Science.gov

Sample records for oleate-type fatty compounds

  1. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances § 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  2. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances § 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  3. 40 CFR 721.10342 - Quaternary ammonium compounds, fatty alkyl dialkyl hydroxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Quaternary ammonium compounds, fatty... Significant New Uses for Specific Chemical Substances § 721.10342 Quaternary ammonium compounds, fatty alkyl... chemical substance identified generically as quaternary ammonium compounds, fatty alkyl dialkyl...

  4. Encapsulating fatty acid esters of bioactive compounds in starch

    NASA Astrophysics Data System (ADS)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  5. Novel fatty acid-related compounds from the American bird grasshopper, Schistocerca americana, elicit plant volatiles

    USDA-ARS?s Scientific Manuscript database

    A new class of compounds has been isolated from the regurgitant of the grasshopper, Schistocerca americana. These compounds (named caeliferins) are comprised of unusual saturated and monounsaturated, alpha- and omega-substituted fatty acids. The regurgitant contains a series of these compounds wit...

  6. Mining fatty acid databases for detection of novel compounds in aerobic bacteria.

    PubMed

    Dawyndt, Peter; Vancanneyt, Marc; Snauwaert, Cindy; De Baets, Bernard; De Meyer, Hans; Swings, Jean

    2006-09-01

    This study examines how the discriminatory power of an automated bacterial whole-cell fatty acid identification system can be significantly enhanced by exploring the vast amounts of information accumulated during 15 years of routine gas chromatographic analysis of the fatty acid content of aerobic bacteria. Construction of a global peak occurrence histogram based upon a large fatty acid database is shown to serve as a highly informative tool for assessing the delineation of the naming windows used during the automatic recognition of fatty acid compounds. Along the lines of this data mining application, it is suggested that several naming windows of the Sherlock MIS TSBA50 peak naming method may need to be re-evaluated in order to fit more closely with the bulk of observed fatty acid profiles. At the same time, the global peak occurrence histogram has put forward the delineation of 32 new peak naming windows, accounting for a 26% increase in the total number of fatty acid features taken into account for bacterial identification. By scrutinizing the relationships between the newly delineated naming windows and the many taxonomic units covered within a proprietary fatty acid database, all new naming windows were proven to correspond with stable features of some specific groups of microorganisms. This latter analysis clearly underscores the impact of incorporating the new fatty acid compounds for improving the resolution of the bacterial identification system and endorses the applicability of knowledge discovery in databases within the field of microbiology.

  7. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels

    USDA-ARS?s Scientific Manuscript database

    In this study, differences in contents of phenolic compounds and fatty acids in pecan kernels of organically versus conventionally grown pecan cultivars (‘Desirable’, ‘Cheyenne’, and ‘Wichita’) were evaluated. Although we were able to identify nine phenolic compounds (gallic acid, catechol, catechin...

  8. Lipids and Fatty Acids of Nudibranch Mollusks: Potential Sources of Bioactive Compounds

    PubMed Central

    Zhukova, Natalia V.

    2014-01-01

    The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed. PMID:25196731

  9. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel.

    PubMed

    Wu, Zhi-Gang; Xu, Hai-Yan; Ma, Qiong; Cao, Ye; Ma, Jian-Nan; Ma, Chao-Mei

    2012-12-15

    Eleven compounds were isolated from potato peels and identified. Their structures were determined by interpretation of UV, MS, 1D, and 2D NMR spectral data and by comparison with reported data. The main components of the potato peels were found to be chlorogenic acid and other phenolic compounds, accompanied by 2 glycoalkaloids, 3 low-molecular-weight amide compounds, and 2 unsaturated fatty acids, including an omega-3 fatty acid. The potato peels showed more potent radical scavenging activity than the flesh. The quantification of the 11 components indicated that the potato peels contained a higher amount of phenolic compounds than the flesh. These results suggest that peel waste from the industry of potato chips and fries may be a source of useful compounds for human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effect of Aromatic Compounds on Cellular Fatty Acid Composition of Rhodococcus opacus

    PubMed Central

    Tsitko, Irina V.; Zaitsev, Gennadi M.; Lobanok, Anatoli G.; Salkinoja-Salonen, Mirja S.

    1999-01-01

    In cells of Rhodococcus opacus GM-14, GM-29, and 1CP, the contents of branched (10-methyl) fatty acids increased from 3% to 15 to 34% of the total fatty acids when the cells were grown on benzene, phenol, 4-chlorophenol, chlorobenzene, or toluene as the sole source of carbon and energy, in comparison with cells grown on fructose. In addition, the content of trans-hexadecenoic acid increased from 5% to 8 to 18% with phenol or chlorophenol as the carbon source. The 10-methyl branched fatty acid content of R. opacus GM-14 cells increased in a dose-related manner following exposure to phenol or toluene when toluene was not utilized as the growth substrate. The results suggest that 10-methyl branched fatty acids may participate in the adaptation of R. opacus to lipophilic aromatic compounds. PMID:9925629

  11. Increased universality of Lepidopteran elicitor compounds across insects: Identification of fatty acid amino acid conjugates (FACs)

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) are known elicitors of induced release of volatile compounds in plants that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua1, a series of related FAC...

  12. Compound Specific Isotope Analysis of Fatty Acids in Southern African Aerosols

    NASA Astrophysics Data System (ADS)

    Billmark, K. A.; Macko, S. A.; Swap, R. J.

    2003-12-01

    This study, conducted as a part of the Southern African Regional Science Initiative (SAFARI 2000), applied compound specific isotope analysis to describe aerosols at source regions and rural locations. Stable carbon isotopic compositions of individual fatty acids were determined for aerosol samples collected at four sites throughout southern Africa. Mongu, Zambia and Skukuza, South Africa were chosen for their location within intense seasonal Miombo woodland savanna and bushveld savanna biomass burning source regions, respectively. Urban aerosols were collected at Johannesburg, South Africa and rural samples were collected at Sua Pan, Botswana. Fatty acid isotopic compositions varied temporally. Urban aerosols showed significant isotopic enrichment of selected short chain fatty acids (C < 20) compared to aerosols produced during biomass combustion. Sua Pan short chain fatty acid signatures were significantly different from the other non-urban sites, which suggests that sources other than biomass combustion products, such as organic eolian material, impact the Sua Pan aerosol profile. However, a high degree of correlation between Sua Pan and Skukuza long chain fatty acid δ 13C values confirm atmospheric linkages between the two areas and that isotopic signatures of combusted fatty acids are unaltered during atmospheric transport highlighting their potential for use as a conservative tracer.

  13. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus).

    PubMed

    Caprino, Fabio; Moretti, Vittorio Maria; Bellagamba, Federica; Turchini, Giovanni Mario; Busetto, Maria Letizia; Giani, Ivan; Paleari, Maria Antonietta; Pazzaglia, Mario

    2008-06-09

    The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3). Thirty-three volatile compounds were isolated using simultaneous distillation-extraction (SDE) and identified by GC-MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon.

  14. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I.

    PubMed

    Grant, Job L; Hsieh, Chun H; Makris, Thomas M

    2015-04-22

    OleT(JE), a cytochrome P450, catalyzes the conversion of fatty acids to terminal alkenes using hydrogen peroxide as a cosubstrate. Analytical studies with an eicosanoic acid substrate show that the enzyme predominantly generates nonadecene and that carbon dioxide is the one carbon coproduct of the reaction. The addition of hydrogen peroxide to a deuterated substrate-enzyme (E-S) complex results in the transient formation of an iron(IV) oxo π cation radical (Compound I) intermediate which is spectroscopically indistinguishable from those that perform oxygen insertion chemistries. A kinetic isotope effect for Compound I decay suggests that it abstracts a substrate hydrogen atom to initiate fatty acid decarboxylation. Together, these results indicate that the initial mechanism for alkene formation, which does not result from oxygen rebound, is similar to that widely suggested for P450 monooxygenation reactions.

  15. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.

    PubMed

    Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M

    2013-04-15

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale.

  16. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  17. Natural active compounds from plant food and Chinese herbal medicine for nonalcoholic fatty liver disease.

    PubMed

    Liu, Qian; Zhu, Lixin; Cheng, Chen; Hu, Yiyang; Feng, Qin

    2017-09-18

    Nonalcoholic fatty liver disease (NAFLD) has become more prevalent worldwide. It is often associated with some metabolic diseases, such as obesity, type 2 diabetes, and metabolic syndrome. With increasing focus on the treatment of fatty liver, much attention has been paid to numerous medicinal herbs and dietary substances to provide a new strategy for NAFLD treatment. The natural active compounds from the herbs or diet have been studied as promising treatments for NAFLD. This study aimed to summarize the use and mechanism of action of natural active compounds in the treatment of NAFLD in the recent 10 years. An updated search was conducted on the PubMed, Web of Science, and Google Scholar databases from 2006 (for studies on silibinin, resveratrol, curcumin, and berberine compounds since 2010). Fifty-nine active compounds for NAFLD treatment were presented in detail in textual form and tabular form according to their chemical classification. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DOE PAGES

    Beller, HR; Zhou, P; Jewell, TNM; ...

    2016-12-01

    © 2016 International Metabolic Engineering Society. Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H 2 S, while fixing CO 2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO 2 . A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of P kan or one of two native T. denitrificans promoters. The relative strengthmore » of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.« less

  19. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    SciTech Connect

    Beller, HR; Zhou, P; Jewell, TNM; Goh, EB; Keasling, JD

    2016-12-01

    © 2016 International Metabolic Engineering Society. Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H 2 S, while fixing CO 2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus denitrificans to produce up to 52-fold more fatty acids than the wild-type strain when grown with thiosulfate and CO 2 . A modified thioesterase gene from E. coli ('tesA) was integrated into the T. denitrificans chromosome under the control of P kan or one of two native T. denitrificans promoters. The relative strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria to overproduce fatty acid-derived products merits consideration as a technology that could simultaneously produce renewable fuels/chemicals as well as cost-effectively remediate sulfide-contaminated wastewater.

  20. Breath volatile organic compounds for the gut-fatty liver axis: Promise, peril, and path forward

    PubMed Central

    Solga, Steven Francis

    2014-01-01

    The worldwide interest in the gut microbiome and its impact on the upstream liver highlight a critical upside to breath research: it can uniquely measure otherwise unmeasurable biology. Bacteria make gases [volatile organic compounds (VOCs)] that are directly relevant to pathophysiology of the fatty liver and associated conditions, including obesity. Measurement of these VOCs and their metabolites in the exhaled breath, therefore, present an opportunity to safely and easily evaluate, on both a personal and a population level, some of our most pressing public health threats. This is an opportunity that must be pursued. To date, however, breath analysis remains a slowly evolving field which only occasionally impacts clinical research or patient care. One major obstacle to progress is that breath analysis is inherently and emphatically mutli-disciplinary: it connects engineering, chemistry, breath mechanics, biology and medicine. Unbalanced or incomplete teams may produce inconsistent and often unsatisfactory results. A second impediment is the lack of a well-known stepwise structure for the development of non-invasive diagnostics. As a result, the breath research landscape is replete with orphaned single-center pilot studies. Often, important hypotheses and key observations have not been pursued to maturation. This paper reviews the rationale and requirements for breath VOC research applied to the gut-fatty liver axis and offers some suggestions for future development. PMID:25083075

  1. Highly unsaturated fatty acid might act as an antioxidant in emulsion system oxidized by azo compound.

    PubMed

    Gotoh, Naohiro; Noguchi, Yosuke; Ishihara, Akiko; Yamaguchi, Kaita; Mizobe, Hoyo; Nagai, Toshiharu; Otake, Ikuko; Ichioka, Kenji; Wada, Shun

    2010-01-01

    Now it is recognized that DHA is oxidatively stable fatty acid compared with linoleic acid (LA) in emulsified system, although DHA is oxidatively unstable in a bulk system. In fact, an emulsified mixture of DHA and LA behaves as in a bulk system, namely the oxidative stability of DHA becomes lower than that of LA. Therefore, in this study, tridocosahexaenoate (DDD) and glycerol trilinoleate (LLL) were separately emulsified using TritonX-100 as an emulsifier and DDD emulsion was mixed with the oxidizing LLL emulsion using a water-soluble radical initiator, 2,2'-azobis(2-aminopropane) dihydrochloride. As a result, DHA suppressed the oxidation of LA, while DHA was not significantly oxidized. This suppression ability was examined using glycerol trieicosapentaenoate, glycerol trilinolenate, or glycerol trioleate instead of DDD and it was found that this activity was increased with the increasing number of double bonds in the structure. Furthermore, the same type of experiment was carried out using a lipid-soluble radical initiator, 2,2'-azobisisobutyronitrile and the similar result was obtained. These results indicated that a highly polyunsaturated fatty acid might act as an antioxidant in an emulsion system oxidized by an azo compound.

  2. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects.

    PubMed

    Bergé, Jean-Pascal; Barnathan, Gilles

    2005-01-01

    Because of their characteristic living environments, marine organisms produce a variety of lipids. Fatty acids constitute the essential part of triglycerides and wax esters, which are the major components of fats and oils. Nevertheless, phospholipids and glycolipids have considerable importance and will be taken into account, especially the latter compounds that excite increasing interest regarding their promising biological activities. Thus, in addition to the major polyunsaturated fatty acids (PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, a great number of various fatty acids occur in marine organisms, e.g. saturated, mono- and diunsaturated, branched, halogenated, hydroxylated, methoxylated, non-methylene-interrupted. Various unprecedented chemical structures of fatty acids, and lipid-containing fatty acids, have recently been discovered, especially from the most primitive animals such as sponges and gorgonians. This review of marine lipidology deals with recent advances in the field of fatty acids since the end of the 1990s. Different approaches will be followed, mainly developing biomarkers of trophic chains in marine ecosystems and of chemotaxonomic interest, reporting new structures, especially those with biological activities or biosynthetic interest. An important part of this review will be devoted to the major PUFA, their relevance to health and nutrition, their biosynthesis, their sources (usual and promising) and market.

  3. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  4. Effect of Thermoultrasound on the Antioxidant Compounds and Fatty Acid Profile of Blackberry (Rubus fruticosus spp.) Juice.

    PubMed

    Manríquez-Torres, José de Jesús; Sánchez-Franco, José Antonio; Ramírez-Moreno, Esther; Cruz-Cansino, Nelly Del Socorro; Ariza-Ortega, José Alberto; Torres-Valencia, Jesús Martín

    2016-11-29

    Blackberry (Rubus fruticosus spp.) fruit has high antioxidant activity due to its significant content of anthocyanins and antioxidant compounds. Among emerging technologies for food preservation, thermoultrasound is a technique that reduces microbial loads and releases compounds with antioxidant properties. The objective of this study was to determine the antioxidant content and fatty acid profile of blackberry juice subjected to thermoultrasound treatment in comparison to pasteurized juice. Blackberry juice and n-hexane extracts from a control (untreated juice), pasteurized, and thermoultrasonicated samples were evaluated for antioxidant activity, fatty acid profile, and antioxidant content. The juice treated with thermoultrasound exhibited significantly (p < 0.05) higher levels of total phenols (1011 mg GAE/L), anthocyanins (118 mg Cy-3-GlE/L); antioxidant activity by ABTS (44 mg VCEAC/L) and DPPH (2665 µmol TE/L) in comparison to the control and pasteurized samples. Oil extract from thermoultrasound juice also had the highest antioxidant activity (177.5 mg VCEAC/L and 1802.6 µmol TE/L). The fatty acid profile of the n-hexane extracts showed the presence of myristic, linolenic, stearic, oleic, and linoleic acids and was not affected by the treatments except for stearic acid, whose amount was particularly higher in the control. Our results demonstrated that thermoultrasound can be an alternative technology to pasteurization that maintains and releases antioxidant compounds and preserves the fatty acids of fruit juice.

  5. Effects of supplementing broiler breeder diets with organoselenium compounds and polyunsaturated fatty acids on hatchability.

    PubMed

    Pappas, A C; Acamovic, T; Sparks, N H C; Surai, P F; McDevitt, R M

    2006-09-01

    The effects of supplementing broiler breeder diets with polyunsaturated fatty acids (PUFA) and organoselenium compounds on fertility, hatchability, and the weight of 1-d-old chicks was assessed. Prepeak (23 wk) and peak (27 wk) production breeders were fed 1 of 4 diets: a wheat-based commercial breeder diet with 55 g/kg of either soybean oil (SO) or fish oil (FO), but no added Se (only that originating from feed ingredients), and each diet with added Se as Sel-Plex (SO + Se, FO + Se). The diets were designed to contain <0.1 mg/kg of Se and about 0.5 mg/kg of Se for the nonsupplemented (no added Se) and the supplemented diets, respectively. The Se concentration of the eggshell of the hatching egg was measured. The concentration of Se, PUFA, and total lipid content of the brain and liver of the 1-d-old chick was determined. The number of fertile eggs increased, embryonic mortality decreased, and hatchability increased as hen age increased from 23 to 27 wk. The Se concentration in the eggshell and the brain and liver of 1-d-old chicks was higher in the high-Se treatments com pared with the concentration in the low-Se treatments. Fish oil inclusion in the breeder diet increased embryonic mortality in wk 3 of incubation and reduced both hatchability and 1-d-old chick weight in hens of both ages. The addition of Se to the FO diets ameliorated some of these adverse effects, because chicks hatched from eggs laid by 23-wk-old breeders of the FO + Se treatment were heavier than those receiving the FO treatment. The Se concentration in the brain and liver of chicks from the FO hens was higher than that in chicks from the SO hens. The concentration of docosahexaenoic fatty acid was higher in the liver of chicks from the SO + Se treatment compared with that of chicks from the SO treatment, indicating possible protective effects of Se. Hatchability was decreased by increased PUFA and was higher in 27-wk-old compared with 23-wk-old breeders.

  6. Long-chain n-3 fatty acids - New anabolic compounds improving protein metabolism

    USDA-ARS?s Scientific Manuscript database

    Previous animal studies demonstrated that chronic feeding of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) that modifies muscle membrane fatty acid composition promotes protein anabolism by blunting the age-associated deterioration in insulin sensitivity. The current study assessed, as a pr...

  7. Fatty Acids Profile, Phenolic Compounds and Antioxidant Capacity in Elicited Callus of Thevetia peruviana (Pers.) K. Schum.

    PubMed

    Rincón-Pérez, Jack; Rodríguez-Hernández, Ludwi; Ruíz-Valdiviezo, Víctor Manuel; Abud-Archila, Miguel; Luján-Hidalgo, María Celina; Ruiz-Lau, Nancy; González-Mendoza, Daniel; Gutiérrez-Miceli, Federico Antonio

    2016-01-01

    The aim of this study was analyze the effect of jasmonic acid (JA) and abscisic acid (ABA) as elicitors on fatty acids profile (FAP), phenolic compounds (PC) and antioxidant capacity (AC) in callus of Thevetia peruviana. Schenk & Hildebrandt (SH) medium, supplemented with 2 mg/L 2, 4-dichlorophenoxyacetic (2, 4-D) and 0.5 mg/L kinetin (KIN) was used for callus induction. The effect of JA (50, 75 and 100 μM) and ABA (10, 55 and 100 μM) on FAP, PC and AC were analyzed using a response surface design. A maximum of 2.8 mg/g of TPC was obtained with 100 plus 10 µM JA and ABA, respectively, whereas AC maximum (2.17 μg/mL) was obtained with 75 plus 100 µM JA and ABA, respectively. The FAP was affected for JA but not for ABA. JA increased cis-9, cis-12-octadecadienoic acid and decreased dodecanoic acid. Eight fatty acids were identified by GC-MS analysis and cis-9-octadecenoic acid (18:1) was the principal fatty acid reaching 76 % in treatment with 50 μM JA plus 55 μM ABA. In conclusion, JA may be used in T. peruviana callus culture for obtain oil with different fatty acids profile.

  8. Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Wang, Na; Zhang, Jing; Wan, Ruijing; Dai, Fangqun; Jin, Xianshi

    2016-09-01

    The composition and compound-specific isotopes of fatty acids were studied within food webs in the East China Sea. Lipid-normalized stable carbon isotopes of total organic carbon had a good correlation with trophic level. Variations in fatty acid compositions among diff erent species were observed but were unclear. Diff erent dietary structures could be traced from molecular isotopes of selected fatty acids in the Shiba shrimp ( Matapenaeus joyneri), the coastal mud shrimp ( Solenocera crassicornis) and the northern Maoxia shrimp ( Acetes chinensis). Both M. joyneri and S. crassicornis are mainly benthos feeders, while A. chinensis is a pelagic species, although they have a similar fatty acid composition. There was a good correlation for isotopes of arachidonic acid (C20:4n6; ARA) and docosahexaenoic acid (C22:6n3; DHA) among pelagic species from higher trophic levels. The isotopic compositions of DHA in benthic species were more negative than those of pelagic species at the same trophic level. The fact that the diet of benthic species contains more degraded items, the carbon isotopes of which are derived from a large biochemical fraction, may be the reason for this variation. A comparative study of benthic and pelagic species demonstrated the diff erent carbon sources in potential food items and the presence of a more complex system at the water-sediment interface.

  9. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

    PubMed Central

    Matthäus, Bertrand; Özcan, Mehmet Musa

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  10. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb.

    PubMed

    Elmore, J Stephen; Cooper, Sarah L; Enser, Michael; Mottram, Donald S; Sinclair, Liam A; Wilkinson, Robert G; Wood, Jeffrey D

    2005-02-01

    The effect on lamb muscle of five dietary supplements high in polyunsaturated fatty acids (PUFA) was measured. The supplements were linseed oil, fish oil, protected lipid (high in linoleic acid (C18:2 n-6) and α-linolenic acid (C18:3 n-3)), fish oil/marine algae (1:1), and protected lipid/marine algae (1:1). Eicosapentaenoic acid (C20:5 n-3) and docosahexaenoic acid (C22:6 n-3) were found in the highest amounts in the meat from lambs fed diets containing algae. Meat from lambs fed protected lipid had the highest levels of C18:2 n-6 and C18:3 n-3, due to the effectiveness of the protection system. In grilled meat from these animals, volatile compounds derived from n-3 fatty acids were highest in the meat from the lambs fed the fish oil/algae diet, whereas compounds derived from n-6 fatty acids were highest in the meat from the lambs fed the protected lipid diet.

  11. Composition of fatty acids, triacylglycerols and polar compounds of different walnut varieties (Juglans regia L.) from Tunisia.

    PubMed

    Bouabdallah, I; Bouali, I; Martinez-Force, E; Albouchi, A; Perez Camino, M C; Boukhchina, S

    2014-01-01

    The chemical composition (total oil content, fatty acids, triacylglycerols (TAGs) and polar compounds) of six walnuts (Juglans regia L.) cultivars (Lauzeronne, Franquette, Hartley, Local pt, Local gd and Parisienne) collected from Mateur (north of Tunisia) was evaluated. The major fatty acids found in the walnut oils are linoleic acid (60.42-65.77%), oleic acid (13.21-19.94%) and linolenic acid (7.61-13%). The TAG species were mainly composed of trilinolein (LLL), dilinoleoyl-linolenoyl-glycerol, dilinoleoyl-oleoyl-glycerol and palmitoyl-dilinoleoyl-glycerol classes. The results revealed that Local pt variety has the highest level of oil (62.56%), linoleic acid (65.77%) and LLL (33.48%). Significant differences among oil samples were observed, therefore showing a great variability in the oil composition among cultivars.

  12. Postglacial Climate Reconstruction Based on Compound-Specific D/H Ratios of Fatty Acids From Blood Pond, New England

    NASA Astrophysics Data System (ADS)

    Hou, J.; Huang, Y.; Shuman, B.; Oswald, W.; Faison, E.; Foster, D.

    2005-12-01

    Compounds of aquatic sources are of particular interest for compound-specific hydrogen isotope analysis because of their potential to record lake water D/H ratios which respond strongly to climatic changes (e.g.,temperature change). C27,C28 sterols and palmitic acid (C16 n-acid) have been suggested to record D/H variation of lake and ocean water (Sauer et al., 2001, Huang et al., 2002, 2004). Here we report a new proxy of lake water isotope composition. Surface calibration from two transects indicates that behenic acid (C22 n-acid) captures δD variation of lake water from two transects across eastern North America (δDBA=0.8185*δDwater-140.01,R=0.898;p<0.05). We also determined hydrogen isotope ratios of individual fatty acids in a sediment core from Blood Pond, MA, in order to reconstruct climate change during the past 16 ka. Downcore variations in δD values of behenic acid and pollen taxa are highly consistent with known climate change histories in New England. Behenic acid is produced mainly by aquatic macrophytes. D/H fractionations of long chain even numbered fatty acids relative to lake water provide independent estimation of growth season relative humidity. Combined analyses of hydrogen isotopic ratios of short and long chain fatty acids from lake sediment cores thus allow reconstruction of both past temperature and effective moisture conditions. Comparison of δD records from two lakes in New England provides critical information on regional climate variation and abrupt climate change, such as 8.2 ka event. We also demonstrate that the chain length of fatty acids varies systematically in response to vegetation changes in the sediment core, providing additional data for paleoenvironmental assessment.

  13. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components.

  14. Myrtus communis berry color morphs: a comparative analysis of essential oils, fatty acids, phenolic compounds, and antioxidant activities.

    PubMed

    Messaoud, Chokri; Boussaid, Mohamed

    2011-02-01

    Extracts of mature dark blue and white berries from two Tunisian Myrtus communis morphs growing at the same site were assessed for their essential-oil and fatty-acid compositions, phenolic contents, and antioxidant activities. The GC and GC/MS analyses of the essential oils allowed the identification of 33 constituents. The oils from the dark blue fruits showed high percentages of α-pinene (11.1%), linalool (11.6%), α-terpineol (15.7%), methyl eugenol (6.2%), and geraniol (3.7%). Myrtenyl acetate (20.3%) was found to be the major compound in the oils from white berries. GC Analysis of the pericarp and seed fatty acids showed that the polyunsaturated fatty acids constituted the major fraction (54.3-78.1%). The highest percentages of linoleic acid (78.0%) and oleic acid (20.0%) were observed in the seeds and the pericarps of the white fruits, respectively. The total phenol, flavonoid, and flavonol contents and the concentration of the eight anthocyanins, identified by HPLC analysis, were significantly higher in the dark blue fruits. All extracts showed a substantial antioxidant activity, assessed by the free radical-scavenging activity and the ferric reducing power, with the dark blue fruit extracts being more effective.

