of 1981 at a Venezuelan refinery. Also discussed are the catalytic hydroprocessing of residual material, including the roles of hydrodemetallization, h

  12. Components of a rice-oilseed rape production system augmented with trichoderma sp. Tri-1 control sclerotinia sclerotiorum on oilseed rape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia sclerotiorum causes serious yield losses on many crops throughout the world. In two field trials conducted at the same location in consecutive years, a treatment containing formulated Trichoderma harzianum-1 (Tri-1) resulted in oilseed rape seed yield that was significantly greater than...

  13. Spatially structured population dynamics in feral oilseed rape.

    PubMed Central

    Crawley, Michael J.; Brown, Susan L.

    2004-01-01

    We studied the population dynamics of feral oilseed rape (Brassica napus) for 10 years (1993-2002) in 3658 adjacent permanent 100 m quadrats in the verges of the M25 motorway around London, UK. The aim was to determine the relative importance of different factors affecting the observed temporal patterns of population dynamics and their spatial correlations. A wide range of population dynamics was observed (downward or upward trends, cycles, local extinctions and recolonizations), but overall the populations were not self-replacing (lambda < 1). Many quadrats remained unoccupied throughout the study period, but a few were occupied at high densities for all 10 years. Most quadrats showed transient oilseed rape populations, lasting 1-4 years. There were strong spatial patterns in mean population density, associated with soil conditions and the successional age of the plant community dominating the verge, and these large-scale spatial patterns were highly consistent from year to year. The importance of seed spilled from trucks in transit to the processing plant at Erith in Kent was confirmed: rape populations were significantly higher on the 'to Erith' verge than the 'from Erith' verge (overall mean 2.83-fold greater stem density). Quadrats in which lambda > 1 were much more frequent in the 'to Erith' verge, indicating that seed immigration can give the spurious impression of self-replacing population dynamics in time-series analysis. There was little evidence of a pervasive Moran effect, and climatic forcing did not produce widespread large-scale synchrony in population dynamics for the motorway as a whole; just 23% of quadrats had significant rank correlations with the mean time-series. There was, however, significant local spatial synchrony of population dynamics, apparently associated with soil disturbance and seed input. This study draws attention to the possibility that different processes may impose population synchrony at different scales. We hypothesize that

  14. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  15. Invasive plants as feedstock for biochar and bioenergy production.

    PubMed

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time.

  16. Low level impurities in imported wheat are a likely source of feral transgenic oilseed rape (Brassica napus L.) in Switzerland.

    PubMed

    Schulze, Juerg; Brodmann, Peter; Oehen, Bernadette; Bagutti, Claudia

    2015-11-01

    In Switzerland, the cultivation of genetically modified (GM) oilseed rape (Brassica napus L.) and the use of its seeds for food and feed are not permitted. Nevertheless, the GM oilseed rape events GT73, MS8×RF3, MS8 and RF3 have recently been found in the Rhine port of Basel, Switzerland. The sources of GM oilseed rape seeds have been unknown. The main agricultural good being imported at the Rhine port of Basel is wheat and from 2010 to 2013, 19% of all Swiss wheat imports originated from Canada. As over 90% of all oilseed rape grown in Canada is GM, we hypothesised that imports of Canadian wheat may contain low level impurities of GM oilseed rape. Therefore, waste fraction samples gathered during the mechanical cleaning of Canadian wheat from two Swiss grain mills were analysed by separating oilseed rape seeds from waste fraction samples and testing DNA of pooled seeds for the presence of transgenes by real-time PCR. Furthermore, oilseed rape seeds from each grain mill were sown in a germination experiment, and seedling DNA was tested for the presence of transgenes by real-time PCR. GT73, MS8×RF3, MS8 and RF3 oilseed rape was detected among seed samples and seedlings of both grain mills. Based on this data, we projected a mean proportion of 0.005% of oilseed rape in wheat imported from Canada. Besides Canadian wheat, the Rhine port of Basel does not import any other significant amounts of agricultural products from GM oilseed rape producing countries. We therefore conclude that Canadian wheat is the major source of unintended introduction of GM oilseed rape seeds into Switzerland.

  17. Preparation of gasification feedstock from leafy biomass.

    PubMed

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  18. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  19. Bibliography on Biomass Feedstock Research: 1978-2002

    SciTech Connect

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  20. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production.

    PubMed

    Liu, Fushan; Zhao, Qianru; Mano, Noel; Ahmed, Zaheer; Nitschke, Felix; Cai, Yinqqi; Chapman, Kent D; Steup, Martin; Tetlow, Ian J; Emes, Michael J

    2016-03-01

    We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.

  1. Flowering Dynamics and Pollinator Visitation of Oilseed Echium (Echium plantagineum)

    PubMed Central

    Eberle, Carrie A.; Forcella, Frank; Gesch, Russ; Weyers, Sharon; Peterson, Dean; Eklund, James

    2014-01-01

    Echium (Echium plantagineum L.) is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. Seeds were sown in field plots over three years in western Minnesota in spring (early-sown) or early summer (late-sown), and flower abundance, pollinator visitation, and seed yields were studied. Initial flowering commenced 41 to 55 d after sowing, and anthesis duration (first flowering to harvest) was 34 to 70 d. Late sowing dates delayed anthesis, but increased the intensity of visitation by pollinators. Cumulative flower densities ranged from 1 to 4.5 billion ha−1. Flowers attracted numerous honey bees (Apis mellifera L.), as many as 35 per minute of observation, which represented about 50% of all insect visitors. Early-sown echium produced seed yields up to 750 kg ha−1, which were 2–29 times higher than those of late-sown echium. Early sowing of echium in Minnesota provides abundant floral resources for pollinators for up to two months and simultaneously produces seed yields whose profits rival those of corn (Zea mays L.). PMID:25427071

  2. Transgenic oilseed crops as an alternative to fish oils.

    PubMed

    Sayanova, Olga; Napier, Johnathan A

    2011-11-01

    Growing evidence suggests that omega-3 long chain polyunsaturated fatty acids (VLC-PUFAs), especially eicosapentaenoic acid (EPA; 20:5Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6Δ4,7,10,13,16,19) play critical roles in human health and development. VLC-PUFAs are mainly found in fish, some fungi, marine bacteria and microalgae. Currently, the predominant dietary sources of VLC-PUFAs are marine fish and seafood. However, the increasing demand for fish and fish oils is putting enormous pressure on marine ecosystems leading to a depletion of fish stocks while commercial cultivation of marine microorganisms and aquaculture are not sustainable and cannot compensate for the shortage in fish supply. Therefore, there is an obvious requirement for an alternative and sustainable source for VLC-PUFAs. Over the last decade, many genes encoding the primary VLC-PUFAs biosynthetic activities became available providing a toolkit for the "reverse-engineering" of transgenic plants to produce fish oils. In this review, we will describe the recent advances in this field and the insights they give us into the complexities of metabolic engineering of oil-seed crops producing VLC-PUFAs.

  3. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    PubMed

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties.

  4. Cadmium uptake and speciation changes in the rhizosphere of cadmium accumulator and non-accumulator oilseed rape varieties.

    PubMed

    Su, Dechun; Xing, Jianping; Jiao, Weiping; Wong, Woonchung

    2009-01-01

    Characteristics of cadmium (Cd) uptake kinetics and distribution of Cd speciation in the rhizosphere for Cd accumulator and non-accumulator oilseed rape varieties were investigated under nutrient solution and rhizobox soil culture conditions. The results showed that the maximal influx (V(max)) for Cd2+ and Km were significantly different for the two oilseed rape varieties. The value of V(max) for Cd accumulator oilseed rape Zhucang Huazi was two-fold greater than that for oilseed rape Chuan you II-93. The exchangeable Cd concentration in the rhizosphere was significantly lower than in non-rhizospheric soils supplemented with CdSO4 for both the varieties. Carbonate-bound Cd in the rhizosphere of Cd accumulator oilseed rape was significantly higher than that in the rhizosphere of non-accumulator oilseed rape and non-rhizospheric soil. Cd accumulator oilseed rape had a higher Cd2+ affinity and more ability to uptake insoluble Cd in the soil than the non-accumulator oilseed rape.

  5. World oilseed situation and US export opportunities, June 1982. Foreign agriculture circular

    SciTech Connect

    Not Available

    1982-06-01

    World oilseed output for 1982/83 is forecast at 175 million tons, unchanged from May, but up 2.2 million tons from 1981/82. World soybean production for 1981/82 remains unchanged from last month's estimate. Export estimates for soybeans for both Argentina and the United States were adjusted upward to reflect recent activity. U.S. exports of soybeans for 1981/82 are forecast at 24.5 million tons, 3 percent above the record in 1979/80. Spain has tendered for at least 20,000 tons of sunflowerseed oil and could possibly be in the market for sunflowerseed in the near future. Mexico's increasing use of oilseeds and reduced safflower and cottonseed production has also stimulated significant imports of U.S. sunflowerseed. Trade barriers and policies: Japan announced various measures to liberalize imports in May. These include tariff reductions on 4 oilseed products.

  6. Food potentials of some unconventional oilseeds grown in Nigeria--a brief review.

    PubMed

    Badifu, G I

    1993-05-01

    A brief review of literature on kernels of Citrullus and Cucumeropsis ('egusi' melon) species, Telfairia occidentalis (fluted pumpkin), Lagenaria (gourd) species of all of Cucurbitaceae family and other oilseeds such as Pentaclethra macrophylla (African oil bean), Parkia spp. (African locust bean) both of Mimosaceae family and Butyrospermum paradoxum (shea butter) of Sapotaceae family which are grown and widely used as food in Nigeria is presented. The kernels of species of Cucurbitaceae form the bulk of unconventional oilseeds used for food in Nigeria. The nutritional value of some of the kernels and the physicochemical properties and storage stability of the oils obtained from them are discussed. The various consumable forms in which they exist are also described. The problems and prospects of these neglected oilseeds in Nigeria are highlighted.

  7. Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow.

    PubMed

    Devos, Yann; Reheul, Dirk; de Schrijver, Adinda; Cors, François; Moens, William

    2004-01-01

    The potential commercialization of genetically modified herbicide-tolerant (GMHT) oilseed rape in Europe raises various concerns about their potential environmental and agronomic impacts, especially those associated with the escape of transgenes. Pollen of oilseed rape can be dispersed in space, resulting in the fertilization of sympatric compatible wild relatives (e.g. Brassica rapa) and oilseed rape cultivars grown nearby (GM and/or non-GM Brassica napus). The spatial and temporal dispersal of seeds of oilseed rape may lead to feral oilseed rape populations outside the cropped areas and oilseed rape volunteers in subsequent crops in the rotation. The incorporation of a HT trait(s) may increase the fitness of the recipient plants, making them more abundant and persistent, and may result in weeds that are difficult to control by the herbicide(s) to which they are tolerant. Vertical gene flow from transgenic oilseed rape to non-GM counterparts may also have an impact on farming and supply chain management, depending on labelling thresholds for the adventitious presence of GM material in non-GM products. Given the extent of pollen and seed dispersal in oilseed rape, it is obvious that the safe and sound integration of GMHT oilseed rape in Europe may require significant on-farm and off-farm management efforts. Crucial practical measures that can reduce vertical gene flow include (1) isolating seed production of Brassica napus, (2) the use of certified seed, (3) isolating fields of GM oilseed rape, (4) harvesting at the correct crop development stage with properly adjusted combine settings, (5) ensuring maximum germination of shed seeds after harvest, (6) controlling volunteers in subsequent crops, and (7) keeping on-farm records. The implementation of the recommended practices may, however, be difficult, entailing various challenges.

  8. Developing alternative feedstocks for fuel alcohol

    SciTech Connect

    Verma, V.K.

    1982-06-01

    This paper briefly reviews recent research to examine the viability of energy sorghum as a feedstock for producing fuel alcohol. Energy sorghum is the name given to any sweet sorghum shown to be feasible for producing fuel alcohol. Energy sorghum can grow on a variety of soils, in 90 day cycles, with up to three crops a year. Crop rotation is rarely needed; most of the nitrogen and potassium returns to the soil. Harmon Engineering and Testing initiated an inhouse program to research sweet sorghum development. Equipment specifications and preliminary results are given. An ''energy farm'' process is explained step by step. Stalk juice, grain, and stalk fiber yields are listed. The use of bagasse and carbon dioxide is also considered.

  9. Assessment of coal liquids as refinery feedstocks

    SciTech Connect

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  10. Assessment of coal liquids as refinery feedstocks

    SciTech Connect

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  11. Starch as a feedstock for bioproducts and packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much progress has been achieved in developing starch-based feedstocks as a partial replacement for petroleum-based feedstocks. Although starch remains a poor direct substitute for plastics, composite starch-based materials have useful functional properties and are in commercial production as a repla...

  12. Densification of Herbaceous Bioenergy Feedstocks for Transportation and Handling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vital component of a sustainable bioconversion industry that continues to be conceptualized and addressed by many is the supply, collection, and delivery of lignocellulosic feedstocks --- the feedstock supply system --- to bioconversion facilities. Lindley and Backer (1994) identified that low bul...

  13. Biodiesel from non-food alternative feed-stock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  14. World oilseed situation and U. S. export opportunities, March 1984. Foreign agriculture circular

    SciTech Connect

    Not Available

    1984-03-01

    The world oilseed supply situation tightened in this month with estimated world oilseed, meal and oil production all down from the last month. Reduced peanut and sunflower seed output in drought-damaged areas in Africa more than offset an increase in Argentine soybean output. The protein meal sector remained quiet, with an adjustment in peanut meal production and a reduction in Soviet soybean meal imports. The situation for vegetable and marine oils also remained quiet during the month, with offsetting reductions of Singapore's palm oil imports and exports indicating that country's decline as a transshipper of palm oil.

  15. Functional properties, nutritional value, and industrial applications of Niger Oilseeds (Guizotia abyssinica Cass.).

    PubMed

    Ramadan, Mohamed Fawzy

    2012-01-01

    Non-conventional seeds are being considered as novel food because their constituents have unique chemical properties and may augment the supply of nutritional and functional products. Niger (Guizotia abyssinica Cass.) seed and its crude oil have been widely used in traditional nutritional and medicinal applications. Consequently, niger seed has been extensively studied for its nutritional value, biological activities, and antioxidative properties. In consideration of their potential utilization, detailed knowledge on the composition of niger oilseeds is of major importance. The diversity of applications to which niger seed can be put gives this oilseed great industrial importance. This review summarizes the nutritional value, functional properties, and industrical applications of niger seeds.

  16. Specifics of soil temperature under winter oilseed rape canopy

    NASA Astrophysics Data System (ADS)

    Krčmářová, Jana; Středa, Tomáš; Pokorný, Radovan

    2014-09-01

    The aim of this study was to evaluate the course of soil temperature under the winter oilseed rape canopy and to determine relationships between soil temperature, air temperature and partly soil moisture. In addition, the aim was to describe the dependence by means of regression equations usable for pests and pathogens prediction, crop development, and yields models. The measurement of soil and near the ground air temperatures was performed at the experimental field Žabiče (South Moravia, the Czech Republic). The course of temperature was determined under or in the winter oilseed rape canopy during spring growth season in the course of four years (2010 - 2012 and 2014). In all years, the standard varieties (Petrol, Sherpa) were grown, in 2014 the semi-dwarf variety PX104 was added. Automatic soil sensors were positioned at three depths (0.05, 0.10 and 0.20 m) under soil surface, air temperature sensors in 0.05 m above soil surfaces. The course of soil temperature differs significantly between standard (Sherpa and Petrol) and semi-dwarf (PX104) varieties. Results of the cross correlation analysis showed, that the best interrelationships between air and soil temperature were achieved in 2 hours delay for the soil temperature in 0.05 m, 4 hour delay for 0.10 m and 7 hour delay for 0.20 m for standard varieties. For semi-dwarf variety, this delay reached 6 hour for the soil temperature in 0.05 m, 7 hour delay for 0.10 m and 11 hour for 0.20 m. After the time correction, the determination coefficient (R2) reached values from 0.67 to 0.95 for 0.05 m, 0.50 to 0.84 for 0.10 m in variety Sherpa during all experimental years. For variety PX104 this coefficient reached values from 0.51 to 0.72 in 0.05 m depth and from 0.39 to 0.67 in 0.10 m depth in the year 2014. The determination coefficient in the 0.20 m depth was lower for both varieties; its values were from 0.15 to 0.65 in variety Sherpa. In variety PX104 the values of R2 from 0.23 to 0.57 were determined. When using

  17. Feedstock Quality Factor Calibration and Data Model Development

    SciTech Connect

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  18. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    DOEpatents

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  19. Do yield and quality of big bluestem and switchgrass feedstock decline over winter?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks for thermochemical platforms. Feedstock storage, fall harvest constraints, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock...

  20. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture1[OPEN

    PubMed Central

    Schwender, Jörg; Hebbelmann, Inga; Heinzel, Nicolas; Hildebrandt, Tatjana; Rogers, Alistair; Klapperstück, Matthias; Schreiber, Falk; Borisjuk, Ljudmilla; Rolletschek, Hardy

    2015-01-01

    Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. Overall, we observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Quantitative data were also used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3′,5′-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism. PMID:25944824

  1. Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland.

    PubMed

    Hecht, Mirco; Oehen, Bernadette; Schulze, Jürg; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).

  2. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin Lambert

    2011-01-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  3. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.

    PubMed

    Dale, Virginia H; Kline, Keith L; Wright, Lynn L; Perlack, Robert D; Downing, Mark; Graham, Robin L

    2011-06-01

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  4. Echium as an oilseed crop in Minnesota: Flowering dates, pollinators, and seed yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Echium (Echium plantagineum) can be a serious winter annual weed in Mediterranean-type environments. However, it also can be an alternative oilseed crop in summer-wet temperate regions. It produces seed oils rich in omega-3 fatty acids. One of these is stearidonic acid, which is desired highly by th...

  5. Registration of an oilseed sunflower germplasm HA-DM1 resistant to sunflower downy mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HA-DM1 (Reg. No.xxx, PI 674793) sunflower (Helianthus annuus L.) germplasm was developed and released cooperatively by the USDA-ARS, Sunflower and Plant Biology Research Unit and the North Dakota Agricultural Experiment Station in 2015. HA-DM1 is a BC2F4 derived oilseed maintainer line from the cros...

  6. Oilseed Radish (Raphanus Sativus) Effects on Soil Structure and Soil Water Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseed radish (Raphanus sativus spp. oleifera) reduces nematode populations. Fall-incorporated radish biomass may also improve soil physical and hydraulic properties to increase the yield and quality of subsequently grown sugarbeet (Beta vulgaris L.). This field study determined radish effects on...

  7. New oilseed crops for fuels and chemicals: ecological and agricultural considerations

    SciTech Connect

    Draper, H.M. III

    1982-01-01

    A new approach to agriculture involving oilseed crops for fuels and chemicals is proposed. Such an approach to biomass energy would be designed to benefit the limited-resource farmer in the United States and the Third World, while at the same time not aggravating global ecological problems such as deforestation and desertification. Since food versus fuel conflicts arise when plants are grown for industrial uses on good lands, productivity questions are examined, with the conclusion that fundamental biological constraints will limit yields on marginal lands. Conventional vegetable oil crops are limited in their climatic requirements or are not well adapted to limited-resource farming; therefore, new oilseeds more adaptable to small farming are proposed. Such plants would be for specialty chemicals or to meet local energy needs. Chemicals produced would be low-volume, labor-intensive, and possibly high-priced. A list of 281 potential new oilseeds is provided, and each is classified according to potential, multiple product potential, and vegetative characteristics. Using climatic data which are available for most areas, a method of making rough productivity estimates for unconventional wild plant oilseeds is proposed, and example resource estimates are provided for the southeastern United States.

  8. 40 CFR 63.2855 - How do I determine the quantity of oilseed processed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Hazardous Air Pollutants: Solvent Extraction for Vegetable Oil... processed through operations prior to solvent extraction such as screening, dehulling, cracking, drying, and... operating months rolling sum of each type oilseed processed by summing the tons of each type of...

  9. 40 CFR 63.2855 - How do I determine the quantity of oilseed processed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oilseed measurements must be determined on an as received basis, as defined in § 63.2872. The as received... accounting month rather than a calendar month basis, and you have 12 complete accounting months of approximately equal duration in a calendar year, you may substitute the accounting month time interval for...

  10. 7 CFR 1412.32 - Direct payment yield for designated oilseed and pulse crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... average of the National Agricultural Statistics Service (NASS) harvested acreage yields for the crop using... 7 Agriculture 10 2011-01-01 2011-01-01 false Direct payment yield for designated oilseed and pulse... Establishment of Yields for Direct and Counter-Cyclical Payments § 1412.32 Direct payment yield for...

  11. 7 CFR 1412.32 - Direct payment yield for designated oilseed and pulse crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... average of the National Agricultural Statistics Service (NASS) harvested acreage yields for the crop using... 7 Agriculture 10 2014-01-01 2014-01-01 false Direct payment yield for designated oilseed and pulse... Establishment of Yields for Direct and Counter-Cyclical Payments § 1412.32 Direct payment yield for...

  12. 7 CFR 1412.32 - Direct payment yield for designated oilseed and pulse crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... average of the National Agricultural Statistics Service (NASS) harvested acreage yields for the crop using... 7 Agriculture 10 2012-01-01 2012-01-01 false Direct payment yield for designated oilseed and pulse... Establishment of Yields for Direct and Counter-Cyclical Payments § 1412.32 Direct payment yield for...

  13. 7 CFR 1412.32 - Direct payment yield for designated oilseed and pulse crops.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... average of the National Agricultural Statistics Service (NASS) harvested acreage yields for the crop using... 7 Agriculture 10 2013-01-01 2013-01-01 false Direct payment yield for designated oilseed and pulse... Establishment of Yields for Direct and Counter-Cyclical Payments § 1412.32 Direct payment yield for...

  14. 7 CFR 1412.32 - Direct payment yield for designated oilseed and pulse crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... average of the National Agricultural Statistics Service (NASS) harvested acreage yields for the crop using... 7 Agriculture 10 2010-01-01 2010-01-01 false Direct payment yield for designated oilseed and pulse... Establishment of Yields for Direct and Counter-Cyclical Payments § 1412.32 Direct payment yield for...

  15. Heterogeneity in the distribution of genetically modified and conventional oilseed rape within fields and seed lots.

    PubMed

    Begg, Graham S; Elliott, Martin J; Cullen, Danny W; Iannetta, Pietro P M; Squire, Geoff R

    2008-10-01

    The implementation of co-existence in the commercialisation of GM crops requires GM and non-GM products to be segregated in production and supply. However, maintaining segregation in oilseed rape will be made difficult by the highly persistent nature of this species. An understanding of its population dynamics is needed to predict persistence and develop potential strategies for control, while to ensure segregation is being achieved, the production of GM oilseed rape must be accompanied by the monitoring of GM levels in crop or seed populations. Heterogeneity in the spatial distribution of oilseed rape has the potential to affect both control and monitoring and, although a universal phenomenon in arable weeds and harvested seed lots, spatial heterogeneity in oilseed rape populations remains to be demonstrated and quantified. Here we investigate the distribution of crop and volunteer populations in a commercial field before and during the cultivation of the first conventional oilseed rape (winter) crop since the cultivation of a GM glufosinate-tolerant oilseed rape crop (spring) three years previously. GM presence was detected by ELISA for the PAT protein in each of three morphologically distinguishable phenotypes: autumn germinating crop-type plants (3% GM), autumn-germinating 'regrowths' (72% GM) and spring germinating 'small-type' plants (17% GM). Statistical models (Poisson log-normal and binomial logit-normal) were used to describe the spatial distribution of these populations at multiple spatial scales in the field and of GM presence in the harvested seed lot. Heterogeneity was a consistent feature in the distribution of GM and conventional oilseed rape. Large trends across the field (50 x 400 m) and seed lot (4 x 1.5 x 1.5 m) were observed in addition to small-scale heterogeneity, less than 20 m in the field and 20 cm in the seed lot. The heterogeneity was greater for the 'regrowth' and 'small' phenotypes, which were likely to be volunteers and included most

  16. Method for determining processability of a hydrocarbon containing feedstock

    SciTech Connect

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  17. Butter as a feedstock for biodiesel production.

    PubMed

    Haas, Michael J; Adawi, Nadia; Berry, William W; Feldman, Elaine; Kasprzyk, Stephen; Ratigan, Brian; Scott, Karen; Landsburg, Emily Bockian

    2010-07-14

    Fatty acid methyl esters (FAME) were produced from cow's milk (Bostaurus) butter by esterification/transesterification in the presence of methanol. The product was assayed according to the Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels (ASTM D 6751). The preparation failed to meet the specifications for flash point, free and total glycerin contents, total sulfur, and oxidation stability. Failures to meet the flash point and free/total glycerin specifications were determined to be due to interference with standard assays for these parameters by short-chain-length fatty acid esters. The oxidation stability of the butterfat FAME was improved by supplementation with a commercial antioxidant formulation. Approximately 725 ppm of antioxidant was required to meet the ASTM-specified stability value for biodiesel. This work indicates that, without further purification to reduce a slightly excessive sulfur content, fatty acid ester preparations produced from butter are unacceptable as sole components of a biodiesel fuel. However, it is possible that even without further purification a butter-based ester preparation could be mixed with biodiesel from other feedstocks to produce a blend that meets the current quality standards for biodiesel. The results presented here also illustrate some potential weaknesses in the accepted methods for biodiesel characterization when employed in the analysis of FAME preparations containing mid- and short-chain fatty acid esters.

  18. Measurement and Control of Glass Feedstocks

    SciTech Connect

    Arel Weisberg

    2007-04-26

    ERCo has developed a laser-based technology for rapid compositional measurements of batch, real-time sorting of cullet, and in-situ measurements of molten glass. This technology, termed LIBS (Laser Induced Breakdown Spectroscopy) can determine whether or not the batch was formulated accurately in order to control glass quality. It can also be used to determine if individual batch ingredients are within specifications. In the case of cullet feedstocks, the sensor can serve as part of a system to sort cullet by color and ensure that it is free of contaminants. In-situ compositional measurements of molten glass are achieved through immersing a LIBS probe directly into the melt in a glass furnace. This technology has been successfully demonstrated in ERCo’s LIBS laboratory for batch analysis, cullet sorting, and glass melt measurements. A commercial batch analyzer has been operating in a PPG fiberglass plant since August 2004. LIBS utilizes a highly concentrated laser pulse to rapidly vaporize and ionize nanograms of the material being studied. As this vapor cools, it radiates light at specific wavelengths corresponding to the elemental constituents (e.g. silicon, aluminum, iron) of the material. The strengths of the emissions correlate to the concentrations of each of the elemental constituents. By collecting the radiated light with a spectrometer capable of resolving and measuring these wavelengths, the elemental composition of the sample is found.

  19. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect

    Jacobson, Jacob J.; Roni, Mohammad S.; Lamers, Patrick; Cafferty, Kara G.

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  20. Short communication: effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture.

    PubMed

    Soder, K J; Brito, A F; Rubano, M D

    2013-04-01

    A 4-unit continuous culture fermentor system was used to evaluate the effects of oilseed supplementation of an herbage-based diet on nutrient digestibility, fermentation profile, and bacterial nitrogen (N) synthesis. Treatments were randomly assigned to fermentors in a 4×4 Latin square design with 7d for diet adaptation and 3d for data and sample collection. Dietary treatments were an herbage-only diet (HERB), or the following ground oilseeds supplemented to an herbage-based diet at 10% of total dry matter (DM) fed: flaxseed (FLAX), canola (CAN), or sunflower (SUN). Apparent DM, organic matter, and neutral detergent fiber digestibility were not affected by diet, averaging 62, 68, and 78%, respectively. True DM and organic matter digestibility were not affected by diet, averaging 78 and 82%, respectively. Fermentor pH and total volatile fatty acids were not affected by diet. Branched-chain volatile fatty acids tended to be lower for HERB compared with the 3 oilseed diets. Ammonia N concentrations were lowest for the HERB diet. Crude protein digestibility was not affected by diet. Flow of NH3-N was lowest for the HERB diet reflecting the lowest culture concentration of NH3-N. Bacterial N flows were lowest for HERB and SUN diets, intermediate for FLAX, and greatest for CAN. Flows of total N, non-NH3-N, and dietary N were not affected by diet. Likewise, efficiency of bacterial N synthesis was not affected by diet. Supplementation with FLAX, CAN, or SUN at 10% of total DM fed did not affect nutrient digestibility or ruminal fermentation compared with an all-herbage diet. The oilseeds tested herein may be considered as alternative energy supplements for grazing dairy cows, particularly during times of low availability of corn. However, in vivo studies are needed to further evaluate the effects of oilseeds supplementation of an herbage-based diet on milk production and composition (specifically human-beneficial fatty acids).

  1. Assessing winter oilseed rape freeze injury based on Chinese HJ remote sensing data*

    PubMed Central

    She, Bao; Huang, Jing-feng; Guo, Rui-fang; Wang, Hong-bin; Wang, Jing

    2015-01-01

    The winter oilseed rape (Brassica napus L.) accounts for about 90% of the total acreage of oilseed rape in China. However, it suffers the risk of freeze injury during the winter. In this study, we used Chinese HJ-1A/1B CCD sensors, which have a revisit frequency of 2 d as well as 30 m spatial resolution, to monitor the freeze injury of oilseed rape. Mahalanobis distance-derived growing regions in a normal year were taken as the benchmark, and a mask method was applied to obtain the growing regions in the 2010–2011 growing season. The normalized difference vegetation index (NDVI) was chosen as the indicator of the degree of damage. The amount of crop damage was determined from the difference in the NDVI before and after the freeze. There was spatial variability in the amount of crop damage, so we examined three factors that may affect the degree of freeze injury: terrain, soil moisture, and crop growth before the freeze. The results showed that all these factors were significantly correlated with freeze injury degree (P<0.01, two-tailed). The damage was generally more serious in low-lying and drought-prone areas; in addition, oilseed rape planted on south- and west-oriented facing slopes and those with luxuriant growth status tended to be more susceptible to freeze injury. Furthermore, land surface temperature (LST) of the coldest day, soil moisture, pre-freeze growth and altitude were in descending order of importance in determining the degree of damage. The findings proposed in this paper would be helpful in understanding the occurrence and severity distribution of oilseed rape freeze injury under certain natural or vegetation conditions, and thus help in mitigation of this kind of meteorological disaster in southern China. PMID:25644468

  2. Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area

    NASA Astrophysics Data System (ADS)

    Pan, Zhuokun; Huang, Jingfeng; Wang, Fumin

    2013-12-01

    Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE ≤ 0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.

