Science.gov

Sample records for oleamide suppresses lipopolysaccharide-induced

  1. Harpagoside suppresses lipopolysaccharide-induced iNOS and COX-2 expression through inhibition of NF-kappa B activation.

    PubMed

    Huang, Tom Hsun-Wei; Tran, Van H; Duke, Rujee K; Tan, Sharon; Chrubasik, Sigrun; Roufogalis, Basil D; Duke, Colin C

    2006-03-01

    Preparations of Harpagophytum procumbens, known as devil's claw, are used as an adjunctive therapy for the treatment of pain and osteoarthritis. Pharmacological evaluations have proven the effectiveness of this herbal drug as an anti-inflammatory and analgesic agent. The present study has investigated the mechanism of action of harpagoside, one of the major components of Harpagophytum procumbens, using human HepG2 hepatocarcinoma and RAW 264.7 macrophage cell lines. Harpagoside inhibited lipopolysaccharide-induced mRNA levels and protein expression of cyclooxygenase-2 and inducible nitric oxide in HepG2 cells. These inhibitions appeared to correlate with the suppression of NF-kappaB activation by harpagoside, as pre-treating cells with harpagoside blocked the translocation of NF-kappaB into the nuclear compartments and degradation of the inhibitory subunit IkappaB-alpha. Furthermore, harpagoside dose-dependently inhibited LPS-stimulated NF-kappaB promoter activity in a gene reporter assay in RAW 264.7 cells, indicating that harpagoside interfered with the activation of gene transcription. These results suggest that the inhibition of the expression of cyclooxygenase-2 and inducible nitric oxide by harpagoside involves suppression of NF-kappaB activation, thereby inhibiting downstream inflammation and subsequent pain events. PMID:16203115

  2. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

    PubMed Central

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  3. GADD34 suppresses lipopolysaccharide-induced sepsis and tissue injury through the regulation of macrophage activation

    PubMed Central

    Ito, S; Tanaka, Y; Oshino, R; Okado, S; Hori, M; Isobe, K-I

    2016-01-01

    Growth arrest and DNA damage inducible protein 34 (GADD34) is induced by various cellular stresses, such as DNA damage, endoplasmic reticulum stress, and amino-acid deprivation. Although the major roles of GADD34 are regulating ER stress responses and apoptosis, a recent study suggested that GADD34 is linked to innate immune responses. In this report, we investigated the roles of GADD34 in inflammatory responses against bacterial infection. To explore the effects of GADD34 on systemic inflammation in vivo, we employed a lipopolysaccharide (LPS)-induced murine sepsis model and assessed the lethality, serum cytokine levels, and tissue injury in the presence or absence of GADD34. We found that GADD34 deficiency increased the lethality and serum cytokine levels in LPS-induced sepsis. Moreover, GADD34 deficiency enhanced tissue destruction, cell death, and pro-inflammatory cytokine expression in LPS-induced acute liver injury. Pro-inflammatory cytokine production after LPS stimulation is regulated by the Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway. In vitro experiments revealed that GADD34 suppressed pro-inflammatory cytokine production by macrophages through dephosphorylation of IKKβ. In conclusion, GADD34 attenuates LPS-induced sepsis and acute tissue injury through suppressing macrophage activation. Targeting this anti-inflammatory role of GADD34 may be a promising area for the development of therapeutic agents to regulate inflammatory disorders. PMID:27171261

  4. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells.

    PubMed

    Choi, Hyeon-Son; Im, Suji; Park, Yooheon; Hong, Ki-Bae; Suh, Hyung Joo

    2016-01-01

    The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.

  5. Activated protein C suppresses adrenomedullin and ameliorates lipopolysaccharide-induced hypotension.

    PubMed

    Gupta, Akanksha; Berg, David T; Gerlitz, Bruce; Richardson, Mark A; Galbreath, Elizabeth; Syed, Samreen; Sharma, Avadhesh C; Lowry, Stephen F; Grinnell, Brian W

    2007-10-01

    Activated protein C (APC) is an important modulator of vascular function that has antithrombotic and anti-inflammatory properties. Studies in humans have shown modulation of endotoxin-induced hypotension by recombinant human APC, drotrecogin alfa (activated), however, the mechanism for this effect is unclear. We have found that APC suppresses the induction of the potent vasoactive peptide adrenomedullin (ADM) and could downregulate lipopolysaccharide (LPS)-induced ADM messenger RNA (mRNA) and nitrite levels in cell culture. This effect was dependent on signaling through protease-activated receptor 1. Addition of 1400W, an irreversible inducible nitric oxide synthase (iNOS) inhibitor, inhibited LPS-induced ADM mRNA, suggesting that ADM induction is NO mediated. Furthermore, in a rat model of endotoxemia, APC (100 microg/kg, i.v.) prevented LPS (10 mg/kg, i.v.)-induced hypotension, and suppressed ADM mRNA and protein expression. APC also inhibited iNOS mRNA and protein levels along with reduction in NO by-products (NOx). We also observed a significant reduction in iNOS-positive leukocytes adhering to vascular endothelium after APC treatment. Moreover, we found that APC inhibited the expression of interferon-gamma (IFN-gamma), a potent activator of iNOS. In a human study of LPS-induced hypotension, APC reduced the upregulation of plasma ADM levels, coincident with protection against the hypotensive response. Overall, we demonstrate that APC blocks the induction of ADM, likely mediated by IFN-gamma and iNOS, and suggests a mechanism that may account for ameliorating LPS-induced hypotension. Furthermore, our data provide a new understanding for the role of APC in modulating vascular response to insult.

  6. Papaverine inhibits lipopolysaccharide-induced microglial activation by suppressing NF-κB signaling pathway

    PubMed Central

    Dang, Yalong; Mu, Yalin; Wang, Kun; Xu, Ke; Yang, Jing; Zhu, Yu; Luo, Bin

    2016-01-01

    Objective To investigate the effects of papaverine (PAP) on lipopolysaccharide (LPS)-induced microglial activation and its possible mechanisms. Materials and methods BV2 microglial cells were first pretreated with PAP (0, 0.4, 2, 10, and 50 μg/mL) and then received LPS stimulation. Transcription and production of proinflammatory factors (IL1β, TNFα, iNOS, and COX-2) were used to evaluate microglial activation. The transcriptional changes undergone by M1/M2a/M2b markers were used to evaluate phenotype transformation of BV2 cells. Immunofluorescent staining and Western blot were used to detect the location and expression of P65 and p-IKK in the presence or absence of PAP pretreatment. Results Pretreatment with PAP significantly inhibited the expression of IL1β and TNFα, and suppressed the transcription of M1/M2b markers Il1rn, Socs3, Nos2 and Ptgs2, but upregulated the transcription of M2a markers (Arg1 and Mrc1) in a dose-dependent manner. In addition, PAP pretreatment significantly decreased the expression of p-IKK and inhibited the nuclear translocation of P65 after LPS stimulation. Conclusion PAP not only suppressed the LPS-induced microglial activity by inhibiting transcription/production of proinflammatory factors, but also promoted the transformation of activated BV2 cells from cytotoxic phenotypes (M1/M2b) to a neuroprotective phenotype (M2a). These effects were probably mediated by NF-κB signaling pathway. Thus, it would be a promising candidate for the treatment of neurodegenerative diseases. PMID:27013863

  7. Squamous Carcinoma Cells Influence Monocyte Phenotype and Suppress Lipopolysaccharide-Induced TNF-alpha in Monocytes

    PubMed Central

    Lam-ubol, Aroonwan; Hopkin, Dustin; Letuchy, Elena M.; Kurago, Zoya B.

    2010-01-01

    Bacteria and chronic inflammation are present in squamous cell carcinoma of the head and neck (HNSCC), but their roles in the pathogenesis of HNSCC are unclear. Our studies described here revealed that human monocytes co-cultured short term with HNSCC cells were more likely to express CD16, and CD16+ small mononuclear cells were common in HNSCC specimens. In addition, we identified monocytes as the primary source of LPS-induced IL-6 and TNF-alpha in the monocyte-HNSCC co-cultures. Remarkably, relative to LPS-stimulated monocytes cultured alone, HNSCC cells profoundly suppressed LPS-induced TNF-alpha in monocytes, without compromising IL-6 production. High levels of cytoprotective factors like IL-6 and low levels of TNF-alpha are important for the tumor microenvironment that enables tumor cell survival, affects monocyte differentiation and may contribute to tumor colonization by bacteria. This study provides novel observations that HNSCC cells affect monocyte phenotype and function, which are relevant to the regulation of the HNSCC microenvironment. PMID:20084448

  8. Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes.

    PubMed

    Yoon, S-Y; Patel, D; Dougherty, P M

    2012-09-27

    Systemic injection of lipopolysaccharide (LPS) induces a robust immune response as well as thermal and mechanical hyperalgesia. Spinal and peripheral glial cells have been implicated as important mediators in this hyperalgesia but the specific contributions of microglia versus astrocytes are not entirely clear. To better define these mechanisms, this study examined the febrile response, nociceptive sensitivity, glial cell reactivity and cytokine production in the dorsal root ganglion (DRG) and spinal cord in rats following systemic treatment with LPS and the effects of minocycline in countering these responses. Intraperitoneal LPS injection resulted in an increase in core body temperature and produced hyperalgesia to heat and mechanical stimuli. Western blot studies revealed increased expression of microgial cell, macrophage and satellite cell markers in DRG and microglial and astrocyte markers in spinal cord following LPS treatment. Real-time RT-PCR indicated that LPS treatment increased cytokine mRNA expression levels in both the DRG and the spinal cord. Minocycline suppressed all LPS-induced behavioral effects but not the febrile response. Moreover, minocycline prevented LPS-induced microglia/macrophage activation and cytokine responses in spinal cord and DRG, but did not affect the activation of astrocytes/satellite cells. These data demonstrate that LPS-induced changes in nociceptive sensitivity are likely mediated by activation of microglial cells and/or macrophages in the spinal cord and DRG.

  9. Eugenol suppressed the expression of lipopolysaccharide-induced proinflammatory mediators in human macrophages.

    PubMed

    Lee, Ya-Yun; Hung, Shan-Ling; Pai, Sheng-Fang; Lee, Yuan-Ho; Yang, Shue-Fen

    2007-06-01

    Eugenol is commonly used as an analgesic agent during acute pulpitis and is a major component of root canal sealers. Despite the frequent applications of eugenol in the practice of dentistry, little is known about the role of eugenol under the status of inflammation. This study was aimed to investigate the influence of eugenol on human macrophages (U937) under the stimulation of lipopolysaccharide (LPS). Eugenol was shown to block the release of the bone resorbing mediators, including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and prostaglandin E2 from LPS-stimulated macrophages. In contrast, eugenol alone did not alter the expression levels of these proinflammatory mediators in macrophages. Consistent with downregulation of bone-resorbing mediators, eugenol suppressed the messenger RNA expression of LPS-induced IL-1beta, TNF-alpha, and cyclooxygenase-2 in macrophages. The results suggest a potential anti-inflammatory effect of eugenol in the acute inflamed pulps and apical periodontitis.

  10. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice.

    PubMed

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M W; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo.

  11. Epigallocatechin gallate (EGCG) suppresses lipopolysaccharide-induced inflammatory bone resorption, and protects against alveolar bone loss in mice

    PubMed Central

    Tominari, Tsukasa; Matsumoto, Chiho; Watanabe, Kenta; Hirata, Michiko; Grundler, Florian M.W.; Miyaura, Chisato; Inada, Masaki

    2015-01-01

    Epigallocatechin gallate (EGCG), a major polyphenol in green tea, possesses antioxidant properties and regulates various cell functions. Here, we examined the function of EGCG in inflammatory bone resorption. In calvarial organ cultures, lipopolysaccharide (LPS)-induced bone resorption was clearly suppressed by EGCG. In osteoblasts, EGCG suppressed the LPS-induced expression of COX-2 and mPGES-1 mRNAs, as well as prostaglandin E2 production, and also suppressed RANKL expression, which is essential for osteoclast differentiation. LPS-induced bone resorption of mandibular alveolar bones was attenuated by EGCG in vitro, and the loss of mouse alveolar bone mass was inhibited by the catechin in vivo. PMID:26155460

  12. Inhibition of Sphingosine Kinase Prevents Lipopolysaccharide-Induced Preterm Birth and Suppresses Proinflammatory Responses in a Murine Model

    PubMed Central

    Vyas, Vibhuti; Ashby, Charles R.; Olgun, Nicole S.; Sundaram, Sruthi; Salami, Oluwabukola; Munnangi, Swapna; Pekson, Ryan; Mahajan, Prathamesh; Reznik, Sandra E.

    2016-01-01

    Premature delivery occurs in 12% of all births, and accounts for nearly half of long-term neurological morbidity, and 60% to 80% of perinatal mortality. Despite advances in obstetrics and neonatology, the rate of premature delivery has increased approximately 12% since 1990. The single most common cause of spontaneous preterm birth is infection. Several lines of evidence have demonstrated the role of endothelin-1 as both a constrictor of uterine myometrial smooth muscle and a proinflammatory mediator. Endothelin-1 activates the phospholipase C pathway, leading to activation of protein kinase C and, in turn, sphingosine kinase (SphK). The inhibition of SphK has been recently shown to control the proinflammatory response associated with sepsis. We show herein, for the first time, that SphK inhibition prevents inflammation-associated preterm birth in a murine model. Rescue of pups from premature abortion with an SphK inhibitor occurs by suppression of the proinflammatory cytokines tumor necrosis factor α, Il-1β, and Il-6 and attenuation of polymorphonuclear inflammatory cells into the placental labyrinth. Moreover, we postulate that inhibition of SphK leads to suppression of endothelin-converting enzyme-1 expression, indicating the presence of an endothelin-converting enzyme 1/endothelin 1–SphK positive feedback loop. This work introduces a novel approach for the control of infection-triggered preterm labor, a condition for which there is no effective treatment. PMID:25579843

  13. Berberine hydrochloride attenuates lipopolysaccharide-induced endometritis in mice by suppressing activation of NF-κB signal pathway.

    PubMed

    Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Wang, Yu; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-01-01

    Endometritis is a common disease in animal production and influences breeding all over the world. Berberine is one of the main alkaloids isolated from Rhizoma coptidis. Previous reports showed that berberine has anti-inflammatory potential. However, there have been a limited number of published reports on the anti-inflammatory effect of berberine hydrochloride on LPS-induced endometritis. The purpose of the present study was to investigate the effects of berberine hydrochloride on LPS-induced mouse endometritis. Berberine hydrochloride was administered intraperitoneally at 1h before and 12h after LPS induction. Then, a biopsy was performed, and uterine myeloperoxidase (MPO) and nitric oxide (NO) concentrations were determined. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels in the uterus homogenate were measured by ELISA. The extent of IκB-α and P65 phosphorylation was detected by Western blot. The results showed that berberine hydrochloride significantly attenuated neutrophil infiltration, suppressed myeloperoxidase activity and decreased NO, TNF-αand IL-1βproduction. Furthermore, berberine hydrochloride inhibited the phosphorylation of the NF-κB p65 subunit and the degradation of its inhibitor, IκBα. These findings suggest that berberine hydrochloride exerts potent anti-inflammatory effects on LPS-induced mouse endometritis and might be a potential therapeutic agent for endometritis. PMID:25479718

  14. Metabolomic Analysis Reveals Cyanidins in Black Raspberry as Candidates for Suppression of Lipopolysaccharide-Induced Inflammation in Murine Macrophages.

    PubMed

    Jo, Young-Hee; Park, Hyun-Chang; Choi, Seulgi; Kim, Sugyeong; Bao, Cheng; Kim, Hyung Woo; Choi, Hyung-Kyoon; Lee, Hong Jin; Auh, Joong-Hyuck

    2015-06-10

    The extracts produced by multisolvent extraction and subfractionation with preparative liquid chromatography of black raspberry (Rubus coreanus Miquel) cultivated in Gochang, South Korea, were tested for their anti-inflammatory effects. The metabolomic profiling and analysis by orthogonal partial least-squares discriminant analysis (OLPS-DA) suggested that cyanidin, cyanidin-3-glucoside (C3G), and cyanidin-3-rutinoside (C3R) were key components for the anti-inflammatory responses in the most active fraction BF3-1, where they were present at 0.44, 1.26, and 0.56 μg/mg of BF3-1, respectively. Both BF3-1 and mixture of these cyanidins at the same ratio reduced lipopolysaccharide (LPS)-induced protein level of iNOS expression and suppressed mRNA and protein expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β through inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs) and STAT3 in murine macrophage RAW264.7 cells. Overall, the results suggested that co-administration of cyanidin, C3G, and C3R is more effective than that of cyanidin alone and that the coexistence of these anthocyanin components in black raspberry plays a vital role in regulating LPS-induced inflammation even at submicromolar concentrations, making it possible to explain the health beneficial activity of its extracts.

  15. Epigallocatechin-3-gallate attenuates lipopolysaccharide-induced mastitis in rats via suppressing MAPK mediated inflammatory responses and oxidative stress.

    PubMed

    Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping

    2015-05-01

    Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses.

  16. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells.

    PubMed

    Im, Jintaek; Baik, Jung Eun; Kim, Kyoung Whun; Kang, Seok-Seong; Jeon, Jun Ho; Park, Ok-Jin; Kim, Hyun Young; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2015-08-01

    Periodontitis is caused by multi-bacterial infection and Aggregatibacter actinomycetemcomitans and Enterococcus faecalis are closely associated with inflammatory periodontal diseases. Although lipopolysaccharide (LPS) of A. actinomycetemcomitans (Aa.LPS) and lipoteichoic acid of E. faecalis (Ef.LTA) are considered to be major virulence factors evoking inflammatory responses, their combinatorial effect on the induction of chemokines has not been investigated. In this study, we investigated the interaction between Aa.LPS and Ef.LTA on IL-8 expression in human periodontal ligament (PDL) cells. Aa.LPS, but not Ef.LTA, substantially induced IL-8 expression at the protein and mRNA levels. Interestingly, Ef.LTA suppressed Aa.LPS-induced IL-8 expression without affecting the binding of Aa.LPS to Toll-like receptor (TLR) 4. Ef.LTA reduced Aa.LPS-induced phosphorylation of mitogen-activated protein kinases, including ERK, JNK and p38 kinase. Furthermore, Ef.LTA inhibited the Aa.LPS-induced transcriptional activities of the activating protein 1, CCAAT/enhancer-binding protein and nuclear factor-kappa B transcription factors, all of which are known to regulate IL-8 gene expression. Ef.LTA augmented the expression of IL-1 receptor-associated kinase-M (IRAK-M), a negative regulator of TLR intracellular signaling pathways, in the presence of Aa.LPS at both the mRNA and protein levels. Small interfering RNA silencing IRAK-M reversed the attenuation of Aa.LPS-induced IL-8 expression by Ef.LTA. Collectively, these results suggest that Ef.LTA down-regulates Aa.LPS-induced IL-8 expression in human PDL cells through up-regulation of the negative regulator IRAK-M.

  17. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation. PMID:27089391

  18. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation.

  19. Enhanced radiosensitization of p53 mutant cells by oleamide

    SciTech Connect

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil . E-mail: yslee@kcch.re.kr

    2006-04-01

    Purpose: Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. Methods and Materials: NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Results: Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Conclusions: Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  20. Maleylated-BSA suppresses lipopolysaccharide-induced IL-6 production by activating the ERK-signaling pathway in murine RAW264.7 cells.

    PubMed

    Tada, Rui; Koide, Yusuke; Yamamuro, Mitsuaki; Tanaka, Riki; Hidaka, Akira; Nagao, Koichiro; Aramaki, Yukihiko

    2014-03-01

    Macrophages are well known for their ability to induce diverse beneficial immune responses, especially in the defense against pathogens. However, an excessive activation of macrophages may cause harmful inflammation. In this context, the suppression of excessive macrophage activation would be a promising therapeutic strategy for treating inflammatory diseases. We have previously found that maleylated-bovine serum albumin (maleylated-BSA) suppresses the production of inflammatory mediators in murine macrophages. However, the immunosuppressive effects and underlying mechanism(s) of maleylated-BSA remain unclear. Here, we report that pretreatment with maleylated-BSA strongly inhibited the production of interleukin 6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in murine RAW264.7 cells. This inhibitory effect of maleylated-BSA on LPS-induced IL-6 production was eliminated by treatment with an extracellular signal-regulated kinase (ERK) inhibitor, U0126, indicating the involvement of ERK pathways. Taken together, we have shown that maleylated-BSA suppresses LPS-induced production of IL-6 via the activation of an ERK signaling pathway in murine macrophages. The findings of this study imply the possibility of a novel therapeutic strategy for inflammatory diseases.

  1. Ulinastatin suppresses lipopolysaccharide-induced prostaglandin E2 synthesis and nitric oxide production through the downregulation of nuclear factor‑κB in BV2 mouse microglial cells.

    PubMed

    Sung, Yun-Hee; Shin, Mal-Soon; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Chang-Ju; Ahn, Hyun-Jong; Yoon, Hye-Sun; Lee, Bong-Jae

    2013-05-01

    Ulinastatin is an intrinsic serine-protease urinary trypsin inhibitor that can be extracted and purified from human urine. Urinary trypsin inhibitors are widely used to treat patients with acute inflammatory disorders, such as shock and pancreatitis. However, although the anti-inflammatory activities of urinary trypsin inhibitors have been investigated, the mechanisms underlying their actions are not yet fully understood. In the present study, we evaluated the effect of ulinastatin on lipopolysaccharide (LPS)-induced inflammation in relation with nuclear factor-κB (NF-κB) activation using BV2 mouse microglial cells. To accomplish this, we performed a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), western blot analysis, electrophoretic mobility gel shift assay (EMSA), prostaglandin E(2) (PGE(2)) immunoassay and nitric oxide (NO) detection. The results demonstrated that ulinastatin suppressed PGE2 synthesis and NO production by inhibiting the LPS-induced mRNA and protein expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) in BV2 mouse microglial cells. Ulinastatin suppressed the activation of NF-κB in the nucleus. These findings demonstrate that ulinastatin exerts analgesic and anti-inflammatory effects that possibly occur via the suppression of COX-2 and iNOS expression through the downregulation of NF-κB activity.

  2. Crocin Upregulates CX3CR1 Expression by Suppressing NF-κB/YY1 Signaling and Inhibiting Lipopolysaccharide-Induced Microglial Activation.

    PubMed

    Lv, Bochang; Huo, Fuquan; Zhu, Zhongqiao; Xu, Zhiguo; Dang, Xiaojie; Chen, Tao; Zhang, Ting; Yang, Xinguang

    2016-08-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve fibers. Microglial activation has been shown to be deleterious to RGCs and may participate in the progression of glaucoma. Crocin, one of the major active ingredients in saffron, has been found to inhibit microglial activation. However, the mechanism remains unclear. The aim of this study was to investigate whether crocin can inhibit lipopolysaccharide (LPS)-induced microglial activation and to clarify the mechanisms involved. The influence of crocin on primary RGCs and LPS-stimulated BV2 microglial cells survival was determined by the MTT and lactate dehydrogenase assays, or by flow cytometry. BV2 cells were pretreated with various concentrations of crocin for 2 h followed by 1 μg/mL LPS stimulation. Microglial markers and pro-inflammatory mediators were assessed by real-time PCR, western blot and ELISA. Furthermore, CX3CR1 expression was detected and the underlying mechanism was examined. The concentrations of crocin ranged from 0.1 to 1 μM, and did not show any cytotoxicity in RGC and BV2 cells. After crocin pretreatment, the expression of microglial markers (CD11b and Iba-1) and pro-inflammatory mediators (iNOS, COX-2, IL-1β, and TNF-α) induced by LPS were significantly decreased in a dose-dependent manner. Additionally, CX3CR1 expression was remarkably increased by crocin via the suppression of NF-κB/Yin Yang 1 (YY1) signaling in BV2 cells. In conclusion, crocin effectively suppresses microglial activation and upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling. PMID:27084772

  3. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway.

    PubMed

    Kou, Xianjuan; Qi, Shimei; Dai, Wuxing; Luo, Lan; Yin, Zhimin

    2011-08-01

    Arctigenin has been demonstrated to have an anti-inflammatory function, but the precise mechanisms of its action remain to be fully defined. In the present study, we determined the effects of arctigenin on lipopolysaccharide (LPS)-induced production of proinflammatory mediators and the underlying mechanisms involved in RAW264.7 cells. Our results indicated that arctigenin exerted its anti-inflammatory effect by inhibiting ROS-dependent STAT signaling through its antioxidant activity. Arctigenin also significantly reduced the phosphorylation of STAT1 and STAT 3 as well as JAK2 in LPS-stimulated RAW264.7 cells. The inhibitions of STAT1 and STAT 3 by arctigenin prevented their translocation to the nucleus and consequently inhibited expression of iNOS, thereby suppressing the expression of inflammation-associated genes, such as IL-1β, IL-6 and MCP-1, whose promoters contain STAT-binding elements. However, COX-2 expression was slightly inhibited at higher drug concentrations (50 μM). Our data demonstrate that arctigenin inhibits iNOS expression via suppressing JAK-STAT signaling pathway in macrophages.

  4. Protective Effect of Yinhua Miyanling Tablet on Lipopolysaccharide-Induced Inflammation through Suppression of NLRP3/Caspase-1 Inflammasome in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Sai, Jingying; Zheng, Jingtong; Liu, Chuangui; Lu, Yanjiao; Wang, Guoqiang; Wang, Ting; Guan, Xuewa; Chen, Fang; Fang, Keyong; Zhang, Chao; Lu, Junying; Zhang, Xiaotian; Zhu, Hailin

    2016-01-01

    Yinhua Miyanling Tablet (YMT), the Chinese formula, has long been administrated in clinical practice for the treatment of acute pyelonephritis and acute urocystitis. In the current study, we aimed to investigate the anti-inflammatory effect of YMT in vitro and to evaluate the association between anti-inflammation and innate immune response. Human peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density gradient centrifugation and then were stimulated by Lipopolysaccharide (LPS). The differential gene expression of inflammation-related genes after drug administration was assessed using PCR array, and the protein levels of differential genes were measured by ELISA and Western blot. The result showed that YMT significantly inhibited the expression of NLRP3, Caspase-1, and the downstream cytokine IL-1β and suppressed the production of inflammatory mediators TNF-α, IL-6, IL-10, and MCP-1 in a dose-dependent manner compared to the LPS group (P < 0.01). The finding indicated that YMT exhibited anti-inflammatory effect in vitro by suppressing the NLRP3/Caspase-1 inflammasome, and that may have therapeutic potential for the treatment of inflammatory diseases. PMID:27795729

  5. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    PubMed

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  6. Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease

    PubMed Central

    Okuyama, Satoshi; Semba, Tomoki; Toyoda, Nobuki; Epifano, Francesco; Genovese, Salvatore; Fiorito, Serena; Taddeo, Vito Alessandro; Sawamoto, Atsushi; Nakajima, Mitsunari; Furukawa, Yoshiko

    2016-01-01

    In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. PMID:27763495

  7. Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-κB Signal Pathway

    PubMed Central

    Kang, Sang-Rim; Han, Dae-Yong; Park, Kwang-Il; Park, Hyeon-Soo; Cho, Yong-Bae; Lee, Hu-Jang; Lee, Won-Sup; Ryu, Chung Ho; Ha, Yeong Lae; Lee, Do Hoon; Kim, Jin A.; Kim, Gon-Sup

    2011-01-01

    Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME) has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL) and then treated with LPS (1 μg/mL). The results showed that CME (10, 20, and 50 μg/mL) inhibited the LPS- (1 μg/mL) induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL). Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway. PMID:20953420

  8. A systemic defect in Toll-like receptor 4 signaling increases lipopolysaccharide-induced suppression of IL-2-dependent T-cell proliferation in COPD.

    PubMed

    Knobloch, Jürgen; Chikosi, Sarah-Jane; Yanik, Sarah; Rupp, Jan; Jungck, David; Koch, Andrea

    2016-01-01

    The susceptibility to bacterial infections is increased in chronic obstructive pulmonary disease (COPD). This promotes exacerbations. IL-2 triggers CD4(+)/Th1-cell proliferation, which is important for infection defense. Bacterial endotoxin (LPS) activates MyD88/IRAK and TRIF/IKKε/TBK1 pathways via Toll-like receptor-4 (TLR4) in Th1 cells. Systemic defects in TLR pathways in CD4(+)/Th1 cells cause an impairment of IL-2-dependent immune responses to bacterial infections in COPD. Peripheral blood CD4(+) T cells of never smokers, smokers without COPD, and smokers with COPD (each n = 10) were ex vivo activated towards Th1 and stimulated with LPS. IL-2, MyD88, and TRIF expression, and cell proliferation was analyzed by ELISA, quantitative RT-PCR, and bromodeoxyuridine (BrdU) and trypan blue staining comparative among the cohorts. IL-2 release from activated T cells was increased in COPD vs. smokers and never smokers. LPS reduced IL-2 expression and T-cell proliferation. These effects were increased in COPD vs. never smokers and inversely correlated with FEV1 (%predicted). The MyD88/TRIF ratio was decreased in Th1 cells of COPD. The suppression of IL-2 by LPS was abolished by MyD88/IRAK blockade in never smokers but by TRIF/IKKε/TBK1 blockade in COPD. Moxifloxacin restored IL-2 expression and T-cell proliferation in the presence of LPS by blocking p38 MAPK. The increased IL-2 release from Th1 cells in COPD might contribute to airway inflammation in disease exacerbations. A switch from MyD88/IRAK to TRIF/IKKε/TBK1 signaling amplifies the suppression of IL-2-dependent proliferation of CD4(+) T cells by LPS in COPD. This molecular pathology is of systemic origin, might impair adaptive immune responses, and could explain the increased susceptibility to bacterial infections in COPD. Targeting TLR4-downstream signaling, for example, with moxifloxacin, might reduce exacerbation rates. PMID:26498252

  9. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways.

    PubMed

    Cho, Hong-Ik; Hong, Jeong-Min; Choi, Joo-Wan; Choi, Hyo-Sun; Kwak, Jong Hwan; Lee, Dong-Ung; Kook Lee, Sang; Lee, Sun-Mee

    2015-10-01

    Agastache rugosa (A. rugosa, Labiatae), a perennial herb spread throughout Korean fields, is widely consumed as a wild edible vegetable and is used in folk medicine. This study examined the hepatoprotective mechanisms of β-caryophyllene (BCP), a major bicyclic sesquiterpene of A. rugosa, against D-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic failure. Mice were given an intraperitoneal injection of BCP (50, 100 and 200 mg/kg) 1 h before GalN (800 mg/kg)/LPS (40 μg/kg) injection and were killed 1 h or 6 h after GalN/LPS injection. GalN/LPS markedly increased mortality and serum aminotransferase activity, both of which were attenuated by BCP. BCP also attenuated increases in serum tumor necrosis factor-α, interleukin 6, and high-mobility group protein B1 levels by GalN/LPS. GalN/LPS significantly increased toll-like receptor (TLR) 4 and receptor for advanced glycation end products (RAGE) protein expression, extracellular signal-related kinase, p38 and c-Jun N-terminal kinase phosphorylation, nuclear factor κB (NF-κB), early growth response protein-1, and macrophage inflammatory protein-2 protein expression. These increases were attenuated by BCP. Furthermore, BCP suppressed increased TLR4 and RAGE protein expression and proinflammatory cytokines production in LPS-treated isolated Kupffer cells. Our findings suggest that BCP protects against GalN/LPS-induced liver injury through down-regulation of the TLR4 and RAGE signaling. PMID:26254779

  10. Endothelin receptor-antagonists suppress lipopolysaccharide-induced cytokine release from alveolar macrophages of non-smokers, smokers and COPD subjects.

    PubMed

    Gerlach, Kathrin; Köhler-Bachmann, Stefanie; Jungck, David; Körber, Sandra; Yanik, Sarah; Knoop, Heiko; Wehde, Deborah; Rheinländer, Sonja; Walther, Jörg W; Kronsbein, Juliane; Knobloch, Jürgen; Koch, Andrea

    2015-12-01

    Smoking-induced COPD is characterized by chronic airway inflammation, which becomes enhanced by bacterial infections resulting in accelerated disease progression called exacerbation. Alveolar macrophages (AM) release endothelin-1 (ET-1), IL-6, CCL-2 and MMP-9, all of which are linked to COPD pathogenesis and exacerbation. ET-1 signals via ETA- and ETB-receptors (ETAR, ETBR). This is blocked by endothelin receptor antagonists (ERAs), like bosentan, which targets both receptors, ETAR-selective ambrisentan and ETBR-specific BQ788. Therefore, ERAs could have anti-inflammatory potential, which might be useful in COPD and other inflammatory lung diseases. We hypothesized that ERAs suppress cytokine release from AM of smokers and COPD subjects induced by lipopolysaccharide (LPS), the most important immunogen of gram-negative bacteria. AM were isolated from the broncho-alveolar lavage (BAL) of n=29 subjects (11 non-smokers, 10 current smokers without COPD, 8 smokers with COPD), cultivated and stimulated with LPS in the presence or absence of ERAs. Cytokines were measured by ELISA. Endothelin receptor expression was investigated by RT-PCR and western blot. AM expressed ETAR and ETBR mRNA, but only ETBR protein was detected. LPS and ET-1 both induced IL-6, CCL-2 and MMP-9. LPS-induced IL-6 release was increased in COPD versus non-smokers and smokers. Bosentan, ambrisentan and BQ788 all partially reduced all cytokines without differences between cohorts. Specific ETBR inhibition was most effective. LPS induced ET-1, which was exclusively blocked by BQ788. In conclusion, LPS induces ET-1 release in AM, which in turn leads to CCL-2, IL-6 and MMP-9 expression rendering AM sensitive for ERAs. ERAs could have anti-inflammatory potential in smoking-induced COPD.

  11. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    SciTech Connect

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  12. Neuropharmacological effects of oleamide in male and female mice.

    PubMed

    Akanmu, Moses A; Adeosun, Samuel O; Ilesanmi, Olapade R

    2007-08-22

    Oleamide, a fatty acid amide accumulates selectively in the cerebrospinal fluid of sleep deprived cats and rats. Oleamide has been reported to have effects on a wide range of receptors and neurotransmitter systems especially the centrally acting ones for example, dopamine acetylcholine, serotonin, gamma aminobutyric acid (GABA), cannabinoid and vanilloid among others. This suggests a wide range of central nervous system effects of the compound. The effects of intraperitoneal administered oleamide on Novelty-induced behaviours, learning and memory and forced swimming-induced depression were studied. The relative effects of the compound on the male and female mice were also noted. Oleamide dose-dependently reduced (p<0.05) novelty induced rearing, grooming and locomotion. The effects on the all NIBs started within the first 10 min of the test and the peak of the effects was observed during the third 10 min period of the test. Effect of oleamide on short-term working memory was significantly (p<0.05) affected only with the dose of 5mg/kg while the other dose of 10mg/kg had no effect. In the forced swimming test, acute triple intraperitoneal administration of oleamide at 10mg/kg induced a significant reduction in the immobility duration in mice signifying an antidepressant effect. Sex differences in the effects of oleamide (10mg/kg, i.p.) were clearly evident in active behaviours in FST. These results confirm the multiplicity of central nervous system receptors and neurotransmitters that oleamide interacts with hence its numerous and diverse neuropharmacological effects. Most importantly, the present study suggests that oleamide has antidepressant-like property.

  13. In vivo evidence that N-oleoylglycine acts independently of its conversion to oleamide.

    PubMed

    Chaturvedi, Shalini; Driscoll, William J; Elliot, Brenda M; Faraday, Martha M; Grunberg, Neil E; Mueller, Gregory P

    2006-12-01

    Oleamide (cis-9-octadecenamide) is a member of an emerging class of lipid-signaling molecules, the primary fatty acid amides. A growing body of evidence indicates that oleamide mediates fundamental neurochemical processes including sleep, thermoregulation, and nociception. Nevertheless, the mechanism for oleamide biosynthesis remains unknown. The leading hypothesis holds that oleamide is synthesized from oleoylglycine via the actions of the peptide amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The present study investigated this hypothesis using pharmacologic treatments, physiologic assessments, and measurements of serum oleamide levels using a newly developed enzyme-linked immunosorbant assay (ELISA). Oleamide and oleoylglycine both induced profound hypothermia and decreased locomotion, over equivalent dose ranges and time courses, whereas, closely related compounds, stearamide and oleic acid, were essentially without effect. While the biologic actions of oleamide and oleoylglycine were equivalent, the two compounds differed dramatically with respect to their effects on serum levels of oleamide. Oleamide administration (80mg/kg) elevated blood-borne oleamide by eight-fold, whereas, the same dose of oleoylglycine had no effect on circulating oleamide levels. In addition, pretreatment with the established PAM inhibitor, disulfiram, produced modest reductions in the hypothermic responses to both oleoylglycine and oleamide, suggesting that the effects of disulfiram were not mediated through inhibition of PAM and a resulting decrease in the formation of oleamide from oleoylglycine. Collectively, these findings raise the possibilities that: (1) oleoylglycine possesses biologic activity that is independent of its conversion to oleamide and (2) the increased availability of oleoylglycine as a potential substrate does not drive the biosynthesis of oleamide.

  14. Zingiberaceous and citrus constituents, 1'-acetoxychavicol acetate, zerumbone, auraptene, and nobiletin, suppress lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 murine macrophages through different modes of action.

    PubMed

    Murakami, Akira; Shigemori, Tomohiro; Ohigashi, Hajime

    2005-12-01

    In the present study, we explored the suppressive activities of 1'-acetoxychavicol acetate (ACA), auraptene, nobiletin, and zerumbone toward LPS-induced cyclooxygenase (COX)-2 mRNA expression in mouse macrophages and the underlying molecular mechanisms. Pretreatment of RAW264.7 cells with LPS led to the activation of mitogen-activated protein kinase (MAPK)s [p38, extracellular signal-regulated kinase (ERK)1/2, c-Jun NH2-terminal kinase (JNK)1/2] and Akt, together with degradation of the inhibitor of nuclear factor-kappaB (IkappaB)-alpha protein and nuclear translocation of nuclear factor (NF)-kappaB p65, and the resultant activation of activator protein (AP)-1, NF-kappaB, and cAMP-responsive element-binding protein (CREB) transcription factors. ACA abrogated ERK1/2 and JNK1/2, but not p38 MAPK, as well as the activation of those transcription factors. Although it allowed LPS-triggered phosphorylation of those MAPKs and NF-kappaB nuclear translocation, nobiletin suppressed the activation of AP-1, NF-kappaB, and CREB. Zerumbone had no effect on those transcription factors, though it attenuated COX-2 mRNA expression, suggesting that it disrupts the stabilization of COX-2 mRNA. Conversely, zerumbone significantly accelerated spontaneous COX-2 mRNA decay, the potency of which was comparable with that of SB203580, an inhibitor of p38 MAPK, whose activation has key roles in the proinflammatory mRNA stabilization processes. Because SB203580 but not zerumbone suppressed LPS-induced p38 MAPK activation, the molecular targets of zerumbone may be MAPK-activated protein kinase-2 or located downstream. However, auraptene suppressed the expression of COX-2 protein but not mRNA, implying that it targets translation. We propose that these phytochemicals are promising chemopreventive agents for inflammation-associated carcinogenesis. Their use in combination may enhance their efficacy because of their different modes of action.

  15. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-β-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis. PMID:25913072

  16. α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of α-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. α-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. α-Chaconine also suppressed the phosphorylation of TGF-β-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the α-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with α-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of α-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis.

  17. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    PubMed Central

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis. PMID:27019631

  18. α-Mangostin suppresses lipopolysaccharide-induced invasion by inhibiting matrix metalloproteinase-2/9 and increasing E-cadherin expression through extracellular signal-regulated kinase signaling in pancreatic cancer cells

    PubMed Central

    YUAN, JIANGTAO; WU, YAOLU; LU, GUIFANG

    2013-01-01

    Invasion and metastasis are major factors in the poor prognosis of pancreatic cancer, which remains one of the most aggressive and lethal diseases worldwide. α-mangostin, a major xanthone compound identified in the pericarp of mangosteen (Garcinia mangostana, Linn; GML), possesses unique biological activities, including antioxidant, antitumor and anti-inflammatory effects. Whether α-mangostin is able to inhibit the invasive ability of pancreatic cancer cells has not been elucidated. In the present study, α-mangostin was shown to inhibit the invasive ability of the pancreatic cancer cell lines MIAPaCa-2 and BxPC-3. The results showed that α-mangostin inhibited the growth of the pancreatic cancer cells in a dose- and time-dependent manner. At concentrations of <5 μM, α-mangostin had no significant effects on cytotoxicity, but significantly inhibited the invasion and migration of pancreatic cancer cells and the expression of matrix metalloproteinase (MMP)-2 and MMP-9, while increasing the expression of E-cadherin. The present data also showed that α-mangostin exerted an inhibitory effect on the phosphorylation of extracellular-signal-regulated kinase (ERK). Furthermore, the reduction of ERK phosphorylation by small interfering RNA (siRNA) potentiated the effect of α-mangostin. Taken together, the data suggest that α-mangostin inhibited the invasion and metastasis of pancreatic cancer cells by reducing MMP-2 and MMP-9 expression, increasing E-cadherin expression and suppressing the ERK signaling pathway. The present study suggests that α-mangostin may be a promising agent against pancreatic cancer. PMID:23833675

  19. Feeding oleamide to lactating Jersey cows 1. Effects on lactation performance and milk fatty acid composition.

    PubMed

    Jenkins, T C

    2000-02-01

    Oleamide was previously reported to resist ruminal biohydrogenation and elevate milk oleic acid concentration when fed to lactating Holstein cows. To determine if Jersey cows responded similarly to oleamide, four lactating Jersey cows (mean 417 kg of body weight and 64 days in milk) were fed four diets in a 4x4 Latin square with 2-wk periods. Diets were total mixed ration containing 47% corn silage and 53% concentrate (dry matter basis) and were supplemented with no added fat (control), or with 3.5% added fat from either higholeic canola oil, a commercial source of oleamide, or oleamide synthesized from oleic acid and urea. The canola oil supplement had no effect on milk yield or composition. Compared to canola oil, the oleamide supplements reduced milk yield, dry matter intake, and milk fat and protein contents. Milk oleic acid concentration increased from 17.4% of total fatty acids for the control diet to 22.1% for the canola oil diet. Both oleamides further increased milk oleic acid to 30.0 and 27.1% of total fatty acids for the commercial and synthesized oleamides, respectively. Milk palmitic acid was reduced and stearic acid was increased by all fat supplements but more so by the oleamides than by the canola oil. Consistent with previous reports that fatty acyl amides resist ruminal biohydrogenation, feeding oleamide to Jersey cows in this study increased milk oleic acid concentration but had negative effects on feed intake and milk yield.

  20. Feeding oleamide to lactating Jersey cows. 2. Effects on nutrient digestibility, plasma fatty acids, and hormones.

    PubMed

    DeLuca, D D; Jenkins, T C

    2000-03-01

    Six lactating Jersey cows were used in a 6 x 6 Latin square with 14-d periods to evaluate different ratios of canola oil and oleamide on nutrient digestibility, plasma fatty acids, and plasma hormones. The control diet contained no added fat. All other diets contained 3.5% added fat consisting of 0, 25, 50, 75, and 100% as oleamide and the remainder as canola oil. Data were collected during the final 4 d of each period. Dry matter intake was reduced by the addition of canola oil to the diet, and further reduced by replacing canola oil with oleamide. Milk yield was not affected by diet but increasing oleamide proportion in the fat supplement caused linear increases in cis-C18:1 and linear decreases in C4 to C16 fatty acids in milk. Adding canola oil reduced total tract digestibilities of fiber and fatty acids, but had no effect on the digestibilities of dry matter or protein. Replacing canola oil with oleamide increased protein digestibility linearly, and increased digestibility of fiber (quartic relationship) and fatty acids (quadratic relationship). Oleic acid concentration in plasma increased by adding canola oil to the diet, and was further increased by replacing canola oil with oleamide. Diet had no effect on plasma concentrations of insulin or IGF-I. Oleamide fed to Jersey cows in this study was highly digestible and had no deleterious effects on total tract digestility of fiber or protein. Increasing oleic acid concentration in plasma lipids while maintaining a constant level of added fat in the ration had no effect on circulating concentrations of insulin or IGF-I in Jerseys.

  1. [INFLUENCE OF OLEAMIDE OF WATER AND ION TRANSPORT IN THE OSMOREGULATORY ORGANS].

    PubMed

    Shakhmatova, E I; Bogolepova, A E; Dubina, M V; Natochin, Yu V

    2015-01-01

    Application of oleamide (final concentration of 10 μM) at the skin basal surface of the frog, Rana temporaria L., augmented the short-circuit current (SCC) from 59.8 ± 2.5 to 78.2 ± 1.4 μA/cm2. Oleamide added to the serous membrane of the frog urinary bladder at a final dose of 1 μM induced more than 30-fold increase of osmotic permeability. The addition of arginine-vasotocin on the background of oleamide action further increased SCC across the isolated frog skin and osmotic permeability of the frog urinary bladder. Intraperitoneal injection of oleamide at a dose of 0.1 mM/100 g BW to water-loaded non-anesthetized Wistar rats decreased diuresis by 22%, enhanced solute-free water reabsorption and urinary sodium excretion by 31% and 55% respectively, but did not affect the renal potassium excretion. The results obtained provide evidence of similarity of oleamide and neurohypophyseal hormones effects on water and ion transport in epithelial cells of osmoregulatory organs in vertebrates. PMID:26983280

  2. BRP, a polysaccharide fraction isolated from Boschniakia rossica, protects against galactosamine and lipopolysaccharide induced hepatic failure in mice.

    PubMed

    Quan, Jishu; Jin, Meihua; Xu, Huixian; Qiu, Delai; Yin, Xuezhe

    2014-05-01

    The aim of this study was to investigate the hepatoprotective effect of BRP, a polysaccharide fraction isolated from Boschniakia rossica, against galactosamine and lipopolysaccharide induced fulminant hepatic failure. Mice were injected with a single dose of galactosamine/lipopolysaccharide with or without pretreatment of BRP. Results showed marked reduction of hepatic necrosis, serum marker enzymes and levels of tumor necrosis factor-α and interleukin-6 in BRP pretreated mice when compared with galactosamine/lipopolysaccharide-challenged mice. Mice pretreated with BRP decreased the activation of caspases-3 and caspase-8, and showed a reduced level of DNA fragmentation of liver cells. BRP also reduced hepatic lipid peroxidation, increased potential of hepatic antioxidative defense system, and reduced hepatic nitric oxide level which was elevated by galactosamine/lipopolysaccharide injection. Immunoblot analysis showed down-regulation of inducible nitric oxide synthase and cyclooxygenase-2 proteins of liver tissues in BRP pretreated group when compared with galactosamine/lipopolysaccharide-challenged group. Furthermore, treatment with galactosamine/lipopolysaccharide markedly increased toll-like receptor 4, nuclear level of nuclear factor-κB, and phosphorylation of both extracellular signal-regulated kinase and c-Jun N-terminal kinase in liver tissues. However, these increases were attenuated by pretreatment with BRP. The results suggest that BRP alleviates galactosamine/lipopolysaccharide-induced liver injury by enhancing antioxidative defense system, suppressing inflammatory responses and reducing apoptotic signaling.

  3. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  4. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity. PMID:27087645

  5. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    PubMed

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  6. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843.

    PubMed

    Shao, Jihai; He, Yaxian; Li, Fan; Zhang, Huiling; Chen, Anwei; Luo, Si; Gu, Ji-Dong

    2016-01-01

    Oleamide, a fatty acid derivative, shows inhibitory effect against the bloom-forming cyanobacterium Microcystis aeruginosa. The EC50 of oleamide on the growth of M. aeruginosa NIES-843 was 8.60 ± 1.20 mg/L. In order to elucidate the possible mechanism of toxicity of oleamide against M. aeruginosa, chlorophyll fluorescence transient, cellular ultrastructure, fatty acids composition and the transcription of the mcyB gene involved in microcystins synthesis were studied. The results of chlorophyll fluorescence transient showed that oleamide could destruct the electron accepting side of the photosystem II of M. aeruginosa NIES-843. Cellular ultrastructure examination indicated that the destruction of fatty acid constituents, the distortion of thylakoid membrane and the loss of integrity of cell membrane were associated with oleamide treatment and concentration. The damage of cellular membrane increased the release of microcystins from intact cells into the medium. Results presented in this study provide new information on the possible mechanisms involved and potential utilization of oleamide as an algicide in cyanobacterial bloom control. PMID:26547872

  7. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency

    PubMed Central

    Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure. PMID:26133372

  8. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment

    PubMed Central

    2014-01-01

    Background Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Methods Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Results Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Conclusions Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection. PMID:24886300

  9. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-{kappa}{beta} and myosin light-chain kinase pathways

    SciTech Connect

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.

  10. 6'-O-Caffeoyldihydrosyringin isolated from Aster glehni suppresses lipopolysaccharide-induced iNOS, COX-2, TNF-α, IL-1β and IL-6 expression via NF-κB and AP-1 inactivation in RAW 264.7 macrophages.

    PubMed

    Seo, Seunghwan; Lee, Kyoung-Goo; Shin, Ji-Sun; Chung, Eun Kyoung; Lee, Jae Yeol; Kim, Hyoung Ja; Lee, Kyung-Tae

    2016-10-01

    Previously, we found that ethyl acetate extract fraction of Aster glehni exhibited anti-hyperuricemic effects in animal models and also five new caffeoylglucoside derivatives were isolated from this fraction. In this work, we evaluated the anti-inflammatory effects of these caffeoylglucoside derivatives and found that 6'-O-caffeoyldihydrosyringin (2, CDS) most potently inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages. In addition, CDS was found to concentration-dependently reduce the production of NO, PGE2, and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) induced by LPS in macrophages. Consistent with these observations, CDS concentration-dependently inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxidase-2 (COX-2) expression at the protein level and also iNOS, COX-2, TNF-α, and IL-6, IL-1β expression at the mRNA level. Furthermore, CDS suppressed the LPS-induced transcriptional activities of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) as well as the phosphorylation of p65 and c-Fos. Taken together, these results suggest that the anti-inflammatory effect of CDS is associated with the downregulation of iNOS, COX-2, TNF-α, IL-1β, and IL-6 expression via the negative regulation of NF-κB and AP-1 activation in LPS-induced RAW 264.7 macrophages. PMID:27590705

  11. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  12. Alpinetin inhibits lipopolysaccharide-induced acute kidney injury in mice.

    PubMed

    Huang, Yi; Zhou, Li-shan; Yan, Li; Ren, Juan; Zhou, Dai-xing; Li, Shu-Sheng

    2015-10-01

    Alpinetin, a novel plant flavonoid isolated from Alpinia katsumadai Hayata, has been demonstrated to have anti-inflammatory and antioxidant effects. However, the effects of alpinetin on lipopolysaccharide (LPS)-induced acute kidney injury have not been reported. In the present study, we investigated the protective effects and the underlying mechanism of alpinetin against LPS-induced acute kidney injury in mice. The results showed that alpinetin inhibited LPS-induced kidney histopathologic changes, blood urea nitrogen (BUN) and creatinine levels. Alpinetin also inhibited LPS-induced ROS, MDA, and inflammatory cytokines TNF-α, IL-6 and IL-1β production in kidney tissues. Meanwhile, Western blot analysis showed that alpinetin suppressed LPS-induced TLR4 expression and NF-κB activation in kidney tissues. In addition, alpinetin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. In conclusion, alpinetin protected LPS-induced kidney injury through activating Nrf2 and inhibiting TLR4 expression.

  13. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  14. Montelukast attenuates lipopolysaccharide-induced cardiac injury in rats.

    PubMed

    Khodir, A E; Ghoneim, H A; Rahim, M A; Suddek, G M

    2016-04-01

    This study investigates the possible protective effects of montelukast (MNT) against lipopolysaccharide (LPS)-induced cardiac injury, in comparison to dexamethasone (DEX), a standard anti-inflammatory. Male Sprague Dawley rats (160-180 g) were assigned to five groups (n = 8/group): (1) control; (2) LPS (10 mg/kg, intraperitoneal (i.p.)); (3) LPS + MNT (10 mg/kg, per os (p.o.)); (4) LPS + MNT (20 mg/kg, p.o.); and (5) LPS + DEX (1 mg/kg, i.p.). Twenty-four hours after LPS injection, heart/body weight (BW) ratio and percent survival of rats were determined. Serum total protein, creatine kinase muscle/brain (CK-MB), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) activities were measured. Heart samples were taken for histological assessment and for determination of malondialdehyde (MDA) and glutathione (GSH) contents. Cardiac tumor necrosis factor α (TNF-α) expression was evaluated immunohistochemically. LPS significantly increased heart/BW ratio, serum CK-MB, ALP, and LDH activities and decreased percent survival and serum total protein levels. MDA content increased in heart tissues with a concomitant reduction in GSH content. Immunohistochemical staining of heart specimens from LPS-treated rats revealed high expression of TNF-α. MNT significantly reduced percent mortality and suppressed the release of inflammatory and oxidative stress markers when compared with LPS group. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. MNT (20 mg/kg) was more effective in alleviating LPS-induced heart injury when compared with both MNT (10 mg/kg) and DEX (1 mg/kg), as evidenced by decrease in positive staining by TNF-α immunohistochemically, decrease MDA, and increase GSH content in heart tissue. This study demonstrates that MNT might have cardioprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and/or anti-inflammatory properties. PMID:26089034

  15. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-inflammatory Responses in BV2 Microglial Cells.

    PubMed

    Kim, Mina; Choi, Sang-Yoon; Lee, Pyeongjae; Hur, Jinyoung

    2015-09-01

    Microglia is the resident innate immune cells that sense pathogens and tissue injury in the central nervous system. Microglia becomes activated in response to injury, infection, and other stimuli that threaten neuronal survival. Microglia activation plays an important role in neurodegenerative diseases. Neochlorogenic acid (NCA) is a natural polyphenolic compound found in dried fruits and other plants. Although previous studies have shown that phenolic acids including NCA have outstanding antioxidant, antibacterial, antiviral, and antipyretic activities, there has not yet been investigated for anti-inflammatory effects. Therefore, for the first time we have examined the potential of NCA to inhibit microglial activation and pro-inflammatory responses in the brain. We found that lipopolysaccharide-induced inducible nitric oxide synthase, and cyclooxygenase-2 expression, and nitric oxide formation was suppressed by NCA in a dose-dependent manner in BV2 microglia. NCA also inhibited the production of pro-inflammatory mediators, tumor necrosis factor-α and interleukin-1 beta. Furthermore, phosphorylated nuclear factor-kappa B p65 and p38 mitogen-activated protein kinase activation were blocked by NCA. Taken together, these results suggest that NCA exerts neuroprotective effects through the inhibition of pro-inflammatory pathways in activated microglia.

  16. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice.

    PubMed

    Jangra, Ashok; Lukhi, Manish M; Sulakhiya, Kunjbihari; Baruah, Chandana C; Lahkar, Mangala

    2014-10-01

    Numerous studies have demonstrated that inflammation, oxidative stress and altered level of neurotrophins are involved in the pathogenesis of depressive illness. Mangiferin, a C-glucosylxanthone is abundant in the stem and bark of Mangifera indica L. The compound has been shown to possess antioxidant, anti-inflammatory and immunomodulatory activities. The present study was performed to investigate the effect of mangiferin pretreatment on lipopolysaccharide-induced increased proinflammatory cytokines, oxidative stress and neurobehavioural abnormalities. Mice were challenged with lipopolysaccharide (0.83 mg/kg, i.p.) after 14 days of mangiferin (20 and 40 mg/kg, p.o.) pretreatment. Mangiferin pretreatment significantly ameliorated the anxiety-like behaviour as evident from the results of an elevated plus maze, light-dark box and open field test. Mangiferin pretreatment also improved the anhedonic behaviour as revealed by sucrose preference test and increased social interaction time. It also prevented the lipopolysaccharide-evoked depressive-like effect by reducing the immobility time in forced swim and tail suspension test. Lipopolysaccharide-induced elevated oxidative stress was decreased with mangiferin pretreatment due to its potential to increase reduced glutathione concentration, Superoxide dismutase and catalase activity and decrease lipid peroxidation and nitrite level in the hippocampus as well as in the prefrontal cortex. Mangiferin pretreatment also attenuated neuroinflammation by reducing the interleukin-1 beta (IL-1β) level in hippocampus and prefrontal cortex. In conclusion, our results demonstrated that mangiferin possessed antidepressant and anti-anxiety properties due to its ability to attenuate IL-1β level and oxidative stress evoked by intraperitoneal administration of lipopolysaccharide. Mangiferin may be a potential therapeutic agent for the treatment of depressive and anxiety illness. PMID:25064341

  17. Methylprednisolone Stiffens Aortas in Lipopolysaccharide-Induced Chronic Inflammation in Rats

    PubMed Central

    Ko, Ya-Hui; Tsai, Ming-Shian; Lee, Po-Huang; Liang, Jin-Tung; Chang, Kuo-Chu

    2013-01-01

    Introduction Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid) on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats. Methods Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg−1 day−1 lipopolysaccharide) for either 2 or 4 weeks. Arterial wave transit time (τ) was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra. Results Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs) in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO), which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp). However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp. However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content. Conclusion Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs. PMID:23874978

  18. Protective effect of mangiferin against lipopolysaccharide-induced depressive and anxiety-like behaviour in mice.

    PubMed

    Jangra, Ashok; Lukhi, Manish M; Sulakhiya, Kunjbihari; Baruah, Chandana C; Lahkar, Mangala

    2014-10-01

    Numerous studies have demonstrated that inflammation, oxidative stress and altered level of neurotrophins are involved in the pathogenesis of depressive illness. Mangiferin, a C-glucosylxanthone is abundant in the stem and bark of Mangifera indica L. The compound has been shown to possess antioxidant, anti-inflammatory and immunomodulatory activities. The present study was performed to investigate the effect of mangiferin pretreatment on lipopolysaccharide-induced increased proinflammatory cytokines, oxidative stress and neurobehavioural abnormalities. Mice were challenged with lipopolysaccharide (0.83 mg/kg, i.p.) after 14 days of mangiferin (20 and 40 mg/kg, p.o.) pretreatment. Mangiferin pretreatment significantly ameliorated the anxiety-like behaviour as evident from the results of an elevated plus maze, light-dark box and open field test. Mangiferin pretreatment also improved the anhedonic behaviour as revealed by sucrose preference test and increased social interaction time. It also prevented the lipopolysaccharide-evoked depressive-like effect by reducing the immobility time in forced swim and tail suspension test. Lipopolysaccharide-induced elevated oxidative stress was decreased with mangiferin pretreatment due to its potential to increase reduced glutathione concentration, Superoxide dismutase and catalase activity and decrease lipid peroxidation and nitrite level in the hippocampus as well as in the prefrontal cortex. Mangiferin pretreatment also attenuated neuroinflammation by reducing the interleukin-1 beta (IL-1β) level in hippocampus and prefrontal cortex. In conclusion, our results demonstrated that mangiferin possessed antidepressant and anti-anxiety properties due to its ability to attenuate IL-1β level and oxidative stress evoked by intraperitoneal administration of lipopolysaccharide. Mangiferin may be a potential therapeutic agent for the treatment of depressive and anxiety illness.

  19. Acute and subchronic administration of anandamide or oleamide increases REM sleep in rats.

    PubMed

    Herrera-Solís, Andrea; Vásquez, Khalil Guzmán; Prospéro-García, Oscar

    2010-03-01

    Anandamide and oleamide, induce sleep when administered acutely, via the CB1 receptor. Their subchronic administration must be tested to demonstrate the absence of tolerance to this effect, and that the sudden withdrawal of these endocannabinoids (eCBs) does not affect sleep negatively. The sleep-waking cycle of rats was evaluated for 24h, under the effect of an acute or subchronic administration of eCBs, and during sudden eCBs withdrawal. AM251, a CB1 receptor antagonist (CB1Ra) was utilized to block eCBs effects. Our results indicated that both acute and subchronic administration of eCBs increase REMS. During eCBs withdrawal, rats lack the expression of an abstinence-like syndrome. AM251 was efficacious to prevent REMS increase caused by both acute and subchronic administration of these eCBs, suggesting that this effect is mediated by the CB1 receptor. Our data further support a role of the eCBs in REMS regulation.

  20. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation

    PubMed Central

    Ishibashi, Ryoichi; Takemoto, Minoru; Akimoto, Yoshihiro; Ishikawa, Takahiro; He, Peng; Maezawa, Yoshiro; Sakamoto, Kenichi; Tsurutani, Yuya; Ide, Shintaro; Ide, Kana; Kawamura, Harukiyo; Kobayashi, Kazuki; Tokuyama, Hirotake; Tryggvason, Karl; Betsholtz, Christer; Yokote, Koutaro

    2016-01-01

    Kidney diseases including diabetic nephropathy have become huge medical problems, although its precise mechanisms are still far from understood. In order to increase our knowledge about the patho-physiology of kidney, we have previously identified >300 kidney glomerulus-enriched transcripts through large-scale sequencing and microarray profiling of the mouse glomerular transcriptome. One of the glomerulus-specific transcripts identified was semaphorin 3G (Sema3G) which belongs to the semaphorin family. The aim of this study was to analyze both the in vivo and in vitro functions of Sema3G in the kidney. Sema3G was expressed in glomerular podocytes. Although Sema3G knockout mice did not show obvious glomerular defects, ultrastructural analyses revealed partially aberrant podocyte foot processes structures. When these mice were injected with lipopolysaccharide to induce acute inflammation or streptozotocin to induce diabetes, the lack of Sema3G resulted in increased albuminuria. The lack of Sema3G in podocytes also enhanced the expression of inflammatory cytokines including chemokine ligand 2 and interleukin 6. On the other hand, the presence of Sema3G attenuated their expression through the inhibition of lipopolysaccharide-induced Toll like receptor 4 signaling. Taken together, our results surmise that the Sema3G protein is secreted by podocytes and protects podocytes from inflammatory kidney diseases and diabetic nephropathy. PMID:27180624

  1. Arabinoxylan hydrolyzates as immunomodulators in lipopolysaccharide-induced RAW264.7 macrophages.

    PubMed

    Mendis, Mihiri; Leclerc, Estelle; Simsek, Senay

    2016-07-13

    Inflammation is an important healthy immune response of the body during lesions and infection. However, uncontrolled excessive inflammation can be damaging to the cells. The specific objective of this research was to evaluate the effect of structural details of enzymatically derived wheat arabinoxylan hydrolyzates (AXH) on their immunomodulatory properties. Out of the 30 AXH, six AXH showed statistically significant reduction in NO production compared to the control, causing an approximately 24 to 12% reduction in NO production. Five AXH exhibited statistically significant pro-inflammatory properties in the LPS induced cells, causing an approximately 10 to 14% increase compared to the control. A negative correlation was seen between NO production and total arabinoxylan (AX) × amount of 1,4-linked xylose with arabinose substituted at the O-3 position. Thus, AXH with higher AX and substitution at the O-3 position are favorable candidates to reduce the lipopolysaccharide induced inflammation. These results suggest that there may be a structure-function relationship for these AXH as immunomodulators.

  2. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats.

    PubMed

    Goel, Ashish; Digvijaya; Garg, Arun; Kumar, Ashok

    2016-02-01

    Cognitive disorders in mankind are not uncommon. Apart from neurodegenerative diseases such as Alzheimer's (AD), various stresses also affect cognitive functions. Plants are known to be potential source of compounds that ameliorate several diseases including cognitive impairment. Here, we evaluated effect of aqueous extract of caper (Capparis spinosa) buds on lipopolysaccharide-induced cognitive impairment in rats using two different oral doses i.e. 10 (pre-treatment) and 30 mg/rat(post-treatment) through assessment of behavioural (Morris Water maze test and Y maze test), biochemical (Cholinesterase assay) and histopathological (H&E staining) parameters. Lipopolysaccharide (from E. coli) administration resulted in an increased neurodegeneration and time taken to reach the platform (in Morris water maze). The increased neurodegeneration in CA1 region of hippocampus was significantly reduced in animals which received caper bud extract; they showed marked reduction in time taken to reach the platform at both the dose levels. The experiment demonstrated that caper bud extract exhibits potential protective effect against learning and memory damage induced by chronic administration of lipopolysaccharide (175 μg/kg) for 7 days. The results suggest that the caper bud extract could be explored for its use in the treatment of cognitive disorders.

  3. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats.

    PubMed

    Goel, Ashish; Digvijaya; Garg, Arun; Kumar, Ashok

    2016-02-01

    Cognitive disorders in mankind are not uncommon. Apart from neurodegenerative diseases such as Alzheimer's (AD), various stresses also affect cognitive functions. Plants are known to be potential source of compounds that ameliorate several diseases including cognitive impairment. Here, we evaluated effect of aqueous extract of caper (Capparis spinosa) buds on lipopolysaccharide-induced cognitive impairment in rats using two different oral doses i.e. 10 (pre-treatment) and 30 mg/rat(post-treatment) through assessment of behavioural (Morris Water maze test and Y maze test), biochemical (Cholinesterase assay) and histopathological (H&E staining) parameters. Lipopolysaccharide (from E. coli) administration resulted in an increased neurodegeneration and time taken to reach the platform (in Morris water maze). The increased neurodegeneration in CA1 region of hippocampus was significantly reduced in animals which received caper bud extract; they showed marked reduction in time taken to reach the platform at both the dose levels. The experiment demonstrated that caper bud extract exhibits potential protective effect against learning and memory damage induced by chronic administration of lipopolysaccharide (175 μg/kg) for 7 days. The results suggest that the caper bud extract could be explored for its use in the treatment of cognitive disorders. PMID:26934780

  4. Structure-activity relationship study of dibenzocyclooctadiene lignans isolated from Schisandra chinensis on lipopolysaccharide-induced microglia activation.

    PubMed

    Hu, Di; Han, Na; Yao, Xuechun; Liu, Zhihui; Wang, Yu; Yang, Jingyu; Yin, Jun

    2014-06-01

    To explore the relationship of the dibenzocyclooctadiene lignans from Schisandra chinensis to their anti-inflammatory activities, series of dibenzocyclooctadiene lignans were isolated and assessed by testing their inhibitory effects on nitric oxide production in lipopolysaccharide-induced BV2 mouse microglia. It was found, for the first time, that dibenzocyclooctadiene lignans which have S-biphenyl and methylenedioxy groups strongly inhibited LPS-induced microglia activation. The methoxy group on the cyclooctadiene introduced more effectiveness, but the presence of an acetyl group on the cyclooctadiene or hydroxyl group on C-7 decreased the inhibitory activity.