  15. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    PubMed

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals.

  16. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    PubMed

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T1, T2, T3 and T4), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T1, T2, T3 and T4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T1, T2, T3 and T4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T1, T2, T3 and T4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T2, T3 and T4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T2, T3 and T4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T1, T2, T3 and T4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T1, T2, T3 and T4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid, quercetin, phenolic glycoside k and phenolic

  17. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  18. Yhhu981, a novel compound, stimulates fatty acid oxidation via the activation of AMPK and ameliorates lipid metabolism disorder in ob/ob mice

    PubMed Central

    Zeng, Hong-liang; Huang, Su-ling; Xie, Fu-chun; Zeng, Li-min; Hu, You-hong; Leng, Ying

    2015-01-01

    Aim: Defects in fatty acid metabolism contribute to the pathogenesis of insulin resistance and obesity. In this study, we investigated the effects of a novel compound yhhu981 on fatty acid metabolism in vitro and in vivo. Methods: The capacity to stimulate fatty acid oxidation was assessed in C2C12 myotubes. The fatty acid synthesis was studied in HepG2 cells using isotope tracing. The phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) was examined with Western blot analysis. For in vivo experiments, ob/ob mice were orally treated with yhhu981 acutely (300 mg/kg) or chronically (150 or 300 mg·kg−1·d−1 for 22 d). On the last day of treatment, serum and tissue samples were collected for analysis. Results: Yhhu981 (12.5–25 μmol/L) significantly increased fatty acid oxidation and the expression of related genes (Sirt1, Pgc1α and Mcad) in C2C12 myotubes, and inhibited fatty acid synthesis in HepG2 cells. Furthermore, yhhu981 dose-dependently increased the phosphorylation of AMPK and ACC in both C2C12 myotubes and HepG2 cells. Compound C, an AMPK inhibitor, blocked fatty acid oxidation in yhhu981-treated C2C12 myotubes and fatty acid synthesis decrease in yhhu981-treated HepG2 cells. Acute administration of yhhu981 decreased the respiratory exchange ratio in ob/ob mice, whereas chronic treatment with yhhu981 ameliorated the lipid abnormalities and ectopic lipid deposition in skeletal muscle and liver of ob/ob mice. Conclusion: Yhhu981 is a potent compound that stimulates fatty acid oxidation, and exerts pleiotropic effects on lipid metabolism by activating AMPK. PMID:25732571

  19. Effect of γ-irradiation on bioactivity, fatty acid compositions and volatile compounds of clary sage seed (Salvia sclarea L.).

    PubMed

    Yalcin, Hasan; Ozturk, Ismet; Tulukcu, Eray; Sagdic, Osman

    2011-09-01

    Clary sage seeds (Salvia sclarea L.) were obtained from plants cultivated, and 2.5, 4.0, 5.5, and 7.0 kGy doses of γ-irradiation were applied to the clary sage seeds. They were then analyzed for their protein, ash, oil and dry matter contents, and fatty acid composition. Additionally, the total phenolic contents, antiradical, antioxidant activities, and volatile compounds of the clary sage seed extract were determined. There was no significant difference in protein content. However, the moisture, oil, and ash contents of the samples were affected by irradiation. While the 7 kGy dose had a positive effect on the total phenolic content and antiradical activity of the sage seed extract, all doses have negative effects on the antioxidant activity of the sage seed. The main fatty acid of the sage seed was remarkably found as α-linolenic acid. The four irradiation levels caused significant differences in fatty acid composition by affecting all fatty acids except palmitic, palmitoleic, and eicosenoic acids. The dominant volatile compounds of control sage seed were found as β-pinene (18.81%) and limonene (15.60%). Higher doses of the irradiation decreased volatile components of sage seed. Clary sage seed including high omega-3 can be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. Clary sage is one of the most popular Salvia species in Turkey and many countries. Clary sage seed has approximately 29% oil content and this oil contains >50% of α-linolenic acid. γ-Irradiation is widely applied in the preservation of spice quality. The present study shows that the antioxidant activity of the clary sage seed is decreased by γ-irradiation. Additionally, higher doses of irradiation also decreased the volatile components of sage seed. Therefore, we suggest that clary sage seed which includes high levels of omega-3 should be irradiated with low doses (≤ 2.5 kGy) of γ-irradiation. © 2011 Institute of Food Technologists®

  20. Studies on antioxidant activity, volatile compound and fatty acid composition of different parts of Glycyrrhiza echinata L.

    PubMed Central

    Çakmak, Yavuz Selim; Aktumsek, Abdurrahman; Duran, Ahmet

    2012-01-01

    The essential oil compound, fatty acid composition and the in vitro antioxidant activity of the root and aerial of Glycyrrhiza echinata L., a medicinal plant growing in Turkey, have been studied. The antioxidant capacity tests were designed to evaluate the antioxidant activities of methanol extracts. Total phenolic and flavonoid concentrations of each extract were also determined by using both Folin-Ciocalteu reagent and aluminum chloride. The aerial part was found to possess the highest total phenolic content (146.30 ± 4.58 mg GAE/g) and total antioxidant capacity (175.33 ± 3.98 mg AE/g). The essential oil from root and aerial parts was analyzed by gas chromatography mass spectroscopy (GC-MS) systems. The major components identified were n-hexadecanoic acid, hexahydro farnesyl acetone, α-caryophyllen, hexanal and phytol. In fatty acid profiles of plant, palmitic, stearic, oleic and linoleic acid were detected as the main components. The results of this study have shown that the extracts G. echinata are suitable as a natural antioxidant and food supplement source for pharmacological and food industries due to their beneficial chemical composition and antioxidant capacity. PMID:27418901

  1. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs.

    PubMed

    Cantos, Emma; Espín, Juan Carlos; López-Bote, Clemente; de la Hoz, Lorenzo; Ordóñez, Juan A; Tomás-Barberán, Francisco A

    2003-10-08

    The aim of the present work was to identify and quantify the phenolic compounds and fatty acids in acorns from Quercus ilex, Quercus rotundifolia, and Quercus suber. The concentration of oleic acid was >63% of total fatty acids in all cases, followed by palmitic and linoleic acids at similar concentrations (12-20%). The concentrations of alpha-tocopherol in Q. rotundifolia, Q. ilex, and Q. suber were 19, 31, and 38 mg/kg of dry matter (DM), respectively, whereas the concentrations of gamma-tocopherol were 113, 66, and 74 mg/kg of DM, respectively. Thirty-two different phenolic compounds were distinguished. All of them were gallic acid derivatives, in the form of either galloyl esters of glucose, combinations of galloyl and hexahydroxydiphenoyl esters of glucose, tergallic O- or C-glucosides, or ellagic acid derivatives. Several tergallic acid C-glucosides were also present in the extracts obtained from Q. suber. Acorns from Q. ilex and Q. rotundifolia showed similar polyphenol patterns mainly with gallic acid-like spectra. Chromatograms of Q. suber showed mainly polyphenols with ellagic acid-like spectra. Valoneic acid dilactone was especially abundant in Q. suber skin. The contribution of skin to the total phenolics of the acorn was relatively small in Q. rotundifolia and Q. ilex but relatively high in Q. suber. Skin extracts from Q. suber, Q. rotundifolia, and Q. ilex showed 1.3, 1.4, and 1.0 antioxidant efficiencies, respectively (compared to that of butylhydroxyanisole). Endosperm extracts showed lower capacity to prevent lipid peroxidation than skin extracts.

  2. Effect of Exogenous Abscisic Acid and Methyl Jasmonate on Anthocyanin Composition, Fatty Acids, and Volatile Compounds of Cabernet Sauvignon (Vitis vinifera L.) Grape Berries.

    PubMed

    Ju, Yan-Lun; Liu, Min; Zhao, Hui; Meng, Jiang-Fei; Fang, Yu-Lin

    2016-10-12

    The anthocyanin composition, fatty acids, and volatile aromas are important for Cabernet Sauvignon grape quality. This study evaluated the effect of exogenous abscisic acid (ABA) and methyl jasmonate (MeJA) on the anthocyanin composition, fatty acids, lipoxygenase activity, and the volatile compounds of Cabernet Sauvignon grape berries. Exogenous ABA and MeJA improved the content of total anthocyanins (TAC) and individual anthocyanins. Lipoxygenase (LOX) activity also increased after treatment. Furthermore, 16 fatty acids were detected. The linoleic acid concentration gradually increased with ABA concentration. The fatty acid content decreased with increasing MeJA concentration and then increased again, with the exception of linoleic acid. After exogenous ABA and MeJA treatment, the C6 aroma content increased significantly. Interestingly, the exogenous ABA and MeJA treatments improved mainly the content of 1-hexanol, hexanal, and 2-heptanol. These results provide insight into the effect of plant hormones on wine grapes, which is useful for grape quality improvement.

  3. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content.

    PubMed

    Cais-Sokolińska, D; Wójtowski, J; Pikul, J; Danków, R; Majcher, M; Teichert, J; Bagnicka, E

    2015-10-01

    This article explored the formation of volatile compounds during the production of kefir from goat and sheep milks with high polyunsaturated fatty acids (PUFA) as a result of feeding animals forage supplemented with maize dried distillers grains with solubles (DDGS). The increased PUFA content of the goat and sheep milks resulted in significant changes to the fermentation process. In particular, apart from an increase in the time taken to ferment sheep milk, fermentation yielded less 2,3-butanedione. The highest quantities of this compound were assayed in kefir produced from goat milk with an increased content of PUFA. An increase of PUFA significantly elevated ethanal synthesis during lactose-alcohol fermentation of sheep milk. Neither the origin of milk (sheep or goat) nor the level of PUFA had any statistical effect on the amount of ethanal assayed during the fermentation of milk and within the finished product. The proportion of l(+)-lactic acid was higher in kefirs produced using goat milk compared with sheep milk and did not depend on the content of PUFA in milk fat. The content of PUFA had a significant effect on the aroma profile of the resulting kefirs. An increase in PUFA content resulted in the loss of whey aroma in goat milk kefirs and the animal odor in sheep milk kefirs, and a creamy aroma became more prevalent in kefirs made from sheep milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Clove and Its Active Compound Attenuate Free Fatty Acid-Mediated Insulin Resistance in Skeletal Muscle Cells and in Mice.

    PubMed

    Ghaffar, Safina; Afridi, Shabbir Khan; Aftab, Meha Fatima; Murtaza, Munazza; Hafizur, Rahman M; Sara, Sara; Begum, Sabira; Waraich, Rizwana Sanaullah

    2017-04-01

    Several reports indicate anti-hyperglycemic effects of Syzygium aromaticum. In the present study, we report for the first time that clove extract (SAM) and its compound nigricin (NGC) decreases free fatty acid-mediated insulin resistance in mouse myoblasts. In addition, NGC was able to diminish insulin resistance in a diabetic mouse model. We observed that SAM and its compound NGC exhibited significant antioxidant activity in murine skeletal muscle cells. They also modulated stress signaling by reducing p38 MAP kinase phosphorylation. NGC and SAM treatments enhanced proximal insulin signaling by decreasing serine phosphorylation of insulin receptor substrate-1 (IRS-1) and increasing its tyrosine phosphorylation. SAM and NGC treatments also modified distal insulin signaling by enhancing protein kinase B (PKB) and glycogen synthase kinase-3-beta (GSK-3 beta) phosphorylation in muscle cells. Glucose uptake was enhanced in muscle cells after treatment with SAM and NGC. We observed increased glucose tolerance, glucose-stimulated insulin secretion, decreased insulin resistance, and increased beta cell function in diabetic mice treated with NGC. The results of our study demonstrate that clove extract and its active agent NGC can be potential therapeutic agents for alleviating insulin resistance.

  5. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD.

    PubMed

    De Preter, Vicky; Machiels, Kathleen; Joossens, Marie; Arijs, Ingrid; Matthys, Christophe; Vermeire, Severine; Rutgeerts, Paul; Verbeke, Kristin

    2015-03-01

    Bacteria play a role in the onset and perpetuation of intestinal inflammation in IBD. Compositional alterations may also change the metabolic capacities of the gut bacteria. To examine the metabolic activity of the microbiota of patients with Crohn's disease (CD), UC or pouchitis compared with healthy controls (HC) and determine whether eventual differences might be related to the pathogenesis of the disease. Faecal samples were obtained from 40 HC, 83 patients with CD, 68 with UC and 13 with pouchitis. Disease activity was assessed in CD using the Harvey-Bradshaw Index, in UC using the UC Disease Activity Index and in pouchitis using the Pouchitis Disease Activity Index. Metabolite profiles were analysed using gas chromatography-mass spectrometry. The number of metabolites identified in HC (54) was significantly higher than in patients with CD (44, p<0.001), UC (47, p=0.042) and pouchitis (43, p=0.036). Multivariate discriminant analysis predicted HC, CD, UC and pouchitis group membership with high sensitivity and specificity. The levels of medium-chain fatty acids (MCFAs: pentanoate, hexanoate, heptanoate, octanoate and nonanoate), and of some protein fermentation metabolites, were significantly decreased in patients with CD, UC and pouchitis. Hexanoate levels were inversely correlated to disease activity in CD (correlation coefficient=-0.157, p=0.046), whereas a significant positive correlation was found between styrene levels and disease activity in UC (correlation coefficient=0.338, p=0.001). Faecal metabolic profiling in patients with IBD relative to healthy controls identified MCFAs as important metabolic biomarkers of disease-related changes. NCT 01666717. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis.

    PubMed

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D

    2016-03-14

    Nanoparticles entering the human body instantly become coated with a "protein corona" that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an "organic corona" containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.

  7. Fatty acids and small organic compounds bind to mineralo-organic nanoparticles derived from human body fluids as revealed by metabolomic analysis

    NASA Astrophysics Data System (ADS)

    Martel, Jan; Wu, Cheng-Yeu; Hung, Cheng-Yu; Wong, Tsui-Yin; Cheng, Ann-Joy; Cheng, Mei-Ling; Shiao, Ming-Shi; Young, John D.

    2016-03-01

    Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body.Nanoparticles entering the human body instantly become coated with a ``protein corona'' that influences the effects and distribution of the particles in vivo. Yet, whether nanoparticles may bind to other organic compounds remains unclear. Here we use an untargeted metabolomic approach based on ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry to identify the organic compounds that bind to mineral nanoparticles formed in human body fluids (serum, plasma, saliva, and urine). A wide range of organic compounds is identified, including fatty acids, glycerophospholipids, amino acids, sugars, and amides. Our results reveal that, in addition to the proteins identified previously, nanoparticles harbor an ``organic corona'' containing several fatty acids which may affect particle-cell interactions in vivo. This study provides a platform to study the organic corona of biological and synthetic nanoparticles found in the human body. Electronic supplementary information (ESI) available. See

  8. (4-Phenoxyphenyl)tetrazolecarboxamides and related compounds as dual inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

    PubMed

    Holtfrerich, Angela; Hanekamp, Walburga; Lehr, Matthias

    2013-05-01

    Inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the principle enzymes involved in the degradation of endogenous cannabinoids like anandamide and 2-arachidonoylglycerol, have potential utility in the treatment of several disorders including pain, inflammation and anxiety. In the present study, the effectivity and selectivity of eight known FAAH and MAGL inhibitors for inhibition of the appropriate enzyme were measured applying in vitro assays, which work under comparable conditions. Because many of the known FAAH and MAGL inhibitors simply consist of a lipophilic scaffold to which a heterocyclic system is bound, furthermore, different heterocyclic structures were evaluated for their contribution to enzyme inhibition by attaching them to the same lipophilic backbone, namely 4-phenoxybenzene. One of the most active compound synthesized during this investigation was N,N-dimethyl-5-(4-phenoxyphenyl)-2H-tetrazole-2-carboxamide (16) (IC50 FAAH: 0.012 μM; IC50 MAGL: 0.028 μM). This inhibitor was systematically modified in the lipophilic 4-phenoxyphenyl region. Structure-activity relationship studies revealed that the inhibitory potency against FAAH and MAGL, respectively, could still be increased by replacement of the phenoxy residue of 16 by 3-chlorophenoxy (45) or pyrrol-1-yl groups (49). Finally, the tetrazolecarboxamide 16 and some related compounds were tested for metabolic stability with rat liver S9 fractions showing that these kind of FAAH/MAGL inhibitors are readily inactivated by cleavage of the bond between the tetrazole ring and its carboxamide substituent.

  9. Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats

    PubMed Central

    Chen, Xu-Jia; Liu, Wen-Jing; Wen, Meng-Liang; Liang, Hong; Wu, Shao-Mei; Zhu, Yun-Zhen; Zhao, Jiang-Yuan; Dong, Xiang-Qian; Li, Ming-Gang; Bian, Li; Zou, Cheng-Gang; Ma, Lan-Qing

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease, which has no standard treatment available. Panax notoginseng saponines (PNS) have recently been reported to protect liver against hepatocyte injury induced by ethanol or high fat diet (HFD) in rats. Compound K and ginsenoside Rh1 are the main metabolites of PNS. In this study, we evaluated the effects of CK and Rh1 on NAFLD. Rats fed HFD showed significant elevations in liver function markers, lipids, glucose tolerance, and insulin resistance. Treatment with CK or Rh1 either alone or in combination dramatically ameliorated the liver function impairment induced by HFD. Histologically, CK and Rh1 significantly reversed HFD-induced hepatocyte injury and liver fibrosis. In vitro experiments demonstrated that treatment with CK or Rh1 alone or in combination markedly induced cell apoptosis, and inhibited cell proliferation and activation in HSC-T6 cells. Additionally, CK and Rh1, either alone or in combination, also repressed the expression of fibrotic factors TIMP-1, PC-I, and PC-III. Taken together, our results demonstrate that CK and Rh1 have positive effects on NAFLD via the anti-fibrotic and hepatoprotective activity. PMID:28106137

  10. Surfactants, Aromatic and Isoprenoid Compounds, and Fatty Acid Biosynthesis Inhibitors Suppress Staphylococcus aureus Production of Toxic Shock Syndrome Toxin 1▿

    PubMed Central

    McNamara, Peter J.; Syverson, Rae Ellen; Milligan-Myhre, Kathy; Frolova, Olga; Schroeder, Sarah; Kidder, Joshua; Hoang, Thanh; Proctor, Richard A.

    2009-01-01

    Menstrual toxic shock syndrome is a rare but potentially life-threatening illness manifest through the actions of Staphylococcus aureus toxic shock syndrome toxin 1 (TSST-1). Previous studies have shown that tampon additives can influence staphylococcal TSST-1 production. We report here on the TSST-1-suppressing activity of 34 compounds that are commonly used additives in the pharmaceutical, food, and perfume industries. Many of the tested chemicals had a minimal impact on the growth of S. aureus and yet were potent inhibitors of TSST-1 production. The TSST-1-reducing compounds included surfactants with an ether, amide, or amine linkage to their fatty acid moiety (e.g., myreth-3-myristate, Laureth-3, disodium lauroamphodiacetate, disodium lauramido monoethanolamido, sodium lauriminodipropionic acid, and triethanolamine laureth sulfate); aromatic compounds (e.g. phenylethyl and benzyl alcohols); and several isoprenoids and related compounds (e.g., terpineol and menthol). The membrane-targeting and -altering effects of the TSST-1-suppressing compounds led us to assess the activity of molecules that are known to inhibit fatty acid biosynthesis (e.g., cerulenin, triclosan, and hexachlorophene). These compounds also reduced S. aureus TSST-1 production. This study suggests that more additives than previously recognized inhibit the production of TSST-1. PMID:19223628

  11. Compounds of the sphingomyelin-ceramide-glycosphingolipid pathways as secondary messenger molecules: new targets for novel therapies for fatty liver disease and insulin resistance.

    PubMed

    Ilan, Yaron

    2016-06-01

    The compounds of sphingomyelin-ceramide-glycosphingolipid pathways have been studied as potential secondary messenger molecules in various systems, along with liver function and insulin resistance. Secondary messenger molecules act directly or indirectly to affect cell organelles and intercellular interactions. Their potential role in the pathogenesis of steatohepatitis and diabetes has been suggested. Data samples collected from patients with Gaucher's disease, who had high levels of glucocerebroside, support a role for compounds from these pathways as a messenger molecules in the pathogenesis of fatty liver disease and diabetes. The present review summarizes some of the recent data on the role of glycosphingolipid molecules as messenger molecules in various physiological and pathological conditions, more specifically including insulin resistance and fatty liver disease.

  12. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds.

    PubMed

    Shi, Jianghua; Lang, Chunxiu; Wang, Fulin; Wu, Xuelong; Liu, Renhu; Zheng, Tao; Zhang, Dongqing; Chen, Jinqing; Wu, Guanting

    2017-10-01

    In plants, the enzymes fatty acid dehydrogenase 2 (FAD2) and fatty acid elongase 1 (FAE1) have been shown in previous studies to play important roles in the de novo biosynthesis of fatty acids. However, the effects of depressed expression of FAD2 and FAE1 on seed storage compounds accumulation remains to be elucidated. In this study, we produced RNA interfering transgenic rapeseeds lines, BnFAD2-Ri, BnFAE1-Ri and BnFAD2/BnFAE1-Ri, which exhibited depressed expression of the BnFAD2 and BnFAE1 genes under the control of seed-specific napin A promoter. These transgenic rapeseeds showed normal growth and development as compared with the wild type (CY2). Depressed expression of BnFAD2 and BnFAE1 genes modified fatty acid profiles, leading to increased oleic acid and decreased erucic acid contents in transgenic seeds. Consistent with these results, the ratios of C18:1/C18:2 and C18:1/C18:3 in C18 unsaturated fatty acids were greatly increased due to increased oleic acid content in transgenic seeds. Moreover, depressed expression of BnFAD2 and BnFAE1 genes resulted in slightly decreased oil contents and increased protein contents in transgenic seeds. Our results demonstrated that depressed expression of BnFAD2 and BnFAE1 greatly improves seed nutritional quality by modulating the fatty acid metabolism and storage products accumulation and that BnFAD2 and BnFAE1 are reliable targets for genetic improvement of rapeseed in seed nutritional quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effects of an essential fatty acid compound and a cholecystokinin-8 antagonist on iron deficiency induced anorexia and learning deficits.

    PubMed

    Yehuda, Shlomo; Mostofsky, David I

    2004-04-01

    Iron deficiency (ID) is among the most common nutritional diseases, causing deleterious effects that include decreases in cognitive function and weight loss. The ID also induces a reduction in the number and affinity of dopaminergic D2 receptors. The new finding that ID induces an increase in the pancreas cells, leads to the hypothesis that cholecystokinin-8 (CCK-8) is involved in the ID effects. The level of CCK-8 was higher among ID rats, compared with normal rats. The ID rats in our study were anorectic and performed poorly in learning tests (Morris water maze and passive avoidance learning). Essential fatty acids (EFA) mediate dopamine activity and have been found to rehabilitate learning deficits. Treatment with a fatty acid compound blocked both the learning deficits and the anorexia, while a CCK-8 antagonist was successful only against the anorectic effects.

  14. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids

    PubMed Central

    Taipale, Sami J.; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I.; Hahn, Martin W.; Biasi, Christina; Brett, Michael T.

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  15. Inferring Phytoplankton, Terrestrial Plant and Bacteria Bulk δ¹³C Values from Compound Specific Analyses of Lipids and Fatty Acids.

    PubMed

    Taipale, Sami J; Peltomaa, Elina; Hiltunen, Minna; Jones, Roger I; Hahn, Martin W; Biasi, Christina; Brett, Michael T

    2015-01-01

    Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of

  16. Characterization of Fatty Acid, Amino Acid and Volatile Compound Compositions and Bioactive Components of Seven Coffee (Coffea robusta) Cultivars Grown in Hainan Province, China.

    PubMed

    Dong, Wenjiang; Tan, Lehe; Zhao, Jianping; Hu, Rongsuo; Lu, Minquan

    2015-09-14

    Compositions of fatty acid, amino acids, and volatile compound were investigated in green coffee beans of seven cultivars of Coffea robusta grown in Hainan Province, China. The chlorogenic acids, trigonelline, caffeine, total lipid, and total protein contents as well as color parameters were measured. Chemometric techniques, principal component analysis (PCA), hierarchical cluster analysis (HCA), and analysis of one-way variance (ANOVA) were performed on the complete data set to reveal chemical differences among all cultivars and identify markers characteristic of a particular botanical origin of the coffee. The major fatty acids of coffee were linoleic acid, palmitic acid, oleic acid, and arachic acid. Leucine (0.84 g/100 g DW), lysine (0.63 g/100 g DW), and arginine (0.61 g/100 g DW) were the predominant essential amino acids (EAAs) in the coffee samples. Seventy-nine volatile compounds were identified and semi-quantified by HS-SPME/GC-MS. PCA of the complete data matrix demonstrated that there were significant differences among all cultivars, HCA supported the results of PCA and achieved a satisfactory classification performance.

  17. Bioactivity-guided isolation of beta-sitosterol and some fatty acids as active compounds in the anxiolytic and sedative effects of Tilia americana var. mexicana.

    PubMed

    Aguirre-Hernández, Eva; Rosas-Acevedo, Hortensia; Soto-Hernández, Marcos; Martínez, Ana Laura; Moreno, Julia; González-Trujano, Ma Eva

    2007-09-01

    Tilia species have been used as anxiolytics for many years. In a previous study anxiolytic-like effects of a hexane extract of Tilia americana var. mexicana inflorescences were observed in experimental models in mice. To get additional insights into the neuroactive actions of this particular Tilia species, in this study we report a bioactivity guided-fractionation of the extract and separation by column chromatographic methods to isolate three fatty acids and a triterpene identified as beta-sitosterol as major constituents. Our results revealed that the crude extract at 10 and 30 mg/kg I. P. and some pooled fractions at the same dosages potentiated sodium pentobarbital-induced sleeping time and caused a significant increase in the time spent at the open-arm sides in the plus-maze test. A reduction in the exploratory behavioral pattern manifested as ambulatory activity, as well as head dipping and rearing tests was also observed. Further fractionation and purification yielded four major fractions containing fatty acids and beta-sitosterol as the active compounds. A dose-response curve of beta-sitosterol in the range 1 to 30 mg/kg doses indicated that this compound produced an anxiolytic-like action from 1 to 10 mg/kg and a sedative response when the dose was increased to 30 mg/kg, these effects resemble those produced by diazepam (0.1 mg/kg). Our results suggest that hexane extract of Tilia americana var. mexicana produces depressant actions on the central nervous system, at least in part, because of the presence of beta-sitosterol and some fatty acids that remain to be identified.