  3. Assessing winter oilseed rape freeze injury based on Chinese HJ remote sensing data.

    PubMed

    She, Bao; Huang, Jing-feng; Guo, Rui-fang; Wang, Hong-bin; Wang, Jing

    2015-02-01

    The winter oilseed rape (Brassica napus L.) accounts for about 90% of the total acreage of oilseed rape in China. However, it suffers the risk of freeze injury during the winter. In this study, we used Chinese HJ-1A/1B CCD sensors, which have a revisit frequency of 2 d as well as 30 m spatial resolution, to monitor the freeze injury of oilseed rape. Mahalanobis distance-derived growing regions in a normal year were taken as the benchmark, and a mask method was applied to obtain the growing regions in the 2010-2011 growing season. The normalized difference vegetation index (NDVI) was chosen as the indicator of the degree of damage. The amount of crop damage was determined from the difference in the NDVI before and after the freeze. There was spatial variability in the amount of crop damage, so we examined three factors that may affect the degree of freeze injury: terrain, soil moisture, and crop growth before the freeze. The results showed that all these factors were significantly correlated with freeze injury degree (P<0.01, two-tailed). The damage was generally more serious in low-lying and drought-prone areas; in addition, oilseed rape planted on south- and west-oriented facing slopes and those with luxuriant growth status tended to be more susceptible to freeze injury. Furthermore, land surface temperature (LST) of the coldest day, soil moisture, pre-freeze growth and altitude were in descending order of importance in determining the degree of damage. The findings proposed in this paper would be helpful in understanding the occurrence and severity distribution of oilseed rape freeze injury under certain natural or vegetation conditions, and thus help in mitigation of this kind of meteorological disaster in southern China.

  4. Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect

    Jacobson, J.; Mohammad, R.; Cafferty, K.; Kenney, K.; Searcy, E.; Hansen, J.

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  5. Biodiesel production from low cost and renewable feedstock

    NASA Astrophysics Data System (ADS)

    Gude, Veera; Grant, Georgene; Patil, Prafulla; Deng, Shuguang

    2013-12-01

    Sustainable biodiesel production should: a) utilize low cost renewable feedstock; b) utilize energy-efficient, nonconventional heating and mixing techniques; c) increase net energy benefit of the process; and d) utilize renewable feedstock/energy sources where possible. In this paper, we discuss the merits of biodiesel production following these criteria supported by the experimental results obtained from the process optimization studies. Waste cooking oil, non-edible (low-cost) oils (Jatropha curcas and Camelina Sativa) and algae were used as feedstock for biodiesel process optimization. A comparison between conventional and non-conventional methods such as microwaves and ultrasound was reported. Finally, net energy scenarios for different biodiesel feedstock options and algae are presented.

  6. Feedstock Supply and Logistics: Biomass as a Commodity

    SciTech Connect

    2013-05-06

    The Bioenergy Technologies Office and its partners are developing the technologies and systems needed to sustainably and economically deliver a broad range of biomass in formats that enable their efficient use as feedstocks for biorefineries.

  7. Properties of various plants and animals feedstocks for biodiesel production.

    PubMed

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production.

  8. Fodder beets as a feedstock for alcohol production

    SciTech Connect

    Barney, W.

    1981-09-01

    Fodder beets have been shown to be an attractive feedstock for alcohol production, yielding sufficient sugar to produce approximately 1000 gallons of alcohol per acre. Resistance to diseases found in a given region would have to be evaluated. Storage tests have demonstrated that beets can be stored long enough to make them of interest as a feedstock for alcohol production. Further testing is required to evaluate techniques for reducing sugar losses due to sprouting, respiration, and molding.

  9. Horse manure as feedstock for anaerobic digestion.

    PubMed

    Hadin, Sa; Eriksson, Ola

    2016-10-01

    Horse keeping is of great economic, social and environmental benefit for society, but causes environmental impacts throughout the whole chain from feed production to manure treatment. According to national statistics, the number of horses in Sweden is continually increasing and is currently approximately 360,000. This in turn leads to increasing amounts of horse manure that have to be managed and treated. Current practices could cause local and global environmental impacts due to poor performance or lack of proper management. Horse manure with its content of nutrients and organic material can however contribute to fertilisation of arable land and recovery of renewable energy following anaerobic digestion. At present anaerobic digestion of horse manure is not a common treatment. In this paper the potential for producing biogas and biofertiliser from horse manure is analysed based on a thorough literature review in combination with mathematical modelling and simulations. Anaerobic digestion was chosen as it has a high degree of resource conservation, both in terms of energy (biogas) and nutrients (digestate). Important factors regarding manure characteristics and operating factors in the biogas plant are identified. Two crucial factors are the type and amount of bedding material used, which has strong implications for feedstock characteristics, and the type of digestion method applied (dry or wet process). Straw and waste paper are identified as the best materials in an energy point of view. While the specific methane yield decreases with a high amount of bedding, the bedding material still makes a positive contribution to the energy balance. Thermophilic digestion increases the methane generation rate and yield, compared with mesophilic digestion, but the total effect is negligible.

  10. Sophorolipid production from lignocellulosic biomass feedstocks

    NASA Astrophysics Data System (ADS)

    Samad, Abdul

    The present study investigated the feasibility of production of sophorolipids (SLs) using yeast Candida bombicola grown on hydrolysates derived lignocellulosic feedstock either with or without supplementing oil as extra carbon source. Several researchers have reported using pure sugars and various oil sources for producing SLs which makes them expensive for scale-up and commercial production. In order to make the production process truly sustainable and renewable, we used feedstocks such as sweet sorghum bagasse, corn fiber and corn stover. Without oil supplementation, the cell densities at the end of day-8 was recorded as 9.2, 9.8 and 10.8 g/L for hydrolysate derived from sorghum bagasse, corn fiber, and corn fiber with the addition of yeast extract (YE) during fermentation, respectively. At the end of fermentation, the SL concentration was 3.6 g/L for bagasse and 1.0 g/L for corn fiber hydrolysate. Among the three major sugars utilized by C. bombicola in the bagasse cultures, glucose was consumed at a rate of 9.1 g/L-day; xylose at 1.8 g/L-day; and arabinose at 0.98 g/L-day. With the addition of soybean oil at 100 g/L, cultures with bagasse hydrolysates, corn fiber hydrolysates and standard medium had a cell content of 7.7 g/L; 7.9 g/L; and 8.9 g/L, respectively after 10 days. The yield of SLs from bagasse hydrolysate was 84.6 g/L and corn fiber hydrolysate was15.6 g/L. In the same order, the residual oil in cultures with these two hydrolysates was 52.3 g/L and 41.0 g/L. For this set of experiment; in the cultures with bagasse hydrolysate; utilization rates for glucose, xylose and arabinose was recorded as 9.5, 1.04 and 0.08 g/L-day respectively. Surprisingly, C. bombicola consumed all monomeric sugars and non-sugar compounds in the hydrolysates and cultures with bagasse hydrolysates had higher yield of SLs than those from a standard medium which contained pure glucose at the same concentration. Based on the SL concentrations and considering all sugars consumed

  11. Selecting Metrics for Sustainable Bioenergy Feedstocks

    SciTech Connect

    Dale, Virginia H; Kline, Keith L; Mulholland, Patrick J; Downing, Mark; Graham, Robin Lambert; Wright, Lynn L

    2009-01-01

    Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop

  12. Development of Improved Chemicals and Plastics from Oilseeds

    SciTech Connect

    Nugent, Patricia A.; Lysenko, Zenon

    2006-11-09

    The overall objective of this program was to develop technology that can be applied to the production of various chemicals and plastics from seed oils. This research and development program included activities in all four key barrier areas identified in the US DOE Technology Roadmap for Plant/Crop-Based Renewable Resources, namely Plant Science, Production, Processing, and Utilization. Participants in the project included The Dow Chemical Company, Castor Oil, Inc., and the USDA Western Regional Research Center (WRRC). The objective of this production task was to evaluate and develop metathesis catalyst technology as a means of utilizing seed oils as feedstocks for the chemical industry. Specifically, ethenolysis of fatty acid methyl esters, FAME’s, leads to functionalized derivatives. These serve as valuable starting points for materials which cascade into a variety of applications, many of which have a current market presence. The relatively recent discovery and commercial availability of a family of metathesis catalysts which are tolerant of polar functional groups and the acquisition and implementation of high throughput synthesis and screening infrastructure led to a prime opportunity to investigate this project area.

  13. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 35–50% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  14. Feedstock-flexible olefins plants can be efficient

    SciTech Connect

    DeHaan, S.

    1983-09-26

    Factors such as relative price, political policies, the world economic recovery, and propylene and other byproduct markets will determine the best future olefin feedstock. The choice of feedstocks will have a significant impact on plant investment by increasing sizes and/or requiring additional processing steps. The European and Japanese olefins industries have traditionally been based on liquid feedstock, naphthas, and gas oils. The U.S. industry's base was nearly totally natural gas derived ethane and LPG until a surge of interest in liquid feedstocks in the 1970s. Today, about one-third of the U.S. ethylene plant capacity is designed to utilize liquid feedstocks. The European and Japanese industries remain predominantly liquid feed based. Summary. While a multi-feed olefins plant is a complex entity, a properly conceived olefins design can provide for a wide range of feedstock flexibility, without significantly compromising overall plant efficiency. The optimization of any such operation is an extremely detailed and difficult problem. Therefore, it warrants the use of the best available digital technology. A sophisticated simulator/optimizer can provide valuable guidance to plant operators. Well trained operators assisted by a reliable closed-loop computer control system and a plant optimizer can greatly enhance plant profitability by maintaining optimum performance and maximum on-stream time.

  15. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland.

    PubMed

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.

  16. Unexpected Diversity of Feral Genetically Modified Oilseed Rape (Brassica napus L.) Despite a Cultivation and Import Ban in Switzerland

    PubMed Central

    Schulze, Juerg; Frauenknecht, Tina; Brodmann, Peter; Bagutti, Claudia

    2014-01-01

    Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds. PMID:25464509

  17. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  18. Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin

    PubMed Central

    Wyatt, Lindsay E; Strickler, Susan R; Mueller, Lukas A; Mazourek, Michael

    2016-01-01

    Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, ‘Sweet REBA’, and an oilseed pumpkin, ‘Lady Godiva’. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality. PMID:27688889

  19. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S.; Lin, Zhi-Qing; Liu, Ying; Li, Miao; Yuan, Linxi

    2016-01-01

    The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd+2) and lead (Pb+2) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg-1) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals (O2•¯), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant. PMID:28018407

  20. Indications of Selenium Protection against Cadmium and Lead Toxicity in Oilseed Rape (Brassica napus L.).

    PubMed

    Wu, Zhilin; Yin, Xuebin; Bañuelos, Gary S; Lin, Zhi-Qing; Liu, Ying; Li, Miao; Yuan, Linxi

    2016-01-01

    The present study investigated the beneficial role of selenium (Se) in protecting oilseed rape (Brassica napus L.) plants from cadmium (Cd(+2)) and lead (Pb(+2)) toxicity. Exogenous Se markedly reduced Cd and Pb concentration in both roots and shoots. Supplementation of the medium with Se (5, 10, and 15 mg kg(-1)) alleviated the negative effect of Cd and Pb on growth and led to a decrease in oxidative damages caused by Cd and Pb. Furthermore, Se-enhanced superoxide free radicals ([Formula: see text]), hydrogen peroxide (H2O2), and lipid peroxidation, as indicated by malondialdehyde accumulation, but decreased superoxide dismutase and glutathione peroxidase activities. Meanwhile, the presence of Cd and Pb in the medium affected Se speciation in shoots. The results suggest that Se could alleviate Cd and Pb toxicity by preventing oxidative stress in oilseed rape plant.

  1. Use of reverse micelles for the simultaneous extraction of oil, proteins, and glucosinolates from cruciferous oilseeds.

    PubMed

    Ugolini, Luisa; De Nicola, Gina; Palmieri, Sandro

    2008-03-12

    Cruciferous oilseeds are important sources of oil, proteins, and glucosinolates (GLs), potentially available when biorefinery processes are used. The proposed extraction technology is based on the use of reverse micelles (RMs) made with cetyltrimethylammonium bromide (CTAB) dispersed in organic solvent. The physicochemical properties of this extraction system and the good water solubility of many high value compounds, such as GLs and some proteins, permit the simultaneous extraction of oil, and these products from cruciferous oilseed meals. This procedure is based on three main steps: (i) seed conditioning; (ii) solid-liquid extraction by RM solution; and (iii) back-transfer of the RM solution for recovery of the extracted compounds. The method makes it possible to simultaneously extract almost the same amount of oil as with pure organic solvents used in the current extraction plants and more than 90% of soluble proteins and GLs. It is a promising biorefinery technology alternative to traditional oil extraction processes.

  2. Comparative analysis of Cucurbita pepo metabolism throughout fruit development in acorn squash and oilseed pumpkin.

    PubMed

    Wyatt, Lindsay E; Strickler, Susan R; Mueller, Lukas A; Mazourek, Michael

    2016-01-01

    Both the fruit mesocarp and the seeds of winter squash can be used for consumption, although the focus of breeding efforts varies by cultivar. Cultivars bred for fruit consumption are selected for fruit mesocarp quality traits such as carotenoid content, percent dry matter, and percent soluble solids, while these traits are essentially ignored in oilseed pumpkins. To compare fruit development in these two types of squash, we sequenced the fruit transcriptome of two cultivars bred for different purposes: an acorn squash, 'Sweet REBA', and an oilseed pumpkin, 'Lady Godiva'. Putative metabolic pathways were developed for carotenoid, starch, and sucrose synthesis in winter squash fruit and squash homologs were identified for each of the structural genes in the pathways. Gene expression, especially of known rate-limiting and branch point genes, corresponded with metabolite accumulation both across development and between the two cultivars. Thus, developmental regulation of metabolite genes is an important factor in winter squash fruit quality.

  3. Large-scale pollination experiment demonstrates the importance of insect pollination in winter oilseed rape.

    PubMed

    Lindström, Sandra A M; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2016-03-01

    Insect pollination, despite its potential to contribute substantially to crop production, is not an integrated part of agronomic planning. A major reason for this are knowledge gaps in the contribution of pollinators to yield, which partly result from difficulties in determining area-based estimates of yield effects from insect pollination under field conditions. We have experimentally manipulated honey bee Apis mellifera densities at 43 oilseed rape Brassica napus fields over 2 years in Scandinavia. Honey bee hives were placed in 22 fields; an additional 21 fields without large apiaries in the surrounding landscape were selected as controls. Depending on the pollination system in the parental generation, the B. napus cultivars in the crop fields are classified as either open-pollinated or first-generation hybrids, with both types being open-pollinated in the generation of plants cultivated in the fields. Three cultivars of each type were grown. We measured the activity of flower-visiting insects during flowering and estimated yields by harvesting with small combine harvesters. The addition of honey bee hives to the fields dramatically increased abundance of flower-visiting honey bees in those fields. Honey bees affected yield, but the effect depended on cultivar type (p = 0.04). Post-hoc analysis revealed that open-pollinated cultivars, but not hybrid cultivars, had 11% higher yields in fields with added honey bees than those grown in the control fields (p = 0.07). To our knowledge, this is the first whole-field study in replicated landscapes to assess the benefit of insect pollination in oilseed rape. Our results demonstrate that honey bees have the potential to increase oilseed rape yields, thereby emphasizing the importance of pollinator management for optimal cultivation of oilseed rape.

  4. Survey of polycyclic aromatic hydrocarbons of vegetable oils and oilseeds by GC-MS in China.

    PubMed

    Shi, Long-Kai; Zhang, Dong-Dong; Liu, Yu-Lan

    2016-01-01

    There is a lack of information regarding the occurrence and content of contamination of polycyclic aromatic hydrocarbon (PAH) in edible vegetable oils and oilseeds used for oil production in China. By combining the advantages of ultrasound-assisted extraction, low temperature separation and silica SPE purification, a method for the determination of the USEPA, 16 PAHs was developed based on GC-MS to fill this gap. The method recoveries for oils and oilseeds were 84.4-113.8% and 84.3-115.3%, respectively. The LODs and LOQs for 16 PAHs were ranged from 0.06-0.17 and 0.19-0.56 μg kg(-1), respectively. Based on the established method, PAH concentrations in 21 edible oils and 17 oilseeds were determined. Almost all the PAHs were found in all the samples tested, especially the light PAHs (LPAHs). Three oil samples exceeded the maximum level of 10 μg kg(-1) for BaP set by China. However, five and six oil samples, respectively, exceeded the maximum limits of 2 and 10 μg kg(-1) set for BaP and PAH4 by the European Union. The concentrations of PAH16 in oilseed samples were 1.5 times higher than corresponding oil samples. The relationships between PAH4 and PAH8, PAH4 and PAH16 as well as PAH8 and PAH16 indicates that PAH4 is a sufficient surrogate for the contamination level of PAHs in edible oils when compared with PAH8.

  5. Vermicompost derived from different feedstocks as a plant growth medium.

    PubMed

    Warman, P R; Anglopez, M J

    2010-06-01

    This study determined feedstock effects on earthworm populations and the quality of resulting vermicomposts produced from different types of feedstocks using different vermicomposting durations. Feedstock combinations (Kitchen Paper Waste (KPW), Kitchen Yard Waste (KYW), Cattle Manure Yard Waste (CMY)), three durations of vermicomposting (45, 68 or 90 days), and two seed germination methods (with two concentrations of vermicompost) for radish, marigold and upland cress, served as the independent variables. The worms (Eisenia fetida) doubled their weight by day 68 in KPW and CMY vermicomposts and day 90 KPW vermicompost produced the greatest weight of worms. The direct seed germination method (seeding into soil or vermicompost-soil mixtures) indicated that KPW and KYW feedstocks decreased germination compared to the control, even in mature vermicompost. Seed germination was greater in the water extract method; however, most of the vermicompost extracts suppressed germination of the three seed species compared to the water controls. Vermicomposts from all three feedstocks increased leaf area and biomass compared to the control, especially in the 10% vermicompost:soil mix. Thus, seed germination and leaf area or plant biomass for these three species are contrasting vermicompost quality indicators.

  6. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species.

    PubMed

    Mason, A S; Snowdon, R J

    2016-11-01

    Oilseed rape (Brassica napus) is one of our youngest crop species, arising several times under cultivation in the last few thousand years and completely unknown in the wild. Oilseed rape originated from hybridisation events between progenitor diploid species B. rapa and B. oleracea, both important vegetable species. The diploid progenitors are also ancient polyploids, with remnants of two previous polyploidisation events evident in the triplicated genome structure. This history of polyploid evolution and human agricultural selection makes B. napus an excellent model with which to investigate processes of genomic evolution and selection in polyploid crops. The ease of de novo interspecific hybridisation, responsiveness to tissue culture, and the close relationship of oilseed rape to the model plant Arabidopsis thaliana, coupled with the recent availability of reference genome sequences and suites of molecular cytogenetic and high-throughput genotyping tools, allow detailed dissection of genetic, genomic and phenotypic interactions in this crop. In this review we discuss the past and present uses of B. napus as a model for polyploid speciation and evolution in crop species, along with current and developing analysis tools and resources. We further outline unanswered questions that may now be tractable to investigation.

  7. New catalysts improves heavy feedstock hydro-cracking

    SciTech Connect

    Hoek, A.; Huizinga, T.; Esener, A.A.; Maxwell, I.E.; Stork, W. ); van de Meerakker, F.J. ); Sy, O. )

    1991-04-22

    A new zeolite-Y-based second-stage hydrocracking catalyst, designated S-703, has been developed by Shell. Laboratory testing and commercial use show it has significantly improved performance with respect to gas make and middle-distillate selectivity in processing heavy feedstocks when compared to a Shell catalyst, S-753, developed earlier. Further, the new catalyst exhibits enhanced stability. Extensive laboratory testing of the S-703 catalyst has been carried out under single-stage, stacked- bed, two-stage-flow, and series-flow conditions. Commercial experience with the new catalyst has now been obtained in several units. To date, the commercial results have confirmed the laboratory results in terms of the superior, heavy- feedstock processing performance of the new catalyst in all respects. Because the trend toward heavier feedstocks is expected to continue, it is likely that catalysts such as S- 703 will find increasing applications in hydrocrackers in the future.

  8. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  9. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    SciTech Connect

    Christopher T. Wright; Erin M. Searcy

    2012-02-01

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  10. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    PubMed

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  11. Ozone dose-response relationships for spring oilseed rape and broccoli

    NASA Astrophysics Data System (ADS)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.

  12. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    SciTech Connect

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  13. Regional efficiency in the organization of agricultural processing facilities: an application to oilseeds industry in the Sudan

    SciTech Connect

    Babiker, B.I.

    1982-01-01

    There has been an increase in the production of oilseeds in the Sudan during the last few years following a policy of diversifying production. The increase in supply has also been accompanied by an export policy that is directed towards exporting processed products rather than seeds. Assuming that the present trend of increased production and exports of processed oilseeds will continue, and knowing that the present marketing services of oilseeds in the country are rather inefficient, economic information is needed to give more precise direction to the expected changes in marketing services. The present research used an economic framework to analyze the costs of transportation, storage, and processing of oilseeds in the Sudan. The objectives of the study were to describe the present marketing system of oilseeds and evaluate the performance of the institutions involved, to determine the optimum location, number and size of processing plants for 1979/80 and 1989/90, and to analyze the impact of changes in selected variables in the model on plant location, marketing costs and product flow. Results of the analysis showed that increasing the present processing capacity of 50 to 70% as expected did not increase the per unit cost of processing. The 70% processing capacity was considered the basic solution. Optimum plant location was obtained by removing the constraints on processing capacity.

  14. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.)

    PubMed Central

    Szała, Laurencja; Sosnowska, Katarzyna; Popławska, Wiesława; Liersch, Alina; Olejnik, Anna; Kozłowska, Katarzyna; Bocianowski, Jan; Cegielska-Taras, Teresa

    2016-01-01

    Resynthesized (RS) oilseed rape (Brassica napus L.) is potentially of great interest for hybrid breeding. However, a major problem with the direct use of RS B. napus is the quality of seed oil (high level of erucic acid) and seed meal (high glucosinolate content), which does not comply with double-low quality oilseed rape. Thus, additional developments are needed before RS B. napus can be introduced into breeding practice. In this study, RS oilseed rape was obtained through crosses between B. rapa ssp. chinensis var. chinensis and B. oleracea ssp. acephala var. sabellica. RS plant was then crossed with double-low (00) winter oilseed rape lines containing the Rfo gene for Ogura cytoplasmic male sterility (CMS ogu) system. Populations of doubled haploids (DH) were developed from these F1 hybrids using the microspore in vitro culture method. The seeds of semi-RS DH lines were analyzed for erucic acid and glucosinolate content. Among the populations of semi-RS DHs four 00-quality lines with the Rfo gene were selected. Using 344 AFLP markers to estimate genetic relatedness, we showed that the RS lines and semi-RS lines formed clusters that were clearly distinct from 96 winter oilseed rape parental lines of F1 hybrids. PMID:27795676

  15. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape.

    PubMed

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Shujie; Liao, Xing

    2013-04-01

    Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal improved oilseed rape seed yield (P < 0.0001) relative to the nontreated control in 2 greenhouse pot experiments using natural soil. This treatment resulted in slightly greater yield than oilseed rape meal without strain A6 in 1 of 2 experiments, suggesting a role for strain A6 in improving yield. Strain A6 was capable of solubilizing phosphorus from rock phosphate in liquid culture and produced enzymes capable of mineralizing organic phosphorus (acid phosphatase, phytase) in liquid culture and in the biological fertilizer. The biologically based fertilizer, containing strain A6, improved plant phosphorus nutrition in greenhouse pot experiments resulting in significantly greater available phosphorus in natural soil and in significantly greater plant phosphorus content relative to the nontreated control. Seed yield and available phosphorus in natural soil were significantly greater with a synthetic chemical fertilizer treatment, reduced in phosphorus content, than the biological fertilizer treatment, but a treatment containing the biological fertilizer combined with the synthetic fertilizer provided the significantly greatest seed yield, available phosphorus in natural soil, and plant phosphorus content. These results suggest that the biological fertilizer was capable of improving oilseed rape seed yield, at least in part, through the phosphorus-solubilizing activity of B. megaterium A6.

  16. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.).

    PubMed

    Szała, Laurencja; Sosnowska, Katarzyna; Popławska, Wiesława; Liersch, Alina; Olejnik, Anna; Kozłowska, Katarzyna; Bocianowski, Jan; Cegielska-Taras, Teresa

    2016-09-01

    Resynthesized (RS) oilseed rape (Brassica napus L.) is potentially of great interest for hybrid breeding. However, a major problem with the direct use of RS B. napus is the quality of seed oil (high level of erucic acid) and seed meal (high glucosinolate content), which does not comply with double-low quality oilseed rape. Thus, additional developments are needed before RS B. napus can be introduced into breeding practice. In this study, RS oilseed rape was obtained through crosses between B. rapa ssp. chinensis var. chinensis and B. oleracea ssp. acephala var. sabellica. RS plant was then crossed with double-low (00) winter oilseed rape lines containing the Rfo gene for Ogura cytoplasmic male sterility (CMS ogu) system. Populations of doubled haploids (DH) were developed from these F1 hybrids using the microspore in vitro culture method. The seeds of semi-RS DH lines were analyzed for erucic acid and glucosinolate content. Among the populations of semi-RS DHs four 00-quality lines with the Rfo gene were selected. Using 344 AFLP markers to estimate genetic relatedness, we showed that the RS lines and semi-RS lines formed clusters that were clearly distinct from 96 winter oilseed rape parental lines of F1 hybrids.

  17. Use of formulated Trichoderma sp. Tri-1 in combination with reduced rates of chemical pesticide for control of Sclerotinia sclerotiorium on oilseed rape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable strategies for control of Sclerotinia sclerotiorum on oilseed rape are needed. Here we tested combinations of Trichoderma sp. Tri-1, formulated with oilseed rape seedcake and straw, with reduced application rates of the chemical pesticide Carbendazim for control of this pathogen on oils...

  18. Phenolic acid sorption to biochars from mixtures of feedstock materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to customize biochars for soil amendments, multiple feedstocks have been combined in various ratios prior to pyrolysis. The resulting variation in the chemistry and structure can affect a biochar’s adsorption capacity, which influences the bioavailability of many chemical compounds in t...

  19. Microbial renewable feedstock utilization: a substrate-oriented approach.

    PubMed

    Rumbold, Karl; van Buijsen, Hugo J J; Gray, Vincent M; van Groenestijn, Johan W; Overkamp, Karin M; Slomp, Ronald S; van der Werf, Mariët J; Punt, Peter J

    2010-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates consist of complex mixtures of different fermentable sugars, but also contain inhibitors and salts that affect the performance of the product-generating microbes. The performance of six industrially relevant microorganisms, i.e., two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. P. stipitis and A. niger were found to be the most versatile and C. glutamicum, and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Clear differences in the utilization of the more abundant carbon sources in these feedstocks were observed between the different species. Moreover, in a species-specific way the production of various metabolites, in particular polyols, alcohols and organic acids was observed during fermentation. Based on the results obtained we conclude that a substrate-oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic engineering. Instead of introducing multiple substrate utilization and detoxification routes to efficiently utilize lignocellulosic hydrolysates only one biosynthesis route forming the product of interest has to be engineered.

  20. Optimizing Nutrient Management for Sustainable Bio-energy Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn grain and stover are both being evaluated as feedstock sources for bio-energy production. To meet current and future demands for corn, both short- and long-term effects on nutrient cycling, physical properties, and biological activity in soils must be understood. Our project goal was to increas...

  1. A Landscape Vision for Sustainable Bioenergy Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstock production for biofuel and other bioproducts is poised to rejuvenate rural economies, but may lead to long-term degradation of soil resources or other adverse and unintended environmental consequences if the practices are not developed in a sustainable manner. This presentation will examin...

  2. Chemical composition of lignocellulosic feedstock from Pacific Northwest conservation buffers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioethanol has been considered as an important alternative to liquid transportation fuels because of its compatibility with current infrastructure, comparable energy values and less net green house gas emissions during its life cycle. There is continuous need to find sustainable feedstocks that can ...

  3. Biomass Program 2007 Program Peer Review - Feedstock Platform Summary

    SciTech Connect

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Feedstock Platform Portfolio Peer Review held on August 21st through 23rd in Washington D.C.

  4. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    EPA Science Inventory

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  5. Fatty acid profile of 25 alternative lipid feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  6. A bioenergy feedstock/vegetable double-cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  7. Metals Solubility in Biochar from Different Feedstock and Pyrolysis Processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a co-product of the pyrolysis process of biomass-to-energy conversion. About 15-40% of the feedstock is recovered as biochar in the process. Further use of biochar in soil is suggested as a means to increase soil productivity, and to store and sequester much of the biochar-recalcitrant ...

  8. Bioenergy grass feedstock production in the southern Coastal Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Renewable Fuels Standard within the Energy Independence and Security Act of 2007 (EISA)(Pub L.) requires that by the year 2022, 36 billion gallons of biofuels be added to gasoline and that 21 billion gallons would come from non-cornstarch products such as sugar or cellulosic feedstock. The Sout...

  9. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  10. a Novel Framework for Incorporating Sustainability Into Biomass Feedstock Design

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C.

    2012-12-01

    There is a strong society need to evaluate and understand the sustainability of biofuels, especially due to the significant increases in production mandated by many countries, including the United States. Biomass feedstock production is an important contributor to environmental, social and economic impacts from biofuels. We present a systems approach where the agricultural, urban, energy and environmental sectors are considered as components of a single system and environmental liabilities are used as recoverable resources for biomass feedstock production. A geospatial analysis evaluating marginal land and degraded water resources to improve feedstock productivity with concomitant environmental restoration was conducted for the major corn producing states in the US. The extent and availability of these resources was assessed and geospatial techniques used to identify promising opportunities to implement this approach. Utilizing different sources of marginal land (roadway buffers, contaminated land) could result in a 7-fold increase in land availability for feedstock production and provide ecosystem services such as water quality improvement and carbon sequestration. Spatial overlap between degraded water and marginal land resources was found to be as high as 98% and could maintain sustainable feedstock production on marginal lands through the supply of water and nutrients. Multi-objective optimization was used to quantify the tradeoffs between net revenue, improvements in water quality and carbon sequestration at the farm scale using this design. Results indicated that there is an initial opportunity where land that is marginally productive for row crops and of marginal value for conservation purposes could be used to grow bioenergy crops such that that water quality and carbon sequestration benefits are obtained.

  11. Fatty acid profile as a basis for screening feedstocks for biodiesel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid (FA) profile was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Coriandr...

  12. Fatty acid composition as a tool for screening alternative feedstocks for production of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid (FA) composition was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Cori...

  13. Soil C storage and greenhouse gas emission perennial grasses managed for bio energy feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses like switchgrass or big bluestem when managed as bioenergy feedstock require nitrogenous inputs. Nitrogen fertilizer frequently cause nitrous oxide emission. Therefore, managing grasses as feedstock may reduce the greenhouse gas (GHG) mitigation potential expected from perennial. ...

  14. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera).