  5. The Pharmacokinetic-Pharmacodynamic Model of Azithromycin for Lipopolysaccharide-Induced Depressive-Like Behavior in Mice

    PubMed Central

    Hao, Kun; Qi, Qu; Hao, Haiping; Wang, Guangji; Chen, Yuancheng; Liang, Yan; Xie, Lin

    2013-01-01

    A mechanism-based model was developed to describe the time course of lipopolysaccharide-induced depressive-like behavior and azithromycin pharmacodynamics in mice. The lipopolysaccharide-induced disease progression was monitored by lipopolysaccharide, proinflammatory cytokines, and kynrenine concentration in plasma. The depressive-like behavior was investigated by forced swimming test and tail suspension test. Azithromycin was selected to inhibit the surge of proinflammatory cytokines induced by lipopolysaccharide. Disease progression model and azithromycin pharmacodynamics were constructed from transduction and indirect response models. A delay in the onset of increased proinflammatory cytokines, kynrenine, and behavior test compared to lipopolysaccharide was successfully characterized by series transduction models. The inhibition of azithromycin on proinflammatory cytokines was described by an indirect response model. After lipopolysaccharide challenging, the proinflammatory cytokines, kynrenine and behavior tests would peak approximately at 3, 12, and 24 h respectively, and then the time courses slowly declined toward a baseline state after peak response. During azithromycin administration, the peak levels of proinflammatory cytokines, kynrenine and behavior indexes decreased. Model parameters indicated that azithromycin significantly inhibited the proinflammatory cytokines level in plasma and improved the depressive-like behavior induced by inflammation. The integrated model for disease progression and drug intervention captures turnovers of proinflammatory cytokines, kynrenine and the behavior results in the different time phases and conditions. PMID:23358536

  6. Lactoferrin suppresses lipopolysaccharide-induced endometritis in mice via down-regulation of the NF-κB pathway.

    PubMed

    Li, Weishi; Fu, Kaiqiang; Lv, Xiaopei; Wang, Yu; Wang, Jifang; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-09-01

    Lactoferrin (LF) is one of the most abundant proteins found in milk, and it has been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of LF on lipopolysaccharide (LPS)-induced endometritis and the underlying molecular mechanisms remain to be elucidated. In this study, we evaluated the effects of LF on LPS-induced endometritis in mice. The endometritis model was established by the perfusion of mice with LPS. LF was administered by intraperitoneal injection 1h before and 12h after LPS induction. Our results demonstrated that LF significantly attenuated the histopathological changes in the uterus, reduced the activity of myeloperoxidase (MPO) and the levels of nitric oxide (NO), and inhibited the activation of NF-κB and the expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in a dose-dependent manner. The results suggest that LF has an anti-inflammatory effect on LPS-induced endometritis in mice. Therefore, LF may be a potential therapeutic agent for the treatment of endometritis. PMID:26256698

  7. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: Oxidative stress acts through control of inflammation

    SciTech Connect

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo . E-mail: jouilo@ajou.ac.kr

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-{alpha} and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  8. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway.

    PubMed

    Ruifeng, Gao; Yunhe, Fu; Zhengkai, Wei; Ershun, Zhou; Yimeng, Li; Minjun, Yao; Xiaojing, Song; Zhengtao, Yang; Naisheng, Zhang

    2014-04-15

    Chlorogenic acid (CGA), one of the most abundant polyphenols in the diet, has been reported to have potent anti-inflammatory properties. However, the effect of CGA on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The purpose of the present study was to elucidate whether CGA could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. CGA was administered intraperitoneally with the dose of 12.5, 25, and 50mg/kg respectively 1h before and 12h after induction of LPS. In this study, the effect of CGA on LPS-induced mice mastitis was assessed through histopathological examination, ELISA assay, and western blot analysis. The results showed that CGA significantly reduced TNF-α, IL-1β, and IL-6 production compared with LPS group. Besides, western blot analysis showed that CGA could inhibit the expression of TLR4 and the phosphorylation of NF-κB and IκB induced by LPS. These results suggested that anti-inflammatory effects of CGA against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathway. Therefore, CGA may be a potent therapeutic reagent for the prevention of the immunopathology encountered during Escherichia coli elicited mastitis.

  9. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    PubMed

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia. PMID:26689453

  10. Oxidized low density lipoprotein suppresses lipopolysaccharide-induced inflammatory responses in microglia: oxidative stress acts through control of inflammation.

    PubMed

    Kim, Ohn Soon; Lee, Chang Seok; Joe, Eun-hye; Jou, Ilo

    2006-03-31

    Low density lipoprotein (LDL) is readily oxidized under certain conditions, resulting in the formation of oxidized LDL (oxLDL). Despite numerous in vitro reports that reveal the pathogenic role of oxidative stress, anti-oxidative strategies have underperformed in the clinic. In this study, we examine the role of oxLDL in brain inflammatory responses using cultured rat brain microglia. We demonstrate that oxLDL inhibits lipopolysaccharide (LPS)-induced inflammatory responses in these cells. It also decreases LPS-induced expression of inducible nitric oxide synthase and production of nitric oxide, and reduces LPS-induced secretion of tumor necrosis factor-alpha and monocyte chemoattractant protein-1. Oxysterols, known components of oxLDL and endogenous agonists of liver X receptor, can simulate the inhibitory effects of oxLDL in LPS-activated microglia. In addition, their inhibitory effects were mimicked by liver X receptor (LXR) agonists and potentiated by a retinoid X receptor agonist, suggesting these molecules heterodimerize to function as oxysterol receptors. Taken together, our results demonstrate that oxLDL inhibits LPS-induced inflammatory responses in brain microglia and that these inhibitory effects are mediated by oxysterols and, at least in part, by the nuclear receptor LXR. Our results suggest an additional mechanism of action for oxidative stress that acts indirectly via modulation of inflammatory responses. Although further studies are needed, these results answer in part the question of why anti-oxidative strategies have not been successful in clinical situations. Moreover, as brain inflammation participates in the initiation and progression of several neurodegenerative disorders, the present data provide information that should prove a useful guide for designing therapeutic strategies to combat oxidative brain diseases.

  11. The effects of morin on lipopolysaccharide-induced acute lung injury by suppressing the lung NLRP3 inflammasome.

    PubMed

    Tianzhu, Zhang; Shihai, Yang; Juan, Du

    2014-12-01

    In previous study, the anti-inflammatory effect of morin had been found. In this study, we investigated anti-inflammatory effects of morin on acute lung injury using lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-18, and IL-6 were assayed by enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed by hematoxylin and eosin (HE) staining. The protein level of lung NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome was measured by Western blotting. The data showed that treatment with the morin markedly attenuated inflammatory cell numbers in the BALF, decreased lung NLRP3 inflammasome protein level, and improved SOD activity and inhibited MPO activity. Histological studies demonstrated that morin substantially inhibited LPS-induced neutrophils in lung tissue compared with model group. The results indicated that the morin had a protective effect on LPS-induced ALI in mice.

  12. Recombinant thrombomodulin inhibits lipopolysaccharide-induced inflammatory response by blocking the functions of CD14.

    PubMed

    Ma, Chih-Yuan; Chang, Wei-En; Shi, Guey-Yueh; Chang, Bi-Ying; Cheng, Sheng-En; Shih, Yun-Tai; Wu, Hua-Lin

    2015-02-15

    CD14, a multiligand pattern-recognition receptor, is involved in the activation of many TLRs. Thrombomodulin (TM), a type I transmembrane glycoprotein, originally was identified as an anticoagulant factor that activates protein C. Previously, we showed that the recombinant TM lectin-like domain binds to LPS and inhibits LPS-induced inflammation, but the function of the recombinant epidermal growth factor-like domain plus serine/threonine-rich domain of TM (rTMD23) in LPS-induced inflammation remains unknown. In the current study, we found that rTMD23 markedly suppressed the activation of intracellular signaling pathways and the production of inflammatory cytokines induced by LPS. The anti-inflammatory activity of rTMD23 was independent of activated protein C. We also found that rTMD23 interacted with the soluble and membrane forms of CD14 and inhibited the CD14-mediated inflammatory response. Knockdown of CD14 in macrophages suppressed the production of inflammatory cytokines induced by LPS, and rTMD23 inhibited LPS-induced IL-6 production in CD14-knockdown macrophages. rTMD23 suppressed the binding of LPS to macrophages by blocking the association between monocytic membrane-bound TM and CD14. The administration of rTMD23 in mice, both pretreatment and posttreatment, significantly increased the survival rate and reduced the inflammatory response to LPS. Notably, the serine/threonine-rich domain is essential for the anti-inflammatory activity of rTMD23. To summarize, we show that rTMD23 suppresses the LPS-induced inflammatory response in mice by targeting CD14 and that the serine/threonine-rich domain is crucial for the inhibitory effect of rTMD23 on LPS-induced inflammation. PMID:25609841

  13. Inhibitory effects of β-chamigrenal, isolated from the fruits of Schisandra chinensis, on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages [corrected].

    PubMed

    Shin, Ji-Sun; Ryu, Suran; Cho, Young-Wuk; Kim, Hyun Ji; Jang, Dae Sik; Lee, Kyung-Tae

    2014-06-01

    Much is known about the bioactive properties of lignans from the fruits of Schisandra chinensis. However, very little work has been done to determine the properties of sesquiterpenes in the fruits of S. chinensis. The aim of the present study was to investigate the anti-inflammatory potential of new sesquiterpenes (β-chamigrenal, β-chamigrenic acid, α-ylangenol, and α-ylangenyl acetate) isolated from the fruits of S. chinensis and to explore their effect on macrophages stimulated with lipopolysaccharide. Of these four sesquiterpenes, β-chamigrenal most significantly suppressed lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages (47.21 ± 4.54 % and 51.61 ± 3.95 % at 50 µM, respectively). Molecularly, the inhibitory activity of β-chamigrenal on nitric oxide production was mediated by suppressing inducible nitric oxide synthase activity but not its expression. In the prostaglandin E2 synthesis pathway, β-chamigrenal prevented the upregulation of inducible microsomal prostaglandin E synthase-1 expression after stimulation with lipopolysaccharide. Conversely, β-chamigrenal had no effect on the expression and enzyme activity of cyclooxygenase-2. In addition, the expression of early growth response factor-1, a key transcription factor of microsomal prostaglandin E synthase-1 expression, was inhibited by β-chamigrenal. These results may suggest a possible anti-inflammatory activity of β-chamigrenal which has to be proven in in vivo experiments.

  14. Effect of aminoguanidine on lipopolysaccharide-induced changes in rat liver transporters and transcription factors.

    PubMed

    Aoki, Kimiko; Nakajima, Miki; Hoshi, Yoshiyuki; Saso, Naomi; Kato, Satoko; Sugiyama, Yuichi; Sato, Hitoshi

    2008-03-01

    To determine the role of nitric oxide (NO) in rat liver transporter regulation, we investigated whether NO mediates lipopolysaccharide (LPS)-induced changes in transporters and their transcription factor expression using aminoguanidine (AG), an inhibitor of induced nitric oxide synthase (iNOS). We confirmed that LPS decreased mRNA levels for Ntcp, Oatp1, Oatp2, Oatp4, Oct1, Mrp2, Mdr1a and increased those for Mdr1b at 16 h after administration. AG attenuated these decreases for Ntcp, Oatp1 and Oatp4 (retinoid X receptor (RXR)alpha- and hepatocyte nuclear factor (HNF)4alpha-dependent genes) and increase for Mdr1b (nuclear factor (NF)-kappaB-dependent gene). Concomitantly, it suppressed LPS-induced NF-kappaB-dependent gene transcription, such as those for proinflammatory cytokines (cytokines; tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6) and iNOS, and also suppressed IL-1beta release from Kupffer cells (KCs) at post-translational levels, but had little effect on the LPS-induced decreases in RXRalpha and HNF4alpha transcriptional activities. These findings indicate that hepatocytes were stimulated directly by LPS, which lead to the activation of NF-kappaB and reduction of RXRalpha and HNF4alpha transcriptional activities as early responses, and indirectly by cytokines and NO released from KCs via activation of NF-kappaB by LPS as delayed responses. We conclude that AG, which suppresses LPS-induced NF-kappaB activation in both hepatocytes and KCs and then the release of cytokines and NO from KCs, attenuates LPS-induced changes of Ntcp, Oatp1, Oatp4 and Mdr1b transcription in hepatocytes. The roles of cytokines and NO could not be distinguished, however. Further in vitro study is needed to clarify the role of NO in transporter regulation. PMID:18310902

  15. Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells.

    PubMed

    Tsou, Yung-An; Lin, Chia-Der; Chen, Hui-Chen; Hsu, Hui-Ying; Wu, Lii-Tzu; Chiang-Ni, Chuan; Chen, Chih-Jung; Wu, Tsu-Fang; Kao, Min-Chuan; Chen, Yu-An; Peng, Ming-Te; Tsai, Ming-Hsui; Chen, Chuan-Mu; Lai, Chih-Ho

    2015-01-01

    Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP. PMID:26646664

  16. Interleukin-13 Inhibits Lipopolysaccharide-Induced BPIFA1 Expression in Nasal Epithelial Cells

    PubMed Central

    Chen, Hui-Chen; Hsu, Hui-Ying; Wu, Lii-Tzu; Chiang-Ni, Chuan; Chen, Chih-Jung; Wu, Tsu-Fang; Kao, Min-Chuan; Chen, Yu-An; Peng, Ming-Te; Tsai, Ming-Hsui; Chen, Chuan-Mu; Lai, Chih-Ho

    2015-01-01

    Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is expressed in human nasopharyngeal and respiratory epithelium and has demonstrated antimicrobial activity. SPLUNC1 is now referred to as bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1). Reduced BPIFA1 expression is associated with bacterial colonization in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Interleukin 13 (IL-13), predominately secreted by T helper 2 (TH2) cells, has been found to contribute to airway allergies and suppress BPIFA1 expression in nasal epithelial cells. However, the molecular mechanism of IL-13 perturbation of bacterial infection and BPIFA1 expression in host airways remains unclear. In this study, we found that lipopolysaccharide (LPS)-induced BPIFA1 expression in nasal epithelial cells was mediated through the JNK/c-Jun signaling pathway and AP-1 activation. We further demonstrated that IL-13 downregulated the LPS-induced activation of phosphorylated JNK and c-Jun, followed by attenuation of BPIFA1 expression. Moreover, the immunohistochemical analysis showed that IL-13 prominently suppressed BPIFA1 expression in eosinophilic CRSwNP patients with bacterial infection. Taken together, these results suggest that IL-13 plays a critical role in attenuation of bacteria-induced BPIFA1 expression that may result in eosinophilic CRSwNP. PMID:26646664

  17. Ilex kaushue and Its Bioactive Component 3,5-Dicaffeoylquinic Acid Protected Mice from Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Chen, Yu-Li; Hwang, Tsong-Long; Yu, Huang-Ping; Fang, Jia-You; Chong, Kowit Yu; Chang, Yao-Wen; Chen, Chun-Yu; Yang, Hsuan-Wu; Chang, Wen-Yi; Hsieh, Pei-Wen

    2016-01-01

    Acute lung injury (ALI) is a severe respiratory disease with high mortality rates worldwide. Recent reports suggest that human neutrophil elastase (HNE) plays a key role in the inflammatory response that is characteristic of ALI, which indicates that the development of HNE inhibitors could be an efficient treatment strategy. In the current study, an enzyme-based screening assay was used to identify effective HNE inhibitors from a number of traditional Chinese medicines (TCMs). Among them, a water extract of Ilex kaushue (IKWE) effectively inhibited HNE activity (IC50, 11.37 ± 1.59 μg/mL). Using bioactivity-guided fractionation, one new compound and 23 known compounds were identified. Compound 6 (identified as 3,5-dicaffeoylquinic acid; 3,5-DCQA) exerted the most potent and selective inhibitory effect on HNE activity (IC50, 1.86 ± 0.06 μM). In a cell-based assay, 3,5-DCQA not only directly reduced superoxide generation and elastase activity but also attenuated the Src family kinase (SRKs)/Vav signaling pathway in N-formyl-L-Met-L-Leu-L-Phe (fMLF)-stimulated human neutrophils. In an animal disease model, both 3,5-DCQA and standardized IKWE protected against lipopolysaccharide-induced ALI in mice, which provides support for their potential as candidates in the development of new therapeutic agents for neutrophilic inflammatory diseases. PMID:27681838

  18. Effects of tylosin, tilmicosin and tulathromycin on inflammatory mediators in bronchoalveolar lavage fluid of lipopolysaccharide-induced lung injury.

    PubMed

    Er, Ayse; Yazar, Enver

    2012-12-01

    The aim of this study was to determine the anti-inflammatory effects of macrolides through kinetic parameters in bronchoalveolar lavage fluid (BALF) of lipopolysaccharide-induced lung injury. Rats were divided into four groups: lipopolysaccharide (LPS), LPS + tylosin, LPS + tilmicosin and LPS + tulathromycin. BALF samples were collected at sampling times. TNF, IL-1β, IL-6, IL-10 and 13,14-dihydro-15-keto-prostaglandin F2α (PGM) and C-reactive protein (CRP) were analysed. Area under the curve (AUC) and maximum plasma concentration (Cmax) values of inflammatory mediators were determined by a pharmacokinetic computer programme. When inflammatory mediator concentrations were compared between the LPS group and other groups for each sampling time, the three macrolides had no pronounced depressor effect on cytokine levels, but they depressed PGM and CRP levels. In addition, tylosin and tilmicosin decreased the AUC0-24 level of TNF, while tilmicosin decreased the AUC0-24 level of IL-10. Tylosin and tulathromycin decreased the AUC0-24 of PGM, and all three macrolides decreased the AUC0-24 of CRP. Especially tylosin and tulathromycin may have more expressed anti-inflammatory effects than tilmicosin, via depressing the production of inflammatory mediators in the lung. The AUC may be used for determining the effects of drugs on inflammation. In this study, the antiinflammatory effects of these antibiotics were evaluated with kinetic parameters as a new and different approach.

  19. Bis(bibenzyls) from liverworts inhibit lipopolysaccharide-induced inducible NOS in RAW 264.7 cells: a study of structure-activity relationships and molecular mechanism.

    PubMed

    Harinantenaina, Liva; Quang, Dang Ngoc; Takeshi, Nishizawa; Hashimoto, Toshihiro; Kohchi, Chie; Soma, Gen-Ichiro; Asakawa, Yoshinori

    2005-12-01

    The inhibition of lipopolysaccharide-induced NOS by 19 bis(bibenzyls) isolated from liverworts in RAW 264.7 macrophages was evaluated. The presence of phenolic hydroxyls and saturation at 7,8 and/or 7'/8' are required for inhibition of NO production. Among the compounds tested, marchantin A was the most potent, and its inhibitory activity was consistent with the inhibition of LPS-induced iNOS mRNA.

  20. Astragalus mongholicus polysaccharide inhibits lipopolysaccharide-induced production of TNF-α and interleukin-8

    PubMed Central

    Yuan, Yuan; Sun, Mei; Li, Ke-Shen

    2009-01-01

    AIM: To explore the effect of Astragalus mongholicus polysaccharide (APS) on gene expression and mitogen-activated protein kinase (MAPK) transcriptional activity in intestinal epithelial cells (IEC). METHODS: IEC were divided into control group, lipopolysaccharide (LPS) group, LPS+ 50 μg/mL APS group, LPS+ 100 μg/mL APS group, LPS+ 200 μg/mL APS group, and LPS+ 500 μg/mL APS group. Levels of mRNAs in LPS-induced inflammatory factors, tumor necrosis factor (TNF)-α and interleukin (IL)-8, were measured by reverse transcription-polymerase chain reaction. MAPK protein level was measured by Western blotting. RESULTS: The levels of TNF-α and IL-8 mRNAs were significantly higher in IEC with LPS-induced damage than in control cells. APS significantly abrogated the LPS-induced expression of the TNF-α and IL-8 genes. APS did not block the activation of extracellular signal-regulated kinase or c Jun amino-terminal kinase, but inhibited the activation of p38, suggesting that APS inhibits LPS-induced production of TNF-α and IL-8 mRNAs, possibly by suppressing the p38 signaling pathway. CONCLUSION: APS-modulated bacterial product-mediated p38 signaling represents an attractive strategy for prevention and treatment of intestinal inflammation. PMID:19653348

  1. Chemical Profiles and Protective Effect of Hedyotis diffusa Willd in Lipopolysaccharide-Induced Renal Inflammation Mice

    PubMed Central

    Ye, Jian-Hong; Liu, Meng-Hua; Zhang, Xu-Lin; He, Jing-Yu

    2015-01-01

    Protective effect of Hedyotis diffusa (H. diffusa) Willd against lipopolysaccharide (LPS)-induced renal inflammation was evaluated by the productions of cytokines and chemokine, and the bioactive constituents of H. diffusa were detected by the ultra-fast liquid chromatography -diode array detector-quadrupole-time of flight mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) method. As the results showed, water extract of H. diffusa (equal to 5.0 g/kg body weight) obviously protected renal tissues, significantly suppressed the productions of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1, as well as significantly promoted the production of IL-10 in serum and renal tissues. According the chemical profiles of H. diffusa, flavonoids, iridoid glycosides and anthraquinones were greatly detected in serum from H. diffusa extract treatment mice. Two main chemotypes, including eight flavonoids and four iridoid glycosides were found in renal tissues from H. diffusa extract treatment mice. The results demonstrated that water extract of H. diffusa had protective effect on renal inflammation, which possibly resulted from the bioactive constituents consisting of flavonoids, iridoids and anthraquinones. PMID:26580602

  2. Viola yedoensis liposoluble fraction ameliorates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Li, Wen; Xie, Jun-Yun; Li, Hong; Zhang, Yun-Yi; Cao, Jie; Cheng, Zhi-Hong; Chen, Dao-Feng

    2012-01-01

    Viola yedoensis is a component of traditional Chinese herb medicine for inflammatory diseases. Chemical constituents of V. yedoensis have been shown to possess antibacterial, anti-HIV, and anticoagulant effects in experimental research; however, their anti-inflammatory properties remain to be demonstrated. In this study, a mouse model of lipopolysaccharide (LPS)-induced acute lung injury was used to investigate the effect of petroleum ether fraction of V. yedoensis (PEVY) on inflammation in vivo. After being shown to have anti-complementary activity in vitro, PEVY was orally administered to the mice at doses of 2, 4, and 8 mg/kg. Treatment with PEVY significantly decreased the wet-to-dry weight ratio of the lung, total cells, red blood cells, protein concentration, and myeloperoxidase activity in bronchoalveolar lavage fluid. PEVY markedly attenuated lung injury with improved lung morphology and reduced complement deposition. In addition, PEVY suppressed the expression of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6. Taken together, PEVY protects the lung from acute injury, potentially via inhibiting the activation of the complement system and excessive production of proinflammatory mediators.

  3. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway

    PubMed Central

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Tang, Jiajun; Huan, Jingning

    2016-01-01

    Gram-negative bacterial lipopolysaccharide (LPS) induces a pathologic increase in lung vascular leakage under septic conditions. LPS-induced human pulmonary micro-vascular endothelial cell (HPMEC) apoptosis launches and aggravates micro-vascular hyper-permeability and acute lung injury (ALI). Previous studies show that the activation of intrinsic apoptotic pathway is vital for LPS-induced EC apoptosis. Yes-associated protein (YAP) has been reported to positively regulate intrinsic apoptotic pathway in tumor cells apoptosis. However, the potential role of YAP protein in LPS-induced HPMEC apoptosis has not been determined. In this study, we found that LPS-induced activation and nuclear accumulation of YAP accelerated HPMECs apoptosis. LPS-induced YAP translocation from cytoplasm to nucleus by the increased phosphorylation on Y357 resulted in the interaction between YAP and transcription factor P73. Furthermore, inhibition of YAP by small interfering RNA (siRNA) not only suppressed the LPS-induced HPMEC apoptosis but also regulated P73-mediated up-regulation of BAX and down-regulation of BCL-2. Taken together, our results demonstrated that activation of the YAP/P73/(BAX and BCL-2)/caspase-3 signaling pathway played a critical role in LPS-induced HPMEC apoptosis. Inhibition of the YAP might be a potential therapeutic strategy for lung injury under sepsis. PMID:27807512

  4. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Cao, Rongfeng; Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Zhang, Naisheng

    2014-10-01

    Kaempferol isolated from the root of Zingiberaceae plants galangal and other Chinese herbal medicines have been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of kaempferol on lipopolysaccharide (LPS)-induced mastitis are unknown and their underlying molecular mechanisms remain to be explored. The aim of this study was to evaluate the effects of kaempferol on LPS-induced mouse mastitis. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Kaempferol was injected 1 h before and 12 h after induction of LPS intraperitoneally. The present results showed that kaempferol markedly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner, which were increased in LPS-induced mouse mastitis. Furthermore, kaempferol suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All results suggest that anti-inflammatory effects of kaempferol against the LPS-induced mastitis possibly through inhibition of the NF-κB signaling pathway. Kaempferol may be a potential therapeutic agent for mastitis.

  5. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses.

  6. Therapeutic Effect of the Tuber of Alisma orientale on Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Kwun, Min Jung; Choi, Jun-Yong; Ahn, Kyung-Seop; Oh, Sei-Ryang; Lee, Yong Gyu; Christman, John W.; Sadikot, Ruxana T.

    2013-01-01

    Although Alisma orientale, an ethnic herb, has been prescribed for treating various diseases in Asian traditional medicine, experimental evidence to support its therapeutic effects is lacking. Here, we sought to determine whether A. orientale has a therapeutic effect on acute lung injury (ALI). Ethanol extract of the tuber of A. orientale (EEAO) was prepared and fingerprinted by HPLC for its constituents. Mice received an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) for the induction of ALI. At 2 h after LPS treatment, mice received an intratracheal (i.t.) spraying of various amounts of EEAO to the lung. Bioluminescence imaging of transgenic NF-κB/luciferase reporter mice shows that i.t. EEAO posttreatment suppressed lung inflammation. In similar experiments with C57BL/6 mice, EEAO posttreatment significantly improved lung inflammation, as assessed by H&E staining of lung sections, counting of neutrophils in bronchoalveolar lavage fluid, and semiquantitative RT-PCR analyses of proinflammatory cytokines and Nrf2-dependent genes in the inflamed lungs. Furthermore, EEAO posttreatment enhanced the survival of mice that received a lethal dose of LPS. Together, our results provide evidence that A. orientale has a therapeutic effect on ALI induced by sepsis. PMID:23983806

  7. Effects of Citral on Lipopolysaccharide-Induced Inflammation in Human Umbilical Vein Endothelial Cells.

    PubMed

    Song, Yan; Zhao, Hongfeng; Liu, Jinyang; Fang, Chao; Miao, Renying

    2016-04-01

    Citral is an active compound of lemongrass oil which has been reported to have anti-inflammatory effects. In this study, we investigated the effects of citral on lipopolysaccharide (LPS)-induced inflammatory response in a rat model of peritonitis and human umbilical vein endothelial cells (HUVECs). LPS was intraperitoneally injected into rats to establish a peritonitis model. The HUVECs were treated with citral for 12 h before exposure to LPS. The levels of TNF-α and IL-8 were measured using ELISA. Western blotting was used to detect the expression of VCAM-1, ICAM-1, NF-κB, and PPAR-γ. The results showed that citral had a protective effect against LPS-induced peritonitis. Citral decreased the levels of WBCs and inflammatory cytokines TNF-α and IL-6. Citral also inhibited LPS-induced myeloperoxidase (MPO) activity in the peritoneal tissue. Treatment of HUVECs with citral significantly inhibited TNF-α and IL-8 expression induced by LPS. LPS-induced VCAM-1 and ICAM-1 expression were also suppressed by citral. Meanwhile, we found that citral inhibited LPS-induced NF-κB activation in HUVECs. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, citral inhibits LPS-induced inflammatory response via activating PPAR-γ which attenuates NF-κB activation and inflammatory mediator production. PMID:26658749

  8. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses. PMID:26590117

  9. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2. PMID:26276127

  10. Tristetraprolin mediates anti-inflammatory effects of carbon monoxide on lipopolysaccharide-induced acute lung injury.

    PubMed

    Joe, Yeonsoo; Kim, Seul-Ki; Chen, Yingqing; Yang, Jung Wook; Lee, Jeong-Hee; Cho, Gyeong Jae; Park, Jeong Woo; Chung, Hun Taeg

    2015-11-01

    Low-dose inhaled carbon monoxide is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which carbon monoxide confers protection against ALI is not clear. Tristetraprolin (TTP; official name ZFP36) exerts anti-inflammatory effects by enhancing decay of proinflammatory cytokine mRNAs. With the use of TTP knockout mice, we demonstrate here that the protection by carbon monoxide against LPS-induced ALI is mediated by TTP. Inhalation of carbon monoxide substantially increased the pulmonary expression of TTP. carbon monoxide markedly enhanced the decay of mRNA-encoding inflammatory cytokines, blocked the expression of inflammatory cytokines, and decreased tissue damage in LPS-treated lung tissue. Moreover, knockout of TTP abrogated the anti-inflammatory and tissue-protective effects of carbon monoxide in LPS-induced ALI. These results suggest that carbon monoxide-induced TTP mediates the protective effect of carbon monoxide against LPS-induced ALI by enhancing the decay of mRNA encoding proinflammatory cytokines.

  11. Anti-inflammatory/anti-amyloidogenic effects of plasmalogens in lipopolysaccharide-induced neuroinflammation in adult mice

    PubMed Central

    2012-01-01

    Background Neuroinflammation involves the activation of glial cells in neurodegenerative diseases such as Alzheimer’s disease (AD). Plasmalogens (Pls) are glycerophospholipids constituting cellular membranes and play significant roles in membrane fluidity and cellular processes such as vesicular fusion and signal transduction. Methods In this study the preventive effects of Pls on systemic lipopolysaccharide (LPS)-induced neuroinflammation were investigated using immunohistochemistry, real-time PCR methods and analysis of brain glycerophospholipid levels in adult mice. Results Intraperitoneal (i.p.) injections of LPS (250 μg/kg) for seven days resulted in increases in the number of Iba-1-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes in the prefrontal cortex (PFC) and hippocampus accompanied by the enhanced expression of IL-1β and TNF-α mRNAs. In addition, β-amyloid (Aβ3–16)-positive neurons appeared in the PFC and hippocampus of LPS-injected animals. The co-administration of Pls (i.p., 20 mg/kg) after daily LPS injections significantly attenuated both the activation of glial cells and the accumulation of Aβ proteins. Finally, the amount of Pls in the PFC and hippocampus decreased following the LPS injections and this reduction was suppressed by co-treatment with Pls. Conclusions These findings suggest that Pls have anti-neuroinflammatory and anti-amyloidogenic effects, thereby indicating the preventive or therapeutic application of Pls against AD. PMID:22889165

  12. Effects of Chamaecyparis formosensis Matasumura extractives on lipopolysaccharide-induced release of nitric oxide.

    PubMed

    Hsieh, Yu-Hsin; Kuo, Pei-Min; Chien, Shih-Chang; Shyur, Lie-Fen; Wang, Sheng-Yang

    2007-10-01

    Chamaecyparis formaosensis, commonly known as Taiwan red cypress, is native to Taiwan and grows at elevations of 1500-2150 m in Taiwan's central mountains. Many compounds have been identified from different pasts of C. formosensis, but up until now, little research has been done on the link between the constituents of C. formosensis and its bioactivities. In this study, we found that an ethyl acetate fraction (EA) of methonal extract of C. formosecsis, strongly inhibited LPS-mediated nitric oxide (NO) production in Raw 264.7 cells. The EA was further divided into 25 subfractions (EA1-EA25) by column chromatography. EA12 possessed the strongest NO production inhibition activity (IC(50) was 4.1 microg/mL). At a dosage of 20 microg/mL, EA12 completely inhibited NO production and the mRNA expression of inducible nitric oxide synthase (iNOS) in LPS-stimulated macrophage RAW264.7 cells. Bioactivity-guided chromatographic fractionation and metabolite profiling coupled with spectroscopic analyses, including (1)H-NMR, (13)C-NMR analyses, identified six compounds: vanillin (1), 4-hydroxybenzaldehyde (2), trans-hinokiresinol (3), taiwanin E (4), 4alpha-hydroxyeudesm- 11-en-12-al (5), savinin (6). All of these six compounds were the first identified and reported from this tree species. Compounds (1), (3) and (5) demonstrated significant NO inhibition effect through reduction of NO production in activated RAW 264.7 cells due to the suppression of iNOS gene expression: compounds that can selectively inhibit undesirable expression of iNOS are important as they may serve as potential cancer chemopreventatives. This study suggests that C. formosensis may have potential for use as a natural resource for human health care. PMID:17291735

  13. HSPA12B inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells

    PubMed Central

    Wu, Jun; Li, Xuehan; Huang, Lei; Jiang, Surong; Tu, Fei; Zhang, Xiaojin; Ma, He; Li, Rongrong; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian; Liu, Li

    2015-01-01

    Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein-HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound-healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT-qPCR and Western blot, respectively. The release of cytokines interleukin-6 and tumour necrosis factor-α was measured by ELISA. HSPA12B suppressed LPS-induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS-induced up-regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS-induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS-induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway. PMID:25545050

  14. Protective effect of linarin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Kim, Seok-Joo; Cho, Hong-Ik; Kim, So-Jin; Park, Jin-Hyun; Kim, Joon-Sung; Kim, Young Ho; Lee, Sang Kook; Kwak, Jong-Hwan; Lee, Sun-Mee

    2014-09-01

    Linarin was isolated from Chrysanthemum indicum L. Fulminant hepatic failure is a serious clinical syndrome that results in massive inflammation and hepatocyte death. Apoptosis is an important cellular pathological process in d-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver injury, and regulation of liver apoptosis might be an effective therapeutic method for fulminant hepatic failure. This study examined the cytoprotective mechanisms of linarin against GalN/LPS-induced hepatic failure. Mice were given an oral administration of linarin (12.5, 25 and 50mg/kg) 1h before receiving GalN (800 mg/kg)/LPS (40 μg/kg). Linarin treatment reversed the lethality induced by GalN/LPS. After 6h of GalN/LPS injection, the serum levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor (TNF)-α, interleukin-6 and interferon-γ were significantly elevated. GalN/LPS increased toll-like receptor 4 and interleukin-1 receptor-associated kinase protein expression. These increases were attenuated by linarin. Linarin attenuated the increased expression of Fas-associated death domain and caspase-8 induced by GalN/LPS, reduced the cytosolic release of cytochrome c and caspase-3 cleavage induced by GalN/LPS, and reduced the pro-apoptotic Bim phosphorylation induced by GalN/LPS. However, linarin increased the level of anti-apoptotic Bcl-xL and phosphorylation of STAT3. Our results suggest that linarin alleviates GalN/LPS-induced liver injury by suppressing TNF-α-mediated apoptotic pathways.

  15. Paricalcitol attenuates lipopolysaccharide-induced myocardial inflammation by regulating the NF-κB signaling pathway

    PubMed Central

    LEE, AE SIN; JUNG, YU JIN; THANH, TÙNG NGUYỄN; LEE, SIK; KIM, WON; KANG, KYUNG PYO; PARK, SUNG KWANG

    2016-01-01

    Vitamin D deficiency is associated with an increased risk of cardiovascular disease, diabetes, colon and breast cancer, infectious diseases and allergies. Vascular alterations are an important pathophysiological mechanism of sepsis. Experimental data suggest that paricalcitol, a vitamin D2 analogue, exerts beneficial effects on renal inflammation and fibrosis. In the present study, we aimed to investigate the effects of paricalcitol on lipopolysaccharide (LPS)-induced myocardial inflammation and to elucidate the underlying mechanisms. We used primary cultured human umbilical vein endothelial cells for in vitro experiments, in which stimulation with tumor necrosis factor (TNF)-α was used to induce endothelial cell inflammation. For in vivo experiments, myocardial inflammation was induced by an intraperitoneal injection of 15 mg/kg LPS into C57BL6 mice pre-treated with or without 0.2 µg/kg paricalcitol. Treatment with paricalcitol suppressed the TNF-α-induced increase in the protein expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and fractalkine in endothelial cells. Treatment with paricalcitol also decreased the TNF-α-induced nuclear factor (NF)-κB binding activity. In a mouse model of LPS-induced myocardial inflammation, pre-treatment with paricalcitol prevented the LPS-induced increase in the expression of myocardial ICAM-1, phosphorylated p65 and myocardial TNF-α. Pre-treatment with paricalcitol also alleviated endotoxemia-induced microvascular leakage in the myocardium. The findings of our study suggest that paricalcitol exerts a protective effect against LPS-induced myocardial inflammation by regulating the expression of cell adhesion molecules and TNF-α, and by improving myocardial permeability. PMID:26954764

  16. Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes

    PubMed Central

    Grosse, Susann; Stenvik, Jørgen; Nilsen, Asbjørn M

    2016-01-01

    Co-stimulation of the immune system to more than one agent concomitantly is very common in real life, and considering the increasing use of engineered nanoparticles and nanomaterials, it is highly relevant to assess the ability of these materials to modulate key innate immune responses, which has not yet been studied in detail. We investigated the immunomodulatory effects of 10 nm and 30 nm iron oxide nanoparticles (IONPs) on primary human monocytes in the presence and absence of Toll-like receptor 4 agonist lipopolysaccharide (LPS). Prior to the cell studies, we characterized the physicochemical properties of the nanoparticles in cell culture medium and ensured that the nanoparticles were free from biological contamination. Cellular uptake of the IONPs in monocytes was assessed using transmission electron microscopy. Using enzyme-linked immunosorbent assay, we found that the IONPs per se did not induce the production of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, the IONPs had the ability to suppress LPS-induced nuclear factor kappa B activation and production of proinflammatory cytokines in primary human monocytes in an LPS and a particle dose-dependent manner. Using confocal microscopy and fluorescently labeled LPS, we showed that the effects correlated with impaired LPS internalization by monocytes in the presence of IONPs, which could be partly explained by LPS adsorption onto the nanoparticle surface. Additionally, the results from particle pretreatment experiments indicate that other cellular mechanisms might also play a role in the observed effects, which warrants further studies to elucidate the additional mechanisms underlying the capacity of IONPs to alter the reactivity of monocytes to LPS and to mount an appropriate cellular response. PMID:27695322

  17. Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes

    PubMed Central

    Grosse, Susann; Stenvik, Jørgen; Nilsen, Asbjørn M

    2016-01-01

    Co-stimulation of the immune system to more than one agent concomitantly is very common in real life, and considering the increasing use of engineered nanoparticles and nanomaterials, it is highly relevant to assess the ability of these materials to modulate key innate immune responses, which has not yet been studied in detail. We investigated the immunomodulatory effects of 10 nm and 30 nm iron oxide nanoparticles (IONPs) on primary human monocytes in the presence and absence of Toll-like receptor 4 agonist lipopolysaccharide (LPS). Prior to the cell studies, we characterized the physicochemical properties of the nanoparticles in cell culture medium and ensured that the nanoparticles were free from biological contamination. Cellular uptake of the IONPs in monocytes was assessed using transmission electron microscopy. Using enzyme-linked immunosorbent assay, we found that the IONPs per se did not induce the production of proinflammatory cytokines tumor necrosis factor-α, interleukin-6, and interleukin-1β. However, the IONPs had the ability to suppress LPS-induced nuclear factor kappa B activation and production of proinflammatory cytokines in primary human monocytes in an LPS and a particle dose-dependent manner. Using confocal microscopy and fluorescently labeled LPS, we showed that the effects correlated with impaired LPS internalization by monocytes in the presence of IONPs, which could be partly explained by LPS adsorption onto the nanoparticle surface. Additionally, the results from particle pretreatment experiments indicate that other cellular mechanisms might also play a role in the observed effects, which warrants further studies to elucidate the additional mechanisms underlying the capacity of IONPs to alter the reactivity of monocytes to LPS and to mount an appropriate cellular response.

  18. Paricalcitol attenuates lipopolysaccharide-induced myocardial inflammation by regulating the NF-κB signaling pathway.

    PubMed

    Lee, Ae Sin; Jung, Yu Jin; Thanh, Tùng Nguyễn; Lee, Sik; Kim, Won; Kang, Kyung Pyo; Park, Sung Kwang

    2016-04-01

    Vitamin D deficiency is associated with an increased risk of cardiovascular disease, diabetes, colon and breast cancer, infectious diseases and allergies. Vascular alterations are an important pathophysiological mechanism of sepsis. Experimental data suggest that paricalcitol, a vitamin D2 analogue, exerts beneficial effects on renal inflammation and fibrosis. In the present study, we aimed to investigate the effects of paricalcitol on lipopolysaccharide (LPS)-induced myocardial inflammation and to elucidate the underlying mechanisms. We used primary cultured human umbilical vein endothelial cells for in vitro experiments, in which stimulation with tumor necrosis factor (TNF)-α was used to induce endothelial cell inflammation. For in vivo experiments, myocardial inflammation was induced by an intraperitoneal injection of 15 mg/kg LPS into C57BL6 mice pre-treated with or without 0.2 µg/kg paricalcitol. Treatment with paricalcitol suppressed the TNF-α-induced increase in the protein expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and fractalkine in endothelial cells. Treatment with paricalcitol also decreased the TNF-α-induced nuclear factor (NF)-κB binding activity. In a mouse model of LPS-induced myocardial inflammation, pre-treatment with paricalcitol prevented the LPS-induced increase in the expression of myocardial ICAM-1, phosphorylated p65 and myocardial TNF-α. Pre-treatment with paricalcitol also alleviated endotoxemia‑induced microvascular leakage in the myocardium. The findings of our study suggest that paricalcitol exerts a protective effect against LPS-induced myocardial inflammation by regulating the expression of cell adhesion molecules and TNF-α, and by improving myocardial permeability. PMID:26954764

  19. Maternal molecular hydrogen treatment attenuates lipopolysaccharide-induced rat fetal lung injury.

    PubMed

    Hattori, Y; Kotani, T; Tsuda, H; Mano, Y; Tu, L; Li, H; Hirako, S; Ushida, T; Imai, K; Nakano, T; Sato, Y; Miki, R; Sumigama, S; Iwase, A; Toyokuni, S; Kikkawa, F

    2015-01-01

    Maternal inflammation is associated with spontaneous preterm birth and respiratory impairment among premature infants. Recently, molecular hydrogen (H2) has been reported to have a suppressive effect on oxidative stress and inflammation. The aim of this study was to evaluate the effects of H2 on fetal lung injury caused by maternal inflammation. Cell viability and the production of interleukin-6 (IL-6) and reactive oxygen species (ROS) were examined by treatment with lipopolysaccharide (LPS) contained in ordinal or H2-rich medium (HM) using a human lung epithelial cell line, A549. Pregnant Sprague Dawley rats were divided into three groups: Control, LPS, and HW + LPS groups. Rats were injected with phosphate-buffered saline (Control) or LPS intraperitoneally (LPS) on gestational day 19 and provided H2 water (HW) ad libitum for 24 h before LPS injection (HW + LPS). Fetal lung samples were collected on day 20, and the levels of apoptosis, oxidative damage, IL-6, and vascular endothelial growth factor (VEGF) were evaluated using immunohistochemistry. The number of apoptotic cells, and levels of ROS and IL-6 were significantly increased by LPS treatment, and repressed following cultured with HM in A549 cells. In the rat models, the population positive for cleaved caspase-3, 8-hydroxy-2'-deoxyguanosine, IL-6, and VEGF was significantly increased in the LPS group compared with that observed in the Control group and significantly decreased in the HW + LPS group. In this study, LPS administration induced apoptosis and oxidative damage in fetal lung cells that was ameliorated by maternal H2 intake. Antenatal H2 administration may decrease the pulmonary mobility associated with inflammation in premature infants.

  20. Rice hull smoke extract protects mice against a Salmonella lipopolysaccharide-induced endotoxemia.

    PubMed

    Kim, Sung Phil; Nam, Seok Hyun; Friedman, Mendel

    2014-08-01

    Endotoxemia (sepsis, septic shock) is an inflammatory, virulent disease that results mainly from infection by Gram-negative bacteria. The present study investigates the inhibitory effects of a rice hull smoke extract (RHSE) against murine endotoxemia induced by Salmonella lipopolysaccharide and d-galactosamine (LPS/GalN). Pretreatment of the mice with RHSE via dietary administration for 2 weeks resulted in the suppression (in %) of LPS/GalN-induced catalase by 70.7, superoxide dismutase (SOD) by 54.6, and transaminase (GOT/GPT) liver enzymes by 40.6/62.5, the amelioration of necrotic liver lesions, and the reduction of tumor necrosis factor-α (TNF-α) by 61.1 and nitrite serum level by 83.4, as well as myeloperoxidase (MPO) enzyme associated with necrotic injury of the lung and kidney by 65.7 and 63.3, respectively. The RHSE also extended the lifespan of the toxemic mice. The results using inflammation biomarkers and from the lifespan studies suggest that the RHSE can protect mice against LPS/GalN-induced liver, lung, and kidney injuries and inflammation by blocking oxidative stress and TNF-α production, thereby increasing the survival of the toxic-shock-induced mice. These beneficial effects and previous studies on the antimicrobial effects against Salmonella Typhimurium in culture and in mice suggest that the smoke extract also has the potential to serve as a new multifunctional resource in human food and animal feeds. Possible mechanisms of the beneficial effects at the cellular and molecular levels and suggested food uses are discussed. PMID:25068861

  1. In vivo anti-inflammatory action of eugenol on lipopolysaccharide-induced lung injury.

    PubMed

    Magalhães, Clarissa B; Riva, Douglas R; DePaula, Leonardo J; Brando-Lima, Aline; Koatz, Vera Lúcia G; Leal-Cardoso, José Henrique; Zin, Walter A; Faffe, Débora S

    2010-04-01

    Eugenol, a methoxyphenol component of clove oil, suppresses cyclooxygenase-2 expression, while eugenol dimers prevent nuclear factor-kappaB (NF-kappaB) activation and inflammatory cytokine expression in lipopolysaccharide-stimulated macrophages. Our aim was to examine the in vivo anti-inflammatory effects of eugenol. BALB/c mice were divided into four groups. Mice received saline [0.05 ml intratracheally (it), control (Ctrl) and eugenol (Eug) groups] or Escherichia coli LPS (10 microg it, LPS and LPSEug groups). After 6 h, mice received saline (0.2 ml ip, Ctrl and LPS groups) or eugenol (160 mg/kg ip, Eug and LPSEug groups). Twenty-four hours after LPS injection, pulmonary resistive (DeltaP1) and viscoelastic (DeltaP2) pressures, static elastance (E(st)), and viscoelastic component of elastance (DeltaE) were measured. Lungs were prepared for histology. In parallel mice, bronchoalveolar lavage fluid was collected 24 h after LPS injection. TNF-alpha was determined by ELISA. Lung tissue expression of NF-kappaB was determined by EMSA. DeltaP1, DeltaP2, E(st), and DeltaE were significantly higher in the LPS group than in the other groups. LPS mice also showed significantly more alveolar collapse, collagen fibers, and neutrophil influx and higher TNF-alpha levels and NF-kappaB expression than the other groups. Eugenol treatment reduced LPS-induced lung inflammation, improving lung function. Our results suggest that eugenol exhibits in vivo anti-inflammatory action in LPS-induced lung injury.

  2. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-01-01

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury. PMID:26691774

  3. β-Glucan modulates the lipopolysaccharide-induced innate immune response in rat mammary epithelial cells.

    PubMed

    Zhu, Wei; Ma, Haitian; Miao, Jinfeng; Huang, Guoqing; Tong, Mingqing; Zou, Sixiang

    2013-02-01

    Mastitis, caused by mammary pathogenic bacteria which are frequent implications of Escherichia coli, is an important disease affecting women and dairy animals worldwide. The β-glucan binding of dectin-1 can induce its own intracellular signaling and can mediate a variety of cellular responses. This work was to investigate the effect of β-glucan on the lipopolysaccharide (LPS)-induced inflammatory response and related innate immune signaling in primary rat mammary epithelial cells. Cells were treated with serum-free medium added with a DMSO solution containing β-glucans at concentrations of 0, 1, 5, 25 μmol/L for 12h, and then exposed to 10 μg/mL LPS for 40 min. Moreover, cells were pretreated with BAY 11-7082 to inhibit NF-κB and then successively exposed to 5 μmol/L β-glucan, 10 μg/mL LPS, 5 μmol/L β-glucan and 10 μg/mL LPS, according to the specific experimental design. Normal control cultures contained an equal volume of DMSO, which was collected at the same time. After incubating rat mammary epithelial cells for 40 min with 10 μg/mL LPS, TLR4, MyD88 and NF-κB expression all increased (P<0.05), as did the secretion of TNF-α and IL-1β (P<0.05), but IκB and β-casein expression both decreased (P<0.05). Treatment with different concentrations of β-glucan for 12h activated Dectin1/Syk, which subsequently suppressed TLR4, MyD88 and NF-κB expression and TNF-α and IL-1β secretion. However, it restored the IκB and β-casein expression that had been induced by the 40 min incubation with 10 μg/mL LPS. Pretreatment with BAY 11-7082 at 10 µmol/L for 2h partially prevented NF-κB induction by LPS, but the presence of β-glucan prevented this inactivation. BAY 11-7082 could not simultaneously inhibit LPS induction of TLR4, MyD88 and β-glucan activation of Dectin1/Syk in rat mammary epithelial cells. These findings demonstrated that β-glucan activation of Dectin1/Syk attenuated LPS induction of TLR4/MyD88/NF-κB and inhibited the LPS

  4. Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior

    PubMed Central

    Townsend, Brigitte E.; Chen, Yung-Ju; Jeffery, Elizabeth H.; Johnson, Rodney W.

    2015-01-01

    Aging is associated with oxidative stress and heightened inflammatory response to infection. Dietary interventions to reduce these changes are therefore desirable. Broccoli contains glucoraphanin, which is converted to sulforaphane (SFN) by plant myrosinase during cooking preparation or digestion. SFN increases antioxidant enzymes including NAD(P)H quinone oxidoreductase (NQO1) and heme oxygenase I (HMOX1) and inhibits inflammatory cytokines. We hypothesized that dietary broccoli would support an antioxidant response in brain and periphery of aged mice and inhibit lipopolysaccharide-induced inflammation and sickness. Young adult and aged mice were fed control or 10% broccoli diet for 28 days prior to an intraperitoneal LPS injection. Social interactions were assessed 2, 4, 8, and 24 h following LPS, and mRNA quantified in liver and brain at 24 h. Dietary broccoli did not ameliorate LPS-induced decrease in social interactions in young or aged mice. Interleukin (IL)-1β expression was unaffected by broccoli consumption but was induced by LPS in brain and liver of adult and aged mice. Additionally, IL-1β was elevated in brain of aged mice without LPS. Broccoli consumption decreased age-elevated cytochrome b-245 β, an oxidative stress marker, and reduced glial activation markers in aged mice. Collectively, these data suggest that 10% broccoli diet provides a modest reduction in age-related oxidative stress and glial reactivity, but is insufficient to inhibit LPS-induced inflammation. Thus, it is likely that SFN would need to be provided in supplement form to control the inflammatory response to LPS. PMID:25439028

  5. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide - induced depression like behavior in rats

    PubMed Central

    Hosseini, Mahmoud; Zakeri, Samaneh; Khoshdast, Sadieh; Yousefian, Fatemeh T.; Rastegar, Monireh; Vafaee, Farzaneh; Kahdouee, Shamsi; Ghorbani, Fatemeh; Rakhshandeh, Hassan; Kazemi, S. Abolfazl

    2012-01-01

    Background: Neuroimmune factors have been proposed as contributors to the pathogenesis of depression. Beside other therapeutic effects including neuroprotective, antioxidant, anticonvulsant and analgesic effects, Nigella sativa and its main ingredient, thymoquinone (TQ), have been shown to have anti-inflammatory effects. In the present study, the effects of Nigella sativa hydro-alcoholic extract and thymoquinone was investigated on lipopolysaccharide- induced depression like behavior in rats. Materials and Methods: 50 male Wistar rats were divided into 5 groups: Group 1 (control group) received saline instead of NS extract, thymoquinone or lipopolysaccharide. The animals in group 2 (lipopolysaccharide (LPS)) were treated by saline instead of NS extract and were injected LPS (100μg/kg, ip) 2 hours before conducting each forced swimming test. Groups 3 (LPS + NS 200) and 4 (LPS + NS 400) were treated by 200 and 400 mg/kg of NS (ip), respectively, from the day before starting the experiments and before each forced swimming test. These animals were also injected LPS 2hours before conducting each swimming test. The animals in group 5 received TQ instead of NS extract. Forced swimming test was performed 3 times for all groups (in alternative days), and immobility time was recorded. Finally, the animals were placed in an open- field apparatus, and the crossing number on peripheral and central areas was observed. Results: The immobility time in the LPS group was higher than that in the control group in all 3 times (P<0.001). The animals in LPS + NS 200, LPS + NS 400 and LPS + TQ had lower immobility times in comparison with LPS groups (P<0.01, and P<0.01). In the open- field test, the crossing number of peripheral in the LPS group was higher than that of the control one (P<0.01) while the animals of LPS + NS 200, LPS + NS 400 and LPS + TQ groups had lower crossing number of peripheral compared with the LPS group (P <0.05, and P<0.001). Furthermore, in the LPS group, the

  6. Lipopolysaccharide-induced carotid body inflammation in cats: functional manifestations, histopathology and involvement of tumour necrosis factor-alpha.

    PubMed

    Fernández, Ricardo; González, Sergio; Rey, Sergio; Cortés, Paula P; Maisey, Kevin R; Reyes, Edison-Pablo; Larraín, Carolina; Zapata, Patricio

    2008-07-01

    In the absence of information on functional manifestations of carotid body (CB) inflammation, we studied an experimental model in which lipopolysaccharide (LPS) administration to pentobarbitone-anaesthetized cats was performed by topical application upon the CB surface or by intravenous infusion (endotoxaemia). The latter caused: (i) disorganization of CB glomoids, increased connective tissue, and rapid recruitment of polymorphonuclear cells into the vascular bed and parenchyma within 4 h; (ii) increased respiratory frequency and diminished ventilatory chemoreflex responses to brief hypoxia (breathing 100% N(2) for 10 s) and diminished ventilatory chemosensory drive (assessed by 100% O(2) tests) during normoxia and hypoxia; (iii) tachycardia, increased haematocrit and systemic hypotension in response to LPS i.v.; and (iv) increased basal frequency of carotid chemosensory discharges during normoxia, but no change in maximal chemoreceptor responses to brief hypoxic exposures. Lipopolysaccharide-induced tachypnoea was prevented by prior bilateral carotid neurotomy. Apoptosis was not observed in CBs from cats subjected to endotoxaemia. Searching for pro-inflammatory mediators, tumour necrosis factor-alpha (TNF-alpha) was localized by immunohistochemistry in glomus and endothelial cells; reverse transcriptase-polymerase chain reaction revealed that the CB expresses the mRNAs for both type-1 (TNF-R1) and type-2 TNF-alpha receptors (TNF-R2); Western blot confirmed a band of the size expected for TNF-R1; and histochemistry showed the presence of TNF-R1 in glomus cells and of TNF-R2 in endothelial cells. Experiments in vitro showed that the frequency of carotid nerve discharges recorded from CBs perfused and superfused under normoxic conditions was not significantly modified by TNF-alpha, but that the enhanced frequency of chemosensory discharges recorded along responses to hypoxic stimulation was transiently diminished in a dose-dependent manner by TNF-alpha injections

  7. Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis.

    PubMed

    Tominari, Tsukasa; Hirata, Michiko; Matsumoto, Chiho; Inada, Masaki; Miyaura, Chisato

    2012-01-01

    Nobiletin, a polymethoxy flavonoid (PMF), inhibits systemic bone resorption and maintains bone mass in estrogen-deficient ovariectomized mice. This study examined the anti-inflammatory effects of PMFs, nobiletin, and tangeretin on lipopolysaccharide (LPS)-induced bone resorption. Nobiletin and tangeretin suppressed LPS-induced osteoclast formation and bone resorption and suppressed the receptor activator of NFκB ligand-induced osteoclastogenesis in RAW264.7 macrophages. Nobiletin clearly restored the alveolar bone mass in a mouse experimental model for periodontitis by inhibiting LPS-induced bone resorption. PMFs may therefore provide a new therapeutic approach for periodontal bone loss.

  8. Amomum tsao-ko fruit extract suppresses lipopolysaccharide-induced inducible nitric oxide synthase by inducing heme oxygenase-1 in macrophages and in septic mice.

    PubMed

    Shin, Ji-Sun; Ryu, Suran; Jang, Dae Sik; Cho, Young-Wuk; Chung, Eun Kyung; Lee, Kyung-Tae

    2015-12-01

    Amomum tsao-ko Crevost et Lemarié (Zingiberaceae) has traditionally been used to treat inflammatory and infectious diseases, such as throat infections, malaria, abdominal pain and diarrhoea. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms of the methanol extract of A. tsao-ko (AOM) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in a murine model of sepsis. In LPS-induced RAW 264.7 macrophages, AOM reduced the production of nitric oxide (NO) by inhibiting inducible nitric oxide synthase (iNOS) expression, and increased heme oxygenase-1 (HO-1) expression at the protein and mRNA levels. Pretreatment with SnPP (a selective inhibitor of HO-1) and silencing HO-1 using siRNA prevented the AOM-mediated inhibition of NO production and iNOS expression. Furthermore, AOM increased the expression and nuclear accumulation of NF-E2-related factor 2 (Nrf2), which enhanced Nrf2 binding to antioxidant response element (ARE). In addition, AOM induced the phosphorylation of extracellular regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and generated reactive oxygen species (ROS). Furthermore, pretreatment with N-acetyl-l-cysteine (NAC; a ROS scavenger) diminished the AOM-induced phosphorylation of ERK and JNK and AOM-induced HO-1 expression, suggesting that ERK and JNK are downstream mediators of ROS during the AOM-induced signalling of HO-1 expression. In LPS-induced endotoxaemic mice, pretreatment with AOM reduced NO serum levels and liver iNOS expression and increased HO-1 expression and survival rates. These results indicate that AOM strongly inhibits LPS-induced NO production by activating the ROS/MAPKs/Nrf2-mediated HO-1 signalling pathway, and supports its pharmacological effects on inflammatory diseases.

  9. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte.

    PubMed

    Li, Yuting; Zhao, Lei; Fu, Huiqun; Wu, Yan; Wang, Tianlong

    2015-03-20

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases.

  10. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.

  11. Ulinastatin suppresses lipopolysaccharide induced neuro-inflammation through the downregulation of nuclear factor-κB in SD rat hippocampal astrocyte

    SciTech Connect

    Li, Yuting; Zhao, Lei; Fu, Huiqun; Wu, Yan; Wang, Tianlong

    2015-03-20

    Astrocyte activation plays a pivotal role in neuroinflammation, which contributes to neuronal damage, so the inhibition of astrocyte activation may alleviate the progression of neurodegeneration. Recent studies have proved that urinary trypsin inhibitor ulinastatin could inhibit NF-kB activation. In our study, the inhibitory effects of ulinastatin on the production of pro-inflammatory mediators were investigated in lipopolysaccharide (LPS)-reduced primary astrocyte. Our results showed that ulinastatin significantly inhibited LPS-induced astrogliosis, which is measured by MTT and BrdU. Ulinastatin decreased the production of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β, it significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and also increased the protein levels of IκB-α binded to NF-κB, which blocked NF-κB translocation to the nucleus and prevented its activity. Our results suggest that ulinastatin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The study provides direct evidence of potential therapy methods of ulinastatin for the treatment of neuroinflammatory diseases. - Highlights: • The anti-inflammatory effect of UTI on hippocampal astrocyte. • UTI showed protective effect on neuroinflammation by the downregulation of NF-κB. • UTI led to expression of cytokines decreased in concentration and time dependence.

  12. 5-Methoxyl Aesculetin Abrogates Lipopolysaccharide-Induced Inflammation by Suppressing MAPK and AP-1 Pathways in RAW 264.7 Cells

    PubMed Central

    Wu, Lei; Li, Xueqin; Wu, Haifeng; Long, Wei; Jiang, Xiaojian; Shen, Ting; Qiang, Qian; Si, Chuanling; Wang, Xinfeng; Jiang, Yunyao; Hu, Weicheng

    2016-01-01

    For the first time, a pale amorphous coumarin derivative, 5-methoxyl aesculetin (MOA), was isolated from the dried bark of Fraxinus rhynchophylla Hance (Oleaceae). MOA modulates cytokine expression in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, but the precise mechanisms are still not fully understood. We determined the effects of MOA on the production of inflammatory mediators and pro-inflammatory cytokines in the LPS-induced inflammatory responses of RAW 264.7 macrophages. MOA significantly inhibited the LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6, and interleukin-1β. It also effectively attenuated inducible nitric oxide (NO) synthase, cyclooxygenase-2, and TNF-α mRNA expression and significantly decreased the levels of intracellular reactive oxygen species. It inhibited phosphorylation of the extracellular signal-regulated kinase (ERK1/2), thus blocking nuclear translocation of activation protein (AP)-1. In a molecular docking study, MOA was shown to target the binding site of ERK via the formation of three hydrogen bonds with two residues of the kinase, which is sufficient for the inhibition of ERK. These results suggest that the anti-inflammatory effects of MOA in RAW 264.7 macrophages derive from its ability to block both the activation of mitogen-activated protein kinases (MAPKs) and one of their downstream transcription factors, activator protein-1 (AP-1). Our observations support the need for further research into MOA as a promising therapeutic agent in inflammatory diseases. PMID:26938526

  13. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Gao, Ruifeng; Cao, Yongguo; Guo, Mengyao; Wei, Zhengkai; Zhou, Ershun; Li, Yimeng; Yao, Minjun; Yang, Zhengtao; Zhang, Naisheng

    2014-05-01

    Curcumin, the main constituent of the spice turmeric, has been reported to have potent anti-inflammatory properties. However, the effect of curcumin on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The aim of this study was to investigate whether curcumin could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of the mammary gland. Curcumin was applied 1h before and 12h after LPS treatment. The results showed that curcumin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that curcumin inhibited the phosphorylation of IκB-α and NF-κB p65 and the expression of TLR4. These results indicated that curcumin has protective effect on mice mastitis and the anti-inflammatory mechanism of curcumin on LPS-induced mastitis in mice may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Curcumin may be a potential therapeutic agent against mastitis.

  14. Astragalin suppresses inflammatory responses via down-regulation of NF-κB signaling pathway in lipopolysaccharide-induced mastitis in a murine model.

    PubMed

    Li, Fengyang; Liang, Dejie; Yang, Zhengtao; Wang, Tiancheng; Wang, Wei; Song, Xiaojing; Guo, Mengyao; Zhou, Ershun; Li, Depeng; Cao, Yongguo; Zhang, Naisheng

    2013-10-01

    Mastitis is a prevalent and economic disease around the world and defined as infection and inflammation of the mammary gland. Astragalin, a bioactive component isolated from persimmon or Rosa agrestis, has been reported to have anti-inflammatory properties. To investigate the potential therapeutic effect of astragalin in mastitis, a murine model of mastitis was induced by administration of LPS in mammary gland. Astragalin was applied 1h before and 12h after LPS treatment. The results showed that astragalin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO) and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that astragalin efficiently blunt decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα and the nuclear translocation of p65. These results suggested that astragalin exerts anti-inflammatory properties in LPS-mediated mastitis, possibly through inhibiting inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. Astragalin may be a potential therapeutic agent against mastitis.

  15. Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling.

    PubMed

    Zhang, Wen-zhou; Jiang, Zheng-kui; He, Bao-xia; Liu, Xian-ben

    2015-08-01

    Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling. PMID:25616905

  16. Gardenia jasminoides extracts and gallic acid inhibit lipopolysaccharide-induced inflammation by suppression of JNK2/1 signaling pathways in BV-2 cells

    PubMed Central

    Lin, Wen-Hung; Kuo, Heng-Hung; Ho, Li-Hsing; Tseng, Ming-Lang; Siao, An-Ci; Hung, Chang-Tsen; Jeng, Kee-Ching; Hou, Chien-Wei

    2015-01-01

    Objective(s): Gardenia jasminoides Ellis (GJ, Cape Jasmine Fruit, Zhi Zi) has been traditionally used for the treatment of infectious hepatitis, aphthous ulcer, and trauma; however, the direct evidence is lacking. Materials and Methods: We investigated the effect of the GJ extract (GJ) and gallic acid (GA) on lipopolysaccharide (LPS) induced inflammation of BV-2 microglial cells and acute liver injury in Sprague-Dawley (SD) rats. Results: Our results showed that the GJ extract and GA reduced LPS-induced nitric oxide (NO), interleukin (IL)-1, IL-6, reactive oxygen species (ROS), and prostaglandin (PGE2) production in BV-2 cells. The GJ extract and GA significantly decreased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in LPS-treated rats. Furthermore, the water extract, but not the ethanol extract, of the GJ dose-dependently inhibited LPS-induced JNK2/1 and slightly p38 mitogen-activated protein kinases (MAPK), and cyclooxygenase-2 (COX-2) expression in BV-2 cells. Conclusion: Taken together, these results indicate that the protective mechanism of the GJ extract involves an antioxidant effect and inhibition of JNK2/1 MAP kinase and COX-2 expressions in LPS-induced inflammation of BV-2 cells. PMID:26221479

  17. 1,5-Anhydro-D-fructose attenuates lipopolysaccharide-induced cytokine release via suppression of NF-{kappa}B p65 phosphorylation

    SciTech Connect

    Meng Xiaojie; Kawahara, Ko-ichi; Nawa, Yuko; Miura, Naoki; Shrestha, Binita; Tancharoen, Salunya; Sameshima, Hisayo; Hashiguchi, Teruto; Maruyama, Ikuro

    2009-03-06

    Lipopolysaccharide (LPS) stimulates macrophages by activating NF-{kappa}B, which contributes to the release of tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6. 1,5-anhydro-D-fructose (1,5-AF), a monosaccharide formed from starch and glycogen, exhibits anti-oxidant activity and enhances insulin secretion. This study examined the effects of 1,5-AF on LPS-induced inflammatory reactions and elucidated its molecular mechanisms. Before LPS challenge, mice were pretreated with 1,5-AF (38.5 mg/kg). We found that 1,5-AF pretreatment attenuated cytokine release into the serum, including TNF-{alpha}, IL-6 and macrophage chemoattractant protein (MCP)-1. Furthermore, pretreatment with 1,5-AF (500 {mu}g/ml) attenuated cytokine release, and 1,5-AF directly inhibited the nuclear translocalization of the NF-{kappa}B p65 subunit in LPS-stimulated murine macrophage-like RAW264.7 cells. This inhibition was responsible for decreased LPS-induced phosphorylation on Ser536 of the NF-{kappa}B p65 subunit, which is a posttranslational modification involved in the non-canonical pathway. Collectively, these findings indicate that the anti-inflammatory activity of 1,5-AF occurs via inactivation of NF-{kappa}B.