  18. Postglacial climate reconstruction based on compound-specific D/H ratios of fatty acids from Blood Pond, New England

    NASA Astrophysics Data System (ADS)

    Hou, Juzhi; Huang, Yongsong; Wang, Yi; Shuman, Bryan; Oswald, W. Wyatt; Faison, Edward; Foster, David R.

    2006-03-01

    We determined hydrogen isotope ratios of individual fatty acids in a sediment core from Blood Pond, Massachusetts, USA, in order to reconstruct climate changes during the past 15 kyr. In addition to palmitic acid (C16n-acid), which has been shown to record lake water D/H ratios, our surface sediments and down core data indicate that behenic acid (C22n-acid), produced mainly by aquatic macrophytes, is also effective for capturing past environmental change. Calibration using surface sediments from two transects across eastern North America indicates that behenic acid records δD variation of lake water. Down core variations in δD values of behenic acid and pollen taxa are consistent with the known climate change history of New England. By evaluating the hypothesis that D/H fractionations of long chain even numbered fatty acids (C24-C32n-acids) relative to lake water provide independent estimates of relative humidity during the growing season, we find that differences between lake-level records and isotopically inferred humidity estimates may provide useful insight into seasonal aspects of the hydrologic cycle. Combined analyses of D/H of short and long chain fatty acids from lake sediment cores thus allow reconstructions of both past temperature and growing season relative humidity. Comparison of δD records from two lakes in New England provides critical information on regional climate variation and abrupt climate change, such as the 8.2 ka event.

  19. Fatty acids, coumarins and polyphenolic compounds of Ficus carica L. cv. Dottato: variation of bioactive compounds and biological activity of aerial parts.

    PubMed

    Marrelli, Mariangela; Statti, Giancarlo A; Tundis, Rosa; Menichini, Francesco; Conforti, Filomena

    2014-01-01

    Leaves, bark and woody part of Ficus carica L. cultivar Dottato collected in different months were examined to assess their chemical composition, antioxidant activity and phototoxicity on C32 human melanoma cells after UVA irradiation. The phytochemical investigation revealed different composition in the coumarin, fatty acid, polyphenol and flavonoid content. The second harvest of leaves and the first harvest of the bark possessed the highest antiradical activity with IC50 values of 64.00 ± 0.59 and 67.00 ± 1.09 μg/mL, respectively. Harvest III of leaves showed the best inhibition of lipid peroxidation (IC50 = 1.48 ± 0.04 μg/mL). Leaf samples of F. carica showed also the best antiproliferative activity in comparison with bark and woody part of F. carica.

  20. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review.

    PubMed

    Reiffarth, D G; Petticrew, E L; Owens, P N; Lobb, D A

    2016-09-15

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C16 and C18.

  1. Influence of milk pretreatment on production of free fatty acids and volatile compounds in hard cheeses: heat treatment and mechanical agitation.

    PubMed

    Vélez, M A; Perotti, M C; Wolf, I V; Hynes, E R; Zalazar, C A

    2010-10-01

    This work aimed to identify technological steps that can increase fat hydrolysis and volatile compounds production in hard cheeses; these biochemical events have been related with improved piquant taste and development of genuine flavor during cheese ripening. For that purpose, 2 different pretreatments of cheese milk were tested: heat treatment and mechanical agitation. Both factors were assayed at 2 levels: milk was either batch pasteurized or nonthermally treated, and mechanical agitation was either applied or not applied. For all combinations, hard cheeses (Reggianito type) were produced in a pilot plant and ripened for 90 d. In all cheeses the degree of lipolysis, assessed by gas chromatography, increased similarly during ripening. However, the proportion of short-chain fatty acids was higher in the cheeses made with unpasteurized milk, suggesting a higher activity of lipases with positional specificity toward the sn-3 position of the triglyceride, among which milk lipoprotein lipase is found. Similar results were found for most of the volatile compounds, determined by solid-phase microextraction-gas chromatography flame-ionization detector/mass spectrometry, which constitute the groups of ketones, alcohols, esters, and the group of acids. On the contrary, no effect of mechanical agitation was observed, although some interactions between factors were found. In the conditions of the study, results suggest that heat treatment had a higher effect on cheese lipolysis and volatile compounds production than partial destabilization of the fat emulsion produced by the agitation method applied.

  2. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  3. Effect of the dietary supplementation of essential oils from rosemary and artemisia on muscle fatty acids and volatile compound profiles in Barbarine lambs.

    PubMed

    Vasta, Valentina; Aouadi, Dorra; Brogna, Daniela M R; Scerra, Manuel; Luciano, Giuseppe; Priolo, Alessandro; Ben Salem, Hichem

    2013-10-01

    Eighteen Barbarine lambs (3 months of age), were assigned for 95 days to 3 treatments: six lambs were fed a barley-based concentrate plus oat hay ad libitum (control group, C); other lambs received the control diet plus essential oil (400 ppm DM) either of Rosmarinus officinalis (R400 group; n=6) or of Artemisia herba alba (A400 group; n=6). At slaughter the muscle longissimus dorsi was sampled and subjected to fatty acid and volatile organic compounds (VOC) analyses. The A400 lambs presented a greater amount of vaccenic, rumenic and linolenic acids and of polyunsaturated fatty acids (PUFA) in meat than the C and R400 animals. Essential oils supplementation did not affect meat VOC profile though the sesquiterpenes copaene and β-caryophyllene were detected only in the meat of R400 and A400 lambs. It is concluded that the supplementation of rosemary or artemisia essential oils does not produce detrimental effects on lamb meat VOC profile. The supplementation of artemisia can improve meat healthy properties.

  4. Consumption of argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squalene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects.

    PubMed

    Khallouki, F; Younos, C; Soulimani, R; Oster, T; Charrouf, Z; Spiegelhalder, B; Bartsch, H; Owen, R W

    2003-02-01

    The aim of this study was to evaluate the fatty acids, tocopherols, squalene, sterols and phenolic antioxidants in three types of argan oil (Moroccan food, Moroccan aesthetic and a French commercial variety) along with a basic comparison with extra virgin olive and sunflower oil. The fatty acid profiles in the argan oils were very similar, with oleic acid (43%) and linoleic acid (36%) and their respective monoacylglycerols predominating. The major vitamer identified was -tocopherol with a mean of 483+/-11 mg/kg, in contrast to -tocopherol, which is the major vitamer in olive (190+/-1 mg/kg) and sunflower oil (532+/-6 mg/kg). The squalene content of the argan oils was very similar with a mean of 313+/-4 mg/100 g, which is lower than that of the olive oil (499 mg/100 g) but significantly higher than in the sunflower oil (6 mg/100 g). In contrast to olive and sunflower oils in which -sitosterol is predominant, the major sterols detected in the argan oils were schottenol (mean 147+/-10 mg/kg) and spinasterol (mean 122+/-10 mg/kg). The only phenolic compounds other than the tocopherol vitamers which could be readily detected and quantitated were vanillic, syringic and ferulic (probably conjugated to glucose) acids along with tyrosol. In contrast to the extra virgin olive oil (793 mg/kg), the concentration of total phenolic compounds is extremely low (<5.0 mg/kg). Nevertheless, argan oil with its high content of the vitamer -tocopherol, squalene and oleic acid is likely to enhance the cancer prevention effects of the Moroccan diet.

  5. Vertical distributions of bound saturated fatty acids and compound-specific stable carbon isotope compositions in sediments of two lakes in China: implication for the influence of eutrophication.

    PubMed

    Wang, Lifang; Xiong, Yongqiang; Wu, Fengchang; Li, Qiuhua; Lin, Tian; Giesy, John P

    2014-11-01

    Lakes Dianchi (DC) and Bosten (BST) were determined to be at different stages of eutrophication, by use of total organic carbon content, bulk carbon isotopic composition, bulk nitrogen isotopic composition, and bound saturated fatty acid (BSFA) concentrations in sediment cores. A rapid increase in the supply of organic matter (OM) to DC began after the 1950s, while the environment and trophic status of BST remained constant as indicated by characteristics of OM input to sediments. The BSFA ratios of nC14 + nC16 + nC18/nC24 + nC26 + nC28 increase upward from 7 to 13 in the DC core, which are significantly greater than those from BST (2 to 3). This result is consistent with algae or bacteria being the dominant contribution of the OM increase induced by eutrophication in DC. The positive shift of nC16 compound-specific δ (13)C in the upper section might be an indicator of excess algal productivity, which was observed in the two lakes. The positive shifts of compound-specific δ (13)C of other BSFAs were also observed in the upper section of the core only from DC. The observed trends of compound-specific δ(13)C of BSFA originated from different sources became more consistent, which reflected the intensified eutrophication had profoundly affected production and preservation of OM in DC. The results observed for BST indicated that accumulation of algae did not affect the entire aquatic ecosystem until now.

  6. Metabolism of Seriola lalandi during Starvation as Revealed by Fatty Acid Analysis and Compound-Specific Analysis of Stable Isotopes within Amino Acids

    PubMed Central

    Barreto-Curiel, Fernando; Focken, Ulfert; D’Abramo, Louis R.

    2017-01-01

    Fish starvation is defined as food deprivation for a long period of time, such that physiological processes become confined to basal metabolism. Starvation provides insights in physiological processes without interference from unknown factors in digestion and nutrient absorption occurring in fed state. Juveniles of amberjack Seriola lalandi were isotopically equilibrated to a formulated diet for 60 days. One treatment consisted of fish that continued to be fed and fish in the other treatment were not fed for 35 days. The isotopic signatures prior to the beginning of and after the starvation period, for fish in the starvation and control treatments, were analysed for lipid content, fatty acid composition and isotopic analysis of bulk (EA-IRMS) and of amino acids (compound specific isotope analysis, CSIA). There were three replicates for the starvation group. Fatty acid content in muscle and liver tissue before and after starvation was determined to calculate percent change. Results showed that crude lipid was the most used source of energy in most cases; the PUFAs and LC-PUFAs were highly conserved. According to the protein signature in bulk (δ15N) and per amino acid (δ13C and δ15N), in muscle tissue, protein synthesis did not appear to occur substantially during starvation, whereas in liver, increases in δ13C and δ15N indicate that protein turnover occurred, probably for metabolic routing to energy-yielding processes. As a result, isotopic values of δ15N in muscle tissue do not change, whereas CSIA net change occurred in the liver tissue. During the study period of 35 days, muscle protein was largely conserved, being neither replenished from amino acid pools in the plasma and liver nor catabolized. PMID:28095488

  7. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (ω-3 FA) source, containing 1.63 g/100mL of α-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ω-3 FA and PSE.

  8. Fatty Acid and Phenolic Compound Concentrations in Eight Different Monovarietal Virgin Olive Oils from Extremadura and the Relationship with Oxidative Stability

    PubMed Central

    Montaño, Alfonso; Hernández, Marcos; Garrido, Inmaculada; Llerena, José Luís; Espinosa, Francisco

    2016-01-01

    Olive oils have been shown to be more resistant to oxidation than other vegetable fats, mainly due to their fatty acid (FA) profile which is rich in oleic acid and to their high content of antioxidants, principally phenols and tocopherols. This has situated virgin olive oils (VOOs) among the fats of high nutritional quality. However, it is important to stress that the oil’s commercial category (olive oil, virgin olive oil, extra-virgin olive oil), the variety of the source plant, and the extraction-conservation systems all decisively influence the concentration of these antioxidants and the oil’s shelf-life. The present work studied the fatty acid (FA) and phenolic composition and the oxidative stability (OS) of eight olive varieties grown in Extremadura (Arbequina, Cornicabra, Manzanilla Cacereña, Manzanilla de Sevilla, Morisca, Pico Limón, Picual, and Verdial de Badajoz), with the olives being harvested at different locations and dates. The Cornicabra, Picual, and Manzanilla Cacereña VOOs were found to have high oleic acid contents (>77.0%), while the VOOs of Morisca and Verdial de Badajoz had high linoleic acid contents (>14.5%). Regarding the phenol content, high values were found in the Cornicabra (633 mg·kg−1) and Morisca (550 mg·kg−1) VOOs, and low values in Arbequina (200 mg·kg−1). The OS was found to depend upon both the variety and the date of harvesting. It was higher in the Cornicabra and Picual oils (>55 h), and lower in those of Verdial de Badajoz (26.3 h), Arbequina (29.8 h), and Morisca (31.5 h). In relating phenols and FAs with the OS, it was observed that, while the latter, particularly the linoleic content (R = −0.710, p < 0.001, n = 135), constitute the most influential factors, the phenolic compounds, especially o-diphenols, are equally influential when the oils’ linoleic content is ≥12.5% (R = 0.674, p < 0.001, n = 47). The results show that VOOs’ resistance to oxidation depends not only on the FA or phenolic profile

  9. Fatty Acid and Phenolic Compound Concentrations in Eight Different Monovarietal Virgin Olive Oils from Extremadura and the Relationship with Oxidative Stability.

    PubMed

    Montaño, Alfonso; Hernández, Marcos; Garrido, Inmaculada; Llerena, José Luís; Espinosa, Francisco

    2016-11-23

    Olive oils have been shown to be more resistant to oxidation than other vegetable fats, mainly due to their fatty acid (FA) profile which is rich in oleic acid and to their high content of antioxidants, principally phenols and tocopherols. This has situated virgin olive oils (VOOs) among the fats of high nutritional quality. However, it is important to stress that the oil's commercial category (olive oil, virgin olive oil, extra-virgin olive oil), the variety of the source plant, and the extraction-conservation systems all decisively influence the concentration of these antioxidants and the oil's shelf-life. The present work studied the fatty acid (FA) and phenolic composition and the oxidative stability (OS) of eight olive varieties grown in Extremadura (Arbequina, Cornicabra, Manzanilla Cacereña, Manzanilla de Sevilla, Morisca, Pico Limón, Picual, and Verdial de Badajoz), with the olives being harvested at different locations and dates. The Cornicabra, Picual, and Manzanilla Cacereña VOOs were found to have high oleic acid contents (>77.0%), while the VOOs of Morisca and Verdial de Badajoz had high linoleic acid contents (>14.5%). Regarding the phenol content, high values were found in the Cornicabra (633 mg·kg(-1)) and Morisca (550 mg·kg(-1)) VOOs, and low values in Arbequina (200 mg·kg(-1)). The OS was found to depend upon both the variety and the date of harvesting. It was higher in the Cornicabra and Picual oils (>55 h), and lower in those of Verdial de Badajoz (26.3 h), Arbequina (29.8 h), and Morisca (31.5 h). In relating phenols and FAs with the OS, it was observed that, while the latter, particularly the linoleic content (R = -0.710, p < 0.001, n = 135), constitute the most influential factors, the phenolic compounds, especially o-diphenols, are equally influential when the oils' linoleic content is ≥12.5% (R = 0.674, p < 0.001, n = 47). The results show that VOOs' resistance to oxidation depends not only on the FA or phenolic profile, but also on

  10. Recovery of valuable soluble compounds from washing waters generated during small fatty pelagic surimi processing by membrane processes.

    PubMed

    Dumay, J; Radier, S; Barnathan, G; Bergé, J P; Jaouen, P

    2008-04-01

    This work focuses on the treatment of washing waters coming from surimi manufacturing using ultrafiltration technology at a laboratory scale. Four membrane materials (poly-ether sulfone, polyacrilonytrile, poly vinylidene fluoride and regenerated cellulose) and 5 Molecular Weight Cut-Off (from 3 to 100 kDa) have been studied at bench laboratory scale using the pilot Rayflow 100, commercialised by Rhodia Orelis. The investigation deals with the ability for membranes to offer a high retention of biochemical compounds (proteins and lipids). Results obtained during adsorption tests showed that the regenerated cellulose material seems to be the most appropriate with regards to pore size reduction due to the protein-adsorption. During the ultrafiltration of the washing water, the regenerated cellulose material leads to the best results, followed by the polyacrylonitrile and poly-vinylidene fluoride materials. Poor results were obtained with polyether sulfone membrane. Compared to the other materials, the regenerated cellulose is the easiest to regenerate, with minimal cleaning water and no chemical treatment necessary. Biochemical characterization of the fractions generated during the ultrafiltration with the polyacrilonytrile, poly vinylidene fluoride and regenerated cellulose membranes showed that all the membranes provided a high recovery rate of the lipids and proteins. The 10 kDa regenerated cellulose membrane had the highest performance and was further evaluated. With such a treatment, the chemical oxygen demand was reduced by 75%. By performing hydrolysis followed by a centrifugation, biochemical composition of the sludge and liquid fraction were modified, producing an insoluble fraction containing fats and few proteins and a soluble fraction containing proteins and few fats. The sludge, initially insoluble, was mainly solubilized during hydrolysis, and lipids and peptides were concentrated by ultrafiltration.

  11. New Bioactive Fatty Acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  12. New bioactive fatty acids

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  13. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.

    PubMed

    Foskolos, A; Siurana, A; Rodriquez-Prado, M; Ferret, A; Bravo, D; Calsamiglia, S

    2015-08-01

    The ban on the use of antibiotics as growth promoters in animal feeds in the European Union has stimulated research on potential alternatives. Recently, propyl-propane thiosulfonate (PTSO), a stable organosulfurate compound of garlic, was purified. The objectives of the current study were to investigate the potential effects of PTSO on rumen microbial fermentation and to define effective doses. Two experiments were conducted using dual-flow continuous culture fermenters in 2 replicated periods. Each experimental period consisted of 5 d for adaptation of the ruminal fluid and 3 d for sampling. Temperature (39°C), pH (6.4), and liquid (0.10 h(-1)) and solid (0.05 h(-1)) dilution rates were maintained constant. Samples were taken 2 h after feeding and from the 24-h effluent. Samples were analyzed for volatile fatty acids (VFA) and nitrogen fractions, and degradation of nutrients was calculated. In addition, 24-h effluents from experiment 2 were analyzed for their fatty acid (FA) profile. Treatments in experiment 1 included a negative control without additive, a positive control with monensin (12mg/L), and PTSO at 30 and 300mg/L. The addition of 30mg/L did not affect any of the measurements tested. The addition of 300mg/L reduced microbial fermentation, as suggested by the decreased total VFA concentration, true degradation of organic matter and acid detergent fiber, and a tendency to decrease neutral detergent fiber degradation. Experiment 2 was conducted to test increasing doses of PTSO (0, 50, 100, and 150mg/L) on rumen microbial fermentation. At 2 h postfeeding, total VFA and molar proportion of propionate responded quadratically, with higher values in the intermediate doses. Molar proportions of butyrate increased and branched-chain VFA decreased linearly as the dose of PTSO increased. In the 24-h effluents, total VFA, acetate, and branched-chain VFA concentrations decreased linearly and those of propionate responded cubically with the highest value at 100mg

  14. Fatty acids - trans fatty acids

    USDA-ARS?s Scientific Manuscript database

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  15. PROPERTIES OF MONOLAYERS OF OMEGAMONOHALOGENATED FATTY ACIDS AND ALCOHOLS ABSORBED ON WATER.

    DTIC Science & Technology

    FATTY ACIDS , *ALCOHOLS, MONOMOLECULAR FILMS, MONOMOLECULAR FILMS, HALOGENS, CHLORINE COMPOUNDS, FLUORINE COMPOUNDS, IODINE COMPOUNDS, SURFACE PROPERTIES, SURFACES, DIPOLE MOMENTS, IONS, PH FACTOR, WATER, ADSORPTION.

  16. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    PubMed

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Efficacy of herbomineral compounds and pathya (Ayurvedic dietary regime and physical exercise) in the management of Yakṛt Roga (Non-alcoholic fatty liver disease)

    PubMed Central

    Singhal, Pragya; Nesari, Tanuja; Gupta, Girja Shankar

    2015-01-01

    Background: Nonalcoholic fatty liver disease (NAFLD) also called as hepatic steatosis is a manifestation of excessive triglyceride accumulation in the liver. NAFLD has been described by histological features ranging from simple fatty liver, nonalcoholic steatohepatitis, progressive fibrosis, and liver failure. Objective: The objective was to evaluate the effect of herbomineral drugs and pathya (Ayurvedic dietary regime and physical exercise) in the management of NAFLD. Materials and Methods: It is a randomized, retrospective, open-ended study. A total of 32 patients presenting with raised alanine transaminase (>1.5 times normal levels) combined with sonological evidence of fatty liver in the absence of any other detectable cause of liver disease were included in the study. The recruited patients were randomly divided into two groups - The patients in Group-A (n = 21) were given a combination of herbomineral drugs Ārogyavardhinī vaṭi and Triphalā Guggulu along with prescription of pathya (Ayurvedic dietary regime and physical exercise); the patients in Group-B (n = 11) were advised only pathya. Results: Group-A (combined therapy group) showed statistically significant improvement in clinical symptoms, biochemical parameters-liver function test, lipid profile, fasting blood sugar, and body mass index (P < 0.001) in comparison to Group-B (pathya group). Conclusion: Combination of herbomineral drugs along with pathya has shown promising results toward the effective management of this metabolic disorder. PMID:26283807

  18. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    PubMed

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Chlorpromazine-induced perturbations of bile acids and free fatty acids in cholestatic liver injury prevented by the Chinese herbal compound Yin-Chen-Hao-Tang.

    PubMed

    Yang, Qiaoling; Yang, Fan; Tang, Xiaowen; Ding, Lili; Xu, Ying; Xiong, Yinhua; Wang, Zhengtao; Yang, Li

    2015-04-16

    Yin-Chen-Hao-Tang (YCHT), a commonly used as a traditional chinese medicine for liver disease. Several studies indicated that YCHT may improving hepatic triglyceride metabolism and anti-apoptotic response as well as decreasing oxidative stress .However, little is known about the role of YCHT in chlorpromazine (CPZ) -induced chlolestatic liver injury. Therefore, we aimed to facilitate the understanding of the pathogenesis of cholestatic liver injury and evaluate the effect of Yin-Chen-Hao-Tang (YCHT) on chlorpromazine (CPZ)-induced cholestatic liver injury in rats based on the change of bile acids (BAs) and free fatty acids (FFAs) alone with the biochemical indicators and histological examination. We conducted an experiment on CPZ-induced cholestatic liver injury in Wistar rats with and without YCHT for nine consecutive days. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) were measured to evaluate the protective effect of YCHT against chlorpromazine (CPZ)-induced cholestatic liver injury. Histopathology of the liver tissue showed that pathological injuries were relieved after YCHT pretreatment. In addition, ultra-performance lipid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) was applied to determine the content of bile acids, free fatty acids, respectively. Obtained data showed that YCHT attenuated the effect of CPZ-induced cholestatic liver injury, which was manifested by the serum biochemical parameters and histopathology of the liver tissue. YCHT regulated the lipid levels as indicated by the reversed serum levels of TC, TG, and LDL-C. YCHT also regulated the disorder of BA and FFA metabolism by CPZ induction. Results indicated that YCHT exerted a protective effect on CPZ-induced cholestasis liver injury. The variance of

  20. 1-(3-biaryloxy-2-oxopropyl)indole-5-carboxylic acids and related compounds as dual inhibitors of human cytosolic phospholipase A2α and fatty acid amide hydrolase.

    PubMed

    Zahov, Stefan; Drews, Andreas; Hess, Mark; Schulze Elfringhoff, Alwine; Lehr, Matthias

    2011-03-07

    Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes that have emerged as attractive targets for the development of analgesic and anti-inflammatory drugs. We recently reported that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (5) is a dual inhibitor of cPLA2α and FAAH. Structure-activity relationship studies revealed that substituents at the indole 3- and 5-positions and replacement of the indole scaffold of this compound by other heterocycles strongly influences the inhibitory potency against cPLA2α and FAAH, respectively. Herein we report the effect of variation of the 4-octyl residue of 5 and an exchange of its carboxylic acid moiety by some bioisosteric functional groups. Several of the compounds assayed were favorably active against both enzymes, and could therefore represent agents with improved analgesic and anti-inflammatory qualities in comparison with selective cPLA2 α and FAAH inhibitors.

  1. Influence of dietary sesamin, a bioactive compound on fatty acids and expression of some lipid regulating genes in Baltic Atlantic salmon (Salmo salar L.) juveniles.

    PubMed

    Trattner, S; Ruyter, B; Ostbye, T K; Kamal-Eldin, A; Moazzami, A; Pan, J; Gjoen, T; Brännäs, E; Zlabek, V; Pickova, J

    2011-01-01

    The effects of inclusion of sesamin / episesamin in Baltic Atlantic salmon (Salmo salar L.) diets based on vegetable oils were studied. The study was designed as a dose response study with two control diets, one diet based on fish oil (FO) and one diet based on a mixture of linseed and sunflower oil (6:4 by vol.) (MO). As experimental diets three different levels of inclusion of sesamin / episesamin (hereafter named sesamin) to the MO based diet and one diet based on sesame oil and linseed oil (SesO) (1:1 by vol.) were used. The dietary oils were mirrored in the fatty acid profile of the white muscle. Sesamin significantly decreased the levels of 18:3n-3 in the white muscle phospholipid (PL) fraction of all groups fed sesamin, no significant differences were found in the triacylglycerol fraction (TAG). Slightly increased levels of docosahexaenoic acid (22:6n-3, DHA) in PL and TAG were found in some of the sesamin fed groups. Sesamin significantly affected the expression of peroxisome proliferator-activated receptor alpha, scavenger receptor type B and hormone sensitive lipase, in agreement with previous studies on rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar L.) hepatocytes published by our group. No significant effects on toxicological response measured as ethoxyresorufin O-deethylase activity was found. The total cytochrome P450 enzymes were significantly higher in MO 0.29 and SesO group. The amount of alpha- and gamma-tocopherols in liver and the amount of gamma-tocopherol in white muscle were significantly lower in fish fed the FO diet compared to the MO diet, but no difference after inclusion of sesamin was found in this study. Increased inclusion of sesamin increased the levels of sesamin and episesamin in the liver, but did not affect the amounts in white muscle.