    PubMed

    Rolke, Daniel; Fuchs, Stefan; Grünewald, Bernd; Gao, Zhenglei; Blenau, Wolfgang

    2016-11-01

    Possible effects of clothianidin seed-treated oilseed rape on honey bee colonies were investigated in a large-scale monitoring project in Northern Germany, where oilseed rape usually comprises 25-33 % of the arable land. For both reference and test sites, six study locations were selected and eight honey bee hives were placed at each location. At each site, three locations were directly adjacent to oilseed rape fields and three locations were situated 400 m away from the nearest oilseed rape field. Thus, 96 hives were exposed to fully flowering oilseed rape crops. Colony sizes and weights, the amount of honey harvested, and infection with parasites and diseases were monitored between April and September 2014. The percentage of oilseed rape pollen was determined in pollen and honey samples. After oilseed rape flowering, the hives were transferred to an extensive isolated area for post-exposure monitoring. Total numbers of adult bees and brood cells showed seasonal fluctuations, and there were no significant differences between the sites. The honey, which was extracted at the end of the exposure phase, contained 62.0-83.5 % oilseed rape pollen. Varroa destructor infestation was low during most of the course of the study but increased at the end of the study due to flumethrin resistance in the mite populations. In summary, honey bee colonies foraging in clothianidin seed-treated oilseed rape did not show any detrimental symptoms as compared to colonies foraging in clothianidin-free oilseed rape. Development of colony strength, brood success as well as honey yield and pathogen infection were not significantly affected by clothianidin seed-treatment during this study.

  15. Insect pollination enhances seed yield, quality, and market value in oilseed rape.

    PubMed

    Bommarco, Riccardo; Marini, Lorenzo; Vaissière, Bernard E

    2012-08-01

    The relationships between landscape intensification, the abundance and diversity of pollinating insects, and their contributions to crop yield, quality, and market value are poorly studied, despite observed declines in wild and domesticated pollinators. Abundance and species richness of pollinating insects were estimated in ten fields of spring oilseed rape, Brassica napus var. SW Stratos™, located along a gradient of landscape compositions ranging from simple landscapes dominated by arable land to heterogeneous landscapes with extensive cover of semi-natural habitats. In each field, we assessed the contribution of wind and insect pollination to seed yield, seed quality (individual seed weight and oil and chlorophyll contents), and market value in a block experiment with four replicates and two treatments: (1) all flowers were accessible to insects, self and wind pollination, and (2) flowers enclosed in tulle net bags (mesh: 1 × 1 mm) were accessible only to wind and self pollination. Complex landscapes enhanced the overall abundance of wild insects as well as the abundance and species richness of hoverflies. This did not translate to a higher yield, probably due to consistent pollination by honey bees across all fields. However, the pollination experiment showed that insects increased seed weight per plant by 18% and market value by 20%. Seed quality was enhanced by insect pollination, rendering heavier seeds as well as higher oil and lower chlorophyll contents, clearly showing that insect pollination is required to reach high seed yield and quality in oilseed rape. Our study demonstrates considerable and previously underestimated contributions from pollinating insects to both the yield and the market value of oilseed rape.

  16. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2013-03-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20-25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.

  17. Arthropod Pest Control for UK Oilseed Rape – Comparing Insecticide Efficacies, Side Effects and Alternatives

    PubMed Central

    Breeze, Tom; Bailey, Alison; Garthwaite, David; Harrington, Richard; Potts, Simon G.

    2017-01-01

    Oilseed rape (Brassica napus) is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users’ health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0–1 t/ha less). Alternatives for future oilseed rape

  18. Nutritional evaluation of oilseeds and legumes as protein supplements to cereals.

    PubMed

    Sarwar, G; Sosulski, F W; Bell, J M; Bowland, J P

    1978-01-01

    Several oilseed and legume protein products were fed to rats as the sole source of dietary protein, and in blends with cereals for the determination of protein efficiency ratio (PER) and biological availability of amino acids. In addition oilseed protein isolates were fed to mice for the determination of PER. Results of the mouse study revealed that the adjusted PER (casein = 100)for Target rapeseed isolate (108) was higher than those of sunflower (74), safflower (77), soybean (86) or flax (92) isolates. Results of the rat trials revealed that the adjusted PER for Twoer rapeseed meal (88) was higher than those of fababean (21), field pea (59) and soybean meal (72). Supplementation with methionine (0.2%) resulted in improved PER for fababean (84), field pea (101) and soybean meal (97). Mustard flour and rapeseed flour gave PER of 109 and 106, respectively, while the value of sunflower flour was low (56). Protein isolates of Tower rapeseed and soybean gave PER of 92 and 80, respectively. Blending of legumes and oilseeds with wheat flour (PER = 28) gave high PER values (60--85), as also occurred in rice blends (71--88). Supplementation of wheat-legume blends with lysine (0.4%), methionine (0.2%) and threonine (0.1%) brought all PER values above 100. It appeared that differences in PER of the diets paralleled the levels of the first limiting amino acid for rat growth. Results of balance trials indicated that the availability of the limiting amino acid(s) was lower than other essential amino acids for each protein source.

  19. Planting dates for multiple cropping of biofuel feedstock and specialty crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is necessary to determine planting and harvesting windows in order to develop production systems for biofuel feedstock and specialty crops in rotation. The biodiesel feedstock crops Canola and Sunflower; and the bioethanol feedstock crops Sorghum and Sweet corn were established at various dates ...

  20. A comparison of used cooking oils: a very heterogeneous feedstock for biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased interest in and use of biodiesel renders the availability of a sufficient supply of feedstock ever more urgent. While commodity vegetable oils such as soybean, rapeseed (canola), palm and sunflower may be seen as "classical" biodiesel feedstocks, additional feedstocks are needed to me...

  1. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  2. Rye Cover Crop As A Source Of Biomass Feedstock: An Economic Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As more emphasis is placed on biopower and biofuels, the availability of biomass feedstock is taking center stage. The growth of the biomass feedstock market is further strengthened by the implementation of new regulations and federal programs. One option for biomass feedstock is the removal of co...

  3. EFFICACY DATA OF CYANTRANILIPROLE CONTAINING INSECTICIDE PREPARATION ON CABBAGE ROOT FLY (DELIA RADICUM LINNAEUS) IN WINTER OILSEED RAPE.

    PubMed

    Farkas, I; Molnár, I; Somlyay, I; Tóth, E

    2015-01-01

    The increasing pressure of oilseed rape pests emphasized the need to improve the insecticide portfolio, i.e. register new active ingredients with new insecticide mode of action. The tested seed treatment formulation applied at 32; 40 and 50 UAT rate of containing cyantraniliprole as active substance. 40 UAT rate gives acceptable control of the Cabbage root fly in each trial. Despite the long lasting flight and egg laying period of cabbage root fly, the standard control products and also this product give 50-65% efficacy. It is enough to reduce damage of the Cabbage root fly and prevent economical damage in oilseed rape.

  4. De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock.

    PubMed

    Dorn, Kevin M; Fankhauser, Johnathon D; Wyse, Donald L; Marks, M David

    2013-09-01

    Field pennycress (Thlaspi arvense L.) has potential as an oilseed crop that may be grown during fall (autumn) and winter months in the Midwestern United States and harvested in the early spring as a biodiesel feedstock. There has been little agronomic improvement in pennycress through traditional breeding. Recent advances in genomic technologies allow for the development of genomic tools to enable rapid improvements to be made through genomic assisted breeding. Here we report an annotated transcriptome assembly for pennycress. RNA was isolated from representative plant tissues, and 203 million unique Illumina RNA-seq reads were produced and used in the transcriptome assembly. The draft transcriptome assembly consists of 33 873 contigs with a mean length of 1242 bp. A global comparison of homology between the pennycress and Arabidopsis transcriptomes, along with four other Brassicaceae species, revealed a high level of global sequence conservation within the family. The final assembly was functionally annotated, allowing for the identification of putative genes controlling important agronomic traits such as flowering and glucosinolate metabolism. Identification of these genes leads to testable hypotheses concerning their conserved function and to rational strategies to improve agronomic properties in pennycress. Future work to characterize isoform variation between diverse pennycress lines and develop a draft genome sequence for pennycress will further direct trait improvement.

  5. De novo assembly of the pennycress (Thlaspi arvense) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock

    PubMed Central

    Dorn, Kevin M; Fankhauser, Johnathon D; Wyse, Donald L; Marks, M David

    2013-01-01

    Field pennycress (Thlaspi arvense L.) has potential as an oilseed crop that may be grown during fall (autumn) and winter months in the Midwestern United States and harvested in the early spring as a biodiesel feedstock. There has been little agronomic improvement in pennycress through traditional breeding. Recent advances in genomic technologies allow for the development of genomic tools to enable rapid improvements to be made through genomic assisted breeding. Here we report an annotated transcriptome assembly for pennycress. RNA was isolated from representative plant tissues, and 203 million unique Illumina RNA-seq reads were produced and used in the transcriptome assembly. The draft transcriptome assembly consists of 33 873 contigs with a mean length of 1242 bp. A global comparison of homology between the pennycress and Arabidopsis transcriptomes, along with four other Brassicaceae species, revealed a high level of global sequence conservation within the family. The final assembly was functionally annotated, allowing for the identification of putative genes controlling important agronomic traits such as flowering and glucosinolate metabolism. Identification of these genes leads to testable hypotheses concerning their conserved function and to rational strategies to improve agronomic properties in pennycress. Future work to characterize isoform variation between diverse pennycress lines and develop a draft genome sequence for pennycress will further direct trait improvement. PMID:23786378

  6. Ozone effects on yield quality of spring oilseed rape and broccoli

    NASA Astrophysics Data System (ADS)

    Vandermeiren, Karine; De Bock, Maarten; Horemans, Nele; Guisez, Yves; Ceulemans, Reinhart; De Temmerman, Ludwig

    2012-02-01

    The impact of elevated tropospheric ozone (O 3) on the quality of spring oilseed rape ( Brassica napus cv Ability) and broccoli ( Brassica oleracea L. cv Italic cv Monaco) was assessed during a three year Open - Top Chamber (OTC) experiment. Current ambient O 3 levels were compared to an increase of 20 and 40 ppb during 8 h per day over the entire growing season. The qualitative responses were expressed as a function of the accumulated hourly O 3 concentrations over a threshold of 40 ppb (AOT40) and the phytotoxic O 3 dose above a threshold of 6 nmol s -1 m -2 projected leaf area (POD 6). Our results provide clear evidence that O 3 has an influence on the qualitative attributes of the harvested products of these Brassica species. The responses were comparable whether they were expressed as a function of the accumulated O 3 concentrations or of the modelled O 3 uptake. The protein concentration of oilseed rape seeds and broccoli heads was significantly increased in response to O 3. There was also a shift in the fatty acid composition of the vegetable oil derived from seeds of oilseed rape. Oleic acid (18:1) declined significantly ( p < 0.05) in favour of linoleic acid (18:2) ( p < 0.01). There was no change in the relative proportion of linolenic acid (18:3). The suppression of monounsaturated fatty acids ( p < 0.05) coincided with a positive response of the % saturated fatty acids ( p < 0.05). In rapeseed oil the observed decrease in vitamin E content was due to a reduction of γ-tocopherol (TOC, p < 0.001). α-TOC, the most active form of vitamin E in humans, was not influenced by O 3. There was no change in the glucosinolate (GSL) content of oilseed rape seeds. In broccoli an important shift occurred from indolic to aliphatic GSLs although the total GSL concentration was not changed. The increase in the aliphatic/indolic GSL ratio ( p < 0.001) may be important in relation to the anticarcinogenic properties of these vegetables. The vitamin C (ascorbate - ASC) and

  7. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  8. Understanding hydrothermal carbonization of mixed feedstocks for waste conversion

    NASA Astrophysics Data System (ADS)

    Lu, Xiaowei

    Hydrothermal carbonization (HTC) is an environmentally beneficial means to convert waste materials to value-added solid and liquid products with minimal greenhouse gas emission. Research is lacking on understanding the influence of critical process conditions on product formation and environmental implication associated with HTC of waste streams. This work was conducted to determine how reaction conditions and heterogeneous compound mixtures (representative of municipal wastes) influence hydrothermal carbonization processes. The specific experiments include: (1) determine how carbonization product properties are manipulated by controlling feedstock composition, process conditions, and catalyst addition; (2) determine if carbonization of heterogeneous mixtures follows similar pathways as that with pure feedstocks; and (3) evaluate and compare the carbon and energy-related implications associated with carbonization products with those associated with other common waste management processes for solid waste.

  9. Evaluating possible cap and trade legislation on cellulosic feedstock availability

    SciTech Connect

    Hellwinckel, Chad; de la Torre Ugarte, Daniel; Perlack, Robert D; West, T. O.

    2010-11-01

    An integrated, socioeconomic biogeophysical model is used to analyze the interactions of cap-and-trade legislation and the Renewable Fuels Standard. Five alternative policy scenarios were considered with the purpose of identifying policies that act in a synergistic manner to reduce carbon emissions, increase economic returns to agriculture, and adequately meet ethanol mandates. We conclude that climate and energy policies can best be implemented together by offering carbon offset payments to conservation tillage, herbaceous grasses for biomass, and by constraining crop residue removal for ethanol feedstocks to carbon neutral level. When comparing this scenario to the Baseline scenario, the agricultural sector realizes an economic benefit of US$156 billion by 2030 and emissions are reduced by 135 Tg C-equivalent (Eq) yr 1. Results also indicate that geographic location of cellulosic feedstocks could shift significantly depending on the final policies implemented in cap and trade legislation. Placement of cellulosic ethanol facilities should consider these possible shifts when determining site location.

  10. Processes for liquefying carbonaceous feedstocks and related compositions

    DOEpatents

    MacDonnell, Frederick M.; Dennis, Brian H.; Billo, Richard E.; Priest, John W.

    2017-02-28

    Methods for the conversion of lignites, subbituminous coals and other carbonaceous feedstocks into synthetic oils, including oils with properties similar to light weight sweet crude oil using a solvent derived from hydrogenating oil produced by pyrolyzing lignite are set forth herein. Such methods may be conducted, for example, under mild operating conditions with a low cost stoichiometric co-reagent and/or a disposable conversion agent.

  11. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    DTIC Science & Technology

    2003-11-01

    Because crop residue is a byproduct of grain production, it is currently abun- dant, underutilized, and low cost. Corn stover and cereal straw are the...States and the world. This roadmap focuses on the feedstock supply of lignocellulosic biomass, such as corn stover, straw , or wood, that can be...attendees focused primarily on corn and cereal straw crop residues, while recognizing that the resultant biomass supply technologies and infrastructure must

  12. Variability in the composition of short rotation woody feedstocks

    SciTech Connect

    Davis, M.F.; Johnson, D.K.; Deutch, S.

    1995-11-01

    This paper discusses the variability in chemical composition caused by clonal, geographical, and environmental effects on short rotation woody feedstocks, mainly hybrid clones of poplar. The concentrations of major and minor components have been determined by chemical analysis and pyrolysis molecular beam mass spectrometry (PY-MBMS). The chemical composition was determined for a sample set consisting of debarked wood chips from three clones of deltoides x nigra (DN) and one clone of tristis x balsamifera that were grown on four replicate plots at two locations in Wisconsin. The composition of the wood chips determined by chemical analysis and Py-MBMS showed that the tristic clone was significantly different from that of all the DN clones. The composition of the DN clones studied in this sample set were relatively similar to other hybrid poplar samples that have been analyzed over the past three years. The level of compositional variation due to clonal, geographical and environmental factors observed in short rotation woody species to date indicates that they are a consistent and stable feedstock for biofuels production. The effects of storage on different short rotation woody crops has been studied. Results of the analysis of fresh and stored hybrid poplar using traditional wet chemical analysis showed differences in the chemical composition of the feedstocks because of storage. Also presented are results from a rapid analytical technique using pyrolysis-mass spectroscopy combined with multivariate statistical analysis to assess the influence of storage on the composition of different short rotation feedstocks. Because of the rapid nature of this technique, a large number of samples could be screened to determine the extent of degradation throughout the piles. The application of this technique to the samples in this study indicated changes in chemical composition occurred during the storage period.

  13. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    PubMed

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  14. Compositional Analysis of Lignocellulosic Feedstocks. 2. Method Uncertainties

    PubMed Central

    2010-01-01

    The most common procedures for characterizing the chemical components of lignocellulosic feedstocks use a two-stage sulfuric acid hydrolysis to fractionate biomass for gravimetric and instrumental analyses. The uncertainty (i.e., dispersion of values from repeated measurement) in the primary data is of general interest to those with technical or financial interests in biomass conversion technology. The composition of a homogenized corn stover feedstock (154 replicate samples in 13 batches, by 7 analysts in 2 laboratories) was measured along with a National Institute of Standards and Technology (NIST) reference sugar cane bagasse, as a control, using this laboratory's suite of laboratory analytical procedures (LAPs). The uncertainty was evaluated by the statistical analysis of these data and is reported as the standard deviation of each component measurement. Censored and uncensored versions of these data sets are reported, as evidence was found for intermittent instrumental and equipment problems. The censored data are believed to represent the “best case” results of these analyses, whereas the uncensored data show how small method changes can strongly affect the uncertainties of these empirical methods. Relative standard deviations (RSD) of 1−3% are reported for glucan, xylan, lignin, extractives, and total component closure with the other minor components showing 4−10% RSD. The standard deviations seen with the corn stover and NIST bagasse materials were similar, which suggests that the uncertainties reported here are due more to the analytical method used than to the specific feedstock type being analyzed. PMID:20669952

  15. Improved sustainability of feedstock production with sludge and interacting mycorrhiza.

    PubMed

    Seleiman, Mahmoud F; Santanen, Arja; Kleemola, Jouko; Stoddard, Frederick L; Mäkelä, Pirjo S A

    2013-05-01

    Recycling nutrients saves energy and improves agricultural sustainability. Sewage sludge contains 2.6% P and 3.1% N, so the availability of these nutrients was investigated using four crops grown in either soil or sand. Further attention was paid to the role of mycorrhiza in improvement of nutrient availability. The content of heavy metals and metalloids in the feedstock was analyzed. Sewage sludge application resulted in greater biomass accumulation in ryegrass than comparable single applications of either synthetic fertilizer or digested sludge. Sewage sludge application resulted in more numerous mycorrhizal spores in soil and increased root colonization in comparison to synthetic fertilizer. All plants studied had mycorrhizal colonized roots, with the highest colonization rate in maize, followed by hemp. Sewage sludge application resulted in the highest P uptake in all soil-grown plants. In conclusion, sewage sludge application increased feedstock yield, provided beneficial use for organic wastes, and contributed to the sustainability of bioenergy feedstock production systems. It also improves the soil conditions and plant nutrition through colonization by mycorrhizal fungi as well as reducing leaching and need of synthetic fertilizers.

  16. Expected international demand for woody and herbaceous feedstock

    SciTech Connect

    Lamers, Patrick; Jacobson, Jacob; Mohammad, Roni; Wright, Christopher

    2015-03-01

    The development of a U.S. bioenergy market and ultimately ‘bioeconomy’ has primarily been investigated with a national focus. Limited attention has been given to the potential impacts of international market developments. The goal of this project is to advance the current State of Technology of a single biorefinery to the global level providing quantitative estimates on how international markets may influence the domestic feedstock supply costs. The scope of the project is limited to feedstock that is currently available and new crops being developed to be used in a future U.S. bioeconomy including herbaceous residues (e.g., corn stover), woody biomass (e.g., pulpwood), and energy crops (e.g., switchgrass). The timeframe is set to the periods of 2022, 2030, and 2040 to align with current policy targets (e.g., the RFS2) and future updates of the Billion Ton data. This particular milestone delivers demand volumes for generic woody and herbaceous feedstocks for the main (net) importing regions along the above timeframes. The regional focus of the study is the European Union (EU), currently the largest demand region for U.S. pellets made from pulpwood and forest residues. The pellets are predominantly used in large-scale power plants (>5MWel) in the United Kingdom (UK), the Netherlands (NL), Belgium (BE), and Denmark (DK).

  17. Using Populus as a lignocellulosic feedstock for bioethanol.

    PubMed

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.

  18. Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks.

    PubMed

    Yang, Linxi; He, Quan Sophia; Havard, Peter; Corscadden, Kenneth; Xu, Chunbao Charles; Wang, Xuan

    2017-02-21

    Co-liquefaction of spent coffee grounds (SCG) with paper filter (PF), corn stalk (CS) and white pine bark (WPB) respectively, was examined in subcritical water for bio-crude oil production. The optimum reaction temperature was 250°C, and the mixing biomass ratio was 1:1. SCG and CS was identified to be the best feedstock combination with a significant positive synergetic effect in the co-liquefaction process with 5% NaOH as a catalyst. The yield of bio-crude oil was increased by 20.9% compared to the mass averaged yield from two feedstocks, and the oil quality was also improved in terms of viscosity and relative molecular mass. A negative effect presented in the co-liquefaction of SCG/WPB. The resulting bio-crude oils were characterized by elemental analyzer, GC-MS, GPC and viscometer, indicating that mixing feedstock in the co-liquefaction process also influenced the higher heating value (HHV), viscosity, molecular mass and chemical composition of bio-crude oil.

  19. Physiochemical Characterization of Briquettes Made from Different Feedstocks

    PubMed Central

    Karunanithy, C.; Wang, Y.; Muthukumarappan, K.; Pugalendhi, S.

    2012-01-01

    Densification of biomass can address handling, transportation, and storage problems and also lend itself to an automated loading and unloading of transport vehicles and storage systems. The purpose of this study is to compare the physicochemical properties of briquettes made from different feedstocks. Feedstocks such as corn stover, switchgrass, prairie cord grass, sawdust, pigeon pea grass, and cotton stalk were densified using a briquetting system. Physical characterization includes particle size distribution, geometrical mean diameter (GMD), densities (bulk and true), porosity, and glass transition temperature. The compositional analysis of control and briquettes was also performed. Statistical analyses confirmed the existence of significant differences in these physical properties and chemical composition of control and briquettes. Correlation analysis confirms the contribution of lignin to bulk density and durability. Among the feedstocks tested, cotton stalk had the highest bulk density of 964 kg/m3 which is an elevenfold increase compared to control cotton stalk. Corn stover and pigeon pea grass had the highest (96.6%) and lowest (61%) durability. PMID:22792471

  20. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    PubMed

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system.

  1. Biological and molecular characterization of a crucifer Tobamovirus infecting oilseed rape.

    PubMed

    Cai, Li; Chen, Kunrong; Zhang, Xuejiang; Yan, Liying; Hou, Mingsheng; Xu, Zeyong

    2009-08-01

    In China, the tobamovirus that infects oilseed rape has been misdiagnosed as Tobacco mosaic virus (TMV) based on its morphological similarity and serological relatedness. Recently, a tobamovirus has been isolated from oilseed rape in China, which we named Youcai mosaic virus Br (YoMV-Br), according to its biological and molecular characteristics. It had strong infectivity to Cruciferae but less to Solanaceae, Leguminosae, and Cucurbitaceae, and its virion morphology was consistent with that of the tobamoviruses. At high concentrations, it serologically cross reacted with TMV antiserum. The 3' terminal sequence (2,283 nucleotides) of YoMV-Br was determined, including the 3' noncoding region, the CP and MP genes, and the C-terminal part of the replicase gene. Between the MP and CP genes, 77 nucleotides overlapped. Compared with homologous regions of 21 recognized species of Tobamovirus, YoMV-Br had a much higher identity to crucifer species than to other tobamoviruses. Phylogenetic analysis demonstrated that YoMV-Br was closely related to the YoMV cluster of tobamoviruses and distantly to TMV, so that they likely belong to different strains of the same species.

  2. Airborne molds and mycotoxins associated with handling of corn silage and oilseed cakes in agricultural environment

    NASA Astrophysics Data System (ADS)

    Lanier, Caroline; Richard, Estelle; Heutte, Natacha; Picquet, Rachel; Bouchart, Valérie; Garon, David

    2010-05-01

    In agricultural areas, the contamination of feedstuffs with molds and mycotoxins presents major environmental and health concerns. During cattle feeding, fungi and mycotoxins were monitored in corn silage, oilseed cakes and bioaerosols collected in Normandy. Most of the corn silages were found to be contaminated by deoxynivalenol (mean concentration: 1883 μg kg -1) while a few of oilseed cakes were contaminated by alternariol, fumonisin B 1 or gliotoxin. In ambient bioaerosols, the values for fungi per cubic meter of air varied from 4.3 × 10 2 to 6.2 × 10 5 cfu m -3. Seasonal variations were observed with some species like Aspergillus fumigatus which significantly decreased between the 2 seasons ( P = 0.0186) while the Penicillium roqueforti group significantly increased during the second season ( P = 0.0156). In the personal bioaerosols, the values for fungi per cubic meter of air varied from 3.3 10 3 to 1.7 10 6 cfu m -3 and the number of A. fumigatus spores significantly decreased between the 2 seasons ( P = 0.0488). Gliotoxin, an immunosuppressive mycotoxin, was quantified in 3 personal filters at 3.73 μg m -3, 1.09 μg m -3 and 2.97 μg m -3.

  3. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves.

    PubMed

    Yan, Hui; Filardo, Fiona; Hu, Xiaotao; Zhao, Xiaomin; Fu, DongHui

    2016-02-01

    In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O2(• -)) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.

  4. Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape.

    PubMed

    Snowdon, R J; Wittkop, B; Rezaidad, A; Hasan, M; Lipsa, F; Stein, A; Friedt, W

    2010-11-01

    This study describes the use of regional association analyses to delineate a sequenced region of a Brassica napus chromosome with a significant effect on antinutritive seed meal compounds in oilseed rape. A major quantitative trait locus (QTL) influencing seed colour, fibre content, and phenolic compounds was mapped to the same position on B. napus chromosome A9 in biparental mapping populations from two different yellow-seeded × black-seeded B. napus crosses. Sequences of markers spanning the QTL region identified synteny to a sequence contig from the corresponding chromosome A9 in Brassica rapa. Remapping of sequence-derived markers originating from the B. rapa sequence contig confirmed their position within the QTL. One of these markers also mapped to a seed colour and fibre QTL on the same chromosome in a black-seeded × black-seeded B. napus cross. Consequently, regional association analysis was performed in a genetically diverse panel of dark-seeded, winter-type oilseed rape accessions. For this we used closely spaced simple sequence repeat (SSR) markers spanning the sequence contig covering the QTL region. Correction for population structure was performed using a set of genome-wide SSR markers. The identification of QTL-derived markers with significant associations to seed colour, fibre content, and phenolic compounds in the association panel enabled the identification of positional and functional candidate genes for B. napus seed meal quality within a small segment of the B. rapa genome sequence.

  5. Assessing plant nitrogen concentration in winter oilseed rape using hyperspectral measurements

    NASA Astrophysics Data System (ADS)

    Li, Lu; Liu, Shishi; Wang, Shanqing; Lu, Jianwei; Li, Lantao; Ma, Yi; Ming, Jin

    2016-07-01

    This study aims to find the optimal vegetation indices (VIs) to remotely estimate plant nitrogen concentration (PNC) in winter oilseed rape across different growth stages. Since remote sensing cannot "sense" N in live leaves, remote estimation of PNC should be based on understanding the relationships between PNC and chlorophyll (Chl), carotenoid concentration (Car), Car/Chl, dry mass (DM), and leaf area index (LAI). The experiments with eight nitrogen fertilization treatments were conducted in 2014 to 2015 and 2015 to 2016, and measurements were acquired at six-leaf, eight-leaf, and ten-leaf stages. We found that at each stage, Chl, Car, DM, and LAI were all strongly related to PNC. However, across different growth stages, semipartial correlation and linear regression analysis showed that Chl and Car had consistently significant relationships with PNC, whereas LAI and DM were either weakly or barely correlated with PNC. Therefore, the most suitable VIs should be sensitive to the change in Chl and Car while insensitive to the change in DM. We found that anthocyanin reflectance index and the simple ratio of the red band to blue band fit the requirements. The validation with the 2015 to 2016 dataset showed that the selected VIs could provide accurate estimates of PNC in winter oilseed rape.

  6. Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside.

    PubMed

    Nishizawa, Toru; Nakajima, Nobuyoshi; Tamaoki, Masanori; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru

    2016-01-02

    Previously, we conducted a roadside survey to reveal the occurrence of genetically modified (GM) oilseed rape along a Japanese roadside (Route 51). In this study, we performed successive and thorough fixed-route monitoring in 5 sections along another road (Route 23). Oilseed rape plants were detected on both sides of the road in each section between autumn 2009 and winter 2013, which included 3 flowering seasons. In four sections, more plants were found on the side of the road leading from the Yokkaichi port than on the opposite side. In the fifth section, the presence of clogged drains on the roadside, where juvenile plants concentrated, caused the opposite distribution: oilseed rape predominantly occurred along the inbound lanes (leading to the Yokkaichi port) in 2010 and 2012. Unlike in our previous survey, glyphosate- or glufosinate-resistant oilseed rape plants were abundant (>75% of analyzed plants over 3 years). Moreover, a few individuals bearing both herbicide resistance traits were also detected in some sections. The spillage of imported seeds may explain the occurrence of oilseed rape on the roadside. The abundance of herbicide-resistant oilseed rape plants may reflect the extent of contamination with GM oilseed rape seed within imports.

  7. Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside

    PubMed Central

    Nishizawa, Toru; Nakajima, Nobuyoshi; Tamaoki, Masanori; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru

    2016-01-01

    ABSTRACT Previously, we conducted a roadside survey to reveal the occurrence of genetically modified (GM) oilseed rape along a Japanese roadside (Route 51). In this study, we performed successive and thorough fixed-route monitoring in 5 sections along another road (Route 23). Oilseed rape plants were detected on both sides of the road in each section between autumn 2009 and winter 2013, which included 3 flowering seasons. In four sections, more plants were found on the side of the road leading from the Yokkaichi port than on the opposite side. In the fifth section, the presence of clogged drains on the roadside, where juvenile plants concentrated, caused the opposite distribution: oilseed rape predominantly occurred along the inbound lanes (leading to the Yokkaichi port) in 2010 and 2012. Unlike in our previous survey, glyphosate- or glufosinate-resistant oilseed rape plants were abundant (>75% of analyzed plants over 3 years). Moreover, a few individuals bearing both herbicide resistance traits were also detected in some sections. The spillage of imported seeds may explain the occurrence of oilseed rape on the roadside. The abundance of herbicide-resistant oilseed rape plants may reflect the extent of contamination with GM oilseed rape seed within imports. PMID:26838503

  8. Imagine: Texas Boasts Net Zero School

    ERIC Educational Resources Information Center

    Layne, Scott

    2010-01-01

    Just imagine...a school designed and constructed to produce as much energy on site as that which is consumed from the electric grid. The electricity and gas bills would be 10% or less of that of a typical building; there would be no water bills for site and landscaping irrigation. What was merely a conceptual thought as little as five years ago is…

  9. Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina: detection, characterization, and control alternatives.