  18. Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-kappaB activation in murine peritoneal macrophages.

    PubMed

    Huh, Jung-Eun; Yim, Joung-Han; Lee, Hong-Kum; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2007-12-15

    Prodigiosin was isolated from marine bacteria Hahella chejuensis which has been recently discovered from Marado, Cheju Island, Republic of Korea. Immunosuppressive properties have been reported for prodigiosin members such as undecylprodigiosin, metacycloprodigiosin, prodigiosin and its synthetic analogue PNU156804 (PNU). However, the effect of this agent on macrophage function has not been characterized in detail. In the present study, we examined the effects of prodigiosin on the production of inflammatory cytokines and nitric oxide (NO) in lipopolysaccharide (LPS)-activated murine macrophage. When thioglycollate-elicited macrophages pre-exposed to prodigiosin (1-100 ng/ml) were stimulated with LPS, pretreatment with prodigiosin resulted in the inhibition of NO production and inducible nitric oxide synthase (iNOS) protein and mRNA expression in a concentration-dependent manner. In contrast, the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) and IL-6 was not altered. Inhibition of iNOS protein expression appears to be at the transcriptional level, since prodigiosin decreased LPS-induced NF-kappaB activity through preventing the degradation of IkBalpha, with significant inhibition achieved following pretreatment with prodigiosin. However, prodigiosin did not exert any effect on AP-1 activity. Prodigiosin blocked phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase (JNK), but not that of extracellular signal-regulated kinase 1/2 (ERK 1/2). These results indicate that the inhibition of these signaling molecules expression was correlated with the reduced production of NO in macrophages. Taken together, the present data suggest that prodigiosin reduces NO production and iNOS expression by inhibiting LPS-triggered p38 MAPK and JNK phosphorylation and NF-kappaB activation, thereby implicating a mechanism by which prodigiosin may exert its immunosuppressive effects.

  19. Engeletin Alleviates Lipopolysaccharide-Induced Endometritis in Mice by Inhibiting TLR4-mediated NF-κB Activation.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Li, Chengye; Qiu, Changwei; Deng, Ganzhen

    2016-08-10

    Engeletin (dihydrokaempferol 3-rhamnoside) is a flavanonol glycoside. It can be found in the skin of white grapes and white wine and is widely distributed in southeast Asia, and the leaves are used in a tea. Here, we explored the impact of engeletin against the inflammatory reaction in a lipopolysaccharide (LPS)-induced endometritis mouse model. Engeletin treatment significantly attenuated uterus damage and decreased myeloperoxidase activity. ELISA and qPCR assays showed that engeletin dose-dependently suppressed the expression of TNF-α, IL-1β, and IL-6. Molecular studies also demonstrated that the levels of iNOS, COX-2, and TLR4, along with their downstream molecules MyD88, IRAK1, TRAF6, and TAK1, were also suppressed by engeletin. In addition, engeletin treatment inhibited NF-κB signaling-pathway activation. Moreover, immunofluorescence analysis demonstrated that engeletin suppressed NF-κB-p65 nuclear translocation. These data indicated the protective action of engeletin against LPS-stimulated endometritis in mice via negative regulation of pro-inflammatory mediators via the TLR4-regulated NF-κB pathway. PMID:27411287

  20. Protective Effect of Brown Alga Phlorotannins against Hyper-inflammatory Responses in Lipopolysaccharide-Induced Sepsis Models.

    PubMed

    Yang, Yeong-In; Woo, Jeong-Hwa; Seo, Yun-Ji; Lee, Kyung-Tae; Lim, Yunsook; Choi, Jung-Hye

    2016-01-27

    Brown algae have been recognized as a food ingredient and health food supplement in Japan and Korea, and phlorotannins are unique marine phenol compounds produced exclusively by brown algae. Sepsis is a whole-body inflammatory condition with a mortality rate of 30-40%. Here, we investigated the effects of a phlorotannin-rich extract of the edible brown alga Ecklonia cava against hyper-inflammatory response in LPS-induced septic shock mouse model. E. cava extract significantly increased the survival rate and attenuated liver and kidney damage in the mice. In addition, E. cava attenuated serum levels of NO, PGE2, and HMGB-1. In macrophages, treatment with E. cava extract down-regulated iNOS, COX-2, TNF-α, IL-6, and HMGB-1. In addition, E. cava suppressed the NIK/TAK1/IKK/IκB/NFκB pathway. Moreover, E. cava increased Nrf2 and HO-1 expression. HO-1 knockdown using siRNA restored the extract-suppressed NO and PGE2 production. Dieckol, a major compound in the extract, reduced mortality, tissue toxicity, and serum levels of the inflammatory factors in septic mice. These data suggest that brown algae phlorotannins suppress septic shock through negative regulation of pro-inflammatory factors via the NIK/TAK1/IKK/IκB/NFκB and Nrf2/HO-1 pathways.

  1. Amelioration of Acute Kidney Injury in Lipopolysaccharide-Induced Systemic Inflammatory Response Syndrome by an Aldose Reductase Inhibitor, Fidarestat

    PubMed Central

    Takahashi, Kazunori; Mizukami, Hiroki; Kamata, Kosuke; Inaba, Wataru; Kato, Noriaki; Hibi, Chihiro; Yagihashi, Soroku

    2012-01-01

    Background Systemic inflammatory response syndrome is a fatal disease because of multiple organ failure. Acute kidney injury is a serious complication of systemic inflammatory response syndrome and its genesis is still unclear posing a difficulty for an effective treatment. Aldose reductase (AR) inhibitor is recently found to suppress lipopolysaccharide (LPS)-induced cardiac failure and its lethality. We studied the effects of AR inhibitor on LPS-induced acute kidney injury and its mechanism. Methods Mice were injected with LPS and the effects of AR inhibitor (Fidarestat 32 mg/kg) before or after LPS injection were examined for the mortality, severity of renal failure and kidney pathology. Serum concentrations of cytokines (interleukin-1β, interleukin-6, monocyte chemotactic protein-1 and tumor necrosis factor-α) and their mRNA expressions in the lung, liver, spleen and kidney were measured. We also evaluated polyol metabolites in the kidney. Results Mortality rate within 72 hours was significantly less in LPS-injected mice treated with AR inhibitor both before (29%) and after LPS injection (40%) than untreated mice (90%). LPS-injected mice showed marked increases in blood urea nitrogen, creatinine and cytokines, and AR inhibitor treatment suppressed the changes. LPS-induced acute kidney injury was associated with vacuolar degeneration and apoptosis of renal tubular cells as well as infiltration of neutrophils and macrophages. With improvement of such pathological findings, AR inhibitor treatment suppressed the elevation of cytokine mRNA levels in multiple organs and renal sorbitol accumulation. Conclusion AR inhibitor treatment ameliorated LPS-induced acute kidney injury, resulting in the lowered mortality. PMID:22253906

  2. Results from in vitro and ex vivo skin aging models assessing the antiglycation and anti-elastase MMP-12 potential of glycylglycine oleamide

    PubMed Central

    Bogdanowicz, Patrick; Haure, Marie-José; Ceruti, Isabelle; Bessou-Touya, Sandrine; Castex-Rizzi, Nathalie

    2016-01-01

    Background Glycation is an aging reaction of naturally occurring sugars with dermal proteins. Type I collagen and elastin are most affected by glycation during intrinsic chronological aging. Aim To study the in vitro and ex vivo assays in human skin cells and explants and the antiaging effects of glycylglycine oleamide (GGO). Materials and methods The antiglycation effect of GGO was assessed in a noncellular in vitro study on collagen and, ex vivo, by immunohistochemical staining on human skin explants (elastin network glycation). The ability of GGO to contract fibroblasts was assessed in a functional assay, and its anti-elastase (MMP-12) activity was compared to that of oleic acid alone, glycylglycine (GG) alone, and oleic acid associated with GG. Results In vitro, GGO reduced the glycation of type I collagen. Ex vivo, GGO restored the expression of fibrillin-1 inhibited by glycation. Furthermore, GGO induced a tissue retraction of almost 30%. Moreover, the MMP-12 activity was inhibited by up to 60%. Conclusion Under the present in vitro and ex vivo conditions, GGO prevents glycation of the major structural proteins of the dermis, helping to reduce the risk of rigidification. By maintaining the elastic function of the skin, GGO may be a promising sparring partner for other topical antiaging agents. PMID:27382322

  3. Inhibitory effects of Chikusetsusaponin IVa on lipopolysaccharide-induced pro-inflammatory responses in THP-1 cells.

    PubMed

    Wang, H; Qi, J; Li, L; Wu, T; Wang, Y; Wang, X; Ning, Q

    2015-09-01

    This study investigated anti-inflammatory effects and possible mechanisms of Chikusetsusaponin IVa (Chi IVa), one of the main bioactive components in saponins from Panacis japonica (SPJ), which is used in traditional Tujia and Hmong Chinese medicine. To this end, changes in the inflammatory profiles of lipopolysacchride (LPS)-stimulated phrobol 12-myristate 13-acetate(PMA)-differented THP-1 macrophages were evaluated following Chi IVa treatment. The results showed that Chi IVa markedly decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) at both the mRNA and protein level, which proved to be dose-dependent. Further studies revealed that Chi IVa strongly suppressed NF-κB activation and downregulated the phosphorylation of ERK, p38, and JNK. Our present study demonstrates that Chi IVa suppresses the production of iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated THP-1 cells likely by inhibiting NF-κB activation and ERK, JNK, and p38 signal pathway phosphorylation.

  4. PKC412 (CGP41251) modulates the proliferation and lipopolysaccharide-induced inflammatory responses of RAW 264.7 macrophages

    SciTech Connect

    Miyatake, Katsutoshi; Inoue, Hiroshi . E-mail: hinoue@genome.tokushima-u.ac.jp; Hashimoto, Kahoko; Takaku, Hiroshi; Takata, Yoichiro; Nakano, Shunji; Yasui, Natsuo; Itakura, Mitsuo

    2007-08-17

    PKC412 (CGP41251) is a multitarget protein kinase inhibitor with anti-tumor activities. Here, we investigated the effects of PKC412 on macrophages. PKC412 inhibited the proliferation of murine RAW 264.7 macrophages through induction of G2/M cell cycle arrest and apoptosis. At non-toxic drug concentrations, PKC412 significantly suppressed the lipopolysaccharide (LPS)-induced release of TNF-{alpha} and nitric oxide, while instead enhancing IL-6 secretion. PKC412 attenuated LPS-induced phosphorylations of MKK4 and JNK, as well as AP-1 DNA binding activities. Furthermore, PKC412 suppressed LPS-induced Akt and GSK-3{beta} phosphorylations. These results suggest that the anti-proliferative and immunomodulatory effects of PKC412 are, at least in part, mediated through its interference with the MKK4/JNK/AP-1 and/or Akt/GSK-3{beta} pathways. Since macrophages contribute significantly to the development of both acute and chronic inflammation, PKC412 may have therapeutic potential and applications in treating inflammatory and/or autoimmune diseases.

  5. Protection against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice.

    PubMed

    Chauhan, S D; Seggara, G; Vo, P A; Macallister, R J; Hobbs, A J; Ahluwalia, A

    2003-04-01

    Endothelial dysfunction is a characteristic of, and may be pathogenic in, inflammatory cardiovascular diseases, including sepsis. The mechanism underlying inflammation-induced endothelial dysfunction may be related to the expression and activity of inducible nitric oxide synthase (iNOS). This possibility was investigated in isolated resistance (mesenteric) and conduit (aorta) arteries taken from lipopolysaccharide (LPS)-treated (12.5 mg/kg i.v.) or saline-treated iNOS knockout (KO) and wild-type (WT) mice. LPS pretreatment (for 15 h, but not 4 h) profoundly suppressed responses to acetylcholine (ACh) and significantly reduced sensitivity to the NO donor spermine-NONOate (SPER-NO) in aorta and mesenteric arteries of WT mice. This effect was temporally associated with iNOS protein expression in both conduit and resistance arteries and with a 10-fold increase in plasma NOx levels. In contrast, no elevation of plasma NOx was observed in LPS-treated iNOS KO animals, and arteries dissected from these animals did not express iNOS or display hyporeactivity to ACh or SPER-NO. The mechanism underlying this phenomenon may be suppression of eNOS expression, as observed in arteries of WT animals, that was absent in arteries of iNOS KO animals. These results clearly demonstrate that iNOS induction plays an integral role in mediation of the endothelial dysfunction associated with sepsis in both resistance and conduit arteries.

  6. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory.

    PubMed

    Yoshida, Keisuke; Maekawa, Toshio; Zhu, Yujuan; Renard-Guillet, Claire; Chatton, Bruno; Inoue, Kentaro; Uchiyama, Takeru; Ishibashi, Ken-ichi; Yamada, Takuji; Ohno, Naohito; Shirahige, Katsuhiko; Okada-Hatakeyama, Mariko; Ishii, Shunsuke

    2015-10-01

    Immunological memory is thought to be mediated exclusively by lymphocytes. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection, which suggests the presence of innate immunological memory. Here we identified an important role for the stress-response transcription factor ATF7 in innate immunological memory. ATF7 suppressed a group of genes encoding factors involved in innate immunity in macrophages by recruiting the histone H3K9 dimethyltransferase G9a. Treatment with lipopolysaccharide, which mimics bacterial infection, induced phosphorylation of ATF7 via the kinase p38, which led to the release of ATF7 from chromatin and a decrease in repressive histone H3K9me2 marks. A partially disrupted chromatin structure and increased basal expression of target genes were maintained for long periods, which enhanced resistance to pathogens. ATF7 might therefore be important in controlling memory in cells of the innate immune system.

  7. Tyrosol ameliorates lipopolysaccharide-induced ocular inflammation in rats via inhibition of nuclear factor (NF)-κB activation

    PubMed Central

    SATO, Kazuaki; MIHARA, Yuko; KANAI, Kazutaka; YAMASHITA, Yohei; KIMURA, Yuya; ITOH, Naoyuki

    2016-01-01

    We evaluated the anti-inflammatory effect of tyrosol (Tyr) on endotoxin-induced uveitis (EIU) in rats. EIU was induced in male Lewis rats by subcutaneous injection of lipopolysaccharide (LPS). Tyr (10, 50 or 100 mg/kg) was intravenously injected 2 hr before, simultaneously and 2 hr after LPS injection. The aqueous humor (AqH) was collected 24 hr after LPS injection; the infiltrating cell number, protein concentration, and tumor necrosis factor (TNF)-α, prostaglandin (PG)-E2 and nitric oxide (NO) levels were determined. Histopathologic examination and immunohistochemical studies for nuclear factor (NF)-κB, inhibitor of κB (IκB)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in the iris–ciliary body (ICB) were performed at 3 or 24 hr after LPS injection. To further clarify the anti-inflammatory effects, RAW264.7 macrophages were stimulated with LPS in the presence or absence of Tyr. Tyr reduced, in a dose-dependent manner, the infiltrating cell number, protein concentration, and TNF-α, PGE2 and NO levels in AqH and improved histopathologic scores of EIU. Tyr also inhibited LPS-induced COX-2 and iNOS expression, IκB-α degradation and nuclear translocation of activated NF-κB in ICB. Tyr significantly suppressed inflammatory mediator production in the culture medium and COX-2 and iNOS expression and activated NF-κB translocation in LPS-stimulated RAW264.7 cells. These results suggest that Tyr suppresses ocular inflammation of EIU by inhibiting NF-κB activation and subsequent proinflammatory mediator production. PMID:27238160

  8. Auraptene in the Peels of Citrus kawachiensis (Kawachi Bankan) Ameliorates Lipopolysaccharide-Induced Inflammation in the Mouse Brain

    PubMed Central

    Okuyama, Satoshi; Yamamoto, Kana; Mori, Hirotomo; Toyoda, Nobuki; Yoshimura, Morio; Amakura, Yoshiaki; Sugawara, Kuniaki; Sudo, Masahiko; Nakajima, Mitsunari

    2014-01-01

    Examination of the dried peel powder of Citrus kawachiensis, one of the citrus products of Ehime, Japan, showed that it contained naringin (NGIN; 44.02 ± 0.491 mg/g), narirutin (NRTN; 4.46 ± 0.0563 mg/g), auraptene (AUR; 4.07 ± 0.033 mg/g), and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF; 0.27 ± 0.0039 mg/g). When this dried peel powder was orally preadministered at the dose of 1.2 or 2.4 g/kg/day for 7 days into lipopolysaccharide- (LPS-) injected mice, an animal model of systemic inflammation, it suppressed (1) LPS-induced loss of body weight and abnormal behavior in the open field, (2) LPS-induced activation of microglia and astrocytes in the hippocampus, and (3) LPS-induced expression of cyclooxygenase (COX)-2, which were coexpressed in astrocytes of these mice. When NGIN or AUR was preadministered to LPS-injected mice at an amount similar to that in the peel powder, AUR, but not NGIN, had the ability to suppress the LPS-induced inflammation in the brain of these model mice. The dried powder of flavedo tissue (the outer colored layer of the mesocarp of a citrus fruit) and juice, which contained sufficient amounts of AUR, also had anti-inflammatory effect. These results suggest that AUR was the main ingredient responsible for the anti-inflammatory property of the dried peels of C. kawachiensis. PMID:24955102

  9. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    PubMed Central

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  10. Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo.

    PubMed

    Hong, Yong-Han; Chao, Wen-Wan; Chen, Miaw-Ling; Lin, Bi-Fong

    2009-01-01

    This study aimed to investigate if food components that exert anti-inflammatory effects may be used for inflammatory disorders by examining alfalfa sprout ethyl acetate extract (ASEA). The cytokine profile and life span of BALB/c mice with acute inflammation after intra-peritoneal (ip) injection of 15 mg/kg BW lipopolysaccharide (LPS) were determined. The results showed that the life span of LPS-induced inflammatory mice were negatively correlated with serum levels of TNF-alpha, IL-6, and IL-1beta at 9 hr after LPS-injection, which indicated that suppressing these cytokines in the late phase of inflammation may be beneficial for survival. The in vitro experiment then showed that ASEA significantly reduced IL-6 and IL-1beta production and the NF-kappaB trans-activation activity of mitogen-stimulated RAW264.7 cells. To further evaluate the anti-inflammatory effects of ASEA in vivo, BALB/c mice were tube-fed with 25 mg ASEA/kg BW/day in 50 microl sunflower oil, while the control and PDTC (pyrrolidine dithiocarbamate, an anti-inflammatory agent) groups were tube-fed with 50 microl sunflower oil/day only. After one week of tube-feeding, the PDTC group was injected with 50 mg/kg BW PDTC and one hour later, all of the mice were injected with 15 mg/kg BW LPS. The results showed that the ASEA and PDTC groups had significantly lower serum TNF-alpha, IL-6, and IL-1beta levels at 9 hr after LPS challenge, and significantly higher survival rates than the control group. This study suggests that ASEA supplementation can suppress the production of pro-inflammatory cytokines and alleviate acute inflammatory hazards. PMID:19594948

  11. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    PubMed Central

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  12. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways

    PubMed Central

    Doyle, Alexander; Zhang, Guohua; Abdel Fattah, Elmoataz A.; Eissa, N. Tony; Li, Yi-Ping

    2011-01-01

    Cachectic muscle wasting is a frequent complication of many inflammatory conditions, due primarily to excessive muscle catabolism. However, the pathogenesis and intervention strategies against it remain to be established. Here, we tested the hypothesis that Toll-like receptor 4 (TLR4) is a master regulator of inflammatory muscle catabolism. We demonstrate that TLR4 activation by lipopolysaccharide (LPS) induces C2C12 myotube atrophy via up-regulating autophagosome formation and the expression of ubiquitin ligase atrogin-1/MAFbx and MuRF1. TLR4-mediated activation of p38 MAPK is necessary and sufficient for the up-regulation of atrogin1/MAFbx and autophagosomes, resulting in myotube atrophy. Similarly, LPS up-regulates muscle autophagosome formation and ubiquitin ligase expression in mice. Importantly, autophagy inhibitor 3-methyladenine completely abolishes LPS-induced muscle proteolysis, while proteasome inhibitor lactacystin partially blocks it. Furthermore, TLR4 knockout or p38 MAPK inhibition abolishes LPS-induced muscle proteolysis. Thus, TLR4 mediates LPS-induced muscle catabolism via coordinate activation of the ubiquitin-proteasome and the autophagy-lysosomal pathways.—Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., Li, Y.-P. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. PMID:20826541

  13. Cellular antioxidant activity of phenylaminoethyl selenides as monitored by chemiluminescence of peroxalate nanoparticles and by reduction of lipopolysaccharide-induced oxidative stress.

    PubMed

    Cowan, Elizabeth A; Taylor, Jennifer L; Oldham, Charlie D; Dasari, Madhuri; Doyle, Donald; Murthy, Niren; May, Sheldon W

    2013-12-10

    Hydrogen peroxide (H2O2), produced in living cells by oxidases and by other biochemical reactions, plays an important role in cellular processes such as signaling and cell cycle progression. Nevertheless, H2O2 and other reactive oxygen species are capable of inducing damage to DNA and other cellular components, and oxidative stress caused by overproduction of cellular oxidants has been linked to pathologies such as inflammatory diseases and cancer. Therefore, new approaches for reducing the accumulation of cellular oxidants are of considerable interest from both a biotechnological and a therapeutic perspective. Recognizing that selenium is an essential component of the active sites of several antioxidant enzymes, we have developed a family of novel phenylaminoethyl selenide compounds that are readily taken up into cells and have low toxicity in vivo. We now report chemiluminescent imaging of hydrogen peroxide consumption by phenylaminoethyl selenides, via the use of peroxalate nanoparticle methodology. Further, we demonstrate the ability of phenylaminoethyl selenides to decrease lipopolysaccharide-induced oxidative stress in human embryonic kidney cells. We also report the successful encapsulation of a phenylaminoethyl selenide within poly(lactide-co-glycolide) nanoparticles, and we show that these selenide-loaded nanoparticles exhibit antioxidant activity in cells. Taken together, these results significantly enhance the attractiveness of phenylaminoethyl selenides as potential agents for supplementing cellular defenses against reactive oxygen species. PMID:24315639

  14. Characteristics and expression patterns of the lipopolysaccharide-induced TNF-α factor (LITAF) gene family in the Pacific oyster, Crassostrea gigas.

    PubMed

    Yu, Feng; Zhang, Yang; Yu, Ziniu

    2012-10-01

    Lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) is a novel transcription factor responsible for lipopolysaccharide (LPS)-induced transcription of tumor necrosis factor-alpha. Here, we identified and characterized five new LITAF genes in a mollusk, Crassostrea gigas. The complete cDNA sequences of these newly-cloned CgLITAFs each contain one small ORF encoding putative proteins ranging from 67 to 132 amino acids in length. Each CgLITAF, except LITAF2, includes a conserved domain with two motifs, (H)XCXXC and CXXC; LITAF2 lacks the N-terminal CXXC motif. Phylogenetic analysis shows that the six CgLITAFs members (including a previously reported one) cluster into two different mollusk LITAF branches, implying an ancient origin of two LITAF genes that later diversified. CgLITAF members show distinct gene expression patterns with higher expression in digestive gland, gill, and mantle. Except for LITAF4 and LITAF6, CgLITAF expressions can be induced selectively and to various degrees by different Pathogen-Associated Molecular Patterns (PAMPs). Our results strongly demonstrated that the CgLITAF gene family has diversified in function such that each gene plays a distinct and non-redundant role in host defense of C. gigas.

  15. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus. PMID:26259694

  16. Inhibitory effects of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide-induced inflammatory responses in RAW264 macrophages.

    PubMed

    Yasuda, Michiko; Kawabata, Kyuichi; Miyashita, Miki; Okumura, Mayu; Yamamoto, Norio; Takahashi, Masakazu; Ashida, Hitoshi; Ohigashi, Hajime

    2014-01-15

    The Japanese herb, Ashitaba (Angelica keiskei Koidzumi), contains two prenylated chalcones, 4-hydroxyderricin and xanthoangelol, which are considered to be the major active compounds of Ashitaba. However, their effects on inflammatory responses are poorly understood. In the present study, we investigated the effects and underlying molecular mechanisms of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264 mouse macrophages. LPS-mediated production of nitric oxide (NO) was markedly reduced by 4-hydroxyderricin (10 μM) and xanthoangelol (5 μM) compared with their parent compound, chalcone (25 μM). They also inhibited LPS-induced secretion of tumor necrosis factor-alpha (TNF-α) and expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Although chalcone decreased the DNA-binding activity of both activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB), 4-hydroxyderricin and xanthoangelol suppressed only AP-1 and had no effect on NF-κB. On the other hand, all of the tested chalcones reduced the phosphorylation (at serine 536) level of the p65 subunit of NF-κB. 4-Hydroxyderricin and xanthoangelol may be promising for the prevention of inflammatory diseases.

  17. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway.

    PubMed

    Qiu, Jiaming; Yu, Lijun; Zhang, Xingxing; Wu, Qianchao; Wang, Di; Wang, Xiuzhi; Xia, Cheng; Feng, Haihua

    2015-05-01

    Asiaticoside (AS), a triterpene glycoside isolated from Centella asiatica, has been shown to possess potent anti-inflammatory activity. However, the detailed molecular mechanisms of AS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in mice are scanty. The purpose of this study was to evaluate the effect of AS on LPS-induced mouse ALI via down-regulation of NF-κB signaling pathway. We investigated the efficacy of AS on cytokine levels induced by LPS in bronchoalveolar lavage fluid (BALF) and RAW 264.7 cells. The production of cytokine (TNF-α and IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). The lung wet-to-dry weight ratios were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. To further study the mechanism of AS protective effects on ALI, the activation of NF-κB p65 subunit and the degradation of IκBα were tested by western blot assay. We found that AS treatment at 15, 30 or 45mg/kg dose-dependently attenuated LPS-induced pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, our results suggested that AS suppressed inflammatory responses in LPS-induced ALI through inhibition of the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα, and might be a new preventive agent of ALI in the clinical setting.

  18. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages.

    PubMed

    Fan, Yumei; Zhang, Jie; Cai, Linlin; Wang, Shengnan; Liu, Caizhi; Zhang, Yongze; You, Linhao; Fu, Yujian; Shi, Zhenhua; Yin, Zhimin; Luo, Lan; Chang, Yanzhong; Duan, Xianglin

    2014-11-01

    Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.

  19. Acute nicotine treatment attenuates lipopolysaccharide-induced cognitive dysfunction by increasing BDNF expression and inhibiting neuroinflammation in the rat hippocampus.

    PubMed

    Wei, Penghui; Liu, Qingshen; Li, Dong; Zheng, Qiang; Zhou, Jinfeng; Li, Jianjun

    2015-09-14

    Although nicotine has been shown to improve cognitive function in various studies, the mechanisms underlying acute nicotine treatment-induced neuroprotection remain incompletely understood. In this study, we evaluated the effect of acute nicotine treatment on the cognitive impairment induced by lipopolysaccharide (LPS) and explored the underlying mechanism. We found that acute nicotine injection markedly attenuated LPS-elicited cognitive deficits and suppressed the strong LPS-induced release of IL-1β, IL-6, and TNF-α into serum and the dorsal hippocampus at 4 and 24h after LPS injection. Western blot analysis indicated a clear increase in the levels of cleaved caspase-3 in LPS-treated animals but not in nicotine- or saline-treated animals. Furthermore, nicotine administration led to a significant increase in BDNF mRNA expression at 4 and 24h and in BDNF protein expression at 24h after LPS injection in the dorsal hippocampus. Taken together, acute nicotine administration attenuated LPS-induced cognitive dysfunction, and this neuroprotective effect may be related to the up-regulation of BDNF and the inhibition of neuroinflammation and apoptosis-related proteins in the dorsal hippocampus.

  20. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts.

    PubMed

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. PMID:27515000

  1. Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner.

    PubMed

    Munhoz, Carolina Demarchi; Sorrells, Shawn F; Caso, Javier R; Scavone, Cristoforo; Sapolsky, Robert M

    2010-10-13

    Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-κB (nuclear factor κB), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/SAPK (c-Jun N-terminal protein kinase/stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-κB, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/2, p38, SAPK/JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

  2. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    PubMed

    Feng, Guang; Jiang, Ze-yu; Sun, Bo; Fu, Jie; Li, Tian-zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  3. Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood-brain barrier in endothelial cells via AMPK activation

    PubMed Central

    2016-01-01

    Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. The blood-brain barrier (BBB), formed by specialized brain endothelial cells that are interconnected by tight junctions, strictly regulates paracellular permeability to maintain an optimal extracellular environment for brain homeostasis. The aim of this study was to elucidate the effects of resveratrol and the role of AMPK in BBB dysfunction induced by lipopolysaccharide (LPS). Exposure of human brain microvascular endothelial cells (HBMECs) to LPS (1 µg/ml) for 4 to 24 hours week dramatically increased the permeability of the BBB in parallel with lowered expression levels of occluding and claudin-5, which are essential to maintain tight junctions in HBMECs. In addition, LPS significantly increased the reactive oxygen species (ROS) productions. All effects induced by LPS in HBVMCs were reversed by adenoviral overexpression of superoxide dismutase, inhibition of NAD(P) H oxidase by apocynin or gain-function of AMPK by adenoviral overexpression of constitutively active mutant (AMPK-CA) or by resveratrol. Finally, upregulation of AMPK by either AMPK-CA or resveratrol abolished the levels of LPS-enhanced NAD(P)H oxidase subunits protein expressions. We conclude that AMPK activation by resveratrol improves the integrity of the BBB disrupted by LPS through suppressing the induction of NAD(P)H oxidase-derived ROS in HBMECs. PMID:27382348

  4. Hepatoprotective effect of germanium-containing Spirulina in rats with (D)-galactosamine- and lipopolysaccharide-induced hepatitis.

    PubMed

    Yoshinari, Orie; Shiojima, Yoshiaki; Igarashi, Kiharu

    2014-01-14

    In the present study, the protective effects of dietary Spirulina (SP) and germanium-containing Spirulina (GeSP) were compared in rats with liver injury induced by an intraperitoneal injection of d-galactosamine and lipopolysaccharide (GalN/LPS). Wistar rats were fed one of the following diets: the basal diet (GalN/LPS-CON group; n 6), the basal diet supplemented with 5 % SP or GeSP (GalN/LPS-SP and GalN/LPS-GeSP group, respectively; n 7 each). After administering these diets for 7 d, each rat was intraperitoneally injected with GalN/LPS. Increases in plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were suppressed in the GalN/LPS-GeSP group (GalN/LPS-CON v. GalN/LPS-GeSP: ALT 1052 (sem 187) v. 509 (sem 88) IU/l and AST 2183 (sem 368) v. 1170 (sem 196) IU/l) following the injection of GalN/LPS. Plasma levels of interferon-γ (IFN-γ) and TNF-α in GeSP-fed rats were significantly lower when compared with those in the GalN/LPS-CON group (GalN/LPS-CON v. GalN/LPS-GeSP: IFN-γ 142·8 (sem 17·5) v. 66·8 (sem 9·7) pg/ml and TNF-α 72·3 (sem 15·4) v. 31·2 (sem 6·8) pg/ml). However, the decrease in these levels observed in the GalN/LPS-SP group was not as prominent as those observed in the GalN/LPS-GeSP group. Furthermore, the increase in liver catalase (CAT) and glutathione peroxidase (GPx) activities, as well as the level of oxidised glutathione (GSSG), was more suppressed in GeSP-fed rats (GalN/LPS-CON v. GalN/LPS-GeSP: CAT 457 (sem 47) v. 262 (sem 54) U/mg liver protein; GPx 1·30 (sem 0·11) v. 0·53 (sem 0·09) U/mg liver protein; GSSG 2·18 (sem 0·33) v. 1·31 (sem 0·24) mmol/kg liver) after the injection of GalN/LPS. These changes were more pronounced in the GalN/LPS-GeSP group than in the GalN/LPS-SP group. These results suggest that GeSP could afford a significant protective effect in the alleviation of GalN/LPS-induced hepatic damage. In addition, the results indicate that GeSP is more effective than SP. PMID

  5. Hepatoprotective effect of germanium-containing Spirulina in rats with (D)-galactosamine- and lipopolysaccharide-induced hepatitis.

    PubMed

    Yoshinari, Orie; Shiojima, Yoshiaki; Igarashi, Kiharu

    2014-01-14

    In the present study, the protective effects of dietary Spirulina (SP) and germanium-containing Spirulina (GeSP) were compared in rats with liver injury induced by an intraperitoneal injection of d-galactosamine and lipopolysaccharide (GalN/LPS). Wistar rats were fed one of the following diets: the basal diet (GalN/LPS-CON group; n 6), the basal diet supplemented with 5 % SP or GeSP (GalN/LPS-SP and GalN/LPS-GeSP group, respectively; n 7 each). After administering these diets for 7 d, each rat was intraperitoneally injected with GalN/LPS. Increases in plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were suppressed in the GalN/LPS-GeSP group (GalN/LPS-CON v. GalN/LPS-GeSP: ALT 1052 (sem 187) v. 509 (sem 88) IU/l and AST 2183 (sem 368) v. 1170 (sem 196) IU/l) following the injection of GalN/LPS. Plasma levels of interferon-γ (IFN-γ) and TNF-α in GeSP-fed rats were significantly lower when compared with those in the GalN/LPS-CON group (GalN/LPS-CON v. GalN/LPS-GeSP: IFN-γ 142·8 (sem 17·5) v. 66·8 (sem 9·7) pg/ml and TNF-α 72·3 (sem 15·4) v. 31·2 (sem 6·8) pg/ml). However, the decrease in these levels observed in the GalN/LPS-SP group was not as prominent as those observed in the GalN/LPS-GeSP group. Furthermore, the increase in liver catalase (CAT) and glutathione peroxidase (GPx) activities, as well as the level of oxidised glutathione (GSSG), was more suppressed in GeSP-fed rats (GalN/LPS-CON v. GalN/LPS-GeSP: CAT 457 (sem 47) v. 262 (sem 54) U/mg liver protein; GPx 1·30 (sem 0·11) v. 0·53 (sem 0·09) U/mg liver protein; GSSG 2·18 (sem 0·33) v. 1·31 (sem 0·24) mmol/kg liver) after the injection of GalN/LPS. These changes were more pronounced in the GalN/LPS-GeSP group than in the GalN/LPS-SP group. These results suggest that GeSP could afford a significant protective effect in the alleviation of GalN/LPS-induced hepatic damage. In addition, the results indicate that GeSP is more effective than SP.

  6. SOCS1 hypermethylation mediated by DNMT1 is associated with lipopolysaccharide-induced inflammatory cytokines in macrophages.

    PubMed

    Cheng, Chang; Huang, Cheng; Ma, Tao-Tao; Bian, Er-Bao; He, Yong; Zhang, Lei; Li, Jun

    2014-03-21

    Macrophages activation which releases the pro-inflammatory cytokines is an essential event in the process of inflammation. SOCS1 has been shown to act as a negative regulator of cytokine signals and plays a key role in the suppression of tissue injury and inflammatory diseases. DNA methylation mediated by specific DNA methyltransferases1 (DNMT1) which contributes to the epigenetic silencing of multiple genes. SOCS1 promoter hypermethylation is by far the best categorized epigenetic change in tumors. Our study with a view to investigate whether the loss of SOCS1 due to SOCS1 promoter methylation was involved in the course of inflammatory cytokines released from lipopolysaccharide (LPS)-stimulated macrophages. Here, we found that treatment of LPS-induced RAW264.7 macrophage cells with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC) reduced aberrant promoter hypermethylation of SOCS1 and prevented the loss of the expression of SOCS1 in macrophages which secret inflammatory cytokines. Knockdown of DNMT1 gene not only attenuated the SOCS1 gene promoter methylation but also up-regulated the expression of SOCS1 in activated RAW264.7 cells. Furthermore, silencing of DNMT1 prevented the activation of JAK2/STAT3 pathway in LPS-induced RAW264.7 cells. These studies demonstrated that DNMT1-mediated SOCS1 hypermethylation caused the loss of SOCS1 expression results in negative regulation of activation of the JAK2/STAT3 pathway, and enhanced the release of LPS-induced pro-inflammatory cytokines such as TNF-α and IL-6 in macrophages. PMID:24440346

  7. Coumarins from Angelica decursiva inhibit lipopolysaccharide-induced nitrite oxide production in RAW 264.7 cells.

    PubMed

    Ishita, Ishrat Jahan; Nurul Islam, Md; Kim, Yeong Shik; Choi, Ran Joo; Sohn, Hee Sook; Jung, Hyun Ah; Choi, Jae Sue

    2016-01-01

    Angelica decursiva has long been used in Korean traditional medicine as an antitussive, analgesic, antipyretic, and cough remedy. In this study, the anti-inflammatory activity of 9 coumarin derivatives isolated from a 90 % methanol fraction was evaluated via inhibition of production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Among the tested compounds, edulisin II (1) exhibited the most potent NO production inhibitory activity, followed by decursidin (2), Pd-C-III (3), 4-hydroxy Pd-C-III (4), Pd-C-I (5), and Pd-C-II (6). In contrast, (+)-trans-decursidinol (7) did not exhibit NO suppressive effects on LPS-stimulated RAW 264.7 cells. Structure-activity relationships revealed that esterification of the hydroxyl at C-3' or C-4' of 7 with an angeloyl/senecioyl/acetyl group is essential for its inhibitory activity against NO production, while the number of angeloyl or senecioyl groups, and their positions greatly affect the potency of these coumarins. Coumarins 1-6 also inhibited TNF-α production and iNOS protein expression, while compounds 1-4 inhibited COX-2 protein expression in LPS-stimulated RAW 264.7 cells. These results suggest that coumarins isolated from A. decursiva might be used as potential leads for the development of therapeutic agents for inflammation-associated disorders.

  8. The sleep lipid oleamide may represent an endogenous anticonvulsant: an in vitro comparative study in the 4-aminopyridine rat brain-slice model.

    PubMed

    Dougalis, Antonios; Lees, George; Ganellin, C Robin

    2004-03-01

    cis-Oleamide (cOA) is a putative endocannabinoid, which modulates GABA(A) receptors, Na+ channels and gap-junctions (important targets for clinical and experimental anticonvulsants). Here we address the hypothesis that cOA possesses seizure limiting properties and might represent an endogenous anticonvulsant. Field potentials were recorded from the rat hippocampus and visual cortex. The effects of cOA, were compared to carbamazepine (CBZ), pentobarbital (PB) and carbenoxolone (CRX) on 4-Aminopyridine(4AP)-induced epileptiform discharges. CBZ (100 microM), PB (50 microM) and CRX (100 microM), but not cOA (64 microM), significantly attenuated the duration of the evoked epileptiform discharges in CA1. Interictal activity in CA3 was significantly depressed by CRX and cOA (irreversible by AM251), increased by CBZ and remained unaffected by PB. CBZ, PB and CRX abolished spontaneous ictal events and attenuated evoked ictal discharges in the visual cortex. cOA did not abolish spontaneous ictal events, but significantly (albeit weakly) reduced the duration of evoked ictal events. cOA and CRX, in contrast to CBZ or PB, caused a significant delay in the development of the evoked (tonic phase) epileptiform discharges. The weak effects of cOA seem independent of cannabinoid (CB1) receptors. Enzymatic cleavage and lack of specific antagonists for cOA confound simple interpretations of its actions in slices. Its high lipophilicity, imposing a permeability barrier, may also explain the lack of anticonvulsant activity. The effects of cOA may well be masked by release of the endogenous ligand upon ictal depolarisation as we demonstrate here for established endocannabinoids. cOA does not possess profound antiepileptic actions in our hands compared to CBZ, PB or CRX. PMID:14975678

  9. Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury.

    PubMed

    Zhang, Shijia; Danchuk, Svitlana D; Bonvillain, Ryan W; Xu, Beibei; Scruggs, Brittni A; Strong, Amy L; Semon, Julie A; Gimble, Jeffrey M; Betancourt, Aline M; Sullivan, Deborah E; Bunnell, Bruce A

    2014-06-01

    Adipose-derived stromal/stem cells (ASCs) have anti-inflammatory as well as immunosuppressive activities and are currently the focus of clinical trials for a number of inflammatory diseases. Acute lung injury (ALI) is an inflammatory condition of the lung for which standard treatment is mainly supportive due to lack of effective therapies. Our recent studies have demonstrated the ability of both human ASCs (hASCs) and mouse ASCs (mASCs) to attenuate lung damage and inflammation in a rodent model of lipopolysaccharide-induced ALI, suggesting that ASCs may also be beneficial in treating ALI. To better understand how ASCs may act in ALI and to elucidate the mechanism(s) involved in ASC modulation of lung inflammation, gene expression analysis was performed in ASC-treated (hASCs or mASCs) and control sham-treated lungs. The results revealed a dramatic difference between the expression of anti-inflammatory molecules by hASCs and mASCs. These data show that the beneficial effects of hASCs and mASCs in ALI may result from the production of different paracrine factors. Interleukin 6 (IL-6) expression in the mASC-treated lungs was significantly elevated as compared to sham-treated controls 20 hours after delivery of the cells by oropharyngeal aspiration. Knockdown of IL-6 expression in mASCs by RNA interference abrogated most of their therapeutic effects, suggesting that the anti-inflammatory properties of mASCs in ALI are explained, at least in part, by activation of IL-6 secretion.

  10. Interleukin 6 Mediates the Therapeutic Effects of Adipose-Derived Stromal/Stem Cells in Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Zhang, Shijia; Danchuk, Svitlana D.; Bonvillain, Ryan W.; Xu, Beibei; Scruggs, Brittni A.; Strong, Amy L.; Semon, Julie A.; Gimble, Jeffrey M.; Betancourt, Aline M.; Sullivan, Deborah E.; Bunnell, Bruce A.

    2015-01-01

    Adipose-derived stromal/stem cells (ASCs) have anti-inflammatory as well as immunosuppressive activities and are currently the focus of clinical trials for a number of inflammatory diseases. Acute lung injury (ALI) is an inflammatory condition of the lung for which standard treatment is mainly supportive due to lack of effective therapies. Our recent studies have demonstrated the ability of both human ASCs (hASCs) and mouse ASCs (mASCs) to attenuate lung damage and inflammation in a rodent model of lipopolysaccharide-induced ALI, suggesting that ASCs may also be beneficial in treating ALI. To better understand how ASCs may act in ALI and to elucidate the mechanism(s) involved in ASC modulation of lung inflammation, gene expression analysis was performed in ASC-treated (hASCs or mASCs) and control sham-treated lungs. The results revealed a dramatic difference between the expression of anti-inflammatory molecules by hASCs and mASCs. These data show that the beneficial effects of hASCs and mASCs in ALI may result from the production of different paracrine factors. Interleukin 6 (IL-6) expression in the mASC-treated lungs was significantly elevated as compared to sham-treated controls 20 hours after delivery of the cells by oropharyngeal aspiration. Knockdown of IL-6 expression in mASCs by RNA interference abrogated most of their therapeutic effects, suggesting that the anti-inflammatory properties of mASCs in ALI are explained, at least in part, by activation of IL-6 secretion. PMID:24449042

  11. Suppressive effects of ketamine on macrophage functions

    SciTech Connect

    Chang Yi; Chen, T.-L.; Sheu, J.-R.; Chen, R.-M. . E-mail: rmchen@tmu.edu.tw

    2005-04-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 {mu}M ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 {mu}M, ketamine caused a release of lactate dehydrogenase and cell death. Ketamine, at 10 and 100 {mu}M, did not affect the chemotactic activity of macrophages. Administration of 1000 {mu}M ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-{alpha}, IL-1{beta}, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-{alpha}, IL-1{beta}, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 {mu}M) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity.

  12. Transmembrane TNF-α Reverse Signaling Inhibits Lipopolysaccharide-Induced Proinflammatory Cytokine Formation in Macrophages by Inducing TGF-β: Therapeutic Implications.

    PubMed

    Pallai, Anna; Kiss, Beáta; Vereb, György; Armaka, Marietta; Kollias, George; Szekanecz, Zoltán; Szondy, Zsuzsa

    2016-02-01

    TNF-α, a potent proinflammatory cytokine, is generated in a precursor form called transmembrane (m)TNF-α that is expressed as a type II polypeptide on the surface of certain cells. mTNF-α was shown to act both as a ligand by binding to TNF-α receptors, as well as a receptor that transmits outside-to-inside (reverse) signals back into the mTNF-α-bearing cells. In this study, we show that nonactivated macrophages express basal levels of mTNF-α and respond to anti-TNF-α Abs by triggering the MAPK kinase 4 signaling pathway. The pathway induces TGF-β. Based on inhibitory experiments, the production of TGF-β1 is regulated via Jun kinases, whereas that of other TGF-βs is regulated via p38 MAPKs. Exposure to LPS further induced the expression of mTNF-α, and triggering of mTNF-α strongly suppressed the LPS-induced proinflammatory response. Neutralizing TGF-β by Abs prevented the mTNF-α-mediated suppression of LPS-induced proinflammatory cytokine formation, indicating that the immune-suppressive effect of mTNF-α is mediated via TGF-β. Although apoptotic cells are also known to suppress LPS-induced proinflammatory cytokine formation in macrophages by upregulating TGF-β, we show that they do not use the mTNF-α signaling pathway. Because TGF-β possesses a wide range of immune-suppressive effects, our data indicate that upregulation of TGF-β synthesis by those TNF-α-targeting molecules, which are able to trigger mTNF-α, might contribute to their therapeutic effect in the treatment of certain inflammatory diseases such as Crohn's disease, Wegener's granulomatosis, or sarcoidosis. Additionally, none of the TNF-α-targeting molecules is expected to interfere with the immune-silencing effects of apoptotic cells. PMID:26729808

  13. Ocular Penetration and Anti-inflammatory Activity of Ketorolac 0.45% and Bromfenac 0.09% Against Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Galindo, Danielle; Villanueva, Linda; Nguyen, Cathy; Patel, Milan; Borbridge, Lisa; Attar, Mayssa; Schiffman, Rhett M.; Hollander, David A.

    2011-01-01

    Abstract Purpose Anti-inflammatory activity of topical nonsteroidal anti-inflammatory drugs is mediated by suppression of cyclooxygenase (COX) isoenzymes. This study compared ocular penetration and inflammation suppression of topical ketorolac 0.45% and bromfenac 0.09% ophthalmic solutions in a rabbit model. Methods At hour 0, 36 rabbits received ketorolac 0.45%, bromfenac 0.09%, or an artificial tear 3 times once every 20 min. Half of the rabbits in each group then received intravenous injections of lipopolysaccharide (LPS) and fluorescein isothiocyanate (FITC)–dextran at hour 1, and the other half at hour 10. Aqueous and iris-ciliary body (ICB) samples were collected in the former group at hour 2 (peak) and in the latter group at hour 11 (trough) An additional group of 6 animals received only FITC-dextran, and samples were collected 1 h later. Peak and trough nonsteroidal anti-inflammatory drug concentrations were compared with previously determined half-maximal inhibitory concentrations (IC50) for COX isoenzymes. Results Peak and trough aqueous and ICB concentrations of ketorolac were at least 7-fold or greater than those of bromfenac. At peak levels, both ketorolac 0.45% and bromfenac 0.09% significantly inhibited LPS-induced aqueous prostaglandin E2 and FITC-dextran elevation (P < 0.01). At trough, both study drugs significantly inhibited LPS-induced aqueous prostaglandin E2 elevation (P < 0.05), but only ketorolac 0.45% significantly reduced LPS-induced aqueous FITC-dextran elevation (P < 0.01). Aqueous and ICB ketorolac concentrations exceeded its IC50 for COX-1 and COX-2 at peak and trough. Aqueous and ICB bromfenac levels exceeded its IC50 for COX-2 at peak and trough, but not for COX-1 at trough aqueous levels and peak and trough ICB levels. Conclusions Both ketorolac 0.45% and bromfenac 0.09% effectively suppressed inflammation at peak. At trough, only ketorolac 0.45% effectively suppressed inflammation as measured by FITC

  14. Berberine Decreased Inducible Nitric Oxide Synthase mRNA Stability through Negative Regulation of Human Antigen R in Lipopolysaccharide-Induced Macrophages.

    PubMed

    Shin, Ji-Sun; Choi, Hye-Eun; Seo, SeungHwan; Choi, Jung-Hye; Baek, Nam-In; Lee, Kyung-Tae

    2016-07-01

    Berberine, a major isoquinoline alkaloid found in medicinal herbs, has been reported to possess anti-inflammatory effects; however, the underlying mechanisms responsible for its actions are poorly understood. In the present study, we investigated the inhibitory effects of berberine and the molecular mechanisms involved in lipopolysaccharide (LPS)-treated RAW 264.7 and THP-1 macrophages and its effects in LPS-induced septic shock in mice. In both macrophage cell types, berberine inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) protein expression, but it had no effect on iNOS mRNA transcription. Suppression of LPS-induced iNOS protein expression by berberine occurred via a human antigen R (HuR)-mediated reduction of iNOS mRNA stability. Molecular data revealed that the suppression on the LPS-induced HuR binding to iNOS mRNA by berberine was accompanied by a reduction in nucleocytoplasmic HuR shuttling. Pretreatment with berberine reduced LPS-induced iNOS protein expression and the cytoplasmic translocation of HuR in liver tissues and increased the survival rate of mice with LPS-induced endotoxemia. These results show that the suppression of iNOS protein expression by berberine under LPS-induced inflammatory conditions is associated with a reduction in iNOS mRNA stability resulting from inhibition of the cytoplasmic translocation of HuR. PMID:27189969

  15. Flavonoid fraction of guava leaf extract attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signalling pathway in Labeo rohita macrophages.

    PubMed

    Sen, Shib Sankar; Sukumaran, V; Giri, Sib Sankar; Park, Se Chang

    2015-11-01

    Psidium guajava L. is a well-known traditional medicinal plant widely used in folk medicine. To explore the anti-inflammatory activity of the flavonoid fraction of guava leaf extract (FGLE), we investigated its ability to suppress the levels of inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS in the presence or absence of the FGLE. We examined the inhibitory effect of FGLE on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of FGLE on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR and western blot. The effect of FGLE on proinflammatory cytokines tumour necrosis factor alpha (TNF-α) or interleukin-1β (IL-1β) was also investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPK) molecules ERK, JNK and p38 was analysed by western blot analysis. FGLE inhibited LPS-induced NO and PGE2 production. It also effectively inhibited TNF-α, IL-1β, IL-10, iNOS, and COX-2 production in a concentration-dependent manner. In addition, FGLE suppressed the mRNA expression levels of TNF-α and IL-1β in LPS-stimulated HK macrophages. RT-PCR and western blot analysis showed that FGLE decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. FGLE suppresses the phosphorylation of MAPK molecules in LPS-stimulated HK macrophages. FGLE also significantly inhibited LPS-induced NF-κB transcriptional activity. The molecular mechanism by which FGLE suppresses the expression of inflammatory mediators appears to involve the inhibition of NF-κB activation, through the suppression of LPS-induced IκB-α degradation. Together these results suggest that FGLE contains potential therapeutic agent(s), which regulate NF-κB activation, for the treatment of inflammatory conditions in L. rohita macrophages.

  16. Flavonoid fraction of guava leaf extract attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signalling pathway in Labeo rohita macrophages.

    PubMed

    Sen, Shib Sankar; Sukumaran, V; Giri, Sib Sankar; Park, Se Chang

    2015-11-01

    Psidium guajava L. is a well-known traditional medicinal plant widely used in folk medicine. To explore the anti-inflammatory activity of the flavonoid fraction of guava leaf extract (FGLE), we investigated its ability to suppress the levels of inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS in the presence or absence of the FGLE. We examined the inhibitory effect of FGLE on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of FGLE on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were investigated by RT-PCR and western blot. The effect of FGLE on proinflammatory cytokines tumour necrosis factor alpha (TNF-α) or interleukin-1β (IL-1β) was also investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPK) molecules ERK, JNK and p38 was analysed by western blot analysis. FGLE inhibited LPS-induced NO and PGE2 production. It also effectively inhibited TNF-α, IL-1β, IL-10, iNOS, and COX-2 production in a concentration-dependent manner. In addition, FGLE suppressed the mRNA expression levels of TNF-α and IL-1β in LPS-stimulated HK macrophages. RT-PCR and western blot analysis showed that FGLE decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. FGLE suppresses the phosphorylation of MAPK molecules in LPS-stimulated HK macrophages. FGLE also significantly inhibited LPS-induced NF-κB transcriptional activity. The molecular mechanism by which FGLE suppresses the expression of inflammatory mediators appears to involve the inhibition of NF-κB activation, through the suppression of LPS-induced IκB-α degradation. Together these results suggest that FGLE contains potential therapeutic agent(s), which regulate NF-κB activation, for the treatment of inflammatory conditions in L. rohita macrophages. PMID:26327113

  17. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    PubMed

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-01

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  18. Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages

    PubMed Central

    Choe, Ji-Hyun; Yi, Young-Joo; Lee, Myeong-Seok; Seo, Dong-Won

    2015-01-01

    Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin E2 through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor κB, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo. PMID:26539049

  19. Phosphorylation of Akt Mediates Anti-Inflammatory Activity of 1-p-Coumaroyl β-D-Glucoside Against Lipopolysaccharide-Induced Inflammation in RAW264.7 Cells

    PubMed Central

    Vo, Van Anh; Lee, Jae-Won; Kim, Ji-Young; Park, Jun-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2014-01-01

    Hydroxycinnamic acids have been reported to possess numerous pharmacological activities such as antioxidant, anti-inflammatory, and anti-tumor properties. However, the biological activity of 1-p-coumaroyl β-D-glucoside (CG), a glucose ester derivative of p-coumaric acid, has not been clearly examined. The objective of this study is to elucidate the anti-inflammatory action of CG in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. In the present study, CG significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the protein expression of iNOS and COX-2. CG also inhibited LPS-induced secretion of pro-inflammatory cytokines, IL-1β and TNF-α. In addition, CG significantly suppressed LPS-induced degradation of IκB. To elucidate the underlying mechanism by which CG exerts its anti-inflammatory action, involvement of various signaling pathways were examined. CG exhibited significantly increased Akt phosphorylation in a concentration-dependent manner, although MAPKs such as Erk, JNK, and p38 appeared not to be involved. Furthermore, inhibition of Akt/PI3K signaling pathway with wortmannin significantly, albeit not completely, abolished CG-induced Akt phosphorylation and anti-inflammatory actions. Taken together, the present study demonstrates that Akt signaling pathway might play a major role in CG-mediated anti-inflammatory activity in LPS-stimulated RAW264.7 macrophage cells. PMID:24634601

  20. Vitamin D3 inhibits lipopolysaccharide-induced placental inflammation through reinforcing interaction between vitamin D receptor and nuclear factor kappa B p65 subunit.

    PubMed

    Chen, Yuan-Hua; Yu, Zhen; Fu, Lin; Wang, Hua; Chen, Xue; Zhang, Cheng; Lv, Zheng-Mei; Xu, De-Xiang

    2015-06-12

    It is increasingly recognized that vitamin D3 (VitD3) has an anti-inflammatory activity. The present study investigated the effects of maternal VitD3 supplementation during pregnancy on LPS-induced placental inflammation and fetal intrauterine growth restriction (IUGR). All pregnant mice except controls were intraperitoneally injected with LPS (100 μg/kg) daily from gestational day (GD)15-17. In VitD3 + LPS group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, maternal LPS exposure caused placental inflammation and fetal IUGR. Interestingly, pretreatment with VitD3 repressed placental inflammation and protected against LPS-induced fetal IUGR. Further analysis showed that pretreatment with VitD3, which activated placental vitamin D receptor (VDR) signaling, specifically suppressed LPS-induced activation of nuclear factor kappa B (NF-κB) and significantly blocked nuclear translocation of NF-κB p65 subunit in trophoblast gaint cells of the labyrinth layer. Conversely, LPS, which activated placental NF-κB signaling, suppressed placental VDR activation and its target gene expression. Moreover, VitD3 reinforced physical interaction between placental VDR and NF-κB p65 subunit. The further study demonstrates that VitD3 inhibits placental NF-κB signaling in VDR-dependent manner. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity. Overall, the present study provides evidence for roles of VDR as a key regulator of placental inflammation.

  1. Extracts of brown seaweeds can attenuate the bacterial lipopolysaccharide-induced pro-inflammatory response in the porcine colon ex vivo.

    PubMed

    Bahar, B; O'Doherty, J V; Hayes, M; Sweeney, T

    2012-12-01

    Bioactive compound-rich brown seaweeds are demonstrated to have numerous health benefits including anti-microbial and immunomodulatory bioactivities in the pig intestine. In this study, the immunomodulating effects of extracts of brown seaweed (Ascophyllum nodosum and Fucus serratus) were evaluated on the porcine colon using a bacterial lipopolysaccharide (LPS) ex vivo model. Approximately 1.5 × 1.5 cm of pig colon (n = 6) was stripped of its overlying muscle layer and incubated in 1 mL Dulbecco's Modified Eagle Medium containing bacterial LPS (10 μg) and seaweed extracts (1 mg). Gene expression of interleukin-8 (IL-8) and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNFA) were measured using quantitative real time PCR. In contrast to the low level of expression of IL-8, IL-6, and TNFA genes in the colonic tissue at 0 h, LPS treatment increased (P < 0.05) the expression of IL-8, IL-6, and TNFA genes to 2.38 ± 0.86, 1.90 ± 0.66, and 1.90 ± 0.57 fold, respectively. This pro-inflammatory response induced by the LPS was suppressed by the extracts of Ascophyllum. Ascophyllum extract reduced (P < 0.05) the expression of IL-8, IL-6, and TNFA genes to 0.99 ± 0.53, 0.75 ± 0.33, and 1.01 ± 0.17 fold, and Fucus extract reduced (P < 0.05) the expression of the corresponding genes to 0.70 ± 0.32, 0.69 ± 0.38, and 1.15 ± 0.25 fold, respectively. It is concluded that the extracts of Ascophyllum and Fucus seaweeds have potential to suppress the pro-inflammatory response induced by the bacterial LPS in the pig colon. PMID:23365280

  2. Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress.

    PubMed

    Ali, Mohammed Ragab Abdel-Aziz; Abo-Youssef, Amira Morad Hussein; Messiha, Basim Anwar Shehata; Khattab, Mahmoud Mohamed

    2016-06-01

    We aim to evaluate the protective role of the central angiotensin-converting enzyme (ACE) inhibitor perindopril, compared with the standard reactive oxygen species (ROS) scavenger tempol, against lipopolysaccharide (LPS)-induced cognition impairment and amyloidogenesis in a simulation to Alzheimer's disease (AD). Mice were allocated into a control group, an LPS control group (0.8 mg/kg, i.p., once), a tempol (100 mg/kg/day, p.o., 7 days) treatment group, and two perindopril (0.5 and 1 mg/kg/day, p.o., 7 days) treatment groups. A behavioral study was conducted to evaluate spatial and nonspatial memory in mice, followed by a biochemical study involving assessment of brain levels of Aβ and BDNF as Alzheimer and neuroplasticity markers; tumor necrosis factor-alpha (TNF-α), nitric oxide end-products (NOx), neuronal nitric oxide synthase (nNOS), and inducible nitric oxide synthase (iNOS) as inflammatory markers; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using both routine and special staining. Tempol and perindopril improved spatial and nonspatial memory in mice without affecting locomotor activity; decreased brain Aβ deposition and BDNF depletion; decreased brain TNF-α, NOx, nNOS, iNOS, MDA, and NT levels; and increased brain SOD and GSH contents, parallel to confirmatory histopathological findings. Tempol and perindopril may be promising agents against AD progression via suppression of Aβ deposition and BDNF decline, suppression of TNF-α production, support of brain antioxidant status, and amelioration of oxido-nitrosative stress and NT production. PMID:27026404

  3. Silencing of C5a receptor gene with siRNA for protection from Gram-negative bacterial lipopolysaccharide-induced vascular permeability.

    PubMed

    Liu, Zi-ming; Zhu, Shi-ming; Qin, Xiang-jing; Cheng, Zhi-de; Liu, Meng-yuan; Zhang, Hai-mou; Liu, Dong-xu

    2010-03-01

    Endothelial barrier dysfunction leading to increased permeability and vascular leakage is an underlying cause of several pathological conditions. Whereas these changes have been shown to be associated with activation of the complement system, leading to the release of C5a and interaction of C5a-C5a receptor (C5aR), the role of C5aR in endothelial cells remain(s) ill-defined. Here, we report an essential role of C5aR in endothelial cell injury and vascular permeability through silencing of the C5aR gene using siRNA. In the cultured mouse dermal microvascular endothelial cells (MEMECs) monolayer transfected with C5aR-siRNA, endotoxin-induced cell injury by evaluated as transendothelial flux, cell detachment, and cytoskeletal disorganization was inhibited. Upregulation of vascular cell adhesion molecule-1 (VCAM-1) was also suppressed. Studies exploring the underlying mechanism of siRNA-mediated suppression in VCAM-1 expression were related to reduction of NF-kappaB activation and nuclear localization of both p50 and p65. The effect was associated with inhibition in activation of protein kinase Cdelta(PKC-delta) and induction of PKC-mediated mitogen-activated protein kinase phosphatases-1 (MKP-1) leading to the increased activity of p42/p44 mitogen-activated protein (MAP) kinase cascade. In the model of mice administrated with C5aR-siRNA, endotoxin-induced plasma leakage was inhibited in local abdominal skin. Systemic administration of endotoxin to mice resulted in increased microvascular permeability in multiple organs was reduced. These studies demonstrate that the C5aR responsible for vascular endothelial cell injury and plasma permeability is an important factor, and that blockade of C5aR may be useful therapeutic targets for the prevention of vascular permeability in pathogenic condition.

  4. Salt-inducible kinase 3 deficiency exacerbates lipopolysaccharide-induced endotoxin shock accompanied by increased levels of pro-inflammatory molecules in mice

    PubMed Central

    Sanosaka, Masato; Fujimoto, Minoru; Ohkawara, Tomoharu; Nagatake, Takahiro; Itoh, Yumi; Kagawa, Mai; Kumagai, Ayako; Fuchino, Hiroyuki; Kunisawa, Jun; Naka, Tetsuji; Takemori, Hiroshi

    2015-01-01

    Macrophages play important roles in the innate immune system during infection and systemic inflammation. When bacterial lipopolysaccharide (LPS) binds to Toll-like receptor 4 on macrophages, several signalling cascades co-operatively up-regulate gene expression of inflammatory molecules. The present study aimed to examine whether salt-inducible kinase [SIK, a member of the AMP-activated protein kinase (AMPK) family] could contribute to the regulation of immune signal not only in cultured macrophages, but also in vivo. LPS up-regulated SIK3 expression in murine RAW264.7 macrophages and exogenously over-expressed SIK3 negatively regulated the expression of inflammatory molecules [interleukin-6 (IL-6), nitric oxide (NO) and IL-12p40] in RAW264.7 macrophages. Conversely, these inflammatory molecule levels were up-regulated in SIK3-deficient thioglycollate-elicited peritoneal macrophages (TEPM), despite no impairment of the classical signalling cascades. Forced expression of SIK3 in SIK3-deficient TEPM suppressed the levels of the above-mentioned inflammatory molecules. LPS injection (10 mg/kg) led to the death of all SIK3-knockout (KO) mice within 48 hr after treatment, whereas only one mouse died in the SIK1-KO (n = 8), SIK2-KO (n = 9) and wild-type (n = 8 or 9) groups. In addition, SIK3-KO bone marrow transplantation increased LPS sensitivity of the recipient wild-type mice, which was accompanied by an increased level of circulating IL-6. These results suggest that SIK3 is a unique negative regulator that suppresses inflammatory molecule gene expression in LPS-stimulated macrophages. PMID:25619259

  5. Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK, AKT, and NF-κB signaling pathways.

    PubMed

    Yu, Xiu; Yu, Sulan; Chen, Ling; Liu, Han; Zhang, Jian; Ge, Haixia; Zhang, Yuanyuan; Yu, Boyang; Kou, Junping

    2016-08-01

    Acute lung injury (ALI) is a life-threatening syndrome that is characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality worldwide. Here, we studied the protective effect of tetrahydroberberrubine (THBru), a berberine derivative, on a mouse model of lipopolysaccharide (LPS)-induced acute lung injury that was established in our previous studies. The results showed that a single oral administration of THBru significantly decreased the lung wet to dry weight (W/D) ratio at doses of 2, 10 and 50mg/kg administered 1h prior to LPS challenge (30mg/kg, intravenous injection). Histopathological changes, such as pulmonary edema, infiltration of inflammatory cells and coagulation, were also attenuated by THBru. In addition, THBru markedly decreased the total cell counts, total protein and nitrate/nitrite content in bronchoalveolar lavage fluid (BALF), significantly decreased tumor necrosis factor-α (TNF-α) and nitrate/nitrite content in the plasma, and reduced the myeloperoxidase (MPO) activity in the lung tissues. Additionally, THBru (10μM) significantly decreased the content of TNF-α and nitric oxide (NO) in LPS-induced THP-1 cells in vitro. Moreover, THBru significantly suppressed the activation of the MAPKs JNK and p38, AKT, and the NF-κB subunit p65 in LPS-induced THP-1 cells. These findings confirm that THBru attenuates LPS-induced acute lung injury by inhibiting the release of inflammatory cytokines and suppressing the activation of MAPKs, AKT, and NF-κB signaling pathways, which implicates it as a potential therapeutic agent for ALI or sepsis. PMID:27470389

  6. Identification and characterization of a putative lipopolysaccharide-induced TNF-α factor (LITAF) gene from Amphioxus (Branchiostoma belcheri): an insight into the innate immunity of Amphioxus and the evolution of LITAF.