  2. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  3. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  4. Naturally occurring fatty acids: Source, chemistry, and uses

    USDA-ARS?s Scientific Manuscript database

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  5. Incorporation of sunflower oil or linseed oil in equine compound feedstuff: 1 Effects on haematology and on fatty acids profiles in the red blood cells membranes.

    PubMed

    Patoux, S; Istasse, L

    2016-10-01

    Eight trained horses (6 mares - 2 geldings, 6 Selle Français, 2 Trotteur Français, 12 ± 5.8 years old, 538 ± 72.5 kg) were offered three diets to potentially affect haematology and the fatty acids (FA) profiles in red blood cells (RBC) membranes. The control diet was composed of 50% hay and 50% concentrate containing mainly rolled barley (48%) and whole spelt (48%). In the case of sunflower oil diet, sunflower oil (62.0% of α-linoleic acid, LA) was incorporated at a rate of 8% and substituted by an equal proportion of barley. In the linseed oil diet, first cold-pressed linseed oil (56.0% of α-linolenic acid, ALA) was utilised at a similar incorporation rate of 8%. The experimental design consisted of three 3 × 3 latin squares with one being incomplete. Each period lasted 8 weeks. On average, the total feed intake (straw excluded) was 6.2 kg/day and the oil intake 0.278 kg/day. The oils significantly increased the concentrations of RBC, haemoglobin and haematocrit. The oils had no significant impact on the haematology profiles except that platelets tended to decrease in both oil-based diets. The most abundant FA in the RBC membranes of the control diet samples were in the decreasing order LA, C18:1n9-7, C18:0, C16:0 and the arachidonic acid (ARA) respectively. The sunflower oil supplementation slightly increased the amount of LA (36.23 vs. 34.72 mg/dl, p = 0.55) and C22:4n-6 (0.21 vs. 0.09 mg/dl, p = 0.22), while the decrease was observed in case of other FA (C16:1n-7, 1.08 vs. 1.42 mg/dl, p = 0.03), C20:3n-6 (0.22 vs. 0.31 mg/dl, p = 0.02), and ARA (1.17 vs. 1.63 mg/dl, p = 0.08). Linseed oil induced similar effects in the n-6 series FA profiles. In the context of practical applications, our results show that linseed oil incorporation in the diet could improve the haematology and the n-3 FA profiles potentially leading to an increased performance. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  6. Magnitude Differences in Bioactive Compounds, Chemical Functional Groups, Fatty Acid Profiles, Nutrient Degradation and Digestion, Molecular Structure, and Metabolic Characteristics of Protein in Newly Developed Yellow-Seeded and Black-Seeded Canola Lines.

    PubMed

    Theodoridou, Katerina; Zhang, Xuewei; Vail, Sally; Yu, Peiqiang

    2015-06-10

    Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P < 0.05) compared to the CS-B line. The glucosinolate compounds differed (P < 0.05) in terms of 4-pentenyl, phenylethyl, 3-CH3-indolyl, and 3-butenyl glucosinolates (2.9 vs 1.0 μmol/g) between the CS-Y and CS-B lines. For bioactive compounds, total polyphenols tended to be different (6.3 vs 7.2 g/kg DM), but there were no differences in erucic acid and condensed tannins with averages of 0.3 and 3.1 g/kg DM, respectively. When protein was portioned into five subfractions, significant differences were found in PA, PB1 (65 vs 79 g/kg CP), PB2, and PC fractions (10 vs 33 g/kg CP), indicating protein degradation and supply to small intestine differed between two new lines. In terms of protein structure spectral

  7. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  8. Three approaches to fuels from fatty compounds

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, the alkyl esters, usually methyl esters, of vegetable oils, animal fats, or other triacylglycerol-containing materials, are the most common approach to producing a fuel from the mentioned materials. This fuel is obtained by transesterifying the oil or fat with an alcohol, usually methanol...

  9. THE BASIS OF STABILITY IN LYSINE AND ARGININE SALTS OF UNSATURATED FATTY ACIDS.

    DTIC Science & Technology

    LINOLEIC ACID , STABILIZATION), (* FATTY ACIDS , STABILITY), (*AMINO ACIDS , SALTS), (*ANTIOXIDANTS, AMINO ACIDS ), DEHYDRATED FOODS, ADDITIVES...PRESERVATION, COMPLEX COMPOUNDS, ELECTRICAL CONDUCTIVITY, INFRARED SPECTRA, NUCLEAR MAGNETIC RESONANCE, CHROMATOGRAPHIC ANALYSIS, X RAY DIFFRACTION, CRYSTAL LATTICES, MOLECULAR ISOMERISM, FATTY ACID ESTERS

  10. Antibacterial Targets in Fatty Acid Biosynthesis

    PubMed Central

    Wright, H. Tonie; Reynolds, Kevin A.

    2008-01-01

    Summary The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for development of new anti-bacterial agents. The extended use of the anti-tuberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for anti-bacterial development. Differences in subcellular organization of the bacterial and eukaryotic multi-enzyme fatty acid synthase systems offer the prospect of inhibitors with host vs. target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalogue of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes. PMID:17707686

  11. Antibacterial targets in fatty acid biosynthesis.

    PubMed

    Wright, H Tonie; Reynolds, Kevin A

    2007-10-01

    The fatty acid biosynthesis pathway is an attractive but still largely unexploited target for the development of new antibacterial agents. The extended use of the antituberculosis drug isoniazid and the antiseptic triclosan, which are inhibitors of fatty acid biosynthesis, validates this pathway as a target for antibacterial development. Differences in subcellular organization of the bacterial and eukaryotic multienzyme fatty acid synthase systems offer the prospect of inhibitors with host versus target specificity. Platensimycin, platencin, and phomallenic acids, newly discovered natural product inhibitors of the condensation steps in fatty acid biosynthesis, represent new classes of compounds with antibiotic potential. An almost complete catalog of crystal structures for the enzymes of the type II fatty acid biosynthesis pathway can now be exploited in the rational design of new inhibitors, as well as the recently published crystal structures of type I FAS complexes.

  12. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  13. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.

    PubMed

    Rowland, Owen; Domergue, Frédéric

    2012-09-01

    Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols.

  14. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth.

    PubMed

    Liu, Yilan; Chen, Ting; Yang, Maohua; Wang, Caixia; Huo, Weiyan; Yan, Daojiang; Chen, Jinjin; Zhou, Jiemin; Xing, Jianmin

    2014-01-03

    Microbial production of fatty acids and fatty alcohols has attracted increasing concerns because of energy crisis and environmental impact of fossil fuels. Therefore, simple and efficient methods for the extraction and quantification of these compounds become necessary. In this study, a high-performance liquid chromatography-refractive index detection (HPLC-RID) method was developed for the simultaneous quantification of fatty acids and fatty alcohols in these samples. The optimum chromatographic conditions are C18 column eluted with methanol:water:acetic acid (90:9.9:0.1, v/v/v); column temperature, 26°C; flow rate, 1.0mL/min. Calibration curves of all selected analytes showed good linearity (r(2)≥0.9989). The intra-day and inter-day relative standard deviations (RSDs) of the 10 compounds were less than 4.46% and 5.38%, respectively, which indicated that the method had good repeatability and precision. Besides, a method for simultaneous extraction of fatty acids and fatty alcohols from fermentation broth was optimized by orthogonal design. The optimal extraction conditions were as follows: solvent, ethyl acetate; solvent to sample ratio, 0.5:1; rotation speed, 2min at 260rpm; extraction temperature, 10°C. This study provides simple and fast methods to simultaneously extract and quantify fatty acids and fatty alcohols for the first time. It will be useful for the study of microbial production of these products. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I.

    PubMed

    Boshoff, Helena I; Mizrahi, Valerie; Barry, Clifton E

    2002-04-01

    The effects of low extracellular pH and intracellular accumulation of weak organic acids were compared with respect to fatty acid synthesis by whole cells of Mycobacterium tuberculosis and Mycobacterium smegmatis. The profile of fatty acids synthesized during exposure to benzoic, nicotinic, or pyrazinoic acids, as well as that observed during intracellular hydrolysis of the corresponding amides, was not a direct consequence of modulation of fatty acid synthesis by these compounds but reflected the response to inorganic acid stress. Analysis of fatty acid synthesis in crude mycobacterial cell extracts demonstrated that pyrazinoic acid failed to directly modulate the fatty acid synthase activity catalyzed by fatty acid synthase I (FAS-I). However, fatty acid synthesis was irreversibly inhibited by 5-chloro-pyrazinamide in a time-dependent fashion. Moreover, we demonstrate that pyrazinoic acid does not inhibit purified mycobacterial FAS-I, suggesting that this enzyme is not the immediate target of pyrazinamide.

  16. Distillation of natural fatty acids and their chemical derivatives

    USDA-ARS?s Scientific Manuscript database

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  17. Evaluation of volatile compounds and free fatty acids in set types yogurts made of ewes', goats' milk and their mixture using two different commercial starter cultures during refrigerated storage.

    PubMed

    Güler, Zehra; Gürsoy-Balcı, Alev Canan

    2011-08-01

    Six different types of yogurt were manufactured from Damascus goat milk, Awassi ewe milk and a mixture of equal portions of the 2 species of milk using 2 types of commercial yogurt cultures (CH-1 and YF-3331). Yogurts were chemically analysed at 1, 7, 14 and 21days of storage. Results showed that cultures significantly affected acetaldehyde (P<0.05), acetone (P<0.05) and diacetyl (P<0.001) contents. Type of milk significantly influenced acetaldehyde (P<0.05), diacetyl (P<0.001), acetoin (P<0.001) and ethanol (P<0.05) levels. Significant variations occurred in acetaldehyde (P<0.001) and acetoin (P<0.05) contents during the storage. Short-chain free fatty acids were the highest in ewes' milk yogurt made with culture YF-3331, and increased during storage, while the levels of medium-chain free fatty acids, except for decanoic acid, were unchanged and the amount of long-chain free fatty acids decreased during storage. Cultures used and types of milk had no effect on long-chain free fatty acids in yogurts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Inhibition of volatile compounds derived from fatty acid oxygenation with chilling and heating treatments and their influences on the oxylipin pathawy gene expression and enzyme activity levels in tomato (Solanum lycopersicon

    USDA-ARS?s Scientific Manuscript database

    Hexanal, Z-3-hexenal, E-2-hexenal, hexanol and Z-3-hexenol are major tomato (Solanum Lycopersicon) volatile aromas derived from oxygenation of unsaturated fatty acids. Chilling or heating treatments suppress production of these C6 volatiles. The objective of this research was to determine the respon...

  19. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  20. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  1. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  2. Inhibition of Ileal Water Absorption by Intraluminal Fatty Acids INFLUENCE OF CHAIN LENGTH, HYDROXYLATION, AND CONJUGATION OF FATTY ACIDS

    PubMed Central

    Ammon, Helmut V.; Phillips, Sidney F.

    1974-01-01

    The influence of fatty acids on ileal absorption of water, electrolytes, glucose, and taurocholate was examined in Thirty-Vella fistulas in five mongrel dogs. Fatty acid absorption also was measured. Segments of terminal ileum were perfused at steady state with isotonic electrolyte solutions containing 11.2 mM glucose, 4.5 mM taurocholate, and 0.1-5.0 mM fatty acid. Three C18 fatty acids, oleic acid, 10(9)-hydroxystearic acid, and ricinoleic acid, completely inhibited water absorption at 5 mM. Sodium, chloride, and potassium absorptions were inhibited in parallel with absorption of water. Differences between the potencies of C18 fatty acids were apparent when lesser concentrations were perfused. Dodecanoic and decanoic acids were as effective as C18 fatty acids at 5 mM but octanoic and hexanoic acids were ineffective. The polar group of C18 fatty acids was modified by conjugating oleic and ricinoleic acids with taurine. When these compounds and a substituted C18 fatty acid, p-n-decylbenzenesulfonate, were perfused, water absorption was also inhibited. Short-chain fatty acids (C3 and C4) and their hydroxylated derivatives were ineffective at 5 mM. When water absorption was inhibited, absorption of glucose and taurocholate was decreased. We speculate that the phenomenon of inhibition of water and electrolyte absorption by fatty acids may be relevant to steatorrhea and diarrhea in man. Images PMID:4808636

  3. Characterization and quantification of odor-active compounds in unsaturated fatty acid/conjugated linoleic acid (UFA/CLA)-enriched butter and in conventional butter during storage and induced oxidation.

    PubMed

    Mallia, Silvia; Escher, Felix; Dubois, Sébastien; Schieberle, Peter; Schlichtherle-Cerny, Hedwig

    2009-08-26

    Dairy products enriched in unsaturated fatty acids (UFA) and conjugated linoleic acids (CLA) have a higher nutritional value and are suggested to have beneficial health effects. However, such acids are susceptible to oxidation, and off-flavors may be formed during storage. This study was aimed to compare the most important odorants in UFA/CLA-enriched butter to that of conventional butter during storage and induced oxidation. Volatiles were isolated by solvent-assisted flavor evaporation and identified by gas chromatography-olfactometry and mass spectrometry. Aroma extract dilution analysis revealed 18 odorants that were quantified by stable isotope dilution analysis. Another important odorant, 3-methyl-1H-indole (mothball-like odor), was quantified by high-performance liquid chromatography. After storage, UFA/CLA-enriched butter showed higher concentrations of pentanal (fatty), heptanal (green), butanoic acid (cheesy), and delta-decalactone (peach-like). Photo-oxidation of butter samples induced increases in heptanal, (E)-2-octenal, and trans-4,5-epoxy-(E)-2-decenal, especially in conventional butter. The higher vitamin content in UFA/CLA samples may protect this butter from oxidation.

  4. Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids

    USDA-ARS?s Scientific Manuscript database

    Thespesia populnea belongs to the plant family of Malvaceae which contain cyclopropane and cyclopropene fatty acids. However, previous literature reports vary regarding the content of these compounds in Thespesia populnea seed oil. In this work, the content of malvalic acid (8,9-methylene-9-heptade...

  5. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids.

  6. Quantification of primary fatty acid amides in commercial tallow and tallow fatty acid methyl esters by HPLC-APCI-MS.

    PubMed

    Madl, Tobias; Mittelbach, Martin

    2005-04-01

    Primary fatty acid amides are a group of biologically highly active compounds which were already identified in nature. Here, these substances were determined in tallow and tallow fatty acid methyl esters for the first time. As tallow is growing in importance as an oleochemical feedstock for the soap manufacturing, the surfactant as well as the biodiesel industry, the amounts of primary fatty acid amides have to be considered. As these compounds are insoluble in tallow as well as in the corresponding product e.g. tallow fatty acid methyl esters, filter plugging can occur. For the quantification in these matrices a purification step and a LC-APCI-MS method were developed. Although quantification of these compounds can be performed by GC-MS, the presented approach omitted any derivatization and increased the sensitivity by two orders of magnitude. Internal standard calibration using heptadecanoic acid amide and validation of the method yielded a limit of detection of 18.5 fmol and recoveries for the tallow and fatty acid methyl ester matrices of 93% and 95%, respectively. A group of commercially available samples were investigated for their content of fatty acid amides resulting in an amount of up to 0.54%m/m (g per 100 g) in tallow and up to 0.16%m/m (g per 100 g) in fatty acid methyl esters.

  7. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  8. History of fatty acids

    USDA-ARS?s Scientific Manuscript database

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  9. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  10. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  11. Maintaining postharvest quality of cold stored 'Hass' avocados by altering the fatty acids content and composition with the use of natural volatile compounds - methyl jasmonate and methyl salicylate.

    PubMed

    Glowacz, Marcin; Bill, Malick; Tinyane, Peter P; Sivakumar, Dharini

    2017-04-26

    Low temperatures are often used to reduce metabolic processes and extend the storage life of fruit; however, in the case of avocado, a temperature below 3 °C will often result in the development of physiological disorders associated with chilling injury. The objective of this study was to investigate the ability of methyl jasmonate (MeJA) and methyl salicylate (MeSA) vapours to alleviate chilling injury in 'Hass' avocado fruit kept at 2 °C for 21 days followed by 6-7 days of shelf-life at 20 °C, simulating supply chain conditions. The incidence and severity of chilling injury were significantly reduced in MeJA- and MeSA-exposed fruit, especially at 100 µmol L(-1) . The mechanism involved improved membrane integrity via alteration of the fatty acid content and composition, down-regulation of LOX gene expression and reduced activity of lipoxygenase. MeJA and MeSA have the potential for being used with 'Hass' avocado fruit shipped at low temperature to reduce its susceptibility to chilling injury. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography.

    PubMed

    Aveldano, M I; VanRollins, M; Horrocks, L A

    1983-01-01

    Reverse phase high pressure liquid chromatography (HPLC) on octadecylsilyl columns separates mixtures of either free fatty acids or fatty acid methyl esters prepared from mammalian tissue phospholipids. Acetonitrile-water mixtures are used for the elution of esters. Aqueous phosphoric acid is substituted for water for the separation of the free acids. Unsaturated compounds are detected and quantitated by their absorption at 192 nm. Saturates are detected better at 205 nm. The order of elution of fatty acids in complex mixtures varies as a function of acetonitrile concentration. At any given concentration, some compounds overlap. However, by varying the solvent strength, any fatty acid of interest can be resolved including many geometrical and positional isomers. Methyl esters prefractionated according to unsaturation by argentation thin-layer chromatography (TLC) are rapidly and completely separated by elution with CH3CN alone. Argentation TLC-reverse phase HPLC can be used as an analytical as well as a preparative procedure. Octylsilyl columns are used for rapid resolution and improved detection of minor or low ultraviolet-absorbing components in the fractions. For example, monoenoic fatty acids with up to 32 carbons have been detected in bovine brain glycerophospholipids. Specific radioactivities of 3H- and 14C-labeled fatty acids and the distribution of radioactivity among acyl groups from complex lipids are measured. The method is not recommended for complete compositional analysis, but is useful for determinations of specific radioactivities during studies on turnover and metabolic conversions of labeled fatty acids.

  14. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    PubMed

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  15. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  16. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  17. Tissue distribution comparison between healthy and fatty liver rats after oral administration of hawthorn leaf extract.

    PubMed

    Yin, Jingjing; Qu, Jianguo; Zhang, Wenjie; Lu, Dongrui; Gao, Yucong; Ying, Xixiang; Kang, Tingguo

    2014-05-01

    Hawthorn leaves, a well-known traditional Chinese medicine, have been widely used for treating cardiovascular and fatty liver diseases. The present study aimed to investigate the therapeutic basis treating fatty liver disease by comparing the tissue distribution of six compounds of hawthorn leaf extract (HLE) in fatty liver rats and healthy rats after oral administration at first day, half month and one month, separately. Therefore, a sensitive and specific HPLC method with internal standard was developed and validated to determine chlorogenic acid, vitexin-4''-O-glucoside, vitexin-2''-O-rhamnoside, vitexin, rutin and hyperoside in the tissues including heart, liver, spleen, kidney, stomach and intestine. The results indicated that the six compounds in HLE presented some bioactivity in treating rat fatty liver as the concentrations of the six compounds varied significantly in inter- and intragroup comparisons (healthy and/or fatty liver group).

  18. Melting of saturated fatty acid zinc soaps.

    PubMed

    Barman, S; Vasudevan, S

    2006-11-16

    The melting of alkyl chains in the saturated fatty acid zinc soaps of different chain lengths, Zn(C(n)H(2n+1)COO)(2); n = 11, 13, 15, and 17, have been investigated by powder X-ray diffraction, differential scanning calorimetry, and vibrational spectroscopy. These compounds have a layer structure with the alkyl chains arranged as tilted bilayers and with all methylene chains adopting a planar, all-trans conformation at room temperature. The saturated fatty acid zinc soaps exhibit a single reversible melting transition with the associated enthalpy change varying linearly with alkyl chain length, but surprisingly, the melting temperature remaining constant. Melting is associated with changes in the conformation of the alkyl chains and in the nature of coordination of the fatty acid to zinc. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting is established. It is found that, irrespective of the alkyl chain length, melting occurs when 30% of the chains in the soap are disordered. These results highlight the universal nature of the melting of saturated fatty acid zinc soaps and provide a simple explanation for the observed phenomena.

  19. Characterization of a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl-CoA to fatty alcohol.

    PubMed

    Willis, Robert M; Wahlen, Bradley D; Seefeldt, Lance C; Barney, Brett M

    2011-12-06

    Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2.

  20. A comprehensive evaluation of the density of neat fatty acids and esters

    USDA-ARS?s Scientific Manuscript database

    Density is one of the most important physical properties of a chemical compound, affecting numerous applications. An application in the case of fatty acid esters (biodiesel) is that density is specified in some biodiesel standards. In the present work, the density of fatty acid methyl, ethyl, propyl...

  1. [Omega-3 fatty acids].

    PubMed

    Huyghebaert, C

    2007-01-01

    Omega-3 fatty acids have been drawing the interest of researchers for quite a number of years. The study of the impact of fish consumption on health and particularly on a cardiovascular level is the subject of much research. Some encouraging results have led to the study of omega-3 fatty acids in various other diseases. The interest in 'omega-3' has been widely relayed by the media and a huge market has developed with several allegations in its favour. This article is an attempt to shed light on these health claims, based on currently available scientific data.

  2. TRIFLUOROMETHYL COMPOUNDS OF GERMANIUM

    DTIC Science & Technology

    FLUORIDES, *GERMANIUM COMPOUNDS, *HALIDES, *ORGANOMETALLIC COMPOUNDS, ALKYL RADICALS, ARSENIC COMPOUNDS, CHEMICAL BONDS, CHEMICAL REACTIONS ...CHLORIDES, CHLORINE COMPOUNDS, HYDROLYSIS, IODIDES, METHYL RADICALS, POTASSIUM COMPOUNDS, PYROLYSIS, STABILITY, SYNTHESIS, TIN COMPOUNDS.

  3. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  4. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  5. Engineering Escherichia coli to synthesize free fatty acids

    PubMed Central

    Lennen, Rebecca M.; Pfleger, Brian F.

    2013-01-01

    Fatty acid metabolism has received significant attention as a route for producing high-energy density, liquid transportation fuels and high-value oleochemicals from renewable feedstocks. If microbes can be engineered to produce these compounds at yields that approach the theoretical limits of 0.3–0.4 g/g glucose, then processes can be developed to replace current petrochemical technologies. Here, we review recent metabolic engineering efforts to maximize production of free fatty acids (FFA) in Escherichia coli, the first step towards production of downstream products. To date, metabolic engineers have succeeded in achieving higher yields of FFA than any downstream products. Regulation of fatty acid metabolism and the physiological effects of fatty acid production will also be reviewed from the perspective of identifying future engineering targets. PMID:23102412

  6. Free Fatty acids and sterols in swine manure.

    PubMed

    Loughrin, John H; Szogi, Ariel A

    2006-01-01

    Free fatty acids and sterols were assessed in fresh manure and anaerobic lagoon sludge from swine production facilities in North Carolina. Eight free fatty acids and five sterols were identified and quantified in both manure and sludge samples. Compound identification was performed by gas chromatography/mass spectroscopy (GC-MS), and compound quantities were determined by gas chromatography after solid phase extraction with a 50:50 mixture of diethyl ether and hexane. The free fatty acids occurring in greatest abundance in both fresh manure and lagoon sludge were palmitic, oleic, and stearic. Free fatty acid content in fresh manure ranged from approximately 3 microg g(-1) dry weight (dw) to over 45 microg g(-1) dw. In lagoon sludge, free fatty acid content ranged from about 0.8 microg g(-1) dw to nearly 4 microg g(-1) dw. Coprostanol and epicoprostanol were the sterols in largest concentrations in fresh manure and lagoon sludge samples. Total sterol content ranged from approximately 0.5 microg g(-1) dw to around 11 microg g(-1) dw in fresh manure and from 3.5 microg g(-1) dw to almost 9 microg g(-1) dw in lagoon sludge. Fresh manure and lagoon sludge both had high levels of inorganic cations (e.g., Ca, Mg, Fe) capable of binding free fatty acids and forming insoluble complexes, thereby potentially reducing fatty acid biodegradation. In anaerobic lagoons, sterols are an organic fraction of sludge that are resistant to bacterial degradation. In the case of fresh manure, fatty acids could represent a potential source of energy via the manufacture of biodiesel fuel, if efficient means for their extraction and transesterification can be devised.

  7. Hypoxia and fatty liver.

    PubMed

    Suzuki, Tomohiro; Shinjo, Satoko; Arai, Takatomo; Kanai, Mai; Goda, Nobuhito

    2014-11-07

    The liver is a central organ that metabolizes excessive nutrients for storage in the form of glycogen and lipids and supplies energy-producing substrates to the peripheral tissues to maintain their function, even under starved conditions. These processes require a considerable amount of oxygen, which causes a steep oxygen gradient throughout the hepatic lobules. Alcohol consumption and/or excessive food intake can alter the hepatic metabolic balance drastically, which can precipitate fatty liver disease, a major cause of chronic liver diseases worldwide, ranging from simple steatosis, through steatohepatitis and hepatic fibrosis, to liver cirrhosis. Altered hepatic metabolism and tissue remodeling in fatty liver disease further disrupt hepatic oxygen homeostasis, resulting in severe liver hypoxia. As master regulators of adaptive responses to hypoxic stress, hypoxia-inducible factors (HIFs) modulate various cellular and organ functions, including erythropoiesis, angiogenesis, metabolic demand, and cell survival, by activating their target genes during fetal development and also in many disease conditions such as cancer, heart failure, and diabetes. In the past decade, it has become clear that HIFs serve as key factors in the regulation of lipid metabolism and fatty liver formation. This review discusses the molecular mechanisms by which hypoxia and HIFs regulate lipid metabolism in the development and progression of fatty liver disease.