    PubMed

    Pandolfo, Claudio E; Presotto, Alejandro; Carbonell, Francisco Torres; Ureta, Soledad; Poverene, Mónica; Cantamutto, Miguel

    2016-12-01

    The presence of glyphosate-resistant oilseed rape populations in Argentina was detected and characterized. The resistant plants were found as weeds in RR soybeans and other fields. The immunological and molecular analysis showed that the accessions presented the GT73 transgenic event. The origin of this event was uncertain, as the cultivation of transgenic oilseed rape cultivars is prohibited in Argentina. This finding might suggest that glyphosate resistance could come from unauthorized transgenic oilseed rape crops cultivated in the country or as seed contaminants in imported oilseed rape cultivars or other seed imports. Experimentation showed that there are alternative herbicides for controlling resistant Brassica napus populations in various situations and crops. AHAS-inhibiting herbicides (imazethapyr, chlorimuron and diclosulam), glufosinate, 2,4-D, fluroxypyr and saflufenacil proved to be very effective in controlling these plants. Herbicides evaluated in this research were employed by farmers in one of the fields invaded with this biotype and monitoring of this field showed no evidence of its presence in the following years.

  10. Field pennycress: A new oilseed crop for the production of biofuels, lubricants, and high-quality proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) has numerous positive attributes that make it a very promising industrial oilseed crop. Its short growing season makes it suitable as an off-season crop between corn and soybean production in most of the upper Midwestern U.S. Fall planting of pennycress may also...

  11. Measurement of aspartic acid in oilseed rape leaves under herbicide stress using near infrared spectroscopy and chemometrics.

    PubMed

    Zhang, Chu; Kong, Wenwen; Liu, Fei; He, Yong

    2016-01-01

    Oilseed rape is used as both food and a renewable energy resource. Physiological parameters, such as the amino acid aspartic acid, can indicate the growth status of oilseed rape. Traditional detection methods are laborious, time consuming, costly, and not usable in the field. Here, we investigate near infrared spectroscopy (NIRS) as a fast and non-destructive detection method of aspartic acid in oilseed rape leaves under herbicide stress. Different spectral pre-processing methods were compared for optimal prediction performance. The variable selection methods were applied for relevant variable selection, including successive projections algorithm (SPA), Monte Carlo-uninformative variable elimination (MC-UVE) and random frog (RF). The selected effective wavelengths (EWs) were used as input by multiple linear regression (MLR), partial least squares (PLS) and least-square support vector machine (LS-SVM). The best predictive performance was achieved by SPA-LS-SVM (Raw) model using 22 EWs, and the prediction results were Rp = 0.9962 and RMSEP = 0.0339 for the prediction set. The result indicated that NIR combined with LS-SVM is a powerful new method to detect aspartic acid in oilseed rape leaves under herbicide stress.

  12. Post-harvest N2O emissions were not affected by various types of oilseed straw incorporated into soil

    NASA Astrophysics Data System (ADS)

    Köbke, Sarah; Senbayram, Mehmet; Hegewald, Hannes; Christen, Olaf; Dittert, Klaus

    2015-04-01

    Oilseed rape post-harvest N2O emissions are seen highly critical as so far they are considered as one of the most crucial drawbacks in climate-saving bioenergy production systems. N2O emissions may substantially counterbalance the intended savings in CO2 emissions. Carbon-rich crop residues in conjunction with residual soil nitrate are seen as a key driver since they may serve as energy source for denitrification and, they may alter soil-borne N2O emissions. As oilseed rape straw is known to have high N/C ratio compared to other crop residues, its soil incorporation may specifically trigger post-harvest N2O emissions. Therefore, the aim of the present study was to determine post-harvest N2O emissions in soils amended with various types of oilseed rape straw (with different N/C ratio) and barley straw in field and incubation experiments. In the incubation experiment, oilseed rape or 15N labelled barley straw were mixed with soil at a rate of 1.3 t DM ha-1 and studied for 43 days. Treatments consisted of non-treated control soil (CK), 15N labelled barley straw (BST), oilseed rape straw (RST), 15N labelled barley straw + N (BST+N), or oilseed rape straw + N (RST+N). N fertilizer was applied to the soil surface as ammonium-nitrate at a rate of 100 kg N ha-1 and soil moisture was adjusted to 80% water-holding capacity. In the field experiment, during the vegetation period 15N labelled fertilizer (15NH415NO3) was used to generate 15N labelled oilseed rape straw (up to 5 at%). Here, the three fertilizer treatments consisted of 5 kg N ha-1 (RST-5), 150 kg N ha-1 (RST-150) and 180 kg N ha-1 (RST-180). Post-harvest N2O emissions were determined during the period of August 2013 to February 2014 by using static flux chambers. In the incubation trial, cumulative N2O emissions were 5, 29, 40 g N2O-N ha-1 148 days-1 in non-fertilized control, BST and RST treatments, respectively. Here, emissions were slightly higher in RST than BST (p

  13. BnSGS3 Has Differential Effects on the Accumulation of CMV, ORMV and TuMV in Oilseed Rape

    PubMed Central

    Chen, Quan; Wang, Jie; Hou, Mingsheng; Liu, Shengyi; Huang, Junyan; Cai, Li

    2015-01-01

    Virus diseases greatly affect oilseed rape (Brassica napus) production. Investigating antiviral genes may lead to the development of disease-resistant varieties of oilseed rape. In this study, we examined the effects of the suppressor of gene silencing 3 in Brassica napus (BnSGS3, a putative antiviral gene) with different genus viruses by constructing BnSGS3-overexpressing (BnSGS3-Ov) and BnSGS3-silenced (BnSGS3-Si) oilseed rape (cv. Zhongshuang No. 6) plants. These three viruses are Oilseed rape mosaic virus (ORMV), Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). The native BnSGS3 expressed in all examined tissues with the highest expression in siliques. All three viruses induced BnSGS3 expression, but ORMV induced a dramatic increase in the BnSGS3-Ov plants, followed by TuMV and CMV. Upon inoculation with three different viruses, transcript abundance of BnSGS3 gene follows: BnSGS3-Ov > non-transgenic plants > BnSGS3-Si. The accumulation quantities of ORMV and TuMV exhibited a similar trend. However, CMV accumulation showed an opposite trend where virus accumulations were negatively correlated with BnSGS3 expression. The results suggest that BnSGS3 selectively inhibits CMV accumulation but promotes ORMV and TuMV accumulation. BnSGS3 should be used in different ways (up- and down-regulation) for breeding virus-resistant oilseed rape varieties. PMID:26225990

  14. Short communication: Effects of prepartum diets supplemented with rolled oilseeds on Brix values and fatty acid profile of colostrum.

    PubMed

    Salehi, R; Ambrose, D J; Oba, M

    2016-05-01

    The objective of this study was to evaluate effects of oilseeds supplemented in prepartum diets on colostrum quality. Thirty-nine dry pregnant Holstein cows (14 primiparous and 25 multiparous cows) were blocked by body condition score and parity and assigned to 1 of 3 experimental diets containing rolled oilseeds at 8% of dietary dry matter (canola seed or sunflower seed) or no oilseed (control) at 35 d before the expected calving date. Canola seed is high in oleic acid and sunflower seed is high in linoleic acid content. Colostrum samples were collected at the first milking after calving, and concentrations of nutrient composition, fatty acid profile, and Brix value (an indicator IgG concentration) were determined. Cows fed sunflower seeds before calving produced colostrum with greater crude protein content (15.0 vs. 12.9%), colostral Brix values (24.3 vs. 20.3%), and conjugated linoleic acid concentration (18:2 cis-9,trans-11; 0.64 vs. 0.48%) compared with those fed canola seed. Positive effects of feeding sunflower seed might be mediated by ruminal metabolism of linoleic acid and subsequent enhanced production of conjugated linoleic acid. Oilseed supplementation in prepartum diets of dairy cows also altered fatty acid profile of colostrum in a way to reflect fatty acid profile of the supplemented oilseeds except for oleic acid. In conclusion, prepartum feeding of sunflower seed increased colostral Brix value, an indicator of colostral IgG concentration, compared with that of canola seed, but its mode of action and effects on health and productivity of calves need to be investigated.

  15. Development of crop-specific transposable element (SINE) markers for studying gene flow from oilseed rape to wild radish.

    PubMed

    Prieto, J L; Pouilly, N; Jenczewski, E; Deragon, J M; Chèvre, A M

    2005-08-01

    The screening of wild populations for evidence of gene flow from a crop to a wild related species requires the unambiguous detection of crop genes within the genome of the wild species, taking into account the intraspecific variability of each species. If the crop and wild relatives share a common ancestor, as is the case for the Brassica crops and their wild relatives (subtribe Brassiceae), the species-specific markers needed to make this unambiguous detection are difficult to identify. In the model oilseed rape (Brassica napus, AACC, 2n = 38)-wild radish (Raphanus raphanistrum, RrRr, 2n = 18) system, we utilized the presence or absence of a short-interspersed element (SINE) at a given locus to develop oilseed rape-specific markers, as SINE insertions are irreversible. By means of sequence-specific amplified polymorphism (SINE-SSAP) reactions, we identified and cloned 67 bands specific to the oilseed rape genome and absent from that of wild radish. Forty-seven PCR-specific markers were developed from three combinations of primers anchored either in (1) the 5'- and 3'-genomic sequences flanking the SINE, (2) the 5'-flanking and SINE internal sequences or (3) the SINE internal and flanking 3'-sequences. Seventeen markers were monomorphic whatever the oilseed rape varieties tested, whereas 30 revealed polymorphism and behaved either as dominant (17) or co-dominant (13) markers. Polymorphic markers were mapped on 19 genomic regions assigned to ten linkage groups. The markers developed will be efficient tools to trace the occurrence and frequency of introgressions of oilseed rape genomic region within wild radish populations.

  16. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.

    PubMed

    Tang, Haiying; Chen, Meng; Garcia, M E D; Abunasser, Nadia; Ng, K Y Simon; Salley, Steven O

    2011-10-01

    Microalgae are among the most promising of non-food based biomass fuel feedstock alternatives. Algal biofuels production is challenged by limited oil content, growth rate, and economical cultivation. To develop the optimum cultivation conditions for increasing biofuels feedstock production, the effect of light source, light intensity, photoperiod, and nitrogen starvation on the growth rate, cell density, and lipid content of Chlorella minutissima were studied. The fatty acid content and composition of Chlorella minutissima were also investigated under the above conditions. Fluorescent lights were more effective than red or white light-emitting diodes for algal growth. Increasing light intensity resulted in more rapid algal growth, while increasing the period of light also significantly increased biomass productivity. Our results showed that the lipid and triacylglycerol content were increased under N starvation conditions. Thus, a two-phase strategy with an initial nutrient-sufficient reactor followed by a nutrient deprivation strategy could likely balance the desire for rapid and high biomass generation (124 mg/L) with a high oil content (50%) of Chlorella minutissima to maximize the total amount of oil produced for biodiesel production. Moreover, methyl palmitate (C16:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate (C18:3) are the major components of Chlorella minutissima derived FAME, and choice of light source, intensity, and N starvation impacted the FAME composition of Chlorella minutissima. The optimized cultivation conditions resulted in higher growth rate, cell density, and oil content, making Chlorella minutissima a potentially suitable organism for biodiesel feedstock production.

  17. Biofuels Feedstock Development Program annual progress report for 1991

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy`s Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  18. Biofuels Feedstock Development Program annual progress report for 1991

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1992-12-01

    This report provides an overview of the ongoing research funded in 1991 by the Department of Energy's Biofuels Feedstock Development Program (BFDP). The BFDP is managed by the Environmental Sciences Division of the Oak Ridge National Laboratory and encompasses the work formerly funded by the Short Rotation Woody Crops Program and the Herbaceous Energy Crops Program. The combined program includes crop development research on both woody and herbaceous energy crop species, cross-cutting energy and environmental analysis and integration, and information management activities. Brief summaries of 26 different program activities are included in the report.

  19. Energy supply chain optimization of hybrid feedstock processes: a review.

    PubMed

    Elia, Josephine A; Floudas, Christodoulos A

    2014-01-01

    The economic, environmental, and social performances of energy systems depend on their geographical locations and the surrounding market infrastructure for feedstocks and energy products. Strategic decisions to locate energy conversion facilities must take all upstream and downstream operations into account, prompting the development of supply chain modeling and optimization methods. This article reviews the contributions of energy supply chain studies that include heat, power, and liquid fuels production. Studies are categorized based on specific features of the mathematical model, highlighting those that address energy supply chain models with and without considerations of multiperiod decisions. Studies that incorporate uncertainties are discussed, and opportunities for future research developments are outlined.

  20. Biofuel production from microalgae as feedstock: current status and potential.

    PubMed

    Han, Song-Fang; Jin, Wen-Biao; Tu, Ren-Jie; Wu, Wei-Min

    2015-06-01

    Algal biofuel has become an attractive alternative of petroleum-based fuels in the past decade. Microalgae have been proposed as a feedstock to produce biodiesel, since they are capable of mitigating CO2 emission and accumulating lipids with high productivity. This article is an overview of the updated status of biofuels, especially biodiesel production from microalgae including fundamental research, culture selection and engineering process development; it summarizes research on mathematical and life cycle modeling on algae growth and biomass production; and it updates global efforts of research and development and commercialization attempts. The major challenges are also discussed.

  1. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    SciTech Connect

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  2. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters.

    PubMed

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven; Jørgensen, Morten Egevang; Olsen, Carl Erik; Andersen, Jonathan Sonne; Seynnaeve, David; Verhoye, Thalia; Fulawka, Rudy; Denolf, Peter; Halkier, Barbara Ann

    2017-03-13

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss-of-function phenotypes into Brassica crops is challenging because Brassica is polyploid. We mutated one of seven and four of 12 GTR orthologs and reduced glucosinolate levels in seeds by 60-70% in two different Brassica species (Brassica rapa and Brassica juncea). Reduction in seed glucosinolates was stably inherited over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed glucosinolate content in other oilseed crops, such as Camelina sativa or Crambe abyssinica.

  3. Steam explosion of oilseed rape straw: establishing key determinants of saccharification efficiency.

    PubMed

    Wood, Ian P; Elliston, Adam; Collins, Sam R A; Wilson, David; Bancroft, Ian; Waldron, Keith W

    2014-06-01

    Oilseed rape straw was steam exploded into hot water at a range of severities. The residues were fractionated into solid and liquid phases and chemically characterised. The effect of steam explosion on enzymatic hydrolysis of the water-insoluble fractions was investigated by studying initial cellulase binding and hydrolysis yields for different cellulase doses. Time-course data was modelled to establish rate-dependent differences in saccharification as a function of pretreatment severity and associated chemical composition. The study concluded: (1) the initial hydrolysis rate was limited by the amount of (pectic) uronic acid remaining in the substrate; (2) the proportion of rapidly hydrolysable carbohydrate was most closely and positively related to lignin abundance and (3) the final sugar yield most closely related to xylan removal from the substrate. Comparisons between milled and un-milled steam exploded straw highlighted the influence that physical structure has on hydrolysis rates and yields, particularly at low severities.

  4. Expression of a Streptomyces 3-hydroxysteroid oxidase gene in oilseeds for converting phytosterols to phytostanols.

    PubMed

    Venkatramesh, Mylavarapu; Karunanandaa, Balasulojini; Sun, Bin; Gunter, Catharine A; Boddupalli, Sekhar; Kishore, Ganesh M

    2003-01-01

    Plant sterols and their hydrogenated forms, stanols, have attracted much attention because of their benefits to human health in reducing serum and LDL cholesterol levels, with vegetable oil processing being their major source in several food products currently sold. The predominant forms of plant sterol end products are sitosterol, stigmasterol, campesterol and brassicasterol (in brassica). In this study, 3-hydroxysteroid oxidase from Streptomyces hygroscopicus was utilized to engineer oilseeds from rapeseed (Brassica napus) and soybean (Glycine max), respectively, to modify the relative amounts of specific sterols to stanols. Each of the major phytosterols had its C-5 double bond selectively reduced to the corresponding phytostanol without affecting other functionalities, such as the C-22 double bond of stigmasterol in soybean seed and of brassicasterol in rapeseed. Additionally, several novel phytostanols were obtained that are not produced by chemical hydrogenation of phytosterols normally present in plants.

  5. Development of feedstock of tungsten-nickel-iron- polyformaldehyde for MIM technology

    NASA Astrophysics Data System (ADS)

    Kostin, D. V.; Parkhomenko, A. V.; Amosov, A. P.; Samboruk, A. R.; Chemashkin, A. V.

    2016-11-01

    The article presents the results of the research and development of technology and formulation of the feedstock from domestic metal powders and polymers to fabricate complexshaped components from heavy alloy of VNZh 7-3 brand (90 wt. % tungsten - 7% nickel - 3% iron) by Metal Injection Molding (MIM technology). The metal part of the feedstock is composed of powders of tungsten, nickel and iron, and the polymer part is composed of polyformaldehyde with the addition of low-density polyethylene and beeswax. The modes of mixing the components and the influence of the composition of the feedstock on the melt flow rate and the homogeneity of the feedstock were investigated. The optimal formulation of the feedstock was determined. Microstructure, density and hardness of control samples fabricated by MIM technology from the developed feedstock, correspond to, and in some respects are superior to the samples of VNZh 7-3 alloy fabricated by technology of traditional powder metallurgy.

  6. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  7. Thiamethoxam: Assessing flight activity of honeybees foraging on treated oilseed rape using radio frequency identification technology.

    PubMed

    Thompson, Helen; Coulson, Mike; Ruddle, Natalie; Wilkins, Selwyn; Harkin, Sarah

    2016-02-01

    The present study was designed to assess homing behavior of bees foraging on winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR), with 1 field drilled with thiamethoxam-treated seed and 2 control fields drilled with fungicide-only-treated seed. Twelve honeybee colonies were used per treatment group, 4 each located at the field edge (on-field site), at approximately 500 m and 1000 m from the field. A total of nearly 300 newly emerged bees per colony were fitted (tagged) with Mic3 radio frequency identification (RFID) transponders and introduced into each of the 36 study hives. The RFID readers fitted to the entrances of the test colonies were used to monitor the activity of the tagged bees for the duration of the 5-wk flowering period of the crop. These activity data were analyzed to assess any impact on flight activity of bees foraging on the treated compared with untreated crops. Honeybees were seen to be actively foraging within all 3 treatment groups during the exposure period. The data for the more than 3000 RFID-tagged bees and more than 90 000 foraging flights monitored throughout the exposure phase for the study follow the same trends across the treatment and controls and at each of the 3 apiary distances, indicating that there were no effects from foraging on the treated crop. Under the experimental conditions, there was no effect of foraging on thiamethoxam-treated oilseed rape on honeybee flight activity or on their ability to return to the hive.

  8. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  9. Elicitation of expert judgments of uncertainty in the risk assessment of herbicide-tolerant oilseed crops.

    PubMed

    Krayer von Krauss, Martin P; Casman, Elizabeth A; Small, Mitchell J

    2004-12-01

    One of the lay public's concerns about genetically modified (GM) organisms (GMO) and related emerging technologies is that not all the important risks are evaluated or even identified yet--and that ignorance of the unanticipated risks could lead to severe environmental or public health consequences. To some degree, even the scientists who participated in the analysis of the risks from GMOs (arguably the people most qualified to critique these analyses) share some of this concern. To formally explore the uncertainty in the risk assessment of a GM crop, we conducted detailed interviews of seven leading experts on GM oilseed crops to obtain qualitative and quantitative information on their understanding of the uncertainties associated with the risks to agriculture from GM oilseed crops (canola or rapeseed). The results of these elicitations revealed three issues of potential concern that are currently left outside the scope of risk assessments. These are (1) the potential loss of the agronomic and environmental benefits of glyphosate (a herbicide widely used in no-till agriculture) due to the combined problems of glyphosate-tolerant canola and wheat volunteer plants, (2) the growing problem of seed lot contamination, and (3) the potential market impacts. The elicitations also identified two areas where knowledge is insufficient. These are: the occurrence of hybridization between canola and wild relatives and the ability of the hybrids to perpetuate themselves in nature, and the fate of the herbicide-tolerance genes in soil and their interaction with soil microfauna and -flora. The methodological contribution of this work is a formal approach to analyzing the uncertainty surrounding complex problems.

  10. Switchgrass Production in Washington – Part II of Biofuel Feedstocks in Washington

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Integrated Cropping Systems group at Prosser, WA made up of WSU and USDA-ARS personnel have been evaluating production aspects of a number of irrigated biofuel crops that can be planted in rotation with high value vegetables: oilseeds for biodiesel (safflower, soybeans, mustard, canola/rapeseed...

  11. Seashore mallow (Kosteletzkya pentacarpos) stems as a feedstock for biodegradable absorbents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore mallow [Kosteletzkya pentacarpos (L.) Ledebour] is a perennial dicot native to coastal marshes in eastern North America, Europe and Asia. Seashore mallow is tolerant of saline soil and brackish water, and is being examined as a potential oilseed crop. Seashore mallow plants produce multip...

  12. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    SciTech Connect

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  13. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    SciTech Connect

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  14. Thermochemical gasification of high-moisture biomass feedstocks

    SciTech Connect

    Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.

    1985-02-14

    A significant energy resource base exists in the Midwest in the form of crop residues and wastes. Estimates have been made that this resource is on the magnitude of 1.5 Quads (1 Quad = 10/sup 15/ Btu's). One obstacle to the full utilization of this resource is the high moisture content of many crop residues. A DOE-funded research program being conducted by Pacific Northwest Laboratory is investigating a low-temperature, mixed catalyst thermochemical system which efficiently converts high-moisture biomass to a medium Btu gas consisting of methane and hydrogen. Experimental data indicates that carbon conversions in excess of 90% may be obtained. Feedstock slurries containing up to 95% moisture have been used successfully in the batch reactor. Feedstocks used in the system include sorghum, sunflowers, napier grass, aquatic plants and food processing wastes. The ability to convert high-moisture biomass to fuels via this thermochemical process may allow greater utilization of the significant biomass resource base which exists in the Mdwest. 6 references, 6 figures, 2 tables.

  15. Biofuels feedstock development program. Annual progress report for 1992

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires.

  16. Introduction to Session 1A: Feedstock Genomics and Development

    NASA Astrophysics Data System (ADS)

    Vermerris, Wilfred

    Genomics research aimed at improving bioconversion properties of feedstocks received a major impetus as a result of the Feedstock Genomics program jointly operated by the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). In addition, oil company BP established the Energy Biosciences Institute in collaboration with the University of California-Berkeley, Lawrence Berkeley National Laboratory, and the University of Illinois in Urbana-Champaign. This was followed later on in the year by the establishment of three DOE-funded bioenergy centers. The need to switch from petroleum-based duels to biofuels was underscored by the report of Working Group II of the United Nations-sponsored International Panel on Climate Change (IPCC), in which the wide-spread effects of greenhouse gas emissions on the global climate were presented. IPCC and former U.S. vice-president Al Gore received the 2007 Nobel Peace Prize for their efforts to quantify and disseminate the effects of global warming.

  17. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    SciTech Connect

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  18. The production of herbaceous feedstocks for renewable energy

    SciTech Connect

    Not Available

    1986-09-01

    This document describes the use of a selected group of herbaceous plants as energy feedstocks. Twelve herbaceous crops were selected for study based on their above average yields; their composition, which can increase their value for fuel and other applications; and their ability to produce in a variety of soils and climates. Six of the twelve are carbohydrate crops (sugarcane, sweet sorghum, sweet-stemmed grain sorghum, Jerusalem artichoke, sugar beet, and fodder beet), and six are lignocellulosic crops (kenaf, napiergrass, alfalfa, reed canarygrass, common reed, and water hyacinth). The contribution that herbaceous crops can make to the total US energy supply is discussed. Each candidate crop is characterized in terms of chemical composition, storage, processing, products, and uses. Growth characteristics and production practices in terms of geographic range, yield potential, and cultural requirements are described. Barriers to private sector development of herbaceous energy crops are listed and how R and D programs could be directed to overcome these roadblocks. The areas considered are feedstock selection and production, harvesting and transport, and processing and conversion.

  19. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    PubMed

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  20. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  1. Impact of feedstock quality and variation on biochemical and thermochemical conversion

    SciTech Connect

    Li, Chenlin; Aston, John E.; Lacey, Jeffrey A.; Thompson, Vicki S.; Thompson, David N.

    2016-07-21

    The production of biofuels from lignocellulosic feedstock is attracting considerable attention in the United States and globally as a strategy to diversify energy resources, spur regional economic development and reduce greenhouse gas emissions. Because of the wide variation in feedstock types, compositions and content of convertible organics, there is a growing need to better understand correlations among feedstock quality attributes and conversion performance. Knowledge of the feedstock impact on conversion is essential to supply quality controlled, uniform and on-spec feedstocks to biorefineries. This review paper informs the development of meaningful feedstock quality specifications for different conversion processes. Discussions are focused on how compositional properties of feedstocks affect various unit operations in biochemical conversion processes, fast pyrolysis and hydrothermal liquefaction. In addition, future perspectives are discussed that focus on the challenges and prospects of addressing compositionally intrinsic inhibitors through feedstock preprocessing at regionally distributed depots. As a result, such preprocessing depots may allow for the commoditization of lignocellulosic feedstock and realization of stable, cost-effective and quality controlled biomass supply systems.

  2. Impact of feedstock quality and variation on biochemical and thermochemical conversion

    DOE PAGES

    Li, Chenlin; Aston, John E.; Lacey, Jeffrey A.; ...

    2016-07-21

    The production of biofuels from lignocellulosic feedstock is attracting considerable attention in the United States and globally as a strategy to diversify energy resources, spur regional economic development and reduce greenhouse gas emissions. Because of the wide variation in feedstock types, compositions and content of convertible organics, there is a growing need to better understand correlations among feedstock quality attributes and conversion performance. Knowledge of the feedstock impact on conversion is essential to supply quality controlled, uniform and on-spec feedstocks to biorefineries. This review paper informs the development of meaningful feedstock quality specifications for different conversion processes. Discussions are focusedmore » on how compositional properties of feedstocks affect various unit operations in biochemical conversion processes, fast pyrolysis and hydrothermal liquefaction. In addition, future perspectives are discussed that focus on the challenges and prospects of addressing compositionally intrinsic inhibitors through feedstock preprocessing at regionally distributed depots. As a result, such preprocessing depots may allow for the commoditization of lignocellulosic feedstock and realization of stable, cost-effective and quality controlled biomass supply systems.« less

  3. Device and method for upgrading petroleum feedstocks and petroleum refinery streams using an alkali metal conductive membrane

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-09-13

    A reactor has two chambers, namely an oil feedstock chamber and a source chamber. An ion separator separates the oil feedstock chamber from the source chamber, wherein the ion separator allows alkali metal ions to pass from the source chamber, through the ion separator, and into the oil feedstock chamber. A cathode is at least partially housed within the oil feedstock chamber and an anode is at least partially housed within the source chamber. A quantity of an oil feedstock is within the oil feedstock chamber, the oil feedstock comprising at least one carbon atom and a heteroatom and/or one or more heavy metals, the oil feedstock further comprising naphthenic acid. When the alkali metal ion enters the oil feedstock chamber, the alkali metal reacts with the heteroatom, the heavy metals and/or the naphthenic acid, wherein the reaction with the alkali metal forms inorganic products.

  4. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content.

    PubMed

    Weselake, Randall J; Shah, Saleh; Tang, Mingguo; Quant, Patti A; Snyder, Crystal L; Furukawa-Stoffer, Tara L; Zhu, Weiming; Taylor, David C; Zou, Jitao; Kumar, Arvind; Hall, Linda; Laroche, Andre; Rakow, Gerhard; Raney, Phillip; Moloney, Maurice M; Harwood, John L

    2008-01-01

    Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.

  5. Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan.

    PubMed

    Nishizawa, Toru; Tamaoki, Masanori; Aono, Mitsuko; Kubo, Akihiro; Saji, Hikaru; Nakajima, Nobuyoshi

    2010-01-01

    Feral rapeseed in Japan consists of Brassica rapa, B. juncea and B. napus, mostly produced by escape from crops. Brassica rapa and B. juncea were introduced from abroad long ago as leaf and root vegetables and as an oil crop and breeders have developed various cultivars. Brassica napus was introduced in the late 1800s, mainly as an oil crop. Rapeseed production in Japan is low, and most demand is met by imports from Canada (94.4% of the 2009 trade volume). Recently, spontaneous B. napus, including genetically modified (GM) herbicide-resistant individuals, has been detected along Japanese roads, probably originating from seeds lost during transportation of imports. As GM oilseed production increases abroad, the probability of escape of GM oilseed rape in Japan will increase, raising environmental biosafety concerns related to the impact of feral rapeseed on heirloom brassicaceous crops. In this paper, we review the history of rapeseed introduction in Japan and future concerns.

  6. The effect of oilseed consumption on appetite and on the risk of developing type 2 diabetes mellitus.

    PubMed

    Neves Ribeiro, Daniela; Gonçalves Alfenas, Rita de Cássia; Bressan, Josefina; Brunoro Costa, Neuza Maria

    2013-01-01

    The prevalence of diabetes mellitus (DM) has rapidly increased worldwide. Excess body fat is an important risk factor for the disease. Strategies have been indicated for the prevention and treatment of DM. Recent studies have associated the consumption of oilseeds resulting in a lower risk of developing obesity and diabetes. It is believed that this effect is associated with low glycemic index and the high fiber content, the unsaturated fatty acids and the magnesium oilseeds. However, the mechanisms involved in appetite and type 2 diabetes control have not been fully elucidated among researchers yet. Thus, the objective of the present article was to critically analyze the articles published on this subject aiming at identifying strategies which may be used in the dietary treatment of diabetes.

  7. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions.

    PubMed

    Albert, Benjamin; Le Cahérec, Françoise; Niogret, Marie-Françoise; Faes, Pascal; Avice, Jean-Christophe; Leport, Laurent; Bouchereau, Alain

    2012-08-01

    Large amounts of nitrogen (N) fertilizers are used in the production of oilseed rape. However, as low-input methods of crop management are introduced crops will need to withstand temporary N deficiency. In temperate areas, oilseed rape will also be affected by frequent drought periods. Here we evaluated the physiological and metabolic impact of nitrate limitation on the oilseed rape response to water deprivation. Different amounts of N fertilizer were applied to plants at the vegetative stage, which were then deprived of water and rehydrated. Both water and N depletion accelerated leaf senescence and reduced leaf development. N-deprived plants exhibited less pronounced symptoms of wilting during drought, probably because leaves were smaller and stomata were partially closed. Efficiency of proline production, a major stress-induced diversion of nitrogen metabolism, was assessed at different positions along the whole plant axis and related to leaf developmental stage and water status indices. Proline accumulation, preferentially in younger leaves, accounted for 25-85% of the free amino acid pool. This was mainly due to a better capacity for proline synthesis in fully N-supplied plants whether they were subjected to drought or not, as deduced from the expression patterns of the proline metabolism BnP5CS and BnPDH genes. Although less proline accumulated in the oldest leaves, a significant amount was transported from senescing to emerging leaves. Moreover, during rehydration proline was readily recycled. Our results therefore suggest that proline plays a significant role in leaf N remobilization and in N use efficiency in oilseed rape.