    PubMed

    Jin, Ping; Hu, Jing; Qian, Jinjun; Chen, Liming; Xu, Xiaofeng; Ma, Fei

    2012-06-01

    Innate immunity defenses against infectious agent in all multicultural organisms. TNF-α is an important cytokine that can be stimulated by Lipopolysaccharide (LPS) to regulate the innate immunity. The lipopolysaccharide-induced TNF-α factor (LITAF) functions as a transcription factor for regulating the expression of TNF-α as well as various inflammatory cytokines in response to LPS stimulation. The physiological significance of LITAF gene in the innate immunity of various animals has recently been reported. However, no LITAF gene has yet been identified in amphioxus, which is the best available stand-in for the proximate invertebrate ancestor of the vertebrates. In this study, we identified and characterized an amphioxus LITAF gene (designated as AmphiLITAF). First, we identified the AmphiLITAF from the amphioxus and found that AmphiLITAF gene with ~1.6 kb in length has a 827bp cDNA transcription product which encodes a putative protein with 127 amino acids containing conserved LITAF-domain, and the deduced amino acid of AmphiLITAF shared 37-60% similarity with the LITAFs from other species; second, we uncovered the spatial distribution of the LITAF in different tissues, the expression level of AmphiLITAF mRNA was the highest in hepatic cecum and intestine, moderate in muscles, gills and gonad, and the lowest in notochord. Our findings provide an insight into the innate immune response in the amphioxus and the evolution of the LITAF family.

  7. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response.

    PubMed

    Zhang, Jiangguo; Gong, Fengyun; Li, Ling; Zhao, Manzhi; Song, Jianxin

    2014-03-01

    N-3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL), a quorum-sensing signal molecule produced by Pseudomonas aeruginosa (P. aeruginosa), is involved in the expression of bacterial virulence factors and in the modulation of host immune responses by directly disrupting nuclear factor-κB (NF-κB) signaling and inducing cell apoptosis. The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress may suppress inflammatory responses in the later phase by blocking NF-κB activation. It was recently demonstrated that 3-oxo-C12-HSL may induce UPR in human aortic endothelial cells (HAECs). Therefore, 3-oxo-C12-HSL may also inhibit NF-κB activation and suppress inflammatory responses by activating UPR. However, the possible underlying mechanism has not been fully elucidated. Accordingly, we investigated the effects of 3-oxo-C12-HSL on cellular viability, UPR activation, lipopolysaccharide (LPS)-induced NF-κB activation and inflammatory response in the RAW264.7 mouse macrophage cell line. Treatment with 6.25 μM 3-oxo-C12-HSL was not found to affect the viability of RAW264.7 cells. However, pretreating RAW264.7 cells with 6.25 μM 3-oxo-C12-HSL effectively triggered UPR and increased the expression of UPR target genes, such as CCAAT/enhancer-binding protein β (C/EBP β) and CCAAT/enhancer-binding protein-homologous protein (CHOP). The expression of C/EBP β and CHOP was found to be inversely correlated with LPS-induced NF-κB activation. 3-Oxo-C12-HSL pretreatment was also shown to inhibit LPS-stimulated proinflammatory cytokine production. Hence, 3-oxo-C12-HSL may attenuate LPS-induced inflammation via UPR-mediated NF-κB inhibition without affecting cell viability. This may be another mechanism through which P. aeruginosa evades the host immune system and maintains a persistent infection.

  8. Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1beta through suppression of NF-kappaB activation by 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L.

    PubMed

    Raghav, Sunil Kumar; Gupta, Bhawna; Shrivastava, Anju; Das, Hasi Rani

    2007-03-29

    The Ruta graveolens L. plant is used in traditional medicine to treat a large number of diseases. The methanol (50%) extract of the whole plant was observed to inhibit the expression of inducible nitric oxide synthase (iNOS) and the cycloxygenase-2 (COX-2) gene in lipopolysaccharide (LPS)-induced macrophage cells (J774A.1, [Raghav, S.K., Gupta, B., Agrawal, C., Goswami, K., Das, H.R., 2006b. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells. J. Ethnopharmacol. 104, 234-239]). The effect of whole plant extract on the expression of other pro-inflammatory genes such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-12, interferon-gamma (IFN-gamma) and the activation of nuclear factor-kB (NF-kappaB) were investigated in LPS stimulated macrophage cells. An active compound was isolated from this methanol extract by further solvent fractionation and reverse phase high performance liquid chromatography (RP-HPLC). The purified compound was identified as 3-(1'-1'-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin having IUPAC nomenclature of 6-hydroxy-7-methoxy-3-(2-methyl but-3-en-2yl)-2H-chromen-2-one by ESI-MS, MALDI, FT-IR and NMR. Effect of this purified compound was assessed on iNOS, COX-2 and various pro-inflammatory cytokine genes and was observed to inhibit both the protein and mRNA expression of iNOS and IL-1beta in LPS challenged macrophages. Electrophoretic mobility shift assay (EMSA) and Western blot analyses indicated that the plant extract and the isolated active compound blocked the LPS-induced activation of NF-kappaB through the prevention of inhibitor-kB (IkB) degradation. The purified compound also showed the anti-oxidant activity. The active compound at a dose of 40 mg/kg body weight was observed to inhibit the iNOS and IL-1beta gene expression significantly in endotoxin-induced inflammatory model of BALB/c mice. The low level of nitric oxide production was also observed in the sera of compound treated mice. The normal behavioral condition in LPS challenged BALB/c mice was noticed when these were treated with active compound.

  9. Polar lipids from the marine macroalga Palmaria palmata inhibit lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells.

    PubMed

    Banskota, Arjun H; Stefanova, Roumiana; Sperker, Sandra; Lall, Santosh P; Craigie, James S; Hafting, Jeff T; Critchley, Alan T

    2014-05-01

    The EtOAc soluble fraction of a MeOH/CHCl3 extract of Palmaria palmata showed strong nitric oxide (NO) inhibitory activity against lipopolysaccharide (LPS)-induced NO production in murine RAW264.7 cells. NO inhibition-guided isolation led to identification of three new polar lipids including a sulfoquinovosyl diacylglycerol (SQDG) (2S)-1-O-eicosapentaenoyl-2-O-myristoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-glycerol (1) and two phosphatidylglycerols, 1-O-eicosapentaenoyl-2-O-trans-3-hexadecenoyl-3-phospho-(1'-glycerol)-glycerol (3) and 1-O-eicosapentaenoyl-2-O-palmitoyl-3-phospho-(1'-glycerol)-glycerol (4) from the EtOAc fraction. Seven known lipids were also isolated including a SQDG (2), a phospholipid (5) and five galactolipids (6-10). Structures of the isolated lipids were elucidated by spectral analyses. The isolated SQDGs, phosphatidylglycerols and phospholipid possessed strong and dose-dependent NO inhibitory activity compared to N(G)-methyl-L-arginine acetate salt (L-NMMA), a well-known NO inhibitor used as a positive control. Further study suggested that these polar lipids suppressed NO production through down-regulation of inducible nitric oxide synthase (iNOS). PMID:24569177

  10. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells

    PubMed Central

    Seo, Dong-Won; Yi, Young-Joo; Lee, Myeong-Seok

    2015-01-01

    Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, anti-inflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-1β and interleukin-6 but not tumor necrosis factor-α. The inhibitory effect of fomentariol against nitric oxide, interleukin-1β, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius. PMID:26839505

  11. Protective Effect of Ginsenosides Rg1 and Re on Lipopolysaccharide-Induced Sepsis by Competitive Binding to Toll-Like Receptor 4

    PubMed Central

    Su, Fei; Xue, Yin; Wang, Yuemin; Zhang, Lili; Chen, Wangxue

    2015-01-01

    We previously demonstrated that ginsenosides Rg1 and Re enhanced the immune response in C3H/HeB mice but not in C3H/HeJ mice carrying a mutation in the Tlr4 gene. The results of the present study showed that both Rg1 and Re inhibited mRNA expression and production of proinflammatory mediators that included tumor necrosis factor α, interleukin-1β, interleukin-6, cyclooxygenase-2, and inducible nitric oxide synthase from lipopolysaccharide (LPS)-stimulated macrophages. Rg1 was found to be distributed both extracellularly and intracellularly but Re was located only extracellularly to compete with LPS for binding to Toll-like receptor 4. Preinjection of Rg1 and Re into rats suppressed LPS-induced increases in body temperature, white blood cell counts, and levels of serum proinflammatory mediators. Preinjection of Rg1 and Re into mice prevented the LPS-induced decreases in total white blood cell counts and neutrophil counts, inhibited excessive expression of multiple proinflammatory mediators, and successfully rescued 100% of the mice from sepsis-associated death. More significantly, when administered after lethal LPS inoculation, Rg1, but not Re, still showed a potent antisepsis effect and protected 90% of the mice from death. The better protection efficacy of Rg1 could result from its intracellular distribution, suggesting that Rg1 may be an ideal antisepsis agent. PMID:26149990

  12. Emodin ameliorated lipopolysaccharide-induced fulminant hepatic failure by blockade of TLR4/MD2 complex expression in D-galactosamine-sensitized mice.

    PubMed

    Yin, Xinru; Gong, Xia; Jiang, Rong; Kuang, Ge; Wang, Bin; Zhang, Li; Xu, Ge; Wan, Jingyuan

    2014-11-01

    Emodin has been reported to possess anti-inflammatory and anti-oxidant activities. The aim of this study was to explore the effect and mechanism of emodin on lipopolysaccharide (LPS)-induced fulminant hepatic failure (FHF) in D-galactosamine (D-GalN)-sensitized mice. Our results showed that pretreatment with emodin inhibited the elevation of plasma aminotransferases, alleviated the hepatic histopathological abnormalities and improved the survival rate of LPS/D-GalN-primed mice. Moreover, emodin markedly attenuated the increased serum and hepatic tumor necrosis factor-α (TNF-α) production, and activated hepatic p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signal pathways in LPS/D-GalN-challenged mice. Furthermore, using an in vitro experiment, we found that emodin dose-dependently suppressed TNF-α production, dampened AP-1 and NF-κB activation, and blocked toll-like receptor (TLR) 4/myeloid differentiation factor (MD) 2 complex expression in LPS-elicited RAW264.7 mouse macrophage cells. Taken together, these data suggested that emodin could effectively prevent LPS-induced FHF, which might be mediated by inhibition of TNF-α production, deactivation of MAPKs and NF-κB, and blockade of TLR4/MD2 complex expression.

  13. The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages

    PubMed Central

    Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei

    2016-01-01

    Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent. PMID:27414646

  14. The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages.

    PubMed

    Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei

    2016-01-01

    Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent. PMID:27414646

  15. Effects of a diet containing Brazilian propolis on lipopolysaccharide-induced increases in plasma plasminogen activator inhibitor-1 levels in mice

    PubMed Central

    Ohkura, Naoki; Oishi, Katsutaka; Kihara-Negishi, Fumiko; Atsumi, Gen-ichi; Tatefuji, Tomoki

    2016-01-01

    Background: Brazilian propolis has many biological activities including the ability to help prevent thrombotic diseases, but this particular effect has not been proven. Plasma levels of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of fibrinolysis, increase under inflammatory conditions such as infection, obesity and atherosclerosis and such elevated levels predispose individuals to a risk of developing thrombotic diseases. Aim: This study aimed to determine the effects of a diet containing Brazilian propolis on lipopolysaccharide (LPS)-induced increases in plasma PAI-1 levels. Materials and Methods: Mice were fed with a diet containing 0.5% (w/w) Brazilian propolis for 8 weeks. Thereafter, the mice were subcutaneously injected with saline containing 0.015 mg/kg of LPS and sacrificed 4 h later. Results: Orally administered Brazilian propolis significantly suppressed the LPS-induced increase in PAI-1 antigen and its activity in mouse plasma. Conclusion: This study indicated that Brazilian propolis contains natural products that can decrease thrombotic tendencies in mice. PMID:27757277

  16. Adenovirus-mediated overexpression of soluble ST2 provides a protective effect on lipopolysaccharide-induced acute lung injury in mice

    PubMed Central

    Yin, H; Li, X Y; Yuan, B H; Zhang, B B; Hu, S L; Gu, H B; Jin, X B; Zhu, J Y

    2011-01-01

    Acute lung injury is characterized by a diffuse inflammatory parenchymal process, implicated in the context of significant morbidity and mortality. Previously, we have reported that soluble ST2 (sST2), a member of the Toll-interleukin (IL)-1 receptor (TIR) superfamily, represses proinflammatory cytokine production of macrophage exposed to lipopolysaccharide (LPS). In this study, we examined the possibility of modulating LPS-induced murine inflammatory pulmonary damage by recombinant adenovirus-mediated sST2-Fc (Ad-sST2-Fc) gene transfer. Single intranasal administration of Ad-sST2-Fc led to a profound decrease in LPS-induced bronchoalveolar lavage leucocyte exudation and lung tissue myeloperoxidase activity (reflecting phagocyte infiltration). Histological examination revealed alveolitis with inflammatory cell infiltration and alveolar haemorrhage in the alveolar airspace was less severe in Ad-sST2-Fc-treated mice when compared with control groups. In addition, high levels of sST2-Fc in vivo reduced the transcription of tumour necrosis factor-α, IL-6 and Toll-like receptor-4 gene remarkably, and suppressed the nuclear translocation of nuclear factor-κB in lung tissues in response to LPS challenge. Taken together, these results suggested that administration of Ad-sST2-Fc gene transfer may have therapeutic potential for the immunomodulatory treatment of LPS-mediated inflammatory lung injury. PMID:21352201

  17. Foeniculum vulgare Mill. Protects against Lipopolysaccharide-induced Acute Lung Injury in Mice through ERK-dependent NF-κB Activation.

    PubMed

    Lee, Hui Su; Kang, Purum; Kim, Ka Young; Seol, Geun Hee

    2015-03-01

    Foeniculum vulgare Mill. (fennel) is used to flavor food, in cosmetics, as an antioxidant, and to treat microbial, diabetic and common inflammation. No study to date, however, has assessed the anti-inflammatory effects of fennel in experimental models of inflammation. The aims of this study were to investigate the anti-inflammatory effects of fennel in model of lipopolysaccharide (LPS)-induced acute lung injury. Mice were randomly assigned to seven groups (n=7~10). In five groups, the mice were intraperitoneally injected with 1% Tween 80-saline (vehicle), fennel (125, 250, 500µl/kg), or dexamethasone (1 mg/kg), followed 1 h later by intratracheal instillation of LPS (1.5 mg/kg). In two groups, the mice were intraperitoneally injected with vehicle or fennel (250µl/kg), followed 1 h later by intratracheal instillation of sterile saline. Mice were sacrificed 4 h later, and bronchoalveolar lavage fluid (BALF) and lung tissues were obtained. Fennel significantly and dose-dependently reduced LDH activity and immune cell numbers in LPS treated mice. In addition fennel effectively suppressed the LPS-induced increases in the production of the inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, with 500µl/kg fennel showing maximal reduction. Fennel also significantly and dose-dependently reduced the activity of the proinflammatory mediator matrix metalloproteinase 9 and the immune modulator nitric oxide (NO). Assessments of the involvement of the MAPK signaling pathway showed that fennel significantly decreased the LPS-induced phosphorylation of ERK. Fennel effectively blocked the inflammatory processes induced by LPS, by regulating pro-inflammatory cytokine production, transcription factors, and NO.

  18. Contrasting effects of an aminobisphosphonate, a potent inhibitor of bone resorption, on lipopolysaccharide-induced production of interleukin-1 and tumour necrosis factor α in mice

    PubMed Central

    Sugawara, Shunji; Shibazaki, Masahiko; Takada, Haruhiko; Kosugi, Hiroshi; Endo, Yasuo

    1998-01-01

    Aminobisphosphonates (aminoBPs), potent inhibitors of bone resorption, have been reported to induce inflammatory reactions such as fever and an increase in acute phase proteins in human patients, and to induce the histamine-forming enzyme, histidine decarboxylase, in mice. In the present study, we examined the effect of aminoBP, 4-amino-1-hydroxybutylidene-1,1-bisphosphonic acid (AHBuBP), on the production of the pro-inflammatory cytokines, IL-1 and TNFα, in mice.Intraperitoneal injection of AHBuBP did not itself produce detectable levels of IL-1 (α and β) and TNFα in the serum. However, the elevation of serum IL-1 induced by lipopolysaccharide (LPS) was greatly augmented in mice injected with AHBuBP 3 days before the LPS injection, whereas the LPS-induced elevation of serum TNFα was almost completely abolished.Spleen and bone marrow cells taken from mice injected with AHBuBP produced IL-1β in vitro spontaneously, and the production was augmented following the addition of LPS. Cells that accumulated in the peritoneal cavity in response to AHBuBP produced a particularly large amount of IL-1β. However, AHBuBP treatment of mice did not lead to an impairment of the in vitro production of TNFα by these three types of cells.Liposomes encapsulating dichloromethylene bisphosphonate (a non-amino BP) selectively deplete phagocytic macrophages. When an intraperitoneal injection of these liposomes was given 2 days after an injection of AHBuBP, there was a marked decrease in the LPS-induced elevation of serum IL-1 (α and β) (LPS being injected 3 days after the injection of AHBuBP).These results indicate that AHBuBP has contrasting effects on the in vivo LPS-induced production of IL-1 and TNFα in mice, enhancing the production of IL-1 by phagocytic macrophages and suppressing the production of TNFα, although underling mechanisms remain to be clarified. PMID:9831909

  19. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    PubMed

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  20. Folic Acid Protects against Lipopolysaccharide-Induced Preterm Delivery and Intrauterine Growth Restriction through Its Anti-Inflammatory Effect in Mice

    PubMed Central

    Dong, Xu-Ting; Zhou, Jun; Chen, Xue; Wang, Hua; Wu, Shu-Xian; Xia, Mi-Zhen; Zhang, Cheng; Xu, De-Xiang

    2013-01-01

    Increasing evidence demonstrates that maternal folic acid (FA) supplementation during pregnancy reduces the risk of neural tube defects, but whether FA prevents preterm delivery and intrauterine growth restriction (IUGR) remains obscure. Previous studies showed that maternal lipopolysaccharide (LPS) exposure induces preterm delivery, fetal death and IUGR in rodent animals. The aim of this study was to investigate the effects of FA on LPS-induced preterm delivery, fetal death and IUGR in mice. Some pregnant mice were orally administered with FA (0.6, 3 or 15 mg/kg) 1 h before LPS injection. As expected, a high dose of LPS (300 μg/kg, i.p.) on gestational day 15 (GD15) caused 100% of dams to deliver before GD18 and 89.3% of fetuses dead. A low dose of LPS (75 μg/kg, i.p.) daily from GD15 to GD17 resulted in IUGR. Interestingly, pretreatment with FA prevented LPS-induced preterm delivery and fetal death. In addition, FA significantly attenuated LPS-induced IUGR. Further experiments showed that FA inhibited LPS-induced activation of nuclear factor kappa B (NF-κB) in mouse placentas. Moreover, FA suppressed LPS-induced NF-κB activation in human trophoblast cell line JEG-3. Correspondingly, FA significantly attenuated LPS-induced upregulation of cyclooxygenase (COX)-2 in mouse placentas. In addition, FA significantly reduced the levels of interleukin (IL)-6 and keratinocyte-derived cytokine (KC) in amniotic fluid of LPS-treated mice. Collectively, maternal FA supplementation during pregnancy protects against LPS-induced preterm delivery, fetal death and IUGR through its anti-inflammatory effects. PMID:24324824

  1. Spherical nucleic acid targeting microRNA-99b enhances intestinal MFG-E8 gene expression and restores enterocyte migration in lipopolysaccharide-induced septic mice.

    PubMed

    Wang, Xiao; Hao, Liangliang; Bu, Heng-Fu; Scott, Alexander W; Tian, Ke; Liu, Fangyi; De Plaen, Isabelle G; Liu, Yulan; Mirkin, Chad A; Tan, Xiao-Di

    2016-01-01

    Milk fat globule-EGF factor 8 (MFG-E8) maintains the intestinal homeostasis by enhancing enterocyte migration and attenuating inflammation. We previously reported that sepsis is associated with down-regulation of intestinal MFG-E8 and impairment of enterocyte migration. Here, we showed that impairment of intestinal epithelial cell migration occurred in lipopolysaccharide (LPS)-induced septic mice. Treatment of RAW264.7 cells (a murine macrophage-like cell line) with LPS increased expression of miR-99b, a microRNA that is predicted to target mouse MFG-E8 3'UTR. Using a luciferase assay, we showed that miR-99b mimic suppressed the activity of a reporter containing MFG-E8 3'UTR. This suggests the role of miR-99b in inhibition of MFG-E8 gene expression. In addition, we developed an anti-miR99b spherical nucleic acid nanoparticle conjugate (SNA-NC(anti-miR99b)). Treatment of both naïve and LPS-challenged cells with SNA-NC(anti-miR99b) enhanced MFG-E8 expression in the cells. Administration of SNA-NC(anti-miR99b) rescued intestinal MFG-E8 expression in LPS-induced septic mice and attenuated LPS inhibitory effects on intestinal epithelial cell migration along the crypt-villus axis. Collectively, our study suggests that LPS represses MFG-E8 expression and disrupts enterocyte migration via a miR-99b dependent mechanism. Furthermore, this work shows that SNA-NC(anti-miR99b) is a novel nanoparticle-conjugate capable of rescuing MFG-E8 gene expression and maintaining intestinal epithelial homeostasis in sepsis. PMID:27538453

  2. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Song, Xiaojing; Zhang, Wen; Wang, Tiancheng; Jiang, Haichao; Zhang, Zecai; Fu, Yunhe; Yang, Zhengtao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy.

  3. Spherical nucleic acid targeting microRNA-99b enhances intestinal MFG-E8 gene expression and restores enterocyte migration in lipopolysaccharide-induced septic mice

    PubMed Central

    Wang, Xiao; Hao, Liangliang; Bu, Heng-Fu; Scott, Alexander W.; Tian, Ke; Liu, Fangyi; De Plaen, Isabelle G.; Liu, Yulan; Mirkin, Chad A.; Tan, Xiao-Di

    2016-01-01

    Milk fat globule-EGF factor 8 (MFG-E8) maintains the intestinal homeostasis by enhancing enterocyte migration and attenuating inflammation. We previously reported that sepsis is associated with down-regulation of intestinal MFG-E8 and impairment of enterocyte migration. Here, we showed that impairment of intestinal epithelial cell migration occurred in lipopolysaccharide (LPS)-induced septic mice. Treatment of RAW264.7 cells (a murine macrophage-like cell line) with LPS increased expression of miR-99b, a microRNA that is predicted to target mouse MFG-E8 3′UTR. Using a luciferase assay, we showed that miR-99b mimic suppressed the activity of a reporter containing MFG-E8 3′UTR. This suggests the role of miR-99b in inhibition of MFG-E8 gene expression. In addition, we developed an anti-miR99b spherical nucleic acid nanoparticle conjugate (SNA-NCanti-miR99b). Treatment of both naïve and LPS-challenged cells with SNA-NCanti-miR99b enhanced MFG-E8 expression in the cells. Administration of SNA-NCanti-miR99b rescued intestinal MFG-E8 expression in LPS-induced septic mice and attenuated LPS inhibitory effects on intestinal epithelial cell migration along the crypt-villus axis. Collectively, our study suggests that LPS represses MFG-E8 expression and disrupts enterocyte migration via a miR-99b dependent mechanism. Furthermore, this work shows that SNA-NCanti-miR99b is a novel nanoparticle-conjugate capable of rescuing MFG-E8 gene expression and maintaining intestinal epithelial homeostasis in sepsis. PMID:27538453

  4. Geniposide plays an anti-inflammatory role via regulating TLR4 and downstream signaling pathways in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Song, Xiaojing; Zhang, Wen; Wang, Tiancheng; Jiang, Haichao; Zhang, Zecai; Fu, Yunhe; Yang, Zhengtao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy. PMID:24771071

  5. Foeniculum vulgare Mill. Protects against Lipopolysaccharide-induced Acute Lung Injury in Mice through ERK-dependent NF-κB Activation.

    PubMed

    Lee, Hui Su; Kang, Purum; Kim, Ka Young; Seol, Geun Hee

    2015-03-01

    Foeniculum vulgare Mill. (fennel) is used to flavor food, in cosmetics, as an antioxidant, and to treat microbial, diabetic and common inflammation. No study to date, however, has assessed the anti-inflammatory effects of fennel in experimental models of inflammation. The aims of this study were to investigate the anti-inflammatory effects of fennel in model of lipopolysaccharide (LPS)-induced acute lung injury. Mice were randomly assigned to seven groups (n=7~10). In five groups, the mice were intraperitoneally injected with 1% Tween 80-saline (vehicle), fennel (125, 250, 500µl/kg), or dexamethasone (1 mg/kg), followed 1 h later by intratracheal instillation of LPS (1.5 mg/kg). In two groups, the mice were intraperitoneally injected with vehicle or fennel (250µl/kg), followed 1 h later by intratracheal instillation of sterile saline. Mice were sacrificed 4 h later, and bronchoalveolar lavage fluid (BALF) and lung tissues were obtained. Fennel significantly and dose-dependently reduced LDH activity and immune cell numbers in LPS treated mice. In addition fennel effectively suppressed the LPS-induced increases in the production of the inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, with 500µl/kg fennel showing maximal reduction. Fennel also significantly and dose-dependently reduced the activity of the proinflammatory mediator matrix metalloproteinase 9 and the immune modulator nitric oxide (NO). Assessments of the involvement of the MAPK signaling pathway showed that fennel significantly decreased the LPS-induced phosphorylation of ERK. Fennel effectively blocked the inflammatory processes induced by LPS, by regulating pro-inflammatory cytokine production, transcription factors, and NO. PMID:25729281

  6. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    PubMed

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  7. Proteomic Analysis of the Effects of Aged Garlic Extract and Its FruArg Component on Lipopolysaccharide-Induced Neuroinflammatory Response in Microglial Cells

    PubMed Central

    Mossine, Valeri V.; Nknolise, Dineo L.; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C. Michael; Mawhinney, Thomas P.; Brown, Paula N.; Fritsche, Kevin L.; Hannink, Mark; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  8. Inhibition of nuclear factor-kappa B sensitises anterior pituitary cells to tumour necrosis factor-α- and lipopolysaccharide-induced apoptosis.

    PubMed

    Eijo, G; Zárate, S; Jaita, G; Ferraris, J; Magri, M L; Zaldivar, V; Radl, D; Boti, V; Pisera, D; Seilicovich, A

    2011-08-01

    Nuclear factor-kappa B (NF-κB), an important pro-inflammatory factor, is a crucial regulator of cell survival. Both lipopolysaccharide (LPS) and tumour necrosis factor (TNF)-α activate NF-κB signalling. Oestrogens were shown to suppress NF-κB activation. Oestrogens exert a sensitising action to pro-apoptotic stimuli such as LPS and TNF-α in anterior pituitary cells. In the present study, we show by western blotting that 17β-oestradiol (E(2)) decreases TNF-α-induced NF-κB/p65 and p50 nuclear translocation in primary cultures of anterior pituitary cells from ovariectomised (OVX) rats. Also, the in vivo administration of E(2) decreases LPS-induced NF-κB/p65 and p50 nuclear translocation. To investigate whether the inhibition of NF-κB pathway sensitises anterior pituitary cells to pro-apoptotic stimuli, we used an inhibitor of NF-κB activity, BAY 11-7082 (BAY). BAY, at a concentration that fails to induce apoptosis, has permissive action on TNF-α-induced apoptosis of lactotrophs and somatotrophs from OVX rats, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Pharmacological inhibition of NF-κB signalling enhances E(2)-sensitising effect to TNF-α-induced apoptosis in lactotrophs but not in somatotrophs. In vivo administration of BAY allowed LPS-induced apoptosis in anterior pituitary cells from OVX rats (determined by fluorescence activated cell sorting). Furthermore, LPS-induced expression of Bcl-xL in pituitaries of OVX rats is decreased by E(2) administration. Our results show that inhibition of the NF-κB signalling pathway sensitises anterior pituitary cells to the pro-apoptotic action of LPS and TNF-α. Because E(2) inhibits LPS- and TNF-α-activated NF-κB nuclear translocation, the present study suggests that E(2) sensitises anterior pituitary cells to TNF-α- and LPS-induced apoptosis by inhibiting NF-κB activity.

  9. Dioscin alleviates lipopolysaccharide-induced inflammatory kidney injury via the microRNA let-7i/TLR4/MyD88 signaling pathway.

    PubMed

    Qi, Meng; Yin, Lianhong; Xu, Lina; Tao, Xufeng; Qi, Yan; Han, Xu; Wang, Changyuan; Xu, Youwei; Sun, Huijun; Liu, Kexin; Peng, Jinyong

    2016-09-01

    We previously reported the potent effect of dioscin against renal ischemia/reperfusion injury, but little is known about the role of dioscin in lipopolysaccharide (LPS)-induced inflammatory kidney injury. The present work aimed to investigate the effects and potential mechanisms of dioscin in preventing LPS-induced kidney injury. In vivo injury was induced in rats and mice with an intraperitoneal injection of LPS (10mg/kg), and in vitro studies were performed on NRK-52E and HK-2 cells challenged with LPS (0.5μg/ml). Our results indicated that dioscin significantly protected against renal damage by decreasing blood urea nitrogen and creatinine levels and reversing oxidative stress. Mechanistic studies demonstrated that dioscin markedly up- regulated the level of the microRNA let-7i, resulting in significant inhibition of TLR4 expression. Dioscin significantly down-regulated the levels of MyD88, NOX1 and cleaved caspase-8/3; inhibited the nuclear translocation of NF-κB; inhibited PI3K and Akt phosphorylation; increased the levels of SOD2; and decreased the mRNA levels of IL-1β, IL-6, MIP-1α, Fas and FasL. In vitro, transfection of microRNA let-7i inhibitor and TLR4 DNA were applied, and the results further confirmed the nephroprotective effect of dioscin in suppressing TLR4/MyD88 signaling and subsequently inhibiting inflammation, oxidative stress and apoptosis. Furthermore, the abrogation of cellular MyD88 expression by ST2825 eliminated the inhibitory effect of dioscin on the levels of nuclear NF-κB, cleaved caspase-3, SOD2 and ROS. These data indicated that dioscin exerted a nephroprotective effect against LPS-induced inflammatory renal injury by adjusting the microRNA let-7i/TLR4/MyD88 signaling pathway, which provided novel insights into the mechanisms of this therapeutic candidate for the treatment of inflammatory kidney injury. PMID:27431331

  10. Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways.

    PubMed

    Slusarczyk, Joanna; Trojan, Ewa; Glombik, Katarzyna; Piotrowska, Anna; Budziszewska, Boguslawa; Kubera, Marta; Popiolek-Barczyk, Katarzyna; Lason, Wladyslaw; Mika, Joanna; Basta-Kaim, Agnieszka

    2016-03-01

    Accumulating evidence suggests that activation of microglia plays a key role in the pathogenesis of depression. Activated microglia produce a wide range of factors whose prolonged or excessive release may lead to brain disorders. Thus, the inhibition of microglial cells may be beneficial in the treatment of depressive diseases. Tianeptine is an atypical antidepressant drug with proven clinical efficacy, but its mechanism of action remains still not fully understood. In the present study, using microglial cultures we investigated whether tianeptine modifies microglial activation after lipopolysaccharide (LPS) stimulation and which intracellular pathways are involved in the activity of this antidepressant. Our study shows that tianeptine attenuated the LPS-evoked inflammatory activation of microglia by decreasing the expression of proinflammatory cytokines such as IL-1β, IL-18, IL-6 and tumor necrosis factor α (TNF-α), the release of nitric oxide (NO) and reactive oxygen species (ROS) as well as the expression of inducible nitric oxide synthase. Analyses of signaling pathways demonstrate that tianeptine led to the suppression of LPS-induced TLR4 expression and ERK1/2 phosphorylation. Furthermore, our study reveals the inhibitory impact of tianeptine on caspase-3-induced PKCδ degradation and consequently on the activation of NF-κB factor in microglial cells. Taken together, present results show anti-inflammatory properties of tianeptine in microglial cultures stimulated by LPS. This study provides evidence that the inhibition of microglial activation may underlie the therapeutic activity of tianeptine. Our findings show the anti-inflammatory effect of tianeptine (TIA) in lipopolisaccharide (LPS)-stimulated microglial cells. The beneficial tianeptine action is mediated through the inhibition of Toll-like receptor 4 (TLR4) expression as well as the TLR4-related pathways: extracellular signal-regulated kinase 1/2 (ERK1/2), caspase-3-dependent protein kinase δ (PKC

  11. Anti-inflammatory properties of tianeptine on lipopolysaccharide-induced changes in microglial cells involve toll-like receptor-related pathways.

    PubMed

    Slusarczyk, Joanna; Trojan, Ewa; Glombik, Katarzyna; Piotrowska, Anna; Budziszewska, Boguslawa; Kubera, Marta; Popiolek-Barczyk, Katarzyna; Lason, Wladyslaw; Mika, Joanna; Basta-Kaim, Agnieszka

    2016-03-01

    Accumulating evidence suggests that activation of microglia plays a key role in the pathogenesis of depression. Activated microglia produce a wide range of factors whose prolonged or excessive release may lead to brain disorders. Thus, the inhibition of microglial cells may be beneficial in the treatment of depressive diseases. Tianeptine is an atypical antidepressant drug with proven clinical efficacy, but its mechanism of action remains still not fully understood. In the present study, using microglial cultures we investigated whether tianeptine modifies microglial activation after lipopolysaccharide (LPS) stimulation and which intracellular pathways are involved in the activity of this antidepressant. Our study shows that tianeptine attenuated the LPS-evoked inflammatory activation of microglia by decreasing the expression of proinflammatory cytokines such as IL-1β, IL-18, IL-6 and tumor necrosis factor α (TNF-α), the release of nitric oxide (NO) and reactive oxygen species (ROS) as well as the expression of inducible nitric oxide synthase. Analyses of signaling pathways demonstrate that tianeptine led to the suppression of LPS-induced TLR4 expression and ERK1/2 phosphorylation. Furthermore, our study reveals the inhibitory impact of tianeptine on caspase-3-induced PKCδ degradation and consequently on the activation of NF-κB factor in microglial cells. Taken together, present results show anti-inflammatory properties of tianeptine in microglial cultures stimulated by LPS. This study provides evidence that the inhibition of microglial activation may underlie the therapeutic activity of tianeptine. Our findings show the anti-inflammatory effect of tianeptine (TIA) in lipopolisaccharide (LPS)-stimulated microglial cells. The beneficial tianeptine action is mediated through the inhibition of Toll-like receptor 4 (TLR4) expression as well as the TLR4-related pathways: extracellular signal-regulated kinase 1/2 (ERK1/2), caspase-3-dependent protein kinase δ (PKC

  12. ESeroS-GS modulates lipopolysaccharide-induced macrophage activation by impairing the assembly of TLR-4 complexes in lipid rafts.

    PubMed

    Duan, Wenjuan; Zhou, Juefei; Zhang, Shen; Zhao, Kai; Zhao, Lijing; Ogata, Kazumi; Sakaue, Takahiro; Mori, Akitane; Wei, Taotao

    2011-05-01

    The binding of lipopolysaccharides (LPS) to macrophages results in inflammatory responses. In extreme cases it can lead to endotoxic shock, often resulting in death. A broad range of antioxidants, including tocopherols, can reduce LPS activity in vitro and in vivo. To elucidate the underlying mechanisms of their action, we investigated the effect of the sodium salt of γ-L-glutamyl-S-[2-[[[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl]oxy]carbonyl]-3-[[2-(1H-indol-3-yl)ethyl]amino]-3-oxopropyl]-L-cysteinylglycine (ESeroS-GS), a novel α-tocopherol derivative, on LPS-induced inflammation in vitro and in vivo. ESeroS-GS reduced the transcription of TNF-α, IL-1β, IL-6 and iNOS genes in a dose-dependent manner in RAW264.7 macrophages, and inhibited the release of these inflammatory factors. In addition, ESeroS-GS inhibited LPS-induced mortality in a mouse sepsis model. Electrophoretic mobility shift assays (EMSA) and reporter gene assays revealed that ESeroS-GS down-regulated the transcriptional activity of NF-κB. By analyzing the partitioning of CD14 and Toll-like receptor 4 (TLR-4) in cell membrane microdomains, we found that ESeroS-GS attenuates the binding of LPS to RAW264.7 cells via interfering with the relocation of CD14 and TLR-4 to lipid rafts, blocking the activation of interleukin-1 receptor-associated kinase 1 (IRAK-1), and inhibiting the consequent phosphorylation of TAK1 and IKKα/β, which together account for the suppression of NF-κB activation. Taken together, our data suggest that ESeroS-GS can modulate LPS signaling in macrophages by impairing TLR-4 complex assembly via a lipid raft dependent mechanism. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. PMID:21276822

  13. Topically applied standardized aqueous extract of Curcuma longa Linn. suppresses endotoxin-induced uveal inflammation in rats.

    PubMed

    Agarwal, Renu; Gupta, S K; Agarwal, Puneet; Srivastava, Sushma

    2013-10-01

    Aqueous extract of C. longa when administered 4 h after induction of E. coli lipopolysaccharide-induced uveitis in rats showed significantly suppressed inflammation with a significantly lower mean clinical grade, histopathological grade and aqueous humor (AH) protein level compared to vehicle treated group. Although, prednisolone group showed significantly lower clinical grade, histopathological grades and AH protein levels compared to C. longa group, TNF-alpha levels did not differ significantly. Moreover, when the aqueous extract was administered starting from 3 days before induction of uveitis, the mean clinical and histopathological grade as well as AH protein and TNF-alpha levels were comparable to C. longa group when treatment was administered 4 h after induction of uveitis. It is concluded that topically applied standardized aqueous extract of C. longa suppresses endotoxin-induced uveitis in rats by reducing TNF-alpha activity. PMID:24266103

  14. Acetate supplementation attenuates lipopolysaccharide-induced neuroinflammation.

    PubMed

    Reisenauer, Chris J; Bhatt, Dhaval P; Mitteness, Dane J; Slanczka, Evan R; Gienger, Heidi M; Watt, John A; Rosenberger, Thad A

    2011-04-01

    Glyceryl triacetate (GTA), a compound effective at increasing circulating and tissue levels of acetate was used to treat rats subjected to a continual 28 day intra-ventricular infusion of bacterial lipopolysaccharide (LPS). This model produces a neuroinflammatory injury characterized by global neuroglial activation and a decrease in choline acetyltransferase immunoreactivity in the basal forebrain. During the LPS infusion, rats were given a daily treatment of either water or GTA at a dose of 6 g/kg by oral gavage. In parallel experiments, free-CoA and acetyl-CoA levels were measured in microwave fixed brains and flash frozen heart, liver, kidney and muscle following a single oral dose of GTA. We found that a single oral dose of GTA significantly increased plasma acetate levels by 15 min and remained elevated for up to 4 h. At 30 min the acetyl-CoA levels in microwave-fixed brain and flash frozen heart and liver were increased at least 2.2-fold. The concentrations of brain acetyl-CoA was significantly increased between 30 and 45 min following treatment and remained elevated for up to 4 h. The concentration of free-CoA in brain was significantly decreased compared to controls at 240 min. Immunohistochemical and morphological analysis demonstrated that a daily treatment with GTA significantly reduced the percentage of reactive glial fibrillary acidic protein-positive astrocytes and activated CD11b-positive microglia by 40-50% in rats subjected to LPS-induced neuroinflammation. Further, in rats subjected to neuroinflammation, GTA significantly increased the number of choline acetyltransferase (ChAT)-positive cells by 40% in the basal forebrain compared to untreated controls. These data suggest that acetate supplementation increases intermediary short chain acetyl-CoA metabolism and that treatment is potentially anti-inflammatory and neuroprotective with regards to attenuating neuroglial activation and increasing ChAT immunoreactivity in this model. PMID:21272004

  15. Low levels of TGF-β1 enhance human umbilical cord-derived mesenchymal stem cell fibronectin production and extend survival time in a rat model of lipopolysaccharide-induced acute lung injury.

    PubMed

    Li, Dong; Liu, Qingshen; Qi, Lei; Dai, Xiaoyu; Liu, Huan; Wang, Yunshan

    2016-08-01

    Mesenchymal stem cells (MSCs) are an attractive cellular source for cell‑based therapy, tissue engineering and regenerative medicine. However, the use of MSCs is limited by their low incorporation rate in the graft environment. The majority of cells are lost from the graft within 1 month, due to reduced microenvironment or local inflammation at the graft site. The extracellular matrix (ECM) may assist the survival and expansion of MSCs. The present study aimed to identify an effective approach to increase ECM expression levels by MSCs in order to enhance the therapeutic effect and survival rate of MSCs at the injury site. The concentration‑dependent effect of transforming growth factor (TGF)‑β1 on human umbilical cord (hUC)‑MSC proliferation and expression of ECM genes was investigated. MSCs were successfully isolated, cultured and expanded from hUC. A low concentration of TGF‑β1 (0.1 ng/ml) exhibited the optimal effect on hUC‑MSC proliferation and markedly stimulated the expression of ECM genes, particularly fibronectin (FN). Furthermore, treatment with TGF‑β1 caused no alteration in the immunophenotype and differentiation capacity of MSCs. In vivo experiments in rats demonstrated that intravenous injection of control UC-MSCs or TGF-β1-pre-treated UC-MSCs reduced the severity of lipopolysaccharide-induced lung injury, assessed using histology, measurements of the wet‑dry lung weight ratio, and neutrophil count and protein concentration in bronchoalveolar lavage fluid. However, the short‑term (48 h) therapeutic effects of untreated and TGF‑β1‑pre‑treated UC‑MSCs were similar. The survival of MSCs in damaged lungs, determined by Sry gene expression levels, were significantly increased in MSCs pre‑treated with TGF‑β1. In conclusion, pre‑treatment of MSCs with a low concentration of TGF‑β1 enhanced the expression of ECM components, particularly FN, thus, improving the survival and potential therapeutic benefits of MSCs

  16. The Attenuation of Scutellariae radix Extract on Oxidative Stress for Colon Injury in Lipopolysaccharide-induced RAW264.7 Cell and 2,4,6-trinitrobenzene Sulfonic Acid-induced Ulcerative Colitis Rats

    PubMed Central

    Jin, Yu; Yang, Jun; Lin, Lianjie; Lin, Yan; Zheng, Changqing

    2016-01-01

    ) could significantly increase the activity of glutathione peroxidase, catalase, and superoxide dismutase associated with OS in lipopolysaccharide-induced RAW264.7 cell damage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis ratsThe level of malondialdehyde was markedly reduced by SR both in vitro and in vivo SR could decrease the severity of acute TNBS-induced colitis in ratsSR could significantly downregulate the expression of transforming growth factor beta 1 protein in colon tissue. Abbreviations used: OS: Oxidative stress, UC: Ulcerative colitis, SR: Scutellariae radix, TNBS: 2,4,6-trinitrobenzene sulfonic acid, DAI: Disease activity index, MPO: Myeloperoxidase, GSH-PX: Glutathione peroxidase, CAT: Catalase, SOD: Superoxide dismutase, MDA: Malondialdehyde, TGF-β1: Transforming growth factor beta 1, OD: Optical density, ROS: Reactive oxygen species. PMID:27076753

  17. Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression.

    PubMed

    Hotta, Mariko; Nakata, Rieko; Katsukawa, Michiko; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2010-01-01

    Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin biosynthesis, plays a key role in inflammation and circulatory homeostasis. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors belonging to the nuclear receptor superfamily and are involved in the control of COX-2 expression, and vice versa. Here, we show that COX-2 promoter activity was suppressed by essential oils derived from thyme, clove, rose, eucalyptus, fennel, and bergamot in cell-based transfection assays using bovine arterial endothelial cells. Moreover, from thyme oil, we identified carvacrol as a major component of the suppressor of COX-2 expression and an activator of PPARalpha and gamma. PPARgamma-dependent suppression of COX-2 promoter activity was observed in response to carvacrol treatment. In human macrophage-like U937 cells, carvacrol suppressed lipopolysaccharide-induced COX-2 mRNA and protein expression, suggesting that carvacrol regulates COX-2 expression through its agonistic effect on PPARgamma. These results may be important in understanding the antiinflammatory and antilifestyle-related disease properties of carvacrol. PMID:19578162

  18. Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters.

    PubMed

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Nelson, Randy J

    2011-06-23

    Species have been adapted to specific niches optimizing survival and reproduction; however, urbanization by humans has dramatically altered natural habitats. Artificial light at night (LAN), termed 'light pollution', is an often overlooked, yet increasing disruptor of habitats, which perturbs physiological processes that rely on precise light information. For example, LAN alters the timing of reproduction and activity in some species, which decreases the odds of successful breeding and increases the threat of predation for these individuals, leading to reduced fitness. LAN also suppresses immune function, an important proxy for survival. To investigate the impact of LAN in a species naive to light pollution in its native habitat, immune function was examined in Siberian hamsters derived from wild-caught stock. After four weeks exposure to dim LAN, immune responses to three different challenges were assessed: (i) delayed-type hypersensitivity (DTH), (ii) lipopolysaccharide-induced fever, and (iii) bactericide activity of blood. LAN suppressed DTH response and reduced bactericide activity of blood after lipopolysaccharide treatment, in addition to altering daily patterns of locomotor activity, suggesting that human encroachment on habitats via night-time lighting may inadvertently compromise immune function and ultimately fitness.

  19. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression[S

    PubMed Central

    Hotta, Mariko; Nakata, Rieko; Katsukawa, Michiko; Hori, Kazuyuki; Takahashi, Saori; Inoue, Hiroyasu

    2010-01-01

    Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin biosynthesis, plays a key role in inflammation and circulatory homeostasis. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors belonging to the nuclear receptor superfamily and are involved in the control of COX-2 expression, and vice versa. Here, we show that COX-2 promoter activity was suppressed by essential oils derived from thyme, clove, rose, eucalyptus, fennel, and bergamot in cell-based transfection assays using bovine arterial endothelial cells. Moreover, from thyme oil, we identified carvacrol as a major component of the suppressor of COX-2 expression and an activator of PPARα and γ. PPARγ-dependent suppression of COX-2 promoter activity was observed in response to carvacrol treatment. In human macrophage-like U937 cells, carvacrol suppressed lipopolysaccharide-induced COX-2 mRNA and protein expression, suggesting that carvacrol regulates COX-2 expression through its agonistic effect on PPARγ. These results may be important in understanding the antiinflammatory and antilifestyle-related disease properties of carvacrol. PMID:19578162

  20. Pyrroloquinoline quinone (PQQ) inhibits lipopolysaccharide induced inflammation in part via downregulated NF-κB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice.

    PubMed

    Yang, Chongfei; Yu, Lifeng; Kong, Lingbo; Ma, Rui; Zhang, Juliang; Zhu, Qingsheng; Zhu, Jinyu; Hao, Dingjun

    2014-01-01

    Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Pyrroloquinoline quinone (PQQ) is a naturally occurring redox cofactor that acts as an essential nutrient, antioxidant, and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of PQQ was investigated in LPS treated primary microglia cells. Our observations showed that pretreatment with PQQ significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as iNOS, COX-2, TNF-a, IL-1b, IL-6, MCP-1 and MIP-1a in LPS treated primary microglia cells. The nuclear translocation of NF-κB and the phosphorylation level of p65, p38 and JNK MAP kinase pathways were also inhibited by PQQ in LPS stimulated primary microglia cells. Further a systemic LPS treatment acute inflammation murine brain model was used to study the suppressive effects of PQQ against neuroinflammation in vivo. Mice treated with PQQ demonstrated marked attenuation of neuroinflammation based on Western blotting and immunohistochemistry analysis of Iba1-against antibody in the brain tissue. Indicated that PQQ protected primary cortical neurons against microglia-mediated neurotoxicity. These results collectively suggested that PQQ might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.

  1. Pyrroloquinoline Quinone (PQQ) Inhibits Lipopolysaccharide Induced Inflammation in Part via Downregulated NF-κB and p38/JNK Activation in Microglial and Attenuates Microglia Activation in Lipopolysaccharide Treatment Mice

    PubMed Central

    Ma, Rui; Zhang, Juliang; Zhu, Qingsheng; Zhu, Jinyu; Hao, Dingjun

    2014-01-01

    Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Pyrroloquinoline quinone (PQQ) is a naturally occurring redox cofactor that acts as an essential nutrient, antioxidant, and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of PQQ was investigated in LPS treated primary microglia cells. Our observations showed that pretreatment with PQQ significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as iNOS, COX-2, TNF-a, IL-1b, IL-6, MCP-1 and MIP-1a in LPS treated primary microglia cells. The nuclear translocation of NF-κB and the phosphorylation level of p65, p38 and JNK MAP kinase pathways were also inhibited by PQQ in LPS stimulated primary microglia cells. Further a systemic LPS treatment acute inflammation murine brain model was used to study the suppressive effects of PQQ against neuroinflammation in vivo. Mice treated with PQQ demonstrated marked attenuation of neuroinflammation based on Western blotting and immunohistochemistry analysis of Iba1-against antibody in the brain tissue. Indicated that PQQ protected primary cortical neurons against microglia-mediated neurotoxicity. These results collectively suggested that PQQ might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation. PMID:25314304

  2. Lipopolysaccharide-Induced CXCL10 mRNA Level and Six Stimulant-mRNA Combinations in Whole Blood: Novel Biomarkers for Bortezomib Responses Obtained from a Prospective Multicenter Trial for Patients with Multiple Myeloma.

    PubMed

    Watanabe, Takashi; Mitsuhashi, Masato; Sagawa, Morihiko; Ri, Masaki; Suzuki, Kenshi; Abe, Masahiro; Ohmachi, Ken; Nakagawa, Yasunori; Nakamura, Shingen; Chosa, Mizuki; Iida, Shinsuke; Kizaki, Masahiro

    2015-01-01

    To identify predictive biomarkers for clinical responses to bortezomib treatment, 0.06 mL of each whole blood without any cell separation procedures was stimulated ex vivo using five agents, and eight mRNAs were quantified. In six centers, heparinized peripheral blood was prospectively obtained from 80 previously treated or untreated, symptomatic multiple myeloma (MM) patients with measurable levels of M-proteins. The blood sample was procured prior to treatment as well as 2-3 days and 1-3 weeks after the first dose of bortezomib, which was intravenously administered biweekly or weekly, during the first cycle. Six stimulant-mRNA combinations; that is, lipopolysaccharide (LPS)-granulocyte-macrophage colony-stimulating factor (GM-CSF), LPS-CXCL chemokine 10 (CXCL10), LPS-CCL chemokine 4 (CCL4), phytohemagglutinin-CCL4, zymosan A (ZA)-GMCSF and ZA-CCL4 showed significantly higher induction in the complete and very good partial response group than in the stable and progressive disease group, as determined by both parametric (t-test) and non-parametric (unpaired Mann-Whitney test) tests. Moreover, LPS-induced CXCL10 mRNA expression was significantly suppressed 2-3 days after the first dose of bortezomib in all patients, as determined by both parametric (t-test) and non-parametric (paired Wilcoxon test) tests, whereas the complete and very good partial response group showed sustained suppression 1-3 weeks after the first dose. Thus, pretreatment LPS-CXCL10 mRNA and/or the six combinations may serve as potential biomarkers for the response to bortezomib treatment in MM patients.

  3. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    SciTech Connect

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul; Lee, Mee-Hee; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin; Kim, Sunoh; Yoon, Ho-Geun

    2011-07-08

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.

  4. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss.

    PubMed

    Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min; Ahn, Sung-Jun; So, Hong-Seob; Oh, Jaemin

    2016-02-01

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine-threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine(727). Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. PMID:26792726

  5. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription

    PubMed Central

    Kobayashi, Eri H.; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Hayashi, Makiko; Sekine, Hiroki; Tanaka, Nobuyuki; Moriguchi, Takashi; Motohashi, Hozumi; Nakayama, Keiko; Yamamoto, Masayuki

    2016-01-01

    Nrf2 (NF-E2-related factor-2) transcription factor regulates oxidative/xenobiotic stress response and also represses inflammation. However, the mechanisms how Nrf2 alleviates inflammation are still unclear. Here, we demonstrate that Nrf2 interferes with lipopolysaccharide-induced transcriptional upregulation of proinflammatory cytokines, including IL-6 and IL-1β. Chromatin immunoprecipitation (ChIP)-seq and ChIP-qPCR analyses revealed that Nrf2 binds to the proximity of these genes in macrophages and inhibits RNA Pol II recruitment. Further, we found that Nrf2-mediated inhibition is independent of the Nrf2-binding motif and reactive oxygen species level. Murine inflammatory models further demonstrated that Nrf2 interferes with IL6 induction and inflammatory phenotypes in vivo. Thus, contrary to the widely accepted view that Nrf2 suppresses inflammation through redox control, we demonstrate here that Nrf2 opposes transcriptional upregulation of proinflammatory cytokine genes. This study identifies Nrf2 as the upstream regulator of cytokine production and establishes a molecular basis for an Nrf2-mediated anti-inflammation approach. PMID:27211851

  6. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists

    SciTech Connect

    Zhang Songwen Liu Qiangyuan; Wang Juan; Harnish, Douglas C.

    2009-02-06

    C-reactive protein (CRP), a human acute-phase protein, is a risk factor for future cardiovascular events and exerts direct pro-inflammatory and pro-atherogenic properties. The farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, plays an essential role in the regulation of enterohepatic circulation and lipid homeostasis. In this study, we report that two synthetic FXR agonists, WAY-362450 and GW4064, suppressed interleukin-6-induced CRP expression in human Hep3B hepatoma cells. Knockdown of FXR by short interfering RNA attenuated the inhibitory effect of the FXR agonists and also increased the ability of interleukin-6 to induce CRP production. Furthermore, treatment of wild type C57BL/6 mice with the FXR agonist, WAY-362450, attenuated lipopolysaccharide-induced serum amyloid P component and serum amyloid A3 mRNA levels in the liver, whereas no effect was observed in FXR knockout mice. These data provide new evidence for direct anti-inflammatory properties of FXR.

  7. Inhibitory Effects of Chemical Compounds Isolated from the Rhizome of Smilax glabra on Nitric Oxide and Tumor Necrosis Factor-α Production in Lipopolysaccharide-Induced RAW264.7 Cell

    PubMed Central

    Lu, Chuan-li; Zhu, Wei; Wang, Dong-mei; Chen, Wen-long; Hu, Meng-mei; Wang, Min; Xu, Xiao-jie

    2015-01-01

    The rhizome of Smilax glabra has been used for a long time as both food and folk medicine in many countries. The present study focused on the active constituents from the rhizome of S. glabra, which possess potential anti-inflammatory activities. As a result, nine known compounds were isolated from the rhizome of S. glabra with the bioassay-guiding, and were identified as syringaresinol (1), lasiodiplodin (2), de-O-methyllasiodiplodin (3), syringic acid (4), 1,4-bis(4-hydroxy-3,5-dimethoxyphenyl)-2,3-bis(hydroxymethyl)-1,4-butanediol (5), lyoniresinol (6), trans-resveratrol (7), trans-caffeic acid methyl ester (8), and dihydrokaempferol (9). Among these compounds, 2 and 3 were isolated for the first time from S. glabra. In addition, the potential anti-inflammatory activities of the isolated compounds were evaluated in vitro in lipopolysaccharide- (LPS-) induced RAW264.7 cells. Results indicated that 4 and 7 showed significant inhibitory effects on NO production of RAW264.7 cells, and 1, 2, 3, and 5 showed moderate suppression effects on induced NO production. 1, 7, and 5 exhibited high inhibitory effects on TNF-α production, with the IC50 values less than 2.3, 4.4, and 16.6 μM, respectively. These findings strongly suggest that compounds 1, 2, 3, 4, 5, 7, and 9 were the potential anti-inflammatory active compositions of S. glabra. PMID:25821492

  8. Anti-inflammatory effect of selagin-7-O-(6''-O-acetyl-)-ß-D-glycoside isolated from Cancrinia discoidea on lipopolysaccharide-induced mouse macrophage RAW 264.7 cells.

    PubMed

    Xiao, Kai-Jun; Wang, Wen-Xia; Dai, Jia-Li; Zhu, Liang

    2014-01-01

    Selagin-7-O-(6''-O-acetyl-)-ß-D-glycoside, a new flavone glycoside isolated from Cancrinia discoidea, is known to exhibit anti-inflammatory activity in vivo. This study aimed to investigate the protection of this flavone glycoside on inflammation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The effects of selagin-7-O-(6''-O-acetyl-)-ß-D-glycoside on inflammatory cytokines and signaling pathways were analyzed by enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, and western blot. Results show that selagin-7-O-(6''-O-acetyl-)-ß-D-glycoside protected LPS-induced macrophage RAW 264.7 cells from injury. The flavone glycoside markedly inhibited the LPS-induced production of tumor necrosis factor-α, interleukin-1ß, and interleukin-6 and increased interleukin-10 release in a concentration-dependent manner. Furthermore, treatment with the flavone glycoside decreased nitric oxide and prostaglandin E2 in LPS-challenged RAW 264.7 cells. These decreases were associated with the down-regulation of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and nuclear factor kappa B (NF-κB) activity. These findings suggest that the anti-inflammatory effects of selagin-7-O-(6''-O-acetyl-)-ß-D-glycoside were associated with the adjustment of inflammatory cytokines, and attributed to the down-regulation of NF-κB and consequent suppression of the expression of iNOS and COX-2.

  9. Anti-inflammatory effects of methanol extract of Canarium lyi C.D. Dai & Yakovlev in RAW 264.7 macrophages and a murine model of lipopolysaccharide-induced lung injury.

    PubMed

    Hong, Ju-Mi; Kwon, Ok-Kyoung; Shin, In-Sik; Jeon, Chan-Mi; Shin, Na-Rae; Lee, Joongku; Park, Sang-Hong; Bach, Tran The; Hai, Do Van; Oh, Sei-Ryang; Han, Sang-Bae; Ahn, Kyung-Seop

    2015-05-01

    Canarium lyi C.D. Dai & Yakovlev (CL) is a member of the Anacardiaceae family. To the best of our knowledge, no studies on its anti-inflammatory effects have yet been reported. In the present study, we investigated the protective effects of CL on inflammation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and LPS-induced acute lung injury (ALI) mice. CL attenuated the production of LPS-stimulated inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and interleukin-6 (IL-6). Furthermore, CL suppressed phosphorylation of the inhibitor κB-α (IκB-α), p38, c-Jun terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), as well as the translocation of the nuclear factor-κB (NF-κB) p65 subunit into the nucleus. For the in vivo efficacy, the effect of CL on a mouse model of LPS-induced acute lung injury was assessed. CL treatment of the mice significantly inhibited the inflammatory cell recruitment and pro-inflammatory cytokine production in bronchoalveolar lavage fluids (BALF). CL-treated mice also showed a marked inhibition of cyclooxygenase-2 (COX-2) and phosphorylation of IκB and p65. In addition, CL attenuated lung histopathological changes in LPS-induced ALI mice. In conclusion, our results suggest that CL is a potential therapeutic candidate for the treatment of inflammatory diseases, including pneumonia.

  10. A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia.

    PubMed

    Yoon, Chi-Su; Kim, Dong-Cheol; Quang, Tran Hong; Seo, Jungwon; Kang, Dae Gill; Lee, Ho Sub; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1β, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation. PMID:27649130

  11. Attenuated suppression of the oxidative burst by cells dying in the presence of oxidized low density lipoprotein.

    PubMed

    Namgaladze, Dmitry; Jennewein, Carla; Preiss, Stefan; von Knethen, Andreas; Brüne, Bernhard

    2009-11-01

    Macrophages ingesting apoptotic cells attenuate inflammatory responses, such as reactive oxygen species (ROS) generation. In atherosclerosis, ongoing inflammation and accumulation of apoptotic/necrotic material are observed, suggesting defects of phagocytes in recognizing or responding to dying cells. Modified lipoproteins such as oxidized LDL (oxLDL) are known to promote inflammation and to interfere with apoptotic cell clearance. Here, we studied the impact of cells exposed to oxLDL on their ability to interfere with the oxidative burst in phagocytes. In contrast to apoptotic cells, cells dying in response to or in the presence of oxLDL failed to suppress ROS generation despite efficiently being taken up by phagocytes. In addition, apoptotic cells, but not oxLDL-treated cells, inhibited phosphorylation of extracellular signal-regulated kinase, which is important for NADPH oxidase activation. oxLDL treatment did not interfere with activation of the antiinflammatory transcriptional regulator peroxisome proliferator-activated receptor gamma by apoptotic cells. Moreover, cells exposed to oxLDL failed to suppress lipopolysaccharide- induced proinflammatory cytokine expression, whereas apoptotic cells attenuated these phagocyte responses. Thus, the presence of oxLDL during cell death impaired the ability of apoptotic cells to act antiinflammatory with regard to oxidative burst inhibition and cytokine expression in phagocytes.

  12. Potential use of fucose-appended dendrimer/α-cyclodextrin conjugates as NF-κB decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice.

    PubMed

    Akao, Chiho; Tanaka, Takahiro; Onodera, Risako; Ohyama, Ayumu; Sato, Nana; Motoyama, Keiichi; Higashi, Taishi; Arima, Hidetoshi

    2014-11-10

    The purpose of the present study is to treat lipopolysaccharide (LPS)-induced fulminant hepatitis by NF-κB decoy complex with fucose-appended dendrimer (generation 2; G2) conjugate with α-cyclodextrin (Fuc-S-α-CDE (G2)). Fuc-S-α-CDE (G2, average degree of substitution of fucose (DSF2))/NF-κB decoy complex significantly suppressed nitric oxide and tumor necrosis factor-α (TNF-α) production from LPS-stimulated NR8383 cells, a rat alveolar macrophage cell line, by adequate physicochemical properties and fucose receptor-mediated cellular uptake. Intravenous injection of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex extended the survival of LPS-induced fulminant hepatitis model mice. In addition, Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex administered intravenously highly accumulated in the liver, compared to naked NF-κB decoy alone. Furthermore, the liver accumulation of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex was inhibited by the pretreatment with GdCl3, a specific inhibitor of Kupffer cell uptake. Also, the serum aspartate aminotransferase, alanine aminotransferase and TNF-α levels in LPS-induced fulminant hepatitis model mice were significantly attenuated by the treatment with Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex, compared with naked NF-κB decoy alone. Taken together, these results suggest that Fuc-S-α-CDE (G2, DSF2) has the potential for a novel Kupffer cell-selective NF-κB decoy carrier for the treatment of LPS-induced fulminant hepatitis in mice. PMID:25020038

  13. Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway.

    PubMed

    Yao, Jing; Pan, Di; Zhao, Yue; Zhao, Li; Sun, Jie; Wang, Yu; You, Qi-Dong; Xi, Tao; Guo, Qing-Long; Lu, Na

    2014-10-01

    Acute lung injury (ALI) from a variety of clinical disorders, characterized by diffuse inflammation, is a cause of acute respiratory failure that develops in patients of all ages. Previous studies reported that wogonin, a flavonoid-like chemical compound which was found in Scutellaria baicalensis, has anti-inflammatory effects in several inflammation models, but not in ALI. Here, the in vivo protective effect of wogonin in the amelioration of lipopolysaccharide (LPS) -induced lung injury and inflammation was assessed. In addition, the in vitro effects and mechanisms of wogonin were studied in the mouse macrophage cell lines Ana-1 and RAW264.7. In vivo results indicated that wogonin attenuated LPS-induced histological alterations. Peripheral blood leucocytes decreased in the LPS-induced group, which was ameliorated by wogonin. In addition, wogonin inhibited the production of several inflammatory cytokines, including tumour necrosis factor-α, interleukin-1β (IL-1β) and IL-6, in the bronchoalveolar lavage fluid and lung tissues after LPS challenge, while the peroxisome proliferator-activated receptor γ (PPARγ) inhibitor GW9662 reversed these effects. In vitro results indicated that wogonin significantly decreased the secretion of IL-6, IL-1β and tumour necrosis factor-α in Ana-1 and RAW264.7 cells, which was suppressed by transfection of PPARγ small interfering RNA and GW9662 treatment. Moreover, wogonin activated PPARγ, induced PPARγ-mediated attenuation of the nuclear translocation and the DNA-binding activity of nuclear factor-κB in vivo and in vitro. In conclusion, all of these results showed that wogonin may serve as a promising agent for the attenuation of ALI-associated inflammation and pathology by regulating the PPARγ-involved nuclear factor-κB pathway. PMID:24766487

  14. Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor-kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells.

    PubMed

    Dong, Xiao-Qiao; Du, Quan; Yu, Wen-Hua; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Chen, Feng; Wang, Hao; Chen, Jun

    2013-01-01

    Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2 microglia were pretreated with different concentrations of oxymatrine (1, 10 and 20 μg/mL) for 30 min as followed by stimulation with LPS (1 μg/mL) for different times (30 min, 1 h, 3 h, and 6 h). Concentrations of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β) and interleukin-6 (IL-6) in supernatant, mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), cytosolic inhibitor of kappa B-alpha (I-κBα) and phospho- I-κBα and nuclear p65 protein levels, and the phosphorylations of MAPK molecules such as extracellular-signal-regulated kinase (ERK) 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK) were determined. It was shown that oxymatrine inhibited the productions of NO, PGE2, TNF-α, IL-1β and IL-6, attenuated the mRNA levels of iNOS and COX-2, suppressed the phosphorylation of I-κBα in cytosol, decreased the nuclear levels of p65, and also blocked ERK, p38 and JNK pathway in LPS-stimulated BV2 microglial cells in a dose-dependent manner. According to the results; It is suggested that oxymatrine may attenuate inflammatory responses of microglia and could be potentially useful in modulation of inflammatory status in the brain disorders. PMID:24250585

  15. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression and inducible nitric oxide synthase by 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera

    PubMed Central

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.