  8. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1)

    PubMed Central

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; Allen, Eric E.; Kalyuzhnaya, Marina G.

    2017-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph. PMID:28119683

  9. Antimicrobial Action of Compounds from Marine Seaweed.

    PubMed

    Pérez, María José; Falqué, Elena; Domínguez, Herminia

    2016-03-09

    Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications.

  10. Antimicrobial Action of Compounds from Marine Seaweed

    PubMed Central

    Pérez, María José; Falqué, Elena; Domínguez, Herminia

    2016-01-01

    Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. PMID:27005637

  11. Accumulation of Oxygenated Fatty Acids in Oat Lipids During Storage

    USDA-ARS?s Scientific Manuscript database

    Oxygenated fatty acids were identified in oat grain by gas chromatography - mass spectrometry. We hypothesized that most of these were the results of lipoxygenase activity. This hypothesis was tested by measuring concentrations of these compounds after hydrothermal treatments and storage of oat groa...

  12. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  13. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids.

    PubMed

    Beller, Harry R; Lee, Taek Soon; Katz, Leonard

    2015-09-23

    Although natural products are best known for their use in medicine and agriculture, a number of fatty acid-derived and isoprenoid natural products are being developed for use as renewable biofuels and bio-based chemicals. This review summarizes recent work on fatty acid-derived compounds (fatty acid alkyl esters, fatty alcohols, medium- and short-chain methyl ketones, alkanes, α-olefins, and long-chain internal alkenes) and isoprenoids, including hemiterpenes (e.g., isoprene and isopentanol), monoterpenes (e.g., limonene), and sesquiterpenes (e.g., farnesene and bisabolene).

  14. Microbial production of fatty alcohols.

    PubMed

    Fillet, Sandy; Adrio, José L

    2016-09-01

    Fatty alcohols have numerous commercial applications, including their use as lubricants, surfactants, solvents, emulsifiers, plasticizers, emollients, thickeners, and even fuels. Fatty alcohols are currently produced by catalytic hydrogenation of fatty acids from plant oils or animal fats. Microbial production of fatty alcohols may be a more direct and environmentally-friendly strategy since production is carried out by heterologous enzymes, called fatty acyl-CoA reductases, able to reduce different acyl-CoA molecules to their corresponding primary alcohols. Successful examples of metabolic engineering have been reported in Saccharomyces cerevisiae and Escherichia coli in which the production of fatty alcohols ranged from 1.2 to 1.9 g/L, respectively. Due to their metabolic advantages, oleaginous yeasts are considered the best hosts for production of fatty acid-derived chemicals. Some of these species can naturally produce, under specific growth conditions, lipids at high titers (>50 g/L) and therefore provide large amounts of fatty acyl-CoAs or fatty acids as precursors. Very recently, taking advantage of such features, over 8 g/L of C16-C18 fatty alcohols have been produced in Rhodosporidium toruloides. In this review we summarize the different metabolic engineering strategies, hosts and cultivation conditions used to date. We also point out some future trends and challenges for the microbial production of fatty alcohols.

  15. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids.

    PubMed

    Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2016-01-01

    One of the most promising alternatives to petroleum for the production of fuels and chemicals is bio-oil based chemistry. Microbial oils are gaining importance because they can be engineered to accumulate lipids enriched in desired fatty acids. These specific lipids are closer to the commercialized product, therefore reducing pollutants and costly chemical steps. Yarrowia lipolytica is the most widely studied and engineered oleaginous yeast. Different molecular and bioinformatics tools permit systems metabolic engineering strategies in this yeast, which can produce usual and unusual fatty acids. Usual fatty acids, those usually found in triacylglycerol, accumulate through the action of several pathways, such as fatty acid/triacylglycerol synthesis, transport and degradation. Unusual fatty acids are enzymatic modifications of usual fatty acids to produce compounds that are not naturally synthetized in the host. Recently, the metabolic engineering of microorganisms has produced different unusual fatty acids, such as building block ricinoleic acid and nutraceuticals such as conjugated linoleic acid or polyunsaturated fatty acids. Additionally, microbial sources are preferred hosts for the production of fatty acid-derived compounds such as γ-decalactone, hexanal and dicarboxylic acids. The variety of lipids produced by oleaginous microorganisms is expected to rise in the coming years to cope with the increasing demand. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  17. Nonalcoholic Fatty Liver Disease.

    PubMed

    Thrasher, Tyler; Abdelmalek, Manal F

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, is the leading cause of chronic liver disease. Treatments target lifestyle modification and improvement of underlying risk factors. Noninvasive biomarkers for diagnosis and staging of NAFLD and safe, cost-effective treatments for patients with nonalcoholic steatohepatitis (NASH) and/or NASH-related cirrhosis are currently under investigation. ©2016 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.

  18. Diaphragmatic function is enhanced in fatty and diabetic fatty rats

    PubMed Central

    Carreira, Serge; Na, Na; Carillion, Aude; Jiang, Cheng; Beuvin, Maud; Lacorte, Jean-Marc; Bonnefont-Rousselot, Dominique; Riou, Bruno; Coirault, Catherine

    2017-01-01

    Background Obesity is associated with a decrease in mortality in the intensive care unit (ICU) (the "obesity paradox"). We hypothesized that obesity may paradoxically improve diaphragmatic function. Methods Diaphragm contractility was prospectively recorded in vitro in adult male Zucker lean (control), fatty, and diabetic fatty rats, at rest, after 12h mechanical ventilation and after fatigue. We analyzed diaphragm morphology, cytokines, and protein expression of the protein kinase signaling pathways. Results Diaphragm active-force (AF) was higher in fatty (96±7mN.mm-2,P = 0.02) but not in diabetic fatty rats (90±17mN.mm-2) when compared with controls (84±8mN.mm-2). Recovery from fatigue was improved in fatty and diabetic fatty groups compared with controls. Ventilator-induced diaphragmatic dysfunction was observed in each group, but AF remained higher in fatty (82±8mN.mm-2,P = 0.03) compared with controls (70±8mN.mm-2). There was neutral lipid droplet accumulation in fatty and diabetic fatty. There were shifts towards a higher cross-sectional-area (CSA) of myosin heavy chain isoforms (MyHC)-2A fibers in fatty and diabetic fatty compared with control rats (P = 0.002 and P<0.001, respectively) and a smaller CSA of MyHC-2X in fatty compared with diabetic fatty and control rats (P<0.001 and P<0.001, respectively). The phosphorylated total-protein-kinase-B (pAKT)/AKT ratio was higher in fatty (182±58%,P = 0.03), but not in diabetic fatty when compared with controls and monocarboxylate-transporter-1 was higher in diabetic fatty (147±36%,P = 0.04), but not in fatty. Conclusions Diaphragmatic force is increased in Zucker obese rats before and after mechanical ventilation, and is associated with activation of AKT pathway signaling and complex changes in morphology. PMID:28328996

  19. Nonalcoholic fatty liver disease.

    PubMed

    Krawczyk, Marcin; Bonfrate, Leonilde; Portincasa, Piero

    2010-10-01

    Non-alcoholic fatty liver disease (NAFLD), the most common liver disorder in the Western world, is a clinico-histopathological entity in which excessive triglyceride accumulation in the liver occurs. Non-alcoholic steatohepatitis (NASH) represents the necroinflammatory form, which can lead to advanced liver fibrosis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of NAFLD/NASH is complex but increased visceral adiposity plus insulin resistance with increased free fatty acids release play an initial key role for the onset and perpetuation of liver steatosis. Further events in the liver include oxidative stress and lipid peroxidation, decreased antioxidant defences, early mitochondrial dysfunction, iron accumulation, unbalance of adipose-derived adipokines with a chronic proinflammatory status, and gut-derived microbial adducts. New gene polymorphisms increasing the risk of fatty liver, namely APOC3 and PNPLA3, have been lately identified allowing further insights into the pathogenesis of this condition. In our review pathophysiological, genetic, and essential diagnostic and therapeutic aspects of NAFLD are examined with future trends in this field highlighted. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  1. Polybenzimidazole compounds

    SciTech Connect

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J; Jones, Michael G; Wertsching, Alan K; Luther, Thomas A; Trowbridge, Tammy L

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  2. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.

  3. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    NASA Astrophysics Data System (ADS)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  4. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  5. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    PubMed Central

    Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A

    2016-01-01

    Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357

  6. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production

    PubMed Central

    Gajewski, Jan; Pavlovic, Renata; Fischer, Manuel; Boles, Eckhard; Grininger, Martin

    2017-01-01

    Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms. PMID:28281527

  7. Instability of an aromatic amine in fatty food and fatty food simulant: characterisation of reaction products and prediction of their toxicity.

    PubMed

    Paseiro-Cerrato, R; Rodríguez-Bernaldo de Quirós, A; Sendón, R; Bustos, J; Sánchez, J J; López-Hernández, J; Paseiro-Losada, P

    2015-01-01

    It is a well-known fact that amines are not stable in food of a fatty nature. In this study the synthesis and characterisation of the products obtained as a result of the reaction of amines in a fatty medium are reported. Based on the well-known reactions among amines and acid and esters groups, two novel compounds were synthesised using m-xylylenediamine (mXDA), a primary diamine widely used as monomer in the manufacture of food contact materials and two fatty acids, oleic acid and palmitic acid, which occur in most fats. The resulting compounds were two molecules belonging to the family of fatty acid amides, dioleamide and dipalmitamide. A complete characterisation of both products was carried out employing several techniques such as infrared spectroscopy, (1)H- and (13)C-NMR spectroscopy, electron ionisation mass spectrometry, LC-MS/MS and UV spectrometry. The results obtained by the different techniques were well correlated. In the second part of the work, the formation of these compounds in real samples was evaluated. For this purpose a certain volume of olive oil was spiked with a known amount of mXDA. Olive oil was selected as a fatty medium since it is a widely consumed food and additionally is used as a fatty food simulant in migration studies of food contact materials. A method was developed to extract the fatty acid amides from the fatty matrix, which were then identified by LC-MS/MS. The toxicity of the synthesised compounds was predicted using a toxicity estimation software tool.

  8. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  9. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  10. Improved gas chromatography-flame ionization detector analytical method for the analysis of epoxy fatty acids.

    PubMed

    Mubiru, Edward; Shrestha, Kshitij; Papastergiadis, Antonios; De Meulenaer, Bruno

    2013-11-29

    In this study an improved method for analysis of epoxy fatty acids is reported. Data obtained from analysis of polar fatty acids has previously been presented, but due to the high number of compounds that co-elute in the polar fraction, the resultant chromatograms are complex which may lead to compromising the accuracy of the data. A three steps separation of fatty acid methyl esters (FAMEs) by solid-phase extraction (SPE) on a silica gel column to remove hydroxy fatty acid interferences was proposed. This approach is opposed to a two step separation procedure that has been often used to prevent analytical interferences caused by non-altered fatty acids. A gas chromatograph with a flame ionization detector (GC-FID) equipped with a polar CP-Sil 88™ column was used. Quantification was based on the use of methyl nonadecanoate (C19:0), as an internal standard. Individual mono epoxy fatty acids were well separated without co-eluting compounds. The optimized method was finally applied to screen epoxy fatty acids in 37 fresh oil samples. Results obtained for the total epoxy fatty acids were in the range 0.03-2mgg(-1) of oil with repeatability coefficient of variation (CV) ranging from 2.8 to 9.9% for duplicate analysis showing that the results obtained are repeatable.

  11. New bioactive fatty acids from vegetable oils and new uses of bioglycerin

    USDA-ARS?s Scientific Manuscript database

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  12. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles

    USDA-ARS?s Scientific Manuscript database

    A new class of compounds has been isolated from the regurgitant of the grasshopper species Schistocerca americana. These compounds (named here caeliferins) are comprised of saturated and monounsaturated, sulfated alpha-hydroxy fatty acids in which the omega carbon is functionalized with either a su...

  13. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  14. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  15. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  16. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  17. Mass-Spectrometry-Based Quantification of Protein-Bound Fatty Acid Synthesis Intermediates from Escherichia coli.

    PubMed

    Noga, Marek J; Cerri, Mattia; Imholz, Nicole; Tulinski, Pawel; Şahin, Enes; Bokinsky, Gregory

    2016-10-07

    The production of fatty acids from simple nutrients occurs via a complex biosynthetic pathway with dozens of intermediate compounds and multiple branch points. Despite its importance for microbial physiology and biotechnology, critical aspects of fatty acid biosynthesis, especially dynamics of in vivo regulation, remain poorly characterized. We have developed a liquid chromatography/mass spectroscopy (LC-MS) method for relative quantification of fatty acid synthesis intermediates in Escherichia coli, a model organism for studies of fatty acid metabolism. The acyl carrier protein, a vehicle for the substrates and intermediates of fatty acid synthesis, is extracted from E. coli, proteolytically digested, resolved using reverse-phase LC, and detected using electrospray ionization coupled with a tandem MS. Our method reliably resolves 21 intermediates of fatty acid synthesis, with an average relative standard deviation in ratios of individual acyl-ACP species to total ACP concentrations of 20%. We demonstrate that fast sampling and quenching of cells is essential to accurately characterize intracellular concentrations of ACP species. We apply our method to examine the rapid response of fatty acid metabolism to the antibiotic cerulenin. We anticipate that our method will enable the characterization of in vivo regulation and kinetics of microbial fatty acid synthesis at unprecedented detail and will improve integration of fatty acid synthesis into models of microbial metabolism.

  18. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

    PubMed

    Furukawa, Soichi; Akiyoshi, Yuko; O'Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-03-31

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

  19. Inhibitory effects of several saturated fatty acids and their related fatty alcohols on the growth of Candida albicans.

    PubMed

    Hayama, Kazumi; Takahashi, Miki; Yui, Satoru; Abe, Shigeru

    2015-12-01

    We examined the effect of 5 saturated fatty acids and their related alcohols on the growth of Candida albicans. The inhibitory effects of these compounds against the yeast and hyphal growth forms of C. albicans were examined using the modified NCCLS method and crystal violet staining, respectively. Among these compounds, capric acid inhibited both types of growth at the lowest concentration. The IC(80), i.e., the concentration at which the compounds reduced the growth of C. albicans by 80% in comparison with the growth of control cells, of capric acid for the hyphal growth of this fungus, which is indispensable for its mucosal invasion, was 16.7 μM. These fatty acids, including capric acid, have an unpleasant smell, which may limit their therapeutic use. To test them at reduced concentrations, the combined effect of these fatty acids and oligonol, a depolymerized polyphenol, was evaluated in vitro. These combinations showed potent synergistic inhibition of hyphal growth [fractional inhibitory concentration (FIC) index = 0.319]. Our results demonstrated that capric acid combined with oligonol could be used as an effective anti-Candida compound. It may be a candidate prophylactic or therapeutic tool against mucosal Candida infection.

  20. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  1. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  2. The fatty acids of calcareous sponges (Calcarea, Porifera).

    PubMed

    Schreiber, Andrea; Wörheide, Gert; Thiel, Volker

    2006-09-01

    Twenty-nine specimens of calcareous sponges (Class Calcarea, Phylum Porifera), covering thirteen representative species of the families Soleneiscidae, Leucaltidae, Levinellidae, Leucettidae, Clathrinidae, Sycettidae, Grantiidae, Jenkinidae, and Heteropiidae were analysed for their fatty acids. The fatty acids of Calcarea generally comprise saturated and monounsaturated linear (n-), and terminally methylated (iso-, anteiso-) C(14)-C(20) homologues. Furthermore, polyunsaturated C(22) fatty acids and the isoprenoic 4,8,12-trimethyltridecanoic acid were found. The most prominent compounds are n-C(16), iso-C(17), iso-C(18), n-C(18), n-C(20). In addition, a high abundance of the exotic 16-methyloctadecanoic acid (anteiso-C(19)) appears to be a characteristic trait of Calcarea. Long-chain 'demospongic acids', typically found in Demospongiae and Hexactinellida, are absent in Calcarea. The completely different strategy of calcarean fatty acid synthesis supports their phylogenetic distinctiveness from a common Demospongiae/Hexactinellida taxon. Both intraspecific and intraclass patterns of Calcarea showed great similarity, suggesting a conserved fatty acid composition that already existed in the last common ancestor of Calcinea and Calcaronea, i.e. before subclasses diverged.

  3. Seizure control by ketogenic diet-associated medium chain fatty acids.

    PubMed

    Chang, Pishan; Terbach, Nicole; Plant, Nick; Chen, Philip E; Walker, Matthew C; Williams, Robin S B

    2013-06-01

    The medium chain triglyceride (MCT) ketogenic diet is used extensively for treating refractory childhood epilepsy. This diet increases the plasma levels of medium straight chain fatty acids. A role for these and related fatty acids in seizure control has not been established. We compared the potency of an established epilepsy treatment, Valproate (VPA), with a range of MCT diet-associated fatty acids (and related branched compounds), using in vitro seizure and in vivo epilepsy models, and assessed side effect potential in vitro for one aspect of teratogenicity, for liver toxicology and in vivo for sedation, and for a neuroprotective effect. We identify specific medium chain fatty acids (both prescribed in the MCT diet, and related compounds branched on the fourth carbon) that provide significantly enhanced in vitro seizure control compared to VPA. The activity of these compounds on seizure control is independent of histone deacetylase inhibitory activity (associated with the teratogenicity of VPA), and does not correlate with liver cell toxicity. In vivo, these compounds were more potent in epilepsy control (perforant pathway stimulation induced status epilepticus), showed less sedation and enhanced neuroprotection compared to VPA. Our data therefore implicates medium chain fatty acids in the mechanism of the MCT ketogenic diet, and highlights a related new family of compounds that are more potent than VPA in seizure control with a reduced potential for side effects. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.

  4. [Determination of fatty acids and organic acids in Ranunculus ternatus Thunb using GC-MS].

    PubMed

    Chen, Jun; Yao, Cheng; Xia, Li-Ming; Ouyang, Ping-Kai

    2006-08-01

    The determination of fatty acids and organic acids in Chinese medicinal plant Ranunculus ternatus Thunb using GC-MS was studied. The Ranunculus ternatus Thunb from Henan province was cut into less than 20 mesh pieces, then extracted by petroleum ether or ether in refluxing and esteried, and finally was determined using GC-MS. The results show that there are 23 kinds of organic compounds in the Chinese medicinal plant Ranunculus ternatus Thunb from Henan, among which 15 kinds of fatty acids were identified, including myristic acid, palmitic acid, stearic acid, oleic acid, linolenic acid, eicosanoic acid, docosanoic acid etc. The unsaturated fatty acids and oleic acid account for 58.19% and 35.68% of the total organic compounds respectively. The kinds of fatty acid in petroleum ether extract and ether extract are the same.

  5. Evolution of fatty alcohols in olive oils produced in Calabria (Southern Italy) during fruit ripening.

    PubMed

    Giuffrè, Angelo M

    2014-01-01

    A study was conducted on olive oils extracted from olives collected in South West Calabria (Southern Italy) over three harvest years 2010-2011-2012. Three autochthonous cultivars were considered: Cassanese, Ottobratica and Sinopolese and seven allochtonous cultivars: Coratina, Itrana, Leccino, Nocellara Messinese, Nociara, Pendolino and Picholine. Thin Layer Chromatography - Gas Chromatograph (TLC-GC) technique permitted the separation and analysis of the fatty alcohol compounds. A general decline in fatty alcohol content was found during the three months of sampling, most evident in hexacosanol. Pendolino showed the greatest decline. A less evident decrease was measured in the odd chained fatty alcohols, mainly in heptacosanol. Both harvest date and cultivar significantly influenced the fatty alcohol content. This is the first report about the fatty alcohol variation during ripening in olive oil produced in South West Calabria (Southern Italy).

  6. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  7. Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Peng, Kun-Tao; Zheng, Cun-Ni; Xue, Jiao; Chen, Xiao-Yan; Yang, Wei-Dong; Liu, Jie-Sheng; Bai, Weibin; Li, Hong-Ye

    2014-09-03

    Microalgae are important primary producers in the marine ecosystem and excellent sources of lipids and other bioactive compounds. The marine diatom Phaeodactylum tricornutum accumulates eicosapentaenoic acid (EPA, 20:5n-3) as its major component of fatty acids. To improve the EPA production, delta 5 desaturase, which plays a role in EPA biosynthetic pathway, was characterized in P. tricornutum. An annotated delta 5 desaturase PtD5b gene was cloned and overexpressed in P. tricornutum. The transgene was integrated into the genome demonstrated by Southern blot, and the overexpression of PtD5b was verified by qPCR and Western blot analysis. Fatty acid composition exhibited a significant increase in the unsaturated fatty acids. Monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) showed an increase of 75% and 64%, respectively. In particular, EPA showed an increase of 58% in engineered microalgae. Meanwhile, neutral lipid content showed an increase up to 65% in engineered microalgae. More importantly, engineered cells showed a similar growth rate with the wild type, thus keeping high biomass productivity. This work provides an effective way to improve the production of microalgal value-added bioproducts by metabolic engineering.

  8. Metabolic engineering for the microbial production of marine bioactive compounds.

    PubMed

    Mao, Xiangzhao; Liu, Zhen; Sun, Jianan; Lee, Sang Yup

    2017-03-06

    Many marine bioactive compounds have medicinal and nutritional values. These bioactive compounds have been prepared using solvent-based extraction from marine bio-resources or chemical synthesis, which are costly, inefficient with low yields, and environmentally unfriendly. Recent advances in metabolic engineering allowed to some extent more efficient production of these compounds, showing promises to meet the increasing demand of marine natural bioactive compounds. In this paper, we review the strategies and statuses of metabolic engineering applied to microbial production of marine natural bioactive compounds including terpenoids and their derivatives, omega-3 polyunsaturated fatty acids, and marine natural drugs, and provide perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  10. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    PubMed

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  11. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  12. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  13. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  14. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  15. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  16. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  17. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  18. Neurological benefits of omega-3 fatty acids.

    PubMed

    Dyall, S C; Michael-Titus, A T

    2008-01-01

    The central nervous system is highly enriched in long-chain polyunsaturated fatty acid (PUFA) of the omega-6 and omega-3 series. The presence of these fatty acids as structural components of neuronal membranes influences cellular function both directly, through effects on membrane properties, and also by acting as a precursor pool for lipid-derived messengers. An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development. Furthermore, there is increasing evidence that increased intake of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may confer benefits in a variety of psychiatric and neurological disorders, and in particular neurodegenerative conditions. However, the mechanisms underlying these beneficial effects are still poorly understood. Recent evidence also indicates that in addition to the positive effects seen in chronic neurodegenerative conditions, omega-3 PUFA may also have significant neuroprotective potential in acute neurological injury. Thus, these compounds offer an intriguing prospect as potentially new therapeutic approaches in both chronic and acute conditions. The purpose of this article is to review the current evidence of the neurological benefits of omega-3 PUFA, looking specifically at neurodegenerative conditions and acute neurological injury.

  19. Trans fatty acids (tFA): sources and intake levels, biological effects and content in commercial Spanish food.

    PubMed

    Fernández-San Juan, P-M

    2009-01-01

    Recent studies of dietary habits in children and adolescents performed in Spain show that a high percentage of the daily energy intake corresponds to fat (42.0-43.0%). These findings show an excessive contribution of saturated fatty acids and also a considerable supply of trans fatty acids. These compounds are formed generally during partial hydrogenation of vegetable oils, a process that converts vegetable oils into semisolid fats. Also, in some cases naturally occurring trans fatty acids in smaller amounts in meat and dairy products from ruminants (cows, sheep), these trans fatty acids are produced by the action of bacteria in the ruminant stomach by reactions of biohydrogenation. On the other hand, metabolic studies have clearly shown that trans fatty acids increase LDL cholesterol and reduce HDL cholesterol. Our results show that major sources of trans fatty acids in commercial Spanish foods are fast-food (hamburger, French fries), snacks, bakery products (cakes, donuts, biscuits), margarines and dehydrated soups.

  20. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    PubMed

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Adipocyte fatty acid binding protein 4 (FABP4) inhibitors. A comprehensive systematic review.

    PubMed

    Floresta, Giuseppe; Pistarà, Venerando; Amata, Emanuele; Dichiara, Maria; Marrazzo, Agostino; Prezzavento, Orazio; Rescifina, Antonio

    2017-09-29

    Small molecule inhibitors of adipocyte fatty acid binding protein 4 (FABP4) have attracted interest following the recent publications of beneficial pharmacological effects of these compounds. FABP4 is predominantly expressed in macrophages and adipose tissue where it regulates fatty acids (FAs) storage and lipolysis and is an important mediator of inflammation. In the past years, hundreds FABP4 inhibitors have been synthesized for effective atherosclerosis and diabetes treatments, including derivatives of niacin, quinoxaline, aryl-quinoline, bicyclic pyridine, urea, aromatic compounds and other novel heterocyclic compounds. This review provides an overview of the synthesized and discovered molecules as adipocyte fatty acid binding protein 4 inhibitors (FABP4is) since the synthesis of the putative FABP4i, BMS309403, highlighting the interactions of the different classes of inhibitors with the targets. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Antifouling Compounds from Marine Macroalgae.

    PubMed

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  3. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)

    DOE PAGES

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; ...

    2017-01-10

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less

  4. Acute fatty liver of pregnancy.

    PubMed

    Papafragkakis, Haris; Singhal, Shashideep; Anand, Sury

    2013-10-01

    Acute fatty liver of pregnancy is a rare but serious and potentially fatal complication of pregnancy. It typically presents in the third trimester with microvesicular fatty infiltration of the liver and can lead to multiorgan failure and death. Differentiation from hemolysis-elevated liver enzymes-low platelets syndrome can guide management. A high index of suspicion is necessary in the appropriate clinical setting to identify clinical manifestations and complications and manage them appropriately. In severe cases, prompt delivery can be lifesaving for the mother and fetus. Liver transplantation remains controversial and must be considered individually. Defects in fatty acid oxidation secondary to various enzymatic deficiencies have been associated with acute fatty liver of pregnancy. Women or couples with known defects in fatty acid oxidation and women with a history of previous liver disease during pregnancy or sudden death of a child within the first 2 years of life should be assessed for a defect in fatty acid oxidation and monitored carefully. Our review summarizes the current knowledge in pathophysiology, diagnostic approach and management of this disorder.