  8. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    DOE PAGES

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; ...

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and othermore » conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  9. Prediction of microalgae hydrothermal liquefaction products from feedstock biochemical composition

    SciTech Connect

    Leow, Shijie; Witter, John R.; Vardon, Derek R.; Sharma, Brajendra K.; Guest, Jeremy S.; Strathmann, Timothy J.

    2015-05-11

    Hydrothermal liquefaction (HTL) uses water under elevated temperatures and pressures (200–350 °C, 5–20 MPa) to convert biomass into liquid “biocrude” oil. Despite extensive reports on factors influencing microalgae cell composition during cultivation and separate reports on HTL products linked to cell composition, the field still lacks a quantitative model to predict HTL conversion product yield and qualities from feedstock biochemical composition; the tailoring of microalgae feedstock for downstream conversion is a unique and critical aspect of microalgae biofuels that must be leveraged upon for optimization of the whole process. This study developed predictive relationships for HTL biocrude yield and other conversion product characteristics based on HTL of Nannochloropsis oculata batches harvested with a wide range of compositions (23–59% dw lipids, 58–17% dw proteins, 12–22% dw carbohydrates) and a defatted batch (0% dw lipids, 75% dw proteins, 19% dw carbohydrates). HTL biocrude yield (33–68% dw) and carbon distribution (49–83%) increased in proportion to the fatty acid (FA) content. A component additivity model (predicting biocrude yield from lipid, protein, and carbohydrates) was more accurate predicting literature yields for diverse microalgae species than previous additivity models derived from model compounds. FA profiling of the biocrude product showed strong links to the initial feedstock FA profile of the lipid component, demonstrating that HTL acts as a water-based extraction process for FAs; the remainder non-FA structural components could be represented using the defatted batch. These findings were used to introduce a new FA-based model that predicts biocrude oil yields along with other critical parameters, and is capable of adjusting for the wide variations in HTL methodology and microalgae species through the defatted batch. Lastly, the FA model was linked to an upstream cultivation model (Phototrophic Process Model

  10. Ensiling corn stover: effect of feedstock preservation on particleboard performance.

    PubMed

    Ren, Haiyu; Richard, Tom L; Chen, Zhilin; Kuo, Monlin; Bian, Yilin; Moore, Kenneth J; Patrick, Patricia

    2006-01-01

    Ensilage is a truncated solid-state fermentation in which anaerobically produced organic acids accumulate to reduce pH and limit microbial activity. Ensilage can be used to both preserve and pretreat biomass feedstock for further downstream conversion into chemicals, fuels, and/or fiber products. This study examined the ensilage of enzyme-treated corn stover as a feedstock for particleboard manufacturing. Corn stover at three different particle size ranges (<100, <10, and <5 mm) was ensiled with and without a commercial enzyme mixture having a cellulase:hemicellulase ratio of 2.54:1, applied at a hemicellulase rate of 1670 IU/kg dry mass. Triplicate 20 L mini-silos were destructively sampled and analyzed on days 0, 1, 7, 21, 63, and 189. Analysis included produced organic acids and water-soluble carbohydrates, fiber fractions, pH, and microorganisms, including Lactobacillus spp. and clostridia were monitored. On days 0, 21, and 189, the triplicate samples were mixed evenly and assembled into particleboard using 10% ISU 2 resin, a soy-based adhesive. Particleboard panels were subjected to industry standard tests for modulus of rupture (MOR), modulus of elasticity (MOE), internal bonding strength (IB), thickness swell (TS), and water absorption at 2 h boiling and 24 h soaking. Enzyme addition did improve the ensilage process, as indicated by sustained lower pH (P < 0.0001), higher water-soluble carbohydrates (P < 0.05), and increased lactic acid production (P < 0.0001). The middle particle size range (<10 mm) demonstrated the most promising results during the ensilage process. Compared with fresh stover, the ensilage process did increase IB of stover particleboard by 33% (P < 0.05) and decrease water adsorption at 2 h boiling and 24 h soaking significantly (P < 0.05). Particleboard panels produced from substrate ensiled with enzymes showed a significant reduction in water adsorption of 12% at 2 h boiling testing. On the basis of these results, ensilage can be used as

  11. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids.

    PubMed

    Ivan, M; Petit, H V; Chiquette, J; Wright, A-D G

    2013-04-14

    Sixteen Holstein rumen-cannulated primiparous milking dairy cows were fed a control diet (CN) based on maize silage and soyabean meal during a 4-week period before the start of a 21-d experiment with oilseeds containing high concentration of linoleic acid (Linola™) or linolenic acid (NuLin™). Thereafter, four cows received ad libitum one of each of four dietary treatments comprising of CN, Linola (LN), NuLin (NL) and LN/NL (50/50 % combination). Each LN, NL and LN/NL treatment contained 6 % oil of DM. Rumen digesta samples were collected on days 6, 11, 16 and 21 and milk samples on days 13, 15 and 17. There were no effects (P>0.05) of the oilseeds on pH and concentrations of NH3-N and total volatile fatty acids, while the acetate:propionate ratio was decreased (P< 0.05). The oilseeds also decreased (P< 0.05) protozoa and increased (P< 0.1) total cellulolytic bacteria in rumen fluid, especially when containing high dietary linoleic acid (P< 0.05). The milk protein concentration was increased (P< 0.1) by the dietary linoleic acid, which produced most beneficial results. It was concluded that supplements of linoleic acid in diets of ruminants might contribute to better digestion of dietary fibre and increased quality of milk.

  12. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity

    PubMed Central

    Sekulic, Gregory; Rempel, Curtis B.

    2016-01-01

    The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species. PMID:27527233

  13. Evaluating the Role of Seed Treatments in Canola/Oilseed Rape Production: Integrated Pest Management, Pollinator Health, and Biodiversity.

    PubMed

    Sekulic, Gregory; Rempel, Curtis B

    2016-08-03

    The use patterns and role of insecticide seed treatments, with focus on neonicotinoid insecticides, were examined for canola/oilseed rape production in Canada and the EU. Since nearly all planted canola acres in Western Canada and, historically, a majority of planted oilseed acres in the EU, use seed treatments, it is worth examining whether broad use of insecticidal seed treatments (IST) is compatible with principles of integrated pest management (IPM). The neonicotinoid insecticide (NNI) seed treatment (NNI ST) use pattern has risen due to effective control of several early season insect pests, the most destructive being flea beetles (Phyllotreta sp.). Negative environmental impact and poor efficacy of foliar applied insecticides on flea beetles led growers to look for better alternatives. Due to their biology, predictive models have been difficult to develop for flea beetles, and, therefore, targeted application of seed treatments, as part of an IPM program, has contributed to grower profitability and overall pollinator success for canola production in Western Canada. Early evidence suggests that the recent restriction on NNI may negatively impact grower profitability and does not appear to be having positive impact on pollinator health. Further investigation on impact of NNI on individual bee vs. hive health need to be conducted. Predictive models for flea beetle emergence/feeding activity in canola/oilseed rape need to be developed, as broad acre deployment of NNI seed treatments may not be sustainable due to concerns about resistance/tolerance in flea beetles and other pest species.

  14. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    PubMed

    Lange, Jean-Paul

    2015-11-02

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions.

  15. Design, modeling, and analysis of a feedstock logistics system.

    PubMed

    Judd, Jason D; Sarin, Subhash C; Cundiff, John S

    2012-01-01

    Given the location of a bio-energy plant for the conversion of biomass to bio-energy, a feedstock logistics system that relies on the use of satellite storage locations (SSLs) for temporary storage and loading of round bales is proposed. Three equipment systems are considered for handling biomass at the SSLs, and they are either placed permanently or are mobile and thereby travel from one SSL to another. A mathematical programming-based approach is utilized to determine SSLs and equipment routes in order to minimize the total cost. The use of a Side-loading Rack System results in average savings of 21.3% over a Densification System while a Rear-loading Rack System is more expensive to operate than either of the other equipment systems. The utilization of mobile equipment results in average savings of 14.8% over the equipment placed permanently. Furthermore, the Densification System is not justifiable for transportation distances less than 81 km.

  16. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  17. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  18. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  19. Commercialization of willow bioenergy - a dedicated feedstock supply system

    SciTech Connect

    White, E.H.; Abrahamson, L.P.; Robison, D.J.

    1995-11-01

    Willow hybrids grown as a Dedicated Feedstock Supply System (DFSS) have been analyzed and found to be a feasibile means of augmenting current coal and natural gas resources for power generation. This study focused on the technology and infrastructure required to grow willow DFSS and integrate it with four existing pulverized coal electric generation facilities in central and western New York. The study found that both utilities and growers can forge a long-term business relationship that offers fuel diversity, fuel cost competitiveness and environmental benefits for the utility partners while reinvigorating central and western New York business in the agricultural sector. Growers can bring idle land and land being farmed at a loss back into profitable production while reducing environmental impacts associated with more traditional row crops. The Consortium is gearing up to put in place the growers contracts and the acreage necessary to take the first steps to prove and develop a major new business opportunity for rural New York.

  20. Semisolid Metal Processing Techniques for Nondendritic Feedstock Production

    PubMed Central

    Mohammed, M. N.; Omar, M. Z.; Salleh, M. S.; Alhawari, K. S.; Kapranos, P.

    2013-01-01

    Semisolid metal (SSM) processing or thixoforming is widely known as a technology that involves the formation of metal alloys between solidus and liquidus temperatures. For the procedure to operate successfully, the microstructure of the starting material must consist of solid near-globular grains surrounded by a liquid matrix and a wide solidus-to-liquidus transition area. Currently, this process is industrially successful, generating a variety of products with high quality parts in various industrial sectors. Throughout the years since its inception, a number of technologies to produce the appropriate globular microstructure have been developed and applied worldwide. The main aim of this paper is to classify the presently available SSM technologies and present a comprehensive review of the potential mechanisms that lead to microstructural alterations during the preparation of feedstock materials for SSM processing. PMID:24194689

  1. Biofuels Feedstock Development Program: 1995 activities and future directions

    SciTech Connect

    Ferrell, J.E.; Wright, L.L.; Tuskan, G.A.

    1995-12-31

    The Department of Energy`s (DOE`s) Biofuels Feedstock Development Program (BFDP) has led the nation in developing short-rotation woody crops (SRWC) and herbaceous energy crops (HEC) as feedstocks for renewable energy. Since 1978, approximately $60 million has been invested in research projects involving more than 100 federal, university, and private research institutions. The research has been highly leveraged with cost-sharing from USDA Forest Service, private industry, and state agencies. The performance of 154 woody species and 35 herbaceous species has been examined in field trials across the U.S. Results of this effort include the prescription of silvi-cultural systems for hybrid poplars and hybrid willows and agricultural systems for switchgrass. Selected clones of woody species are producing dry weight yields in research plots on agricultural land that are 3 to 7 times greater than those obtained from mixed species stands on forest land, and at least 2 times the yields of southern plantation pines. Selected switchgrass varieties are producing dry weight yields 2 to 7 times greater than average forage grass yields on pasture and crop land. Crop development research is continuing efforts to translate this potential to commercial enterprises over a more geographically diverse acreage. Environmental research on biomass crops is aimed at developing sustainable systems that will contribute to the biodiversity of agricultural landscapes. Systems integration and analysis aim to understand all factors affecting price and potential supplies of biomass crops at regional and national scales. Scale-up studies, feasibility analysis and demonstrations are establishing actual costs and facilitating the commercialization of integrated biomass systems. Information management and dissemination activities are facilitating the communication of results among a community of researchers, policy-makers, and potential users and producers of energy crops. 15 refs.

  2. A Century Long Pursuit of Alternative Fuels and Feedstocks: A Content Analysis

    DTIC Science & Technology

    2011-03-01

    2009). High yields enable palm oil to achieve signficantly lower production costs when compared with competitors soy, sunflower, coconut , and...50 Palm Oil as a Feedstock...may be hesitant to invest heavily in cultivation of Jatropha oil. Palm Oil as a Feedstock History Humans have been using palm oil for thousands

  3. Thermo-chemical and biological conversion potential of various biomass feedstocks to ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study is to evaluate the potential and the economy of producing ethanol from gasification-fermentation of various biomass feedstocks. The biomass feedstocks include winter cover crops (wheat, rye, clover, hairy betch), summer cover crop (sunhemp), chicken litter, and woody biomass. ...

  4. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  5. 26 CFR 48.4082-7 - Kerosene; exemption for feedstock purposes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... feedstock purpose; or (ii) The kerosene is sold for use by the buyer for a feedstock purpose and, at the... paragraph (e) of this section) from the buyer and has no reason to believe any information in the... to kerosene that is sold as described in paragraph (c)(3)(ii) of this section if the buyer in...

  6. Mitigation opportunities for life cycle greenhouse gas emissions during feedstock production across heterogeneous landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstock production can contribute greater than or equal to 50% of the lifecycle global warming intensity (GWI) of a biofuel. Variability exists within and among high-leverage components of the biomass production phase. GWI variability within feedstocks has gone unrecognized by regulatory agencies....

  7. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  8. Chemical Preconversion: Application of Low-Severity Pretreatment Chemistries for Commoditization of Lignocellulosic Feedstock

    SciTech Connect

    David N. Thompson; Timothy Campbell; Bryan Bals; Troy Runge; Farzaneh Teymouri

    2013-05-01

    Securing biofuels project financing is challenging, in part because of risks in feedstock supply. Commoditization of the feedstock and decoupling its supply from the biorefinery will promote greater economies of scale, reduce feedstock supply risk and reduce the need for overdesign of biorefinery pretreatment technologies. We present benefits and detractions of applying low-severity chemical treatments or ‘chemical preconversion treatments’ to enable this approach through feedstock modification and densification early in the supply chain. General structural modifications to biomass that support cost-effective densification and transportation are presented, followed by available chemistries to achieve these modifications with minimal yield loss and the potential for harvesting value in local economies. A brief review of existing biomass pretreatment technologies for cellulolytic hydrolysis at biorefineries is presented, followed by a discussion toward economically applying the underlying chemistries at reduced severity in light of capital and operational limitations of small-scale feedstock depots.

  9. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.

    PubMed

    Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie

    2014-09-01

    Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production.

  10. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    DOEpatents

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  11. Rumen dry matter and crude protein degradability of extracted or untreated oilseeds and Leucaena leucocephala leaves.

    PubMed

    Gralak, M A; Kamalu, T; von Keyserlingk, M A; Kulasek, G W

    1997-01-01

    A study was undertaken to determine the rumen DM and CP degradability characteristics of soyabean, canola seed, peanut, palm kernel and Leucaena leucocephala leaves. The oilseeds were either treated with n-hexane to extract the fat or left untreated. Nylon bags were incubated in each of four rumen cannulated sheep for 0, 2, 4, 6, 12, 24 and 48 h. Animals were fed on a diet consisting of meadow hay (ad libitum) and 150 g of concentrate twice daily. Fat extraction caused a decrease (P < or = 0.05) in DM disappearance of soyabean at 0, 2, 4, 6 and 12 h and of peanuts at all incubation times. CP disappearance from peanuts was reduced (P < or = 0.05) as a result of fat extraction at 0, 2, 4, 6 and 12 h. Fat extraction of canola seed increased CP disappearance at 0, 2, 4, 6 and 24 h (P < or = 0.05). However, in the case of defatted canola seed, an increase in DM disappearance (P < or = 0.05) was observed in the first 4 incubation times and a decrease (P < or = 0.05) in the later times. Fat extraction increased (P < or = 0.05) DM disappearance of palm kernel at 0 and 48 h, but reduced it at 4, 6 and 24 h. CP disappearance of palm kernel was improved by treatment (P < or = 0.05) at 0, 4, 24 and 48 h and decreased at 12 h. In the case of palm kernel the largest differences in DM and CP disappearance occurred between the 24 and 48 h incubation times. Degradability characteristics for DM and CP of full-fat soyabean, canola seed and peanut were comparable to those of the full fat samples. Effective DM degradability of soyabean, canola seed and peanuts was 72.2 and 71.9; 74.1 and 66.8; and 85.9 and 70.8 for full fat and extracted feeds, respectively. Effective CP degradability was similar in all oilseeds with the exception of the extracted canola seed. Therefore, the incorporation of full-fat soyabean, canola seed and peanut into ruminant rations can be considered as a means of increasing the energy balance. Both palm kernel DM and CP degradabilities were characterized by slow

  12. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production.

    PubMed

    Wallenhammar, Ann-Charlotte; Gunnarson, Albin; Hansson, Fredrik; Jonsson, Anders

    2016-04-22

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil(-1)) in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g(-1) soil) in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20%) showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g(-1) soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g(-1) soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of prevention of

  13. [Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique].

    PubMed

    Ding, Xi-bin; Liu, Fei; Zhang, Chu; He, Yong

    2015-02-01

    In the present work, prediction models of SPAD value (Soil and Plant Analyzer Development, often used as a parameter to indicate chlorophyll content) in oilseed rape leaves were successfully built using hyperspectral imaging technique. The hy perspectral images of 160 oilseed rape leaf samples in the spectral range of 380-1030 nm were acquired. Average spectrum was extracted from the region of interest (ROI) of each sample. We chose spectral data in the spectral range of 500-900 nm for analysis. Using Monte Carlo partial least squares(MC-PLS) algorithm, 13 samples were identified as outliers and eliminated. Based on the spectral information and measured SPAD values of the rest 147 samples, several estimation models have been built based on different parameters using different algorithms for comparison, including: (1) a SPAD value estimation model based on partial least squares(PLS) in the whole wavelength region of 500-900 nm; (2) a SPAD value estimation model based on successive projections algorithmcombined with PLS(SPA-PLS); (3) 4 kind of simple experience SPAD value estimation models in which red edge position was used as an argument; (4) 4 kind of simple experience SPAD value estimation models in which three vegetation indexes R710/R760, (R750-R705)/(R750-R705) and R860/(R550 x R708), which all have been proved to have a good relevance with chlorophyll content, were used as an argument respectively; (5) a SPAD value estimation model based on PLS using the 3 vegetation indexes mentioned above. The results indicate that the optimal prediction performance is achieved by PLS model in the whole wavelength region of 500-900 nm, which has a correlation coefficient(r(p)) of 0.8339 and a root mean squares error of predicted (RMSEP) of 1.52. The SPA-PLS model can provide avery close prediction result while the calibration computation has been significantly reduced and the calibration speed has been accelerated sharply. For simple experience models based on red edge

  14. Influence of development stage of spring oilseed rape and spring wheat on interception of wet-deposited radiocaesium and radiostrontium

    NASA Astrophysics Data System (ADS)

    Bengtsson, S. B.; Eriksson, J.; Gärdenäs, A. I.; Rosén, K.

    2012-12-01

    The dry and wet deposition of radionuclides released into the atmosphere can be intercepted by vegetation in terrestrial ecosystems. The aim of this study was to quantify the interception of wet deposited 134Cs and 85Sr by spring oilseed rape (Brassíca napus L.) and spring wheat (Tríticum aestívum L.). The dependency of the intercepted fraction (f) on total above ground plant biomass, growing stage and the Leaf Area Index (LAI) was quantified. A trial was established in Uppsala (east central Sweden), with land management in accordance to common agricultural practices. The field trial was a randomised block design of 1 × 1 m2 parcels with three replicates. During the growing season of 2010, a rainfall simulator deposited 134Cs and 85Sr during six different growth stages. Two to 3 h after deposition, the biomass of the centre 25 × 25 cm2 area of each parcel was sampled and above ground biomass and LAI were measured. The radioactivity concentration and radioactivity of samples were measured by High Purity Germanium (HPGe)-detectors. For 134Cs, there was a correlation between f and LAI (r2 = 0.55, p < 0.05) for spring wheat, but not for spring oilseed rape (r2 = 0.28, p > 0.05). For 85Sr, there was a correlation between f and LAI for both crops (r2 = 0.41, p < 0.05 for spring oilseed rape and r2 = 0.48 p, <0.05 for spring wheat). There was no correlation between f and above ground plant biomass in spring oilseed rape for either 134Cs (r2 = 0.01, p > 0.05) or for 85Sr (r2 = 0.11, p > 0.05). For spring wheat, there was a correlation for both 134Cs (r2 = 0.36, p < 0.05) and 85Sr (r2 = 0.32, p < 0.05). For spring oilseed rape, f was highest at growth stage 'stem elongation' for 134Cs (0.32 ± 0.22) and 85Sr (0.41 ± 0.29). For spring wheat, f was highest at growth stage 'ripening' for both radionuclides (134Cs was 0.36 ± 0.14 and 85Sr was 0.48 ± 0.18). Thus, LAI can be used to quantify interception of both radionuclides for both crops, whereas, above ground plant

  15. CdTe Feedstock Development and Validation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00280

    SciTech Connect

    Albin, D.

    2011-05-01

    The goal of this work was to evaluate different CdTe feedstock formulations (feedstock provided by Redlen) to determine if they would significantly improve CdTe performance with ancillary benefits associated with whether changes in feedstock would affect CdTe cell processing and possibly reliability of cells. Feedstock also included attempts to intentionally dope the CdTe with pre-selected elements.

  16. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis).

    PubMed

    Peters, Britta; Gao, Zhenglei; Zumkier, Ulrich

    2016-11-01

    The aim of this study was to investigate the effects of Elado® (10 g clothianidin & 2 g beta-cyfluthrin/kg seed)-dressed oilseed rape on the development and reproduction of mason bees (Osmia bicornis) as part of a large-scale monitoring field study in Northern Germany, where oilseed rape is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km(2) in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and three nesting shelters were placed at each location. Of these locations, three locations were directly adjacent to oilseed rape fields, while the other three locations were situated 100 m distant from the nearest oilseed rape field. At each location, 1500 cocoons of O. bicornis were placed into the central nesting shelter. During the exposure phase, nest building activities and foraging behaviour were assessed repeatedly. Cocoons were harvested in autumn to assess parasitization and reproduction including larval development. The following spring, the emergence of the next generation of adults from cocoons was monitored. High reproductive output and low parasitization rates indicated that Elado(®)-dressed oilseed rape did not cause any detrimental effects on the development or reproduction of mason bees.

  17. FAD2-DGAT2 Genes Coexpressed in Endophytic Aspergillus fumigatus Derived from Tung Oilseeds

    PubMed Central

    Chen, Yi-Cun; Wang, Yang-Dong; Cui, Qin-Qin; Zhan, Zhi-Yong

    2012-01-01

    Recent efforts to genetically engineer plants that contain fatty acid desaturases to produce valuable fatty acids have made only modest progress. Diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step in triacylglycerol (TAG) assembly, might potentially regulate the biosynthesis of desired fatty acids in TAGs. To study the effects of tung tree (Vernicia fordii) vfDGAT2 in channeling the desired fatty acids into TAG, vfDGAT2 combined with the tung tree fatty acid desaturase-2 (vfFAD2) gene was co-introduced into Aspergillus fumigatus, an endophytic fungus isolated from healthy tung oilseed. Two transformants coexpressing vfFAD2 and vfDGAT2 showed a more than 6-fold increase in linoleic acid production compared to the original A. fumigatus strain, while a nearly 2-fold increase was found in the transformant expressing only vfFAD2. Our data suggest that vfDGAT2 plays a pivotal role in promoting linoleic acid accumulation in TAGs. This holds great promise for further genetic engineering aimed at producing valuable fatty acids. PMID:22919314

  18. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    NASA Astrophysics Data System (ADS)

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-08-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  19. Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers.

    PubMed Central

    Pennell, RI; Janniche, L; Kjellbom, P; Scofield, GN; Peart, JM; Roberts, K

    1991-01-01

    We have identified and characterized the temporal and spatial regulation of a plasma membrane arabinogalactan protein epitope during development of the aerial parts of oilseed rape using the monoclonal antibody JIM8. The JIM8 epitope is expressed by the first cells of the embryo and by certain cells in the sexual organs of flowers. During embryogenesis, the JIM8 epitope ceases to be expressed by the embryo proper but is still found in the suspensor. During differentiation of the stamens and carpels, expression of the JIM8 epitope progresses from one cell type to another, ultimately specifying the endothecium and sperm cells, the nucellar epidermis, synergid cells, and the egg cell. This complex temporal sequence demonstrates rapid turnover of the JIM8 epitope. There is no direct evidence for any cell-inductive process in plant development. However, if cell-cell interactions exist in plants and participate in flower development, the JIM8 epitope may be a marker for one set of them. PMID:12324592

  20. Physiological effects of constitutive expression of Oilseed Rape Mosaic Tobamovirus (ORMV) movement protein in Arabidopsis thaliana.

    PubMed

    Mansilla, Carmen; Aguilar, Isabel; Martínez-Herrera, David; Sánchez, Flora; Ponz, Fernando

    2006-12-01

    Movement proteins (MPs) are non-cell autonomous viral-encoded proteins that assist viruses in their cell-to-cell movement. The MP encoded by Tobamoviruses is the best characterized example among MPs of non-tubule-inducing plant RNA viruses. The MP of Oilseed Rape Mosaic Tobamovirus (ORMV) was transgenically expressed in Arabidopsis thaliana, ecotype RLD, under the expression of the 35S promoter from Cauliflower Mosaic Virus. Transgenic lines were obtained in sense and antisense orientations. One of the sense transgenic lines was further characterized turning out to carry one copy of the transgene inserted in the terminal region of the right arm of chromosome 1. The constitutive expression of ORMV-MP induced mild physiological effects in Arabidopsis. Plants of the transgenic line allowed a faster systemic movement of the phloem tracer carboxyfluorescein. The tracer was unloaded differentially in different flower parts, revealing differential effects of ORMV-MP on phloem unloading in sink organs. On the other hand, transgenic Arabidopsis did not show any effect on biomass partitioning or sugar availability, effects reported for equivalent transgenic solanaceous plants expressing the MP of Tobacco Mosaic Virus, another Tobamovirus. Finally, the transgenic Arabidopsis plants were susceptible to ORMV infection, although showing milder overall symptoms than non-transgenic controls. The results highlight the relevance of the specific host-virus system, in the physiological outcome of the molecular interactions established by MPs.

  1. Continuous bioethanol production from oilseed rape straw hydrosylate using immobilised Saccharomyces cerevisiae cells.

    PubMed

    Mathew, Anil Kuruvilla; Crook, Mitch; Chaney, Keith; Humphries, Andrea Clare

    2014-02-01

    The aim of the study was to evaluate continuous bioethanol production from oilseed rape (OSR) straw hydrolysate using Saccharomyces cerevisiae cells immobilised in Lentikat® discs. The study evaluated the effect of dilution rate (0.25, 0.50, 0.75 and 1.00 h(-1)), substrate concentration (15, 22, 40 and 60 g L(-1)) and cell loading (0.03, 0.16 and 0.24 g d.c.w.mL(-1) Lentikat®) on bioethanol production. Volumetric productivity was found to increase with increasing substrate concentration from 15 g L(-1) to 60 g L(-1). A maximum volumetric productivity of 12.88 g L(-1)h(-1) was achieved at a substrate concentration of 60 g L(-1) and at a dilution rate of 0.5h(-1). An overall mass balance for bioethanol production was created to determine the energy recovery from bioethanol and concluded that a biorefinery approach might be the most appropriate option for maximising the energy recovery from OSR straw.

  2. Effect of additives on the tensile performance and protein solubility of industrial oilseed residual based plastics.

    PubMed

    Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2014-07-16

    Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals.

  3. Seed Architecture Shapes Embryo Metabolism in Oilseed Rape[W][OA

    PubMed Central

    Borisjuk, Ljudmilla; Neuberger, Thomas; Schwender, Jörg; Heinzel, Nicolas; Sunderhaus, Stephanie; Fuchs, Johannes; Hay, Jordan O.; Tschiersch, Henning; Braun, Hans-Peter; Denolf, Peter; Lambert, Bart; Jakob, Peter M.; Rolletschek, Hardy

    2013-01-01

    Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant high-light conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase–bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro– versus in planta–grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space. PMID:23709628

  4. Expellor extracted rape and safflower oilseed meals for poultry and sheep

    SciTech Connect

    Thomas, V.M.; Katz, R.J.; Auld, D.A.; Petersen, C.F.; Sauter, E.A.

    1982-01-01

    The objective of these studies was to evaluate the feeding value of on-the-farm expellor extracted rape (RSM) and safflower (SM) oilseed meals for poultry and sheep. Rapeseed meal and SM contained 30.7 and 25.8% crude protein (CP) and 21.7 and 8.7% fat, respectively. Rapeseed meal contained a total glucosinolate concentration of 78.3 ..mu..moles/g. A 22-day feeding trial was conducted with 6-day-old chicks. Rapeseed meal and SM replaced 25 or 50% of the soybean meal (SBM) protein in isonitrogenous (23% CP), isocaloric (3250 kcal ME/kg) diets. Birds fed SBM and 25 or 50% SM consumed more (P < .01) daily feed and gained more (P < .01) per day than those fed 25 or 50% RSM. Birds fed RSM had enlarged thyroid glands in comparison to those fed SMB. Two lamb digestion trials were conducted to evaluate the effect of replacing cottonseed meal (CSM) protein with either RSM or SM on nitrogen utilization and DM digestibility. Replacing 100% of the CSM protein with RSM had no effect (P > .05) on dry matter digestibility and N utilization. Nitrogen balance studies indicate that expellor extracted SM may replace up to 75% of the CSM protein in diets for wethers. 8 tables.

  5. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    PubMed Central

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-01-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop. PMID:26270806

  6. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.

  7. Does pea lectin expressed transgenically in oilseed rape (Brassica napus) influence honey bee (Apis mellifera) larvae?

    PubMed

    Lehrman, Anna

    2007-01-01

    The European honey bee (Apis mellifera) is important both for pollination and for honey production. Pollen is the major protein source for bees, which exposes them directly to changes in pollen quality e.g. through genetic engineering. In order to create a worst case scenario regarding pea lectin (PSL) expressed transgenically in oilseed rape anthers and pollen, the maximum amount of dried pollen that could be mixed in an artificial diet without negatively affecting larval performance (1.5% w/w) was fed to bee larvae. Pollen from two transgenic plant lines expressing PSL up to 1.2% of total soluble protein and pollen from one non-transgenic line was added to the same diet and used as a pollen control. When these three pollen diets and the control diet (without added pollen) were compared, no negative effect from the pollen of the transgenic plants could be detected on larval mortality, weight, or development time. An increased weight and a reduced developmental time were recorded for larvae on all diets containing pollen when compared to the diet without pollen.

  8. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape.