    2011-01-01

    Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591

  16. Cynandione A attenuates lipopolysaccharide-induced production of inflammatory mediators via MAPK inhibition and NF-κB inactivation in RAW264.7 macrophages and protects mice against endotoxin shock

    PubMed Central

    Kim, Sung Hwan; Lee, Tae Hoon; Lee, Sang Min; Park, Ji Hae; Park, Keun Hyung; Jung, Mira; Jung, Hana; Mohamed, Mohamed Antar Aziz; Baek, Nam-In; Chung, In Sik

    2014-01-01

    Cynanchum wilfordii has been traditionally used in eastern Asia for the treatment of various diseases such as gastrointestinal diseases and arteriosclerosis. Cynandione A (CA), an acetophenone, is one of major constituents from roots of C. wilfordii. In the present study, the anti-inflammatory activities of CA were investigated in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-administered C57BL/6 N mice. CA significantly decreased LPS-induced production of nitric oxide and prostaglandin E2 in a dose-dependent manner, while CA up to 200 μM did not exhibit cytotoxic activity. Our data also showed that CA significantly attenuated expression of iNOS and COX-2 in LPS-stimulated macrophages. CA inhibited phosphorylation of IκB-α and MAP kinases such as ERK and p38. Furthermore, we demonstrated that CA inhibited translocation of NF-κB to the nucleus, transcription of the NF-κB minimal promoter and NF-κB DNA binding activity. Administration of CA significantly decreased the plasma levels of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β in LPS-injected mice and improved survival of septic mice with lethal endotoxemia. These results demonstrate that CA has effective inhibitory effects on production of inflammatory mediators via suppressing activation of NF-κB and MAPK signaling pathways, suggesting that CA may be used as a potential anti-inflammatory agent for the prevention and treatment of inflammatory diseases. PMID:25361770

  17. Potential use of fucose-appended dendrimer/α-cyclodextrin conjugates as NF-κB decoy carriers for the treatment of lipopolysaccharide-induced fulminant hepatitis in mice.

    PubMed

    Akao, Chiho; Tanaka, Takahiro; Onodera, Risako; Ohyama, Ayumu; Sato, Nana; Motoyama, Keiichi; Higashi, Taishi; Arima, Hidetoshi

    2014-11-10

    The purpose of the present study is to treat lipopolysaccharide (LPS)-induced fulminant hepatitis by NF-κB decoy complex with fucose-appended dendrimer (generation 2; G2) conjugate with α-cyclodextrin (Fuc-S-α-CDE (G2)). Fuc-S-α-CDE (G2, average degree of substitution of fucose (DSF2))/NF-κB decoy complex significantly suppressed nitric oxide and tumor necrosis factor-α (TNF-α) production from LPS-stimulated NR8383 cells, a rat alveolar macrophage cell line, by adequate physicochemical properties and fucose receptor-mediated cellular uptake. Intravenous injection of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex extended the survival of LPS-induced fulminant hepatitis model mice. In addition, Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex administered intravenously highly accumulated in the liver, compared to naked NF-κB decoy alone. Furthermore, the liver accumulation of Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex was inhibited by the pretreatment with GdCl3, a specific inhibitor of Kupffer cell uptake. Also, the serum aspartate aminotransferase, alanine aminotransferase and TNF-α levels in LPS-induced fulminant hepatitis model mice were significantly attenuated by the treatment with Fuc-S-α-CDE (G2, DSF2)/NF-κB decoy complex, compared with naked NF-κB decoy alone. Taken together, these results suggest that Fuc-S-α-CDE (G2, DSF2) has the potential for a novel Kupffer cell-selective NF-κB decoy carrier for the treatment of LPS-induced fulminant hepatitis in mice.

  18. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    PubMed Central

    Liu, Lixin; Lin, Ye; Liu, Lili; Bian, Yanjie; Zhang, Li; Gao, Xuejun; Li, Qingzhang

    2015-01-01

    As a protective factor for lipopolysaccharide (LPS)-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs) induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPKs) and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK), p38 mitogen-activated protein kinase (p38MAPK) and inhibitor of NF-κB (IκB) phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), serine/threonine protein kinase Akt 1 (AKT1), sterol regulatory element binding protein 1 (SREBP1) and peroxisome proliferator-activated receptor gamma (PPAR

  19. Growth hormone suppression test

    MedlinePlus

    GH suppression test; Glucose loading test; Acromegaly - blood test; Gigantism - blood test ... is not changed and stays high during the suppression test, the provider will suspect gigantism or acromegaly. ...

  20. Dexamethasone suppression test

    MedlinePlus

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medication. Afterward, your blood is drawn ...

  1. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    PubMed

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. PMID:26530889

  2. Lipopolysaccharide-induced hemolysis: Evidence for direct membrane interactions

    PubMed Central

    Brauckmann, Stephan; Effenberger-Neidnicht, Katharina; de Groot, Herbert; Nagel, Michael; Mayer, Christian; Peters, Jürgen; Hartmann, Matthias

    2016-01-01

    While hemolysis in patients with sepsis is associated with increased mortality its mechanisms are unknown and Toll-like receptor (TLR)-4 mediated effects, complement-mediated hemolysis, or direct cell membrane effects are all conceivable mechanisms. In this study, we tested the hypotheses that toxic lipopolysaccharide (LPS) as well as non-toxic RS-LPS evokes hemolysis (1) by direct membrane effects, and (2) independent of the complement system and TLR-4 activation. We found, that incubation with LPS resulted in a marked time and concentration dependent increase of free hemoglobin concentration and LDH activity in whole blood and washed red cells. Red cell integrity was diminished as shown by decreased osmotic resistance, formation of schistocytes and rolls, and a decrease in red cell membrane stiffness. Non-toxic RS-LPS inhibited the LPS-evoked increase in TNF-α concentration demonstrating its TLR-4 antagonism, but augmented LPS-induced increase in supernatant hemoglobin concentration and membrane disturbances. Removal of plasma components in washed red cell assays failed to attenuate hemolysis. In summary, this study demonstrates direct physicochemical interactions of LPS with red cell membranes resulting in hemolysis under in vitro conditions. It might thus be hypothesized, that not all effects of LPS are mediated by TLR and may explain LPS toxicity in cells missing TLR. PMID:27759044

  3. Lipopolysaccharide induced acute red eye and corneal ulcers.

    PubMed

    Schultz, C L; Morck, D W; McKay, S G; Olson, M E; Buret, A

    1997-01-01

    Using a new animal model, the aims of this study were to assess the role played by purified lipopolysaccharide (LPS) and neutrophils in the pathogenesis of acute red-eye reactions (ARE) and corneal ulcers. In addition, IL-1 alpha was assessed for its implications in the formation of corneal ulcers. Following corneal abrasion, eyes of rabbits underwent single or double exposures to various doses of LPS from Pseudomonas aeruginosa or Serratia marcescens. This protocol induced ARE symptoms, and their severity depended on the dosage, number of LPS exposures, and type of LPS used (LPS from S. marcescens showing highest virulence). Corneal ulcers were induced by delivering a high dose of Serratia LPS (100 micrograms) followed by a low dose (10 micrograms). Histopathological examination revealed that both ARE and corneal ulceration were associated with prominent neutrophil infiltration. In addition, many lymphocytes and other monocytic cells infiltrated ulcerated ocular tissue. Tear fluids obtained from ulcerated eyes contained high concentrations of a protein recognized by anti-rabbit IL-1 alpha antibodies as demonstrated by immunoblotting studies. The results indicate that LPS can induce ARE and corneal ulceration in the absence of any live bacteria. Moreover, the findings implicate the accumulation of neutrophils and IL-1 alpha-related proteins in the pathogenesis of ARE and corneal ulcers.

  4. Lactoferrin during lactation reduces lipopolysaccharide-induced brain injury.

    PubMed

    Ginet, Vanessa; van de Looij, Yohan; Petrenko, Volodymyr; Toulotte, Audrey; Kiss, Jozsef; Hüppi, Petra S; Sizonenko, Stéphane V

    2016-05-01

    Lactoferrin (Lf), component of maternal milk, has antioxidant, anti-inflammatory and antimicrobial properties. Neuroprotective effects of Lf on the immature brain have been recently shown in rodent models of intrauterine growth restriction and cerebral hypoxia/ischemia. Here we postulated that Lf could also have beneficial effects on preterm inflammatory brain injury. Lf was supplemented in maternal food during lactation and lipopolysaccharide (LPS) was injected in subcortical white matter of rat pups at postnatal day 3 (P3). Effect of maternal Lf supplementation was investigated 24 h (P4), 4 (P7), or 21 days (P24) after LPS injection mainly on the striatum. Lateral ventricle and brain structures volumes were quantified. Microstructure was evaluated by diffusion tensor imaging, neurite orientation dispersion and density imaging as well as electron microscopy. Neurochemical profile was measured by (1) H-magnetic resonance spectroscopy. GFAP protein, proinflammatory cytokines mRNA expression microglial activation were assessed. Lf displayed neuroprotective effects as shown by reduced LPS-induced ventriculomegaly, brain tissue loss, and microstructural modifications, including myelination deficit. (1) H-MRS neurochemical profile was less altered through an antioxidant action of Lf. Despite the lack of effect on LPS-induced proinflammatory cytokines genes expression and on reactive gliosis, microglia was less activated under Lf treatment. In conclusion, Lf supplemented in food during lactation attenuated acute and long-term cerebral LPS-induced alterations. This provides a new evidence for a promising use of Lf as a preventive neuroprotective approach in preterm encephalopathy. © 2016 BioFactors, 42(3):323-336, 2016. PMID:27313089

  5. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Sun, Yue; Shang, Dejing

    2015-01-01

    Antimicrobial peptides (AMPs) are usually small molecule peptides, which display broad-spectrum antimicrobial activity, high efficiency, and stability. For the multiple-antibiotic-resistant strains, AMPs play a significant role in the development of novel antibiotics because of their broad-spectrum antimicrobial activities and specific antimicrobial mechanism. Besides broad-spectrum antibacterial activity, AMPs also have anti-inflammatory activity. The neutralization of lipopolysaccharides (LPS) plays a key role in anti-inflammatory action of AMPs. On the one hand, AMPs can readily penetrate the cell wall barrier by neutralizing LPS to remove Gram-negative bacteria that can lead to infection. On the contrary, AMPs can also inhibit the production of biological inflammatory cytokines to reduce the inflammatory response through neutralizing circulating LPS. In addition, AMPs also modulate the host immune system by chemotaxis of leukocytes, to promote immune cell proliferation, epithelialization, and angiogenesis and thus play a protective role. This review summarizes some recent researches about anti-inflammatory AMPs, with a focus on the interaction of AMPs and LPS on the past decade. PMID:26612970

  6. Lumican overexpression exacerbates lipopolysaccharide-induced renal injury in mice.

    PubMed

    Lu, Xiao-Mei; Ma, Ling; Jin, Yu-Nan; Yu, Yan-Qiu

    2015-09-01

    The present study aimed to investigate the role of lumican in mice with endotoxin-induced acute renal failure (ARF). Lumican transgenic mice and wild‑type mice were injected with lipopolysaccharide (LPS; 10 mg/kg) to establish a model of ARF. The mice were sacrificed at 24 h and the blood and renal tissue samples were collected. The value of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured to determine renal function. An ELISA was used to determined the concentrations of renal cytokines, including tumor necrosis factor (TNF)α, interleukin (IL)‑6, IL‑4 and IL‑10. The protein expression levels of Toll-like receptor (TLR4) and nuclear factor (NF)κB in renal tissues were assessed using western blot analysis. Terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling was performed to monitor apoptosis of renal tissue. Light microscopy and electron microscopy were used to observe structural changes in the renal tissues. Following the administration of LPS, the SCr and BUN values of mice in the lumican transgenic group were higher compared with those in the control group. The expression levels of renal TLR4, NFκB, TNFα, IL‑6, IL‑4 and IL‑10 were upregulated in the lumican transgenic mice compared with those in the wild‑type control group. Apoptosis was detected predominantly on the renal tubule. There was a significant difference in the optical density of apoptotic bodies between the control mice and the lumican transgenic mice. Light and electron microscopy demonstrated more severe renal tissue injury in the lumican transgenic mice compared with that in the control mice. In conclusion, LPS may cause excessive apoptosis in the renal tubular cells via the TLR4 signal transduction pathway, a decrease in the number of renal tubular cells and ARF. Lumican may be important in mice with LPS-induced ARF.

  7. Lipopolysaccharide-induced inflammatory liver injury in mice.

    PubMed

    Hamesch, K; Borkham-Kamphorst, E; Strnad, P; Weiskirchen, R

    2015-04-01

    The intraperitoneal application of lipopolysaccharide (LPS) alone or in combination with other hepatotoxins is an experimental model for inducing systemic and hepatic inflammation in rodents applied worldwide. The endotoxin is recognized by the LPS-binding protein. This complex binds together with the lymphocyte antigen 96 (MD2) and the pattern-recognition receptor CD14 to members of the toll-like receptor family. The activated receptor complex in turn transduces signals to well characterized intracellular cascades that result in a multifaceted network of intracellular responses ending in inflammation. The most prominent among these is the activation of the NF-κB pathway and the production of a multitude of inflammatory cytokines. Although the application of LPS is in general easy to perform, unintended variations in preparation of the injection solution or in handling of the animals might affect the reproducibility or the outcome of a specific experiment. Here, we present a well-standardized protocol that allows for an induction of highly reproducible acute hepatic inflammation in mice. Furthermore, examples of appropriate readouts for the resulting inflammatory response are given. PMID:25835737

  8. Lipopolysaccharide-induced inflammatory liver injury in mice.

    PubMed

    Hamesch, K; Borkham-Kamphorst, E; Strnad, P; Weiskirchen, R

    2015-04-01

    The intraperitoneal application of lipopolysaccharide (LPS) alone or in combination with other hepatotoxins is an experimental model for inducing systemic and hepatic inflammation in rodents applied worldwide. The endotoxin is recognized by the LPS-binding protein. This complex binds together with the lymphocyte antigen 96 (MD2) and the pattern-recognition receptor CD14 to members of the toll-like receptor family. The activated receptor complex in turn transduces signals to well characterized intracellular cascades that result in a multifaceted network of intracellular responses ending in inflammation. The most prominent among these is the activation of the NF-κB pathway and the production of a multitude of inflammatory cytokines. Although the application of LPS is in general easy to perform, unintended variations in preparation of the injection solution or in handling of the animals might affect the reproducibility or the outcome of a specific experiment. Here, we present a well-standardized protocol that allows for an induction of highly reproducible acute hepatic inflammation in mice. Furthermore, examples of appropriate readouts for the resulting inflammatory response are given.

  9. Modulation of lipopolysaccharide-induced oxidative stress by capsaicin.

    PubMed

    Abdel-Salam, Omar M E; Abdel-Rahman, Rehab Fawzy; Sleem, Amany A; Farrag, Abdel Razik

    2012-08-01

    This study investigated the effect of capsaicin (the active principle of hot red pepper and a sensory excitotoxin) on oxidative stress after systemic administration of the endotoxin lipopolysaccharide (100 μg/kg, i.p.) in rats. Capsaicin (15, 150 or 1,500 μg/kg; 10, 100 or 400 μg/mL) was given via intragastric (i.g.) or intraperitoneal (i.p.) routes at time of endotoxin administration. Rats were killed 4 h later. Malondialdehyde (MDA) and reduced glutathione (GSH) were measured in brain, liver, and lungs. Alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase (ALP), nitric oxide, and glucose were measured in serum. In addition, histopathological examination of liver tissue was performed. In LPS-treated rats, hepatic GSH increased significantly by 40.8% after i.p. capsaicin at 1,500 μg/kg. Liver MDA increased significantly by 32.9% after the administration of i.g. capsaicin at 1,500 μg/kg and by 27.8 and 37.6% after the administration of i.p. capsaicin at 150 and 1,500 μg/kg, respectively. In lung tissue, both MDA and GSH were decreased by capsaicin administration. MDA decreased by 19-20.8% after i.g. capsaicin and by 17.5-23.2% after i.p. capsaicin (150-1,500 μg/kg), respectively. GSH decreased by 39.3-64.3% and by 35.7-41.1% after i.g. or i.p. capsaicin (150-1,500 μg/kg), respectively. Brain GSH increased significantly after the highest dose of i.g. or i.p. capsaicin (by 20.6 and 15.9%, respectively). The increase in serum ALT and ALP after endotoxin administration was decreased by oral or i.p. capsaicin. Serum nitric oxide showed marked increase after LPS injection, but was markedly decreased after capsaicin (1,500 μg/kg, i.p.). Serum glucose increased markedly after the administration of LPS, and was normalized by capsaicin treatment. It is suggested that in the presence of mild systemic inflammation, acute capsaicin administration might alter oxidative status in some tissues and exert an anti-inflammatory effect. Capsaicin exerted protective effects in the liver and lung against the LPS-induced tissue damage.

  10. Theophylline potentiates lipopolysaccharide-induced NO production in cultured astrocytes.

    PubMed

    Ogawa, Mizue; Takano, Katsura; Kawabe, Kenji; Moriyama, Mitsuaki; Ihara, Hideshi; Nakamura, Yoichi

    2014-01-01

    Elucidation of the functions of astrocytes is important for understanding of the pathogenic mechanism of various neurodegenerative diseases. Theophylline is a common drug for bronchial asthma and occasionally develops side-effects, such as acute encephalopathy; although the pathogenic mechanism of the side-effects is unknown. The lipopolysaccharide (LPS)-induced nitricoxide (NO) production is generally used for an index of the activation of astrocyte in vitro. In this study, in order to elucidate the effect of theophylline on the astrocytic functions, we examined the LPS-induced NO production and the expression of iNOS in cultured rat cortex astrocytes.Theophylline alone could not induce the NO production; however, NO production induced by LPS was enhanced by theophylline in a dose-dependent manner; and by isobutylmethylxanthine, a phosphodiesterase inhibitor. The theophylline enhancement of LPS-induced NO production was further increased by dibutyryl cyclic AMP, a membrane-permeable cAMP analog; and by forskolin, an adenylate cyclase activator. When the cells were preincubated with Rp-8-Br-cAMP, an inhibitor of protein kinase A, the theophylline enhancement of LPS-induced NO production was decreased. The extent of iNOS protein expression induced by LPS was also enhanced by theophylline.It is likely that phosphodiesterase inhibition is a major action mechanism for the theophylline enhancement of LPS-induced NO production in astrocytes. Theophylline-induced acute encephalopathy might be due to the hyper-activation of astrocytes via cAMP signaling to produce excess amount of NO.

  11. Theophylline improves lipopolysaccharide-induced alveolarization arrest through inflammatory regulation.

    PubMed

    He, Hua; Chen, Fei; Ni, Wensi; Li, Jianhui; Zhang, Yongjun

    2014-07-01

    Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification with decreased numbers of alveoli and increased airspace. BPD, frequently suffered by very low birth weight infants, has been closely associated with intrauterine infection. However, the underlying mechanisms of BPD remain unclear. In the present study, it was identified that administration of intra-amniotic lipopolysaccharide (LPS) to pregnant rats on embryonal day 16.5 (E16.5) induced significant alveolarization arrest similar to that of BPD in neonatal pups, and theophylline injected subcutaneously into the newborns improved the pathological changes. To further investigate the underlying mechanism of the morphogenesis amelioration of theophylline, cytokine antibody arrays were performed with the lung lysates of neonatal rats. The results indicated that LPS upregulated a series of pro-inflammatory cytokines and theophylline significantly attenuated the expression levels of pro-inflammatory cytokines tumor necrosis factor‑α, macrophage inflammatory protein (MIP)-1α and MIP-2, and markedly elevated the production of tumor growth factor (TGF)-β family members TGF-β1, TGF-β2 and TGF-β3, which are anti‑inflammatory cytokines. Accordingly, it was hypothesized that theophylline may protect against BPD and improve chorioamnionitis‑induced alveolar arrest by regulating the balance between pro‑and anti-inflammatory cytokine expression.

  12. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    SciTech Connect

    El-Agamy, Dina S.

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells infiltration and hence ROS generation and regulate cytokine effects. - Research highlights: > The protective effects of nilotinib against LPS-induced ALI in rats were studied. > Nilotinib showed potent anti-inflammatory activity as it attenuated PMN infiltration and hence ROS generation. > In addition, nilotinib caused down-regulation of proinflammatory cytokine production.

  13. Effective suppressibility of chaos.

    PubMed

    López, Álvaro G; Seoane, Jesús M; Sanjuán, Miguel A F

    2013-06-01

    Suppression of chaos is a relevant phenomenon that can take place in nonlinear dynamical systems when a parameter is varied. Here, we investigate the possibilities of effectively suppressing the chaotic motion of a dynamical system by a specific time independent variation of a parameter of our system. In realistic situations, we need to be very careful with the experimental conditions and the accuracy of the parameter measurements. We define the suppressibility, a new measure taking values in the parameter space, that allows us to detect which chaotic motions can be suppressed, what possible new choices of the parameter guarantee their suppression, and how small the parameter variations from the initial chaotic state to the final periodic one are. We apply this measure to a Duffing oscillator and a system consisting on ten globally coupled Hénon maps. We offer as our main result tool sets that can be used as guides to suppress chaotic dynamics. PMID:23822472

  14. Fire Suppression and Response

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?

  15. Bisphosphonates and statins inhibit expression and secretion of MIP-1α via suppression of Ras/MEK/ERK/AML-1A and Ras/PI3K/Akt/AML-1A pathways.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Sakamoto, Kotaro; Shimaoka, Hirotaka; Fujita, Arisa; Itoh, Tatsuki; Imano, Motohiro; Mashimo, Kenji; Fujiwara, Daiichiro; Sakaguchi, Katsuhiko; Satou, Takao; Nishida, Shozo

    2015-01-01

    Osteolytic bone disease in multiple myeloma (MM) is associated with upregulated osteoclast activity. Macrophage inflammatory protein-1α (MIP-1α) is crucially involved in the development of osteolytic bone lesions in MM. We previously reported that minodronate inhibited lipopolysaccharide-induced MIP-1α secretion in mouse myeloma cells. However, it remains unknown whether bisphosphonates and statins inhibit MIP-1α secretion by human MM cells. In present study, we investigated whether bisphosphonates and statins had any inhibitory effect on MIP-1α secretion by human myeloma cells and the mechanism underlying this effect. In this study, we found that bisphosphonates and statins inhibited MIP-1α mRNA and MIP-1α secretion and suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation by inhibiting Ras prenylation. Moreover, bisphosphonates and statins suppressed the expression of acute myeloid leukemia-1A (AML-1A) mRNA, a MIP-1α transcription factor. These results indicate that bisphosphonates and statins suppress the Ras/mitogen-activated protein kinase kinase/ERK/AML-1A and Ras/phosphatidylinositol-3 kinase/Akt/AML-1A pathways, thereby inhibiting MIP-1α secretion by MM cells. Therefore, use of MIP-1α expression inhibitors such as bisphosphonates and statins may provide a new therapeutic approach to inhibiting tumour progression and bone destruction in MM patients.

  16. Cough suppression disorders spectrum.

    PubMed

    Reich, Jerome M

    2014-02-01

    Volitional cough suppression, identified exclusively in females, is an unusual causal mechanism for instances of lobar atalectasis and bronchiectasis. It is a postulated mechanism for the genesis of Lady Windermere Syndrome.

  17. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  18. Explosion suppression system

    DOEpatents

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  19. Photoimmune suppression and photocarcinogenesis.

    PubMed

    Ullrich, Stephen E

    2002-03-01

    The primary cause of non-melanoma skin cancer, the most prevalent form of human neoplasia, is the ultraviolet (UV) radiation found in sunlight. Exposing mice to UV radiation induces skin cancers that are highly antigenic. Upon transfer of an UV-induced skin cancer to a normal syngeneic mouse, the tumor cells are recognized and rapidly destroyed by the immune system of the recipient. This raises the question of how these cancers avoided immune destruction during their development in the UV-irradiated host. This question was answered when it was discovered that in addition to being carcinogenic, UV radiation was also immunosuppressive. Studies with immune suppressed transplantation recipients, and biopsy proven skin cancer patients have confirmed that UV-induced immune suppression is a risk factor for skin cancer development in humans. It is of great importance, therefore, to understand the mechanisms underlying UV-induced immune suppression. The focus of this manuscript will be to use some examples from the more recent scientific literature to review the mechanisms by which UV radiation suppresses the immune response and allows for the progressive outgrowth of antigenic skin tumors. PMID:11861222

  20. Pressure suppression containment system

    DOEpatents

    Gluntz, Douglas M.; Townsend, Harold E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto.

  1. Pressure suppression containment system

    DOEpatents

    Gluntz, D.M.; Townsend, H.E.

    1994-03-15

    A pressure suppression containment system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The wetwell pool includes a plenum for receiving the non-condensable gas carried with steam from the drywell following a loss-of-coolant-accident (LOCA). The wetwell plenum is vented to a plenum above the GDCS pool following the LOCA for suppressing pressure rise within the containment vessel. A method of operation includes channeling steam released into the drywell following the LOCA into the wetwell pool for cooling along with the non-condensable gas carried therewith. The GDCS pool is then drained by gravity, and the wetwell plenum is vented into the GDCS plenum for channeling the non-condensable gas thereto. 6 figures.

  2. Nonsense suppression in archaea

    PubMed Central

    Bhattacharya, Arpita; Köhrer, Caroline; Mandal, Debabrata; RajBhandary, Uttam L.

    2015-01-01

    Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea. PMID:25918386

  3. Nonsense suppression in archaea.

    PubMed

    Bhattacharya, Arpita; Köhrer, Caroline; Mandal, Debabrata; RajBhandary, Uttam L

    2015-05-12

    Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea.

  4. Denervation suppresses gastric tumorigenesis

    PubMed Central

    Kodama, Yosuke; Muthupalani, Sureshkumar; Westphalen, Christoph B.; Andersen, Gøran T.; Flatberg, Arnar; Johannessen, Helene; Friedman, Richard A.; Renz, Bernhard W.; Sandvik, Arne K.; Beisvag, Vidar; Tomita, Hiroyuki; Hara, Akira; Quante, Michael; Li, Zhishan; Gershon, Michael D.; Kaneko, Kazuhiro; Fox, James G.; Wang, Timothy C.; Chen, Duan

    2015-01-01

    The nervous system plays an important role in the regulation of epithelial homeostasis and has also been postulated to play a role in tumorigenesis. We provide evidence that proper innervation is critical at all stages of gastric tumorigenesis. In three separate mouse models of gastric cancer, surgical or pharmacological denervation of the stomach (bilateral or unilateral truncal vagotomy, or local injection of botulinum toxin type A) markedly reduced tumor incidence and progression, but only in the denervated portion of the stomach. Vagotomy or botulinum toxin type A treatment also enhanced the therapeutic effects of systemic chemotherapy and prolonged survival. Denervation-induced suppression of tumorigenesis was associated with inhibition of Wnt signaling and suppression of stem cell expansion. In gastric organoid cultures, neurons stimulated growth in a Wnt-mediated fashion through cholinergic signaling. Furthermore, pharmacological inhibition or genetic knockout of the muscarinic acetylcholine M3 receptor suppressed gastric tumorigenesis. In gastric cancer patients, tumor stage correlated with neural density and activated Wnt signaling, whereas vagotomy reduced the risk of gastric cancer. Together, our findings suggest that vagal innervation contributes to gastric tumorigenesis via M3 receptor–mediated Wnt signaling in the stem cells, and that denervation might represent a feasible strategy for the control of gastric cancer. PMID:25143365

  5. Nonsense suppression in archaea.

    PubMed

    Bhattacharya, Arpita; Köhrer, Caroline; Mandal, Debabrata; RajBhandary, Uttam L

    2015-05-12

    Bacterial strains carrying nonsense suppressor tRNA genes played a crucial role in early work on bacterial and bacterial viral genetics. In eukaryotes as well, suppressor tRNAs have played important roles in the genetic analysis of yeast and worms. Surprisingly, little is known about genetic suppression in archaea, and there has been no characterization of suppressor tRNAs or identification of nonsense mutations in any of the archaeal genes. Here, we show, using the β-gal gene as a reporter, that amber, ochre, and opal suppressors derived from the serine and tyrosine tRNAs of the archaeon Haloferax volcanii are active in suppression of their corresponding stop codons. Using a promoter for tRNA expression regulated by tryptophan, we also show inducible and regulatable suppression of all three stop codons in H. volcanii. Additionally, transformation of a ΔpyrE2 H. volcanii strain with plasmids carrying the genes for a pyrE2 amber mutant and the serine amber suppressor tRNA yielded transformants that grow on agar plates lacking uracil. Thus, an auxotrophic amber mutation in the pyrE2 gene can be complemented by expression of the amber suppressor tRNA. These results pave the way for generating archaeal strains carrying inducible suppressor tRNA genes on the chromosome and their use in archaeal and archaeviral genetics. We also provide possible explanations for why suppressor tRNAs have not been identified in archaea. PMID:25918386

  6. Next generation fire suppressants

    SciTech Connect

    Brown, J.A.

    1995-03-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral band microprocessor controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  7. Next generation fire suppressants

    NASA Technical Reports Server (NTRS)

    Brown, Jerry A.

    1995-01-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral ban microprocessors controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  8. Summation of punishment suppression.

    PubMed

    Van Houten, R; Rudolph, R

    1971-01-01

    In two experiments, eight rats were trained to lever press with food on a variable-interval schedule. Bar pressing produced shock on a variable-interval schedule in the presence of two independently presented stimuli, a light and a tone. Two rats in each experiment received alternative presentations of the light and the tone and were consequently always in the presence of a stimulus that signalled variable-interval punishment. The other two rats in each experiment were treated similarly except that they received periods in which neither light nor tone was present. During these periods, bar pressing was not punished. The two stimuli that signalled punishment were then presented simultaneously to evaluate the effect of stimulus compounding on response suppression. The subjects trained without punishment-free periods did not show summation to the compound stimulus; the subjects trained with punishment-free periods showed summation of suppression. The major difference between the two experiments was the longer mean interval of variable-interval punishment used in the second experiment. This manipulation made the summation effect more resistant to extinction and thus increased its magnitude. PMID:16811483

  9. Pressure suppression system

    DOEpatents

    Gluntz, Douglas M.

    1994-01-01

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein.

  10. Pressure suppression system

    DOEpatents

    Gluntz, D.M.

    1994-10-04

    A pressure suppression system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and an enclosed gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel. The GDCS pool includes a plenum for receiving through an inlet the non-condensable gas carried with steam from the drywell following a loss-of-coolant accident (LOCA). A condenser is disposed in the GDCS plenum for condensing the steam channeled therein and to trap the non-condensable gas therein. A method of operation includes draining the GDCS pool following the LOCA and channeling steam released into the drywell following the LOCA into the GDCS plenum for cooling along with the non-condensable gas carried therewith for trapping the gas therein. 3 figs.

  11. ZERO SUPPRESSION FOR RECORDERS

    DOEpatents

    Fort, W.G.S.

    1958-12-30

    A zero-suppression circuit for self-balancing recorder instruments is presented. The essential elements of the circuit include a converter-amplifier having two inputs, one for a reference voltage and the other for the signal voltage under analysis, and a servomotor with two control windings, one coupled to the a-c output of the converter-amplifier and the other receiving a reference input. Each input circuit to the converter-amplifier has a variable potentiometer and the sliders of the potentiometer are ganged together for movement by the servoinotor. The particular noveity of the circuit resides in the selection of resistance values for the potentiometer and a resistor in series with the potentiometer of the signal circuit to ensure the full value of signal voltage variation is impressed on a recorder mechanism driven by servomotor.

  12. Factors influencing dust suppressant effectiveness

    SciTech Connect

    Copeland, C.R.; Eisele, T.C.; Chesney, D.J.; Kawatra, S.K.

    2008-11-15

    Water sprays are a common method used to reduce particulate matter (PM) emissions. Various factors such as wettability, surface area coverage, fine particle engulfment rates, interparticle adhesion forces, suppressant penetration and suppressant longevity have all been suggested as critical factors in achieving effective PM control. However, it has not been established which of these factors are the most important. Experimental work indicated that suppressant penetration is the most critical of these factors. The length of time after application that suppressants were effective was also improved by using hygroscopic reagents that retained moisture to prevent evaporation. Maximizing suppressant penetration and improving suppressant longevity led to an average 86% reduction in PM10 concentrations in laboratory dust tower tests.

  13. An Alternative to Thought Suppression?

    ERIC Educational Resources Information Center

    Boice, Robert

    2012-01-01

    Comments on the original article, "Setting free the bears: Escape from thought suppression," by D. M. Wegner (see record 2011-25622-008). While Wegner supposed that we might have to learn to live with bad thoughts, the present author discusses the use of imagination and guided imagery as an alternative to forced thought suppression.

  14. Nonanesthetics can suppress learning.

    PubMed

    Kandel, L; Chortkoff, B S; Sonner, J; Laster, M J; Eger, E I

    1996-02-01

    Nonanesthetic gases or vapors do not abolish movement in response to noxious stimuli despite partial pressures and affinities for lipids that would, according to the Meyer-Overton hypothesis, predict such abolition. We investigated whether nonanesthetics depress learning and memory (i.e., provide amnesia). To define learning, we used a "fear-potentiated startle paradigm": rats trained to associate light with a noxious stimulus (footshock) will startle more, as measured by an accelerometer, when a startle-eliciting stimulus (e.g., a noise) is paired with light than when the startle-eliciting stimulus is presented alone. We imposed light-shock pairings on 98 rats under three conditions: no anesthesia (control); 0.20, 0.29, and 0.38 times the minimum alveolar anesthetic concentration (MAC) of desflurane; or two nonanesthetics (1,2-dichloroperfluorocyclobutane and perfluoropentane) at partial pressures predicted from their lipid solubilities to be between 0.2 and 1 MAC. Desflurane produced a dose-related depression of learning with abolition of learning at 0.28 MAC. Perfluoropentane at 0.2-predicted MAC had the same effect as 0.28 MAC desflurane. 1,2-Dichloroperfluorocyclobutane at 0.5- to 1-predicted MAC abolished learning. Because nonanesthetics suppress learning but not movement (the two critical components of anesthesia), they may prove useful in discriminating between mechanisms and sites of action of anesthetics. PMID:8561335

  15. Inducing amnesia through systemic suppression

    PubMed Central

    Hulbert, Justin C.; Henson, Richard N.; Anderson, Michael C.

    2016-01-01

    Hippocampal damage profoundly disrupts the ability to store new memories of life events. Amnesic windows might also occur in healthy people due to disturbed hippocampal function arising during mental processes that systemically reduce hippocampal activity. Intentionally suppressing memory retrieval (retrieval stopping) reduces hippocampal activity via control mechanisms mediated by the lateral prefrontal cortex. Here we show that when people suppress retrieval given a reminder of an unwanted memory, they are considerably more likely to forget unrelated experiences from periods surrounding suppression. This amnesic shadow follows a dose-response function, becomes more pronounced after practice suppressing retrieval, exhibits characteristics indicating disturbed hippocampal function, and is predicted by reduced hippocampal activity. These findings indicate that stopping retrieval engages a suppression mechanism that broadly compromises hippocampal processes and that hippocampal stabilization processes can be interrupted strategically. Cognitively triggered amnesia constitutes an unrecognized forgetting process that may account for otherwise unexplained memory lapses following trauma. PMID:26977589

  16. Inducing amnesia through systemic suppression.

    PubMed

    Hulbert, Justin C; Henson, Richard N; Anderson, Michael C

    2016-01-01

    Hippocampal damage profoundly disrupts the ability to store new memories of life events. Amnesic windows might also occur in healthy people due to disturbed hippocampal function arising during mental processes that systemically reduce hippocampal activity. Intentionally suppressing memory retrieval (retrieval stopping) reduces hippocampal activity via control mechanisms mediated by the lateral prefrontal cortex. Here we show that when people suppress retrieval given a reminder of an unwanted memory, they are considerably more likely to forget unrelated experiences from periods surrounding suppression. This amnesic shadow follows a dose-response function, becomes more pronounced after practice suppressing retrieval, exhibits characteristics indicating disturbed hippocampal function, and is predicted by reduced hippocampal activity. These findings indicate that stopping retrieval engages a suppression mechanism that broadly compromises hippocampal processes and that hippocampal stabilization processes can be interrupted strategically. Cognitively triggered amnesia constitutes an unrecognized forgetting process that may account for otherwise unexplained memory lapses following trauma. PMID:26977589

  17. Sound can suppress visual perception.

    PubMed

    Hidaka, Souta; Ide, Masakazu

    2015-05-29

    In a single modality, the percept of an input (e.g., voices of neighbors) is often suppressed by another (e.g., the sound of a car horn nearby) due to close interactions of neural responses to these inputs. Recent studies have also suggested that close interactions of neural responses could occur even across sensory modalities, especially for audio-visual interactions. However, direct behavioral evidence regarding the audio-visual perceptual suppression effect has not been reported in a study with humans. Here, we investigated whether sound could have a suppressive effect on visual perception. We found that white noise bursts presented through headphones degraded visual orientation discrimination performance. This auditory suppression effect on visual perception frequently occurred when these inputs were presented in a spatially and temporally consistent manner. These results indicate that the perceptual suppression effect could occur across auditory and visual modalities based on close and direct neural interactions among those sensory inputs.

  18. Menstrual suppression in the adolescent.

    PubMed

    Kantartzis, Kelly L; Sucato, Gina S

    2013-06-01

    Menstrual suppression, the use of contraceptive methods to eliminate or decrease the frequency of menses, is often prescribed for adolescents to treat menstrual disorders or to accommodate patient preference. For young women using hormonal contraceptives, there is no medical indication for menstruation to occur monthly, and various hormonal contraceptives can be used to decrease the frequency of menstruation with different side effect profiles and rates of amenorrhea. This article reviews the different modalities for menstrual suppression, common conditions in adolescents which may improve with menstrual suppression, and strategies for managing common side effects.

  19. A formula for charmonium suppression

    SciTech Connect

    Pena, C. Blaschke, D.

    2012-07-15

    In this work a formula for charmonium suppression obtained by Matsui in 1989 is analytically generalized for the case of complex cc-barpotential described by a 3-dimensional and isotropic time-dependent harmonic oscillator (THO). It is suggested that under certain scheme the formula can be applied to describe J/{psi} suppression in heavy-ion collisions at CERN-SPS, RHIC, and LHC with the advantage of analytical tractability.

  20. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  1. n-Butanol extract from Folium isatidis inhibits lipopolysaccharide-induced inflammatory cytokine production in macrophages and protects mice against lipopolysaccharide-induced endotoxic shock

    PubMed Central

    Jiang, Lili; Lu, Yili; Jin, Jiahui; Dong, Lili; Xu, Fengli; Chen, Shuangshuang; Wang, Zhanyue; Liang, Guang; Shan, Xiaoou

    2015-01-01

    Sepsis, which is caused by severe infection, is an important cause of mortality, but effective clinical treatment against sepsis is extremely limited. As the main component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) plays a major role in inflammatory responses. Studies have shown beneficial pharmacological effects for Folium isatidis. The present study further illuminated the effects of n-butanol extract from Folium isatidis in LPS-induced septic shock and identified the main active chemical components. Our study showed that pretreatment with n-butanol extract from Folium isatidis not only significantly inhibited LPS-induced tumor necrosis factor-α and interleukin-6 production but also markedly and dose dependently enhanced the recruitment of MyD88, the phosphorylation of extracellular signal-regulated kinase, and the degradation of IκB-α. Additionally, the extract exhibited dramatic protective effects against lung injury and death in mice with septic shock. Eight main active compounds were identified, including organic acids, glycoside, indolinones, and flavonoids. These findings provide a perspective on the respiratory protection offered by n-butanol extract from Folium isatidis in LPS-induced sepsis and outline a novel therapeutic strategy for the treatment of sepsis. PMID:26491261

  2. Odour suppression in binary mixtures.

    PubMed

    Cashion, Larry; Livermore, Andrew; Hummel, Thomas

    2006-10-01

    It has been suggested that odours causing stronger trigeminal activation suppress weaker trigeminal stimuli and that mixed olfactory-trigeminal stimuli suppress odorants that only activate one of these systems. Volunteer normosmic participants (n=20) were exposed to six odorants with varying trigeminal impact to test the hypothesis that more intense "trigeminal" odorants would suppress weaker trigeminal stimuli in binary odour mixtures. It was also hypothesised that stronger trigeminal odorants would dominate six-odour mixtures. The predicted linear pattern of suppression was not seen, with a quadratic model emerging from the data. Stronger trigeminal stimuli failed to dominate six-odour mixtures. Despite the fact that the major hypothesis was not supported, it can be hypothesised from this experiment that the effect of suppression in binary mixtures is reliant upon two major effects: (1) the association formed between odours and the multiple memory systems that they interact with during the encoding and recognition processes, and (2) the balance between activation of the olfactory and trigeminal systems.

  3. Aging and repeated thought suppression success.

    PubMed

    Lambert, Ann E; Smyth, Frederick L; Beadel, Jessica R; Teachman, Bethany A

    2013-01-01

    Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  4. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S.; Xue, Yongjun

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  5. Visual cortex: suppression by depression?

    PubMed

    Mrsic-Flogel, Thomas; Hübener, Mark

    2002-08-20

    The response of a neuron in the visual cortex to an oriented light bar is strongly reduced by concurrent presentation of a stimulus with a different orientation. New data suggest this 'cross-orientation suppression' is caused, not by intracortical inhibition, but by rapid depression of thalamocortical synapses.

  6. Multiple cilia suppress tumour formation.

    PubMed

    Eberhart, Charles

    2016-04-01

    Primary cilia are cellular structures that have important functions in development and disease. The suppression of multiciliate differentiation of choroid plexus precursors, and maintenance of a single primary cilium by Notch1, is now shown to be involved in choroid plexus tumour formation. PMID:27027488

  7. Conditioned suppression, punishment, and aversion

    NASA Technical Reports Server (NTRS)

    Orme-Johnson, D. W.; Yarczower, M.

    1974-01-01

    The aversive action of visual stimuli was studied in two groups of pigeons which received response-contingent or noncontingent electric shocks in cages with translucent response keys. Presentation of grain for 3 sec, contingent on key pecking, was the visual stimulus associated with conditioned punishment or suppression. The responses of the pigeons in three different experiments are compared.

  8. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants.

  9. Noise suppressing capillary separation system

    DOEpatents

    Yeung, E.S.; Xue, Y.

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  10. Background Suppression Effects on Signal Estimation

    SciTech Connect

    Burr, Tom

    2008-01-01

    Gamma detectors at border crossings are intended to detect illicit nuclear material. One performance challenge involves the fact that vehicles suppress the natural background, thus potentially reducing detection probability for threat items. Methods to adjust for background suppression have been considered in related but different settings. Here, methods to adjust for background suppression are tested in the context of signal estimation. Adjustment methods include several clustering options. We find that for the small-to-moderate suppression magnitudes exhibited in the analyzed data, suppression adjustment is only moderatel helpful in locating the signal peak, and in estimating its width or magnitude.

  11. Fire suppression and detection equipment

    SciTech Connect

    E.E. Bates

    2006-01-15

    Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

  12. Menstrual suppression in special circumstances.

    PubMed

    Kirkham, Yolanda A; Ornstein, Melanie P; Aggarwal, Anjali; McQuillan, Sarah; Allen, Lisa; Millar, Debra; Dalziel, Nancy; Gascon, Suzy; Hakim, Julie; Ryckman, Julie; Spitzer, Rachel; Van Eyk, Nancy

    2014-10-01

    Objectif : Offrir, aux fournisseurs de soins de santé, un document de consensus canadien comptant des recommandations pour ce qui est de la suppression menstruelle chez les patientes qui font face à des obstacles physiques et/ou cognitifs ou chez les patientes qui font l’objet d’un traitement contre le cancer et pour lesquelles les règles pourraient exercer un effet délétère sur la santé. Options : Le présent document analyse les options disponibles aux fins de la suppression menstruelle, les indications, les contre-indications et les effets indésirables (tant immédiats qu’à long terme) propres à cette dernière, et les explorations et le monitorage nécessaires tout au long de la suppression. Issues : Les cliniciens seront mieux renseignés au sujet des options et des indications propres à la suppression menstruelle chez les patientes qui présentent des déficiences cognitives et/ou physiques et chez les patientes qui font l’objet d’une chimiothérapie, d’une radiothérapie ou d’autres traitements contre le cancer. Résultats : La littérature publiée a été récupérée par l’intermédiaire de recherches menées dans Medline, EMBASE, OVID et The Cochrane Library au moyen d’un vocabulaire contrôlé et de mots clés appropriés (p. ex. « heavy menstrual bleeding », « menstrual suppression », « chemotherapy/radiation », « cognitive disability », « physical disability », « learning disability »). Les résultats ont été restreints aux analyses systématiques, aux essais comparatifs randomisés, aux études observationnelles et aux études pilotes. Aucune restriction n’a été imposée en matière de langue ou de date. Les recherches ont été mises à jour de façon régulière et du nouveau matériel a été intégré à la directive clinique jusqu’en septembre 2013. La littérature grise (non publiée) a été identifiée par l’intermédiaire de recherches menées dans les sites Web d

  13. Methods of suppressing automotive interference

    NASA Astrophysics Data System (ADS)

    Taggart, H. E.

    1981-11-01

    Automotive manufacturers utilize several techniques to reduce EMI emanating from the vehicle. The techniques include resistor spark plugs, resistor spark plug cables, use of silicone lubricant in the distributor, use of capacitors as filters, placement of grounding straps at key locations, conductive fan belt discharge, and tire static-charge reduction. If even further reduction is needed to obtain the maximum capability of a specific mobile communication system, additional suppression techniques are discussed which are effective at frequencies from approximately 30 to 1000 MHz. Measurement results show that the EMI from a new production-line automobile, measured in accordance with SAE Standard J551g, can be reduced as much as 10 to 15 dB by employing these suppression techniques. The amount of degradation to a mobile narrow-band FM receiver, such as the type used by law enforcement agencies, can be measured using the measurement technique described. This same technique can then be used as a tool to further reduce EMI from the vehicle components.

  14. Water Mist fire suppression experiment

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Water Mist commercial research program is scheduled to fly an investigation on STS-107 in 2002. This investigation will be flown as an Experimental Mounting Structure (EMS) insert into the updated Combustion Module (CM-2), a sophisticated combustion chamber plus diagnostic equipment. (The investigation hardware is shown here mounted in a non-flight frame similar to the EMS.) Water Mist is a commercial research program by the Center for Commercial Applications of Combustion in Space (CCACS), a NASA Commercial Space Center located at the Colorado School of Mines, in Golden, CO and Industry Partner Environmental Engineering Concepts. The program is focused on developing water mist as a replacement for bromine-based chemical fire suppression agents (halons). By conducting the experiments in microgravity, interference from convection currents is minimized and fundamental knowledge can be gained. This knowledge is incorporated into models, which can be used to simulate a variety of physical environments. The immediate objective of the project is to study the effect of a fine water mist on a laminar propagating flame generated in a propane-air mixture at various equivalence ratios. The effects of droplet size and concentration on the speed of the flame front is used as a measure of the effectiveness of fire suppression in this highly controlled experimental environment.

  15. Suppressed epidemics in multirelational networks.

    PubMed

    Xu, Elvis H W; Wang, Wei; Xu, C; Tang, Ming; Do, Younghae; Hui, P M

    2015-08-01

    A two-state epidemic model in networks with links mimicking two kinds of relationships between connected nodes is introduced. Links of weights w1 and w0 occur with probabilities p and 1-p, respectively. The fraction of infected nodes ρ(p) shows a nonmonotonic behavior, with ρ drops with p for small p and increases for large p. For small to moderate w1/w0 ratios, ρ(p) exhibits a minimum that signifies an optimal suppression. For large w1/w0 ratios, the suppression leads to an absorbing phase consisting only of healthy nodes within a range pL≤p≤pR, and an active phase with mixed infected and healthy nodes for ppR. A mean field theory that ignores spatial correlation is shown to give qualitative agreement and capture all the key features. A physical picture that emphasizes the intricate interplay between infections via w0 links and within clusters formed by nodes carrying the w1 links is presented. The absorbing state at large w1/w0 ratios results when the clusters are big enough to disrupt the spread via w0 links and yet small enough to avoid an epidemic within the clusters. A theory that uses the possible local environments of a node as variables is formulated. The theory gives results in good agreement with simulation results, thereby showing the necessity of including longer spatial correlations.

  16. Suppressed epidemics in multirelational networks

    NASA Astrophysics Data System (ADS)

    Xu, Elvis H. W.; Wang, Wei; Xu, C.; Tang, Ming; Do, Younghae; Hui, P. M.

    2015-08-01

    A two-state epidemic model in networks with links mimicking two kinds of relationships between connected nodes is introduced. Links of weights w1 and w0 occur with probabilities p and 1 -p , respectively. The fraction of infected nodes ρ (p ) shows a nonmonotonic behavior, with ρ drops with p for small p and increases for large p . For small to moderate w1/w0 ratios, ρ (p ) exhibits a minimum that signifies an optimal suppression. For large w1/w0 ratios, the suppression leads to an absorbing phase consisting only of healthy nodes within a range pL≤p ≤pR , and an active phase with mixed infected and healthy nodes for p pR . A mean field theory that ignores spatial correlation is shown to give qualitative agreement and capture all the key features. A physical picture that emphasizes the intricate interplay between infections via w0 links and within clusters formed by nodes carrying the w1 links is presented. The absorbing state at large w1/w0 ratios results when the clusters are big enough to disrupt the spread via w0 links and yet small enough to avoid an epidemic within the clusters. A theory that uses the possible local environments of a node as variables is formulated. The theory gives results in good agreement with simulation results, thereby showing the necessity of including longer spatial correlations.

  17. Chaos suppression through asymmetric coupling

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Vidal, G.; Mancini, H.; Mendoza, C.; Boccaletti, S.

    2007-12-01

    We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.

  18. Proteomic profiling of cellular targets of lipopolysaccharide-induced signalling in Nicotiana tabacum BY-2 cells.

    PubMed

    Gerber, Isak B; Laukens, Kris; De Vijlder, Thomas; Witters, Erwin; Dubery, Ian A

    2008-11-01

    Plants constantly monitor for pathogen challenge and utilize a diverse array of adaptive defense mechanisms, including differential protein regulation, during pathogen attack. A proteomic analysis of Nicotiana tabacum BY-2 cells was performed in order to investigate the dynamic changes following perception of bacterial lipopolysaccharides. A multiplexed proteome analysis, employing two-dimensional difference-in-gel-electrophoresis with CyDye DIGE fluors, as well as Ruthenium II tris (bathophenanthroline disulfonate) fluorescence staining and Pro-Q Diamond phosphoprotein-specific gel staining, monitored over 1500 proteins and resulted in the identification of 88 differentially regulated proteins and phosphoproteins responsive to LPS(B.cep.)-elicitation. Functional clustering of the proteins both at the level of their abundance and phosphorylation status, revealed 9 proteins involved in transport, ion homeostasis and signal transduction. A large number of responsive proteins were found to be involved in metabolism- and energy-related processes (36), representing various metabolic pathways. Another abundant category corresponded to proteins classified as molecular chaperones and involved in protein destination/targeting (12). Other categories of proteins found to be LPS(B.cep.)-responsive and differentially regulated include cell structure- and cytoskeletal rearrangement proteins (8) and proteins involved in transcription and translation as well as degradation (11). The results indicate that LPS(B.cep.) induces metabolic reprogramming and changes in cellular activities supporting protein synthesis, -folding, vesicle trafficking and secretion; accompanied by changes to the cytoskeleton and proteosome function. Many of the identified proteins are known to be interconnected at various levels through a complex web of activation/deactivation, complex formation, protein-protein interactions, and chaperoning reactions. The presented data offers novel insights and further evidence for the biochemical action of LPS(B.cep.) as a resistance elicitor, a pathogen-associated molecular pattern molecule and triggering agent of defense responses associated with innate immunity. PMID:18638580

  19. Stimulation of the ceramide pathway partially mimics lipopolysaccharide-induced responses in murine peritoneal macrophages.

    PubMed Central

    Barber, S A; Detore, G; McNally, R; Vogel, S N

    1996-01-01

    Recent studies have suggested that lipolysaccharide (LPS) stimulates cells by mimicking the second-messenger function of ceramide, a lipid generated in the cell by the action of sphingomyelinase (SMase). To examine this possibility further, we compared the abilities of LPS, SMase, and/or ceramide analogs to induce cytokine secretion, modulate gene expression, and induce endotoxin tolerance in macrophages. SMase and LPS induced secretion of tumor necrosis factor alpha (TNF-alpha) to comparable degrees; however, unlike LPS, SMase failed to stimulate detectable interferon activity. Cell-permeable analogs of ceramide induced the expression of many LPS-inducible genes; however, the expression of interferon-inducible protein 10 (IP-10) and interferon consensus sequence-binding protein (ICSBP) mRNAs was significantly lower than that induced by LPS. Both SMase-induced TNF-alpha secretion and LPS-induced TNF-alpha secretion were inhibited by pretreatment with a serine/threonine phosphatase inhibitor, calyculin A. Macrophages preexposed in vitro to LPS to induce a well-characterized state of endotoxin tolerance secreted little or no TNF-alpha upon secondary challenge with either LPS or SMase, whereas macrophages preexposed to SMase secreted high levels of TNF-alpha upon secondary stimulation with LPS or SMase. Collectively, these results suggest that ceramide activates a subset of LPS-induced signaling pathways in murine peritoneal exudate macrophages. PMID:8757882

  20. Concomitant lipopolysaccharide-induced transfer of blood-derived components including immunoglobulins into milk.

    PubMed

    Lehmann, M; Wellnitz, O; Bruckmaier, R M

    2013-02-01

    During a mammary immune response, the integrity of the blood-milk barrier is negatively affected and becomes leaky. The aim of the present study was to demonstrate the blood origin, and to investigate changes in the concentration, of various constituents including immunoglobulins in blood and milk during the early phase of lipopolysaccharide (LPS)-induced mastitis. Five lactating dairy cows received continuous β-hydroxybutyrate (BHBA) clamp infusions to maintain elevated BHBA blood concentrations (1.5 to 2.0 mmol/L) from 48 h before and 8h after LPS administration. One udder quarter was infused with 200 μg of Escherichia coli LPS. A second quarter served as control. Milk and blood samples were taken hourly for 8h postchallenge (PC). The somatic cell count in LPS-challenged quarters was increased from 4h PC to the end of the experiment compared with control quarters. In LPS-challenged quarters, l-lactate, BHBA, lactate dehydrogenase (LDH), IgG(1), and IgG(2) were increased at 3h PC and remained elevated until the end of experiment (8h PC) compared with control quarters. In addition, the optical density values in milk in a nonquantitative ELISA for antibodies directed against bluetongue virus (used as a measure of nonspecific antibody transfer; all animals were vaccinated) increased and, thus, indicates an increase in these antibodies in response to LPS treatment. l-Lactate concentration also increased in blood 2h PC and in the milk of control quarters during the experiment from 3h PC. A second experiment was conducted in vitro to investigate a possible contribution from destructed milk cells to l-lactate concentration and activity of LDH in milk. Aliquots of milk samples (n=8) were frozen (-20°C) or disrupted with ultrasound, respectively. Freeze thawing and ultrasound treatment increased LDH in milk samples, but had no effect on l-lactate concentrations. Results suggest that intramammary infusion of LPS induces a systemic response, as evidenced by an elevation of blood l-lactate concentration. The concomitant changes of all investigated components suggest that they were blood derived. However, the increase in blood components in the milk is not necessarily supportive of the mammary immune system, and likely a side effect of reduced blood-milk barrier integrity.

  1. A three-dimensional collagen construct to model lipopolysaccharide-induced activation of BV2 microglia

    PubMed Central

    2014-01-01

    Background We report a novel method of culturing microglia in three dimension (3D) using collagen as a substrate. By culturing microglia within a matrix, we aim to emulate the physical state of microglia embedded within parenchyma. Methods BV2 microglia cell suspensions were prepared with type I collagen and cast into culture plates. To characterise the BV2 microglia cultured in 3D, the cultures were evaluated for their viability, cell morphology and response to lipopolysaccharide (LPS) activation. Conventional monolayer cultures (grown on uncoated and collagen-coated polystyrene) were set up concurrently for comparison. Results BV2 microglia in 3D collagen matrices were viable at 48 hrs of culture and exhibit a ramified morphology with multiplanar cytoplasmic projections. Following stimulation with 1 μg/ml LPS, microglia cultured in 3D collagen gels increase their expression of nitric oxide (NO) and CD40, indicating their capacity to become activated within the matrix. Up to 97.8% of BV2 microglia grown in 3D cultures gained CD40 positivity in response to LPS, compared to approximately 60% of cells grown in a monolayer (P < .05). BV2 microglia in 3D collagen gels also showed increased mRNA and protein expression of inflammatory cytokines IL-6, TNF-α and the chemoattractant MCP-1 following LPS stimulation. Conclusions In summary, BV2 microglia cultured in 3D collagen hydrogels exhibit multiplanar cytoplasmic projections and undergo a characteristic and robust activation response to LPS. This culture system is accessible to a wide range of analyses and provides a useful new in vitro tool for research into microglial activation. PMID:25074682

  2. Effect of Lianshu preparation on lipopolysaccharide-induced diarrhea in rats

    PubMed Central

    Liu, Jun; Wan, Rong; Xu, Xuan-Fu; Wang, Xing-Peng; Yang, Wen-Juan; Xia, Yu-Jing; Liu, Hua; Yan, Qian-Lin; Yan, De-Xin; Guo, Chuan-Yong

    2009-01-01

    AIM: To investigate the effect of Lianshu preparation on lipopolysaccharide (LPS)-induced diarrhea in rats. METHODS: A diarrhea model was established in Sprague Dawley rats via injection of 1 mL of 30 mg/kg LPS. A total of 40 rats were randomly divided into normal group, LPS group, LPS + Lianshu group, LPS + berberine group (n = 10 in each group). Their intestinal mucosal barrier and frequency of diarrhea were observed. Levels of glucose, serum Na+, K+, Cl- and hematocrit, plasma nitrogen monoxide (NO), diamine oxidase (DAO), and D (-)-lactate were measured. The number of IgA+ plasma cells in small intestine was detected and SIgA levels in the intestinal fluid were measured. The antipyretic activity of Lianshu preparation in rats was evaluated using Brewer’s yeast-induced pyrexia (10 mL/kg of 20% aqueous suspension). Acetaminophen (250 mg/kg, intragastric administration, bid) was used as a standard drug for comparison. Temperature was recorded 1 h before and 6 h after Brewer’s yeast injection. Finally, small intestinal transmission in mice treated with Lianshu was detected after intraperitoneal injection of methyl prostigmin (2 mg/kg). Atropine (10 g/kg) was used as a control. The ink content in intestine was determined and the total length of intestine was measured. RESULTS: The frequency of diarrhea was higher in LPS group than in LPS + Lianshu group and LPS + berberine group (36.70 ± 5.23 vs 28.50 ± 4.06 and 32.70 ± 9.30 respectively, P < 0.01), and lower in LPS + Lianshu group than in LPS + berberine group (P = 0.03). The levels of Na+, glucose, Cl-, K+ were significantly lower in LPS + Lianshu group than in LPS + berberine group (140.35 ± 3.19 mmol/L vs 131.99 ± 4.86 mmol/L, 8.49 ± 1.84 mmol/L vs 6.54 ± 2.30 mmol/L, 106.29 ± 4.41 mmol/L vs 102.5 ± 1.39 mmol/L, 5.08 ± 0.66 mmol/L vs 4.32 ± 0.62 mmol/L respectively, P < 0.05). The level of hematocrit was lower in LPS + Lianshu group than in LPS + berberine group (0.50% ± 0.07% vs 0.59% ± 0.10% respectively, P < 0.05). The plasma levels of NO, DAO and D (-)-lactate were higher in LPS group than in normal group (79.74 ± 7.39 μmol/L vs 24.94 ± 3.38 μmol/L, 2.48 ± 0.42 μ/mL vs 0.82 ± 0.33 μ/mL, 5.63 ± 0.85 μg/mL vs 2.01 ± 0.32 μg/mL respectively, P < 0.01), and lower in LPS + Lianshu group than in LPS + berberine group (48.59 ± 4.70 μmol/L vs 51.56 ± 8.38 μmol/L, 1.43 ± 0.53 μmol/mL vs 1.81 ± 0.42 μmol/mL, 4.00 ± 0.54 μg/mL vs 4.88 ± 0.77 μg/mL respectively, P < 0.05). The morphology of the intestinal mucosa showed destroyed villi in LPS group and atrophied intestinal mucosa in other groups. The pathological intestinal mucosal changes were less in LPS + Lianshu group than in LPS group. The number of IgA+ plasma cells and amount of SIgA were higher in LPS + Lianshu group than in LPS group (1.16 ± 0.19/μm2 vs 1.09 ± 0.28/μm2, P = 0.026; 0.59 ± 0.12 mg/L vs 0.15 ± 0.19 mg/L respectively, P = 0.000). Lianshu had counteractive effects on yeast-induced pyrexia and enterokinesia in rats. CONCLUSION: Lianshu preparation has therapeutic effects on LPS-induced diarrhea and enterokinesia in rats. PMID:19399935

  3. Interleukin-10 Protection against Lipopolysaccharide-Induced Neuro-Inflammation and Neurotoxicity in Ventral Mesencephalic Cultures

    PubMed Central

    Zhu, Yan; Chen, Xiao; Liu, Zhan; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Interleukin (IL)-10, an anti-inflammatory cytokine, is expressed in the brain and can inhibit microglial activation. Herein, we utilized lipopolysaccharide (LPS)-induced inflammatory Parkinson’s disease (PD) cell model to determine whether microglia and astrocytes are necessary targets for IL-10 neuroprotection. Primary ventral mesencephalic (VM) cultures with different composition of neurons, microglia and astrocytes were prepared. The cells were exposed to IL-10 (15, 50 or 150 ng/mL) 1 h prior to LPS (50 ng/mL) treatment. LPS induced dopaminergic and non-dopaminergic neuronal loss in VM cultures, VM neuron-enriched cultures, and neuron-microglia co-cultures, but not in neuron-astrocyte co-cultures. IL-10 reduced LPS-induced neuronal loss particularly in single VM neuron cultures. Pro-inflammatory mediators (TNF-α, IL-1β, inducible nitric oxide synthase and cyclooxygenase-2) were upregulated in both neuron-microglia and neuron-astrocyte co-cultures by LPS. In contrast, neurotrophic factors (brain-derived neurotrophic factor, insulin-like growth factor-1 or glial cell-derived neurotrophic factor) were downregulated in neuron-microglia co-cultures, but upregulated in neuron-astrocyte co-cultures by LPS. IL-10 reduced both the increase in production of the pro-inflammatory mediators and the decrease in production of the neurotrophic factors induced by LPS. These results suggest that astrocytes can balance LPS neurotoxicity by releasing more neurotrophic factors and that IL-10 exerts neuroprotective property by an extensive action including direct on neurons and indirect via inhibiting microglial activation. PMID:26729090

  4. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice.

    PubMed

    Arteel, Gavin E; Guo, Luping; Schlierf, Thomas; Beier, Juliane I; Kaiser, J Phillip; Chen, Theresa S; Liu, Marsha; Conklin, Daniel J; Miller, Heather L; von Montfort, Claudia; States, J Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  5. Asiatic Acid Inhibits Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Li, Zhiling; Xiao, Xianzhong; Yang, Mingshi

    2016-10-01

    Asiatic acid (AA), a major triterpene isolated from Centella asiatica (L.) Urban, is known to exert various pharmacological activities, including anti-inflammatory and antioxidant effects. The aim of this study was to evaluate the anti-inflammatory effects of AA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the underlying mechanisms. Lung pathological changes were assessed by H&E staining. The myeloperoxidase (MPO) activity was detected by MPO assay. The levels of inflammatory cytokines were measured by ELISA. TLR4 and NF-kB expression was detected by Western blot analysis. AA obviously inhibited LPS-induced lung histopathological changes, MPO activity, and inflammatory cell numbers in bronchoalveolar lavage fluid (BALF). Treatment of AA also inhibited LPS-induced TNF-α, IL-6, and IL-1β production. Furthermore, Western blot analysis showed that AA inhibited LPS-induced TLR4 expression and NF-kB activation. In conclusion, AA inhibited LPS-induced ALI in mice by inhibiting inflammatory cytokine production, which is mediated via blocking of the TLR4/NF-kB signaling pathway.