  5. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides.

    PubMed

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M

    2014-07-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  6. IDENTIFICATION OF ENVIRONMENTAL CHEMICALS ASSOCIATED WITH THE DEVELOPMENT OF TOXICANT ASSOCIATED FATTY LIVER DISEASE IN RODENTS

    PubMed Central

    Al-Eryani, Laila; Wahlang, Banrida; Falkner, K.C.; Guardiola, J. J.; Clair, H.B.; Prough, R.A.; Cave, M.

    2014-01-01

    Background Toxicant associated fatty liver disease (TAFLD) is a recently identified form of non-alcoholic fatty liver disease (NAFLD) associated with exposure to industrial chemicals and environmental pollutants. Numerous studies have been conducted to test the association between industrial chemicals/ environmental pollutants and fatty liver disease both in vivo and in vitro. Objectives The objective of the paper is to report a list of chemicals associated with TAFLD. Methods Two federal databases of rodent toxicology studies– ToxRefDB (Environmental Protection Agency) and Chemical Effects in Biological Systems (CEBS, National Toxicology Program) were searched for liver endpoints. Combined, these two databases archive nearly 2000 rodent studies. TASH descriptors including fatty change, fatty necrosis, Oil red O positive staining, steatosis and lipid deposition were queried. Results Using these search terms, 123 chemicals associated with fatty liver were identified. Pesticides and solvents were the most frequently identified chemicals, while PCBs/dioxins were the most potent. About 44% of identified compounds were pesticides or their intermediates, and nearly 10% of pesticide registration studies in ToxRefDB were associated with fatty liver. Fungicides and herbicides were more frequently associated with fatty liver than insecticides. Conclusions More research on pesticides, solvents, metals and PCBs/dioxins in NAFLD/TAFLD is warranted due to their association with liver damage. PMID:25326588

  7. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  8. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  9. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  10. Dietary derived compounds in cancer chemoprevention

    PubMed Central

    Rzeski, Wojciech

    2012-01-01

    Cancer chemoprevention is defined as the application of natural or synthetic agents to suppress or reverse cancer development and progression. In this field especially diet derived compounds have recently attracted researchers’ attention as potential therapeutics generally exerting low toxicity compared with regular drugs. This review presents a survey of recent findings concerning the most promising dietary chemopreventive agents such as green tea polyphenols (i.e. catechins), long-chain polyunsaturated fatty acids, carotenoids, glucosinolates/isothiocyanates, vitamins (i.e. vitamin D and folate) and minerals (i.e. calcium and selenium). Molecular targets involved in intrinsic pathways affected by these natural compounds are also shortly discussed. PMID:23788916

  11. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    PubMed

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi.

  12. Fatty acids and lymphocyte functions.

    PubMed

    Calder, P C; Yaqoob, P; Thies, F; Wallace, F A; Miles, E A

    2002-01-01

    The immune system acts to protect the host against pathogenic invaders. However, components of the immune system can become dysregulated such that their activities are directed against host tissues, so causing damage. Lymphocytes are involved in both the beneficial and detrimental effects of the immune system. Both the level of fat and the types of fatty acid present in the diet can affect lymphocyte functions. The fatty acid composition of lymphocytes, and other immune cells, is altered according to the fatty acid composition of the diet and this alters the capacity of those cells to produce eicosanoids, such as prostaglandin E2, which are involved in immunoregulation. A high fat diet can impair lymphocyte function. Cell culture and animal feeding studies indicate that oleic, linoleic, conjugated linoleic, gamma-linolenic, dihomo-gamma-linolenic, arachidonic, alpha-linolenic, eicosapentaenoic and docosahexaenoic acids can all influence lymphocyte proliferation, the production of cytokines by lymphocytes, and natural killer cell activity. High intakes of some of these fatty acids are necessary to induce these effects. Among these fatty acids the long chain n-3 fatty acids, especially eicosapentaenoic acid, appear to be the most potent when included in the human diet. Although not all studies agree, it appears that fish oil, which contains eicosapentaenoic acid, down regulates the T-helper 1-type response which is associated with chronic inflammatory disease. There is evidence for beneficial effects of fish oil in such diseases; this evidence is strongest for rheumatoid arthritis. Since n-3 fatty acids also antagonise the production of inflammatory eicosanoid mediators from arachidonic acid, there is potential for benefit in asthma and related diseases. Recent evidence indicates that fish oil may be of benefit in some asthmatics but not others.

  13. The natural diyne-furan fatty acid EV-086 is an inhibitor of fungal delta-9 fatty acid desaturation with efficacy in a model of skin dermatophytosis.

    PubMed

    Knechtle, Philipp; Diefenbacher, Melanie; Greve, Katrine B V; Brianza, Federico; Folly, Christophe; Heider, Harald; Lone, Museer A; Long, Lisa; Meyer, Jean-Philippe; Roussel, Patrick; Ghannoum, Mahmoud A; Schneiter, Roger; Sorensen, Alexandra S

    2014-01-01

    Human fungal infections represent a therapeutic challenge. Although effective strategies for treatment are available, resistance is spreading, and many therapies have unacceptable side effects. A clear need for novel antifungal targets and molecules is thus emerging. Here, we present the identification and characterization of the plant-derived diyne-furan fatty acid EV-086 as a novel antifungal compound. EV-086 has potent and broad-spectrum activity in vitro against Candida, Aspergillus, and Trichophyton spp., whereas activities against bacteria and human cell lines are very low. Chemical-genetic profiling of Saccharomyces cerevisiae deletion mutants identified lipid metabolic processes and organelle organization and biogenesis as targets of EV-086. Pathway modeling suggested that EV-086 inhibits delta-9 fatty acid desaturation, an essential process in S. cerevisiae, depending on the delta-9 fatty acid desaturase OLE1. Delta-9 unsaturated fatty acids-but not saturated fatty acids-antagonized the EV-086-mediated growth inhibition, and transcription of the OLE1 gene was strongly upregulated in the presence of EV-086. EV-086 increased the ratio of saturated to unsaturated free fatty acids and phosphatidylethanolamine fatty acyl chains, respectively. Furthermore, EV-086 was rapidly taken up into the lipid fraction of the cell and incorporated into phospholipids. Together, these findings demonstrate that EV-086 is an inhibitor of delta-9 fatty acid desaturation and that the mechanism of inhibition might involve an EV-086-phospholipid. Finally, EV-086 showed efficacy in a guinea pig skin dermatophytosis model of topical Trichophyton infection, which demonstrates that delta-9 fatty acid desaturation is a valid antifungal target, at least for dermatophytoses.

  14. 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

    PubMed

    Carballeira, Néstor M; Cartagena, Michelle; Sanabria, David; Tasdemir, Deniz; Prada, Christopher F; Reguera, Rosa M; Balaña-Fouce, Rafael

    2012-10-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.3±0.7μM. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1μM) and Trypanosoma brucei rhodesiense (IC(50)=64.5μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound.

  15. Fatty acid biosynthesis in actinomycetes

    PubMed Central

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  16. Polyunsaturated Fatty Acids in Children

    PubMed Central

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-immune diseases or degenerative neurologic diseases. PUFAs are used for metabolic syndrome related with obesity or diabetes. However, there are several considerations related with intake of PUFAs. Obsession with the intake of unsaturated fatty acids could bring about the shortage of essential fatty acids that are crucial for our body, weaken the immune system, and increase the risk of heart disease, arrhythmia, and stroke. In this review, we discuss types, physiologic mechanism of action of PUFAs, intake of PUFAs for children, recommended intake of PUFAs, and considerations for the intake of PUFAs. PMID:24224148

  17. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  18. Fatty alcohols production by oleaginous yeast.

    PubMed

    Fillet, Sandy; Gibert, Jordi; Suárez, Beatriz; Lara, Armando; Ronchel, Carmen; Adrio, José L

    2015-11-01

    We have engineered Rhodosporidium toruloides to produce fatty alcohols by expressing a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8. Production of fatty alcohols in flasks was achieved in different fermentation media at titers ranging from 0.2 to 2 g/L. In many of the conditions tested, more than 80 % of fatty alcohols were secreted into the cultivation broth. Through fed-batch fermentation in 7 L bioreactors, over 8 g/L of C(16)-C(18) fatty alcohols were produced using sucrose as the substrate. This is the highest titer ever reported on microbial production of fatty alcohols to date.

  19. Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum.

    PubMed

    Desbois, Andrew P; Lebl, Tomas; Yan, Liming; Smith, Valerie J

    2008-12-01

    One solution to the global crisis of antibiotic resistance is the discovery of novel antimicrobial compounds for clinical application. Marine organisms are an attractive and, as yet, relatively untapped resource of new natural products. Cell extracts from the marine diatom, Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. During the isolation of EPA, it became apparent that the extracts contained further antibacterial compounds. The present study was undertaken to isolate these additional antibacterial factors using silica column chromatography and reverse-phase high-performance liquid chromatography. Two antibacterial fractions, each containing a pure compound, were isolated and their chemical structures were investigated by mass spectrometry and nuclear magnetic resonance spectroscopy. The antibacterial compounds were identified as the monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria with HTA further inhibitory to the growth of the Gram-negative marine pathogen, Listonella anguillarum. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. These free fatty acids warrant further investigation as a new potential therapy for drug-resistant infections.

  20. Effect of Copper on Fatty Acid Profiles in Non- and Semifermented Teas Analyzed by LC-MS-Based Nontargeted Screening.

    PubMed

    Pignitter, Marc; Stolze, Klaus; Jirsa, Franz; Gille, Lars; Goodman, Bernard A; Somoza, Veronika

    2015-09-30

    Unsaturated fatty acids are well-known precursors of aroma compounds, which are considered important for green tea quality. Due to the known copper-induced oxidation of unsaturated fatty acids and the broad variability of the amount of copper present in tea infusions, this paper investigates the influence of copper, added at a nontoxic concentration (300 μM) to non- and semifermented teas, on the degradation of fatty acids and fatty acid hydroperoxides thereof. The abundance of fatty acids in green and oolong tea was determined by means of a nontargeted approach applying high-resolution MS/MS. As a result, most of the fatty acids in green and oolong tea were already oxidized prior to copper addition. Addition of 300 μM CuSO4 to the oolong tea sample resulted in a decrease of 13-hydroperoxy-9Z,11E-octadecadienoic acid, an important flavor precursor, from 0.12 ± 0.02 to 0.05 ± 0.01 μM (p = 0.035), and other oxidized fatty acids decreased as well. However, copper-induced degradation of oxidized fatty acids was less pronounced in green tea compared to oolong tea, most likely due to the formation of copper complexes with low-molecular-weight compounds as evidenced by electron paramagnetic resonance spectroscopy.

  1. Imidazopyridine-Based Fatty Acid Synthase Inhibitors That Show Anti-HCV Activity and in Vivo Target Modulation

    PubMed Central

    2012-01-01

    Potent imidazopyridine-based inhibitors of fatty acid synthase (FASN) are described. The compounds are shown to have antiviral (HCV replicon) activities that track with their biochemical activities. The most potent analogue (compound 19) also inhibits rat FASN and inhibits de novo palmitate synthesis in vitro (cell-based) as well as in vivo. PMID:24900571

  2. Exogenous polyunsaturated fatty acids (PUFAs) impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species.

    PubMed

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-09-01

    The pathogenic Vibrio species (cholerae, parahaemolyticus and vulnificus) represent a constant threat to human health, causing food-borne and skin wound infections as a result of ingestion or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings herein link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.Importance Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and

  3. Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum.

    PubMed

    Nakai, S; Zou, G; Okuda, T; Nishijima, W; Hosomi, M; Okada, M

    2012-01-01

    Myriophyllum spicatum is known to inhibit the growth of cyanobacteria such as Microcystis aeruginosa by releasing anti-cyanobacterial allelochemicals. The allelochemicals possibly responsible for the inhibition include five polyphenols and three fatty acids, but the extent to which these are indeed responsible for the anti-cyanobacterial effects is unclear. The goal of this research was to determine the contribution of these compounds to the allelopathic effect of M. spicatum on M. aeruginosa. We first collected information on the release rates of these compounds and then added the compounds to a cyanobacterial medium on the basis of their release rates so as to simulate their excretion by M. spicatum. Addition of the polyphenols and fatty acids inhibited the growth of M. aeruginosa, and the interaction of the polyphenols and fatty acids was additive. The EC50 of a polyphenol and fatty acid mixture was compared with that of M. spicatum itself as previously determined in a mixed culture system in which M. spicatum and M. aeruginosa were incubated. The former was about 1.9 times higher than that of the latter, the implication being that the inhibitory effect of the polyphenols and fatty acids contributed about 53% of the allelopathic effect of M. spicatum. This paper is the first to describe allelochemicals that account for a half of the anti-cyanobacterial allelopathic effect of a macrophyte.

  4. Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy

    PubMed Central

    Moussa, Tarek A.A.; Almaghrabi, Omar A.

    2015-01-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol. PMID:27081366

  5. Fatty acid constituents of Peganum harmala plant using Gas Chromatography-Mass Spectroscopy.

    PubMed

    Moussa, Tarek A A; Almaghrabi, Omar A

    2016-05-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC-MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.

  6. Fatty acid composition and its association with chemical and sensory analysis of boar taint.

    PubMed

    Liu, Xiaoye; Trautmann, Johanna; Wigger, Ruth; Zhou, Guanghong; Mörlein, Daniel

    2017-09-15

    A certain level of disagreement between the chemical analysis of androstenone and skatole and the human perception of boar taint has been found in many studies. Here we analyze whether the fatty acid composition can explain such inconsistency between sensory evaluation and chemical analysis of boar taint compounds. Therefore, back fat samples (n=143) were selected according to their sensory evaluation by a 10-person sensory panel, and the chemical analysis (stable isotope dilution analysis with headspace solid-phase microextraction and gas chromatography-mass spectrometry) of androstenone and skatole. Subsequently a quantification of fatty acids using gas chromatography-flame ionization detection was conducted. The correlation analyses revealed that several fatty acids are significantly correlated with androstenone, skatole, and the sensory rating. However, multivariate analyses (principal component analysis) revealed no explanation of the fatty acid composition with respect to the (dis-)agreement between sensory and chemical analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Stable Isotope Composition of Fatty Acids in Organisms of Different Trophic Levels in the Yenisei River

    PubMed Central

    Gladyshev, Michail I.; Sushchik, Nadezhda N.; Kalachova, Galina S.; Makhutova, Olesia N.

    2012-01-01

    We studied four-link food chain, periphytic microalgae and water moss (producers), trichopteran larvae (consumers I), gammarids (omnivorous – consumers II) and Siberian grayling (consumers III) at a littoral site of the Yenisei River on the basis of three years monthly sampling. Analysis of bulk carbon stable isotopes and compound specific isotope analysis of fatty acids (FA) were done. As found, there was a gradual depletion in 13C contents of fatty acids, including essential FA upward the food chain. In all the trophic levels a parabolic dependence of δ13C values of fatty acids on their degree of unsaturation/chain length occurred, with 18:2n-6 and 18:3n-3 in its lowest point. The pattern in the δ13C differences between individual fatty acids was quite similar to that reported in literature for marine pelagic food webs. Hypotheses on isotope fractionation were suggested to explain the findings. PMID:22470513

  8. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    PubMed

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  9. Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions.

    PubMed

    Hori, Katsuhito; Hori-Koriyama, Natsuko; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-08-01

    Chloropropanol fatty acid esters (CPFAEs) are well-known contaminants in refined oils and fats, and several research groups have studied their formation. However, the results obtained in these studies were not satisfactory because the CPFAEs were not analyzed comprehensively. Thus, in the present study, a comprehensive analysis was performed to obtain new details about CPFAE formation. Each lipid (monopalmitin, dipalmitin, tripalmitin, monoolein, diolein, triolein, and crude palm oil) was heated at 250°C for 90 min, and the CPFAEs were analyzed using supercritical fluid chromatography/tandem mass spectrometry. It was found that CP fatty acid monoesters were formed from monoacylglycerols and diacylglycerols after heating in the presence of a chlorine compound. In addition, CP fatty acid diesters were formed from diacylglycerols and triacylglycerols under the same conditions. In the case of crude palm oil, only CP fatty acid diesters were formed. Therefore, these results indicated that CPFAEs in refined palm oil were formed mainly from triacylglycerols.

  10. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  11. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    PubMed

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.

  12. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  13. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    PubMed Central

    Torella, Joseph P.; Ford, Tyler J.; Kim, Scott N.; Chen, Amanda M.; Way, Jeffrey C.; Silver, Pamela A.

    2013-01-01

    Medium-chain fatty acids (MCFAs, 4–12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even- and odd-chain–length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired. PMID:23798438

  14. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    SciTech Connect

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  15. Recent advances in targeting the fatty acid biosynthetic pathway using fatty acid synthase inhibitors.

    PubMed

    Angeles, Thelma S; Hudkins, Robert L

    2016-12-01

    Elevated lipogenesis has been associated with a variety of diseases including obesity, cancer and nonalcoholic fatty liver disease (NAFLD). Fatty acid synthase (FASN) plays a pivotal role in de novo lipogenesis, making this multi-catalytic protein an attractive target for therapeutic intervention. Recently, the first FASN inhibitor successfully advanced through the drug development process and entered clinical evaluation in oncology. Areas covered: This review discusses the biological roles of FASN in three prominent disease areas: cancer, obesity-related disorders and NAFLD. Recent advances in drug discovery strategies and design of newer FASN inhibitors are also highlighted. Expert opinion: Despite the abundance of evidence linking the lipogenic pathway to cancer, progression of FASN-targeted molecules has been rather slow and challenging and no compounds have moved past the preclinical phase. The landscape has recently changed with the recent advancement of the first FASN inhibitor into clinical evaluation for solid tumors. Needless to say, the successful translation into the clinical setting will open opportunities for expanding the therapeutic utility of FASN inhibitors not just in oncology but in other diseases associated with elevated lipogenesis such as obesity, type 2 diabetes, and NAFLD.

  16. FAX1, a Novel Membrane Protein Mediating Plastid Fatty Acid Export

    PubMed Central

    Li, Nannan; Gügel, Irene Luise; Giavalisco, Patrick; Zeisler, Viktoria; Schreiber, Lukas; Soll, Jürgen; Philippar, Katrin

    2015-01-01

    Fatty acid synthesis in plants occurs in plastids, and thus, export for subsequent acyl editing and lipid assembly in the cytosol and endoplasmatic reticulum is required. Yet, the transport mechanism for plastid fatty acids still remains enigmatic. We isolated FAX1 (fatty acid export 1), a novel protein, which inserts into the chloroplast inner envelope by α-helical membrane-spanning domains. Detailed phenotypic and ultrastructural analyses of FAX1 mutants in Arabidopsis thaliana showed that FAX1 function is crucial for biomass production, male fertility and synthesis of fatty acid-derived compounds such as lipids, ketone waxes, or pollen cell wall material. Determination of lipid, fatty acid, and wax contents by mass spectrometry revealed that endoplasmatic reticulum (ER)-derived lipids decreased when FAX1 was missing, but levels of several plastid-produced species increased. FAX1 over-expressing lines showed the opposite behavior, including a pronounced increase of triacyglycerol oils in flowers and leaves. Furthermore, the cuticular layer of stems from fax1 knockout lines was specifically reduced in C29 ketone wax compounds. Differential gene expression in FAX1 mutants as determined by DNA microarray analysis confirmed phenotypes and metabolic imbalances. Since in yeast FAX1 could complement for fatty acid transport, we concluded that FAX1 mediates fatty acid export from plastids. In vertebrates, FAX1 relatives are structurally related, mitochondrial membrane proteins of so-far unknown function. Therefore, this protein family might represent a powerful tool not only to increase lipid/biofuel production in plants but also to explore novel transport systems involved in vertebrate fatty acid and lipid metabolism. PMID:25646734

  17. Quantifying the anthropogenic fraction of fatty alcohols in a terrestrial environment.

    PubMed

    Mudge, Stephen M; DeLeo, Paul C; Dyer, Scott D

    2012-06-01

    Fatty alcohols are naturally produced hydrocarbons present in all living organisms. They are also used in detergent and cosmetic formulations, may be sourced from either petroleum or biological materials, and are typically disposed of down the drain. This study was conducted on the Luray catchment, Virginia, USA, where sales data indicate that approximately 2 kg of fatty alcohols from detergent enter the wastewater every day. Reconstructing fatty alcohols in the influent on the basis of sales data indicated a mix of odd and even chain compounds, with C(12) being dominant. This profile was influenced strongly by liquid laundry detergents (69%). Sediment and soil samples from the catchment were analyzed by gas chromatography-mass spectrometry and by stable isotope ratio mass spectrometry to determine the δ(13)C and δ(2)H signatures. The long-chain components in agricultural soils and river sediments were distinguishable clearly from the algal fatty alcohols produced within the river system. The wastewater was a mixture of fecal and detergent sources of fatty alcohols in a ratio of 75:25%. The fatty alcohols in the effluent had different stable isotopic signatures and chain-length profiles from the influent, indicating that these compounds are not the same as those that entered the treatment plant. The total quantity of fatty alcohols leaving the treatment plant through the effluent pipe was low compared with the input. Analysis of the contributions based on the stable isotopes and profiles suggests that of the fatty alcohols present in the river system downstream of the treatment plant, 84% were derived from terrestrial plant production, 15% came from in situ algal synthesis, and 1% were derived from the effluent.

  18. Fatty acid biosynthesis as a drug target in apicomplexan parasites.

    PubMed

    Goodman, C D; McFadden, G I

    2007-01-01

    Apicomplexan parasitic diseases impose devastating impacts on much of the world's population. The increasing prevalence of drug resistant parasites and the growing number of immuno-compromised individuals are exacerbating the problem to the point that the need for novel, inexpensive drugs is greater now than ever. Discovery of a prokaryotic, Type II fatty acid synthesis (FAS) pathway associated with the plastid-like organelle (apicoplast) of Plasmodium and Toxoplasma has provided a wealth of novel drug targets. Since this pathway is both essential and fundamentally different from the cytosolic Type I pathway of the human host, apicoplast FAS has tremendous potential for the development of parasite-specific inhibitors. Many components of this pathway are already the target for existing antibiotics and herbicides, which should significantly reduce the time and cost of drug development. Continuing interest--both in the pharmaceutical and herbicide industries--in fatty acid synthesis inhibitors proffers an ongoing stream of potential new anti-parasitic compounds. It has now emerged that not all apicomplexan parasites have retained the Type II fatty acid biosynthesis pathway. No fatty acid biosynthesis enzymes are encoded in the genome of Theileria annulata or T. parva, suggesting that fatty acid synthesis is lacking in these parasites. The human intestinal parasite Cryptosporidium parvum appears to have lost the apicoplast entirely; instead relying on an unusual cytosolic Type I FAS. Nevertheless, newly developed anti-cancer and anti-obesity drugs targeting human Type I FAS may yet prove efficacious against Cryptosporidium and other apicomplexans that rely on this Type I FAS pathway.

  19. Omega-3 Fatty Acids during Pregnancy

    MedlinePlus

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your baby gets most ... eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important family of building ...

  20. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  1. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fatty acids. 172.860 Section 172.860 Food and... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  2. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Fatty acids. 172.860 Section 172.860 Food and... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  3. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Fatty acids. 172.860 Section 172.860 Food and... Multipurpose Additives § 172.860 Fatty acids. The food additive fatty acids may be safely used in food and in... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids...

  4. Pediatric nonalcoholic fatty liver disease.

    PubMed

    Bozic, Molly A; Subbarao, Girish; Molleston, Jean P

    2013-08-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the pediatric population. Increased recognition of this form of liver disease parallels the dramatic rise in childhood and adolescent obesity over the past 2 decades. Like adults, most children with NAFLD are obese, and comorbidities include insulin resistance, hypertension, and dyslipidemia. Unfortunately, pediatric NAFLD is not always a benign condition, with some children progressing to hepatic fibrosis and even cirrhosis in severe cases. The etiology of nonalcoholic steatohepatitis is not yet fully understood; however, hepatic steatosis in the context of insulin resistance and increased oxidative stress may lead to progressive disease. Although physical examination, laboratory evaluation, and radiographic findings provide clues to the potential presence of fatty liver disease, liver biopsy remains the gold standard for diagnosis. Lifestyle modification, including slow and steady weight loss, improved dietary habits, and increased daily, aerobic physical activity, remains the first-line approach in treating pediatric fatty liver disease. Antioxidant pharmacologic therapy such as use of vitamin E has shown some benefit in patients with biopsy-proven steatohepatitis. Nutrition plays an essential role not only in the development of fatty liver disease but also potentially in the treatment and prevention of progression to more severe disease.

  5. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803.

    PubMed

    Chen, Gao; Qu, Shujie; Wang, Qiang; Bian, Fei; Peng, Zhenying; Zhang, Yan; Ge, Haitao; Yu, Jinhui; Xuan, Ning; Bi, Yuping; He, Qingfang

    2014-03-01

    Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (ω-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal ω-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. We constructed a series of homologous vectors for the endogenous and exogenous expression of Δ6 and Δ15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of α-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20°C and 30°C. Thus, transgenic expression of Δ6 and Δ15 fatty acid desaturases enhances the accumulation of specific ω-3 PUFAs in Synechocystis sp. PCC6803. In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and γ-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential ω-3 PUFAs.

  6. EFFECTS OF THREE CONCENTRATIONS OF MIXED FATTY ACIDS ON DECHLORINATION OF TETRACHLOROETHENE IN AQUIFER MICRO- COSMS

    EPA Science Inventory

    Chloroethenes are among the most common organic contaminants of ground water. The biotransformation of these compounds by reductive dechlorination is a promising technology for in situ treatment. The effects of three concentrations of a fatty acids mixture on the reductive dehalo...

  7. EFFECTS OF THREE CONCENTRATIONS OF MIXED FATTY ACIDS ON DECHLORINATION OF TETRACHLOROETHENE IN AQUIFER MICRO- COSMS

    EPA Science Inventory

    Chloroethenes are among the most common organic contaminants of ground water. The biotransformation of these compounds by reductive dechlorination is a promising technology for in situ treatment. The effects of three concentrations of a fatty acids mixture on the reductive dehalo...