    PubMed

    Budge, G E; Garthwaite, D; Crowe, A; Boatman, N D; Delaplane, K S; Brown, M A; Thygesen, H H; Pietravalle, S

    2015-08-13

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  9. Patterns of domestication in the Ethiopian oil-seed crop noug (Guizotia abyssinica)

    PubMed Central

    Dempewolf, Hannes; Tesfaye, Misteru; Teshome, Abel; Bjorkman, Anne D; Andrew, Rose L; Scascitelli, Moira; Black, Scott; Bekele, Endashaw; Engels, Johannes M M; Cronk, Quentin C B; Rieseberg, Loren H

    2015-01-01

    Noug (Guizotia abyssinica) is a semidomesticated oil-seed crop, which is primarily cultivated in Ethiopia. Unlike its closest crop relative, sunflower, noug has small seeds, small flowering heads, many branches, many flowering heads, and indeterminate flowering, and it shatters in the field. Here, we conducted common garden studies and microsatellite analyses of genetic variation to test whether high levels of crop–wild gene flow and/or unfavorable phenotypic correlations have hindered noug domestication. With the exception of one population, analyses of microsatellite variation failed to detect substantial recent admixture between noug and its wild progenitor. Likewise, only very weak correlations were found between seed mass and the number or size of flowering heads. Thus, noug's ‘atypical’ domestication syndrome does not seem to be a consequence of recent introgression or unfavorable phenotypic correlations. Nonetheless, our data do reveal evidence of local adaptation of noug cultivars to different precipitation regimes, as well as high levels of phenotypic plasticity, which may permit reasonable yields under diverse environmental conditions. Why noug has not been fully domesticated remains a mystery, but perhaps early farmers selected for resilience to episodic drought or untended environments rather than larger seeds. Domestication may also have been slowed by noug's outcrossing mating system. PMID:26029260

  10. Local infection with oilseed rape mosaic virus promotes genetic rearrangements in systemic Arabidopsis tissue.

    PubMed

    Yao, Youli; Bilichak, Andriy; Golubov, Andrey; Kovalchuk, Igor

    2011-05-10

    We have previously shown that local infection of tobacco plants with tobacco mosaic virus (TMV) or oilseed rape mosaic virus (ORMV) results in a systemic increase in the homologous recombination frequency (HRF). Here, we analyzed what other changes in the genome are triggered by pathogen infection. For the analysis of HRF, mutation frequency (MF) and microsatellite instability (MI), we used three different transgenic Arabidopsis lines carrying β-glucuronidase (GUS)-based substrates in their genome. We found that local infection of Arabidopsis with ORMV resulted in an increase of all three frequencies, albeit to differing degrees. The most prominent increase was observed in microsatellite instability. The increase in HRF was the lowest, although still statistically significant. The analysis of methylation of the 35S promoter and transgene expression showed that the greater instability of the transgene was not attributed to these changes. Strand breaks brought about a significant increase in non-treated tissues of infected plants. The expression of genes associated with various repair processes, such as KU70, RAD51, MSH2, DNA POL α and DNA POL δ, was also increased. To summarize, our data demonstrate that local ORMV infection destabilizes the genome in systemic tissues of Arabidopsis plants in various ways resulting in large rearrangements, point mutations and microsatellite instability.

  11. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower.

    PubMed

    Kolbas, A; Mench, M; Herzig, R; Nehnevajova, E; Bes, C M

    2011-01-01

    Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.

  12. Carbon supply for storage-product synthesis in developing seeds of oilseed rape.

    PubMed

    Hill, L M; Rawsthorne, S

    2000-12-01

    The aim of this work was to find out how the sugars in the endosperm of oilseed rape contribute to the flux of oil synthesis. While the hexose content of the liquid endosperm decreased during development the sucrose content increased. It is important to understand the relative rates of use of the endosperm sugars for two reasons. Firstly we need to know which sugars are used, and at what stages in development, in order to understand the roles of enzymes involved in their metabolism. Secondly, changes in sugar concentration have been implicated in the regulation of expression of genes determining storage-product synthesis [see Weber, Borisjuk and Wobus (1997) Trends Plant Sci. 2, 169-174, for review]. The rate of consumption of sugar is one factor governing its concentration. We present data showing both the concentration-dependence of conversion of sugar to oil, and the in vivo concentrations of sugars; we relate these data sets to each other and discuss the effects of the intracellular pool of sucrose. Glucose, fructose and sucrose are all substrates for oil synthesis, but the rates of their use (particularly sucrose) are underestimated because of dilution by sucrose from the intracellular pool.

  13. Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae).

    PubMed

    Hauser, Thure P; Damgaard, Christian; Jørgensen, Rikke B

    2003-04-01

    Fitness of interspecific hybrids is sometimes high relative to their parents, despite the conventional belief that they are mostly unfit. F(1) hybrids between oilseed rape (Brassica napus) and weedy B. rapa can be significantly more fit than their weedy parents under some conditions; however, under other conditions they are less fit. To understand the reasons, we measured the seed production of B. napus, B. rapa, and different generations of hybrid plants at three different densities and in mixtures of different frequencies (including pure stands). Brassica napus, B. rapa, and backcross plants (F(1) ♀ × B. rapa) produced many more seeds per plant in pure plots than in mixtures and more seeds in plots when each was present at high frequency. The opposite was true for F(1) plants that produced many more seeds than B. rapa in mixtures, but fewer in pure stands. Both vegetative and reproductive interactions may be responsible for these effects. Our results show that the fitness of both parents and hybrids is strongly frequency-dependent and that the likelihood of introgression of genes between the species thus may depend on the numbers and densities of parents and their various hybrid offspring in the population.

  14. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  15. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    NASA Astrophysics Data System (ADS)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  16. Differential scanning fluorimetry illuminates silk feedstock stability and processability.

    PubMed

    Dicko, C; Kasoju, N; Hawkins, N; Vollrath, F

    2016-01-07

    The ability to design and implement silk feedstock formulations for tailored spinning has so far eluded the bioengineers. Recently, the high throughput screening technique of differential scanning fluorimetry (DSF) demonstrated the link between the instability transition temperature (Ti) and the processability of the silk feedstock. Using DSF we screened a large set of chemicals known to affect solvent quality. A multivariate analysis of the results shows that, regardless of the diversity of chemicals, three groupings are significantly distinguishable: G1 = similar to native silk; G2 = largely dominated by electrostatic interactions; and G3 = dominated by chelating interactions. We propose a thermodynamic analysis based on a pre- and post-transition fit to estimate the van't Hoff enthalpies (ΔHv) and the instability temperature (Ti). Our analysis shows that the ΔTi and ΔHv values were distinct: G1 (ΔTi = 0.23 ± 0.2; ΔHv = -159.1 ± 5.6 kcal mol(-1)), G2 (ΔTi = -7.3 ± 0.7; ΔHv = -191.4 ± 5.5 kcal mol(-1)), and G3 (ΔTi = -19.9 ± 3.3; ΔHv = -68.8 ± 6.0 kcal mol(-1)). Our analysis further combined the ΔTi value and the ΔHv value using stability ΔΔG to find that G1 only marginally stabilizes native silks (ΔΔG = -0.15 ± 0.04 kcal mol(-1)), whereas G2 and G3 destabilize native silk (ΔΔG = 3.8 ± 0.11 and ΔΔG = 3.8 ± 0.3 kcal mol(-1), respectively). Here our analysis shows that native silk has a complex multistep transition that is possibly non-cooperative. However, all three groupings also show a direct and cooperative transition with varied stabilization effects. This analysis suggests that native silks are able to sample multiple substates prior to undergoing (or to delay) the final transition. We conclude by hypothesizing that the observed energetic plasticity may be mediated by a fragile packaging of the silk tertiary structure that is readily lost when the solvent quality changes.

  17. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    SciTech Connect

    Owens, Vance N.; Karlen, Douglas L.; Lacey, Jeffrey A.

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  18. Use of Chemical and Physical Characteristics To Investigate Trends in Biochar Feedstocks

    PubMed Central

    Mukome, Fungai N. D.; Zhang, Xiaoming; Silva, Lucas C. R.; Six, Johan; Parikh, Sanjai J.

    2014-01-01

    Studies have shown that pyrolysis method and temperature are the key factors influencing biochar chemical and physical properties; however, information on the nature of biochar feedstocks is more accessible to consumers, making feedstock a better measure for selecting biochars. This study characterizes physical and chemical properties of commercially available biochars and investigates trends in biochar properties related to feedstock material to develop guidelines for biochar use. Twelve biochars were analyzed for physical and chemical properties. Compiled data from this study and from the literature (n = 85) were used to investigate trends in biochar characteristics related to feedstock. Analysis of compiled data reveals that despite clear differences in biochar properties from feedstocks of algae, grass, manure, nutshells, pomace, and wood (hard- and softwoods), characteristic generalizations can be made. Feedstock was a better predictor of biochar ash content and C/N ratio, but surface area was also temperature dependent for wood-derived biochar. Significant differences in ash content (grass and manure > wood) and C/N ratio (softwoods > grass and manure) enabled the first presentation of guidelines for biochar use based on feedstock material. PMID:23343098

  19. TVA/DOE Integrated Onfarm Alcohol Production System Alternate Feedstock Evaluations

    SciTech Connect

    Cox, R.J.

    1985-09-01

    The purpose of this Interagency research project is to study the feasibility of small-scale fuel alcohol production from agricultural crops. The project was conducted in three phases. Phase I included an assessment of the potential for fuel alcohol production from agricultural crops and design, construction, and startup operation of a 10-gallon-per-hour evaluation facility. Phase II included validation and optimization of the facility with a corn feedstock, modifications to the base unit to accommodate nongrain feedstocks, initial production and conversion evaluations of nongrain feedstocks, and preparation of a construction and operation manual. Phase III included further evaluations and refinement of processes and equipment for handling nongrain feedstocks, evaluation of stillage by-products as feeds, and development of agricultural systems for integrating alcohol production with other farm enterprises. This report provides: (1) a brief background of Phase I-III activities; (2) results of alternate feedstock choices, cultural trials, and testing results; (3) a description of the process for ethanol production from starch and sugar feedstocks; and (4) conversion procedures, sterilization requirements, and distillation methods for several feedstocks. 23 refs., 8 figs., 25 tabs.

  20. Do Yield and Quality of Big Bluestem and Switchgrass Feedstock Decline over Winter?

    SciTech Connect

    Johnson, Jane M. F.; Gresham, Garold L.

    2013-06-28

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of minerals from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha-1 (fall) and 5.4 Mg ha-1 (spring) with similar high heating value (17.7 MJ kg-1). The K/(Ca + Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13% by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.

  1. The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species.

    PubMed

    Childs, Kevin L; Konganti, Kranti; Buell, C Robin

    2012-01-01

    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources. Database URL: http://bfgr.plantbiology.msu.edu.

  2. Feedstock selection for small- and intermediate-scale fuel ethanol distilleries

    SciTech Connect

    Meo, M.

    1985-07-01

    A variety of commercial and experimental starch- and sugar-rich crops were evaluated for their suitability as feedstocks for both small-scale, on-farm and intermediate-scale, off-farm fuel ethanol production in California's Sacramento Valley. Solutions of linear programming models indicated that sweet sorghum is the least-cost feedstock for on-farm production of 50,000 gallons of fuel ethanol per year. Fodder beet proved to be the least-cost feedstock for off-farm production of 1 million gallons of fuel ethanol per year.

  3. Method for predicting fouling tendency of a hydrocarbon-containing feedstock

    DOEpatents

    Schabron, John F; Rovani, Jr., Joseph F

    2013-07-23

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  4. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-06-14

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  5. Assessing Pinyon Juniper Feedstock Properties and Utilization Options

    SciTech Connect

    Gresham, Garold Linn; Kenney, Kevin Louis

    2015-08-01

    Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States. These ecosystems are characterized by the presence of several different species of pinyon pine and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become more dense, potentially increasing fire hazards. Land managers responsible for these areas often desire to reduce pinyonjuniper coverage on their lands for a variety of reasons, including restoration to previous vegetative cover, mitigation of fire risk, and improvement in wildlife habitat. However, the cost of clearing or thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyonjuniper stand management. The goal of this project was to assess the feedstock characteristics of biomass from a pinyon-juniper harvest so that potential applications for the biomass may be evaluated.

  6. Gamagrass varieties as potential feedstock for fermentable sugar production.

    PubMed

    Xu, Jiele; Zhang, Ximing; Sharma-Shivappa, Ratna R; Eubanks, Mary W

    2012-07-01

    To evaluate the potential of gamagrass as a feedstock for biofuels, seven gamagrass varieties were analyzed for their chemical composition and subjected to pretreatment at 121 °C using 1% NaOH/H(2)SO(4) (w/w) for 60 min and enzymatic hydrolysis for fermentable sugar production. Based on total sugar yield, the varieties Eagle Point Devil Corn and Sun Devil were selected for NaOH and H(2)SO(4) pretreatment, respectively. The investigation on pretreatment conditions showed that, the conditions applied in gamagrass variety screening (121 °C, 1% NaOH/H(2)SO(4), 60 min) were sufficient to maximize sugar production, such that the total sugar yield of Eagle Point Devil Corn reached 479.6 mg g(-1) after NaOH pretreatment and that of Sun Devil reached 456.5 mg g(-1) raw biomass after H(2)SO(4) pretreatment. Compared with other potential energy crops including switchgrass and Bermuda grass, gamagrass gave a higher sugar yield after NaOH pretreatment and a comparable sugar yield after H(2)SO(4) pretreatment.

  7. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks.

    PubMed

    Wu, Hanjing; Hanna, Milford A; Jones, David D

    2012-10-01

    Thermogravimetric analysis was used to examine the thermal behavior of dairy manure as a pyrolysis and combustion feedstock. Nitrogen and air were used as purging gases to analyze the pyrolysis and combustion reactions, respectively, and heating rates of 20°C min(-1), 40°C min(-1) and 60°C min(-1) were applied. An Arrhenius model was used to estimate the kinetic parameters (activation energy, reaction order and pre-exponential factor). Results showed four steps for both the pyrolysis and the combustion reactions, with the second step being the most critical one and during which most thermal decomposition of cellulose, hemicelluloses, starch and protein occurred. Thermochemical reactions were determined mainly by temperature. Heating rate influenced the start and the end of the thermal conversions. The activation energies for the two major reaction zones were 93.63 kJ mol(-1) and 84.53 kJ mol(-1) for pyrolysis, and 83.03 kJ mol(-1) and 55.65 kJ mol(-1) for combustion. Knowledge of the thermal behavior of dairy manure provides guidelines for future energy utilization.

  8. The effect of feedstock additives on FCC catalyst deactivation

    SciTech Connect

    Hughes, R.; Koon, C.L.; McGhee, B.

    1995-12-31

    Fluid catalytic cracking is a major petroleum refining process and because of this the deactivation of FCC catalysts by coke deposition has been the subject of considerable investigation during the past 50 years. Nevertheless, a lack of understanding of the fundamental understanding of processes leading to coke formation still exists. Basic studies using Zeolites have usually involved excessively high levels of coke deposits compared to normal FCC operation. The present study addresses coke formation at realistic levels of 0.5 to 1.0% w/w using a standard MAT reactor in which concentrations of 1% and 10% of various additives were added to the n-hexadecane feedstock. These additives included, quinoline, phenanthrene, benzofuran, thianaphthene and indene. The coke formed was characterised by mass spectrometry and was significantly aliphatic in nature, the amount formed increasing in the order quinoline, phenanthrene, thianaphthene, benzofuran, indene. Quinoline acts primarily as a poison, whereas the other additives tend to promote coke formation in n-hexadecane cracking.

  9. Bioplastic production using wood mill effluents as feedstock.

    PubMed

    Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C

    2011-01-01

    Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.

  10. Demonstration plant for pressurized gasification of biomass feedstocks

    SciTech Connect

    Trenka, A.R. ); Kinoshita, C.M.; Takahashi, P.K.; Phillips, V.D. ); Caldwell, C. Co., Pasadena, CA ); Kwok, R. ); Onischak, M.; Babu, S.P. (Institute of Gas Technology

    1991-01-01

    A project to design, construct, and operate a pressurized biomass gasification plant in Hawaii will begin in 1991. Negotiations are underway with the United States Department of Energy (DOE) which is co-funding the project with the state of Hawaii and industry. The gasifier is a scale-up of the pressurized fluidized-bed RENUGAS process developed by the Institute of Gas Technology (IGT). The project team consists of Pacific International Center for High Technology Research (PICHTR), Hawaii Natural Energy Institute (HNEI) of the University of Hawaii, Hawaiian Commercial and Sugar Company (HC S), The Ralph M. Parsons Company, and IGT. The gasifier will be designed for 70 tons per day of sugarcane fiber (bagasse) and will be located at the Paia factory of HC S on the island of Maui. In addition to bagasse, other feedstocks such as wood, biomass wastes, and refuse-derived-fuel may be evaluated. The demonstration plant will ultimately supply part of the process energy needs for the sugar factory. The operation and testing phase will provide process information for both air- and oxygen-blown gasification, and at both low and high pressures. The process will be evaluated for both fuel gas and synthesis gas production, and for electrical power production with advanced power generation schemes. 6 refs., 3 figs., 1 tab.

  11. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances.

    PubMed

    Hu, Qiang; Sommerfeld, Milton; Jarvis, Eric; Ghirardi, Maria; Posewitz, Matthew; Seibert, Michael; Darzins, Al

    2008-05-01

    Microalgae represent an exceptionally diverse but highly specialized group of micro-organisms adapted to various ecological habitats. Many microalgae have the ability to produce substantial amounts (e.g. 20-50% dry cell weight) of triacylglycerols (TAG) as a storage lipid under photo-oxidative stress or other adverse environmental conditions. Fatty acids, the building blocks for TAGs and all other cellular lipids, are synthesized in the chloroplast using a single set of enzymes, of which acetyl CoA carboxylase (ACCase) is key in regulating fatty acid synthesis rates. However, the expression of genes involved in fatty acid synthesis is poorly understood in microalgae. Synthesis and sequestration of TAG into cytosolic lipid bodies appear to be a protective mechanism by which algal cells cope with stress conditions, but little is known about regulation of TAG formation at the molecular and cellular level. While the concept of using microalgae as an alternative and renewable source of lipid-rich biomass feedstock for biofuels has been explored over the past few decades, a scalable, commercially viable system has yet to emerge. Today, the production of algal oil is primarily confined to high-value specialty oils with nutritional value, rather than commodity oils for biofuel. This review provides a brief summary of the current knowledge on oleaginous algae and their fatty acid and TAG biosynthesis, algal model systems and genomic approaches to a better understanding of TAG production, and a historical perspective and path forward for microalgae-based biofuel research and commercialization.

  12. Plant triacylglycerols as feedstocks for the production of biofuels.

    PubMed

    Durrett, Timothy P; Benning, Christoph; Ohlrogge, John

    2008-05-01

    Triacylglycerols produced by plants are one of the most energy-rich and abundant forms of reduced carbon available from nature. Given their chemical similarities, plant oils represent a logical substitute for conventional diesel, a non-renewable energy source. However, as plant oils are too viscous for use in modern diesel engines, they are converted to fatty acid esters. The resulting fuel is commonly referred to as biodiesel, and offers many advantages over conventional diesel. Chief among these is that biodiesel is derived from renewable sources. In addition, the production and subsequent consumption of biodiesel results in less greenhouse gas emission compared to conventional diesel. However, the widespread adoption of biodiesel faces a number of challenges. The biggest of these is a limited supply of biodiesel feedstocks. Thus, plant oil production needs to be greatly increased for biodiesel to replace a major proportion of the current and future fuel needs of the world. An increased understanding of how plants synthesize fatty acids and triacylglycerols will ultimately allow the development of novel energy crops. For example, knowledge of the regulation of oil synthesis has suggested ways to produce triacylglycerols in abundant non-seed tissues. Additionally, biodiesel has poor cold-temperature performance and low oxidative stability. Improving the fuel characteristics of biodiesel can be achieved by altering the fatty acid composition. In this regard, the generation of transgenic soybean lines with high oleic acid content represents one way in which plant biotechnology has already contributed to the improvement of biodiesel.

  13. Practical Considerations of Moisture in Baled Biomass Feedstocks

    SciTech Connect

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  14. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  15. Crop residues as soil amendments and feedstock for bioethanol production.

    PubMed

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  16. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China

    PubMed Central

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N.; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011–2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice (Oryza sativa L.)-oilseed rape (Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. ROx represented the N fertilizer application rates (kg ha−1) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59–71% (rice) and 109–160% (oilseed rape) during the total rotation (2011–2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha−1) followed by R02 (234.2 kg ha−1) and highest under R06 (344.5 kg ha−1) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China. PMID:27746809

  17. Nitrogen Fertilizer Management for Enhancing Crop Productivity and Nitrogen Use Efficiency in a Rice-Oilseed Rape Rotation System in China.

    PubMed

    Yousaf, Muhammad; Li, Xiaokun; Zhang, Zhi; Ren, Tao; Cong, Rihuan; Ata-Ul-Karim, Syed Tahir; Fahad, Shah; Shah, Adnan N; Lu, Jianwei

    2016-01-01

    The use of efficient rates of nitrogen (N) fertilizer application is important with regard to increasing crop productivity and maintaining environmental sustainability. Rice-oilseed rape rotations are a mainstay of the economy and food security of China. Therefore, a field experiment was carried out during 2011-2013 in Honghu to identify the most appropriate N application rates for enhancing crop productivity and N use efficiency for rice (Oryza sativa L.)-oilseed rape (Brassica napus L.) rotations. Six N fertilizer treatments (RO1, RO2, RO3, RO4, RO5, and RO6) were laid out in a randomized complete block design with three replicates. ROx represented the N fertilizer application rates (kg ha(-1)) for rice and oilseed rape, respectively. Grain yields from plots receiving N fertilizer were significantly increased by 59-71% (rice) and 109-160% (oilseed rape) during the total rotation (2011-2013), as compared to RO1 (control; no application). Furthermore, a similar trend was observed for N accumulation, ranging from 88 to 125% and 134 to 200% in aerial parts of rice and oilseed rape, respectively. Nitrogen use efficiency (NUE) was significantly higher (38.5%) under RO2 and lower (34.2%) under RO6 while apparent N balance (ANB) was positively lowest under R05 (183.4 kg ha(-1)) followed by R02 (234.2 kg ha(-1)) and highest under R06 (344.5 kg ha(-1)) during the total rotation. The results of grain yield, NUE, and ANB indicated that the R02 rate of N application was superior. This information should help to develop a cost-effective and environment-friendly N management strategy for rice-oilseed rape rotation systems of central China.

  18. Distance from forest edge affects bee pollinators in oilseed rape fields

    PubMed Central

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-01-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services. PMID:24634722

  19. Effects of experimental warming on fungal disease progress in oilseed rape.

    PubMed

    Siebold, Magdalena; von Tiedemann, Andreas

    2013-06-01

    Global warming will influence the growth and development of both crops and pathogens. The aims of this study were to investigate potential effects of future warming on oilseed rape growth and the epidemiology of the three economically important pathogens Verticillium longisporum, Sclerotinia sclerotiorum, and Leptosphaeria maculans (anamorph: Phoma lingam). We utilized climate chambers and a soil warming facility, where treatments represented regional warming scenarios for Lower Saxony, Germany, by 2050 and 2100, and compared results of both approaches on a thermal time scale by calculating degree-days (dd) from day of sowing, December 1st and March 1st until sampling, the latter correlating best with disease progress. Regression analysis showed that plant growth and growth stages in spring responded almost linearly to increasing thermal time until 1000-1500 dd. Colonization of plant tissue by V. longisporum showed an exponential increase when exceeding 1300-1500 dd and reaching plant growth stage BBCH 74/75 (pod development). V. longisporum colonization of plants may be advanced, potentially leading to higher inoculum densities after harvest and increased economic importance of this pathogen under future warming. Sclerotia germination of S. sclerotiorum reached its maximum at 600-900 dd. Advance of these critical degree-days may lead to earlier apothecia production, potentially advancing the infection window, whereas the future importance of S. sclerotiorum may remain constant. Severity of phoma crown canker increased linearly with increasing thermal time, but showed also large variation in response to the warming scenarios, suggesting that factors such as canopy microclimate in fall or leaf shedding over winter may play a bigger role for L. maculans infection and disease severity than higher soil temperatures. Thermal time was a suitable tool to combine and integrate data on biological responses to soil and air temperature increases from climate chamber and field

  20. Bioinformatics study of delta-12 fatty acid desaturase 2 (FAD2) gene in oilseeds.

    PubMed

    Dehghan Nayeri, Fatemeh; Yarizade, Kazem

    2014-08-01

    Fatty acid desaturases constitute a group of enzymes that introduce double bonds into the hydrocarbon chains of fatty acids to produce unsaturated fatty acids. In plants, seed-specific delta-12 fatty acid desaturase 2 (FAD2) is responsible for the high content of linoleic acid by inserting a double bond at the delta-12 (omega-6) position of oleic acid. In this study, sixteen FAD2 and FAD2-2 protein sequences from oilseeds were analyzed by computational tools including two databases of the NCBI and EXPASY and data management tools such as SignalP, TMHMM, Psort, ProtParam, TargetP, PLACE and PlantCARE. These services were used to predict the protein properties such as molecular mass, pI, signal peptide, transmembrane and conserved domains, secondary and spatial structures. The polypeptide sequences were aligned and a neighbour-joining tree was constructed using MEGA5.1 to elucidate phylogenetic relationships among FAD2 genes. Based on the phylogenetic analysis species with high similarity in FAD2 sequence grouped together. FAD2 proteins include highly conserved histidine-rich motifs (HECGHH, HRRHH and HV[A/C/T]HH) that are located by three to five transmembrane anchors. For further investigations Sesamum indicum FAD2 was selected and analyzed by bioinformatics tools. Analysis showed no N-terminal signal peptide for probable localization of FAD2 protein in cytoplasmic organelles such as chloroplast, mitochondria and Golgi. Instead the C-terminal signaling motif YNNKL, Y(K/N)NKF or YRNKI allows FAD2 protein to selectively bind to and embed in the endoplasmic reticulum. FAD2 promoter contains different cis-regulatory elements involve in the biotic and abiotic stresses response or control of gene expression specifically in seeds.

  1. Resveratrol glucoside (Piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.).

    PubMed

    Hüsken, Alexandra; Baumert, Alfred; Milkowski, Carsten; Becker, Heiko C; Strack, Dieter; Möllers, Christian

    2005-11-01

    Resveratrol is a phytoalexin produced in various plants like wine, peanut or pine in response to fungal infection or UV irradiation, but it is absent in members of the Brassicaceae. Moreover, resveratrol and its glucoside (piceid) are considered to have beneficial effects on human health, known to reduce heart disease, arteriosclerosis and cancer mortality. Therefore, the introduction of the gene encoding stilbene synthase for resveratrol production in rapeseed is a tempting approach to improve the quality of rapeseed products. The stilbene synthase gene isolated from grapevine (Vitis vinifera L.) was cloned under control of the seed-specific napin promotor and introduced into rapeseed (Brassica napus L.) by Agrobacterium-mediated co-transformation together with a ds-RNA-interference construct deduced from the sequence of the key enzyme for sinapate ester biosynthesis, UDP-glucose:sinapate glucosyltransferase (BnSGT1), assuming that the suppression of the sinapate ester biosynthesis may increase the resveratrol production in seeds through the increased availability of the precursor 4-coumarate. Resveratrol glucoside (piceid) was produced at levels up to 361 microg/g in the seeds of the primary transformants. This value exceeded by far piceid amounts reported from B. napus expressing VST1 in the wild type sinapine background. There was no significant difference in other important agronomic traits, like oil, protein, fatty acid and glucosinolate content in comparison to the control plants. In the third seed generation, up to 616 microg/g piceid was found in the seeds of a homozygous T3-plant with a single transgene copy integrated. The sinapate ester content in this homozygous T3-plant was reduced from 7.43 to 2.40 mg/g. These results demonstrate how the creation of a novel metabolic sink could divert the synthesis towards the production of piceid rather than sinapate ester, thereby increasing the value of oilseed products.

  2. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    PubMed

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management.

  3. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.).

    PubMed

    Avice, Jean-Christophe; Etienne, Philippe

    2014-07-01

    Despite its worldwide economic importance for food (oil, meal) and non-food (green energy and chemistry) uses, oilseed rape has a low nitrogen (N) use efficiency (NUE), mainly due to the low N remobilization efficiency (NRE) observed during the vegetative phase when sequential leaf senescence occurs. Assuming that improvement of NRE is the main lever for NUE optimization, unravelling the cellular mechanisms responsible for the recycling of proteins (the main N source in leaf) during sequential senescence is a prerequisite for identifying the physiological and molecular determinants that are associated with high NRE. The development of a relevant molecular indicator (SAG12/Cab) of leaf senescence progression in combination with a (15)N-labelling method were used to decipher the N remobilization associated with sequential senescence and to determine modulation of this process by abiotic factors especially N deficiency. Interestingly, in young leaves, N starvation delayed senescence and induced BnD22, a water-soluble chlorophyll-binding protein that acts against oxidative alterations of chlorophylls and exhibits a protease inhibitor activity. Through its dual function, BnD22 may help to sustain sink growth of stressed plants and contribute to a better utilization of N recycled from senescent leaves, a physiological trait that could improve NUE. Proteomics approaches have revealed that proteolysis involves chloroplastic FtsH protease in the early stages of senescence, aspartic protease during the course of leaf senescence, and the proteasome β1 subunit, mitochondria processing protease and SAG12 (cysteine protease) during the later senescence phases. Overall, the results constitute interesting pathways for screening genotypes with high NRE and NUE.

  4. Distance from forest edge affects bee pollinators in oilseed rape fields.

    PubMed

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-02-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

  5. Mitochondrial and peroxisomal beta-oxidation capacities of organs from a non-oilseed plant.

    PubMed

    Masterson, C; Wood, C

    2001-09-22

    Until recently, beta-oxidation was believed to be exclusively located in the peroxisomes of all higher plants. Whilst this is true for germinating oilseeds undergoing gluconeogenesis, evidence demonstrating mitochondrial beta-oxidation in other plant systems has refuted this central dogma of plant lipid metabolism. This report describes a comparative study of the dual mitochondrial and peroxisomal beta-oxidation capacities of plant organs. Oxidation of [1-(14)C] palmitate was measured in the cotyledons, plumules and radicles of Pisum sativum L., which is a starchy seed, over a 14 day period from the commencement of imbibition. Respiratory chain inhibitors were used for differentiating between mitochondrial and peroxisomal beta-oxidation. Peroxisomal beta-oxidation gave a steady, baseline rate and, in the early stages of seedling development, accounted for 70-100% of the beta-oxidation observed. Mitochondrial beta-oxidation gave peaks of activity at days 7 and 10-11, accounting for up to 82% of the total beta-oxidation activity at these times. These peaks coincide with key stages of seedling development and were not observed when normal development was disrupted by growth in the dark. Peroxisomal beta-oxidation was unaffected by etiolation. Since mitochondrial beta-oxidation was overt only during times of intense biosynthetic activity it might be switched on or off during seedling development. In contrast, peroxisomes maintained a continuous, low beta-oxidation activity that could be essential in removing harmful free fatty acids, e.g. those produced by protein and lipid turnover.

  6. Effects of Jasmonic Acid on Embryo-Specific Processes in Brassica and Linum Oilseeds 1

    PubMed Central

    Wilen, Ronald W.; van Rooijen, Gijs J. H.; Pearce, David W.; Pharis, Richard P.; Holbrook, Larry A.; Moloney, Maurice M.