  6. The CRTH2 agonist Pyl A prevents lipopolysaccharide-induced fetal death but induces preterm labour

    PubMed Central

    Sykes, Lynne; Herbert, Bronwen R; MacIntyre, David A; Hunte, Emma; Ponnampalam, Sathana; Johnson, Mark R; Teoh, Tiong G; Bennett, Phillip R

    2013-01-01

    We have previously demonstrated that the anti-inflammatory prostaglandin 15-deoxy-Δ 12,14-prostaglandin J2 (15dPGJ2) delays inflammation-induced preterm labour in the mouse and improves pup survival through the inhibition of nuclear factor-κB (NF-κB) by a mechanism yet to be elucidated. 15dPGJ2 is an agonist of the second prostaglandin D2 receptor, chemoattractant receptor homologous to the T helper 2 cell (CRTH2). In human T helper cells CRTH2 agonists induce the production of the anti-inflammatory interleukins IL-10 and IL-4. We hypothesized that CRTH2 is involved in the protective effect of 15dPGJ2 in inflammation-induced preterm labour in the murine model. We therefore studied the effects of a specific small molecule CRTH2 agonist on preterm labour and pup survival. An intrauterine injection of lipopolysaccharide (LPS) was administered to CD1 mice at embryonic day 16, ± CRTH2 agonist/vehicle controls. Mice were killed at 4.5 hr to assess fetal wellbeing and to harvest myometrium and pup brain for analysis of NF-κB, and T helper type 1/2 interleukins. To examine the effects of the CRTH2 agonist on LPS-induced preterm labour, mice were allowed to labour spontaneously. Direct effects of the CRTH2 agonist on uterine contractility were examined ex vivo on contracting myometrial strips. The CRTH2 agonist increased fetal survival from 20 to 100% in LPS-treated mice, and inhibited circular muscle contractility ex vivo. However, it augmented LPS-induced labour and significantly increased myometrial NF-κB, IL-1β, KC-GRO, interferon-γ and tumour necrosis factor-α. This suggests that the action of 15dPGJ2 is not via CRTH2 and therefore small molecule CRTH2 agonists are not likely to be beneficial for the prevention of inflammation-induced preterm labour. PMID:23374103

  7. Eupatorium lindleyanum DC. flavonoids fraction attenuates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Chu, Chunjun; Yao, Shi; Chen, Jinglei; Wei, Xiaochen; Xia, Long; Chen, Daofeng; Zhang, Jian

    2016-10-01

    Eupatorium lindleyanum DC., "Ye-Ma-Zhui" called by local residents in China, showed anti-inflammatory activity and is used to treat tracheitis. We had isolated and identified the flavonoids, diterpenoids and sesquiterpenes compounds from the herb. In the present study, we evaluated the protective effects of the flavonoids fraction of E. lindleyanum (EUP-FLA) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. EUP-FLA could significantly decrease lung wet-to-dry weight (W/D) ratio, nitric oxide (NO) and protein concentration in BALF, lower myeloperoxidase (MPO) activity, increase superoxide dismutase (SOD) activity and down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, EUP-FLA attenuated lung histopathological changes and significantly reduced complement deposition with decreasing the levels of Complement 3 (C3) and Complement 3c (C3c) in serum. These results demonstrated that EUP-FLA may attenuate LPS-induced ALI via reducing productions of pro-inflammatory mediators, decreasing the level of complement and affecting the NO, SOD and MPO activity. PMID:27398612

  8. Lipopolysaccharide induces a downregulation of adiponectin receptors in-vitro and in-vivo

    PubMed Central

    Hall, Alison; Leuwer, Martin; Trayhurn, Paul

    2015-01-01

    Background. Adipose tissue contributes to the inflammatory response through production of cytokines, recruitment of macrophages and modulation of the adiponectin system. Previous studies have identified a down-regulation of adiponectin in pathologies characterised by acute (sepsis and endotoxaemia) and chronic inflammation (obesity and type-II diabetes mellitus). In this study, we investigated the hypothesis that LPS would reduce adiponectin receptor expression in a murine model of endotoxaemia and in adipoocyte and myocyte cell cultures. Methods. 25 mg/kg LPS was injected intra-peritoneally into C57BL/6J mice, equivalent volumes of normal saline were used in control animals. Mice were killed at 4 or 24 h post injection and tissues harvested. Murine adipocytes (3T3-L1) and myocytes (C2C12) were grown in standard culture, treated with LPS (0.1 µg/ml–10 µg/ml) and harvested at 4 and 24 h. RNA was extracted and qPCR was conducted according to standard protocols and relative expression was calculated. Results. After LPS treatment there was a significant reduction after 4 h in gene expression of adipo R1 in muscle and peri-renal fat and of adipo R2 in liver, peri-renal fat and abdominal wall subcutaneous fat. After 24 h, significant reductions were limited to muscle. Cell culture extracts showed varied changes with reduction in adiponectin and adipo R2 gene expression only in adipocytes. Conclusions. LPS reduced adiponectin receptor gene expression in several tissues including adipocytes. This reflects a down-regulation of this anti-inflammatory and insulin-sensitising pathway in response to LPS. The trend towards base line after 24 h in tissue depots may reflect counter-regulatory mechanisms. Adiponectin receptor regulation differs in the tissues investigated. PMID:26618091

  9. CAF1-knockout mice are more susceptive to lipopolysaccharide-induced acute lung injury

    PubMed Central

    Shi, Jia-Xin; Li, Jia-Shu; Hu, Rong; Li, Xiao-Min; Wang, Hong

    2016-01-01

    The carbon catabolite repressor protein 4 (CCR4)–negative on TATA (NOT) complex includes multiple subunits and is conserved in the eukaryotic cells. The CCR4–NOT complex can regulate gene expression at different levels. Two subunits of the CCR4–NOT complex, CCR4 and CCR4-associated factor 1 (CAF1), possess deadenylase activity. In yeast, the deadenylase activity is mainly provided by the CCR4 subunit; however, the deadenylase activity is provided by both CCR4 and CAF1 in other eukaryotes. A previous study reported that CAF1 but not CCR4 is required for the decay of a reporter mRNA with AU-rich elements. Our previous study showed that CAF1 is involved in the regulation of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) expression. Both ICAM-1 and IL-8 play crucial roles in acute lung injury. In the present study, we examined the effects of CAF1 deficiency on IL-8 and ICAM-1 expression and acute lung injury in mice. Here we showed that there were no differences between the wild-type and CAF1-knockout mice on phenotypes. The lung histology and protein and mRNA levels of IL-8 and ICAM-1 in unstimulated wild-type mice were comparable to those in unstimulated CAF1-knockout mice. However, lipopolysaccharide stimulation led to more severe lung histological injury and greatly higher IL-8 and ICAM-1 expression in CAF1-knockout mice compared to the wild-type mice. These results, together with our previous study, suggest that CAF1 is involved in the regulation of lipopolysaccharide-stimulated IL-8 and ICAM-1 expression in vivo and affects the progression of acute lung injury. PMID:27358572

  10. Stem cell intervention ameliorates epigallocatechin-3-gallate/lipopolysaccharide-induced hepatotoxicity in mice.

    PubMed

    Saleh, I G; Ali, Z; Hammad, M A; Wilson, F D; Hamada, F M; Abd-Ellah, M F; Walker, L A; Khan, I A; Ashfaq, M K

    2015-11-01

    Stem cells are identified as a novel cell therapy for regenerative medicine because of their ability to differentiate into many functional cell types. We have shown earlier a new model of hepatotoxicity in mice by administering (1500 mg/kg) epigallocatechin-3-gallate (EGCG) intragastric (IG) for 5 days after a single intraperitoneal dose (6 mg/kg) of lipopolysaccharide (LPS). In this study, we aimed to study the effect of intrahepatic (IH) injection of mouse embryonic stem cells (MESCs) on the hepatotoxicity induced by EGCG/LPS in mice. Mice were administered EGCG/LPS and rested for 3 days. MESCs were obtained from American Type Culture Collection and cultured in vitro for 4 days. Stem cells were injected IH. Seven days later, a single dose of LPS (6 mg/kg) followed by daily doses of IG administration of EGCG were re-administered for 5 days. At the end of the experiment, blood samples were collected for analysis of biochemical parameters associated with liver. Results showed that the group of mice that were administered MESCs prior to EGCG/LPS showed lower levels of alanine amino transferase, alkaline phosphatase, and bilirubin, higher albumin/globulin ratio, and less remarkable histopathological lesions. Also, that group of mice showed less expression of oxidative stress biomarkers (oxidized low-density lipoprotein Ox.LDL and chemokine CXCL16), less expression of nuclear protein receptors (retinoic acid receptor and retinoid X receptor), and less expression of inflammatory biomarkers (tumor necrosis factor α and transforming growth factor β1) compared with other groups of mice that were not given MESCs. In conclusion, MESCs can ameliorate EGCG/LPS-induced hepatotoxicity in mice.

  11. Curcumin attenuates D-galactosamine/lipopolysaccharide-induced liver injury and mitochondrial dysfunction in mice.

    PubMed

    Zhang, Jingfei; Xu, Li; Zhang, Lili; Ying, Zhixiong; Su, Weipeng; Wang, Tian

    2014-08-01

    Curcumin, a naturally occurring antioxidant, has various beneficial effects in the treatment of human diseases. However, little information regarding the protection it provides against acute liver injury is available. The present study investigated the protective effects of curcumin against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced acute liver injury in mice. A total of 40 male Kunming mice were randomly assigned to 5 groups: 1) mice administered saline vehicle injection (control), 2) mice administered 200 mg/kg body weight (BW) curcumin by i.p. injection (CUR), 3) mice administered D-GalN/LPS (700 mg and 5 μg/kg BW) via i.p. injection (GL), 4) mice administered 200 mg/kg BW curcumin i.p. 1 h before D-GalN/LPS injection (CUR-GL), and 5) mice administered 200 mg/kg BW curcumin i.p. 1 h after D-GalN/LPS injection (GL-CUR). Twenty h after D-GalN/LPS injection, serum alanine aminotransferase activities were 18.5% and 13.5% lower (P < 0.05) and aspartate aminotransferase (AST) activities were 26.6% and 9.6% lower (P < 0.05) in the CUR-GL and GL-CUR groups, respectively, than in the GL group. The CUR-GL and GL-CUR groups had 64.4% and 15.0% higher (P < 0.05) mitochondrial membrane potentials, respectively, and the CUR-GL group had a 44.7% lower reactive oxygen species concentration than the GL group (P < 0.05). Mitochondrial manganese superoxide dismutase activities were 111% and 77.9% higher (P < 0.05) and the percentages of necrotic cells were 47.0% and 32.4% lower (P < 0.05) in the CUR-GL and GL-CUR groups, respectively, than in the GL group. Liver mRNA levels of sirtuin 1 (Sirt1) were 56.4% lower (P < 0.05) in the CUR-GL group than in the GL group. Moreover, compared with the GL-CUR group, the CUR-GL group had an 18.7% lower serum AST activity, a 31.7% lower mitochondrial malondialdehyde concentration, a 36.0% lower hepatic reactive oxygen species concentration, and a 43.0% higher mitochondrial membrane potential. These results suggested that curcumin protects against D-GalN/LPS-induced liver damage by the enhancing antioxidant defense system, attenuating mitochondrial dysfunction and inhibiting apoptosis. This was especially true for curcumin pretreatment, which highlighted its promise as a preventive treatment for acute liver injury in clinical settings. PMID:24899159

  12. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells

    PubMed Central

    Kim, Sokho; Oh, Myung-Hoon; Kim, Bum-Seok; Kim, Won-Il; Cho, Ho-Seong; Park, Byoung-Yong; Park, Chul; Shin, Gee-Wook; Kwon, Jungkee

    2015-01-01

    Background The beneficial effects of ginsenoside species have been well demonstrated in a number of studies. However, the function of ginsenoside Ro (GRo), an oleanane-type saponin, has not been sufficiently investigated. Thus, the aim of the present study was to investigate the anti-inflammatory effects of GRo in vitro using the Raw 264.7 mouse macrophage cell line treated with lipopolysaccharide (LPS), and to clarify the possible mechanism of GRo involving heme oxygenase-1 (HO-1), which itself plays a critical role in self-defense in the presence of inflammatory stress. Methods Raw 264.7 cells were pretreated with GRo (up to 200μM) for 1 h before treatment with 1 μg/mL LPS, and both cell viability and inflammatory markers involving HO-1 were evaluated. Results GRo significantly increased cell viability in a dose dependent manner following treatment with LPS, and decreased levels of reactive oxygen species and nitric oxide. GRo decreased inflammatory cytokines such as nitric oxide synthase and cyclooxygenase-2 induced by LPS. Moreover, GRo increased the expression of HO-1 in a dose dependent manner. Cotreatment of GRo with tin protoporphyrin IX, a selective inhibitor of HO-1, not only inhibited upregulation of HO-1 induced by GRo, but also reversed the anti-inflammatory effect of GRo in LPS treated Raw 264.7 cells. Conclusion GRo induces anti-inflammatory effects following treatment with LPS via upregulation of HO-1. PMID:26869829

  13. Febuxostat protects rats against lipopolysaccharide-induced lung inflammation in a dose-dependent manner.

    PubMed

    Fahmi, Alaa N A; Shehatou, George S G; Shebl, Abdelhadi M; Salem, Hatem A

    2016-03-01

    The aim of the present work was to investigate possible protective effects of febuxostat, a highly potent xanthine oxidase inhibitor, against acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. Male Sprague Dawley rats were randomly divided into six groups, as follows: (i) vehicle control group; (ii) and (iii) febuxostat 10 and febuxostat 15 groups, drug-treated controls; (iv) LPS group, receiving an intraperitoneal injection of LPS (7.5 mg/kg); (v) and (vi) febuxostat 10-LPS and febuxostat 15-LPS groups, receiving oral treatment of febuxostat (10 and 15 mg/kg/day, respectively) for 7 days before LPS. After 18 h administration of LPS, blood was collected for C-reactive protein (CRP) measurement. Bronchoalveolar lavage fluid (BALF) was examined for leukocyte infiltration, lactate dehydrogenase (LDH) activity, protein content, and total nitrate/nitrite. Lung weight gain was determined, and lung tissue homogenate was prepared and evaluated for oxidative stress. Tumor necrosis factor-α (TNF-α) was assessed in BALF and lung homogenate. Moreover, histological changes of lung tissues were evaluated. LPS elicited lung injury characterized by increased lung water content (by 1.2 fold), leukocyte infiltration (by 13 fold), inflammation and oxidative stress (indicated by increased malondialdehyde (MDA), by 3.4 fold), and reduced superoxide dismutase (SOD) activity (by 34 %). Febuxostat dose-dependently decreased LPS-induced lung edema and elevations in BALF protein content, infiltration of leukocytes, and LDH activity. Moreover, the elevated levels of TNF-α in BALF and lung tissue of LPS-treated rats were attenuated by febuxostat pretreatment. Febuxostat also displayed a potent antioxidant activity by decreasing lung tissue levels of MDA and enhancing SOD activity. Histological analysis of lung tissue further demonstrated that febuxostat dose-dependently reversed LPS-induced histopathological changes. These findings demonstrate a significant dose-dependent protection by febuxostat against LPS-induced lung inflammation in rats.

  14. Repeated Oronasal Exposure to Lipopolysaccharide Induced Mucosal IgA Responses in Periparturient Dairy Cows

    PubMed Central

    Iqbal, Summera; Zebeli, Qendrim; Mansmann, Dominik A.; Dunn, Suzanna M.; Ametaj, Burim N.

    2014-01-01

    This study investigated the effects of repeated oronasal treatment with lipopolysaccharide (LPS) on the humoral immune responses in saliva, vaginal mucus, and the plasma markers of the acute phase response in periparturient dairy cows. One hundred pregnant Holstein cows were administered either 3 increasing doses of LPS (n = 50) as follows: 1) 0.01 µg/kg body weight (BW) on d −28, 2) 0.05 µg/kg BW on d −25, and −21, and 3) 0.1 µg/kg BW on d −18, and −14, or sterile saline solution (controls; n = 50) oronasally for 3 consecutive wk starting at 28 d before parturition. Intensive sampling was conducted on thirty cows (n = 15/group). Multiple saliva, vaginal mucus and blood samples were collected around parturition and analyzed for total immunoglobulin-(Ig)A, plasma serum amyloid A (SAA), lipopolysaccharide-binding protein (LBP), anti-LPS IgA, IgG, IgM, tumour necrosis factor(TNF)-α, and interleukin(IL)-1. Results regarding total secretory IgA (sIgA) antibodies showed greater concentrations in the saliva and an overall tendency for higher total sIgA in the vaginal mucus of the LPS-treated cows. Treatment had no effect on plasma sIgA, IgG, IgM anti-LPS antibodies, haptoglobin, SAA, LBP, TNF-α, and IL-1. Treatments by time interactions were observed for SAA and IL-1 with lowered concentrations of both variables in the plasma of LPS-treated cows after parturition. Overall, repeated oronasal LPS treatment clearly enhanced total sIgA antibodies in the saliva, stimulated their production in vaginal mucus shortly before calving, and lowered plasma IL-1 around parturition, but showed limited effects on markers of the acute phase response in the plasma in dairy cows around parturition. PMID:25061754

  15. Farnesyltransferase inhibitor, tipifarnib, prevents galactosamine/lipopolysaccharide-induced acute liver failure.

    PubMed

    Shirozu, Kazuhiro; Hirai, Shuichi; Tanaka, Tomokazu; Hisaka, Shinsuke; Kaneki, Masao; Ichinose, Fumito

    2014-12-01

    Acute liver failure (ALF) is a fatal syndrome associated with massive hepatocyte death. There is no cure for ALF except liver transplantation. Protein farnesylation is a lipid modification of cysteine residues that is catalyzed by farnesyltransferase (FTase) and has been proposed as an integral component of acute inflammation. Previously, we have demonstrated that FTase inhibitors improve survival in mouse models of endotoxemia and sepsis. Here we studied the effects of FTase inhibitor, tipifarnib, on galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF. The effects of tipifarnib (10 mg/kg, i.p.) were studied in GalN (400 mg/kg, i.p.)- and LPS (3 μg/kg)-challenged mice by histological and biochemical analyses. Galactosamine/LPS administration caused prominent liver injury characterized by the increased plasma alanine aminotransferase and aspartic aminotransferase levels, leading to significant mortality in mice. Tipifarnib inhibited GalN/LPS-induced caspase 3 activation, inflammatory cytokine production, and c-Jun N-terminal kinase phosphorylation in the liver. On the other hand, tipifarnib upregulated antiapoptotic protein, Bcl-xL, in the liver after GalN/LPS challenge. Tipifarnib also protected primary hepatocytes from GalN/tumor necrosis factor α-induced cell death by inhibiting caspase 3 activation and upregulating antiapoptotic proteins. Galactosamine/LPS-induced liver injury was associated with increased protein farnesylation in the liver. Tipifarnib prevented protein farnesylation in the liver and markedly attenuated liver injury and mortality in GalN/LPS-challenged mice. These results suggest that protein farnesylation is a novel potential molecular target to prevent hepatocyte death and acute inflammatory liver failure in fulminant hepatitis. PMID:25046541

  16. Docosahexaenoic acid ester of phloridzin inhibit lipopolysaccharide-induced inflammation in THP-1 differentiated macrophages.

    PubMed

    Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha

    2015-03-01

    Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease. PMID:25637769

  17. LPS pretreatment ameliorates D-galactosamine/lipopolysaccharide-induced acute liver failure in rat.

    PubMed

    Dong, Jin-Zhong; Wang, Li-Ping; Zhang, Sai-Nan; Shi, Ke-Qing; Chen, Shao-Long; Yang, Nai-Bin; Ni, Shun-Lan; Zhu, Jian-Hua; Lu, Ming-Qin

    2014-01-01

    Acute liver failure (ALF) remains an extremely poor prognosis and high mortality; with no effective treatments. The endotoxin tolerance (ET) phenotype has been reported to exhibit protective activities in several sepsis models. We now investigated the effects and underlying intraperitoneal injection of the same volume of pyrogen-free 0.9% sodium chloride instead of LPS for five consecutive days before D-GalN/LPS injection in rats. The serum levels of TNF-α, IL-6, ALT, AST and TBiL from ET + ALF group and ALF group were measured at different time points. Our results showed that ET + ALF group markedly reduced the serum levels of TNF-α, IL-6, ALT, AST and TBiL and histological features in the ET + ALF group were improved significantly. Furthermore, LPS pre-treatment inhibited D-GalN/LPS-induced NF-κB activation, Bax activation, signal transducer and activator of transcription-1 (STAT1) and signal transducer and activator of transcription-3 (STAT3) activities. LPS pre-treatment also significantly enhance the expression of suppressors of cytokine signaling 1 (SOCS1) and suppressors of cytokine signaling 3 (SOCS3). Our experimental data indicated that ET might alleviate D-GalN/LPS-induced ALF by inhibiting the inflammatory response, inactivation of STAT1 and STAT3 and up-regulation of SOCS1 and SOCS3.

  18. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis.

    PubMed

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-09-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  19. Keratinocyte growth factor-2 is protective in lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Tong, Lin; Bi, Jing; Zhu, Xiaodan; Wang, Guifang; Liu, Jie; Rong, Linyi; Wang, Qin; Xu, Nuo; Zhong, Ming; Zhu, Duming; Song, Yuanlin; Bai, Chunxue

    2014-09-15

    Keratinocyte growth factor-2 (KGF-2) plays a key role in lung development, but its role in acute lung injury has not been well characterized. Lipopolysaccharide instillation caused acute lung injury, which significantly elevated lung wet-to-dry weight ratio, protein and neutrophils in bronchoalveolar lavage fluid (BALF), inhibited surfactant protein A and C expression in lung tissue, and increased pathological injury. Pretreatment with KGF-2 improved the above lung injury parameters, partially restored surfactant protein A and C expression, and KGF-2 given 2-3 days before LPS challenge showed maximum lung injury improvement. Pretreatment with KGF-2 also markedly reduced the levels of TNF-α, MIP-2, IL-1β and IL-6 in BALF and the levels of IL-1β and IL-6 in lung tissue. Histological analysis showed there was increased proliferation of alveolar type II epithelial cells in lung parenchyma, which reached maximal 2 days after KGF-2 instillation. Intratracheal administration of KGF-2 attenuates lung injury induced by LPS, suggesting KGF-2 may be potent in the intervention of acute lung injury.

  20. Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats.

    PubMed

    Gao, S; Li, H; Zhou, X-Q; You, J-B; Tu, D-N; Xia, G; Jiang, J-X; Xin, C

    2015-07-31

    Withaferin A (WFA) is an active compound from Withania somnifera and has been reported to exhibit a variety of pharmacological activities such as anti—inflammatory, immunomodulatory and anti—tumor properties. In the present study, we investigated the potential protective role of WFA on acute lung injury in neonatal rats induced by lipopolysaccharide (LPS). We found that WFA significantly attenuated the pathological changes of lungs induced by LPS injection. Administration with WFA obviously decreased pulmonary neutrophil infiltration accompanied with decreased MPO concentrations. WFA also reduced the expression of pro—inflammatory cytokines including MIP—2, TNF—α, IL—1β and IL—6. Meanwhile, the expression levels of anti—inflammatory mediators such as TGF—β1 and IL—10 were significantly increased following WFA administration. Moreover, WFA protected LPS—treated rats from oxidative damage via up—regulation of TBARS and H2O2 concentrations and down—regulation of ROS contents. Taken together, the present study demonstrated that WFA administration attenuated LPS—induced lung injury through inhibition of inflammatory responses and oxidative stress.

  1. Silencing of Paralemmin-3 Protects Mice from lipopolysaccharide-induced acute lung injury.

    PubMed

    Li, Shaoying; Guo, Liang; Zhao, Yunfeng; Qian, Pin; Lv, Xuejun; Qian, Lanlan; Wang, Qin; Qian, Guisheng; Yao, Wei; Wu, Xueling

    2016-02-01

    Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.

  2. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Li, G; Zhou, C L; Zhou, Q S; Zou, H D

    2016-02-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.

  3. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    PubMed

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (p<0.001) brain- reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) significantly increased (p<0.001) the level of malondialdehyde (MDA), nitric oxide and the activity of cytokines in the brain. MEAR supplementation resulted in normalization of brain GSH and CAT and SOD and decreases in the levels of MDA with reduction of nitric oxide and cytokines in the brain. The action of the extract at dose of 200 mg/kg was almost similar to the standard drug, quercetin (100mg/kg, p.o.). These present study conclude that MEAR administration significantly (P<0.05) reduced LPS- induced oxidative-stress and intensely suggest that Asparagus racemosus Willd. is a functionally newer type of cerebroprotective agent. PMID:25730806

  4. Rice hull smoke extract protects mice against a salmonella lipopolysaccharide-induced endotoxemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice hulls accounting for 20% of the rice crop are a byproduct of post-harvest rice processing. Endotoxemia (sepsis, septic shock) is an inflammatory, virulent often fatal disease that results mainly from infection with Salmonella and other Gram-negative bacteria. The present study investigated the...

  5. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  6. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  7. Heat shock inhibits lipopolysaccharide-induced tissue factor activity in human whole blood

    PubMed Central

    Sucker, Christoph; Zacharowski, Kai; Thielmann, Matthias; Hartmann, Matthias

    2007-01-01

    Background During gram-negative sepsis, lipopolysaccharide (LPS) induces tissue factor expression on monocytes. The resulting disseminated intravascular coagulation leads to tissue ischemia and worsens the prognosis of septic patients. There are indications, that fever reduces the mortality of sepsis, the effect on tissue factor activity on monocytes is unknown. Therefore, we investigated whether heat shock modulates LPS-induced tissue factor activity in human blood. Methods Whole blood samples and leukocyte suspensions, respectively, from healthy probands (n = 12) were incubated with LPS for 2 hours under heat shock conditions (43°C) or control conditions (37°C), respectively. Subsequent to further 3 hours of incubation at 37°C the clotting time, a measure of tissue factor expression, was determined. Cell integrity was verified by trypan blue exclusion test and FACS analysis. Results Incubation of whole blood samples with LPS for 5 hours at normothermia resulted in a significant shortening of clotting time from 357 ± 108 sec to 82 ± 8 sec compared to samples incubated without LPS (n = 12; p < 0.05). This LPS effect was mediated by tissue factor, as inhibition with active site-inhibited factor VIIa (ASIS) abolished the effect of LPS on clotting time. Blockade of protein synthesis using cycloheximide demonstrated that LPS exerted its procoagulatory effect via an induction of tissue factor expression. Upon heat shock treatment, the LPS effect was blunted: clotting times were 312 ± 66 s in absence of LPS and 277 ± 65 s in presence of LPS (n = 8; p > 0.05). Similarly, heat shock treatment of leukocyte suspensions abolished the LPS-induced tissue factor activity. Clotting time was 73 ± 31 s, when cells were treated with LPS (100 ng/mL) under normothermic conditions, and 301 ± 118 s, when treated with LPS (100 ng/mL) and heat shock (n = 8, p < 0.05). Control experiments excluded cell damage as a potential cause of the observed heat shock effect. Conclusion Heat shock treatment inhibits LPS-induced tissue factor activity in human whole blood samples and isolated leukocytes. PMID:17892553

  8. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice.

    PubMed

    Oliveira-Lima, Onésia C; Pinto, Mauro C X; Duchene, Johan; Qadri, Fatimunnisa; Souza, Laura L; Alenina, Natalia; Bader, Michael; Santos, Robson A S; Carvalho-Tavares, Juliana

    2015-12-01

    Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS.

  9. Store-operated Ca2+ channels blockers inhibit lipopolysaccharide induced astrocyte activation.

    PubMed

    Li, Jian-Hua; Zhao, Shen-Ting; Wu, Cui-Ying; Cao, Xiong; Peng, Miao-Ru; Li, Shu-Ji; Liu, Xiao-Ai; Gao, Tian-Ming

    2013-10-01

    The destruction of calcium homeostasis is an important factor leading to neurological diseases. Store-operated Ca(2+) (SOC) channels are essential for Ca(2+) homeostasis in many cell types. However, whether SOC channels are involved in astrocyte activation induced by lipopolysaccharide (LPS) still remains unknown. In this study, we used LPS as an exogenous stimulation to investigate the role of SOC channels in astrocyte activation. Using calcium imaging technology, we first found that SOC channels blockers, 1-[h-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) and 2-aminoethyldiphenyl borate (2-APB), inhibited LPS induced [Ca(2+)]i increase, which prompted us to speculate that SOC channels may be involved in LPS induced astrocyte activation. Further experiments confirmed our speculation shown as SOC channels blockers inhibited LPS induced astrocyte activation characterized as cell proliferation by MTS and BrdU assay, raise in glial fibrillary acidic protein expression by immunofluorescence and Western Blot and secretion of interleukin 6 (IL-6) and interleukin 1β (IL-1β) by ELISA. So, our studies showed that SOC channels are involved in LPS-induced astrocyte activation.

  10. 6-Hydroxydopamine and lipopolysaccharides induced DNA damage in astrocytes: involvement of nitric oxide and mitochondria.

    PubMed

    Gupta, Sonam; Goswami, Poonam; Biswas, Joyshree; Joshi, Neeraj; Sharma, Sharad; Nath, C; Singh, Sarika

    2015-01-15

    The present study was conducted to investigate the effect of the neurotoxins 6-hydroxydopamine and lipopolysaccharide on astrocytes. Rat astrocyte C6 cells were treated with different concentration of 6-hydroxydopamine (6-OHDA)/lipopolysaccharides (LPS) for 24 h. Both neurotoxins significantly decreased the viability of astrocytes, augmented the expression of inducible nitric oxide synthase (iNOS) and the astrocyte marker--glial fibrillar acidic protein. A significantly decreased mitochondrial dehydrogenase activity, mitochondrial membrane potential, augmented reactive oxygen species (ROS) level, caspase-3 mRNA level, chromatin condensation and DNA damage was observed in 6-OHDA/LPS treated astroglial cells. 6-OHDA/LPS treatment also caused the significantly increased expression of iNOS and nitrite level. Findings showed that 6-OHDA/LPS treatment caused mitochondrial dysfunction mediated death of astrocytes, which significantly involve the nitric oxide. Since we have observed significantly increased level of iNOS along with mitochondrial impairment and apoptotic cell death in astrocytes, therefore to validate the role of iNOS, the cells were co-treated with iNOS inhibitor aminoguanidine (AG, 100 μM). Co-treatment of AG significantly attenuated the 6-OHDA/LPS induced cell death, mitochondrial activity, augmented ROS level, chromatin condensation and DNA damage. GFAP and caspase-3 expression were also inhibited with co-treatment of AG, although the extent of inhibition was different in both experimental sets. In conclusion, the findings showed that iNOS mediated increased level of nitric oxide acts as a key regulatory molecule in 6-OHDA/LPS induced mitochondrial dysfunction, DNA damage and apoptotic death of astrocytes.

  11. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation.

    PubMed

    Grabner, Gernot F; Eichmann, Thomas O; Wagner, Bernhard; Gao, Yuanqing; Farzi, Aitak; Taschler, Ulrike; Radner, Franz P W; Schweiger, Martina; Lass, Achim; Holzer, Peter; Zinser, Erwin; Tschöp, Matthias H; Yi, Chun-Xia; Zimmermann, Robert

    2016-01-01

    Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation.

  12. Celecoxib attenuates systemic lipopolysaccharide-induced brain inflammation and white matter injury in the neonatal rats.

    PubMed

    Fan, L-W; Kaizaki, A; Tien, L-T; Pang, Y; Tanaka, S; Numazawa, S; Bhatt, A J; Cai, Z

    2013-06-14

    Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire-hanging maneuver test was performed 24h after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties.

  13. Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide.

    PubMed

    Hirose, Keiko; Li, Song-Zhe; Ohlemiller, Kevin K; Ransohoff, Richard M

    2014-08-01

    Aminoglycoside antibiotics are highly effective agents against gram-negative bacterial infections, but they cause adverse effects on hearing and balance dysfunction as a result of toxicity to hair cells of the cochlea and vestibular organs. While ototoxicity has been comprehensively studied, the contributions of the immune system, which controls the host response to infection, have not been studied in antibiotic ototoxicity. Recently, it has been shown that an inflammatory response is induced by hair cell injury. In this study, we found that lipopolysaccharide (LPS), an important component of bacterial endotoxin, when given in combination with kanamycin and furosemide, augmented the inflammatory response to hair cell injury and exacerbated hearing loss and hair cell injury. LPS injected into the peritoneum of experimental mice induced a brisk cochlear inflammatory response with recruitment of mononuclear phagocytes into the spiral ligament, even in the absence of ototoxic agents. While LPS alone did not affect hearing, animals that received LPS prior to ototoxic agents had worse hearing loss compared to those that did not receive LPS pretreatment. The poorer hearing outcome in LPS-treated mice did not correlate to changes in endocochlear potential. However, LPS-treated mice demonstrated an increased number of CCR2(+) inflammatory monocytes in the inner ear when compared with mice treated with ototoxic agents alone. We conclude that LPS and its associated inflammatory response are harmful to the inner ear when coupled with ototoxic medications and that the immune system may contribute to the final hearing outcome in subjects treated with ototoxic agents.

  14. Oyster crude polysaccharides attenuates lipopolysaccharide-induced cytokines production and PPARγ expression in weanling piglets.

    PubMed

    Yin, Guangwen; Huang, Juhui; Ma, Maotao; Suo, Xun; Huang, Zhijian

    2016-01-01

    This study evaluated whether oyster crude polysaccharides (OPS) attenuates lipopolysaccharide (LPS)-induced immune stress in weanling piglets. Thirty healthy crossbred piglets (28 ± 1 days old) were randomly divided into five groups (6 piglets/group). Blank control and LPS groups were fed with the basal diet, while low, medium and high dose of OPS groups were fed with the basal diet supplemented with 0.5, 0.8 and 1.2 % OPS, respectively, for 30 days. LPS group, as well as low, medium and high dose of OPS groups were then injected intraperitoneally with LPS (100 μg/kg body weight), whereas the blank control group was given phosphate buffered saline. The concentrations of TNF-α, IL-1β and IL-6 in plasma were detected by ELISA. The mRNA levels of PPARγ in liver, spleen, adrenal gland and thymus were evaluated by quantitative real-time PCR. The results showed that compared with the blank control, LPS treatment significantly increased plasma IL-1β, IL-6 and TNF-α levels, which was significantly attenuated by supplementing 0.5, 0.8 or 1.2 % OPS in the diet. In addition, LPS significantly induced expression of PPARγ mRNA in liver, spleen, adrenal gland, and thymus, which was blocked by adding OPS regardless of the doses. These results indicate that dietary supplementation of OPS was able to alleviate the immune stress induced by LPS. PMID:27350914

  15. Effects of citrulline malate on bacterial lipopolysaccharide induced endotoxemia in rats.

    PubMed

    Verleye, M; Heulard, I; Stephens, J R; Levy, R H; Gillardin, J M

    1995-06-01

    The administration of endotoxins to rats as lipopolysaccharides (LPS) induces a state of exhaustion, in which the main symptoms are febrile hyperthermia, reduced food intake, decreased body weight, and reduced muscle performance in treadmill tests. Underlying the physiological and behavioral disturbances due to the LPS is the activation of macrophages that release cytokines (interleukin-1, tumor necrosis factor a) and NO. The cellular responses are intended to maintain homeostasis. Provision of citrulline as citrulline malate (CAS 54940-97-5, Stimol), an antifatigue substance, improved muscle performance, but had no effect on the body temperature or on the body weight of these animals weakened by LPS. The presence of citrulline in the NO synthesis pathway, or its participation in the speeded up elimination of ammonia and lactates, the main products of muscle metabolism, might explain the effects of citrulline malate in rats treated with LPS. PMID:7646577

  16. Transient lipopolysaccharide-induced resistance to aerosolized Bacillus anthracis in New Zealand white rabbits.

    PubMed

    Yee, Steven B; Dyer, David N; Twenhafel, Nancy A; Pitt, M Louise M

    2013-06-01

    Previous studies have demonstrated that prior infection by various bacterial pathogens induces nonspecific resistance to subsequent infection by other gram-negative and gram-positive bacterial pathogens. In the present study, we evaluated whether underlying inflammation enhanced host resistance to inhalational Bacillus anthracis infection in New Zealand White rabbits (SPF; Bordetella- and Pasteurella-free). Accordingly, rabbits were pretreated with either the inflammagen bacterial LPS (60,000 EU/kg), a component of the outer membrane of gram-negative bacteria, or saline (vehicle). Administration of LPS resulted in brief pyrexia and a significant increase in the proinflammatory cytokine TNFα, thus confirming LPS-induced inflammation. At 24 h after LPS treatment, rabbits were exposed to aerosolized B. anthracis spores (Ames strain; approximately 300 LD50). Blood samples collected at various times after challenge were cultured. Compared with their saline-pretreated counterparts, LPS-pretreated, B. anthracis challenged rabbits exhibited delays in 2 biomarkers of B. anthracis infection-anthrax-induced pyrexia (25 h versus 66 h after challenge, respectively) and bacteremia (26 h versus 63 h, respectively)-and survived longer (41 h versus 90 h, respectively). Similar to control animals, all LPS-pretreated, B. anthracis-challenged rabbits exhibited pathology consistent with inhalational anthrax. Taken together, these results suggest that prior or underlying stimulation of the innate immune system induces transient host resistance to subsequent B. anthracis infection in SPF New Zealand white rabbits. In particular, our results emphasize the importance of using animals that are free of underlying infections to prevent confounding data in studies for inhalational anthrax characterization and medical countermeasure evaluation.

  17. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo.

    PubMed

    Wei, Hao; Frei, Balz; Beckman, Joseph S; Zhang, Wei-Jian

    2011-09-01

    Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Female C57BL/6N mice were daily gavaged with TTM (30 mg/kg body wt) or vehicle control. After 3 wk, animals were injected intraperitoneally with 50 μg LPS or saline buffer and killed 3 h later. Treatment with TTM reduced serum ceruloplasmin activity by 43%, a surrogate marker of bioavailable copper, in the absence of detectable hepatotoxicity. The concentrations of both copper and molybdenum increased in various tissues, whereas the copper-to-molybdenum ratio decreased, consistent with reduced copper bioavailability. TTM treatment did not have a significant effect on superoxide dismutase activity in heart and liver. Furthermore, TTM significantly inhibited LPS-induced inflammatory gene transcription in aorta and heart, including vascular and intercellular adhesion molecule-1 (VCAM-1 and ICAM-1, respectively), monocyte chemotactic protein-1 (MCP-1), interleukin-6, and tumor necrosis factor (TNF)-α (ANOVA, P < 0.05); consistently, protein levels of VCAM-1, ICAM-1, and MCP-1 in heart were also significantly lower in TTM-treated animals. Similar inhibitory effects of TTM were observed on activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in heart and lungs. Finally, TTM significantly inhibited LPS-induced increases of serum levels of soluble ICAM-1, MCP-1, and TNF-α (ANOVA, P < 0.05). These data indicate that copper chelation with TTM inhibits LPS-induced inflammatory responses in aorta and other tissues of mice, most likely by inhibiting activation of the redox-sensitive transcription factors, NF-κB and AP-1. Therefore, copper appears to play an important role in vascular inflammation, and TTM may have value as an anti-inflammatory or anti-atherogenic agent. PMID:21724870

  18. Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity

    SciTech Connect

    Nakanishi-Matsui, Mayumi; Yano, Shio; Matsumoto, Naomi; Futai, Masamitsu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. Black-Right-Pointing-Pointer The multinuclear cells are formed through cell-cell fusion in the presence of Ca{sup 2+}. Black-Right-Pointing-Pointer The multinuclear cells do not express osteoclast-specific enzymes. Black-Right-Pointing-Pointer They internalized more and larger beads than mononuclear cells and osteoclasts. -- Abstract: Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca{sup 2+}. The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor {kappa}B ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 {mu}m) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.

  19. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury.

    PubMed

    Tsurumaki, Hiroaki; Mogi, Chihiro; Aoki-Saito, Haruka; Tobo, Masayuki; Kamide, Yosuke; Yatomi, Masakiyo; Sato, Koichi; Dobashi, Kunio; Ishizuka, Tamotsu; Hisada, Takeshi; Yamada, Masanobu; Okajima, Fumikazu

    2015-12-04

    Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production.

  20. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation.

    PubMed

    Grabner, Gernot F; Eichmann, Thomas O; Wagner, Bernhard; Gao, Yuanqing; Farzi, Aitak; Taschler, Ulrike; Radner, Franz P W; Schweiger, Martina; Lass, Achim; Holzer, Peter; Zinser, Erwin; Tschöp, Matthias H; Yi, Chun-Xia; Zimmermann, Robert

    2016-01-01

    Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKO(GFAP)). MKO(GFAP) mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKO(GFAP) mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKO(GFAP) mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation. PMID:26565024

  1. Porphyromonas gingivalis Lipopolysaccharide Induced Proliferation and Activation of Natural Killer Cells in Vivo.

    PubMed

    Wang, Yuhua; Zhang, Wei; Xu, Li; Jin, Jun-O

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) promoted different innate immune activation than that promoted by Escherichia coli (E. coli) LPS. In this study, we examined the effect of P. gingivalis LPS on the proliferation and activation of natural killer (NK) cells in vivo and compared that function with that of E. coli LPS. Administration of P. gingivalis LPS to C57BL/6 mice induced stronger proliferation of NK cells in the spleen and submandibular lymph nodes (sLNs) and increased the number of circulating NK cells in blood compared to those treated with E. coli LPS. However, P. gingivalis LPS did not induce interferon-gamma (IFN-γ) production and CD69 expression in the spleen and sLN NK cells in vivo, and this was attributed to the minimal activation of the spleen and sLN dendritic cells (DCs), including low levels of co-stimulatory molecule expression and pro-inflammatory cytokine production. Furthermore, P. gingivalis LPS-treated NK cells showed less cytotoxic activity against Yac-1 target cells than E. coli LPS-treated NK cells. Hence, these data demonstrated that P. gingivalis LPS promoted limited activation of spleen and sLN NK cells in vivo, and this may play a role in the chronic inflammatory state observed in periodontal disease. PMID:27548133

  2. Lacritin Salvages Human Corneal Epithelial Cells from Lipopolysaccharide Induced Cell Death

    PubMed Central

    Vantaku, Venkat Rao; Gupta, Geetika; Rapalli, Krishna Chaitanya; Karnati, Roy

    2015-01-01

    Innate immunity of the corneal epithelium is conferred by proteinaceous secretions from the epithelium and associated lacrimal and meibomian glands. Lacritin, an eye-specific protein with anti-microbial, cytoprotective and wound-healing properties, predominantly secreted by lacrimal glands, is absent in conditions such as Dry eye and Keratitis. In view of the biological significance of lacritin in human eye, we investigated its role in human corneal epithelial (HCE) cells during lipopolysaccharide (LPS)-induced infection. LPS-challenged HCE cells demonstrated apoptosis-mediated cell death and elevated lacritin levels. The LPS-induced cell death is alleviated with exogenous supplementation of recombinant lacritin. This cytoprotective effect of lacritin is mediated through Cyclooxygenase-2 (COX-2). This study is the first to highlight the protective role of lacritin and mechanism of its action during bacterial infection of cornea in vitro. PMID:26670139

  3. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway

    PubMed Central

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  4. Cordyceps sobolifera extract ameliorates lipopolysaccharide-induced renal dysfunction in the rat.

    PubMed

    Wu, Ming-Feng; Li, Ping-Chia; Chen, Chin-Chiu; Ye, Su-Shin; Chien, Chiang-Ting; Yu, Chia-Cherng

    2011-01-01

    Cordyceps Sobolifera (CS), an economic traditional Chinese herb, may ameliorate nephrotoxicity-induced renal dysfunction in the rat via antioxidant, anti-apoptosis, and anti-autophagy mechanisms. We investigated the water extract of fermented whole broth of CS on lipopolysaccharide (LPS)-induced renal cell injury in vitro and in vivo. CS effect on LPS-induced epithelial Lilly pork kidney (PK1) and Madin-Darby canine kidney epithelial (MDCK) cell death was detected with MTT assay. Two-month treatment of CS effects on renal blood flow (RBF), glomerular filtration rate (GFR), plasma blood urea nitrogen, creatinine level and leukocytes (WBC) count were determined in the LPS-treated rats. We further examined the effects of CS supplement on renal tubular oxidative stress, endoplasmic reticulum stress, apoptosis and autophagy by Western blot analysis. LPS dose-dependently induced PK1 and MDCK cell death, which can be ameliorated by CS treatment. LPS significantly decreased RBF and GFR and increased blood leukocyte counts, plasma blood urea nitrogen and creatinine level in the rat after 24 hours of injury. LPS enhanced renal tubular ER stress, autophagy and apoptosis via by increase protein expressions of GRP78, caspase 12, Beclin-1 and Bax/Bcl-2 ratio. These findings are associated with the significant staining in renal proximal and distal tubular ED-1, GRP78, Beclin-1 autophagy, and TUNEL apoptosis in the LPS-treated kidneys. Two months of CS supplement significantly improved RBF, GFR and WBC values and reduced ED-1, GRP78, Beclin-1 autophagy and TUNEL apoptosis in the LPS-treated kidneys. Long-term CS treatment reduced LPS-induced stress responses and tissue damage possibly via blocking LPS-triggered signaling pathways.

  5. Lipopolysaccharide-induced multinuclear cells: Increased internalization of polystyrene beads and possible signals for cell fusion

    SciTech Connect

    Nakanishi-Matsui, Mayumi Yano, Shio; Futai, Masamitsu

    2013-11-01

    Highlights: •LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. •Large beads are internalized by cells actively fusing to become multinuclear. •The multinuclear cell formation is inhibited by anti-inflammatory cytokine, IL10. •Signal transduction for cell fusion is different from that for inflammation. -- Abstract: A murine macrophage-derived line, RAW264.7, becomes multinuclear on stimulation with lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria. These multinuclear cells internalized more polystyrene beads than mononuclear cells or osteoclasts (Nakanishi-Matsui, M., Yano, S., Matsumoto, N., and Futai, M., 2012). In this study, we analyzed the time courses of cell fusion in the presence of large beads. They were internalized into cells actively fusing to become multinuclear. However, the multinuclear cells once formed showed only low phagocytosis activity. These results suggest that formation of the multinuclear cells and bead internalization took place simultaneously. The formation of multinuclear cells was blocked by inhibitors for phosphoinositide 3-kinase, phospholipase C, calcineurin, and c-Jun N-terminal kinase. In addition, interleukin 6 and 10 also exhibited inhibitory effects. These signaling molecules and cytokines may play a crucial role in the LPS-induced multinuclear cell formation.

  6. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    SciTech Connect

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  7. Lipopolysaccharide-Induced Differential Expression of miRNAs in Male and Female Rhipicephalus haemaphysaloides Ticks

    PubMed Central

    Zhang, Houshuang; Zhou, Yongzhi; Cao, Jie; Zhou, Jinlin

    2015-01-01

    Lipopolysaccharide (LPS) stimulates the innate immune response in arthropods. In tick vectors, LPS activates expression of immune genes, including those for antibacterial peptides. miRNAs are 21–24 nt non-coding small RNAs that regulate target mRNAs at the post-transcriptional level. However, our understanding of tick innate immunity is limited to a few cellular immune reactions and some characterized immune molecules. Moreover, there is little information on the regulation of the immune system in ticks by miRNA. Therefore, this study aimed to analyze the differential expression of miRNAs in male and female ticks after LPS injection. LPS was injected into male and female Rhipicephalus haemaphysaloides ticks to stimulate immune response, with phosphate buffered saline (PBS)-injected ticks as negative controls. miRNAs from each group were sequenced and analyzed. In the PBS- and LPS-injected female ticks, 11.46 and 12.82 million reads of 18–30 nt were obtained respectively. There were 13.92 and 15.29 million reads of 18–30 nt obtained in the PBS- and LPS-injected male ticks, respectively. Expression of miRNAs in male ticks was greater than that in female ticks. There were 955 and 984 conserved miRNA families in the PBS- and LPS-injected female ticks, respectively, and correspondingly 1684 and 1552 conserved miRNA families in male ticks. Nine novel miRNAs were detected as common miRNAs in two or more tested samples. There were 37 known miRNAs up-regulated >10-fold and 33 down-regulated >10-fold in LPS-injected female ticks; and correspondingly 52 and 59 miRNAs in male ticks. Differential expression of miRNAs in PBS- and LPS-injected samples supports their involvement in the regulation of innate immunity. These data provide an important resource for more detailed functional analysis of miRNAs in this species. PMID:26430879

  8. Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: detrimental role of Na(+)-Ca(2+) exchanger.

    PubMed

    Magi, Simona; Nasti, Annamaria Assunta; Gratteri, Santo; Castaldo, Pasqualina; Bompadre, Stefano; Amoroso, Salvatore; Lariccia, Vincenzo

    2015-01-01

    Several molecular pathways involved in the development of cardiac hypertrophy are triggered by perturbation of intracellular Ca(2+) homeostasis. Within the heart, Na(+)/Ca(2+) exchanger 1 (NCX1) is one of the main determinant in controlling Ca(2+) homeostasis. In cardiac hypertrophy and heart failure NCX1 expression and activity have been reported to be altered. It has been shown that chronic bacterial infections (sepsis, endocarditis, and myocarditis) can promote cardiac hypertrophy. Bacterial stressors, such as the Gram-negative endotoxin lipopolysaccharide (LPS), can directly or indirectly affect intracellular Ca(2+) homeostasis in the heart and induce the development of cardiac hypertrophy. The present study aimed at evaluating the potential link between the signal pathways activated in LPS-exposed myocytes and NCX1. In the whole rat heart, LPS perfusion induced an early hypertrophy response during which NCX1 expression significantly increased. Notably, all these changes were completely prevented by the NCX inhibitor SN-6. We further dissect the role of NCX1 in the LPS-induced hypertrophic response in an in vitro cardiac model based on two H9c2 cardiomyoblast clones, namely H9c2-WT (lacking endogenous NCX1 expression) and H9c2-NCX1 (stably transfected with a functional NCX1). H9c2-NCX1 were more susceptible than H9c2-WT to develop a hypertrophic phenotype, and they displayed a significant increase in NCX1 expression and function after LPS treatment. SN-6 completely counteracted both hypertrophic response and exchanger alterations induced by LPS in H9c2-NCX1 cells, but it had no effects on H9c2-WT. Collectively, our results suggest that NCX1 plays a critical role in promoting myocardial hypertrophy triggered by LPS. PMID:25445045

  9. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats.

    PubMed

    Ahmad, Mohammad Parwez; Hussain, Arshad; Siddiqui, Hefazat Hussain; Wahab, Shadma; Adak, Manoranjan

    2015-03-01

    Lipopolysaccharide (LPS) induced oxidative stress and impairment of normal physiological function generally categorized by increased anxiety and reduced mobility. Therefore, the present study was to find out the effect Methanolic extract of Asparagus racemosus (MEAR ) in lipopolysaccharide (LPS)-induced oxidative stress in rats . LPS-induced oxidative stress in rats was measured by locomotor activity by photoactometer test, anxiety with elevated plus maze test and also studied the oxidative stress markers, nitric oxide and cytokines. The obtained data shows that LPS markedly exhausted (p<0.001) brain- reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) significantly increased (p<0.001) the level of malondialdehyde (MDA), nitric oxide and the activity of cytokines in the brain. MEAR supplementation resulted in normalization of brain GSH and CAT and SOD and decreases in the levels of MDA with reduction of nitric oxide and cytokines in the brain. The action of the extract at dose of 200 mg/kg was almost similar to the standard drug, quercetin (100mg/kg, p.o.). These present study conclude that MEAR administration significantly (P<0.05) reduced LPS- induced oxidative-stress and intensely suggest that Asparagus racemosus Willd. is a functionally newer type of cerebroprotective agent.

  10. Sarcolemmal ATP-sensitive potassium channel protects cardiac myocytes against lipopolysaccharide-induced apoptosis

    PubMed Central

    Zhang, Xiaohui; Zhang, Xiaohua; Xiong, Yiqun; Xu, Chaoying; Liu, Xinliang; Lin, Jian; Mu, Guiping; Xu, Shaogang; Liu, Wenhe

    2016-01-01

    The sarcolemmal ATP-sensitive K+ (sarcKATP) channel plays a cardioprotective role during stress. However, the role of the sarcKATP channel in the apoptosis of cardiomyocytes and association with mitochondrial calcium remains unclear. For this purpose, we developed a model of LPS-induced sepsis in neonatal rat cardiomyocytes (NRCs). The TUNEL assay was performed in order to detect the apoptosis of cardiac myocytes and the MTT assay was performed to determine cellular viability. Exposure to LPS significantly decreased the viability of the NRCs as well as the expression of Bcl-2, whereas it enhanced the activity and expression of the apoptosis-related proteins caspase-3 and Bax, respectively. The sarcKATP channel blocker, HMR-1098, increased the apoptosis of NRCs, whereas the specific sarcKATP channel opener, P-1075, reduced the apoptosis of NRCs. The mitochondrial calcium uniporter inhibitor ruthenium red (RR) partially inhibited the pro-apoptotic effect of HMR-1098. In order to confirm the role of the sarcKATP channel, we constructed a recombinant adenovirus vector carrying the sarcKATP channel mutant subunit Kir6.2AAA to inhibit the channel activity. Kir6.2AAA adenovirus infection in NRCs significantly aggravated the apoptosis of myocytes induced by LPS. Elucidating the regulatory mechanisms of the sarcKATP channel in apoptosis may facilitate the development of novel therapeutic targets and strategies for the management of sepsis and cardiac dysfunction. PMID:27430376

  11. Lipopolysaccharide induces catecholamine production in mesenteric adipose tissue of rats previously exposed to immobilization stress.

    PubMed

    Vargovic, P; Laukova, M; Ukropec, J; Manz, G; Kvetnansky, R

    2016-07-01

    Catecholamines (CAs) are mainly produced by sympathoadrenal system but their de novo production has been also observed in adipose tissue cells. The aim of this work was to investigate whether immune challenge induced by lipopolysaccharide (LPS) modulates biosynthesis of CAs in mesenteric adipose tissue (MWAT), as well as whether previous exposure to immobilization (IMO) stress could modulate this process. Sprague-Dawley rats were exposed to single (2 h) or repeated (2 h/7 days) IMO and afterwards injected with LPS (i.p., 100 μg/kg body weight) and sacrificed 3 h later. LPS did not alter CA biosynthesis in MWAT in control rats. Single and repeated IMO elevated CAs and expression of CA biosynthetic enzymes in MWAT, including adipocyte and stromal/vascular fractions (SVF). Repeated IMO followed by LPS treatment led to the up-regulation of CA-biosynthetic enzymes expression, elevation of CAs in SVF but depletion of norepinephrine and epinephrine in adipocyte fraction. Prior IMO caused a marked LPS-induced macrophage infiltration in MWAT as evaluated by F4/80 expression. A positive correlation between expression of tyrosine hydroxylase and F4/80 suggests macrophages as the main source of LPS-induced CA production in MWAT. Furthermore, prior exposure to the single or repeated IMO differently affected immune responses following LPS treatment by modulation of inflammatory cytokine expression. These data suggest that stress might be a significant modulator of immune response in MWAT via stimulation of the macrophage infiltration associated with cytokine response and de novo production of CAs. PMID:27314578

  12. Genipin protects lipopolysaccharide-induced apoptotic liver damage in D-galactosamine-sensitized mice.

    PubMed

    Kim, Seok-Joo; Kim, Joon-Ki; Lee, Dong-Ung; Kwak, Jong-Hwan; Lee, Sun-Mee

    2010-06-10

    This study examined the effects of genipin, isolated from Gardenia jasminoides Ellis, on d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic apoptosis and liver failure. Mice were given an intraperitoneal injection of genipin (25, 50, 100 and 200mg/kg) 1h before GalN (700mg/kg)/LPS (10microg/kg) administration. The survival rate of the genipin group was significantly higher than that of the control. Genipin markedly reduced the increases in serum aminotransferase activities and lipid peroxidation. The glutathione content decreased in GalN/LPS group, and this decrease was attenuated by genipin. Increases in serum tumor necrosis factor-alpha (TNF-alpha), which were observed in GalN/LPS-treated mice, were significantly reduced by genipin. Genipin attenuated the GalN/LPS-induced apoptosis of hepatocytes, as estimated by the caspase-3 and -8 activity assay, TNF-R1 associated death domain (TRADD) protein measurement and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method. Moreover, increased cytosolic cytochrome c protein was reduced by genipin. After 3h of GalN/LPS injection, nuclear phosphorylated c-Jun (p-c-Jun) level was significantly increased, whereas it was attenuated by genipin. Also, the increased nuclear level of nuclear factor-kappaB and the decreased cytosolic level of IkappaB-alpha protein were significantly attenuated by genipin. Our results suggest that genipin offers marked hepatoprotection against damage induced by GalN/LPS related with its antioxidative, anti-apoptotic activities, and inhibition of NF-kappaB nuclear translocation and nuclear p-c-Jun expression. PMID:20303938

  13. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats

    PubMed Central

    Li, G.; Zhou, CL.; Zhou, QS.; Zou, HD.

    2015-01-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  14. Ginkgolide B functions as a determinant constituent of Ginkgolides in alleviating lipopolysaccharide-induced lung injury.

    PubMed

    Wu, Fugen; Shi, Wei; Zhou, Guojun; Yao, Hongyi; Xu, Chengyun; Xiao, Weiqiang; Wu, Junsong; Wu, Ximei

    2016-07-01

    Ginkgolides are the major bioactive components of Ginkgo biloba extracts, however, the exact constituents of Ginkgolides contributing to their pharmacological effects remain unknown. Herein, we have determined the anti-inflammatory effects of Ginkgolide B (GB) and Ginkgolides mixture (GM) at equivalent dosages against lipopolysaccharide (LPS)-induced inflammation. RAW 264.7 cell culture model and mouse model of LPS-induced lung injury were used to evaluate in vitro and in vivo effects of GB and GM, respectively. In RAW 264.7 cells, GB and GM at equivalent dosages exhibit an identical capacity to attenuate LPS-induced inducible nitric oxide synthase mRNA and protein expression and subsequent NO production. Likewise, GB and GM possess almost the same potency in attenuating LPS-induced expression and activation of nuclear factor kappa B (p65) and subsequent increases in tumor necrosis factor-α mRNA levels. In LPS-induced pulmonary injury, GB and GM at the equivalent dosages have equal efficiency in attenuating the accumulation of inflammatory cells, including neutrophils, lymphocytes, and macrophages, and in improving the histological damage of lungs. Moreover, GB and GM at equivalent dosages decrease the exudation of plasma protein to the same degree, whereas GM is superior to GB in alleviating myeloperoxidase activities. Finally, though GB and GM at equivalent dosages appear to reduce LPS-induced IL-1β mRNA and protein levels and IL-10 protein levels to the same degree, GM is more potent than GB to attenuate the IL-10 mRNA levels. Taken together, this study demonstrates that GB functions as the determinant constituent of Ginkgolides in alleviating LPS-induced lung injury. PMID:27261579

  15. Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth.

    PubMed

    Li, Liping; Yang, Jing; Jiang, Yao; Tu, Jiaoqin; Schust, Danny J

    2015-04-01

    Invariant natural killer T (iNKT) cells are crucial for host defense against a variety of microbial pathogens, but the underlying mechanisms of iNKT cells activation by microbes are not fully explained. In this study, we investigated the molecular mechanisms of iNKT cell activation in lipopolysaccharide (LPS)-stimulated preterm birth using an adoptive transfer system and diverse neutralizing antibodies (Abs) and inhibitors. We found that adoptive transfer of decidual iNKT cells to LPS-stimulated iNKT cell deficient Jα18(-/-) mice that lack invariant Vα14Jα281T cell receptor (TCR) expression significantly decreased the time to delivery and increased the percentage of decidual iNKT cells. Neutralizing Abs against Toll-like receptor 4 (TLR-4), CD1d, interleukin (IL)-12 and IL-18, and inhibitors blocking the activation of nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase (ERK) significantly reduced in vivo percentages of decidual iNKT cells, their intracellular interferon (IFN)-γ production and surface CD69 expression. In vitro, in the presence of the same Abs and inhibitors used as in vivo, decidual iNKT cells co-cultured with LPS-pulsed dendritic cells (DCs) showed significantly decreased extracellular and intracellular IFN-γ secretion and surface CD69 expression. Our data demonstrate that the activation of decidual iNKT cells plays an important role in inflammation-induced preterm birth. Activation of decidual iNKT cells also requires TLR4-mediated NF-κB, MAPK p38 and ERK pathways, the proinflammatory cytokines IL-12 and IL-18, and endogenous glycolipid antigens presented by CD1d.

  16. Alkaline Phosphatase Protects Lipopolysaccharide-Induced Early Pregnancy Defects in Mice

    PubMed Central

    Lei, Wei; Ni, Hua; Herington, Jennifer; Reese, Jeff; Paria, Bibhash C.

    2015-01-01

    Excessive cytokine inflammatory response due to chronic or superphysiological level of microbial infection during pregnancy leads to pregnancy complications such as early pregnancy defects/loss and preterm birth. Bacterial toxin lipopolysaccharide (LPS), long recognized as a potent proinflammatory mediator, has been identified as a risk factor for pregnancy complications. Alkaline phosphatase (AP) isozymes have been shown to detoxify LPS by dephosphorylation. In this study, we examined the role of alkaline phosphatase (AP) in mitigating LPS-induced early pregnancy complications in mice. We found that 1) the uterus prior to implantation and implantation sites following embryo implantation produce LPS recognition and dephosphorylation molecules TLR4 and tissue non-specific AP (TNAP) isozyme, respectively; 2) uterine TNAP isozyme dephosphorylates LPS at its sites of production; 3) while LPS administration following embryo implantation elicits proinflammatory cytokine mRNA levels at the embryo implantation sites (EISs) and causes early pregnancy loss, dephosphorylated LPS neither triggers proinflammatory cytokine mRNA levels at the EISs nor induces pregnancy complications; 4) AP isozyme supplementation to accelerate LPS detoxification attenuates LPS-induced pregnancy complications following embryo implantation. These findings suggest that a LPS dephosphorylation strategy using AP isozyme may have a unique therapeutic potential to mitigate LPS- or Gram-negative bacteria-induced pregnancy complications in at-risk women. PMID:25910276

  17. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation.

    PubMed

    Ikeda, Shoko; Yamamoto, Hironori; Masuda, Masashi; Takei, Yuichiro; Nakahashi, Otoki; Kozai, Mina; Tanaka, Sarasa; Nakao, Mari; Taketani, Yutaka; Segawa, Hiroko; Iwano, Masayuki; Miyamoto, Ken-ichi; Takeda, Eiji

    2014-04-01

    The type IIa sodium-dependent phosphate cotransporter (Npt2a) plays a critical role in reabsorption of inorganic phosphate (Pi) by renal proximal tubular cells. Pi abnormalities during early stages of sepsis have been reported, but the mechanisms regulating Pi homeostasis during acute inflammation are poorly understood. We examined the regulation of Pi metabolism and renal Npt2a expression during lipopolysaccharide (LPS)-induced inflammation in mice. Dose-response and time-course studies with LPS showed significant increases of plasma Pi and intact parathyroid hormone (iPTH) levels and renal Pi excretion, while renal calcium excretion was significantly decreased. There was no difference in plasma 1,25-dihydroxyvitamin D levels, but the induction of plasma intact fibroblast growth factor 23 levels peaked 3 h after LPS treatment. Western blotting, immunostaining, and quantitative real-time PCR showed that LPS administration significantly decreased Npt2a protein expression in the brush border membrane (BBM) 3 h after injection, but there was no change in renal Npt2a mRNA levels. Moreover, tumor necrosis factor-α injection also increased plasma iPTH and decreased renal BBM Npt2a expression. Importantly, we revealed that parathyroidectomized rats had impaired renal Pi excretion and BBM Npt2a expression in response to LPS. These results suggest that the downregulation of Npt2a expression in renal BBM through induction of plasma iPTH levels alter Pi homeostasis during LPS-induced acute inflammation. PMID:24500689

  18. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    SciTech Connect

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi . E-mail: yokochi@aichi-med-u.ac.jp

    2007-08-24

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-{alpha} antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-{kappa}B ligand (RANKL). TNF-{alpha} might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-{kappa}B and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.

  19. Lipopolysaccharide induces the expression of an autocrine prolactin loop enhancing inflammatory response in monocytes

    PubMed Central

    2013-01-01

    Background Prolactin from pituitary gland helps maintain homeostasis but it is also released in immune cells where its function is not completely understood. Pleiotropic functions of prolactin (PRL) might be mediated by different isoforms of its receptor (PRLr). Methods The aim of this study was to investigate the relationship between the eventual synthesis of PRL and PRLr isoforms with the inflammatory response in monocytes. We used THP-1 and monocytes isolated from healthy subjects stimulated with lipopolysaccharide (LPS). Western blot, real time PCR and immunocytochemistry were performed to identify both molecules. The bioactivity of the PRL was assessed using a bioassay and ELISA to detect pro inflammatory cytokines. Results PRLr mRNA and PRL mRNA were synthesized in THP-1 monocytes activated with LPS with peaks of 300-fold and 130-fold, respectively. The long (100 kDa) and the intermediate (50 kDa) isoforms of PRLr and big PRL (60 kDa) were time-dependent upregulated for monocytes stimulated with LPS. This expression was confirmed in monocytes from healthy subjects. The PRLr intermediate isoform and the big PRL were found soluble in the culture media and later in the nucleus in THP-1 monocytes stimulated with LPS. Big PRL released by monocytes showed bioactivity in Nb2 Cells, and both PRL and PRLr, synthesized by monocytes were related with levels of nitrites and proinflammatory citokines. Conclusions Our results suggest the expression of a full-autocrine loop of PRL enhances the inflammatory response in activated monocytes. This response mediated by big PRL may contribute to the eradication of potential pathogens during innate immune response in monocytes but may also contribute to inflammatory disorders. PMID:23731754

  20. Impairment of autophagy in the central nervous system during lipopolysaccharide-induced inflammatory stress in mice

    PubMed Central

    2014-01-01

    Background Current evidence suggests a central role for autophagy in many neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Furthermore, it is well admitted that inflammation contributes to the progression of these diseases. Interestingly, crosstalks between autophagy and inflammation have been reported in vitro and at the peripheral level such as in Crohn’s disease. However, the impact of systemic inflammation on autophagic components in the brain remains to be documented. Therefore, this study monitored autophagy markers after acute and chronic lipopolysaccharide (LPS)-induced inflammatory stress in mice. Results We showed that acute inflammation, 24 h post-intraperitoneal 10 mg/kg LPS, substantially increased cytokine production (Interleukin(IL)-1β, Tumor necrosis factor (TNF)-α and IL-6), decreased the levels of autophagy markers (Beclin-1, p62 and LC3 II) and reduced p70S6K activation in cortex and hippocampus. In hippocampus, IL-1β levels and LC3 II expression were positively and highly correlated and a negative correlation was noted between TNF-α levels and p70S6K activation. Chronic inflammation by injection of 0.5 mg/kg LPS every three days during three months led to a moderate IL-1β production and decreased TNF-α levels. Interestingly, Beclin-1 and LC3 II levels decreased while those of p62 increased. Cortical IL-1β levels positively correlated with Beclin-1 and LC3 II and on the contrary inversely correlated with p62. Conclusion The present study is the first showing links between IL-1β-mediated inflammation and autophagy in the brain. It could open to new therapeutic strategies in brain diseases where regulation impairment of inflammation and autophagy progress with the severity of diseases. PMID:25169902

  1. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function.

    PubMed

    Hwang, Chul Ju; Park, Mi Hee; Hwang, Jae Yeon; Kim, Ju Hwan; Yun, Na Young; Oh, Sang Yeon; Song, Ju Kyung; Seo, Hyun Ok; Kim, Yun-Bae; Hwang, Dae Yeon; Oh, Ki-Wan; Han, Sang-Bae; Hong, Jin Tae

    2016-03-15

    Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.

  2. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    PubMed

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  3. Lacritin Salvages Human Corneal Epithelial Cells from Lipopolysaccharide Induced Cell Death.