  8. Methods for the synthesis of tritium-labelled fatty acids and their derivatives, oxylipins and steroids

    NASA Astrophysics Data System (ADS)

    Shevchenko, Valerii P.; Nagaev, Igor Yu; Myasoedov, Nikolai F.

    1999-10-01

    The achievements in the field of synthesis and application of tritium-labelled oxylipins, steroids, fatty acids, phospho-, sphingo- and other lipids are reviewed. The importance of these studies for the solution of current problems of biochemistry, biology and pharmacology is exemplified in the application of labelled compounds. The bibliography includes 148 references.

  9. Efficient Fractionation and Analysis of Fatty Acids and their Salts in Fat, Oil and Grease (FOG) Deposits.

    PubMed

    Benecke, Herman P; Allen, Sara K; Garbark, Daniel B

    2017-02-01

    A fractionation methodology of fat, oil and grease (FOG) deposits was developed based on the insolubility of fatty acid salts in dichloromethane (DCM) and the relatively high solubility of fatty acids and triglycerides in DCM. Using this method, coupled with spectral analysis, it was shown that fatty acids rather than fatty acid salts were the predominant species in FOG deposits obtained from three metropolitan locations in the United States and that fatty acid triglycerides were either not detected or were present in very small concentrations. This solubility-based fractionation approach also revealed the presence of nitrogen-containing compounds that had not been previously detected in FOG deposits including peptides and (or) proteins. The comparison of the ratios of stearic acid salts to stearic acid versus the ratio of palmitic acid salts to palmitic acid in FOG deposits may indicate that the initial step in FOG deposit formation is the preferential precipitation of stearic acid salts.

  10. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  11. Nitrated fatty acids: synthesis and measurement.

    PubMed

    Woodcock, Steven R; Bonacci, Gustavo; Gelhaus, Stacy L; Schopfer, Francisco J

    2013-06-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia/reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis and sample extraction from complex biological matrices and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by liquid chromatography-mass spectrometry. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed.

  12. Composition, assimilation and degradation of Phaeocystis globosa-derived fatty acids in the North Sea

    NASA Astrophysics Data System (ADS)

    Hamm, Christian E.; Rousseau, Veronique

    2003-12-01

    The fate of a Phaeocystis globosa bloom in the southern North Sea off Belgium, the Netherlands and Germany in May 1995 was investigated during a cruise with RV 'Belgica'. We used fatty acids as biomarkers to follow the fate of Phaeocystis-derived biomass of a Phaeocystis-dominated spring bloom. The bloom, in which up to >99% of the biomass was contributed by Phaeocystis, showed a fatty acid composition with a characteristically high abundance of polyunsaturated C 18-fatty acids, which increased in concentration with number of double bonds up to 18:5 (n-3), and high concentrations of 20:5 (n-3) and 22:6 (n-3). In contrast to most previous studies, fatty acid analysis of the mesozooplankton community (mainly calanoid copepods) and meroplankton ( Carcinus maenas megalope) indicated that P. globosa was a major component (ca. 70% and 50%, respectively) in the diet of these organisms. Massive accumulations of amorphous grey aggregates, in which Phaeocystis colonies were major components, were dominated by saturated fatty acids and contained only few of the polyunsaturated C 18-fatty acids. A hydrophobic surface slick that covered the water surface during the bloom showed very similar patterns. Foam patches contained few Phaeocystis-typical fatty acids, but increased amounts of diatom-typical compounds such as 16:1 (n-7) and 20:5 (n-3), and 38% fatty alcohols, indicating that wax esters dominated the lipid fraction in the foam with ca. 76% (w/w). The fatty acid compositions of surface sediment showed that no sedimentation of fresh Phaeocystis occurred during the study. The results indicate that Phaeocystis-derived organic matter degraded while floating or in suspension, and had not reached the sediment in substantial amounts.

  13. New radiohalogenated alkenyl tellurium fatty acids

    SciTech Connect

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs.

  14. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    PubMed

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  15. Fluorescing fatty acids in rat fatty liver models.

    PubMed

    Croce, Anna C; Ferrigno, Andrea; Di Pasqua, Laura G; Berardo, Clarissa; Mannucci, Barbara; Bottiroli, Giovanni; Vairetti, Mariapia

    2017-06-01

    The autofluorescence (AF) of NAD(P)H and flavins has been at the basis of many in-situ studies of liver energy metabolism and functionality. Conversely, few data have been so far reported on fluorescing lipids. In this work we investigated the AF of liver lipid extracts from two fatty liver models, Wistar rats fed with MCD diet for 12 days (Wi-MCD), and obese (fa/fa) Zucker rats. Among the most abundant fatty acids in the lipid extracts, indicated by mass spectrometry, arachidonic acid (AA) exhibited higher quantum yield than the other fluorescing fatty acids (FLFA), and red shifted AF spectrum. This allowed to estimate the AA contribution to the overall emission of lipid extracts by curve fitting analysis. AA prevailed in obese Zucker livers, accounting for the different AF spectral profiles between the two models. AF and mass spectrometry indicated also a different balance between the fluorescing fraction and the overall amount of AA in the two models. The ability of AF to detect directly AA and FLFA was demonstrated, suggesting its supportive role as tool in wide-ranging applications, from the control of animal origin food, to experimental investigations on liver fat accumulation, lipotoxicity and disease progression, with potential translation to the clinics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP.

    PubMed

    Korinek, Michal; Tsai, Yi-Hong; El-Shazly, Mohamed; Lai, Kuei-Hung; Backlund, Anders; Wu, Shou-Fang; Lai, Wan-Chun; Wu, Tung-Ying; Chen, Shu-Li; Wu, Yang-Chang; Cheng, Yuan-Bin; Hwang, Tsong-Long; Chen, Bing-Hung; Chang, Fang-Rong

    2017-01-01

    Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R(*)-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14-3.73 μM) and elastase release (IC50 1.26-4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from

  17. Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP

    PubMed Central

    Korinek, Michal; Tsai, Yi-Hong; El-Shazly, Mohamed; Lai, Kuei-Hung; Backlund, Anders; Wu, Shou-Fang; Lai, Wan-Chun; Wu, Tung-Ying; Chen, Shu-Li; Wu, Yang-Chang; Cheng, Yuan-Bin; Hwang, Tsong-Long; Chen, Bing-Hung; Chang, Fang-Rong

    2017-01-01

    Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R*-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14–3.73 μM) and elastase release (IC50 1.26–4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from

  18. Fatty acid uptake in normal human myocardium

    SciTech Connect

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R. )

    1991-09-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 {plus minus} 0.024 mumol/g and 0.37 {plus minus} 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells.

  19. Isolation and identification of C-19 fatty acids with anti-tumor activity from the spores of Ganoderma lucidum (reishi mushroom).

    PubMed

    Gao, Pei; Hirano, Tomoya; Chen, Zhiqing; Yasuhara, Tadashi; Nakata, Yoshihiro; Sugimoto, Akiko

    2012-04-01

    We previously showed that ethanolic extracts of spores of Ganoderma lucidum inhibit tumor cell proliferation and induce apoptosis of HL-60 cells. The active constituents appeared to be long-chain fatty acids, particularly carbon-19 (C-19) fatty acids which have not been reported in spores of Ganoderma lucidum. In the present study, two of these C-19 fatty acids which are key compounds in the activities, were identified as their 2-naphthyl ester derivatives after esterification of a mixture of fatty acids obtained from the spores. The active compounds were determines as nonadecanoic acid and cis-9-nonadecenoic acid. The location of the double bond of cis-9-nonadecenoic acid was demonstrated by GC-MS analysis, based on the fragmentation pattern of the adduct prepared from the fatty acid and dimethyl disulfide.

  20. Metolachlor-mediated selection of a microalgal strain producing novel polyunsaturated fatty acids.

    PubMed

    Robert, Stanley; Mansour, Maged P; Blackburn, Susan I

    2007-01-01

    Long-chain (> or = C(20)) polyunsaturated fatty acids, such as docosahexaenoic acid and eicosapentaenoic acid, are nutritionally important and provide protection against cardiovascular disease, stroke, and cancer. Structural variants of these compounds may have the potential to be used as pharmaceuticals. Marine microalgae are the key producers of long-chain polyunsaturated fatty acids in the global food web. Assuming vast biological and biochemical diversity, we devised a screen to identify microalgae that produce novel fatty acids. The herbicide metolachlor, an inhibitor of long-chain fatty acid biosynthesis, was used in microcosms containing field-collected microalgae to identify naturally resistant strains. We show that one diatom, Melosira cf. moniliformis, is naturally resistant to concentrations of metolachlor, which were cytostatic or lethal to all the other microalgae. Gas chromatography and gas chromatography-mass spectrometry revealed three fatty acids that have not previously been described-18:4 (Delta5,8,11,14), 18:4 (Delta5,9,12,15), and 18:5 (Delta5,8,11,14,17). We propose that this type of screen may be generally applicable to the search of novel compounds produced by marine microorganisms.

  1. Shrimp lipids: a source of cancer chemopreventive compounds.

    PubMed

    López-Saiz, Carmen-María; Suárez-Jiménez, Guadalupe-Miroslava; Plascencia-Jatomea, Maribel; Burgos-Hernández, Armando

    2013-10-16

    Shrimp is one of the most popular seafoods worldwide, and its lipids have been studied for biological activity in both, muscle and exoskeleton. Free fatty acids, triglycerides, carotenoids, and other lipids integrate this fraction, and some of these compounds have been reported with cancer chemopreventive activities. Carotenoids and polyunsaturated fatty acids have been extensively studied for chemopreventive properties, in both in vivo and in vitro studies. Their mechanisms of action depend on the lipid chemical structure and include antioxidant, anti-proliferative, anti-mutagenic, and anti-inflammatory activities, among others. The purpose of this review is to lay groundwork for future research about the properties of the lipid fraction of shrimp.

  2. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans.

    PubMed

    Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe

    2017-11-01

    This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants.

    PubMed

    Yoon, Bo Kyeong; Jackman, Joshua A; Kim, Min Chul; Cho, Nam-Joon

    2015-09-22

    Medium-chain saturated fatty acids and related compounds (e.g., monoglycerides) represent one class of membrane-active surfactants with antimicrobial properties. Most related studies have been in vitro evaluations of bacterial growth inhibition, and there is limited knowledge about how the compounds in this class destabilize lipid bilayers, which are the purported target within the bacterial cell membrane. Herein, the interaction between three representative compounds in this class and a supported lipid bilayer platform was investigated using quartz crystal microbalance-dissipation and fluorescence microscopy in order to examine membrane destabilization. The three tested compounds were lauric acid, sodium dodecyl sulfate, and glycerol monolaurate. For each compound, we discovered striking differences in the resulting morphological changes of supported lipid bilayers. The experimental trends indicate that the compounds have membrane-disruptive behavior against supported lipid bilayers principally above the respective critical micelle concentration values. The growth inhibition properties of the compounds against standard and methicillin-resistant Staphylococcus aureus bacterial strains were also tested. Taken together, the findings in this work improve our knowledge about how saturated fatty acids and related compounds destabilize lipid bilayers, offering insight into the corresponding molecular mechanisms that lead to membrane morphological responses.

  4. Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously unobserved binding mode.

    PubMed

    Porubsky, Patrick R; Battaile, Kevin P; Scott, Emily E

    2010-07-16

    Human microsomal cytochrome P450 (CYP) 2E1 is widely known for its ability to oxidize >70 different, mostly compact, low molecular weight drugs and other xenobiotic compounds. In addition CYP2E1 oxidizes much larger C9-C20 fatty acids that can serve as endogenous signaling molecules. Previously structures of CYP2E1 with small molecules revealed a small, compact CYP2E1 active site, which would be insufficient to accommodate medium and long chain fatty acids without conformational changes in the protein. In the current work we have determined how CYP2E1 can accommodate a series of fatty acid analogs by cocrystallizing CYP2E1 with omega-imidazolyl-octanoic fatty acid, omega-imidazolyl-decanoic fatty acid, and omega-imidazolyl-dodecanoic fatty acid. In each structure direct coordination of the imidazole nitrogen to the heme iron mimics the position required for native fatty acid substrates to yield the omega-1 hydroxylated metabolites that predominate experimentally. In each case rotation of a single Phe(298) side chain merges the active site with an adjacent void, significantly altering the active site size and topology to accommodate fatty acids. The binding of these fatty acid ligands is directly opposite the channel to the protein surface and the binding observed for fatty acids in the bacterial cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium. Instead of the BM3-like binding mode in the CYP2E1 channel, these structures reveal interactions between the fatty acid carboxylates and several residues in the F, G, and B' helices at successive distances from the active site.

  5. Fatty acid composition of surface sediments in the subtropical Pearl River estuary and adjacent shelf, Southern China

    NASA Astrophysics Data System (ADS)

    Hu, Jianfang; Zhang, Hongbo; Peng, Ping'an

    2006-01-01

    Surface sediments (10 cm) of the subtropical Pearl River estuary and adjacent shelf, Southern China were collected. Fatty acids and compound-specific carbon isotopic analyses were determined to infer their sources and biogeochemical cycle of this lipid in the subtropical Pearl River estuary and adjacent northern South China Sea (SCS). The total concentrations of fatty acids ranged from ˜1.28 to ˜42.25 μg g -1 dry weight. The levels of polyunsaturated fatty acids (PUFA) were low (0.2-4.8% of total fatty acids), suggesting that fatty acids derived from algae were effectively recycled during the whole settling and depositing process. Bacterial fatty acids were significantly high and terrigenous fatty acids were low in the sediments. Principal component analysis (PCA) of the data also indicates that a clear separation of the biogeochemical sources can be seen. The δ13C values of bacterial fatty acids, i.e., i/ aiC 15 (-22.9‰ to -29.4‰) suggest that bacteria within the sediments mainly utilize a labile pool of organic matter derived from algae for their growth in the subtropical Pearl River estuary system.

  6. Beef, chicken and lamb fatty acid analysis--a simplified direct bimethylation procedure using freeze-dried material.

    PubMed

    Lee, M R F; Tweed, J K S; Kim, E J; Scollan, N D

    2012-12-01

    When fractionation of meat lipids is not required, procedures such as saponification can be used to extract total fatty acids, reducing reliance on toxic organic compounds. However, saponification of muscle fatty acids is laborious, and requires extended heating times, and a second methylation step to convert the extracted fatty acids to fatty acid methyl esters prior to gas chromatography. Therefore the development of a more rapid direct methylation procedure would be of merit. The use of freeze-dried material for analysis is common and allows for greater homogenisation of the sample. The present study investigated the potential of using freeze-dried muscle samples and a direct bimethylation to analyse total fatty acids of meat (beef, chicken and lamb) in comparison with a saponification procedure followed by bimethylation. Both methods compared favourably for all major fatty acids measured. There was a minor difference in relation to the C18:1 trans 10 isomer with a greater (P<0.05) recovery with saponification. However, numerically the difference was small and likely as a result of approaching the limits of isomer identification by single column gas chromatography. Differences (P<0.001) between species were found for all fatty acids measured with no interaction effects. The described technique offers a simplified, quick and reliable alternative to saponification to analyse total fatty acids from muscle samples.

  7. Saponification of fatty slaughterhouse wastes for enhancing anaerobic biodegradability.

    PubMed

    Battimelli, Audrey; Carrère, Hélène; Delgenès, Jean-Philippe

    2009-08-01

    The thermochemical pretreatment by saponification of two kinds of fatty slaughterhouse waste--aeroflotation fats and flesh fats from animal carcasses--was studied in order to improve the waste's anaerobic degradation. The effect of an easily biodegradable compound, ethanol, on raw waste biodegradation was also examined. The aims of the study were to enhance the methanisation of fatty waste and also to show a link between biodegradability and bio-availability. The anaerobic digestion of raw waste, saponified waste and waste with a co-substrate was carried out in batch mode under mesophilic and thermophilic conditions. The results showed little increase in the total volume of biogas, indicating a good biodegradability of the raw wastes. Mean biogas volume reached 1200 mL/g VS which represented more than 90% of the maximal theoretical biogas potential. Raw fatty wastes were slowly biodegraded whereas pretreated wastes showed improved initial reaction kinetics, indicating a better initial bio-availability, particularly for mesophilic runs. The effects observed for raw wastes with ethanol as co-substrate depended on the process temperature: in mesophilic conditions, an initial improvement was observed whereas in thermophilic conditions a significant decrease in biodegradability was observed.

  8. Synthesis and properties of fatty acid starch esters.

    PubMed

    Winkler, Henning; Vorwerg, Waltraud; Wetzel, Hendrik

    2013-10-15

    Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS>2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2h. FASEs C6-C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, (1)H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified - contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6-C18), formation of concentrated solutions (10 wt%) is feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Incorporation of conjugated fatty acids into Nile tilapia (Oreochromis niloticus).

    PubMed

    Bonafé, Elton G; de Figueiredo, Luana C; Martins, Alessandro F; Monteiro, Johny P; Junior, Oscar Os; Canesin, Edmilson A; Maruyama, Swami Arêa; Visentainer, Jesuí V

    2017-08-01

    The aim of this work was to improve the nutritional quality of Nile tilapia meat through enriched diets with conjugated isomers of linolenic acid from tung oil. The transfer process of conjugated fatty acids (CFAs) into fish muscle tissue was evaluated by gas chromatography-flame ionization detection (GC-FID) and easy ambient sonic-spray ionization mass spectrometry (EASI-MS). The results showed that conjugated fatty acids were transferred from enriched diet for muscle tissue of Nile tilapia. Conjugated linoleic acids biosynthesis from conjugated linolenic acids was also observed after 10 days. Other important fatty acids such as docosahexaenoic (DHA), eicosapentaenoic (EPA) and arachidonic (AA) acids were also identified over time; however, DHA showed the highest concentration when compared with EPA and AA compounds. Therefore, the nutritional quality of Nile tilapia was improved through feeding with enriched diets. The ingestion of these fish may contribute to reaching adequate levels of daily CFA consumption. Furthermore, other important substances which play an important role in human metabolism, such as EPA, DHA and AA, can also be ingested together with CFA. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Atomic determinants of BK channel activation by polyunsaturated fatty acids

    PubMed Central

    Tian, Yutao; Aursnes, Marius; Hansen, Trond Vidar; Tungen, Jørn Eivind; Galpin, Jason D.; Leisle, Lilia; Ahern, Christopher A.; Xu, Rong; Heinemann, Stefan H.; Hoshi, Toshinori

    2016-01-01

    Docosahexaenoic acid (DHA), a polyunsaturated ω-3 fatty acid enriched in oily fish, contributes to better health by affecting multiple targets. Large-conductance Ca2+- and voltage-gated Slo1 BK channels are directly activated by nanomolar levels of DHA. We investigated DHA–channel interaction by manipulating both the fatty acid structure and the channel composition through the site-directed incorporation of unnatural amino acids. Electrophysiological measurements show that the para-group of a Tyr residue near the ion conduction pathway has a critical role. To robustly activate the channel, ionization must occur readily by a fatty acid for a good efficacy, and a long nonpolar acyl tail with a Z double bond present at the halfway position for a high affinity. The results suggest that DHA and the channel form an ion–dipole bond to promote opening and demonstrate the channel druggability. DHA, a marine-derived nutraceutical, represents a promising lead compound for rational drug design and discovery. PMID:27849612

  11. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  12. Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution.

    PubMed

    Silva, Carla O; Simões, Tiago; Novais, Sara C; Pimparel, Inês; Granada, Luana; Soares, Amadeu M V M; Barata, Carlos; Lemos, Marco F L

    2017-05-15

    Metals are among the most common environmental pollutants with natural or anthropogenic origin that can be easily transferred through the food chain. Marine gastropods are known to accumulate high concentrations of these metals in their tissues. Gibbula umbilicalis ecological importance and abundant soft tissues, which enables extent biochemical assessments, makes this particular organism a potentially suitable species for marine ecotoxicological studies. Fatty acids are carbon-rich compounds that are ubiquitous in all organisms and easy to metabolize. Their biological specificity, relatively well-studied functions and importance, and the fact that they may alter when stress is induced, make fatty acids prospect biomarkers. This work aimed to assess fatty acid profile changes in the gastropod G. umbilicalis exposed to three metal contaminants. After a 168h exposure to cadmium, mercury, and nickel, the following lipid related endpoints were measured: total lipid content; lipid peroxidation; and fatty acid profile (FAP). The analysis of the FAP suggested an alteration in the fatty acid metabolism and indicated a link between metals exposure and homeoviscous adaptation and immune response. In particular, five fatty acids (palmitic, eicosatrienoic, arachidonic, eicosapentaenoic, and docosahexaenoic acids), demonstrated to be especially good indicators of G. umbilicalis responses to the array of metals used, having thus the potential to be used as biomarkers for metal contamination in this species. This work represents a first approach for the use of FAP signature as a sensitive and informative parameter and novel tool in environmental risk assessment (ERA) of coastal environments, using G. umbilicalis as model species.

  13. Amino acid, fatty acid, and carbohydrate content of Artocarpus altilis (breadfruit).

    PubMed

    Golden, K D; Williams, O J

    2001-06-01

    A study is conducted to determine the amino acid, fatty acid, and carbohydrate content of breadfruit using high-performance liquid chromatography (HPLC) and gas chromatography (GC). An HPLC method is used for the determination of amino acids and fatty acids in breadfruit. Representative amino acid samples are derivatized with phenylisothiocianate and the resulting phenylthiocarbamyl derivatives are separated on a reversed-phase column by gradient elution with a 0.05M ammonium acetate buffer and 0.01M ammonium acetate in acetonitrile-methanol-water (44:10:46, v/v). Representative fatty acid samples are derivatized with phenacyl bromide and the resulting fatty acid phenacyl esters are separated on a reversed-phase column by gradient elution with acetonitrile and water. Amino acid and fatty acid derivatives are detected by ultraviolet detection at 254 nm. The analysis of the carbohydrates in breadfruit employs a GC method. Carbohydrates are derivatized using trimethylchlorosilane and hexamethyldisilazane to form trimethylsilyl ethers. Compounds in the samples are separated by the temperature programming of a GC using nitrogen as the carrier gas. Percent recoveries of amino acids, fatty acids, and carbohydrates are 72.5%, 68.2%, and 81.4%, respectively. The starch content of the breadfruit is 15.52 g/100 g fresh weight.

  14. Antimicrobial activity of fatty acids from fruits of Peucedanum cervaria and P. alsaticum.

    PubMed

    Skalicka-Woźniak, Krystyna; Los, Renata; Głowniak, Kazimierz; Malm, Anna

    2010-11-01

    Plants of the genus Peucedanum have been used in traditional medicine for a long time to treat different diseases including infectious diseases. The hexane fruits extracts of Peucedanum cervaria and P. alsaticum were examined for antimicrobial activity and analyzed for their fatty acid content. Fatty acid composition of oils were analyzed by GC/FID in methyl ester form. Minimal inhibitory concentrations (MICs) of fatty acid fractions against twelve reference bacterial and yeast strains were performed by the twofold serial microdilution broth method. Fourteen fatty acids were identified. Oleic and linoleic acids were found to be dominant. The extracts from both plants examined exhibited inhibitory effects against Gram-positive strains tested with different MIC values (0.25-2 mg/ml); however, extract from P. alsaticum possessed stronger antibacterial properties and a broader spectrum. The growth of Gram-negative bacteria and Candida spp. strains was not inhibited even at the highest extract concentration used (MIC>4 mg/ml). Standard fatty acids exhibited inhibitory effects towards all bacterial and yeast strains used in this study; however, the majority of bacteria were more sensitive to linoleic than to oleic acid. These results revealed, for the first time, that hexane extracts obtained from fruits of P. alsaticum and P. cervaria possess moderate in vitro antibacterial activity against Gram-positive bacteria including staphylococci. Linoleic and oleic acids appear to be the compounds responsible for this effect, and a synergistic antimicrobial effect between these two fatty acids was indicated.

  15. Novel fatty acid esters of p-coumaryl alcohol in epicuticular wax of apple fruit.

    PubMed

    Whitaker, B D; Schmidt, W F; Kirk, M C; Barnes, S

    2001-08-01

    Hexane extracts of epicuticular wax from cv. Gala apples were noted to have an unusual, broad absorbance maximum at approximately 258 nm, which led us to isolate and identify the primary UV-absorbing compounds. Column and thin-layer chromatography yielded a fraction that gave a series of paired, 260-nm-absorbing peaks on C(18) HPLC. These were shown to be a family of phenolic fatty acid esters, for which retention times increased with increasing fatty acid chain length, and paired peaks were esters of two related phenolics with the same fatty acid moiety. Alkaline hydrolysis of the esters released two water-soluble phenolics separable by C(18) HPLC. Electrospray ionization mass spectrometry gave a molecular mass of 150 for both, and (1)H NMR plus UV absorbance spectra identified them as E and Z isomers of p-coumaryl alcohol. Alkaline cleavage of the fatty acid esters in the presence of methanol or ethanol resulted in partial derivatization of E-p-coumaryl alcohol to the corresponding gamma-O-methyl or O-ethyl ether. Gradient HMQC NMR of the HPLC-purified stearate ester of E-p-coumaryl alcohol indicated that fatty acid esterification occurs at the gamma-OH rather than at the 4-OH on the phenyl ring. This is the first report of fatty acid esters of monolignols as a natural plant product.