    1991-01-01

    A number of effects on embryogenesis of the putative phytohormone jasmonic acid (JA), and its methyl ester (MeJA), were investigated in two oilseed plants, repeseed (Brassica napus) and flax (Linum usitatissimum). Results from treatments with JA and MeJA were compared with those of a known effector of several aspects of embryogenesis, abscisic acid (ABA). Jasmonic acid was identified by gas chromatography-mass spectrometry as a naturally occurring substance in both plant species during embryo development. Both JA and MeJA can prevent precocious germination of B. napus microspore embryos and of cultured zygotic embryos of both species at an exogenous concentration of >1 micromolar. This dose-response was comparable with results obtained with ABA. Inhibitory effects were also observed on seed germination with all three growth regulators in rapeseed and flax. A number of molecular aspects of embryogenesis were also investigated. Expression of the B. napus storage protein genes (napin and cruciferin) was induced in both microspore embryos and zygotic embryos by the addition of 10 micromolar JA. The level of napin and cruciferin mRNA detected was similar to that observed when 10 micromolar ABA was applied to these embryos. For MeJA only slight increases in napin or cruciferin mRNA were observed at concentrations of 30 micromolar. Several oilbody-associated proteins were found to accumulate when the embryos were incubated with either JA or ABA in both species. The MeJA had little effect on oilbody protein synthesis. The implications of JA acting as a natural regulator of gene expression in zygotic embryogenesis are discussed. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:16667997

  7. Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum.

    PubMed

    Eynck, C; Koopmann, B; Karlovsky, P; von Tiedemann, A

    2009-07-01

    Verticillium longisporum is a vascular fungal pathogen presently threatening oilseed rape production in Europe. Systemic spread and vascular responses were studied in a susceptible ('Falcon') and a resistant genotype (SEM 05-500256) of Brassica napus. Colonization of both genotypes after dip-inoculation of the roots followed by quantitative polymerase chain reaction revealed similarities only in the initial stages of root penetration and colonization of the hypocotyl, while a substantial invasion of the shoot was only recorded in 'Falcon'. It is concluded that the type of resistance represented in SEM 05-500256 does not prevent the plant base from being invaded as it is internally expressed well after root penetration and colonization of the plant base. The morphological and biochemical nature of barriers induced in the hypocotyl tissue upon infection was studied with histochemical methods accompanied by biochemical analyses. Histochemical studies revealed the build-up of vascular occlusions and the reinforcement of tracheary elements through the deposition of cell wall-bound phenolics and lignin. Furthermore, the accumulation of soluble phenolics was observed. Although these responses were found in vascular tissues of both genotypes, they occurred with a significantly higher intensity in the resistant genotype and corresponded with the disease phenotype. In the resistant genotype phenols were differentially expressed in a time-dependent manner with preformed soluble and cell wall-bound phenolics at earlier time points and de novo formation of lignin and lignin-like polymers at later stages of infection. This is the first study identifying a crucial role of phenol metabolism in internal defense of B. napus against V. longisporum and locating the crucial defense responses in the plant hypocotyl.

  8. Composition and fatty acid profile of milk from cows supplemented with pressed oilseed cake.

    PubMed

    Oliveira, Ronaldo Lopes; Neto, Severino Gonzaga; de Lima, Francisco Helton Sa; de Medeiros, Ariosvaldo Nunes; Bezerra, Leilson Rocha; Pereira, Elzania Sales; Bagaldo, Adriana Regina; de Pellegrini, Caius Barcellos; Correia, Braulio Rocha

    2016-10-01

    This study compared the productive and nutritional parameters of milk from crossbred lactating cows managed on Panicum maximum Jacq. cv. Tanzania and with a diet supplemented with different pressed oilseed cakes. The supplements used were as follows: peanut cake, sunflower cake and palm kernel cake for replacement of soybean meal. Sixteen cows with an average weight of 544 ± 57 kg and producing 8 ± 1.4 L of milk per day were used in this study. The animals were randomly assigned to the treatments according to a Latin square design repeated over time, with four treatments, 16 animals and four experimental periods. Supplementation of the diet with peanut cake, sunflower cake and palm kernel cake compared with soybean meal in the diet of cows did not affect the average daily production or composition of the milk. The palm kernel cake promoted an increase in lauric fatty acids (C12:0 ) and palmitoleic acids (C16:1 ) (5.02 and 1.65%, respectively) compared with peanut cake and sunflower cake (4.13 and 4.01%, respectively). The levels of oleic fatty acids (C18:1 ) were higher for the sunflower cake and palm kernel cake supplements (26.01 and 25.01%, respectively) compared with peanut cake (23.11%). The replacement of soybean meal with sunflower cake and palm kernel cake improved the nutritional quality of the milk, with lower concentrations of saturated fatty acids and higher concentrations of unsaturated fatty acids, without compromising the production or nutritional composition of the milk. © 2015 Japanese Society of Animal Science.

  9. Biomass, extracted liquid yields, sugar content or seed yields of biofuel feedstocks as affected by fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvesting products from plants for conversion into renewable resources is increasing in importance. Determination of nutrition requirements for the applicable crops is necessary, especially in regions where the biofuel feedstock crops have not been grown historically. Sunflower (Helianthus annuus...

  10. Endpoint fragmentation index: a method for monitoring the evolution of microbial degradation of polysaccharide feedstocks.

    PubMed

    Green, Terrence R; Popa, Radu

    2011-02-01

    We describe a simple method for tracking the course of microbial degradation of polysaccharide-rich feedstocks. The method involves determining total polysaccharides present in the feedstock, measured in glucose equivalents, relative to the fractional component of polysaccharides exhibiting 2,3-dinitrosalycylic acid aldehyde activity. The ratio of total polysaccharide to aldehyde activity, defined as the end-point fragmentation (EPF) index, is then calculated and tracked as it shifts as microbial degradation of polysaccharide-rich feedstock progresses. While degradation occurs, the EPF index falls. It bottoms out at an asymptotic limit marking the point in time where further degradation of the polysaccharide-rich feedstock has ceased. The EPF index can be used to follow the progressive breakdown of composting polysaccharide-rich waste. It may also have applicability as a means of tracking the turnover of polysaccharides in other complex environments including soil, sediments, wetlands, and peat bogs.

  11. Investigation of sample preparation on the moldability of ceramic injection molding feedstocks

    NASA Astrophysics Data System (ADS)

    Ide, Jared

    Ceramic injection molding is a desirable option for those who are looking to make ceramic parts with complex geometries. Formulating the feedstock needed to produce ideal parts is a difficult process. In this research a series of feedstock blends will be evaluated for moldability. This was done by investigating their viscosity, and how certain components affect the overall ability to flow. These feedstocks varied waxes, surfactants, and solids loading. A capillary rheometer was used to characterize some of the materials, which led to one batch being selected for molding trials. The parts were sintered and further refinements were made to the feedstock. Solids loading was increased from 77.5% to 82%, which required different ratios of organics to flow. Finally, the ceramic powders were treated to lower their specific surface area before being compounded, which resulted in materials that would process easily through an extruder and exhibit properties suitable for CIM.

  12. Biodiesel production from various feedstocks and their effects on the fuel properties.

    PubMed

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  13. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    SciTech Connect

    Ooteghem Van, Suellen

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  14. Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria

    DOEpatents

    Ooteghem, Suellen Van

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45.degree. C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  15. Pectin-rich biomass as feedstock for fuel ethanol production.

    PubMed

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  16. Development of non-petroleum feedstocks: The role of catalysis

    SciTech Connect

    Mahajan, D.

    1993-09-01

    The utilization of natural gas and coal feedstocks was initiated in the 1970s` in response to volatility in availability and price of petroleum. This concerted effort led to the development of processes based on C{sub 1}, chemistry (2) through which synthesis gas (a mixture of CO and H{sub 2}) could be catalytically converted to hydrocarbons and oxygenates. The catalytic conversion to hydrocarbons via the Fischer-Tropsch (F-T) reaction continues to be of commercial interest (1) but further improvements in reaction rates and product selectivity are sought. To this effect, recently a liquid phase Fe (slurry) F-T catalyst has replaced the traditional solid Fe. For oxygenates synthesis the utilization of organometallic complexes is established. Examples include homogeneously catalyzed commercial synthesis of acetic acid (Monsanto process) and acetic anhydride (Eastman Kodak process) catalyzed presumably by Rh(CO){sub 2}I{sub 2}{sup {minus}} species at {approximately}180{degrees}C and {degrees}50 atm. These examples indicate that organometallic complexes will find increasing applications as catalysts in new and improved processes. Since economical processes for direct conversions of coal (direct liquefaction) and natural gas (direct methane conversion) are yet to be targeted for commercial applications, synthesis of oxygenates via the ``Indirect Route,`` i.e. through synthesis gas, is carried out. The stoichiometry of synthesis gas produced from these two sources is of interest. Thus, the H{sub 2}/CO ratio varies from < 1 for coal-derived syngas to 3 for syngas from steam-reforming of natural gas. In order to maximize C utilization, the Catalyst-By-Design (CBD) approach for synthesis of methanol and higher oxygenates is ongoing under the ``BNL Catalyst Development`` program.

  17. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  18. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  19. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  20. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-01-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  1. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks.

    PubMed

    Zhu, Xiaoyan; Yao, Qingzhu

    2011-12-01

    It is technologically possible for a biorefinery to use a variety of biomass as feedstock including native perennial grasses (e.g., switchgrass) and agricultural residues (e.g., corn stalk and wheat straw). Incorporating the distinct characteristics of various types of biomass feedstocks and taking into account their interaction in supplying the bioenergy production, this paper proposed a multi-commodity network flow model to design the logistics system for a multiple-feedstock biomass-to-bioenergy industry. The model was formulated as a mixed integer linear programming, determining the locations of warehouses, the size of harvesting team, the types and amounts of biomass harvested/purchased, stored, and processed in each month, the transportation of biomass in the system, and so on. This paper demonstrated the advantages of using multiple types of biomass feedstocks by comparing with the case of using a single feedstock (switchgrass) and analyzed the relationship of the supply capacity of biomass feedstocks to the output and cost of biofuel.

  2. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    SciTech Connect

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  3. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  4. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus).

    PubMed

    Wu, Zhichao; Zhao, Xiaohu; Sun, Xuecheng; Tan, Qiling; Tang, Yafang; Nie, Zhaojun; Hu, Chengxiao

    2015-01-01

    Cadmium (Cd) is a toxic metal which harms human health through food chains. The mechanisms underlying Cd accumulation in oilseed rape are still poorly understood. Here, we investigated the physiological and genetic processes involved in Cd uptake and transport of two oilseed rape cultivars (Brassica napus). L351 accumulates more Cd in shoots but less in roots than L338. A scanning ion-selective electrode technique (SIET) and uptake kinetics of Cd showed that roots were not responsible for the different Cd accumulation in shoots since L351 showed a lower Cd uptake ability. However, concentration-dependent and time-dependent dynamics of Cd transport by xylem showed L351 exhibited a superordinate capacity of Cd translocation to shoots. Additionally, the Cd concentrations of shoots and xylem sap showed a great correlation in both cultivars. Furthermore, gene expression levels related to Cd uptake by roots (IRT1) and Cd transport by xylem (HMA2 and HMA4) were consistent with the tendencies of Cd absorption and transport at the physiological level respectively. In other words, L351 had stronger gene expression for Cd transport but lower for Cd uptake. Overall, results revealed that the process of Cd translocation to shoots is a determinative factor for Cd accumulation in shoots, both at physiological and genetic levels.

  5. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield.

    PubMed

    White, Charlotte A; Sylvester-Bradley, Roger; Berry, Peter M

    2015-04-01

    Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm(-3), RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of 'full capture' of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha(-1) and 1.2 t ha(-1), respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed.

  6. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield

    PubMed Central

    White, Charlotte A.; Sylvester-Bradley, Roger; Berry, Peter M.

    2015-01-01

    Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm–3, RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of ‘full capture’ of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha–1 and 1.2 t ha–1, respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed. PMID:25750427

  7. Mapping the mosaic of ancestral genotypes in a cultivar of oilseed rape (Brassica napus) selected via pedigree breeding.

    PubMed

    Sharpe, A G; Lydiate, D J

    2003-06-01

    Recent oilseed rape breeding has produced low glucosinolate cultivars that yield proteinaceous meal suitable for animal feed. The low glucosinolate character was introduced into modern cultivars from Brassica napus 'Bronowski', a cultivar that is agronomically inferior in most other respects. Residual segments of 'Bronowski' genotype in modern cultivars probably cause reduced yield, poorer winter hardiness, and lower oil content. The quantity and distribution of the 'Bronowski' genotype in the modern oilseed rape cultivar Brassica napus 'Tapidor' was investigated using a segregating population derived from a cross between 'Tapidor' and its high glucosinolate progenitor. This population was analyzed with 65 informative Brassica RFLP probes and a genetic linkage map, based on the segregation at 77 polymorphic loci, was constructed. The mapping identified 15 residual segments of donor genotype in 'Tapidor', which together occupy approximately 29% of the B. napus genome. Mapping the loci that control variation for the accumulation of total seed glucosinolates in the segregating population has identified three loci that together explain >90% of the variation for this character. All of these loci are in donor segments of the 'Tapidor' genome. This result shows the extent to which conventional breeding programmes have difficulty in eliminating residual segments of donor genotype from elite material.

  8. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.

    PubMed

    Poret, Marine; Chandrasekar, Balakumaran; van der Hoorn, Renier A L; Avice, Jean-Christophe

    2016-05-01

    Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.

  9. Assays of the production of harmful substances by genetically modified oilseed rape (Brassica napus L.) plants in accordance with regulations for evaluating the impact on biodiversity in Japan.

    PubMed

    Asanuma, Yoko; Jinkawa, Tomoe; Tanaka, Hidenori; Gondo, Takahiro; Zaita, Norihiro; Akashi, Ryo

    2011-02-01

    Environmental risk assessment of transgenic crops is implemented under the Cartagena Protocol domestic law in accordance with guidelines for implementing the assessment established by the Ministry of Agriculture, Forestry and Fisheries (MAFF) and the Ministry of Environment (MOE) in Japan. Environmental risk assessments of transgenic crops are implemented based on the concept of 'substantial equivalence' to conventional crops. A unique requirement in Japan to monitor the production of harmful substances, or allelochemicals, is unparalleled in other countries. The potential for allelochemicals to be secreted from the roots of transgenic crops to affect other plants or soil microflora or for substances in the plant body to affect other plants after dying out must be evaluated. We evaluated the allelopathic potential of seven transgenic oilseed rape (Brassica napus L.) lines that express glufosinate tolerance in terms of substantial equivalence to conventional oilseed rape lines, and established evaluation methods. Our results indicate no potential production of allelochemicals for any of the seven transgenic oilseed rape lines compared with conventional oilseed rape lines.

  10. Draft Genome Sequence of the Beneficial Rhizobacterium Pseudomonas fluorescens DSM 8569, a Natural Isolate of Oilseed Rape (Brassica napus)

    PubMed Central

    Nesemann, Kai; Braus-Stromeyer, Susanna A.; Thuermer, Andrea; Daniel, Rolf

    2015-01-01

    Pseudomonas fluorescens DSM 8569 represents a natural isolate of the rhizosphere of oilseed rape (Brassica napus) in Germany and possesses antagonistic potential toward the fungal pathogen Verticillium. We report here the draft genome sequence of strain DSM 8569, which comprises 5,914 protein-coding sequences. PMID:25814596

  11. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  12. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    SciTech Connect

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  13. Genome-Wide Analysis and Expression Profiling of the SUC and SWEET Gene Families of Sucrose Transporters in Oilseed Rape (Brassica napus L.)

    PubMed Central

    Jian, Hongju; Lu, Kun; Yang, Bo; Wang, Tengyue; Zhang, Li; Zhang, Aoxiang; Wang, Jia; Liu, Liezhao; Qu, Cunmin; Li, Jiana

    2016-01-01

    Sucrose is the principal transported product of photosynthesis from source leaves to sink organs. SUTs/SUCs (sucrose transporters or sucrose carriers) and SWEETs (Sugars Will Eventually be Exported Transporters) play significant central roles in phloem loading and unloading. SUTs/SUCs and SWEETs are key players in sucrose translocation and are associated with crop yields. The SUT/SUC and SWEET genes have been characterized in several plant species, but a comprehensive analysis of these two gene families in oilseed rape has not yet been reported. In our study, 22 and 68 members of the SUT/SUCs and SWEET gene families, respectively, were identified in the oilseed rape (Brassica napus) genome through homology searches. An analysis of the chromosomal distribution, phylogenetic relationships, gene structures, motifs and the cis-acting regulatory elements in the promoters of BnSUC and BnSWEET genes were analyzed. Furthermore, we examined the expression of the 18 BnSUC and 16 BnSWEET genes in different tissues of “ZS11” and the expression of 9 BnSUC and 7 BnSWEET genes in “ZS11” under various conditions, including biotic stress (Sclerotinia sclerotiorum), abiotic stresses (drought, salt and heat), and hormone treatments (abscisic acid, auxin, cytokinin, brassinolide, gibberellin, and salicylic acid). In conclusion, our study provides the first comprehensive analysis of the oilseed rape SUC and SWEET gene families. Information regarding the phylogenetic relationships, gene structure and expression profiles of the SUC and SWEET genes in the different tissues of oilseed rape helps to identify candidates with potential roles in specific developmental processes. Our study advances our understanding of the important roles of sucrose transport in oilseed rape. PMID:27733861

  14. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey.

    PubMed

    Rolke, Daniel; Persigehl, Markus; Peters, Britta; Sterk, Guido; Blenau, Wolfgang

    2016-11-01

    This study was part of a large-scale monitoring project to assess the possible effects of Elado(®) (10 g clothianidin & 2 g β-cyfluthrin/kg seed)-dressed oilseed rape seeds on different pollinators in Northern Germany. Firstly, residues of clothianidin and its active metabolites thiazolylnitroguanidine and thiazolylmethylurea were measured in nectar and pollen from Elado(®)-dressed (test site, T) and undressed (reference site, R) oilseed rape collected by honey bees confined within tunnel tents. Clothianidin and its metabolites could not be detected or quantified in samples from R fields. Clothianidin concentrations in samples from T fields were 1.3 ± 0.9 μg/kg and 1.7 ± 0.9 μg/kg in nectar and pollen, respectively. Secondly, pollen and nectar for residue analyses were sampled from free flying honey bees, bumble bees and mason bees, placed at six study locations each in the R and T sites at the start of oilseed rape flowering. Honey samples were analysed from all honey bee colonies at the end of oilseed rape flowering. Neither clothianidin nor its metabolites were detectable or quantifiable in R site samples. Clothianidin concentrations in samples from the T site were below the limit of quantification (LOQ, 1.0 µg/kg) in most pollen and nectar samples collected by bees and 1.4 ± 0.5 µg/kg in honey taken from honey bee colonies. In summary, the study provides reliable semi-field and field data of clothianidin residues in nectar and pollen collected by different bee species in oilseed rape fields under common agricultural conditions.

  15. Rice Yield and the Fate of Fertilizer Nitrogen as Affected by Addition of Earthworm Casts Collected from Oilseed Rape Fields: A Pot Experiment

    PubMed Central

    Huang, Min; Zhou, Xuefeng; Xie, Xiaobing; Zhao, Chunrong; Chen, Jiana; Cao, Fangbo; Zou, Yingbin

    2016-01-01

    The mechanism associated with improvement of soil nutritional status by oilseed rape crop, leading to better performance of rice crop, in rice-oilseed rape cropping systems is little known. The present study was aimed to test the hypothesis that earthworm casts produced during oilseed rape-growing season have positive effects on grain yield and fertilizer nitrogen (N) utilization in the subsequent flooded rice crop. A 15N-tracing pot experiment was conducted to determine the effects of earthworm casts collected from oilseed rape fields on yield attributes in rice and the fate of fertilizer N. Soil treated with earthworm casts (soil: earthworm casts = 4: 1, w/w) (EC1) produced 39% higher grain yield than soil only (EC0). EC1 had 18% more panicle number and 10% higher spikelet filling percentage than EC0. Aboveground biomass and harvest index were higher in EC1 than in EC0 by 20% and 15%, respectively. SPAD values in flag leaves were 10% and 22% higher under EC1 than EC0 at 15 and 20 days after heading, respectively. EC1 had 19% higher total N uptake and 18% higher physiological N-use efficiency than EC0. These positive effects of earthworm casts on yield attributes offset negative effects of decreasing N rate from 0.74 g pot–1 (equivalent to the recommended field rate of 150 kg ha–1) to 0.44 g pot–1 (equivalent to 60% of the recommended rate). Fertilizer N retention rate was 7% higher while fertilizer N loss rate was 6% lower in EC1 than in EC0. Our study suggests that earthworm casts produced during oilseed rape-growing season are expected to have the following benefits on the subsequent flooded rice system: (1) improving growth and physiological processes in rice plants and consequently increasing rice grain yield, and (2) increasing fertilizer N retention rate and hence decreasing fertilizer N loss rate and reducing environmental risk. PMID:27880837

  16. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    PubMed

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only.

  17. Rheological study of copper and copper grapheme feedstock for powder injection molding

    NASA Astrophysics Data System (ADS)

    Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.

    2017-01-01

    Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper

  18. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    SciTech Connect

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; Carpenter, Daniel L.

    2016-06-17

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease in lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

  19. Effects of Torrefaction Temperature on Pyrolysis Vapor Products of Woody and Herbaceous Feedstocks

    DOE PAGES

    Starace, Anne K.; Evans, Robert J.; Lee, David D.; ...

    2016-06-17

    A variety of hardwood, softwood, and herbaceous feedstocks (oak, southern yellow pine mix, loblolly pine, pinyon-juniper mix, and switchgrass) were each torrefied at 200, 250, and 300 °C. Each of the feedstocks was pyrolyzed and the resulting vapors were analyzed with a molecular beam mass spectrometer (py-MBMS). Compositional analysis was used to measure the total lignin content of three of the feedstocks (southern yellow pine, softwood; oak, hardwood; and switchgrass, herbaceous) before and after torrefaction at 300 °C, and large differences in the fraction of lignin lost during torrefaction were found between feedstocks, with oak having the largest decrease inmore » lignin during torrefaction and switchgrass having the least. Finally, it is hypothesized that these differences in the thermal degradation are due to, in part, the different ratios of S, G, and H lignins in the feedstocks. Additionally, the torrefaction of kraft lignin was studied using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA-FTIR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).« less

  20. Gridley Ethanol Demonstration Project Utilizing Gasification Technology: Feedstock Supply Plan; March 15, 2004

    SciTech Connect

    Not Available

    2004-07-01

    The report describes a Feedstock Supply Plan for the proposed Gridley Ethanol Demonstration Project to be located in the City of Gridley Industrial Park in Gridley, California. This report also includes information on the establishment of the required infrastructure required for collecting approximately 113,000 Bone Dry Tons (BDT) annually for the proposed facility. Using the Pearson Technology from Aberdeen, Mississippi, and the related engineering assumptions for required feedstock, it is estimated that the proposed Gridley Ethanol Project will use approximately 113,000 BDT of rice straw to produce approximately up to 20 million gallons of ethanol annually, and/or process steam and or electricity. Based on TSS's survey of planted rice acreage in the Sacramento Valley, a total of 379,765 acres of rice are grown within a 30-mile radius of the Gridley site and that 759,530 BDT of recoverable rice straw are generated annually. This volume of rice straw is 6.7 times the 113,000 BDT of tot al feedstock needed by the proposed Gridley facility. Sufficient infrastructure exists with additional market potential for further private market infrastructure expansion in California and the Northwest (Oregon, Washington and Idaho) to collect the annual feedstock requirement of 113,000 BDT for the proposed Gridley Ethanol Demonstration Project. The projected feedstock cost for 113,000 BDT of rice straw delivered annually to the Gridley facility is approximately $35.00/BDT.

  1. NIST-Traceable NMR Method to Determine Quantitative Weight Percentage Purity of Nitrogen Mustard HN-1 Feedstock Samples

    DTIC Science & Technology

    2014-06-01

    ECBC-TR-1251 NIST-TRACEABLE NMR METHOD TO DETERMINE QUANTITATIVE WEIGHT PERCENTAGE PURITY OF NITROGEN MUSTARD HN-1 FEEDSTOCK SAMPLES David J...Determine Quantitative Weight Percentage Purity of Nitrogen Mustard HN-1 Feedstock Samples 5a. CONTRACT NUMBER W911SR-10-D-0004 5b. GRANT NUMBER 5c...using NMR with proton detection is described to determine the weight percent purity of feedstock samples of nitrogen mustard , HN-1. 15. SUBJECT

  2. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.

    PubMed

    Zhang, Jian; Shao, Shuai; Bao, Jie

    2016-02-01

    This study reported a new solution of lignocellulose feedstock storage based on the distributed pretreatment concept. The dry dilute sulfuric acid pretreatment (DDAP) was conducted on corn stover feedstock, instead of ammonia fiber explosion pretreatment. Then the dry dilute acid pretreated corn stover was stored for three months during summer season with high temperature and humidity. No negative aspects were found on the physical property, composition, hydrolysis yield and ethanol fermentability of the long term stored pretreated corn stover, plus the additional merits including no chemicals recovery operation, anti-microbial contaminant environment from stronger acid and inhibitor contents, as well as the mild and slow hydrolysis in the storage. The new pretreatment method expanded the distributed pretreatment concept of feedstock storage with potential for practical application.

  3. Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.

    PubMed

    Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger

    2017-04-01

    Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research.

  4. Preprocessed barley, rye, and triticale as a feedstock for an integrated fuel ethanol-feedlot plant

    SciTech Connect

    Sosulski, K.; Wang, Sunmin; Ingledew, W.M.

    1997-12-31

    Rye, triticale, and barley were evaluated as starch feedstock to replace wheat for ethanol production. Preprocessing of grain by abrasion on a Satake mill reduced fiber and increased starch concentrations in feed-stock for fermentations. Higher concentrations of starch in flours from preprocessed cereal grains would increase plant throughput by 8-23% since more starch is processed in the same weight of feedstock. Increased concentrations of starch for fermentation resulted in higher concentrations of ethanol in beer. Energy requirements to produce one L of ethanol from preprocessed grains were reduced, the natural gas by 3.5-11.4%, whereas power consumption was reduced by 5.2-15.6%. 7 refs., 7 figs., 4 tabs.

  5. Alternative methods of processing bio-feedstocks in formulated consumer product design

    PubMed Central

    Peremezhney, Nicolai; Jacob, Philipp-Maximilian; Lapkin, Alexei

    2014-01-01

    In this work new methods of processing bio-feedstocks in the formulated consumer products industry are discussed. Our current approach to formulated products design is based on heuristic knowledge of formulators that allows selecting individual compounds from a library of available materials with known properties. We speculate that most of the compounds (or functions) that make up the product to be designed can potentially be obtained from a few bio-sources. In this case, it may be possible to design a sequence of transformations required to convert feedstocks into products with desired properties, analogous to a metabolic pathway of a complex organism. We conceptualize some novel approaches to processing bio-feedstocks with the aim of bypassing the step of a fixed library of ingredients. Two approaches are brought forward: one making use of knowledge-based expert systems and the other making use of applications of metabolic engineering and dynamic combinatorial chemistry. PMID:24860803

  6. System characteristics and performance evaluation of a trailer-scale downdraft gasifier with different feedstock.

    PubMed

    Balu, Elango; Chung, J N

    2012-03-01

    The main objective of this study is to investigate the thermal profiles of a trailer-scale gasifier in different zones during the course of gasification and also to elaborate on the design, characteristics and performance of the gasification system using different biomass feedstock. The purpose is to emphasize on the effectiveness of distributed power generation systems and demonstrate the feasibility of such gasification systems in real world scenarios, where the lingo-cellulosic biomass resources are widely available and distributed across the board. Experimental data on the thermal profiles with respect to five different zones in the gasifier and a comprehensive thermal-chemical equilibrium model to predict the syngas composition are presented in detail. Four different feedstock-pine wood, horse manure, red oak, and cardboard were evaluated. The effects of C, H, O content variations in the feedstock on the thermal profiles, and the efficiency and viability of the trailer-scale gasifier are also discussed.

  7. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    DOE PAGES

    Emerson, Rachel; Hoover, Amber; Ray, Allison; ...

    2014-07-04

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study is to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed grasses from Conservation Reserve Program lands, and Miscanthus × giganteus. To assess drought effects on these feedstocks, samples from 2010 (minimal to no drought) and 2012 (severe drought) were compared from multiple locations in the US. In all feedstocks, drought significantly increased extractives and reduced structural sugars and lignin; subsequently, TEYs were reduced 10–15%. Biomass yields were significantly reduced formore » M. × giganteus and mixed grasses. When reduction in quality and quantity were combined, TEYs decreased 26–59%. Drought negatively affected biomass quality and quantity that resulted in significant TEY reductions. As a result, such fluctuations in biomass quality and yield may have significant consequences for developing lignocellulosic biorefineries.« less

  8. Effects of Humidity On the Flow Characteristics of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2002-01-01

    The effects of environmental humidity on the flow characteristics of PS304 feedstock have been investigated. Angular and spherical BaF2-CaF2 powder was fabricated by comminution and by atomization, respectively. The fluorides were added incrementally to the nichrome, chromia, and silver powders to produce PS304 feedstock. The powders were dried in a vacuum oven and cooled to a Tom temperature under dry nitrogen. The flow of the powder was studied from 2 to 100 percent relative humidity (RH) The results suggest that the feedstock flow is slightly degraded with increasing humidity below 66 percent RH and is more affected above 66 percent RH. There was no flow above 88 percent RH. Narrower particle size distributions of the angular fluorides allowed flow up to 95 percent RH. These results offer guidance that enhances the commercial potential for this material system.

  9. Alternative methods of processing bio-feedstocks in formulated consumer product design.

    PubMed

    Peremezhney, Nicolai; Jacob, Philipp-Maximilian; Lapkin, Alexei

    2014-01-01

    In this work new methods of processing bio-feedstocks in the formulated consumer products industry are discussed. Our current approach to formulated products design is based on heuristic knowledge of formulators that allows selecting individual compounds from a library of available materials with known properties. We speculate that most of the compounds (or functions) that make up the product to be designed can potentially be obtained from a few bio-sources. In this case, it may be possible to design a sequence of transformations required to convert feedstocks into products with desired properties, analogous to a metabolic pathway of a complex organism. We conceptualize some novel approaches to processing bio-feedstocks with the aim of bypassing the step of a fixed library of ingredients. Two approaches are brought forward: one making use of knowledge-based expert systems and the other making use of applications of metabolic engineering and dynamic combinatorial chemistry.

  10. In situ self-catalyzed reactive extraction of germinated oilseed with short-chained dialkyl carbonates for biodiesel production.