    PubMed

    Vantaku, Venkat Rao; Gupta, Geetika; Rapalli, Krishna Chaitanya; Karnati, Roy

    2015-01-01

    Innate immunity of the corneal epithelium is conferred by proteinaceous secretions from the epithelium and associated lacrimal and meibomian glands. Lacritin, an eye-specific protein with anti-microbial, cytoprotective and wound-healing properties, predominantly secreted by lacrimal glands, is absent in conditions such as Dry eye and Keratitis. In view of the biological significance of lacritin in human eye, we investigated its role in human corneal epithelial (HCE) cells during lipopolysaccharide (LPS)-induced infection. LPS-challenged HCE cells demonstrated apoptosis-mediated cell death and elevated lacritin levels. The LPS-induced cell death is alleviated with exogenous supplementation of recombinant lacritin. This cytoprotective effect of lacritin is mediated through Cyclooxygenase-2 (COX-2). This study is the first to highlight the protective role of lacritin and mechanism of its action during bacterial infection of cornea in vitro. PMID:26670139

  4. Effects of a Soluble Epoxide Hydrolase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury in Mice

    PubMed Central

    Yang, Liu-Qing; Ma, Yong-Bo

    2016-01-01

    Objectives Inflammation plays a key role in the pathogenesis of acute lung injury (ALI). Soluble epoxide hydrolase (sEH) is suggested as a vital pharmacologic target for inflammation. In this study, we determined whether a sEH inhibitor, AUDA, exerts lung protection in lipopolysaccharide (LPS)-induced ALI in mice. Methods Male BALB/c mice were randomized to receive AUDA or vehicle intraperitoneal injection 4 h after LPS or phosphate buffered saline (PBS) intratracheal instillation. Samples were harvested 24 h post LPS or PBS administration. Results AUDA administration decreased the pulmonary levels of monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α. Improvement of oxygenation and lung edema were observed in AUDA treated group. AUDA significantly inhibited sEH activity, and elevated epoxyeicosatrienoic acids (EETs) levels in lung tissues. Moreover, LPS induced the activation of nuclear factor (NF)-κB was markedly dampened in AUDA treated group. Conclusion Administration of AUDA after the onset of LPS-induced ALI increased pulmonary levels of EETs, and ameliorated lung injury. sEH is a potential pharmacologic target for ALI. PMID:27490848

  5. Milk thistle extract and silymarin inhibit lipopolysaccharide induced lamellar separation of hoof explants in vitro.

    PubMed

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-10-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  6. Orally administered melatonin prevents lipopolysaccharide-induced neural tube defects in mice.

    PubMed

    Fu, Lin; Yu, Zhen; Chen, Yuan-Hua; Xia, Mi-Zhen; Wang, Hua; Zhang, Cheng; Tao, Fang-Biao; Xu, De-Xiang

    2014-01-01

    Lipopolysaccharide (LPS) has been associated with adverse pregnant outcomes, including fetal demise, intra-uterine growth restriction (IUGR), neural tube defects (NTDs) and preterm delivery in rodent animals. Previous studies demonstrated that melatonin protected against LPS-induced fetal demise, IUGR and preterm delivery. The aim of the present study was to investigate the effects of melatonin on LPS-induced NTDs. All pregnant mice except controls were intraperitoneally injected with LPS (25 µg/kg) daily from gestational day (GD)8 to GD12. Some pregnant mice were orally administered with melatonin (MT, 50 mg/kg) before each LPS injection. A five-day LPS injection resulted in 27.5% of fetuses with anencephaly, exencephaly or encephalomeningocele. Additional experiment showed that maternal LPS exposure significantly down-regulated placental proton-coupled folate transporter (pcft) and disturbed folate transport from maternal circulation through the placentas into the fetus. Interestingly, melatonin significantly attenuated LPS-induced down-regulation of placental pcft. Moreover, melatonin markedly improved the transport of folate from maternal circulation through the placentas into the fetus. Correspondingly, orally administered melatonin reduced the incidence of LPS-induced anencephaly, exencephaly or encephalomeningocele. Taken together, these results suggest that orally administered melatonin prevents LPS-induced NTDs through alleviating LPS-induced disturbance of folate transport from maternal circulation through the placenta into the fetus. PMID:25420102

  7. Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury.

    PubMed

    Bocharov, Alexander V; Wu, Tinghuai; Baranova, Irina N; Birukova, Anna A; Sviridov, Denis; Vishnyakova, Tatyana G; Remaley, Alan T; Eggerman, Thomas L; Patterson, Amy P; Birukov, Konstantin G

    2016-07-15

    Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema. PMID:27316682

  8. A Standardized Extract of Rhus verniciflua Stokes Protects Wistar Rats Against Lipopolysaccharide-Induced Acute Inflammation.

    PubMed

    Moon, Ji Eun; Shin, Jae-Ho; Kwon, Oran; Kim, Ji Yeon

    2015-11-01

    Rhus verniciflua stokes (RVS) (Anacardiaceae) has been traditionally used as a folk remedy for gastritis, several cancers, and various metabolic diseases. The present study evaluated the anti-inflammatory effect of RVS extract standardized to fustin content using lipopolysaccharide (LPS)-stimulated rats. The rats were randomly divided into six groups and intragastrically administered 0, 100, 250, or 500 mg/kg body weight (bw) of RVS or 15 mg/kg bw of fustin for 14 days. LPS was intraperitoneally injected 18 h before sacrifice. The nitric oxide levels of RVS extract in either the serum or liver were significantly decreased compared to the LPS-treated rats (P<.05). The treatment with the RVS extract also blunted the rise of malondialdehyde levels in the liver (P<.05). The administration of RVS extract and fustin significantly prevented the elevation of interleukin 6 cytokine, iNOS, and COX-2 mRNA expression in the liver. Inflammatory cell infiltration was also significantly attenuated by the RVS extract or fustin supplementation. These results suggest that our standardized RVS extract has preventive effects on inflammatory reactions.

  9. Modulation by gamithromycin and ketoprofen of in vitro and in vivo porcine lipopolysaccharide-induced inflammation.

    PubMed

    Wyns, Heidi; Meyer, Evelyne; Plessers, Elke; Watteyn, Anneleen; van Bergen, Thomas; Schauvliege, Stijn; De Baere, Siegrid; Devreese, Mathias; De Backer, Patrick; Croubels, Siska

    2015-12-15

    The immunomodulatory properties of gamithromycin (GAM), ketoprofen (KETO) and their combination (GAM-KETO) were investigated after both in vitro and in vivo lipopolysaccharide (LPS)-induced inflammation. The influence of these drugs was measured on the production of prostaglandin E2 (PGE2) and the pro-inflammatory cytokines tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β in both LPS-stimulated porcine peripheral blood mononuclear cells (PBMCs) and LPS-challenged pigs. Additionally, effects on the production of acute phase proteins (APPs), including pig major acute phase protein (pig-MAP) and C-reactive protein (CRP), as well as on the development of fever, pulmonary symptoms and sickness behaviour were investigated. Dexamethasone was included as a positive control in the in vitro research. Following an 18h-incubation period with 1.25μg/mL LPS, the levels of TNF-α, IL-1β and IL-6 (p<0.05) measured in the PBMC supernatants were significantly increased. Incubation with a high concentration of both GAM and KETO significantly reduced the in vitro levels of all three cytokines. Maximal plasma concentrations of TNF-α and IL-6 were observed at 1h and 2.5h following LPS challenge in pigs, respectively. Neither GAM, nor KETO nor the combination GAM-KETO was able to inhibit the in vivo LPS-induced cytokine production. Furthermore, none of the drugs influenced the subsequent APPs production. In contrast, administration of KETO significantly reduced PGE2 production both in vitro and in vivo (p<0.05 and p<0.001, respectively) and prevented the development of fever and severe symptoms, including dyspnoea, anorexia, vomiting and lateral decubitus.

  10. Lipopolysaccharide Induces Degradation of Connexin43 in Rat Astrocytes via the Ubiquitin-Proteasome Proteolytic Pathway

    PubMed Central

    Liao, Chih-Kai; Jeng, Chung-Jiuan; Wang, Hwai-Shi; Wang, Shu-Huei; Wu, Jiahn-Chun

    2013-01-01

    The astrocytic syncytium plays a critical role in maintaining the homeostasis of the brain through the regulation of gap junction intercellular communication (GJIC). Changes to GJIC in response to inflammatory stimuli in astrocytes may have serious effects on the brain. We have previously shown that lipopolysaccharide (LPS) reduces connexin43 (Cx43) expression and GJIC in cultured rat astrocytes via a toll-like receptor 4-mediated signaling pathway. In the present study, treatment of astrocytes with LPS resulted in a significant increase in levels of the phosphorylated forms of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) -1, -2, and -3 for up to 18 h. An increase in nuclear transcription factor NF-κB levels was also observed after 8 h of LPS treatment and was sustained for up to 18 h. The LPS-induced decrease in Cx43 protein levels and inhibition of GJIC were blocked by the SAPK/JNK inhibitor SP600125, but not by the NF-κB inhibitor BAY11-7082. Following blockade of de novo protein synthesis by cycloheximide, LPS accelerated Cx43 degradation. Moreover, the LPS-induced downregulation of Cx43 was blocked following inhibition of 26S proteasome activity using the reversible proteasome inhibitor MG132 or the irreversible proteasome inhibitor lactacystin. Immunoprecipitation analyses revealed an increased association of Cx43 with both ubiquitin and E3 ubiquitin ligase Nedd4 in astrocytes after LPS stimulation for 6 h and this effect was prevented by SP600125. Taken together, these results suggest that LPS stimulation leads to downregulation of Cx43 expression and GJIC in rat astrocytes by activation of SAPK/JNK and the ubiquitin-proteasome proteolytic pathway. PMID:24236122

  11. Bacterial lipopolysaccharides induce in vitro degradation of cartilage matrix through chondrocyte activation.

    PubMed

    Jasin, H E

    1983-12-01

    The present studies demonstrate that bacterial lipopolysaccharides (LPS) induce cartilage matrix degradation in live explants in organ culture. Quintuplicate bovine nasal fibrocartilage explants cultured for 8 d with three different purified LPS preparations derived from Escherichia coli and Salmonella typhosa at concentrations ranging from 1.0 to 25.0 micrograms/ml resulted in matrix proteoglycan depletion of 33.3 +/- 5.8 to 92.5 +/- 2.0% (medium control depletion 17.7 +/- 0.7 to 32.4 +/- 1.4%). Matrix degradation depended on the presence of live chondrocytes because frozen-thawed explants incubated with LPS failed to show any proteoglycan release. Moreover, the addition of Polymyxin B (25 micrograms/ml) to live explants incubated with LPS abolished matrix release, whereas Polymyxin B had no effect on the matrix-degrading activity provided by blood mononuclear cell factors. A highly purified Lipid A preparation induced matrix degradation at a concentration of 0.01 micrograms/ml. Cartilage matrix collagen and proteoglycan depletion also occurred with porcine articular cartilage explants (collagen release: 18.3 +/- 3.5%, medium control: 2.1 +/- 0.5%; proteoglycan release: 79.0 +/- 5.9%, medium control: 28.8 +/- 4.8%). Histochemical analysis of the cultured explants confirmed the results described above. Gel chromatography of the proteoglycans released in culture indicated that LPS induced significant degradation of the high molecular weight chondroitin sulfate-containing aggregates. These findings suggest that bacterial products may induce cartilage damage by direct stimulation of chondrocytes. This pathogenic mechanism may play a role in joint damage in septic arthritis and in arthropathies resulting from the presence of bacterial products derived from the gastrointestinal tract.

  12. The expression profile of microRNAs in wistar rats with lipopolysaccharide-induced periventricular leukomalacia.

    PubMed

    Guo, Kai; Yang, Yang; Qiu, Jie; Kan, Qing; Zhou, Xiao-Guang; Zhou, Xiao-Yu

    2013-11-01

    Over the recent decades, with numbers of premature infants being cured, clinical diseases on brain damage like periventricular leukomalacia (PVL) have become much more common. Meanwhile, since the discovery of first miRNA lin-4, an increasing number of important studies about this small RNA have been performed not only in the normal organ development but also in the pathogenic mechanism of diseases. However, throughout the past several years, there have been rare miRNA researches discussing the connection between the PVL and miRNA. In view of this situation, we constructed an animal model of PVL induced by lipopolysaccharide (LPS) and performed a miRNA microarray which was repeated three times to profile the expression of microRNAs (miRNAs) between two groups (PVL group versus control group). Then, miRNAs with notable fold changes (fold change >1.5) were found; some of them were further validated by real-time PCR. As a result, 104 differentially expressed miRNAs were identified using the microarray, including 64 upregulated and 40 downregulated miRNAs. Then, five miRNAs of them were selected, characterized by consistent trend in expression in all three microarrays. Among these five miRNAs (miRNA-451, miRNA-200b, miRNA-29a, miRNA-21, and miRNA-138), we subsequently selected miRNA-451 and miRNA-200b for real-time PCR because they possess the highest fold changes. Finally, the results of PCR are basically in accord with the microarray. We guess these new identified miRNAs may play an important role in the pathogenesis of PVL and may provide certain pathophysiological basis for the future research of related diseases in preterm infants.

  13. Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death.

    PubMed

    Smith, Joshua A; Das, Arabinda; Butler, Jonathan T; Ray, Swapan K; Banik, Naren L

    2011-09-01

    Inflammation is an important pathogenic mechanism in many neurodegenerative disorders. Activated microglia play a pivotal role in releasing pro-inflammatory factors including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) for inducing inflammation. While microglia mediated inflammation is essential in maintaining CNS homeostasis, chronic inflammation results in activation of proteases for cell death. Here, we examined the effect of PPT (estrogen receptor α agonist), DPN (estrogen receptor β agonist), and estrogen on rat primary microglia following exposure to lipopolysaccharide (LPS). Exposure of microglia to LPS (200 ng/ml) for 24 h induced cell death. After LPS toxicity for 15 min, microglia were treated with 25 nM PPT, 25 nM DPN, or 100 nM estrogen that prevented cell death by attenuating the release of IL-1α, IL-1β, TNF-α, and COX-2. Treatment of cells with 100 nM fulvestrant (estrogen receptor antagonist) prior to addition of PPT, DPN, or estrogen significantly decreased their ability to prevent cell death, indicating involvement of estrogen receptor (ER) in providing PPT, DPN, or estrogen mediated cytoprotection. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses showed alterations in mRNA expression of Bax, Bcl-2, calpain, and calpastatin during apoptosis. We also examined mRNA expression of ERβ and ERα following exposure of microglia to LPS and subsequent treatment with PPT, DPN, or estrogen. We found that estrogen or estrogen receptor agonists upregulated expression of ERs. Overall, results indicate that estrogen receptor agonist or estrogen uses a receptor mediated pathway to protect microglia from LPS toxicity.

  14. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice.

    PubMed

    Patil, Chandrashekhar S; Singh, Vijay Pal; Satyanarayan, P S V; Jain, Naveen K; Singh, Amarjit; Kulkarni, Shrinivas K

    2003-10-01

    Flavonoids, naturally occurring polyphenolic compounds, are known to inhibit both lipopolysaccharide (LPS) stimulated tumor necrosis factor alpha and interleukin 6 release which modulate the proinflammatory molecules that have been reported in many progressive neurodegenerative disorders, including Alzheimer's disease (AD), viral and bacterial meningitis, AIDS dementia complex, and stroke. The present experiments were performed to study the possible effects of exogenously administered flavonoids (apigenin-7-glucoside and quercetin) on the cognitive performance in aged and LPS-treated mice (an animal model for AD) using passive avoidance and elevated plus-maze tasks. Aged and LPS-treated mice showed poor retention of memory in step-through passive avoidance and in plus-maze tasks. Chronic administration of the flavonoids apigenin-7-glucoside (5-20 mg/kg i.p.) and quercetin (25-100 mg/kg i.p.) dose dependently reversed the age-induced and LPS-induced retention deficits in both test paradigms. However, flavonoids after chronic administration in young mice did not show any improvement of memory retention in both paradigms. Apigenin-7-glucoside showed more efficacy as compared with quercetin in both models that may be probably due to its greater efficacy to inhibit cyclooxygenase-2 and inducible nitric oxide synthase. Chronic treatment with flavonoids did not alter the locomotor activity in both young and aged mice; however, aged mice showed improvement of performance on Rota-Rod test. The results showed that chronic treatment with flavonoids reverses cognitive deficits in aged and LPS-intoxicated mice which suggests that modulation of cyclooxygenase-2 and inducible nitric synthase by flavonoids may be important in the prevention of memory deficits, one of the symptoms related to AD.

  15. Pentosan polysulfate protects brain endothelial cells against bacterial lipopolysaccharide-induced damages.

    PubMed

    Veszelka, Szilvia; Pásztói, Mária; Farkas, Attila E; Krizbai, István; Ngo, Thi Khue Dung; Niwa, Masami; Abrahám, Csongor S; Deli, Mária A

    2007-01-01

    Peripheral inflammation can aggravate local brain inflammation and neuronal death. The blood-brain barrier (BBB) is a key player in the event. On a relevant in vitro model of primary rat brain endothelial cells co-cultured with primary rat astroglia cells lipopolysaccharide (LPS)-induced changes in several BBB functions have been investigated. LPS-treatment resulted in a dose- and time-dependent decrease in the integrity of endothelial monolayers: transendothelial electrical resistance dropped, while flux of permeability markers fluorescein and albumin significantly increased. Immunostaining for junctional proteins ZO-1, claudin-5 and beta-catenin was significantly weaker in LPS-treated endothelial cells than in control monolayers. LPS also reduced the intensity and changed the pattern of ZO-1 immunostaining in freshly isolated rat brain microvessels. The activity of P-glycoprotein, an important efflux pump at the BBB, was also inhibited by LPS. At the same time production of reactive oxygen species and nitric oxide was increased in brain endothelial cells treated with LPS. Pentosan polysulfate, a polyanionic polysaccharide could reduce the deleterious effects of LPS on BBB permeability, and P-glycoprotein activity. LPS-stimulated increase in the production of reactive oxygen species and nitric oxide was also decreased by pentosan treatment. The protective effect of pentosan for brain endothelium can be of therapeutical significance in bacterial infections affecting the BBB.

  16. Milk thistle extract and silymarin inhibit lipopolysaccharide induced lamellar separation of hoof explants in vitro.

    PubMed

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-10-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application. PMID:25290524

  17. Protective effect of penehyclidine hydrochloride on lipopolysaccharide-induced acute kidney injury in rat.

    PubMed

    Cao, H J; Yu, D M; Zhang, T Z; Zhou, J; Chen, K Y; Ge, J; Pei, L

    2015-08-10

    We aimed to observe the effect of penehyclidine hydrochloride (PHC) on lipopolysaccharide (LPS)-induced acute kidney injury in rats and expression of tight junction proteins ZO-1 and occludin. Adult male Sprague-Dawley (SD) rats were divided randomly (N = 10) into control group (C), LPS group (LPS), low-dose PHC group (L-PHC), and high-dose PHC group (H-PHC). All rats, except C group, received a vena caudalis injection of 5.0 mg/kg LPS; after 30 min, rats in L-PHC and H-PHC groups received a vena caudalis injection of 0.3 and 0.9 mg/kg PHC. After 24 h, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, serum creatinine (Scr), and blood urea nitrogen (BUN) were detected. Histopathological changes and expression of ZO-1 and occludin were observed in renal tissues. Versus levels of TNF-α (38.5 ± 9.0), IL-1β (46.3 ± 12.7), Scr (37.2 ± 9.3), and BUN (6.5 ± 1.1) in control group, those in LPS group, TNF-α (159.0 ± 21.3), IL-1β (130.8 ± 18.7), Scr (98.5 ± 18.2), and BUN (12.8 ± 1.8), increased obviously (P < 0.05), with significantly structural changes and decreases of ZO-1 and occludin. However, TNF-α (111.3 ± 11.6), IL-1β (78.4 ± 14.3), Scr (51.3 ± 12.5), BUN (8.1 ± 1.2) in H-PHC group, and TNF-α (120.8 ± 14.3), IL-1β (92.5 ± 19.0), Scr (56.7 ± 14.7), BUN (9.7 ± 1.6) in L-PHC group were obviously decreased (P < 0.05). PHC has protective effects on acute kidney injury in sepsis, including abatement of renal tissue inflammation and functional improvement, potentially by upregulating ZO-1 and occludin.

  18. Establishment of hydrochloric acid/lipopolysaccharide-induced pelvic inflammatory disease model

    PubMed Central

    Oh, Yeonsu; Lee, Jaehun; Kim, Hyeon-Cheol; Hahn, Tae-Wook; Yoon, Byung-Il; Han, Jeong-Hee; Kwon, Yong-Soo; Park, Joung Jun; Koo, Deog-Bon; Rhee, Ki-Jong

    2016-01-01

    Pelvic inflammatory disease (PID), which is one of the most problematic complications experienced by women with sexually transmitted diseases, frequently causes secondary infections after reproductive abnormalities in veterinary animals. Although the uterus is self-protective, it becomes fragile during periods or pregnancy. To investigate PID, bacteria or lipopolysaccharide (LPS) extracted from gram negative bacteria has been used to induce the disease in several animal models. However, when LPS is applied to the peritoneum, it often causes systemic sepsis leading to death and the PID was not consistently demonstrated. Hydrochloric acid (HCl) has been used to induce inflammation in the lungs and stomach but not tested for reproductive organs. In this study, we developed a PID model in mice by HCl and LPS sequential intracervical (i.c.) administration. The proinflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, were detected in the mouse uterus by western blot analysis and cytokine enzyme-linked immunosorbent assay after HCl (25 mg/kg) administration i.c. followed by four LPS (50 mg/kg) treatments. Moreover, mice exhibited increased infiltration of neutrophils in the endometrium and epithelial layer. These results suggest that ic co-administration of HCl and LPS induces PID in mice. This new model may provide a consistent and reproducible PID model for future research. PMID:26726020

  19. Absence of gut microbiota influences lipopolysaccharide-induced behavioral changes in mice.

    PubMed

    Campos, Alline C; Rocha, Natalia P; Nicoli, Jacques R; Vieira, Leda Q; Teixeira, Mauro M; Teixeira, Antonio L

    2016-10-01

    Changes in the microbiota composition of gastrointestinal tract are emerging as potential players in the physiopathology of neuropsychiatric disorders. In the present work we evaluated the relationship between the absence of gut microbiota and neuroinflammatory mechanisms in a murine model of LPS-induced behavioral alterations. Germ-free (GF) or conventional male mice received a single i.p. injection of lipopolysaccharide (LPS i.p.; 0.83mg/Kg) or PBS, and after 24h they were tested for depressive-like behaviors (forced swimming test, tail suspension test - TST, or sucrose preference test - SPT). After behavioral evaluation, animals were analyzed for possible changes in neuroplasticity by means of BDNF, NGF and cytokines levels in prefrontal cortex and hippocampus, and the expression of Iba-1 (microglial activation marker) in the hippocampus, and the cellular activity marker, ΔFosB, in the dorsal raphe nucleus. In conventional mice, LPS induced depressive-like behaviors. LPS-induced changes were followed by up-regulation of the expression of TNF and Iba-1 in the hippocampus. The same effects were not observed in GF mice. Behavioral effects of LPS were not observed in GF mice submitted to TST. GF mice present a lower response to the anhedonia-like effect induced by LPS when compared to conventional animals (SPT). There was up-regulation of ΔFosB in the dorsal raphe nucleus in the absence of gut microbiota, events not influenced by LPS treatment. Our results suggest that gut-microbiota interactions influence depressive-like behaviors, raphe nucleus activation and activation of pro-inflammatory mechanisms within the hippocampus.

  20. Antihepatotoxic effect of corn peptides against Bacillus Calmette-Guerin/lipopolysaccharide-induced liver injury in mice.

    PubMed

    Guo, Hui; Sun, Jie; He, Hui; Yu, Guo-Cai; Du, Jing

    2009-10-01

    Hepatitis is a severe disease with a high incidence rate around the world [Hwang, J.M., Tseng, T.H., Tsai, Y.Y., Lee, H.J., Chou, F.P., Wang, C.J., Chu, C.Y., 2005. Protective effects of baicalein on tert-butyl hydroperoxide-induced hepatic toxicity in rat hepatocytes. J. Biomed. Sci. 12, 389-397]. Corn gluten meal is a byproduct of starch industry with abundant protein. However, the application of corn protein is limited because of its low solubility and short of essential amino acids such as lysine and tryptophan. The hepatoprotective activity of corn peptides (CP) from corn gluten meal hydrolysate was evaluated against Bacillus Calmette-Guerin (BCG)/lipopolysaccharide (LPS) induced immunological liver injury (ILI) in mice. Results showed that ILI was manifested by a significant increase in levels of serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT) and liver malondialdehyde (MDA)/nitric oxide (NO) levels (p<0.01), and by a significant decrease in levels of superoxide dismutase (SOD)/glutathione peroxidase (GPX) and glutathione (GSH) in liver (p<0.01). Pretreatment of mice with CP reversed these altered parameters to normal values. The effect of CP was further demonstrated by histopathological examination of liver sections. The best hepatoprotective effect of CP treatment was observed at the dose of 600 mg/kg bw, which was evidenced from biochemical parameters and liver histopathological characters. Results of this study revealed that CP could afford a significant protection against BCG/LPS-induced hepatocellular injury. It will broaden the application and increase the value of corn gluten meal, byproduct from starch industry.

  1. Maternal molecular hydrogen administration on lipopolysaccharide-induced mouse fetal brain injury

    PubMed Central

    Nakano, Tomoko; Kotani, Tomomi; Mano, Yukio; Tsuda, Hiroyuki; Imai, Kenji; Ushida, Takafumi; Li, Hua; Miki, Rika; Sumigama, Seiji; Sato, Yoshiaki; Iwase, Akira; Hirakawa, Akihiro; Asai, Masato; Toyokuni, Shinya; Kikkawa, Fumitaka

    2015-01-01

    Fetal brain injury is often related to prenatal inflammation; however, there is a lack of effective therapy. Recently, molecular hydrogen (H2), a specific antioxidant to hydroxyl radical and peroxynitrite, has been reported to have anti-inflammatory properties. The aim of this study was to investigate whether maternal H2 administration could protect the fetal brain against inflammation. Pregnant C3H/HeN mice received an intraperitoneal injection of lipopolysaccharide (LPS) on gestational day 15.5 and were provided with H2 water for 24 h prior to LPS injection. Pup brain samples were collected on gestational day 16.5, and the levels of apoptosis and oxidative damage were evaluated using immunohistochemistry. Interleukin-6 (IL-6) levels were examined using real-time PCR. The levels of apoptosis and oxidative damage, as well as the levels of IL-6 mRNA, increased significantly when the mother was injected with LPS than that in the control group. However, these levels were significantly reduced when H2 was administered prior to the LPS-injection. Our results suggest that LPS-induced apoptosis, oxidative damage and inflammation in the fetal brain were ameliorated by maternal H2 administration. Antenatal H2 administration might protect the premature brain against maternal inflammation. PMID:26566302

  2. The role of speckle tracking echocardiography in assessment of lipopolysaccharide-induced myocardial dysfunction in mice

    PubMed Central

    Chu, Ming; Gao, Yao; Zhang, Yanjuan; Zhou, Bin; Wu, Bingruo

    2015-01-01

    Background Sepsis-induced myocardial dysfunction is a common and severe complication of septic shock. Conventional echocardiography often fails to reveal myocardial depression in severe sepsis due to hemodynamic changes; in contrast, decline of strain measurements by speckle tracking echocardiography (STE) may indicate impaired cardiac function. This study investigates the role of STE in detecting lipopolysaccharide (LPS)-induced cardiac dysfunction with mouse models. Methods We evaluated cardiac function in 20 mice at baseline, 6 h (n=10) and 20 h (n=10) after LPS injection to monitor the development of heart failure induced by severe sepsis using 2-D and M-mode echocardiography. Ejection fraction (EF) and fractional shortening (FS) were measured with standard M-mode tracings, whereas circumferential and radial strain was derived from STE. Serum biochemical and cardiac histopathological examinations were performed to determine sepsis-induced myocardial injury. Results Left ventricular (LV) myocardial function was significantly reduced at 6 h after LPS treatment assessed by circumferential strain (−14.65%±3.00% to −8.48%±1.72%, P=0.006), whereas there were no significant differences between 6 and 20 h group. Conversely, EF and FS were significantly increased at 20 h when comparing to 6 h (P<0.05) accompanied with marked decreases in EF and FS 6 h following LPS administration. Consistent with strain echocardiographic results, we showed that LPS injection leaded to elevated serum level of cardiac Troponin-T (cTnT), CK-MB and rising leucocytes infiltration into myocardium within 20 h. Conclusions Altogether, these results demonstrate that, circumferential strain by STE is a specific and reliable value for evaluating LPS-induced cardiac dysfunction in mice. PMID:26793347

  3. Iron potentiates bacterial lipopolysaccharide-induced nitric oxide formation in animal organs.

    PubMed

    Kubrina, L N; Mikoyan, V D; Mordvintcev, P I; Vanin, A F

    1993-04-16

    Administration of an Fe(2+)-citrate complex to mongrel mice pretreated with lipopolysaccharide (LPS) from Salmonella typhosa increased LPS-induced NO formation in vivo in the liver, intestine, lung, heart, kidney and spleen by 10-20-fold. This process was monitored by the intensity of the EPR signal due to mononitrosyl iron complex (MNIC) formation with exogenous diethyldithiocarbamate (DETC) recorded in the tissues. The NO synthase inhibitor, NG-nitro-L-arginine, prevented this complex formation in the liver of mice treated with both LPS and Fe(2+)-citrate complex. Thus, administration of LPS and Fe(2+)-citrate complex to mice induced NO biosynthesis in this tissue via an L-arginine-dependent pathway, presumably by facilitating the entry of Ca2+ ions into NO-producing cells through Fe(2+)-induced cell membrane lesions. PMID:7682442

  4. Poly(Adp-ribose) synthetase inhibition prevents lipopolysaccharide-induced peroxynitrite mediated damage in diaphragm.

    PubMed

    Ozdülger, Ali; Cinel, Ismail; Unlü, Ali; Cinel, Leyla; Mavioglu, Ilhan; Tamer, Lülüfer; Atik, Ugur; Oral, Ugur

    2002-07-01

    Although the precise mechanism by which sepsis causes impairment of respiratory muscle contractility has not been fully elucidated, oxygen-derived free radicals are thought to play an important role. In our experimental study, the effects of poly(ADP-ribose) synthetase (PARS) inhibition on the diaphragmatic Ca(2+)-ATPase, malondialdehyde (MDA), and 3-nitrotyrosine (3-NT) levels and additionally histopathology of the diaphragm in lipopolysaccharide (LPS)-induced endotoxemia are investigated.Thirty-two male Wistar rats, weighing between 180-200 g were randomly divided into four groups. The first group (control; n=8) received saline solution and the second (LPS group; n=8) 10 mgkg(-1) LPS i.p. 3-Aminobenzamide (3-AB) as a PARS inhibitor; was given to the third group (C+3-AB, n=8) 20 min before administration of saline solution while the fourth group (LPS+3-AB, n=8) received 3-AB 20 min before LPS injection. Six hours later, under ketamin/xylasine anesthesia diapraghmatic specimens were obtained and the rats were decapitated. Diaphragmatic specimens were divided into four parts, three for biochemical analyses and one for histopathologic assessment. In the LPS group, tissue Ca(2+)-ATPase levels were found to be decreased and tissue MDA and 3-NT levels were found to be increased (P<0.05). In the LPS+3-AB group, 3-AB pretreatment inhibited the increase in MDA and 3-NT levels and Ca(2+)-ATPase activity remained similar to those in the control group (P<0.05). Histopathologic examination of diaphragm showed edema between muscle fibers only in LPS group. PARS inhibition with 3-AB prevented not only lipid peroxidation but also the decrease of Ca(2+)-ATPase activity in endotoxemia. These results highlights the importance of nitric oxide (NO)-peroxynitrite (ONOO(-))-PARS pathway in preventing free radical mediated injury. PARS inhibitors should further be investigated as a new thearapetic alternative in sepsis treatment.

  5. Lipopolysaccharide induces recurrence of arthritis in rat joints previously injured by peptidoglycan-polysaccharide

    PubMed Central

    1987-01-01

    Rat ankle joints injected intraarticularly with 5 micrograms of group A streptococcal peptidoglycan-polysaccharide (PG-APS) developed an acute course of arthritis. Recurrence of arthritis was induced in 100% of these joints by intravenous injection of as little as 10 micrograms of Salmonella typhimurium lipopolysaccharide (LPS) 3 wk after intraarticular injection. This reaction was similar in athymic and euthymic rats. Buffalo rats were less susceptible than Lewis or Sprague- Dawley rats. Neisseria gonorrhoeae, Yersinia enterocolitica, and Escherichia coli LPS, and S. typhimurium Re mutant LPS, were also active. Re mutant LPS activity was greatly reduced by mixing with polymyxin B. E. coli lipid A was weakly active. An acute synovitis of much less incidence, severity, and duration was seen in contralateral joints injected initially with saline, and in ankle joints of naive, previously uninjected rats after intravenous LPS injection. The intravenous injection of the muramidase mutanolysin on day 0 or 7 after intraarticular PG-APS injection prevented LPS-induced recurrence of arthritis. These studies suggest that the phlogistic activities of lipid A and peptidoglycan might interact in an inflammatory disease process, and that LPS may play a role in recurrent episodes of rheumatoid arthritis or reactive arthritis. PMID:3295108

  6. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury

    PubMed Central

    Toba, Hiroaki; Tomankova, Tereza; Wang, Yingchun; Bai, Xiaohui; Cho, Hae-Ra; Guan, Zhehong; Adeyi, Oyedele A.; Tian, Feng; Keshavjee, Shaf; Liu, Mingyao

    2016-01-01

    XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability. PMID:27029000

  7. Garlic (Allium sativum) Extracts Inhibits Lipopolysaccharide-Induced Toll-Like Receptor 4 Dimerization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Garlic has been used as a folk medicine for a long history. Numerous studies demonstrated that garlic extracts and its sulfur-containing compounds inhibit nuclear factor-kappa B (NF-kB) activation induced by various receptor agonist including lipopolysaccharide (LPS). These effects suggest that garl...

  8. Serotonin depletion does not alter lipopolysaccharide-induced activation of the rat paraventricular nucleus.

    PubMed

    Conde, G L; Renshaw, D; Lightman, S L; Harbuz, M S

    1998-02-01

    We have investigated the effects of serotonin depletion on immune-mediated activation of the hypothalamo-pituitary-adrenal (HPA) axis. Corticotrophin-releasing factor (CRF) mRNA, c-fos mRNA and Fos peptide responses in the paraventricular nucleus (PVN) together with circulating levels of corticosterone were assessed in response to i.p. injections of three doses of lipopolysaccharide (LPS) both in control animals and animals pretreated with p-chlorophenylalanine (PCPA). Conscious animals received either an i.p. injection of 0.5 ml saline or 200 mg/kg PCPA in 0.5 ml saline on 2 consecutive days. This treatment resulted in a 93% depletion of serotonin on the fourth day. On day 4, animals received i.p. injections of LPS (2.5 mg/0.5 ml saline, 250 micrograms/0.5 ml or 50 micrograms/0.5 ml; E. coli 055:B5), or saline injections as controls. Pretreatment with PCPA had no effect on the basal levels of corticosterone, or on the elevated levels induced by the three doses, of LPS. Fos peptide and c-fos mRNA were undetectable in control animals, and Fos-like immunoreactivity increased in a dose-dependent manner following i.p. LPS in both control and PCPA-pretreated animals. C-fos mRNA expression induced by LPS was unaffected by serotonin depletion. Following the lowest dose of LPS, CRF mRNA did not change above control levels, however, the medium and high doses of LPS produced a significant (P < 0.05) increase in CRF mRNA levels in both depleted and intact animals. To confirm the temporal effects of serotonin depletion on activation of the HPA axis we collected plasma at 30 min, 1, 2, 3, 4, 5, and 6 h after LPS in both intact and serotonin-depleted animals. No significant differences in plasma corticosterone levels were found at any of the time points between intact and depleted animals. It appears that, at least under these experimental conditions, serotonergic inputs do not seem to play a major role in mediating the effects of LPS on changes in mRNA levels in the PVN or on the subsequent activation of the HPA axis. PMID:9518869

  9. Lipopolysaccharide-Induced Ionized Hypocalcemia and Acute Kidney Injury in Carotid Chemo/Baro-Denervated Rats.

    PubMed

    Fernández, R; Cortés, P; Del Rio, R; Acuña-Castillo, C; Reyes, E P

    2015-01-01

    The acute kidney injury (AKI) observed during sepsis is due to an uncontrolled release of inflammatory mediators. Septic patients develop electrolytic disturbances and one of the most important is ionized hypocalcemia. AKI adversely affects the function of other organs and hypocalcemia is associated with cardiovascular and respiratory dysfunctions. Since carotid body chemoreceptors modulate the systemic inflammatory response during sepsis syndromes, we used pentobarbitone-anesthetized male Sprague-Dawley rats in control condition (SHAM surgery) and after bilateral carotid neurotomy (carotid chemo/baro-denervated, BCN). We evaluate serum creatinine (CRE), serum neutrophil gelatinase-associated lipocaline (NGAL), ionized calcium (iCa) and cardiac Troponin I (cTnI) 90 min after the IP administration of 15 mg/kg lipopolysaccharide (LPS) or saline. In the SHAM group, LPS failed to induce significant changes CRE, NGAL, or iCa, and increased cTnI. Conversely, in the BCN group LPS increased CRE and NGAL, decreased iCa, and enhanced the increase of cTnI. Our results suggest that carotid chemo/baro-receptors might contribute to the regulation of both renal function and calcemia during sepsis. In addition, results imply that the carotid chemo-baroreceptors serve as an immunosensory organ.

  10. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway.

    PubMed

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  11. Alpha-lipoic acid protects mitochondrial enzymes and attenuates lipopolysaccharide-induced hypothermia in mice

    EPA Science Inventory

    Abstract: Hypothermia is a key symptom of sepsis and the mechanism(s) leading to hypothermia during sepsis is largely unknown. To investigate a potential mechanism and find an effective treatment for hypothermia in sepsis, we induced hypothermia in mice by lipopolysaccharide (LP...

  12. The effects of fisetin on lipopolysaccharide-induced depressive-like behavior in mice.

    PubMed

    Yu, Xuefeng; Jiang, Xi; Zhang, Xiangming; Chen, Ziwei; Xu, Lexing; Chen, Lei; Wang, Guokang; Pan, Jianchun

    2016-10-01

    Major depressive disorder (MDD) involves a series of pathological changes including the inflammation and increased cytokine levels. Fisetin, a natural flavonoid, has anti-inflammatory and antioxidant, and also has been shown in our previous studies to exert anti-depressant-like properties. The present study aimed to investigate the effect of fisetin on lipopolysaccharide (LPS)-induced depressive-like behavior and inflammation in mice. The results suggested that the immobility time in the forced swimming test (FST) and tail suspension test (TST) were increased at 6 h, 12 h and 24 h after LPS injection (0.83 mg/kg). However, only the group of 24 h treatment did not show any effect on locomotion counts. Pretreatment with fisetin at doses of 20, 40 and 80 mg/kg (p.o.) for 7 days reversed LPS-induced alterations of the immobility time in both of these two tests. Further neurochemical assays suggested that pretreatment with fisetin reversed LPS-induced overexpression of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) in the hippocampus and the prefrontal cortex (PFC). Moreover, higher dose of fisetin effectively antagonized iNOS mRNA expression and nitrite levels via the modulation of NF-κB in the hippocampus and PFC. Taken together, fisetin may be an effective therapeutic agent for LPS-induced depressive-like behaviors, which is due to its anti-inflammatory property.

  13. Tiratricol neutralizes bacterial endotoxins and reduces lipopolysaccharide-induced TNF-alpha production in the cell.

    PubMed

    Cascales, Laura; Mas-Moruno, Carlos; Tamborero, Silvia; Aceña, José Luis; Sanz-Cervera, Juan F; Fustero, Santos; Cruz, Luis J; Mora, Puig; Albericio, Fernando; Pérez-Payá, Enrique

    2008-10-01

    The screening of a commercially available library of compounds has proved a successful strategy for the identification of a lead compound in a drug discovery programme. Here, we analysed 880 off-patent drugs, which initially comprised the Prestwick Chemical library, as sources of bacterial endotoxin neutralizers. We identified 3,3',5-triiodo-thyroacetic acid (tiratricol) as a non-antibacterial compound that neutralizes the toxic lipopolysaccharide. PMID:18844678

  14. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  15. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.

    PubMed

    Barrientos, Lorena; Bignon, Alexandre; Gueguen, Claire; de Chaisemartin, Luc; Gorges, Roseline; Sandré, Catherine; Mascarell, Laurent; Balabanian, Karl; Kerdine-Römer, Saadia; Pallardy, Marc; Marin-Esteban, Viviana; Chollet-Martin, Sylvie

    2014-12-01

    Polymorphonuclear neutrophils (PMN) play a central role in inflammation and participate in its control, notably by modulating dendritic cell (DC) functions via soluble mediators or cell-cell contacts. Neutrophil extracellular traps (NETs) released by PMN could play a role in this context. To evaluate NET effects on DC maturation, we developed a model based on monocyte-derived DC (moDC) and calibrated NETs isolated from fresh human PMN. We found that isolated NETs alone had no discernable effect on moDC. In contrast, they downregulated LPS-induced moDC maturation, as shown by decreased surface expression of HLA-DR, CD80, CD83, and CD86, and by downregulated cytokine production (TNF-α, IL-6, IL-12, IL-23), with no increase in the expression of tolerogenic DC genes. Moreover, the presence of NETs during moDC maturation diminished the capacity of these moDC to induce T lymphocyte proliferation in both autologous and allogeneic conditions, and modulated CD4(+) T lymphocyte polarization by promoting the production of Th2 cytokines (IL-5 and IL-13) and reducing that of Th1 and Th17 cytokines (IFN-γ and IL-17). Interestingly, the expression and activities of the lymphoid chemokine receptors CCR7 and CXCR4 on moDC were not altered when moDC matured in the presence of NETs. Together, these findings reveal a new role for NETs in adaptive immune responses, modulating some moDC functions and thereby participating in the control of inflammation.

  16. Lipopolysaccharide-Induced Dynamic Lipid Membrane Reorganization: Tubules, Perforations, and Stacks

    PubMed Central

    Adams, Peter G.; Lamoureux, Loreen; Swingle, Kirstie L.; Mukundan, Harshini; Montaño, Gabriel A.

    2014-01-01

    Lipopolysaccharide (LPS) is a unique lipoglycan, with two major physiological roles: 1), as a major structural component of the outer membrane of Gram-negative bacteria and 2), as a highly potent mammalian toxin when released from cells into solution (endotoxin). LPS is an amphiphile that spontaneously inserts into the outer leaflet of lipid bilayers to bury its hydrophobic lipidic domain, leaving the hydrophilic polysaccharide chain exposed to the exterior polar solvent. Divalent cations have long been known to neutralize and stabilize LPS in the outer membrane, whereas LPS in the presence of monovalent cations forms highly mobile negatively-charged aggregates. Yet, much of our understanding of LPS and its interactions with the cell membrane does not take into account its amphiphilic biochemistry and charge polarization. Herein, we report fluorescence microscopy and atomic force microscopy analysis of the interaction between LPS and fluid-phase supported lipid bilayer assemblies (sLBAs), as model membranes. Depending on cation availability, LPS induces three remarkably different effects on simple sLBAs. Net-negative LPS-Na+ leads to the formation of 100-μm-long flexible lipid tubules from surface-associated lipid vesicles and the destabilization of the sLBA resulting in micron-size hole formation. Neutral LPS-Ca2+ gives rise to 100-μm-wide single- or multilamellar planar sheets of lipid and LPS formed from surface-associated lipid vesicles. Our findings have important implications about the physical interactions between LPS and lipids and demonstrate that sLBAs can be useful platforms to study the interactions of amphiphilic virulence factors with cell membranes. Additionally, our study supports the general phenomenon that lipids with highly charged or bulky headgroups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions. PMID:24896118

  17. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    PubMed Central

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y.

    2016-01-01

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953

  18. Effect of Embelin Against Lipopolysaccharide-induced Sickness Behaviour in Mice.

    PubMed

    Shaikh, Ashique; Dhadde, Shivsharan B; Durg, Sharanbasappa; Veerapur, V P; Badami, S; Thippeswamy, B S; Patil, Jagadevappa S

    2016-05-01

    Sickness behaviour is a coordinated set of adaptive behavioural changes that develop in ill individuals during the course of an infection. It is relevant to understanding depression and some aspects of the suffering that in cancer. Embelin has been reported to possess antiinflammatory, neuroprotective and anxiolytic assets and has been shown to inhibit nuclear factor κB pathway and cytokine production. The present study was undertaken to investigate the effect of embelin isolated from Embelia ribes Burm in lipopolysaccharide (LPS)-induced sickness behaviour in mice. Adult male Swiss albino mice were pre-treated with embelin (10 and 20 mg/kg, p.o.) or dexamethasone (1 mg/kg, i.p.) for 3 days and then challenged with LPS (400 µg/kg, i.p.). At different time intervals of post-LPS challenge, sickness behaviour was evaluated in the animals by battery of behavioural tests (plus maze, open field, light-dark box, forced swim, social behaviour assessment, sucrose preference and food and water intake). Levels of oxidative stress makers (reduced glutathione and lipid peroxidation) in mice brain were also analysed. LPS induced behavioural alterations, anhedonia and anorexia, in mice. Pre-treatment with embelin attenuated behavioural changes induced by LPS. In addition, embelin prevented anhedonia, anorexia and ameliorated brain oxidative stress markers. The experimental outcomes of the present study demonstrated protective effect of embelin in LPS-induced sickness behaviour in mice. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice.

    PubMed

    Basu Mallik, Sanchari; Mudgal, Jayesh; Nampoothiri, Madhavan; Hall, Susan; Dukie, Shailendra Anoopkumar-; Grant, Gary; Rao, C Mallikarjuna; Arora, Devinder

    2016-10-01

    Accumulating data links inflammation, oxidative stress and immune system in the pathophysiology of major depressive disorders. Sickness behaviour is a set of behavioural changes that develop during infection, eventually leading to decrease in mobility and depressed behaviour. Lipopolysaccharide (LPS) induces a depression-like state in animals that mimics sickness behaviour. Caffeic acid, a naturally occurring polyphenol, possesses antioxidant and anti-inflammatory properties. The present study was designed to explore the potential of caffeic acid against LPS-induced sickness behaviour in mice. Caffeic acid (30mg/kg) and imipramine (15mg/kg) were administered orally one hour prior to LPS (1.5mg/kg) challenge. Behavioural assessment was carried out between 1 and 2h and blood samples were collected at 3h post-LPS injection. Additionally, cytokines (brain and serum) and brain oxidative stress markers were estimated. LPS increased the systemic and brain cytokine levels, altered the anti-oxidant defence and produced key signs of sickness behaviour in animals. Caffeic acid treatment significantly reduced the LPS-induced changes, including reduced expression of inflammatory markers in serum and whole brain. Caffeic acid also exerted an anti-oxidant effect, which was evident from the decreased levels of oxidative stress markers in whole brain. Our data suggests that caffeic acid can prevent the neuroinflammation-induced acute and probably the long term neurodegenerative changes.

  20. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Li, G; Zhou, C L; Zhou, Q S; Zou, H D

    2016-02-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  1. Development of a rat model of D-galactosamine/lipopolysaccharide induced hepatorenal syndrome

    PubMed Central

    Wang, Jing-Bo; Wang, Hai-Tao; Li, Lu-Ping; Yan, Ying-Chun; Wang, Wei; Liu, Jing-Yang; Zhao, Yi-Tong; Gao, Wei-Shu; Zhang, Ming-Xiang

    2015-01-01

    AIM: To develop a practical and reproducible rat model of hepatorenal syndrome for further study of the pathophysiology of human hepatorenal syndrome. METHODS: Sprague-Dawley rats were intravenously injected with D-galactosamine and lipopolysaccharide (LPS) via the tail vein to induce fulminant hepatic failure to develop a model of hepatorenal syndrome. Liver and kidney function tests and plasma cytokine levels were measured after D-galactosamine/LPS administration, and hepatic and renal pathology was studied. Glomerular filtration rate was detected in conscious rats using micro-osmotic pump technology with fluorescein isothiocyanate-labelled inulin as a surrogate marker. RESULTS: Serum levels of biochemical indicators including liver and kidney function indexes and cytokines all significantly changed, especially at 12 h after D-galactosamine/LPS administration [alanine aminotransferase, 3389.5 ± 499.5 IU/L; blood urea nitrogen, 13.9 ± 1.3 mmol/L; Cr, 78.1 ± 2.9 μmol/L; K+, 6.1 ± 0.5 mmol/L; Na+, 130.9 ± 1.9 mmol/L; Cl-, 90.2 ± 1.9 mmol/L; tumor necrosis factor-α, 1699.6 ± 599.1 pg/mL; endothelin-1, 95.9 ± 25.9 pg/mL; P < 0.05 compared with normal saline control group]. Hepatocyte necrosis was aggravated gradually, which was most significant at 12 h after treatment with D-galactosamine/LPS, and was characterized by massive hepatocyte necrosis, while the structures of glomeruli, proximal and distal tubules were normal. Glomerular filtration rate was significantly decreased to 30%-35% of the control group at 12 h after D-galactosamine/LPS administration [Glomerular filtration rate (GFR)1, 0.79 ± 0.11 mL/min; GFR2, 3.58 ± 0.49 mL/min·kgBW-1; GFR3, 0.39 ± 0.99 mL/min·gKW-1]. The decreasing timing of GFR was consistent with that of the presence of hepatocyte necrosis and liver and kidney dysfunction. CONCLUSION: The joint use of D-galactosamine and LPS can induce liver and kidney dysfunction and decline of glomerular filtration rate in rats which is a successful rat model of hepatorenal syndrome. PMID:26379397

  2. Bortezomib Inhibits Osteoclastogenesis and Porphyromonas gingivalis Lipopolysaccharide-induced Alveolar Bone Resorption.

    PubMed

    Kim, Y-G; Kang, J H; Kim, H J; Kim, H J; Kim, H-H; Kim, J-Y; Lee, Y

    2015-09-01

    Healthy bone is maintained by the coordinated activities of osteoblast-mediated bone formation and osteoclast-dependent bone resorption. Pathologic conditions such as hormonal imbalance and inflammation cause increased osteoclastogenesis resulting in osteoporosis, rheumatoid arthritis, and periodontitis. Bortezomib is novel antimyeloma agent that has a direct beneficial effect on bone formation. However, the role of bortezomib in osteoclastogenesis and underlying mechanisms remains to be fully comprehended. In the present study, we show that bortezomib directly inhibited the receptor activator of nuclear factor κB ligand (RANKL)- and lipopolysaccharide-dependent osteoclast differentiation. Interestingly, the bortezomib-mediated inhibition of osteoclastogenesis was transient, since the removal of bortezomib from culture completely restored osteoclast differentiation. Bortezomib impeded the induction and nuclear localization of nuclear factor of activated T cells, cytoplasmic 1 and reduced both macrophage colony-stimulating factor- and RANKL-induced extracellular-signal-regulated kinase (ERK) phosphorylation. In a mouse model of periodontitis, bortezomib prevented alveolar bone erosion induced by Porphyromonas gingivalis lipopolysaccharide. These data not only suggest a previously unappreciated mechanism by which bortezomib regulates bone resorption but also propose novel applications of bortezomib beyond its use as an antimyeloma agent.

  3. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice

    SciTech Connect

    Arteel, Gavin E. Guo, Luping; Schlierf, Thomas; Beier, Juliane I.; Kaiser, J. Phillip; Chen, Theresa S.; Liu, Marsha; Conklin, Daniel J.; Miller, Heather L.; Montfort, Claudia von; States, J. Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  4. Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation*

    PubMed Central

    Grabner, Gernot F.; Eichmann, Thomas O.; Wagner, Bernhard; Gao, Yuanqing; Farzi, Aitak; Taschler, Ulrike; Radner, Franz P. W.; Schweiger, Martina; Lass, Achim; Holzer, Peter; Zinser, Erwin; Tschöp, Matthias H.; Yi, Chun-Xia; Zimmermann, Robert

    2016-01-01

    Monoglyceride lipase (MGL) is required for efficient hydrolysis of the endocannabinoid 2-arachidonoylglyerol (2-AG) in the brain generating arachidonic acid (AA) and glycerol. This metabolic function makes MGL an interesting target for the treatment of neuroinflammation, since 2-AG exhibits anti-inflammatory properties and AA is a precursor for pro-inflammatory prostaglandins. Astrocytes are an important source of AA and 2-AG, and highly express MGL. In the present study, we dissected the distinct contribution of MGL in astrocytes on brain 2-AG and AA metabolism by generating a mouse model with genetic deletion of MGL specifically in astrocytes (MKOGFAP). MKOGFAP mice exhibit moderately increased 2-AG and reduced AA levels in brain. Minor accumulation of 2-AG in the brain of MKOGFAP mice does not cause cannabinoid receptor desensitization as previously observed in mice globally lacking MGL. Importantly, MKOGFAP mice exhibit reduced brain prostaglandin E2 and pro-inflammatory cytokine levels upon peripheral lipopolysaccharide (LPS) administration. These observations indicate that MGL-mediated degradation of 2-AG in astrocytes provides AA for prostaglandin synthesis promoting LPS-induced neuroinflammation. The beneficial effect of astrocyte-specific MGL-deficiency is not fully abrogated by the inverse cannabinoid receptor 1 agonist SR141716 (Rimonabant) suggesting that the anti-inflammatory effects are rather caused by reduced prostaglandin synthesis than by activation of cannabinoid receptors. In conclusion, our data demonstrate that MGL in astrocytes is an important regulator of 2-AG levels, AA availability, and neuroinflammation. PMID:26565024

  5. Hepatoprotective effect of propagermanium on Corynebacterium parvum and lipopolysaccharide-induced liver injury in mice.

    PubMed

    Yokochi, S; Ishiwata, Y; Hashimoto, H; Ninomiya, F; Suzuki, T

    1998-08-01

    Propagermanium is an organic germanium compound with immunopotentiating activity. We examined the hepatoprotective effect of propagermanium and its mechanism in an experimental animal model of acute liver injury induced with Corynebacterium parvum (C. parvum) and lipopolysaccharide (LPS) injection. Oral pretreatment with propagermanium decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity in a dose-dependent manner. Significant attenuation of ALT and AST activity was obtained at a dose of 3 mg/kg. Administration of propagermanium also inhibited the infiltration of mononuclear cells into the liver of mice induced by C. parvum/LPS. Immunohistochemical examination revealed infiltration of the liver by CD4-, CD8-, CD11b- and Gr-1-positive cells. Propagermanium prevented CD4- and CD11b-positive cells from infiltrating the liver. In this animal model, blood cytokine levels increased rapidly after LPS injection, causing severe hepatitis. Notably, tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) are important mediators of the progress of liver injury. We demonstrated that propagermanium reduced IFN-gamma production by 53% at a dose of 3 mg/kg and also significantly inhibited the production of interleukin-12 (IL-12). These results indicate that propagermanium inhibits cell infiltration in the liver and cytokine production, and improves massive liver injury in C. parvum/LPS mice. PMID:9716110

  6. Hiding information by cell suppression.

    PubMed Central

    Vinterbo, S. A.; Ohno-Machado, L.; Dreiseitl, S.

    2001-01-01

    Joining relational data can jeopardize patient confidentiality if disseminated data for research can be joined with publicly available data containing, for example, explicit identifiers. Ambiguity in data hinders the construction of primary keys that are of importance when joining data tables. We define two values to be indiscernible if they are the same or at least one of them is a special value. Two rows in a data table are indiscernible if their corresponding entries are indiscernible. We further define a table to be k-ambiguous if each row is indiscernible from at least k rows in the same table. We present two simple heuristics to make a table k-ambiguous by cell suppression, and compare them on example data. PMID:11825281

  7. Engineered decoherence: Characterization and suppression

    NASA Astrophysics Data System (ADS)

    Hegde, Swathi S.; Mahesh, T. S.

    2014-06-01

    Due to omnipresent environmental interferences, quantum coherences inevitably undergo irreversible transformations over certain time scales, thus leading to the loss of encoded information. This process, known as decoherence, has been a major obstacle in realizing efficient quantum information processors. Understanding the mechanism of decoherence is crucial in developing tools to inhibit it. Here we utilize a method proposed by Teklemariam et al. [Phys. Rev. A 67, 062316 (2003), 10.1103/PhysRevA.67.062316] to engineer artificial decoherence in the system qubits by randomly perturbing their surrounding ancilla qubits. Using a two-qubit nuclear magnetic resonance quantum register, we characterize the artificial decoherence by noise spectroscopy and quantum process tomography. Further, we study the efficacy of dynamical decoupling sequences in suppressing the artificial decoherence. Here we describe the experimental results and their comparisons with theoretical simulations.

  8. MEK5 suppresses osteoblastic differentiation

    SciTech Connect

    Kaneshiro, Shoichi; Otsuki, Dai; Yoshida, Kiyoshi; Yoshikawa, Hideki; Higuchi, Chikahisa

    2015-07-31

    Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis. - Highlights: • MEK5 inhibitor BIX02189 suppresses proliferation of osteoblasts. • MEK5 knockdown and MEK5 inhibitor promote differentiation of osteoblasts. • MEK5 overexpression inhibits differentiation of osteoblasts.

  9. Genetics of barley hooded suppression.

    PubMed Central

    Roig, Cristina; Pozzi, Carlo; Santi, Luca; Müller, Judith; Wang, Yamei; Stile, Maria Rosaria; Rossini, Laura; Stanca, Michele; Salamini, Francesco

    2004-01-01

    The molecular basis of the barley dominant Hooded (K) mutant is a duplication of 305 bp in intron IV of the homeobox gene Bkn3. A chemical mutagenesis screen was carried out to identify genetical factors that participate in Bkn3 intron-mediated gene regulation. Plants from recurrently mutagenized KK seeds were examined for the suppression of the hooded awn phenotype induced by the K allele and, in total, 41 suK (suppressor of K) recessive mutants were identified. Complementation tests established the existence of five suK loci, and alleles suKB-4, suKC-33, suKD-25, suKE-74, and suKF-76 were studied in detail. All K-suppressed mutants showed a short-awn phenotype. The suK loci have been mapped by bulked segregant analysis nested in a standard mapping procedure based on AFLP markers. K suppressor loci suKB, B, E, and F all map in a short interval of chromosome 7H, while the locus suKD is assigned to chromosome 5H. A complementation test between the four suK mutants mapping on chromosome 7H and the short-awn mutant lks2, located nearby, excluded the allelism between suK loci and lks2. The last experiment made clear that the short-awn phenotype of suK mutants is due to a specific dominant function of the K allele, a function that is independent from the control on hood formation. The suK loci are discussed as candidate participants in the regulation of Bkn3 expression. PMID:15166167

  10. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  11. Residual Versus Suppressed-Carrier Coherent Communications

    NASA Astrophysics Data System (ADS)

    Simon, M. K.; Million, S.

    1996-07-01

    This article addresses the issue of when to suppress or not to suppress the transmitted carrier in designing a coherent communication system employing a carrier tracking loop for carrier synchronization. Assuming that a phase-locked loop (PLL) is used whenever there exists a residual carrier and a Costas loop is used whenever the carrier is suppressed, the regions of system parameters that delineate these two options are presented based on the desire to minimize the average probability of error of the system.

  12. Issues in Numerical Simulation of Fire Suppression

    SciTech Connect

    Tieszen, S.R.; Lopez, A.R.

    1999-04-12

    This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.

  13. Deconstructing Interocular Suppression: Attention and Divisive Normalization.

    PubMed

    Li, Hsin-Hung; Carrasco, Marisa; Heeger, David J

    2015-10-01

    In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression.

  14. ISS Update: Burning and Suppression of Solids

    NASA Video Gallery

    ISS Update Commentator Pat Ryan interviews Paul Ferkul, Principal Investigator for the Burning and Suppression of Solids (BASS) experiment, about performing combustion experiments in microgravity. ...

  15. Photoperiodic Suppression of Drug Reinstatement

    PubMed Central

    Sorg, Barbara A.; Stark, Gemaine; Sergeeva, Anna; Jansen, Heiko T.

    2011-01-01

    The rewarding influence of drugs of abuse varies with time of day and appears to involve interactions between the circadian and the mesocorticolimbic dopamine systems. The circadian system is also intimately involved in measuring daylength. Thus, the present study examined the impact of changing daylength (photoperiod) on cocaine-seeking behaviors. Male Sprague Dawley rats were trained and tested on a 12L:12D light:dark schedule for cocaine-induced reinstatement of conditioned place preference (CPP) at three times of day (Zeitgeber time (ZT): 4, 12, and 20) to determine a preference score. Rats were then shifted to either shorter (6L:18D) or longer (18L:6D) photoperiods and then to constant conditions, re-tested for cocaine-induced reinstatement under each different condition, and then returned to their original photoperiod (12L:12D) and tested once more. Rats exhibited a circadian profile of preference score in constant darkness with a peak at 12h after lights-off. At both ZT4 and ZT20, but not at ZT12, shorter photoperiods profoundly suppressed cocaine reinstatement, which did not recover even after switching back to 12L:12D. In contrast, longer photoperiods did not alter reinstatement. Separate studies showed that the suppression of cocaine reinstatement was not due to repeated testing. In an additional experiment, we examined the photoperiodic regulation of tyrosine hydroxylase (TH) and dopamine transporter (DAT) proteins in drug-naive rats. These results revealed photoperiodic modulation of proteins in the prefrontal cortex and dorsal striatum, but not in the nucleus accumbens or ventral tegmental area. Together, these findings add further support to the circadian genesis of cocaine-seeking behaviors and demonstrate that drug-induced reinstatement is modulated by photoperiod. Furthermore, the results suggest that photoperiod partly contributes to the seasonal expression of certain drug-related behaviors in humans living at different latitudes and thus our

  16. Suppressing Irrelevant Information: Knowledge Activation or Inhibition?

    ERIC Educational Resources Information Center

    McNamara, Danielle S.; McDaniel, Mark A.

    2004-01-01

    In 3 experiments, the authors examined the role of knowledge activation in the suppression of contextually irrelevant meanings for ambiguous homographs. In Experiments 1 and 2, participants with greater baseball knowledge, regardless of reading skill, more quickly suppressed the irrelevant meaning of ambiguous words in baseball-related, but not…

  17. Identifying separate components of surround suppression.

    PubMed

    Schallmo, Michael-Paul; Murray, Scott O

    2016-01-01

    Surround suppression is a well-known phenomenon in which the response to a visual stimulus is diminished by the presence of neighboring stimuli. This effect is observed in neural responses in areas such as primary visual cortex, and also manifests in visual contrast perception. Studies in animal models have identified at least two separate mechanisms that may contribute to surround suppression: one that is monocular and resistant to contrast adaptation, and another that is binocular and strongly diminished by adaptation. The current study was designed to investigate whether these two mechanisms exist in humans and if they can be identified psychophysically using eye-of-origin and contrast adaptation manipulations. In addition, we examined the prediction that the monocular suppression component is broadly tuned for orientation, while suppression between eyes is narrowly tuned. Our results confirmed that when center and surrounding stimuli were presented dichoptically (in opposite eyes), suppression was orientation-tuned. Following adaptation in the surrounding region, no dichoptic suppression was observed, and monoptic suppression no longer showed orientation selectivity. These results are consistent with a model of surround suppression that depends on both low-level and higher level components. This work provides a method to assess the separate contributions of these components during spatial context processing in human vision.

  18. Suppressive soils: back on the radar screen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suppressive soils are those in which a pathogen does not establish or persist, establishes but causes little or no damage, or establishes and causes disease for a while but thereafter the disease is less important, although the pathogen may persist in the soil (Weller, 2002). ‘General suppression,’ ...

  19. Ferromagnetic resonance probe liftoff suppression apparatus

    DOEpatents

    Davis, Thomas J.; Tomeraasen, Paul L.

    1985-01-01

    A liftoff suppression apparatus utilizing a liftoff sensing coil to sense the amount a ferromagnetic resonance probe lifts off the test surface during flaw detection and utilizing the liftoff signal to modulate the probe's field modulating coil to suppress the liftoff effects.

  20. Prolonged over-suppression syndrome.

    PubMed

    Good, A E; Kempers, R D

    1974-07-01

    The syndrome of postpill amenorrhea was investigated retrospectively by studying records of diagnosed cases of amenorrhea (1300) treated or confirmed at the Mayo Clinic. Data are taken from records dating to 1960 (low use of contraceptives) and terminate in 1971. 12 cases are reviewed which were diagnosed as prolonged oversuppression syndrome. No particular oral contraceptive formulation was implicated. 4 of 12 patients had had irregular menstrual cycles before oral contraceptive therapy; whereas 8 had had regular cycles. Bioassay of urinary gonadotropins were consistently in the mid-low normal limits (only 1 determination was available for each patient); some patients had been radioimmunoassayed (single assay) for other pituitary hormones: LH (luteinizing hormone) was at normal basal levels and FSH (follicle stimulating hormone) was also in the normal range. Concentrations of total circulating estrogens were in low or subnormal range in each case. 4 cases had associated galactorrhea, which was attributed to exogenous steroid suppression of the prolactin-inhibiting center of the pituitary. Clomiphene citrate was used to restore functions of the hypothalamic-pituitary axis, and of the 8 receiving clomiphene, 5 responded and 2 conceived.

  1. Vibration suppression of satellites using multifunctional platforms

    NASA Astrophysics Data System (ADS)

    Antin, Nicolas; Russ, Richard; Ma, Kougen; Ghasemi-Nejhad, Mehrdad N.

    2009-03-01

    This research focuses on a finite element analysis of active vibration suppression capabilities of a smart composite platform, which is a structural interface between a satellite main thruster and its structure and possesses simultaneous precision positioning and vibration suppression capabilities for thrust vector control of a satellite. First, the combined system of the smart composite platform and the satellite structure are briefly described followed by the finite element modeling and simulations. The smart platform piezoelectric patches and stacks material properties modeling, for the finite element analysis, are developed consistent with the manufacturer data. Next, a vibration suppression scheme, based on the modal analysis, is presented and used in vibration suppression analysis of satellite structures of the thrust vector under the thruster-firing excitation. The approach introduced here is an effective technique for the design of smart structures with complex geometry to study their MIMO active vibration suppression capabilities.

  2. Impacts of suppressing guide on information spreading

    NASA Astrophysics Data System (ADS)

    Xu, Jinghong; Zhang, Lin; Ma, Baojun; Wu, Ye

    2016-02-01

    It is quite common that guides are introduced to suppress the information spreading in modern society for different purposes. In this paper, an agent-based model is established to quantitatively analyze the impacts of suppressing guides on information spreading. We find that the spreading threshold depends on the attractiveness of the information and the topology of the social network with no suppressing guides at all. Usually, one would expect that the existence of suppressing guides in the spreading procedure may result in less diffusion of information within the overall network. However, we find that sometimes the opposite is true: the manipulating nodes of suppressing guides may lead to more extensive information spreading when there are audiences with the reversal mind. These results can provide valuable theoretical references to public opinion guidance on various information, e.g., rumor or news spreading.