    PubMed

    Jiang, Yanjun; Li, Dan; Li, Yang; Gao, Jing; Zhou, Liya; He, Ying

    2013-12-01

    In order to eliminate the expense associated with solvent extraction and oil cleanup, and reduce the processing steps in biodiesel production, reactive extraction has become a focus of research in recent years. In this study, germinated castor seed was used as substrate and catalyst, dimethyl carbonate (DMC) was used as acyl acceptor and oil extractant to produce biodiesel. The optimum conditions were as follows: the germination time of castor seed was 72 h, DMC/germinated seed ratio was 12.5 ml/g, reaction temperature was 35°C, and water content was 2.11%. The biodiesel yield could reach as much as 87.41% under the optimized conditions. This germinated oilseed self-catalyzed reactive extraction can be a promising route for biodiesel production.

  11. In situ lipase-catalyzed reactive extraction of oilseeds with short-chained dialkyl carbonates for biodiesel production.

    PubMed

    Su, Erzheng; You, Pengyong; Wei, Dongzhi

    2009-12-01

    Dimethyl/diethyl carbonate was adopted as extraction solvent and transesterification reagent at the same time for in situ lipase-catalyzed reactive extraction of oilseeds for biodiesel production in this work. Fatty acid methyl esters and ethyl esters were respectively obtained with higher yields than those achieved by conventional two-step extraction/transesterification. The augment ranged from 15.7% to 31.7%. The key parameters such as solvent/seed ratio and water content were further investigated to find their effects on the in situ reactive extraction. The highest yields of Pistacia chinensis Bunge methyl ester, P. chinensis Bunge ethyl ester, Jatropha curcas L methyl ester and J. curcas L ethyl ester could attain 89.6%, 90.7%, 95.9% and 94.5%, respectively under the optimized conditions.

  12. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging

    PubMed Central

    Kong, Wenwen; Liu, Fei; Zhang, Chu; Zhang, Jianfeng; Feng, Hailin

    2016-01-01

    The feasibility of hyperspectral imaging with 400–1000 nm was investigated to detect malondialdehyde (MDA) content in oilseed rape leaves under herbicide stress. After comparing the performance of different preprocessing methods, linear and nonlinear calibration models, the optimal prediction performance was achieved by extreme learning machine (ELM) model with only 23 wavelengths selected by competitive adaptive reweighted sampling (CARS), and the result was RP = 0.929 and RMSEP = 2.951. Furthermore, MDA distribution map was successfully achieved by partial least squares (PLS) model with CARS. This study indicated that hyperspectral imaging technology provided a fast and nondestructive solution for MDA content detection in plant leaves. PMID:27739491

  13. Preliminary safety assessment of a membrane-bound delta 9 desaturase candidate protein for transgenic oilseed crops.

    PubMed

    Madduri, Krishna M; Schafer, Barry W; Hasler, James M; Lin, Gaofeng; Foster, Mendy L; Embrey, Shawna K; Sastry-Dent, Lakshmi; Song, Ping; Larrinua, Ignacio M; Gachotte, Daniel J; Herman, Rod A

    2012-10-01

    A gene encoding delta 9 desaturase (D9DS), an integral membrane protein, is being considered for incorporation into oilseed crops to reduce saturated fatty acids and thus improve human nutritional value. Typically, a safety assessment for transgenic crops involves purifying heterologously produced transgenic proteins in an active form for use in safety studies. Membrane-bound proteins have been very difficult to isolate in an active form due to their inherent physicochemical properties. Described here are methods used to derive enriched preparations of the active D9DS protein for use in early stage safety studies. Results of these studies, in combination with bioinformatic results and knowledge of the mode of action of the protein, along with a history of safe consumption of related proteins, provides a weight of evidence supporting the safety of the D9DS protein in food and feed.

  14. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications.

    PubMed

    Lu, Chaofu; Napier, Johnathan A; Clemente, Thomas E; Cahoon, Edgar B

    2011-04-01

    Vegetable oils have historically been a valued commodity for food use and to a lesser extent for non-edible applications such as detergents and lubricants. The increasing reliance on biodiesel as a transportation fuel has contributed to rising demand and higher prices for vegetable oils. Biotechnology offers a number of solutions to meet the growing need for affordable vegetable oils and vegetable oils with improved fatty acid compositions for food and industrial uses. New insights into oilseed metabolism and its transcriptional control are enabling biotechnological enhancement of oil content and quality. Alternative crop platforms and emerging technologies for metabolic engineering also hold promise for meeting global demand for vegetable oils and for enhancing nutritional, industrial, and biofuel properties of vegetable oils.

  15. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Kong, Wenwen; Liu, Fei; Zhang, Chu; Zhang, Jianfeng; Feng, Hailin

    2016-10-01

    The feasibility of hyperspectral imaging with 400–1000 nm was investigated to detect malondialdehyde (MDA) content in oilseed rape leaves under herbicide stress. After comparing the performance of different preprocessing methods, linear and nonlinear calibration models, the optimal prediction performance was achieved by extreme learning machine (ELM) model with only 23 wavelengths selected by competitive adaptive reweighted sampling (CARS), and the result was RP = 0.929 and RMSEP = 2.951. Furthermore, MDA distribution map was successfully achieved by partial least squares (PLS) model with CARS. This study indicated that hyperspectral imaging technology provided a fast and nondestructive solution for MDA content detection in plant leaves.

  16. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOEpatents

    Peters, William A.; Howard, Jack B.; Modestino, Anthony J.; Vogel, Fredreric; Steffin, Carsten R.

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  17. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    SciTech Connect

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  18. Process for improving the energy density of feedstocks using formate salts

    DOEpatents

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  19. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    PubMed Central

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  20. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  1. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  2. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.).

    PubMed

    Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2012-09-01

    N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.

  3. Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism.

    PubMed

    Clauss, Kathleen; von Roepenack-Lahaye, Edda; Böttcher, Christoph; Roth, Mary R; Welti, Ruth; Erban, Alexander; Kopka, Joachim; Scheel, Dierk; Milkowski, Carsten; Strack, Dieter

    2011-03-01

    Sinapine (O-sinapoylcholine) is the predominant phenolic compound in a complex group of sinapate esters in seeds of oilseed rape (Brassica napus). Sinapine has antinutritive activity and prevents the use of seed protein for food and feed. A strategy was developed to lower its content in seeds by expressing an enzyme that hydrolyzes sinapine in developing rape seeds. During early stages of seedling development, a sinapine esterase (BnSCE3) hydrolyzes sinapine, releasing choline and sinapate. A portion of choline enters the phospholipid metabolism, and sinapate is routed via 1-O-sinapoyl-β-glucose into sinapoylmalate. Transgenic oilseed rape lines were generated expressing BnSCE3 under the control of a seed-specific promoter. Two distinct single-copy transgene insertion lines were isolated and propagated to generate homozygous lines, which were subjected to comprehensive phenotyping. Sinapine levels of transgenic seeds were less than 5% of wild-type levels, whereas choline levels were increased. Weight, size, and water content of transgenic seeds were significantly higher than those of wild-type seeds. Seed quality parameters, such as fiber and glucosinolate levels, and agronomically important traits, such as oil and protein contents, differed only slightly, except that amounts of hemicellulose and cellulose were about 30% higher in transgenic compared with wild-type seeds. Electron microscopic examination revealed that a fraction of the transgenic seeds had morphological alterations, characterized by large cavities near the embryonic tissue. Transgenic seedlings were larger than wild-type seedlings, and young seedlings exhibited longer hypocotyls. Examination of metabolic profiles of transgenic seeds indicated that besides suppression of sinapine accumulation, there were other dramatic differences in primary and secondary metabolism. Mapping of these changes onto metabolic pathways revealed global effects of the transgenic BnSCE3 expression on seed metabolism.

  4. Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape?

    PubMed

    Abdallah, M; Etienne, P; Ourry, A; Meuriot, F

    2011-03-01

    Winter oilseed rape is sensitive to S limitation, however few studies have clearly assessed the impact of initial S reserves on the remobilization of leaf N-S compounds and senescence dynamics within the leaves in S limited plants. As a consequence, the impacts of high or low initial S reserves on these parameters, further cross-combined with either high or low S availabilities, were examined using a ¹⁵N and ³⁴S double-labelling method associated with a study of gene expression of relevant tonoplastic sulphate transporters (BnSultr4;1 and BnSultr4;2) and a molecular indicator of leaf senescence (BnSAG12/BnCab). Plants with high initial S status and S limitation showed an optimal growth comparable to control plants. Moreover, in response to S limitation, leaf soluble protein content, total S, recently assimilated S (i.e., ³⁴S) and the sulphate content in the oldest leaves declined, and the expression of genes encoding tonoplastic sulphate transporters were up-regulated. However, compared to control plants, S limitation delayed leaf senescence. These data suggested that in response to S limitation, plants with high initial S were able to sustain optimized leaf growth by increasing endogenous N and S remobilization independently of the leaf senescence process. In contrast, if these low S plants had no initial S reserves, leaf N-S remobilization was not sufficient to allow optimal growth. As a conclusion, our study supports a model where oilseed rape is able to compensate transiently for S limitation through a fine management of leaf N-S remobilization and a delayed leaf senescence dynamics.

  5. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum

    PubMed Central

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens. PMID:28045929

  6. Detecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum.

    PubMed

    Alkooranee, Jawadayn Talib; Aledan, Tamarah Raad; Ali, Ali Kadhim; Lu, Guangyuan; Zhang, Xuekun; Wu, Jiangsheng; Fu, Chunhua; Li, Maoteng

    2017-01-01

    Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) response against infection by the Sclerotinia sclerotiorum. Salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) are plant hormone signals that play important roles in the regulation of ISR and SAR. In this study, at six different time points (1, 2, 4, 6, 8 and 10 days post-infection [dpi]), six resistance genes were used as markers of signaling pathways: JA/ET signaling used AOC3, PDF1.2 and ERF2 genes, while PR-1, TGA5 and TGA6 genes were used as markers of SA signaling. The results of quantitative real-time polymerase chain reaction (qRT-PCR) showed that AOC3, PDF1.2 and ERF2 expression levels in infected leaves of AACC and RRCC increase at 1 and 2 dpi with S. sclerotiorum or inoculation with TH12. PR-1, TGA5 and TGA6 expression levels increased at 8 and 10 dpi in infected leaves. PR-1, TGA5 and TGA6 expression levels increased early in plants treated with CF in both of the healthy genotypes. Furthermore, induction of SA- and JA/ET-dependent defense decreased disease symptoms in infected leaves at different times. The results suggest that the RRCC genotype exhibits resistance to disease and that the ability of TH12 and its CF to induce systemic resistance in susceptible and resistant oilseed rape genotypes exists. In addition, the results indicate for the first time that in RRCC the SA signaling pathway is involved in resistance to necrotrophic pathogens.

  7. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrotreated renewable jet fuel (HRJ) derived from crop oils has been commercially demonstrated but full-scale production has been hindered by feedstock costs that make the product more costly than petroleum-based fuels. Maintaining low feedstock costs while developing crops attractive to farmers to...

  8. Non-flowering Sorghum spp. hybrids: Perennial, sterile, high-biomass feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial Sorghum spp. hybrids such as Columbusgrass (Sorghum almum Parodi; S. bicolor [L.] Moench x S. halepense [L.] Pers.) and the reciprocal hybridization (S. halepense x S. bicolor; e.g. Cv 'Krish') are high-biomass forage feedstocks. Utilization of such hybrids is limited, however, by both th...

  9. Nutrient and water requirements for elephantgrass production as a bio-fuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elephantgrass (Pennisetum purpureum Schumacher) is a tall tropical bunch grass that produces high enough yields to being considered an excellent bio-energy feedstock for the lower South. However, previous studies have shown that production is not sustainable without fertilizer application and adequ...

  10. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  11. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    NASA Astrophysics Data System (ADS)

    Yunus, S.; Abdullah, N. R.; Mamat, R.; Rashid, A. A.

    2013-12-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia.

  12. Effect of biochemical factors from mixed animal wastes feedstock in biogas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane...

  13. Agave: a biofuel feedstock for arid and semi-arid environments

    SciTech Connect

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  14. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    SciTech Connect

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  15. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  16. Multi-utilization of swine manure as a bioenergy feedstock: Carbonization and combustion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of animal manure and other organic-based waste products as bioenergy feedstocks is gaining interest for waste-to-bioenergy conversion processes. While thermochemical conversion of animal manure via combustion, pyrolysis, and gasification is becoming a new frontier of manure treatment; there ...

  17. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study was to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed perennial grasses from Conservation Reserve Program de...

  18. Evaluation of sweet sorghum as a feedstock by multiple harvests for sustainable bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweet sorghum has become an important feedstock for bioethanol production. Total sugar yield and multiple harvests can directly affect ethanol production cost. Little is known about stem traits and multiple harvests that contribute to sugar yield in sweet sorghum. Stem traits were evaluated from 25 ...

  19. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema

    Khanna, Madhu

    2016-07-12

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  20. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    EPA Science Inventory

    The results of a laboratory scale investigation on ozone pretreatment of primary treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0 % (w/w) oz...

  1. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    PubMed Central

    2011-01-01

    Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction. PMID:22018114

  2. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  3. Raffinates from catalytic gasoil as feedstocks for the production of technical carbon

    SciTech Connect

    Alekhina, N.I.; Levinson, S.Z.; Mikhailov, I.A.; Tsekhanovich, M.S.

    1982-11-01

    Investigates desorbed raffinates, obtained in the adsorption treatment of CGO, as feedstocks for technical carbon production. Explains that the CGO was produced in a type 1A/1M commercial unit operating on zeolitic catalyst with a heavy distillate feedstock from mixed medium-sulfur crudes of the Ural district. Finds that the yield of technical carbon from the desorbed raffinate is 3-4% higher than from the traditional feedstock (e.g. the solvent extract). Notes that the technical carbon obtained from the experimental feed is characterized by a considerably higher oil number in comparison with the carbon produced from the standard feed, and the specific surface areas are quite similar. Points out that the technical carbon from the desorbed raffinate completely meets the requirements for high-dispersity, highly structurized technical carbon in grades PM-75V and PM-100V. Recommends the desorbed raffinate from adsorptive treating of heavy CGO as a feedstock for the production of high-dispersity technical carbon, with either normal structure or a higher level of structure.

  4. Fluid fertilizer's role in sustaining soils used for bio-energy feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of corn (Zea mays L.) as a bio-energy feedstock has attracted the attention of many producers. Recently, the focus has shifted from grain-based to cellulose-based ethanol production. In addition to biological conversion of corn stover to ethanol, thermal conversion (pyrolysis) of stover is b...

  5. Improvement of perennial forage species as feedstock for bio-energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both native and non-native forage grasses other than switchgrass are less commonly considered as potential lignocellulosic biomass feedstocks for bioenergy in the United States. The forage grasses consist of temperate cool-season (most commonly C3) grasses as well as the tropical or sub-tropical an...

  6. Effects of Biochar Feedstock and Pyrolysis Temperature on Growth of Corn, Soybean, Lettuce and Carrot

    EPA Science Inventory

    Biochar, the carbon-rich material remaining after pyrolysis (low oxygen) of cellulosic feedstocks, has the potential as a soil amendment to sequester carbon, improve soil water-holding capacity, and increase nutrient retention thereby enhancing soil conditions to benefit plant gr...

  7. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    EPA Science Inventory

    Purpose: Biochars are a soil amendment produced from lignocellulosic and manure feedstocks. Not all biochars are viable soil amendments because of differences in their physical and chemical properties. Biochar could deliver more effective service as a soil amendment if its chemis...

  8. CONTEXT MATTERS: THE IMPORTANCE OF MARKET CHARACTERISTICS IN THE VOLATILITY OF FEEDSTOCK COSTS FOR BIOGAS PLANTS.

    PubMed

    Mertens, A; Van Meensel, J; Mondelaers, K; Buysse, J

    2015-01-01

    Recently, biogas plant managers in Flanders face increased financial uncertainty. Between 2011 and 2012, 20% of the Flemish biogas plants went bankrupt. Difficulties in obtaining feedstock at stable and affordable prices is one reason why the biogas sector struggles. In literature, contracting is often proposed as a way to decrease the volatility of the feedstock costs. However, these studies generally do not consider the context in which the biogas plant manager needs to buy the feedstock. Yet, this context could be of specific importance when biogas plant managers are in competition with other users of the same biomass type. Silage maize is an example of such a feedstock, as it is both used by dairy farmers and biogas plant managers. Using a combination of qualitative research and agent-based modelling, we investigated the effect of specific characteristics of the silage maize market on the acquisition of local silage maize by biogas plant managers. This paper details the institutional arrangements of the silage maize market in Flanders and the results of a scenario analysis, simulating three different scenarios. As shown by the results, the time of entry into the market, as well as the different institutional arrangements used by the biogas plant managers as opposed to dairy farmers could explain the difficulties in obtaining a stable supply of local silage maize by biogas plants. Our findings can help to develop mitigation strategies addressing these difficulties.

  9. Biodiesel Derived from a Feedstock Enriched in Palmitoleic Acid, Macadamia Nut Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous vegetable oils, animal fats or other feedstocks have been investigated for obtaining biodiesel, defined as the mono alkyl esters of vegetable oils and animal fats. While biodiesel is competitive with petrodiesel, technical problems facing biodiesel include cold flow and oxidative stability...

  10. Watermelon juice: A promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Processing of watermelons to produce the neutraceuticals lycopene and citrulline yields a waste stream of watermelon juice at the rate of over 500 L/Mt of watermelons. Since watermelon juice contains 7-10% readily fermentable sugars, its potential as feedstock, diluent, and nitrogen supplement was ...

  11. Sustainable bioenergy feedstock production systems: Integrating carbon dynamics, erosion, water quality, and greenhouse gas production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing greenhouse gas (GHG) emission is one of several rationales for developing renewable biomass energy. Unfortunately, there are few studies reporting direct impacts of harvesting biomass feedstocks on GHG, especially effects on nitrous oxide (N2O) flux. Overzealous biomass harvest may accelera...

  12. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  13. Site-specific trade-offs of harvesting cereal residues as biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal residues are considered an important feedstock for future biofuel production. Harvesting cereal residues, however, could lead to substantial soil degradation. Our objective was to evaluate trade-offs associated with harvesting straw including impacts on soil erosion and quality, soil organic ...

  14. Biodiesel from Citrus reticulata (Mandarin orange) seed oil, a potential non-food feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oil extracted from Citrus reticulata (Mandarin orange) seeds was investigated as a potential feedstock for the production of biodiesel. The biodiesel fuel was prepared by sodium methoxide-catalyzed transesterification of the oil with methanol. Fuel properties that were determined include cetane numb...

  15. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass product...

  16. Ericameria Nauseosa (rubber rabbitbrush): a complementary rubber feedstock to augment the guayule rubber production stream

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ericameria nauseosa (rubber rabbitbrush) is a highly prolific desert shrub that produces high quality natural rubber. Over the past several years we have investigated rabbitbrush’s potential as a commercial rubber feedstock. Like guayule, rabbitbrush produces natural rubber within its bark tissues a...

  17. Valorization of guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural rubber latex extraction from guayule leaves behind greater than 80% (by weight) of agricultural residue as a feedstock suitable for conversion to biofuels via a thermochemical or biochemical route. Untreated guayule shrub and bagasse (after latex extraction) has shown to be very recalcitrant...

  18. Switchgrass response to nitrogen fertilizer across diverse environments in the USA: a regional feedstock partnership report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in di...

  19. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock.

    PubMed

    Kwit, Charles; Stewart, C Neal

    2012-01-01

    There currently exists a large push for the use, improvement, and expansion via landscape modification of dedicated biofuel crops (feedstocks) in the United States and in many parts of the world. Ecological concerns have been voiced because many biofuel feedstocks exhibit characteristics associated with invasiveness, and due to potential negative consequences of agronomic genes in native wild populations. Seed purity concerns for biofuel feedstock cultivars whose seeds would be harvested in agronomic fields also exist from the agribusiness sector. The common thread underlying these concerns, which have regulatory implications, is gene flow; thus detailed knowledge of gene flow in biofuel crop plants is important in the formulation of environmental risk management plans. Here, we synthesize the current state of knowledge of gene flow in an exemplary biofuel crop, switchgrass (Panicum virgatum L.), which is native to eastern North America and is currently experiencing conventional and technological advances in biomass yields and ethanol production. Surprisingly little is known regarding aspects of switchgrass pollen flow and seed dispersal, and whether native populations of conspecific or congeneric relatives will readily cross with current agronomic switchgrass cultivars. We pose that filling these important gaps will be required to confront the sustainability challenges of widespread planting of biofuel feedstocks.

  20. Conservation Considerations for Sustainable Bioenergy Feedstock Production: If, What, Where, and How Much?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased awareness of the need to achieve energy independence and security has resulted in many questions regarding the use of agricultural products as feedstock for bioenergy production. Initial efforts with grain crops, though successful, raised many more questions regarding sustainability and po...

  1. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    DOEpatents

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  2. Assessing extension and outreach education levels for biofuel feedstock production in the Western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing biofuels industry requires the development of effective methods to educate farmers, government, and agribusiness about biofuel feedstock production if the market is going to significantly expand beyond first generation biofuels. Extension and outreach education provides a conduit for impor...

  3. Quantifying and mitigating the environmental impacts of using corn stover as a biofuel feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods Corn stover has been suggested as a viable biomass feedstock for bioenergy production. However, unharvested corn stover provides two important ecosystem services: it reduces soil erosion and replenishes soil carbon, both of which help maintain soil productivity. There are...

  4. The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective (2010 JGI User Meeting)

    ScienceCinema

    DeLucia, Evan

    2016-07-12

    Evan DeLucia of the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute talks about "The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  5. Seeded-yet-sterile biomass feedstocks: Kinggrass and pearl millet-napiergrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kinggrass (Pennisetum purpureum Schumach. x P. glaucum [L.] R. Br.) and Pearl Millet-Napiergrass (PMN; P. glaucum x P. purpureum) are unique among energy grasses as 'Seeded-yet-Sterile' feedstocks, derived from fertile parents capable of producing significant quantities of hybrid seed while being st...

  6. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa).

    PubMed

    Vuorinen, Anssi L; Kalpio, Marika; Linderborg, Kaisa M; Kortesniemi, Maaria; Lehto, Kirsi; Niemi, Jarmo; Yang, Baoru; Kallio, Heikki P

    2014-02-15

    Crop production for vegetable oil in the northern latitudes utilises oilseed rape (Brassica napus subsp. oleifera) and turnip rape (B. rapa subsp. oleifera), having similar oil compositions. The oil consists mostly of triacylglycerols, which are synthesised during seed development. In this study, we characterised the oil composition and the expression levels of genes involved in triacylglycerol biosynthesis in the developing seeds in optimal, low temperature (15 °C) and short day (12-h day length) conditions. Gene expression levels of several genes were altered during seed development. Low temperature and short day treatments increased the level of 9,12,15-octadecatrienoic acid (18:3n-3) in turnip rape and short day treatment decreased the total oil content in both species. This study gives a novel view on seed oil biosynthesis under different growth conditions, bringing together gene expression levels of the triacylglycerol biosynthesis pathway and oil composition over a time series in two related oilseed species.

  7. Plant oils as feedstock alternatives to petroleum - A short survey of potential oil crop platforms.

    PubMed

    Carlsson, Anders S

    2009-06-01

    Our society is highly depending on petroleum for its activities. About 90% is used as an energy source for transportation and for generation of heat and electricity and the remaining as feedstocks in the chemical industry. However, petroleum is a finite source as well as causing several environmental problems such as rising carbon dioxide levels in the atmosphere. Petroleum therefore needs to be replaced by alternative and sustainable sources. Plant oils and oleochemicals derived from them represent such alternative sources, which can deliver a substantial part of what is needed to replace the petroleum used as feedstocks. Plant derived feedstock oils can be provided by two types of oil qualities, multi-purpose and technical oils. Multi-purpose oils represent oil qualities that contain common fatty acids and that can be used for both food and feedstock applications. Technical oil qualities contain unusual fatty acids with special properties gained from their unique molecular structure and these types of oils should only be used for feedstock applications. As a risk mitigation strategy in the selection of crops, technical oil qualities should therefore preferably be produced by oil crop platforms dedicated for industrial usage. This review presents a short survey of oil crop platforms to be considered for either multi-purpose or technical oils production. Included among the former platforms are some of the major oil crops in cultivation such as oil palm, soybean and rapeseed. Among the later are those that could be developed into dedicated industrial platforms such as crambe, flax, cotton and Brassica carinata. The survey finishes off by highlighting the potential of substantial increase in plant oil production by developing metabolic flux platforms, which are starch crops converted into oil crops.

  8. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    NASA Astrophysics Data System (ADS)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  9. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    NASA Astrophysics Data System (ADS)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  10. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  11. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    NASA Astrophysics Data System (ADS)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%–75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne‑1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  12. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness.

    PubMed

    Heimbach, Fred; Russ, Anja; Schimmer, Maren; Born, Katrin

    2016-11-01

    Monitoring studies at the landscape level are complex, expensive and difficult to conduct. Many aspects have to be considered to avoid confounding effects which is probably the reason why they are not regularly performed in the context of risk assessments of plant protection products to pollinating insects. However, if conducted appropriately their contribution is most valuable. In this paper we identify the requirements of a large-scale monitoring study for the assessment of side-effects of clothianidin seed-treated winter oilseed rape on three species of pollinating insects (Apis mellifera, Bombus terrestris and Osmia bicornis) and present how these requirements were implemented. Two circular study sites were delineated next to each other in northeast Germany and comprised almost 65 km(2) each. At the reference site, study fields were drilled with clothianidin-free OSR seeds while at the test site the oilseed rape seeds contained a coating with 10 g clothianidin and 2 g beta-cyfluthrin per kg seeds (Elado®). The comparison of environmental conditions at the study sites indicated that they are as similar as possible in terms of climate, soil, land use, history and current practice of agriculture as well as in availability of oilseed rape and non-crop bee forage. Accordingly, local environmental conditions were considered not to have had any confounding effect on the results of the monitoring of the bee species. Furthermore, the study area was found to be representative for other oilseed rape cultivation regions in Europe.

  13. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death.

    PubMed

    Niu, Fangfang; Wang, Chen; Yan, Jingli; Guo, Xiaohua; Wu, Feifei; Yang, Bo; Deyholos, Michael K; Jiang, Yuan-Qing

    2016-09-01

    NAC transcription factors (TFs) are plant-specific and play important roles in development, responses to biotic and abiotic cues and hormone signaling. So far, only a few NAC genes have been reported to regulate cell death. In this study, we identified and characterized a NAC55 gene isolated from oilseed rape (Brassica napus L.). BnaNAC55 responds to multiple stresses, including cold, heat, abscisic acid (ABA), jasmonic acid (JA) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum. BnaNAC55 has transactivation activity and is located in the nucleus. BnaNAC55 is able to form homodimers in planta. Unlike ANAC055, full-length BnaNAC55, but not either the N-terminal NAC domain or C-terminal regulatory domain, induces ROS accumulation and hypersensitive response (HR)-like cell death when expressed both in oilseed rape protoplasts and Nicotiana benthamiana. Furthermore, BnaNAC55 expression causes obvious nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS production and scavenging, defense response as well as senescence are significantly induced. Using a dual luciferase reporter assay, we further confirm that BnaNAC55 could activate the expression of a few ROS and defense-related gene expression. Taken together, our work has identified a novel NAC TF from oilseed rape that modulates ROS accumulation and cell death.

  14. The role of microalgae as biodiesel feedstock in a tropical setting: Economics, agro-energy competitiveness, and potential impacts on regional agricultural feedstock production

    NASA Astrophysics Data System (ADS)

    Boll, Matias G.

    The objective of this study is to obtain a realistic evaluation of the potential role of microalgae as a biodiesel feedstock in a tropical setting. First, microalgae economics are estimated, including the detailed design of a 400 ha microalgae open pond production farm together with the microalgae biomass and crude oil production costs calculations. Sensitivity analysis and a stochastic evaluation of the microalgae venture chances for profit are also included. Next, microalgae potential for biodiesel production is compared to traditional oil crops such as soybeans and African palm. This comparison is performed using the Northeast Region (NER) of Brazil as background. Six potential biodiesel feedstock sources produced in the NER and microalgae are compared considering selected environmental, economic and social sustainability indicators. Finally, in the third chapter, the study proposes a cropland allocation model for the NER. The model aims to offer insights to the decision maker concerning biofuel development strategies and their impact on regional agricultural feedstock production. In the model, cropland allocation among three agriculture feedstock sectors, namely staple food, commodity export and biofuel is optimized through the use of the multiple objective technique referred to as compromise programming (CP). Our results indicate a projected microalgae total production cost of R 78,359 ha-1 (US43,533), which has a breakdown as follows: R 34,133 ha-1 (US18,963) for operating costs and R 44,226 ha-1 (US24,570) for overhead (ownership) costs. Our stochastic analysis indicates that microalgae production under the conditions assumed in the baseline scenario of this study has a 0% chance to present a positive NPV for a microalgae crude oil price of R 1.86. This price corresponds to an international oil price around US 77 bbl-1. To obtain a reasonable investment return (IRR = 12%) from the microalgae farm, an international oil price as high as US 461 bbl-1 is

  15. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    DOE PAGES

    Coleman, Andre M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; ...

    2016-03-03

    To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr–1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. Under this scenario, open-pond microalgae production is projected to use 1.2 × 106 ha of private pastureland, while terrestrial biomass feedstocks would use 14.0 × 106 ha of private pastureland. A spatial meta-analysismore » indicates that potential competition for land under this scenario would be concentrated in 110 counties, containing 1.0 and 1.7 × 106 ha of algal and terrestrial dedicated feedstock production, respectively. Furthermore, a land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county's pastureland, representing 2%–5% of total pastureland in the U.S.; therefore suggesting little overall competition between algae production, terrestrial energy feedstocks and alternative uses for existing agricultural production such as livestock grazing.« less

  16. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    SciTech Connect

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  17. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    SciTech Connect

    Coleman, Andre M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.; Langholtz, Matthew H.; Eaton, Laurence M.

    2016-03-03

    To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr–1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. Under this scenario, open-pond microalgae production is projected to use 1.2 × 106 ha of private pastureland, while terrestrial biomass feedstocks would use 14.0 × 106 ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under this scenario would be concentrated in 110 counties, containing 1.0 and 1.7 × 106 ha of algal and terrestrial dedicated feedstock production, respectively. Furthermore, a land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county's pastureland, representing 2%–5% of total pastureland in the U.S.; therefore suggesting little overall competition between algae production, terrestrial energy feedstocks and alternative uses for existing agricultural production such as livestock grazing.

  18. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  19. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    SciTech Connect

    Hashimoto, Andrew G.; Crow, Susan; DeBeryshe, Barbara; Ha, Richard; Jakeway, Lee; Khanal, Samir; Nakahata, Mae; Ogoshi, Richard; Shimizu, Erik; Stern, Ivette; Turano, Brian; Turn, Scott; Yanagida, John

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  20. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the