  3. Suppressing irrelevant information: knowledge activation or inhibition?

    PubMed

    McNamara, Danielle S; McDaniel, Mark A

    2004-03-01

    In 3 experiments, the authors examined the role of knowledge activation in the suppression of contextually irrelevant meanings for ambiguous homographs. In Experiments 1 and 2, participants with greater baseball knowledge, regardless of reading skill, more quickly suppressed the irrelevant meaning of ambiguous words in baseball-related, but not general-topic, sentences. Experiment 3 demonstrated that participants with greater general knowledge, regardless of reading skill, more quickly suppressed the irrelevant meaning of the ambiguous words in general-topic sentences. As predicted by D. S. McNamara's (1997) knowledge-based account of suppression, ambiguity effects are influenced by greater activation of knowledge related to the intended meaning of the homograph. These results challenge inhibition (e.g. M. A. Gernsbacher, K. R. Varner. & M. Faust, 1990) as the sole mechanism responsible for the suppression of irrelevant information.

  4. Suppression of operant vs consummatory behavior.

    PubMed

    DeCosta, M J; Ayres, J J

    1971-07-01

    The magnitude and variability of conditioned suppression of bar pressing and dipper licking were compared. In two steady-state experiments, suppression of bar pressing was more profound and more stable from day to day. The two measures of suppression were uncorrelated as indexed by Pearson product-moment correlation coefficients computed for adjacent trials. Correlations within measures (internal consistency) were somewhat higher for the bar-press system except when a high proportion of rats completely suppressed on one of the correlated trials. In a transient state experiment in which possible adventitious punishment of both response systems was eliminated, suppression of bar pressing was again more profound and considerably slower to extinguish. PMID:5142387

  5. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  6. Mutual Suppression: Comment on Paulhus et Al. (2004)

    ERIC Educational Resources Information Center

    Nickerson, Carol

    2008-01-01

    Paulhus, Robins, Trzesniewski, and Tracy ("Multivariate Behavioral Research," 2004, 39, 305-328) suggested that the three types of two-predictor suppression situations--classical suppression, cooperative suppression, and net suppression--can all be considered special cases of mutual suppression, in that the magnitude of each of the two…

  7. Suppression effects in feature-based attention

    PubMed Central

    Wang, Yixue; Miller, James; Liu, Taosheng

    2015-01-01

    Attending to a feature enhances visual processing of that feature, but it is less clear what occurs to unattended features. Single-unit recording studies in middle temporal (MT) have shown that neuronal modulation is a monotonic function of the difference between the attended and neuron's preferred direction. Such a relationship should predict a monotonic suppressive effect in psychophysical performance. However, past research on suppressive effects of feature-based attention has remained inconclusive. We investigated the suppressive effect for motion direction, orientation, and color in three experiments. We asked participants to detect a weak signal among noise and provided a partially valid feature cue to manipulate attention. We measured performance as a function of the offset between the cued and signal feature. We also included neutral trials where no feature cues were presented to provide a baseline measure of performance. Across three experiments, we consistently observed enhancement effects when the target feature and cued feature coincided and suppression effects when the target feature deviated from the cued feature. The exact profile of suppression was different across feature dimensions: Whereas the profile for direction exhibited a “rebound” effect, the profiles for orientation and color were monotonic. These results demonstrate that unattended features are suppressed during feature-based attention, but the exact suppression profile depends on the specific feature. Overall, the results are largely consistent with neurophysiological data and support the feature-similarity gain model of attention. PMID:26067533

  8. Integrin endosomal signalling suppresses anoikis

    PubMed Central

    Alanko, Jonna; Mai, Anja; Jacquemet, Guillaume; Schauer, Kristine; Kaukonen, Riina; Saari, Markku; Goud, Bruno; Ivaska, Johanna

    2016-01-01

    to enhanced signalling of co-trafficked receptor tyrosine kinases10, 11 it has remained unclear whether endocytosed active integrins signal in endosomes. Here, we demonstrate that integrin signalling is not restricted to focal adhesions as previously described and that endocytosis is necessary for full ECM-induced, integrin mediated ERK, AKT and FAK signalling. We find that FAK binds directly to and can become activated on purified endosomes. Moreover, the FERM-domain of FAK is able to bind purified integrin containing endosomes, suggesting the potential for integrin signalling complexes to assemble on endosomes after internalization of active integrins. Importantly, FAK is required for anchorage-independent growth and suppression of anoikis 12. Integrin endosomal signalling correlates with reduced anoikis sensitivity in normal cells and anchorage-independent growth and metastasis in breast cancer cells. PMID:26436690

  9. Effects of tic suppression: ability to suppress, rebound, negative reinforcement, and habituation to the premonitory urge.

    PubMed

    Specht, Matt W; Woods, Douglas W; Nicotra, Cassandra M; Kelly, Laura M; Ricketts, Emily J; Conelea, Christine A; Grados, Marco A; Ostrander, Rick S; Walkup, John T

    2013-01-01

    The comprehensive behavioral intervention for tics (CBIT) represents a safe, effective non-pharmacological treatment for Tourette's disorder that remains underutilized as a treatment option. Contributing factors include the perceived negative consequences of tic suppression and the lack of a means through which suppression results in symptom improvement. Participants (n = 12) included youth ages 10-17 years with moderate-to-marked tic severity and noticeable premonitory urges who met Tourette's or chronic tic disorder criteria. Tic frequency and urge rating data were collected during an alternating sequence of tic freely or reinforced tic suppression periods. Even without specific instructions regarding how to suppress tics, youth experienced a significant, robust (72%), stable reduction in tic frequency under extended periods (40 min) of contingently reinforced tic suppression in contrast to periods of time when tics were ignored. Following periods of prolonged suppression, tic frequency returned to pre-suppression levels. Urge ratings did not show the expected increase during the initial periods of tic suppression, nor a subsequent decline in urge ratings during prolonged, effective tic suppression. Results suggest that environments conducive to tic suppression result in reduced tic frequency without adverse consequences. Additionally, premonitory urges, underrepresented in the literature, may represent an important enduring etiological consideration in the development and maintenance of tic disorders.

  10. Quadratic dynamical decoupling with nonuniform error suppression

    SciTech Connect

    Quiroz, Gregory; Lidar, Daniel A.

    2011-10-15

    We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optimal Uhrig dynamical decoupling sequences for two orthogonal axes, comprising N{sub 1} and N{sub 2} pulses, respectively. Varying these numbers, we study the decoherence suppression properties of QDD directly by isolating the errors associated with each system basis operator present in the system-bath interaction Hamiltonian. Each individual error scales with the lowest order of the Dyson series, therefore immediately yielding the order of decoherence suppression. We show that the error suppression properties of QDD are dependent upon the parities of N{sub 1} and N{sub 2}, and near-optimal performance is achieved for general single-qubit interactions when N{sub 1}=N{sub 2}.

  11. METHOD OF SUPPRESSING GASTROINTESTINAL UREASE ACTIVITY

    DOEpatents

    Visek, W.J.

    1963-04-23

    This patent shows a method of increasing the growth rate of chicks. Certain diacyl substituted ureas such as alloxan, murexide, and barbituric acid are added to their feed, thereby suppressing gastrointestinal urease activity and thus promoting growth. (AEC)

  12. Suppression of reactions to certain cosmetics.

    PubMed

    Fisher, A A

    1977-08-01

    Reactions to hair dyes and bleaches may be "suppressed" with corticosteroids and antihistamines. Reactions to nail polish may be prevented by a "drying" or "polymerizing" technique. Sensitization to certain perfume ingredients may be inhibited by a "quenching" phenomenon.

  13. Strangeness suppression in the unquenched quark model

    NASA Astrophysics Data System (ADS)

    Bijker, Roelof; García-Tecocoatzi, Hugo; Santopinto, Elena

    2016-07-01

    In this contribution, we discuss the strangeness suppression in the proton in the framework of the unquenched quark model. The theoretical results are in good agreement with the values extracted from CERN and JLab experiments.

  14. Morphine suppression of ethanol withdrawal in mice.

    PubMed

    Blum, K; Wallace, J E; Schwerter, H A; Eubanks, J D

    1976-01-15

    The acute administration of morphine, alcohol or dopamine results in a pronounced suppression of the convulsions produced by alcohol in mice. The suppressive action of morphine on alcohol withdrawal in the mouse apparently is not a product of morphine intoxication, but rather to some other specific interaction between alcohol and morphine in the central nervous system. The conclusion suggest that dopamine may play a significant role as a modulator in convulsions produced during alcohol withdrawal.

  15. Neural repetition suppression reflects fulfilled perceptual expectations

    PubMed Central

    Summerfield, Christopher; Monti, Jim M.P.; Trittschuh, Emily H.; Mesulam, M.-Marsel; Egner, Tobias

    2009-01-01

    Stimulus-evoked neural activity is attenuated upon stimulus repetition (‘repetition suppression’), a phenomenon attributed to largely automatic processes in sensory neurons. By manipulating the likelihood of stimulus repetition, we show that repetition suppression in the human brain is reduced when stimulus repetitions are improbable (and thus, unexpected). These data suggest that repetition suppression reflects a relative reduction in top-down perceptual ‘prediction error’ when processing an expected compared to an unexpected stimulus. PMID:19160497

  16. Measurement of myeloid cell immune suppressive activity.

    PubMed

    Dolcetti, Luigi; Peranzoni, Elisa; Bronte, Vincenzo

    2010-11-01

    This unit presents simple methods to assess the immunosuppressive properties of immunoregulatory cells of myeloid origin, such as myeloid-derived suppressor cells (MDSCs), both in vitro and in vivo. These methods are general and could be adapted to test the impact of different suppressive populations on T cell activation, proliferation, and cytotoxic activity; moreover they could be useful to assess the influence exerted on immune suppressive pathways by genetic modifications, chemical inhibitors, and drugs.

  17. On the suppression of vaccination dissent.

    PubMed

    Martin, Brian

    2015-02-01

    Dissenters from the dominant views about vaccination sometimes are subject to adverse actions, including abusive comment, threats, formal complaints,censorship, and de registration, a phenomenon that can be called suppression of dissent. Three types of cases are examined: scientists and physicians; a high-profile researcher; and a citizen campaigner. Comparing the methods used in these different types of cases provides a preliminary framework for understanding the dynamics of suppression in terms of vulnerabilities. PMID:24658876

  18. Flame Suppression Agent, System and Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2013-01-01

    Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.

  19. On the suppression of vaccination dissent.

    PubMed

    Martin, Brian

    2015-02-01

    Dissenters from the dominant views about vaccination sometimes are subject to adverse actions, including abusive comment, threats, formal complaints,censorship, and de registration, a phenomenon that can be called suppression of dissent. Three types of cases are examined: scientists and physicians; a high-profile researcher; and a citizen campaigner. Comparing the methods used in these different types of cases provides a preliminary framework for understanding the dynamics of suppression in terms of vulnerabilities.

  20. Noise suppression in surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael

    2012-01-01

    We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.

  1. The temporal frequency tuning of continuous flash suppression reveals peak suppression at very low frequencies

    PubMed Central

    Han, Shui’er; Lunghi, Claudia; Alais, David

    2016-01-01

    Continuous flash suppression (CFS) is a psychophysical technique where a rapidly changing Mondrian pattern viewed by one eye suppresses the target in the other eye for several seconds. Despite the widespread use of CFS to study unconscious visual processes, the temporal tuning of CFS suppression is currently unknown. In the present study we used spatiotemporally filtered dynamic noise as masking stimuli to probe the temporal characteristics of CFS. Surprisingly, we find that suppression in CFS peaks very prominently at approximately 1 Hz, well below the rates typically used in CFS studies (10 Hz or more). As well as a strong bias to low temporal frequencies, CFS suppression is greater for high spatial frequencies and increases with increasing masker contrast, indicating involvement of parvocellular/ventral mechanisms in the suppression process. These results are reminiscent of binocular rivalry, and unifies two phenomenon previously thought to require different explanations. PMID:27767078

  2. Feature-based attention modulates surround suppression.

    PubMed

    Flevaris, Anastasia V; Murray, Scott O

    2015-01-28

    Stimuli appearing in the surround of the classical receptive field (CRF) can reduce neuronal firing and perceived contrast of a preferred stimulus in the CRF, a phenomenon referred to as surround suppression. Suppression is greatest when the surrounding stimulus has the same orientation and spatial frequency (SF) as the central target. Although spatial attention has been shown to influence surround suppression, the effects of feature-based attention have yet to be characterized. Using behavioral contrast adaptation in humans, we examined center-surround interactions between SF and orientation, and asked whether attending to one feature dimension versus the other influenced suppression. A center-surround triplet comprised of a central target Gabor and two flanking Gabors were used for adaptation. The flankers could have the same SF and orientation as the target, or differ in one or both of the feature dimensions. Contrast thresholds were measured for the target before and after adapting to center-surround triplets, and postadaptation thresholds were taken as an indirect measure of surround suppression. Both feature dimensions contributed to surround suppression and did not summate. Moreover, when center and surround had the same feature value in one dimension (e.g., same orientation) but had different values in the other dimension (e.g., different SF), there was more suppression when attention was directed to the feature dimension that matched between center and surround than when attention was directed to the feature dimension that differed. These results demonstrate that feature-based attention can influence center-surround interactions by enhancing the effects of the attended dimension.

  3. TEOAE suppression in adults with learning disabilities.

    PubMed

    Garinis, Angela C; Glattke, Theodore; Cone-Wesson, Barbara K

    2008-10-01

    The presentation of contralateral noise during the recording of transient evoked otoacoustic emissions (TEOAEs) reduces the amplitude of the TEOAE in normally-hearing adults. This is known as TEOAE suppression. The present study investigated TEOAE suppression in 18 adults with learning disabilities (LDs) compared to 18 adults without LDs. TEOAEs were elicited by 60 dB p.e. SPL clicks and were suppressed by the presentation of 60 dB SPL contralateral broadband noise. Suppression was measured as a change in the overall TEOAE response amplitude, and also analysed in 2-ms epochs representing different TEOAE frequency-response bands. A significant interaction was evident between group type and ear tested. Participants in the control group had right ear dominance for the suppression effect, whereas the left ear was found to be dominant for the LD group. These findings suggest a mechanism of the medial olivary cochlear bundle and efferent auditory pathway that differs in those with LD compared to those with typical learning abilities.

  4. Suppression of behavior by timeout punishment when suppression results in loss of positive reinforcement1

    PubMed Central

    Kaufman, Arnold; Baron, Alan

    1968-01-01

    This investigation, using rats as subjects and punishment by timeout for responses maintained on a ratio schedule, sought to determine whether behavior would be suppressed by timeout punishment when such suppression also reduced reinforcement density or frequency. A series of experiments indicated that timeout punishment suppressed responding, with the degree of suppression increasing as a function of the duration of the timeout period. Suppressive effects were found to decrease as a function of increases in deprivation (body weight) and were eliminated when the punished response also was reinforced. It was concluded that timeout can produce aversive effects even when loss of reinforcement results. An alternative interpretation of the findings, based on the effects of extinction periods and delay of reinforcement on chained behavior, was discussed. PMID:5722425

  5. Suppression of behavior by timeout punishment when suppression results in loss of positive reinforcement.

    PubMed

    Kaufman, A; Baron, A

    1968-09-01

    This investigation, using rats as subjects and punishment by timeout for responses maintained on a ratio schedule, sought to determine whether behavior would be suppressed by timeout punishment when such suppression also reduced reinforcement density or frequency. A series of experiments indicated that timeout punishment suppressed responding, with the degree of suppression increasing as a function of the duration of the timeout period. Suppressive effects were found to decrease as a function of increases in deprivation (body weight) and were eliminated when the punished response also was reinforced. It was concluded that timeout can produce aversive effects even when loss of reinforcement results. An alternative interpretation of the findings, based on the effects of extinction periods and delay of reinforcement on chained behavior, was discussed.

  6. Modeling extreme ultraviolet suppression of electrostatic analyzers

    SciTech Connect

    Gershman, Daniel J.; Zurbuchen, Thomas H.

    2010-04-15

    In addition to analyzing energy-per-charge ratios of incident ions, electrostatic analyzers (ESAs) for spaceborne time-of-flight mass spectrometers must also protect detectors from extreme ultraviolet (EUV) photons from the Sun. The required suppression rate often exceeds 1:10{sup 7} and is generally established in tests upon instrument design and integration. This paper describes a novel technique to model the EUV suppression of ESAs using photon ray tracing integrated into SIMION, the most commonly used ion optics design software for such instruments. The paper compares simulation results with measurements taken from the ESA of the Mass instrument flying onboard the Wind spacecraft. This novel technique enables an active inclusion of EUV suppression requirements in the ESA design process. Furthermore, the simulation results also motivate design rules for such instruments.

  7. Semantic and subword priming during binocular suppression.

    PubMed

    Costello, Patricia; Jiang, Yi; Baartman, Brandon; McGlennen, Kristine; He, Sheng

    2009-06-01

    In general, stimuli that are familiar and recognizable have an advantage of predominance during binocular rivalry. Recent research has demonstrated that familiar and recognizable stimuli such as upright faces and words in a native language could break interocular suppression faster than their matched controls. In this study, a visible word prime was presented binocularly then replaced by a high-contrast dynamic noise pattern presented to one eye and either a semantically related or unrelated word was introduced to the other eye. We measured how long it took for target words to break from suppression. To investigate word-parts priming, a second experiment also included word pairs that had overlapping subword fragments. Results from both experiments consistently show that semantically related words and words that shared subword fragments were faster to gain dominance compared to unrelated words, suggesting that words, even when interocularly suppressed and invisible, can benefit from semantic and subword priming.

  8. Modeling extreme ultraviolet suppression of electrostatic analyzers.

    PubMed

    Gershman, Daniel J; Zurbuchen, Thomas H

    2010-04-01

    In addition to analyzing energy-per-charge ratios of incident ions, electrostatic analyzers (ESAs) for spaceborne time-of-flight mass spectrometers must also protect detectors from extreme ultraviolet (EUV) photons from the Sun. The required suppression rate often exceeds 1:10(7) and is generally established in tests upon instrument design and integration. This paper describes a novel technique to model the EUV suppression of ESAs using photon ray tracing integrated into SIMION, the most commonly used ion optics design software for such instruments. The paper compares simulation results with measurements taken from the ESA of the Mass instrument flying onboard the Wind spacecraft. This novel technique enables an active inclusion of EUV suppression requirements in the ESA design process. Furthermore, the simulation results also motivate design rules for such instruments.

  9. Propofol and sevoflurane induce distinct burst suppression patterns in rats

    PubMed Central

    Kenny, Jonathan D.; Westover, M. Brandon; Ching, ShiNung; Brown, Emery N.; Solt, Ken

    2014-01-01

    Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Finally, we report the results of our new study showing clear electrophysiological differences in burst suppression patterns induced by two common general anesthetics, sevoflurane and propofol. Our data suggest that the circuit mechanisms that generate burst suppression activity may differ among general anesthetics. PMID:25565990

  10. Large-Scale Identification and Analysis of Suppressive Drug Interactions

    PubMed Central

    Cokol, Murat; Weinstein, Zohar B.; Yilancioglu, Kaan; Tasan, Murat; Doak, Allison; Cansever, Dilay; Mutlu, Beste; Li, Siyang; Rodriguez-Esteban, Raul; Akhmedov, Murodzhon; Guvenek, Aysegul; Cokol, Melike; Cetiner, Selim; Giaever, Guri; Iossifov, Ivan; Nislow, Corey; Shoichet, Brian; Roth, Frederick P.

    2014-01-01

    SUMMARY One drug may suppress the effects of another. Although knowledge of drug suppression is vital to avoid efficacy-reducing drug interactions or discover countermeasures for chemical toxins, drug-drug suppression relationships have not been systematically mapped. Here, we analyze the growth response of Saccharomyces cerevisiae to anti-fungal compound (“drug”) pairs. Among 440 ordered drug pairs, we identified 94 suppressive drug interactions. Using only pairs not selected on the basis of their suppression behavior, we provide an estimate of the prevalence of suppressive interactions between anti-fungal compounds as 17%. Analysis of the drug suppression network suggested that Bromopyruvate is a frequently suppressive drug and Staurosporine is a frequently suppressed drug. We investigated potential explanations for suppressive drug interactions, including chemogenomic analysis, coaggregation, and pH effects, allowing us to explain the interaction tendencies of Bromopyruvate. PMID:24704506

  11. THEORETICAL ISSUES IN J/PSI SUPPRESSION.

    SciTech Connect

    KHARZEEV,D.

    2006-11-14

    Two decades ago Matsui and Satz suggested that Debye screening in the quark-gluon plasma would result in J/{psi} suppression in heavy ion collisions. Much has happened in the subsequent years, and the picture of quark-gluon plasma at present is rapidly evolving - what does it imply for the J/{psi} suppression? What are the recent RHIC and SPS results trying to tell us? What else has to be done? This talk is an attempt to address these questions.

  12. Active Suppression Of Vibrations On Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    1995-01-01

    Method of active suppression of nonlinear and nonstationary vibrations developed to reduce sonic fatigue and interior noise in high-speed aircraft. Structure of aircraft exhibits periodic, chaotic, and random vibrations when forced by high-intensity sound from jet engines, shock waves, turbulence, and separated flows. Method of suppressing vibrations involves feedback control: Strain gauges or other sensors mounted in paths of propagation of vibrations on structure sense vibrations; outputs of sensors processed into control signal applied to actuator mounted on structure, inducing compensatory forces.

  13. Immune suppressive mechanisms in the tumor microenvironment.

    PubMed

    Munn, David H; Bronte, Vincenzo

    2016-04-01

    Effective immunotherapy, whether by checkpoint blockade or adoptive cell therapy, is limited in most patients by a key barrier: the immunosuppressive tumor microenvironment. Suppression of tumor-specific T cells is orchestrated by the activity of a variety of stromal myeloid and lymphoid cells. These often display inducible suppressive mechanisms that are triggered by the same anti-tumor inflammatory response that the immunotherapy intends to create. Therefore, a more comprehensive understanding of how the immunosuppressive milieu develops and persists is critical in order to harness the full power of immunotherapy of cancer.

  14. Reappraising suppression: subjective and physiological correlates of experiential suppression in healthy adults

    PubMed Central

    Lemaire, Mathieu; El-Hage, Wissam; Frangou, Sophia

    2014-01-01

    Background: Emotion regulation strategies based on suppressing behavioral expressions of emotion have been considered maladaptive. However, this may not apply to suppressing the emotional experience (experiential suppression). The aim of this study was to define the effect of experiential suppression on subjective and physiological emotional responses. Methods: Healthy adults (N = 101) were characterized in terms of the temperament, personality, and hedonic capacity using the Tridimensional Personality Questionnaire, the Eysenck Personality Questionnaire, the Fawcett–Clark Pleasure Scale, and the State-Trait Anxiety Inventory. Participants were shown positive, negative, and neutral pictures from the International Affective Picture System under two conditions, passive viewing, and experiential suppression. During both conditions, subjective ratings of the intensity and duration of emotional responses and physiological measures of skin conductance (SC) and cardiac inter-beat interval (IBI) to each picture were recorded. Results: Negative pictures elicited the most intense physiological and emotional responses regardless of experimental condition. Ratings of emotional intensity were not affected by condition. In contrast, experiential suppression, compared to passive viewing, was associated with decreased duration of the emotional response, reduced maximum SC amplitude and longer IBIs independent of age, picture valence, personality traits, hedonic capacity, and anxiety. Conclusion: These findings demonstrate that experiential suppression may represent an adaptive emotion regulation mechanism associated with reduced arousal and cardiovascular activation. PMID:24966844

  15. Suppression Situations in Multiple Linear Regression

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  16. Emotions shape memory suppression in trait anxiety.

    PubMed

    Marzi, Tessa; Regina, Antonio; Righi, Stefania

    2014-01-01

    The question that motivated this study was to investigate the relation between trait anxiety, emotions and memory control. To this aim, memory suppression was explored in high and low trait anxiety individuals with the Think/No-think paradigm. After learning associations between neutral words and emotional scenes (negative, positive, and neutral), participants were shown a word and were requested either to think about the associated scene or to block it out from mind. Finally, in a test phase, participants were again shown each word and asked to recall the paired scene. The results show that memory control is influenced by high trait anxiety and emotions. Low trait anxiety individuals showed a memory suppression effect, whereas there was a lack of memory suppression in high trait anxious individuals, especially for emotionally negative scenes. Thus, we suggest that individuals with anxiety may have difficulty exerting cognitive control over memories with a negative valence. These findings provide evidence that memory suppression can be impaired by anxiety thus highlighting the crucial relation between cognitive control, emotions, and individual differences in regulating emotions.

  17. Polyphosphate suppresses complement via the terminal pathway

    PubMed Central

    Wat, Jovian M.; Foley, Jonathan H.; Krisinger, Michael J.; Ocariza, Linnette Mae; Lei, Victor; Wasney, Gregory A.; Lameignere, Emilie; Strynadka, Natalie C.; Smith, Stephanie A.; Morrissey, James H.

    2014-01-01

    Polyphosphate, synthesized by all cells, is a linear polymer of inorganic phosphate. When released into the circulation, it exerts prothrombotic and proinflammatory activities by modulating steps in the coagulation cascade. We examined the role of polyphosphate in regulating the evolutionarily related proteolytic cascade complement. In erythrocyte lysis assays, polyphosphate comprising more than 1000 phosphate units suppressed total hemolytic activity with a concentration to reduce maximal lysis to 50% that was 10-fold lower than with monophosphate. In the ion- and enzyme-independent terminal pathway complement assay, polyphosphate suppressed complement in a concentration- and size-dependent manner. Phosphatase-treated polyphosphate lost its ability to suppress complement, confirming that polymer integrity is required. Sequential addition of polyphosphate to the terminal pathway assay showed that polyphosphate interferes with complement only when added before formation of the C5b-7 complex. Physicochemical analyses using native gels, gel filtration, and differential scanning fluorimetry revealed that polyphosphate binds to and destabilizes C5b,6, thereby reducing the capacity of the membrane attack complex to bind to and lyse the target cell. In summary, we have added another function to polyphosphate in blood, demonstrating that it dampens the innate immune response by suppressing complement. These findings further establish the complex relationship between coagulation and innate immunity. PMID:24335501

  18. Visual Blocking: Suppression of Excessive Verbalizations.

    ERIC Educational Resources Information Center

    Zlomke, Lee; And Others

    1986-01-01

    Visual blocking procedures (briefly holding a paper screen in front of a subject's face contingent upon inappropriate behavior) were effective in decreasing inappropriate verbalizations in a moderately retarded 32-year-old male. Followup 4 months later indicated that suppression was maintained in treatment settings but failed to generalize to…

  19. Decoherence suppression in a resonant driving field

    NASA Astrophysics Data System (ADS)

    Minns, R. S.; Kutteruf, M. R.; Commisso, M. A.; Jones, R. R.

    2008-04-01

    Resonant radio frequency (rf) control fields have been employed to suppress decoherence in single quantum bits (qubits) encoded in the probability amplitudes of np fine-structure states in Li Rydberg atoms. As described previously [1], static electric-field tuning of the spin and orbital angular momentum composition of the fine-structure eigenstates enables qubit storage in an approximate decoherence-free subspace in which phase errors due to small stray electric and magnetic fields are strongly suppressed. In addition, it was found that sequences of short electric field pulses could be utilized in a 'bang-bang' dynamic decoupling scheme to improve coherence times. We now show that a continuous resonant rf field can also suppress decoherence in this system. The rf-dressed fine-structure states form a more robust basis in which the energy splitting between the component qubit levels is locked to the drive frequency, and decoherence is essentially eliminated. Measurements of the operational range of rf frequency and field strength required to achieve decoherence suppression are in agreement with the predictions of a two-level model.

  20. Radio Science Measurements with Suppressed Carrier

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  1. Government Doublethink: Protection or Suppression in Information.

    ERIC Educational Resources Information Center

    Drake, Miriam A.

    2003-01-01

    Discusses regulations and actions related to government withholding, suppressing, and altering information since September 11, 2001. Topics include conflicting goals of an informed citizenry versus national security, science and technology progress versus protection of sensitive information, and public health versus ideology; political pressure;…

  2. Motor induced suppression of auditory cortex

    PubMed Central

    Aliu, Sheye O.; Houde, John F.; Nagarajan, Srikantan S.

    2010-01-01

    Sensory responses to stimuli that are triggered by a self-initiated motor act are suppressed when compared with the response to the same stimuli triggered externally, a phenomenon referred to as motor-induced suppression (MIS) of sensory cortical feedback. Studies in the somatosensory system suggest that such suppression might be sensitive to delays between the motor act and the stimulus-onset, and a recent study in the auditory system suggests that such MIS develops rapidly. In three MEG experiments, we characterize the properties of MIS, by examining the M100 response from the auditory cortex to a simple tone triggered by a button press. In Experiment 1, we found that MIS develops for zero-delays but does not generalize to non-zero delays. In Experiment 2, we found that MIS developed for 100 ms delays within 300 trials and occurs in excess of auditory habituation. In Experiment 3, we found that unlike MIS for zero-delays, MIS for non-zero delays does not exhibit sensitivity to sensory, delay or motor-command changes. These results are discussed in relation to suppression to self-produced speech and a general model of sensory motor control. PMID:18593265

  3. Spacecraft Fire Suppression: Testing and Evaluation

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Delplanque, Jean-Pierre; Kailasanath, Kazhikathra; Gokoglu, Suleyman; Wu, Ming-Shin

    2004-01-01

    The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and

  4. Immune Suppression and Immune Activation in Depression

    PubMed Central

    Blume, Joshua; Douglas, Steven D.; Evans, Dwight L.

    2010-01-01

    Depression has been characterized as a disorder of both immune suppression and immune activation. Markers of impaired cellular immunity (decreased natural killer cell cytotoxicity) and inflammation (elevated IL-6, TNFα, CRP) have been associated with depression. These immunological markers have been associated with other medical illnesses, suggesting that immune dysregulation may be a central feature common to both depression and to its frequent medical comorbidities. Yet the significant associations of findings of both immune suppression and immune activation with depression raise questions concerning the relationship between these two classes of immunological observations. Depressed populations are heterogeneous groups, and there may be differences in the immune profiles of populations that are more narrowly defined in terms of symptom profile and/or demographic features. There have been few reports concurrently investigating markers of immune suppression and immune activation in the same depressed individuals. An emerging preclinical literature suggests that chronic inflammation may directly contribute to the pathophysiology of immune suppression in the context of illnesses such as cancer and rheumatoid arthritis. This literature provides us with specific immunoregulatory mechanisms mediating these relationships that could also explain differences in immune disturbances between subsets of depressed individuals We propose a research agenda emphasizing the assessment of these immunoregulatory mechanisms in large samples of depressed subjects as a means to define the relationships among immune findings (suppression and/or activation) within the same depressed individuals and to characterize subsets of depressed subjects based on shared immune profiles. Such a program of research, building on and integrating our knowledge of the psychoneuroimmunology of depression, could lead to innovation in the assessment and treatment of depression and its medical comorbidities

  5. Benchmark enclosure fire suppression experiments - phase 1 test report.

    SciTech Connect

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  6. [The advances of suppression in research of amblyopia].

    PubMed

    Liu, S; Liu, H

    2016-04-11

    Suppression that is the result of interocular competition is an important machanism of amblyopia. The imbalance of suppression may lead the consequence to amblyopia. In the early study, researchers had raised the theory of II. Quadratic Summation which had revealed the relationship of interocular interaction and suppression. In some basic researches, other studies had showed the most possible anatomic location of suppression. Recently, researchers found a new method to quantify the interocular suppression named the noise model. Further studies found a novel disinhibition therapy to treat amblyopia. We summarized the research advances in suppression and disinhibition treatment in amblyopia. (Chin J Ophthalmol, 2016, 52: 305-308). PMID:27094069

  7. Suppression of friction by mechanical vibrations.

    PubMed

    Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano

    2009-08-21

    Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction. PMID:19792738

  8. Mercury vapour suppression by various liquid media.

    PubMed

    Sutow, E J; Foong, W C; Rizkalla, A S; Jones, D W; Power, N L

    1994-09-01

    Fresh and used photographic fixer, Merconvap and water were evaluated for their ability to suppress the vapourization of mercury. Mercury vapour concentration above the four test storage liquids was measured at various times between 10 min and 335 days, using a mercury vapour measuring instrument. The data were analysed using a Student-Newman-Keuls multiple comparison test (P = 0.05). The results showed that fresh and used fixer and Merconvap suppressed the vapourization of mercury to below the detection limit of the measuring instrument (0.01 mg/m3). Water was much less effective compared with the other liquids and showed an increase in mercury vapour concentration with log t. PMID:7996339

  9. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  10. Overcoming fixation with repeated memory suppression.

    PubMed

    Angello, Genna; Storm, Benjamin C; Smith, Steven M

    2015-01-01

    Fixation (blocks to memories or ideas) can be alleviated not only by encouraging productive work towards a solution, but, as the present experiments show, by reducing counterproductive work. Two experiments examined relief from fixation in a word-fragment completion task. Blockers, orthographically similar negative primes (e.g., ANALOGY), blocked solutions to word fragments (e.g., A_L_ _GY) in both experiments. After priming, but before the fragment completion test, participants repeatedly suppressed half of the blockers using the Think/No-Think paradigm, which results in memory inhibition. Inhibiting blockers did not alleviate fixation in Experiment 1 when conscious recollection of negative primes was not encouraged on the fragment completion test. In Experiment 2, however, when participants were encouraged to remember negative primes at fragment completion, relief from fixation was observed. Repeated suppression may nullify fixation effects, and promote creative thinking, particularly when fixation is caused by conscious recollection of counterproductive information.

  11. Active flutter suppression using dipole filters

    NASA Technical Reports Server (NTRS)

    Srinathkumar, S.; Waszak, Martin R.

    1992-01-01

    By using traditional control concepts of gain root locus, the active suppression of a flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable mode towards a critical system zero determines the degree to which the flutter mode can be stabilized. For control situations where the critical zero is adversely placed in the complex plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures that the flutter mode is stabilized with acceptable control energy. The control strategy is illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-tunnel model, where minimal control effort solutions are mandated by control rate saturation problems caused by wind-tunnel turbulence.

  12. Adaptive Suppression of Noise in Voice Communications

    NASA Technical Reports Server (NTRS)

    Kozel, David; DeVault, James A.; Birr, Richard B.

    2003-01-01

    A subsystem for the adaptive suppression of noise in a voice communication system effects a high level of reduction of noise that enters the system through microphones. The subsystem includes a digital signal processor (DSP) plus circuitry that implements voice-recognition and spectral- manipulation techniques. The development of the adaptive noise-suppression subsystem was prompted by the following considerations: During processing of the space shuttle at Kennedy Space Center, voice communications among test team members have been significantly impaired in several instances because some test participants have had to communicate from locations with high ambient noise levels. Ear protection for the personnel involved is commercially available and is used in such situations. However, commercially available noise-canceling microphones do not provide sufficient reduction of noise that enters through microphones and thus becomes transmitted on outbound communication links.

  13. Suppression of Eimeria tenella sporulation by disinfectants.

    PubMed

    You, Myung-Jo

    2014-08-01

    The disinfectant effects (DEs) of 10 types of chemicals, defined by their ability to destroy or inhibit oocysts and consequently prevent sporulation of Eimeria tenella field isolate, were evaluated in vitro. Correct species assignments and sample purities were confirmed by the singular internal transcribed spacer (ITS)-PCR analysis. A total of 18 treatments were performed, and the disinfection suppression levels were 75.9% for 39% benzene + 22% xylene (1:10 dilution), 85.5% for 30% cresol soup (1:1 dilution), and 91.7% for 99.9% acetic acid (1:2 dilution) group. The results indicate that acetic acid, cresol soup, and benzene+xylene are good candidates for suppression of E. tenella oocyst sporulation.

  14. Glucose Suppresses Biological Ferroelectricity in Aortic Elastin

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming; Wang, Yunjie; Chow, Ming-Jay; Chen, Nataly Q.; Ma, Feiyue; Zhang, Yanhang; Li, Jiangyu

    2013-04-01

    Elastin is an intriguing extracellular matrix protein present in all connective tissues of vertebrates, rendering essential elasticity to connective tissues subjected to repeated physiological stresses. Using piezoresponse force microscopy, we show that the polarity of aortic elastin is switchable by an electrical field, which may be associated with the recently discovered biological ferroelectricity in the aorta. More interestingly, it is discovered that the switching in aortic elastin is largely suppressed by glucose treatment, which appears to freeze the internal asymmetric polar structures of elastin, making it much harder to switch, or suppressing the switching completely. Such loss of ferroelectricity could have important physiological and pathological implications from aging to arteriosclerosis that are closely related to glycation of elastin.

  15. Sleep deprivation suppresses aggression in Drosophila

    PubMed Central

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. DOI: http://dx.doi.org/10.7554/eLife.07643.001 PMID:26216041

  16. Sleep deprivation suppresses aggression in Drosophila.

    PubMed

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness.

  17. System for Suppressing Vibration in Turbomachine Components

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor); Provenza, Andrew J. (Inventor); Choi, Benjamin B. (Inventor); Bakhle, Milind A. (Inventor); Min, James B (Inventor); Stefko, George L. (Inventor); Kussmann, John A (Inventor); Fougere, Alan J (Inventor)

    2013-01-01

    Disclosed is a system for suppressing vibration and noise mitigation in structures such as blades in turbomachinery. The system includes flexible piezoelectric patches which are secured on or imbedded in turbomachinery blades which, in one embodiment, comprises eight (8) fan blades. The system further includes a capacitor plate coupler and a power transfer apparatus, which may both be arranged into one assembly, that respectively transfer data and power. Each of the capacitive plate coupler and power transfer apparatus is configured so that one part is attached to a fixed member while another part is attached to a rotatable member with an air gap there between. The system still further includes a processor that has 16 channels, eight of which serve as sensor channels, and the remaining eight, serving as actuation channels. The processor collects and analyzes the sensor signals and, in turn, outputs corrective signals for vibration/noise suppression of the turbine blades.

  18. Immersion diuresis without expected suppression of vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Silver, J. E.; Wong, N.; Spaul, W. A.; Greenleaf, J. E.; Kravik, S. E.

    1984-01-01

    There is a shift of blood from the lower parts of the body to the thoracic circulation during bed rest, water immersion, and presumably during weightlessness. On earth, this central fluid shift is associated with a profound diuresis. However, the mechanism involved is not yet well understood. The present investigation is concerned with measurements regarding the plasma vasopressin, fluid, electrolyte, and plasma renin activity (PRA) responses in subjects with normal preimmersion plasma vasopressin (PVP) concentration. In the conducted experiments, PRA was suppressed significantly at 30 min of immersion and had declined by 74 percent by the end of the experiment. On the basis of previously obtained results, it appears that sodium excretion during immersion may be independent of aldosterone action. Experimental results indicate that PVP is not suppressed by water immersion in normally hydrated subjects and that other factors may be responsible for the diuresis.

  19. Suppression of attentional bias in PTSD.

    PubMed

    Constans, Joseph I; McCloskey, Michael S; Vasterling, Jennifer J; Brailey, Kevin; Mathews, Andrew

    2004-05-01

    Sixty combat veterans with posttraumatic stress disorder performed an emotional Stroop task under 1 of 4 contextual conditions designed to test theoretical explanations for an attentional bias suppression effect. Results revealed that when the emotional Stroop task was performed under conditions involving a future threat of either watching a combat video or giving a speech, attentional bias was inhibited. There was limited support for the prediction that the suppression effect was strongest when stressor content matched word content on the Stroop. In contrast to participants in the threat conditions, veterans who believed that they would receive additional compensation for speeded color naming or who believed that they would have no other experimental demands were slower when color naming combat-threat words. Potential theoretical explanations of the findings are discussed.

  20. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  1. Sleep deprivation suppresses aggression in Drosophila.

    PubMed

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. PMID:26216041

  2. Fire suppression in human-crew spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Dietrich, Daniel L.

    1991-01-01

    Fire extinguishment agents range from water and foam in early-design spacecraft (Halon 1301 in the present Shuttle) to carbon dioxide proposed for the Space Station Freedom. The major challenge to spacecraft fire extinguishment design and operations is from the micro-gravity environment, which minimizes natural convection and profoundly influences combustion and extinguishing agent effectiveness, dispersal, and post-fire cleanup. Discussed here are extinguishment in microgravity, fire-suppression problems anticipated in future spacecraft, and research needs and opportunities.

  3. Neural-Network Controller For Vibration Suppression

    NASA Technical Reports Server (NTRS)

    Boussalis, Dhemetrios; Wang, Shyh Jong

    1995-01-01

    Neural-network-based adaptive-control system proposed for vibration suppression of flexible space structures. Controller features three-layer neural network and utilizes output feedback. Measurements generated by various sensors on structure. Feed forward path also included to speed up response in case plant exhibits predominantly linear dynamic behavior. System applicable to single-input single-output systems. Work extended to multiple-input multiple-output systems as well.

  4. Currently available cough suppressants for chronic cough.

    PubMed

    Chung, Kian Fan

    2008-01-01

    Chronic cough is a common symptom but only a fraction of patients seek medical attention. Addressing the causes of chronic cough may lead to control of cough; however, this approach is not always successful since there is a certain degree of failure even when the cause(s) of cough are adequately treated; in idiopathic cough, there is no cause to treat. Persistent cough may be associated with deterioration of quality of life, and treatment with cough suppressants is indicated. Currently available cough suppressants include the centrally acting opioids such as morphine, codeine, and dextromethorphan. Peripherally acting antitussives include moguisteine and levodropropizine. Early studies report success in reducing cough in patients with chronic bronchitis or COPD; however, a carefully conducted study showed no effect of codeine on cough of COPD. Success with these cough suppressants can be achieved at high doses that are associated with side effects. Slow-release morphine has been reported to be useful in controlling intractable cough with good tolerance to constipation and drowsiness. There have been case reports of the success of centrally acting drugs such as amitryptiline, paroxetine, gabapentin, and carbamezepine in chronic cough. New opioids such as nociceptin or antagonists of TRPV1 may turn out to be more effective. Efficacy of cough suppressants must be tested in double-blind randomised trials using validated measures of cough in patients with chronic cough not responding to specific treatments. Patients with chronic cough are in desperate need of effective antitussives that can be used either on demand or on a long-term basis.

  5. The retinoblastoma protein: multitasking to suppress tumorigenesis.

    PubMed

    Vormer, Tinke L; Hansen, Jacob B; Te Riele, Hein

    2015-01-01

    Tumor suppressor activity of the retinoblastoma protein pRB is preserved despite loss of interaction with E2F transcription factors (E2F) or proteins harboring a leucine-x-cysteine-x-glutamic acid motif (LxCxE, where x is any amino acid). This indicates that pRB uses several parallel pathways to suppress tumorigenesis, which may also include E2F- and LxCxE-independent interactions. PMID:27308398

  6. The retinoblastoma protein: multitasking to suppress tumorigenesis

    PubMed Central

    Vormer, Tinke L.; Hansen, Jacob B; te Riele, Hein

    2015-01-01

    Tumor suppressor activity of the retinoblastoma protein pRB is preserved despite loss of interaction with E2F transcription factors (E2F) or proteins harboring a leucine-x-cysteine-x-glutamic acid motif (LxCxE, where x is any amino acid). This indicates that pRB uses several parallel pathways to suppress tumorigenesis, which may also include E2F- and LxCxE-independent interactions. PMID:27308398

  7. Currently available cough suppressants for chronic cough.

    PubMed

    Chung, Kian Fan

    2008-01-01

    Chronic cough is a common symptom but only a fraction of patients seek medical attention. Addressing the causes of chronic cough may lead to control of cough; however, this approach is not always successful since there is a certain degree of failure even when the cause(s) of cough are adequately treated; in idiopathic cough, there is no cause to treat. Persistent cough may be associated with deterioration of quality of life, and treatment with cough suppressants is indicated. Currently available cough suppressants include the centrally acting opioids such as morphine, codeine, and dextromethorphan. Peripherally acting antitussives include moguisteine and levodropropizine. Early studies report success in reducing cough in patients with chronic bronchitis or COPD; however, a carefully conducted study showed no effect of codeine on cough of COPD. Success with these cough suppressants can be achieved at high doses that are associated with side effects. Slow-release morphine has been reported to be useful in controlling intractable cough with good tolerance to constipation and drowsiness. There have been case reports of the success of centrally acting drugs such as amitryptiline, paroxetine, gabapentin, and carbamezepine in chronic cough. New opioids such as nociceptin or antagonists of TRPV1 may turn out to be more effective. Efficacy of cough suppressants must be tested in double-blind randomised trials using validated measures of cough in patients with chronic cough not responding to specific treatments. Patients with chronic cough are in desperate need of effective antitussives that can be used either on demand or on a long-term basis. PMID:17909897

  8. Neural Networks for Mindfulness and Emotion Suppression

    PubMed Central

    Katsunuma, Ruri; Oba, Kentaro; Terasawa, Yuri; Motomura, Yuki; Mishima, Kazuo

    2015-01-01

    Mindfulness, an attentive non-judgmental focus on “here and now” experiences, has been incorporated into various cognitive behavioral therapy approaches and beneficial effects have been demonstrated. Recently, mindfulness has also been identified as a potentially effective emotion regulation strategy. On the other hand, emotion suppression, which refers to trying to avoid or escape from experiencing and being aware of one’s own emotions, has been identified as a potentially maladaptive strategy. Previous studies suggest that both strategies can decrease affective responses to emotional stimuli. They would, however, be expected to provide regulation through different top-down modulation systems. The present study was aimed at elucidating the different neural systems underlying emotion regulation via mindfulness and emotion suppression approaches. Twenty-one healthy participants used the two types of strategy in response to emotional visual stimuli while functional magnetic resonance imaging was conducted. Both strategies attenuated amygdala responses to emotional triggers, but the pathways to regulation differed across the two. A mindful approach appears to regulate amygdala functioning via functional connectivity from the medial prefrontal cortex, while suppression uses connectivity with other regions, including the dorsolateral prefrontal cortex. Thus, the two types of emotion regulation recruit different top-down modulation processes localized at prefrontal areas. These different pathways are discussed. PMID:26083379

  9. Suppressing bullfrog larvae with carbon dioxide

    USGS Publications Warehouse

    Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,

    2014-01-01

    Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.

  10. Atomic clocks with suppressed blackbody radiation shift.

    PubMed

    Yudin, V I; Taichenachev, A V; Okhapkin, M V; Bagayev, S N; Tamm, Chr; Peik, E; Huntemann, N; Mehlstäubler, T E; Riehle, F

    2011-07-15

    We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a "synthetic" frequency ν(syn) ∝ (ν1 - ε12ν2) largely immune to the blackbody radiation shift. For example, in the case of 171Yb+ it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10(-18) in a broad interval near room temperature (300±15  K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency ν(syn) is generated as one of the components of the comb spectrum.

  11. Hypergravity suppresses bone resorption in ovariectomized rats

    NASA Astrophysics Data System (ADS)

    Ikawa, Tesshu; Kawaguchi, Amu; Okabe, Takahiro; Ninomiya, Tadashi; Nakamichi, Yuko; Nakamura, Midori; Uehara, Shunsuke; Nakamura, Hiroaki; Udagawa, Nobuyuki; Takahashi, Naoyuki; Nakamura, Hiroaki; Wakitani, Shigeyuki

    2011-04-01

    The effects of gravity on bone metabolism are unclear, and little has been reported about the effects of hypergravity on the mature skeleton. Since low gravity has been shown to decrease bone volume, we hypothesized that hypergravity increases bone volume. To clarify this hypothesis, adult female rats were ovariectomized and exposed to hypergravity (2.9G) using a centrifugation system. The rats were killed 28 days after the start of loading, and the distal femoral metaphysis of the rats was studied. Bone architecture was assessed by micro-computed tomography (micro-CT) and bone mineral density was measured using peripheral quantitative CT (pQCT). Hypergravity increased the trabecular bone volume of ovariectomized rats. Histomorphometric analyses revealed that hypergravity suppressed both bone formation and resorption and increased bone volume in ovariectomized rats. Further, the cell morphology, activity, proliferation, and differentiation of osteoclasts and osteoblasts exposed to hypergravity were evaluated in vitro. Hypergravity inhibited actin ring formation in mature osteoclasts, which suggested that the osteoclast activity was suppressed. However, hypergravity had no effect on osteoblasts. These results suggest that hypergravity can stimulate an increase in bone volume by suppressing bone resorption in ovariectomized rats.

  12. Mechanisms of interleukin-10-mediated immune suppression

    PubMed Central

    Akdis, Cezmi A; Blaser, Kurt

    2001-01-01

    Specific immune suppression and induction of anergy are essential processes in the regulation and circumvention of immune defence. Interleukin-10 (IL-10), a suppressor cytokine of T-cell proliferative and cytokine responses, plays a key regulatory role in tolerizing exogenous antigens during specific immunotherapy (SIT) of allergy and natural exposure to antigens. Specific T-cell tolerance is directed against the T-cell epitopes of an antigen and characterized by suppressed proliferative and T helper type 1 (Th1) and type 2 (Th2) cytokine responses. IL-10 elicits tolerance in T cells by selective inhibition of the CD28 co-stimulatory pathway and thereby controls suppression and development of antigen-specific immunity. IL-10 only inhibits T cells stimulated by low numbers of triggered T-cell receptors and which therefore depend on CD28 co-stimulation. T cells receiving a strong signal from the T-cell receptor alone, and thus not requiring CD28 co-stimulation, are not affected by IL-10. IL-10 inhibits CD28 tyrosine phosphorylation, the initial step of the CD28 signalling pathway, and consequently the phosphatidylinositol 3-kinase p85 binding to CD28. Together these results demonstrate that IL-10-induced selective inhibition of the CD28 co-stimulatory pathway acts as a decisive mechanism in determining whether a T cell will contribute to an immune response or become anergic. PMID:11412299

  13. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  14. System and method for suppressing sublimation using opacified aerogel

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeff S. (Inventor); Snyder, G. Jeffrey (Inventor); Calliat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Jones, Steven M. (Inventor); Palk, Jong-Ah (Inventor)

    2008-01-01

    The present invention relates to a castable, aerogel-based, ultra-low thermal conductivity opacified insulation to suppress sublimation. More specifically, the present invention relates to an aerogel opacified with various opacifying or reflecting constituents to suppress sublimation and provide thermal insulation in thermoelectric modules. The opacifying constituent can be graded within the aerogel for increased sublimation suppression, and the density of the aerogel can similarly be graded to achieve optimal thermal insulation and sublimation suppression.

  15. Coating Thermoelectric Devices To Suppress Sublimation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Caillat, Thierry; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2007-01-01

    A technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation-suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation - one or more elements sublime from the hot side of a thermoelectric couple, changing the stoichiometry of the device. Examples of elements that sublime from their respective thermoelectric materials are Ge from SiGe, Te from Pb/Te, and now Sb from skutterudite antimonides. The skutterudite antimonides of primary interest are CoSb3 [electron-donor (n) type] and CeFe(3-x)Co(x)Sb12 [electron-acceptor (p) type]. When these compounds are subjected to typical operating conditions [temperature of 700 C and pressure <10(exp -5) torr (0.0013 Pa)], Sb sublimes from their surfaces, with the result that Sb depletion layers form and advance toward their interiors. As the depletion layer advances in a given device, the change in stoichiometry diminishes the thermal-to-electric conversion efficiency of the device. The problem, then, is to prevent sublimation, or at least reduce it to an acceptably low level. In preparation for an experiment on suppression of sublimation, a specimen of CoSb3 was tightly wrapped in a foil of niobium, which was selected for its chemical stability. In the experiment, the wrapped specimen was heated to a temperature of 700 C in a vacuum of residual pressure <10(exp -5) torr (0.0013 Pa), then cooled and sectioned. Examination of the sectioned specimen revealed that no depletion layer had formed, indicating the niobium foil prevented sublimation of antimony at 700 C

  16. Manipulation of Rhizosphere Bacterial Communities to Induce Suppressive Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease suppressive soils have been documented in a variety of cropping systems, and in many instances the biological attributes contributing to suppressiveness have been identified. While these studies have often yielded an understanding of operative mechanisms leading to the suppressive state, si...

  17. 48 CFR 452.236-78 - Fire Suppression and Liability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Fire Suppression and... Fire Suppression and Liability. As prescribed in § 436.578, the following clause may be inserted in... Suppression and Liability (MAY 2014) (a) Contractor's Responsibility for Fire Fighting. The Contractor,...

  18. Weed Suppression by Seven Clover Species

    SciTech Connect

    Ross, Shirley M.; King, Jane R.; Izaurralde, R Cesar C.; O'Donovan, John T.

    2001-01-01

    Used as cover crops, clover species may differ in their ability to suppress weed growth. Field trials were conducted in Alberta, Canada to measure the growth of brown mustard [Brassica juncea (L.) Czern.], in mowed and nonmowed production, as influenced by alsike (Trifolium hybridum L.), balansa [T. michelianum Savi var. balansae (Boiss.) Azn.], berseem (T. alexandrinum L.), crimson [T. incarnatum (Boiss.) Azn.], berseem (T. alexandrinum L.), crimson (T. incarnatum L.), Persian (T. resupinatum L.), red (T. pratense L.), and white Dutch (T. repens L.) clover and fall rye (Secale cereale L.). In 1997, clovers reduced mustard biomass in nonmowed treatments by 29% on a high- fertility soil (Typic Cryoboroll) at Edmonton and by 57% on a low- fertility soil (Typic Cryoboralf) at Breton. At Edmonton, nonmowed mustard biomass was reduced by alsike and berseem clover in 1996 and by alsike, balansa, berseem, and crimson clover in 1997. At Breton, all seven clover species suppressed weed biomass. A negative correlation was noted among clover and mustard biomass at Edmonton but not at Breton. The effects of mowing varied with location, timing, and species. Mowing was beneficial to crop/weed proportion at Edmonton but not at Breton. Mowing at early flowering of mustard large-seeded legumes and sweetclover (Melilotus offici) produced greater benefit than mowing at late flowering. With early mowing, all clover species suppressed mustard growth at Edmonton. Clovers reduced mustard regrowth (g plant21 ) and the number of mustard plants producing regrowth. The characteristics of berseem clover (upright growth, long stems, high biomass, and late flowering) would support its use as a cover crop or forage in north-central Alberta.

  19. Cough Suppressant and Pharmacologic Protussive Therapy

    PubMed Central

    Bolser, Donald C.

    2011-01-01

    Background Cough-suppressant therapy, previously termed nonspecific antitussive therapy, incorporates the use of pharmacologic agents with mucolytic effects and/or inhibitory effects on the cough reflex itself. The intent of this type of therapy is to reduce the frequency and/or intensity of coughing on a short-term basis. Methods Data for this review were obtained from several National Library of Medicine (PubMed) searches (from 1960 to 2004), which were performed between May and September 2004, of the literature published in the English language, limited to human studies, using combinations of the search terms “cough,” “double-blind placebo-controlled,” “antitussive,” “mucolytic,” “cough clearance,” “common cold,” “protussive,” “guaifenesin,” “glycerol,” and “zinc.” Results Mucolytic agents are not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Peripheral and central antitussive agents can be useful in patients with chronic bronchitis, but can have little efficacy in patients with cough due to upper respiratory infection. Some protussive agents are effective in increasing cough clearance, but their long-term effectiveness has not been established. DNase is not effective as a protussive agent in patients with cystic fibrosis. Inhaled mannitol is acutely effective in this patient population, but its therapeutic potential must be investigated further. Conclusions These findings suggest that suppressant therapy is most effective when used for the short-term reduction of coughing. Relatively few drugs are effective as cough suppressants. PMID:16428717

  20. Neutron suppression in polarized dd fusion reaction

    SciTech Connect

    Zhang, J.S.; Liu, K.F.; Shuy, G.W.

    1999-11-01

    We report a model-independent partial-wave analysis of polarized dd fusion reactions at low energies. The radial transition amplitudes, designated by the central, spin-orbit, and tensor forces, are determined by fitting angular distributions of the tensor and vector analyzing powers A{sub XZ}({theta}), A{sub ZZ}({theta}), A{sub XX-YY}({theta}), and A{sub Y}({theta}), and the unpolarized cross section {sigma}{sub 0}({theta}). The polarized fusion cross section {sigma}{sub 1,1}({theta}) is then predicted from these radial transition amplitudes. We stress that this is feasible only when these amplitudes are separated according to the tensor rank of the interaction. This study includes the {ital D}-state components of the deuteron, triton, and {sup 3}He, and the partial-wave expansion is done up to the {ital d} wave for both the entrance and exit channels. Experimental data at E{sub lab}=30, 50, 70, and 90 keV for the d(d,p)t reaction are very well fitted with this method. It is found that the ratio of polarized to unpolarized cross sections is about 86{percent} at 30 keV and goes down to 22{percent} at 90 keV. The implication of the suppression of a polarized dd fusion reaction is discussed in the context of the neutron-lean fusion reactor with polarized {ital D}-{sup 3}He fuel. It turns out that the important range of energy for suppressing the d(d,p)t and d(d,n){sup 3}He reactions at the plasma temperature T=60 keV is E{sub d}=80{endash}600 keV. More experimental data are needed in this range to make a detailed study of the neutron suppression. {copyright} {ital 1999} {ital The American Physical Society}

  1. UAV visual signature suppression via adaptive materials

    NASA Astrophysics Data System (ADS)

    Barrett, Ron; Melkert, Joris

    2005-05-01

    Visual signature suppression (VSS) methods for several classes of aircraft from WWII on are examined and historically summarized. This study shows that for some classes of uninhabited aerial vehicles (UAVs), primary mission threats do not stem from infrared or radar signatures, but from the amount that an aircraft visually stands out against the sky. The paper shows that such visual mismatch can often jeopardize mission success and/or induce the destruction of the entire aircraft. A psycho-physioptical study was conducted to establish the definition and benchmarks of a Visual Cross Section (VCS) for airborne objects. This study was centered on combining the effects of size, shape, color and luminosity or effective illumance (EI) of a given aircraft to arrive at a VCS. A series of tests were conducted with a 6.6ft (2m) UAV which was fitted with optically adaptive electroluminescent sheets at altitudes of up to 1000 ft (300m). It was shown that with proper tailoring of the color and luminosity, the VCS of the aircraft dropped from more than 4,200cm2 to less than 1.8cm2 at 100m (the observed lower limit of the 20-20 human eye in this study). In laypersons terms this indicated that the UAV essentially "disappeared". This study concludes with an assessment of the weight and volume impact of such a Visual Suppression System (VSS) on the UAV, showing that VCS levels on this class UAV can be suppressed to below 1.8cm2 for aircraft gross weight penalties of only 9.8%.

  2. Leuprolide acetate suppresses pedophilic urges and arousability.

    PubMed

    Schober, Justine M; Kuhn, Phyllis J; Kovacs, Paul G; Earle, James H; Byrne, Peter M; Fries, Ruth A

    2005-12-01

    Cognitive-behavioral psychotherapy was compared with cognitive-behavioral psychotherapy augmented by leuprolide acetate (LA) for suppression of pedophilic behavior. Five male pedophiles (M age, 50 years; range, 36-58) were administered LA by Depo injection for 12 months, followed by saline placebo for 12 months. Testosterone levels, sexual interest preference by visual reaction time (Abel Assessment), penile tumescence (Monarch Penile Plethysmography, PPG), as well as strong sexual urges toward children and masturbatory frequency involving thoughts of children (polygraph), were measured every 3 months. On LA, testosterone decreased to castrate levels. Penile tumescence was significantly suppressed compared with baseline, but sufficient response remained to detect pedophilic interest. Pedophilic interest was also detected by visual reaction times. When asked about having pedophilic urges and masturbating to thoughts of children, all subjects self-reported a decrease. Polygraph responses indicated subjects were not deceptive. On placebo, testosterone and physiologic arousal eventually rose to baseline. As noted by polygraph, at baseline and on placebo, subjects were deceptive regarding increased pedophilic urges and masturbatory frequency. Interest preference, as measured by Abel Assessment and Monarch PPG, was generally unchanged throughout the study. Cognitive-behavioral psychotherapy augmented with LA significantly reduced pedophilic fantasies, urges, and masturbation; however, pedophilic interest did not change during 1 year of therapy. Deceptive responses by polygraph suggested that self-report was unreliable. Follow-up utilizing objective measures is essential for monitoring efficacy of treatment in pedophilia. Our study supports the premise that suppression of pedophilic behavior is possible. LA may augment cognitive-behavioral psychotherapy and help break the sequence leading to a re-offense.

  3. Suppressed $B_s$ decays at CDF

    SciTech Connect

    Dorigo, Mirco

    2011-05-01

    We review three recent results of the CDF collaboration on B{sub s}{sup 0} suppressed decays: the first search for CP-violation in the B{sub s}{sup 0} {yields} {phi}{phi} decay, where two CP-violating asymmetries expected to be zero in the Standard Model are measured, and the observation and the branching ratio measurements of B{sub s}{sup 0} {yields} J/{Psi} f{sub 0}(980) and B{sub s}{sup 0} {yields} J/{Psi} K{sup (*)} decays.

  4. Optimization of sodium fire suppression system

    SciTech Connect

    1985-02-01

    This report describes the major areas of revision and optimization of the design of the CRBRP Sodium Fire Suppression System (SFSS) following the confirmatory testing program. The design temperatures for the SFSS were substantially increased after the Large Scale Sodium Fire Test (LSSFT) making the original design inadequate. A redesign of the main features was performed in which the experience in the construction of the LSSFT test article was also utilized for optimization. The design criteria, loads and load combinations and revised design are discussed.

  5. Suppression of Fermi acceleration in composite particles

    NASA Astrophysics Data System (ADS)

    Siqueira, Kellen Manoela; de Aguiar, Marcus Aloizio Martinez

    2016-09-01

    We study the motion of a composite particle in a one-dimensional billiard with a moving wall. The particle is modeled by two point masses coupled by a harmonic spring. We show that the energy gained by the composite particle is greatly reduced with respect to a single point particle. We show that the amount of energy transferred to the system at each collision with the walls is independent of the spring constant. However, the presence of the spring is responsible for the energy suppression because it diminishes the number of collisions by storing part of the system's energy and reducing the velocity of the particle's center of mass.

  6. Silicon oxynitride: A field emission suppression coating

    NASA Astrophysics Data System (ADS)

    Theodore, Nimel D.

    We have studied coatings deposited using our inductively-coupled RF plasma ion implantation and desposition system to suppress field emission from large, 3-D electrode structures used in high voltage applications, like those used by Thomas Jefferson National Accelerator Facility in their DC-field photoelectron gun. Currently time and labor-intensive hand-polishing procedures are used to minimize field emission from these structures. Previous work had shown that the field emission from polished stainless steel (27 muA of field-emitted current at 15 MV/m) could be drastically reduced with simultaneous deposition of sputtered silicon dioxide during nitrogen implantation (167 pA of field-emitted current at 30 MV/m). We have determined that this unique implantation and deposition procedure produces high-purity silicon oxynitride films that can suppress field emission from stainless steel regardless of their initial surface polish. However, when this implantation procedure was applied to large, 3-D substrates, arcs occurred, damaging the coating and causing unreliable and unrepeatable field emission suppression. We have developed a novel reactive sputtering procedure to deposit high-purity silicon oxynitride coatings without nitrogen ion implantation. We can control the stoichometry and deposition rate of these coatings by adjusting the nitrogen pressure and incident RF-power. Using profilometry, Auger electron spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Rutherford backscattering spectrometry, elastic recoil detection analysis, and current-voltage measurements, we have determined that the elemental composition, chemical bonding, density, and electrical properties of the reactively-sputtered silicon oxynitride coatings are similar to those produced by nitrogen implantation during silicon dioxide deposition. Furthermore, high voltage tests determined that both coatings similarly suppress field emission from 6" diameter, polished

  7. Method for suppressing noise in measurements

    NASA Technical Reports Server (NTRS)

    Carson, Paul J. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)

    2000-01-01

    Techniques of combining separate but correlated measurements to form a second-order or higher order correlation function to suppress the effects of noise in the initial condition of a system capable of retaining memory of an initial state of the system with a characteristic relaxation time. At least two separate measurements are obtained from the system. The temporal separation between the two separate measurements is preferably comparable to or less than the characteristic relaxation time and is adjusted to allow for a correlation between two measurements.

  8. Suppressing Electron Cloud in Future Linear Colliders

    SciTech Connect

    Pivi, M; Kirby, R.E.; Raubenheimer, T.O.; Le Pimpec, F.; /PSI, Villigen

    2005-05-27

    Any accelerator circulating positively charged beams can suffer from a build-up of an electron cloud (EC) in the beam pipe. The cloud develops through ionization of residual gases, synchrotron radiation and secondary electron emission and, when severe, can cause instability, emittance blow-up or loss of the circulating beam. The electron cloud is potentially a luminosity limiting effect for both the Large Hadron Collider (LHC) and the International Linear Collider (ILC). For the ILC positron damping ring, the development of the electron cloud must be suppressed. This paper discusses the state-of-the-art of the ongoing SLAC and international R&D program to study potential remedies.

  9. The LDCM actuator for vibration suppression

    NASA Technical Reports Server (NTRS)

    Ide, Eric N.; Lindner, Douglas K.

    1988-01-01

    A linear dc motor (LDCM) has been proposed as an actuator for the COFS I mast and the COFS program ground test Mini-Mast. The basic principles of operation of the LDCM as an actuator for vibration suppression in large flexible structures are reviewed. Because of force and stroke limitations, control loops are required to stabilize the actuator, which results in a non-standard actuator-plant configuration. A simulation model that includes LDCM actuator control loops and a finite element model of the Mast is described, with simulation results showing the excitation capability of the actuator.

  10. Suppressed carrier full-spectrum combining

    NASA Technical Reports Server (NTRS)

    Rogstad, D. H.

    1991-01-01

    A technique to accomplish full spectrum arraying where all the telemetry power is put into the subcarrier sidebands (suppressed carrier) is described. The matched filter needed in each antenna prior to cross correlation for deriving the coherence delay and phase offsets is an open loop version of the telemetry phase lock loop provided in the Advanced Digital Receiver. In analogy with a Costas loop telemetry receiver, a squaring loss is derived, and a signal to noise ratio for the cross correlation loop phase is presented.

  11. Suppressed carrier full-spectrum combining

    NASA Astrophysics Data System (ADS)

    Ro