  16. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease

    PubMed Central

    Kostrzewski, Tomasz; Cornforth, Terri; Snow, Sophie A; Ouro-Gnao, Larissa; Rowe, Cliff; Large, Emma M; Hughes, David J

    2017-01-01

    AIM To develop a human in vitro model of non-alcoholic fatty liver disease (NAFLD), utilising primary hepatocytes cultured in a three-dimensional (3D) perfused platform. METHODS Fat and lean culture media were developed to directly investigate the effects of fat loading on primary hepatocytes cultured in a 3D perfused culture system. Oil Red O staining was used to measure fat loading in the hepatocytes and the consumption of free fatty acids (FFA) from culture medium was monitored. Hepatic functions, gene expression profiles and adipokine release were compared for cells cultured in fat and lean conditions. To determine if fat loading in the system could be modulated hepatocytes were treated with known anti-steatotic compounds. RESULTS Hepatocytes cultured in fat medium were found to accumulate three times more fat than lean cells and fat uptake was continuous over a 14-d culture. Fat loading of hepatocytes did not cause any hepatotoxicity and significantly increased albumin production. Numerous adipokines were expressed by fatty cells and genes associated with NAFLD and liver disease were upregulated including: Insulin-like growth factor-binding protein 1, fatty acid-binding protein 3 and CYP7A1. The metabolic activity of hepatocytes cultured in fatty conditions was found to be impaired and the activities of CYP3A4 and CYP2C9 were significantly reduced, similar to observations made in NAFLD patients. The utility of the model for drug screening was demonstrated by measuring the effects of known anti-steatotic compounds. Hepatocytes, cultured under fatty conditions and treated with metformin, had a reduced cellular fat content compared to untreated controls and consumed less FFA from cell culture medium. CONCLUSION The 3D in vitro NAFLD model recapitulates many features of clinical NAFLD and is an ideal tool for analysing the efficacy of anti-steatotic compounds. PMID:28127194

  17. Fatty acid composition of frequently consumed foods in Turkey with special emphasis on trans fatty acids.

    PubMed

    Karabulut, Ihsan

    2007-12-01

    Fatty acid compositions of frequently consumed foods in Turkey were analyzed by capillary gas chromatography with particular emphasis on trans fatty acids. The survey was carried out on 134 samples that were categorized as meat products, chocolates, bakery products and others. The meat products except chicken-based foods have trans fatty acids, arising as a result of ruminant activity, with an average content of 1.45 g/100 g fatty acids. The conjugated linoleic acid content of meat and chicken doner kebabs were found higher than other meat products. Chocolate samples contained trans fatty acids less than 0.17 g/100 g fatty acids, with the exceptional national product of chocolate bars and hazelnut cocoa cream (2.03 and 3.68 g/100 g fatty acids, respectively). Bakery products have the highest trans fatty acid contents and ranged from 0.99 to 17.77 g/100 g fatty acids. The average trans fatty acid contents of infant formula and ice-cream, which are milk-based products, were 0.79 and 1.50 g/100 g fatty acids, respectively. Among the analyzed foods, it was found that coffee whitener and powdered whipped topping had the highest saturated fatty acid contents, with an average content of 98.71 g/100 g fatty acids.

  18. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    PubMed

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. © 2016 by the American Diabetes Association.

  19. A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids

    PubMed Central

    Hadian, Zahra

    2016-01-01

    Currently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n−3) and docosahexaenoic acid (DHA, 22:5 n−3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds. PMID:26955449

  20. A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids.

    PubMed

    Hadian, Zahra

    2016-01-01

    Currently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n-3) and docosahexaenoic acid (DHA, 22:5 n-3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds.

  1. Two Spirostan Steroid Glycoside Fatty Esters from Dioscorea cayenensis

    PubMed Central

    Ali, Zulfiqar; Smillie, Troy J.

    2017-01-01

    Two new fatty acid-spirostan steroid glycoside esters, progenin III palmitate (1) and progenin III linoleate (2), were isolated from the MeOH extract of Dioscorea cayenensis rhizomes. The extract also yielded seven previously known spirostan and furostan steroid glycosides (3–9). The structures of the new compounds were established as (25R)-spirost-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-palmitoyl]-O-β-D-glucopyranoside (1) and (25R)-spirost-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-linoleoyl]-O-β-D-glucopyranoside (2) by chemical and spectroscopic methods, including 1D and 2D NMR. The known compounds were identified as progenin III (3), dioscin (4), deltonin (5), asperin (6), gracillin (7), protodioscin (8)], and methyl protodioscin (9). PMID:23678801

  2. Glycosides of polyenoic branched fatty acids from myxomycetes.

    PubMed

    Rezanka, Tomás

    2002-07-01

    The determination of chemical structures of five novel compounds, i.e. one multibranched polyunsaturated fatty acid ((2E,4E,7S,8E,10E,12E,14S)-7,9,13,17-tetramethyl-7,14-dihydroxy-2,4,8,10,12,16-octadecahexaenoic acid) and its four glycosides from seven different myxomycetes is described. The absolute configuration of both hydroxyl groups was determined. The glycosides containing glucose, mannose and rhamnose. These compounds were identified by means of 1H and 13C NMR, MS, UV and IR spectra. Three of them were identified in Arcyria cinerea (Bull.) Pers., two in A. denudata (L.) Wetts., and A. nutans (Bull.) Grev., Fuligo septica (L.) Wigg., Lycogala epidendrum (L.) Fries, Physarum polycephalum Schwein., and Trichia varia Pers. contained one of the identified glycosides each.

  3. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    SciTech Connect

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  4. Pathophysiology of Non Alcoholic Fatty Liver Disease.

    PubMed

    Petta, Salvatore; Gastaldelli, Amalia; Rebelos, Eleni; Bugianesi, Elisabetta; Messa, Piergiorgio; Miele, Luca; Svegliati-Baroni, Gianluca; Valenti, Luca; Bonino, Ferruccio

    2016-12-11

    The physiopathology of fatty liver and metabolic syndrome are influenced by diet, life style and inflammation, which have a major impact on the severity of the clinicopathologic outcome of non-alcoholic fatty liver disease. A short comprehensive review is provided on current knowledge of the pathophysiological interplay among major circulating effectors/mediators of fatty liver, such as circulating lipids, mediators released by adipose, muscle and liver tissues and pancreatic and gut hormones in relation to diet, exercise and inflammation.

  5. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  6. Cellular Effects of Perfluorinated Fatty Acids.

    DTIC Science & Technology

    1985-01-01

    TCDD appeared to interfere with fatty acid metabolism leading to an increase in unsaturation. Furthermore, Andersen et al. (2) proposed that such an...increase in cellular unsaturated fatty acids may lead-to excessive membrane fluidity (as indicated by induced changes in red blood cell fragility) and...TASK WORK UNITELEMENT NO. NO. NO. NO. 11. TITLE (include Security Claificati on) ~/~. Cellular Effects of Perfluorinated Fatty Ac ds 12. PERSONAL

  7. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  8. Exogenous fatty acid metabolism in bacteria.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Pathophysiology of Non Alcoholic Fatty Liver Disease

    PubMed Central

    Petta, Salvatore; Gastaldelli, Amalia; Rebelos, Eleni; Bugianesi, Elisabetta; Messa, Piergiorgio; Miele, Luca; Svegliati-Baroni, Gianluca; Valenti, Luca; Bonino, Ferruccio

    2016-01-01

    The physiopathology of fatty liver and metabolic syndrome are influenced by diet, life style and inflammation, which have a major impact on the severity of the clinicopathologic outcome of non-alcoholic fatty liver disease. A short comprehensive review is provided on current knowledge of the pathophysiological interplay among major circulating effectors/mediators of fatty liver, such as circulating lipids, mediators released by adipose, muscle and liver tissues and pancreatic and gut hormones in relation to diet, exercise and inflammation. PMID:27973438

  10. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are derived...

  11. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are derived...

  12. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are derived...

  13. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis and...

  14. Decomposition products of glycidyl esters of fatty acids by heating.

    PubMed

    Kimura, Wataru; Endo, Yasushi

    2017-03-01

    In this study, decomposition products of glycidyl palmitate (GP) of fatty acids heated at high temperature such as deep frying were investigated. When GP and tripalmitin (TP) were heated at 180 and 200 °C, they were decreased with heating time. The weight of GP was less than that of TP, although both GP and TP were converted to polar compounds after heating. The decomposition rate of GP was higher than TP. Both GP and TP produced considerable amounts of hydrocarbons and aldehydes during heating. Aldehydes produced from GP and TP included saturated aldehydes with carbon chain length of 3-10, while hydrocarbons consisted of carbon chain length of 8-15. It was observed that major hydrocarbons produced from GP during heating were pentadecane. Moreover, the level of carbon dioxide (CO2) released from GP was higher than that of TP. It was suggested that fatty acids in GE might be susceptible to decarboxylation. From these results, GP might be quickly decomposed to hydrocarbons, aldehydes and CO2 besides polar compounds by heating, in comparison with TP.

  15. Fatty Acids and Bioactive Lipids of Potato Cultivars: An Overview.

    PubMed

    Ramadan, Mohamed Fawzy; Oraby, Hesahm Farouk

    2016-01-01

    Potato tuber is a highly nutritious, wherein genotype and environmental differences are known to exist in the shape, size and nutritional value of potatoes. Owing to its high consumption, potato could be an ideal carrier of health-promoting phytochemicals. Potato cultivars contain many bioactive lipidic compounds such as fatty acids, glycolipids, phospholipids, sterols, tocols and carotenoids, which are highly desirable in diet because of their health-promoting effects. In the scientific literature, information on the content and profile of bioactive lipidic compounds in potato cultivars are few. The concentration and stability of bioactive lipids are affected by many factors such as genotype, agronomic factors, postharvest storage, cooking and processing conditions. In this review levels and composition of bioactive lipids in terms of lipid classes, fatty acids, phytosterols, tocopherols, and caroteinoids distribution in different potato cultivars including genetically modified potato (GMP) were highlighted and discussed. In addition, factors affecting bioactive lipids levels, stability and health benefits are reviewed. In consideration of potential nutritional value, detailed knowledge on lipids of potato cultivars is of major importance.

  16. Omega-3 fatty acids and neuropsychiatric disorders.

    PubMed

    Young, Genevieve; Conquer, Julie

    2005-01-01

    Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.

  17. 1,4-Dihydroxy fatty acids: Artifacts by reduction of di- and polyunsaturated fatty acids with sodium borohydride

    NASA Astrophysics Data System (ADS)

    Thiemt, Simone; Spiteller, Gerhard

    1997-01-01

    In an effort to detect lipid peroxidation products in human blood plasma, samples were treated with NaBH4 to reduce the reactive hydroperoxides to hydroxy compounds. After saponification of the lipids, the free fatty acid fraction obtained by extraction was methylated and separated by TLC. The fractions containing polar compounds were trimethylsilylated and subjected to gas chromatography-mass spectrometry (GC/MS). Mass spectra allowed us to detect previously unknown 1,4-dihydroxy fatty acids due to their typical fragmentation pattern. If the reduction was carried out with NaBD4 instead of NaBH4, incorporation of two deuterium atoms was observed (appropriate mass shift). The two oxygen atoms of the hydroxyl groups were incorporated from air as shown by an experiment in 18O2 atmosphere. The reaction required the presence of free acids, indicating that BH3 was liberated, added to a 1,4-pentadiene system, and finally produced 1,4-diols by air oxidation.

  18. Applying a multitarget rational drug design strategy: the first set of modulators with potent and balanced activity toward dopamine D3 receptor and fatty acid amide hydrolase.

    PubMed

    De Simone, Alessio; Ruda, Gian Filippo; Albani, Clara; Tarozzo, Glauco; Bandiera, Tiziano; Piomelli, Daniele; Cavalli, Andrea; Bottegoni, Giovanni

    2014-05-18

    Combining computer-assisted drug design and synthetic efforts, we generated compounds with potent and balanced activities toward both D3 dopamine receptor and fatty acid amide hydrolase (FAAH) enzyme. By concurrently modulating these targets, our compounds hold great potential toward exerting a disease-modifying effect on nicotine addiction and other forms of compulsive behavior.

  19. A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products.

    PubMed

    Wasta, Ziar; Mjøs, Svein A

    2013-07-19

    Fatty acids in products claimed to contain oils with the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were analyzed as fatty acid methyl esters by gas chromatography-mass spectrometry using electron impact ionization. To cover the variation in products on the market, the 20 products that were studied in detail were selected from a larger sample set by statistical methodology. The samples were analyzed on two different stationary phases (polyethylene glycol and cyanopropyl) and the fatty acid methyl esters were identified by methodology that combines the mass spectra and retention indices into a single score value. More that 100 fatty acids had a chromatographic area above 0.1% of the total, in at least one product. Retention indices are reported as equivalent chain lengths, and overlap patterns on the two columns are discussed. Both columns were found suitable for analysis of major and nutritionally important fatty acids, but the large number of minor compounds that may act as interferents will be problematic if low limits of quantification are required in analyses of similar sample types. A database of mass spectral libraries and equivalent chain lengths of the detected compounds has been compiled and is available online. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Key volatile organic compounds emitted from swine nursery house

    NASA Astrophysics Data System (ADS)

    Yao, H. Q.; Choi, H. L.; Zhu, K.; Lee, J. H.

    2011-05-01

    This study was carried out to quantify the concentration and emission levels of key volatile organic compounds (VOCs) - sulfides, indolics, phenolics and volatile fatty acids (VFA) - emitted from swine nursery house, and assess the effect of microclimate (including temperature, relative humidity and air speed) on the key odorous compounds. Samples were collected from the Experimental Farm of Seoul National University in Suwon, South Korea. And the collection took place for four seasons and the sampling time was fixed at 10:30 in the morning. The application of one-way ANOVA and Bonferroni t analyses revealed that, most of the odorous compound concentrations, such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS), indole, p-cresol and all the volatile fatty acids were lowest during the summer ( P < 0.01). Meanwhile, negative correlations were observed between temperature and odorants, as well as air speed and odorants. A possible reason was that high ventilation transferred most of the odors out of the house during the summer. From the whole year data, non-linear multiple regressions were conducted and the equations were proposed depending upon the relationships between microclimate parameters and odorous compounds. The equations were applied in hope of easily calculating the concentrations of the odorous compounds in the commercial farms. The results obtained in this study should be used for reducing the volatile organic compounds by controlling microclimate parameters and also could be helpful in setting a guideline for good management practices in nursery house.

  1. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis.

    PubMed

    Li, Hong-Ye; Lu, Yang; Zheng, Jian-Wei; Yang, Wei-Dong; Liu, Jie-Sheng

    2014-01-07

    The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs). However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium) and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here.

  2. Effects of three concentrations of mixed fatty acids on dechlorination of tetrachloroethene in aquifer microcosms

    SciTech Connect

    Gibson, S.A.; Roberson, D.S.; Russell, H.H.; Sewell, G.W.

    1994-01-01

    Chloroethenes are among the most common organic contaminants of ground water. The biotransformation of these compounds by reductive dechlorination is a promising technology for in situ treatment. The effects of three concentrations of a fatty acids mixture on the reductive dehalogenation of tetrachloroethene (PCE) were studied in methanogenic microcosms. These microcosms were constructed with slurries of aquifer solids collected from an area impacted both by aviation gasoline and chlorinated ethenes at Traverse City, Michigan. PCE was not dechlorinated in microcosms without a fatty acid supplement. Although there were observed differences in the length of the lag time, the amount of ultimately dechlorinated PCE was similar. Of the fatty acids tested in the mixture, butyrate oxidation appeared to be the most probable link to PCE dechlorination. (Copyright (c) Pergamon Press 1994.)

  3. Biochemical and Genetic Engineering of Diatoms for Polyunsaturated Fatty Acid Biosynthesis

    PubMed Central

    Li, Hong-Ye; Lu, Yang; Zheng, Jian-Wei; Yang, Wei-Dong; Liu, Jie-Sheng

    2014-01-01

    The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs). However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium) and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here. PMID:24402175

  4. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    PubMed

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mesostructured fatty acid-tethered silicas: sustaining the order by co-templating with bulky precursors.

    PubMed

    El Kadib, Abdelkrim; Katir, Nadia; Finiels, Annie; Castel, Annie; Marcotte, Nathalie; Molvinger, Karine; Biolley, Christine; Gaveau, Philippe; Bousmina, Mosto; Brunel, Daniel

    2013-02-07

    The co-condensation of functional alkoxysilanes with tetraethoxysilane in the presence of a structure directing agent under sol-gel process chemistry is a common way to access functional organosilica with an ordered mesostructure. In this report, bulky silylated fatty acid methyl esters were used both as co-templating bio-molecules and functionalizing agents in the process of supra-molecular silica mineralization. The highest structural regularity in terms of pore size distribution and channel size homogeneity was observed for carboxy-tethered silica possessing SBA-15-type architecture due to an enhanced fatty acid precursor-surfactant interaction. The carboxylic surface embedded within the hydrophobic environment of the fatty compounds confers to these materials interesting reactive-surface properties with promising applications as drug-delivery systems and bio-catalytic nanoreactors.

  6. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides.

    PubMed

    Altieri, Clelia; Cardillo, Daniela; Bevilacqua, Antonio; Sinigaglia, Milena

    2007-05-01

    The antifungal activity of three fatty acids (lauric, myristic, and palmitic acids) and their monoglycerides (monolaurin, monomyristic acid, and palmitin, respectively) against Aspergillus and Penicillium species in a model system was investigated. Data were modeled through a reparameterized Gompertz equation. The maximum colony diameter attained within the experimental time (30 days), the maximal radial growth rate, the lag time (i.e., the number of days before the beginning of radial fungal growth), and the minimum detection time (MDT; the number of days needed to attain 1 cm colony diameter) were evaluated. Fatty acids and their monoglycerides inhibited mold growth by increasing MDT and lag times. The effectiveness of the active compounds seemed to be strain and genus dependent. Palmitic acid was the most effective chemical against aspergilli, whereas penicilli were strongly inhibited by myristic acid. Aspergilli also were more susceptible to fatty acids than were penicilli, as indicated by the longer MDT.

  7. Choice of solvent extraction technique affects fatty acid composition of pistachio (Pistacia vera L.) oil.

    PubMed

    Abdolshahi, Anna; Majd, Mojtaba Heydari; Rad, Javad Sharifi; Taheri, Mehrdad; Shabani, Aliakbar; Teixeira da Silva, Jaime A

    2015-04-01

    Pistachio (Pistacia vera L.) oil has important nutritional and therapeutic properties because of its high concentration of essential fatty acids. The extraction method used to obtain natural compounds from raw material is critical for product quality, in particular to protect nutritional value. This study compared the fatty acid composition of pistachio oil extracted by two conventional procedures, Soxhlet extraction and maceration, analyzed by a gas chromatography-flame ionization detector (GC-FID). Four solvents with different polarities were tested: n-hexane (Hx), dichloromethane (DCM), ethyl acetate (EtAc) and ethanol (EtOH). The highest unsaturated fatty acid content (88.493 %) was obtained by Soxhlet extraction with EtAc. The Soxhlet method extracted the most oleic and linolenic acids (51.99 % and 0.385 %, respectively) although a higher concentration (36.32 %) of linoleic acid was extracted by maceration.

  8. Bioactive and nutritive compounds in Sorghum bicolor (Guinea corn) red leaves and their health implication.

    PubMed

    Abugri, D A; Tiimob, B J; Apalangya, V A; Pritchett, G; McElhenney, W H

    2013-05-01

    Sorghum bicolor L. Moench (Naga Red) red leaves is an ingredient used in rice and beans that is known as "waakye" in the Hausa language in some African countries. Little is known about its benefits aside from its colourant properties. We studied its bioactive, nutritive compounds and the effectiveness of four organic solvents (methanol, ethanol, acetone and diethyl ether) in isolation of these compounds to gain information regarding its health benefits to consumers. Of the compounds evaluated, the leaves consisted primarily of carotenoids, flavonoids and phenolic acids with small amounts of chlorophyll (a and b), lycopene and β-carotene. The fatty acid profiles of the leaves revealed palmitic, stearic, oleic and linoleic acid as predominant with each having greater than 5% of the total fatty acid identified. The nutritional implication of these findings is that the consumption of diets prepared with the leaves provides natural antioxidant and essential fatty acids that could fight cardiovascular related diseases.

  9. [Effect of Gram-negative bacteria on fatty acids].

    PubMed

    Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J

    1981-01-01

    The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.

  10. Physiological activities of hydroxyl fatty acids

    USDA-ARS?s Scientific Manuscript database

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  11. CKD and nonalcoholic fatty liver disease.

    PubMed

    Targher, Giovanni; Chonchol, Michel B; Byrne, Christopher D

    2014-10-01

    The possible link between nonalcoholic fatty liver disease and chronic kidney disease (CKD) recently has attracted considerable scientific interest. Accumulating clinical evidence indicates that the presence and severity of nonalcoholic fatty liver disease is associated significantly with CKD (defined as decreased estimated glomerular filtration rate and/or proteinuria) and that nonalcoholic fatty liver disease predicts the development and progression of CKD, independently of traditional cardiorenal risk factors. Experimental evidence also suggests that nonalcoholic fatty liver disease itself may exacerbate systemic and hepatic insulin resistance, cause atherogenic dyslipidemia, and release a variety of proinflammatory, procoagulant, pro-oxidant, and profibrogenic mediators that play important roles in the development and progression of CKD. However, despite the growing evidence linking nonalcoholic fatty liver disease with CKD, it has not been definitively established whether a causal association exists. The clinical implication for these findings is that patients with nonalcoholic fatty liver disease may benefit from more intensive surveillance or early treatment interventions to decrease the risk of CKD. In this review, we discuss the evidence linking nonalcoholic fatty liver disease with CKD and the putative mechanisms by which nonalcoholic fatty liver disease contributes to kidney damage. We also briefly discuss current treatment options for this increasingly prevalent disease that is likely to have an important future impact on the global burden of disease.

  12. Fatty acids in an estuarine mangrove ecosystem.

    PubMed

    Alikunhi, Nabeel M; Narayanasamy, Rajendran; Kandasamy, Kathiresan

    2010-06-01

    Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus), prawns (Metapenaeus monoceros and Macrobrachium rosenbergii) and finfish (Mugil cephalus), that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of monounsaturated fatty acids. The branched fatty acids are absent in undecomposed mangrove leaves, but present significantly in the decomposed leaves and in prawns and finfish, representing an important source for them. This revealed that the microbes are dominant producers that contribute significantly to the fishes and prawns in the mangrove ecosystem. This work has proved the fatty acid biomarkers as an effective tool for identifying the trophic interactions among dominant producers and consumers in this mangrove.

  13. Virus diarrhoea associated with pale fatty faeces.

    PubMed

    Thomas, M E; Luton, P; Mortimer, J Y

    1981-10-01

    Steatorrhoea was a significant feature in an outbreak of rotavirus gastroenteritis which affected adults and infants in hospital. Fat globules or fatty acid crystals were obvious by light microscopy (LM) in faeces from 14 of 25 patients examined. Ten of the fatty stools and two of the remainder were very pale. By electron microscopy (EM) a rotavirus was seen in 11 of the 14 fatty faeces and in only two of 11 specimens without visible fat. In a further study of pale or fatty faeces 20 such specimens sent for laboratory examination from patients not involved in the hospital outbreak were compared microbiologically with a similar number which were neither pale nor fatty. Viruses were found by EM in 11 (55%) of the pale or fatty stools; eight rotaviruses, two astroviruses and an uncultivable adenovirus were seen; one further patient had acute jaundice. In contrast, no viruses were seen by EM in the twenty specimens which were normally pigmented and without evident fat. Steatorrhoea was significantly associated with rotavirus infection of the alimentary tract which usually presented as a fatty enteritis. We conclude that rotaviruses certainly, and other viruses possibly, can impede both the digestion of fat and the pigmentation of the faeces. Inspection and LM of faeces are easy. In acute enteritis a fatty or pale stool is an indication for virological examination.

  14. Molecular mechanisms of alcoholic fatty liver.

    PubMed

    Purohit, Vishnudutt; Gao, Bin; Song, Byoung-Joon

    2009-02-01

    Alcoholic fatty liver is a potentially pathologic condition which can progress to steatohepatitis, fibrosis, and cirrhosis if alcohol consumption is continued. Alcohol exposure may induce fatty liver by increasing NADH/NAD(+) ratio, increasing sterol regulatory element-binding protein-1 (SREBP-1) activity, decreasing peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activity, and increasing complement C3 hepatic levels. Alcohol may increase SREBP-1 activity by decreasing the activities of AMP-activated protein kinase and sirtuin-1. Tumor necrosis factor-alpha (TNF-alpha) produced in response to alcohol exposure may cause fatty liver by up-regulating SREBP-1 activity, whereas betaine and pioglitazone may attenuate fatty liver by down-regulating SREBP-1 activity. PPAR-alpha agonists have potentials to attenuate alcoholic fatty liver. Adiponectin and interleukin-6 may attenuate alcoholic fatty liver by up-regulating PPAR-alpha and insulin signaling pathways while down-regulating SREBP-1 activity and suppressing TNF-alpha production. Recent studies show that paracrine activation of hepatic cannabinoid receptor 1 by hepatic stellate cell-derived endocannabinoids also contributes to the development of alcoholic fatty liver. Furthermore, oxidative modifications and inactivation of the enzymes involved in the mitochondrial and/or peroxisomal beta-oxidation of fatty acids could contribute to fat accumulation in the liver.

  15. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  16. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  17. Non-alcoholic fatty liver disease.

    PubMed

    Pearce, Lynne

    2016-08-24

    Essential facts Non-alcoholic fatty liver disease (NAFLD) is an excess of fat in the liver that is not the result of excessive alcohol consumption or other secondary causes, such as hepatitis C. According to the National Institute for Health and Care Excellence, fatty liver - steatosis - affects between 20% and 30% of the population and its prevalence is increasing.

  18. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.860 Fatty acids...

  19. Fatty acid profile of kenaf seed oil

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  20. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  1. Dinitroso and polynitroso compounds

    PubMed Central

    Gowenlock, Brian G.; Richter-Addo, George B.

    2005-01-01

    The growing interest in the chemistry of C-nitroso compounds (RN=O; R = alkyl or aryl group) is due in part to the recognition of their participation in various metabolic processes of nitrogen-containing compounds. C-Nitroso compounds have a rich organic chemistry in their own right, displaying interesting intra- and intermolecular dimerization processes and addition reactions with unsaturated compounds. In addition, they have a fascinating coordination chemistry. While most of the attention has been directed towards C-nitroso compounds containing a single –NO moiety, there is an emerging area of research dealing with dinitroso and polynitroso compounds. In this critical review, we present and discuss the synthetic routes and properties of these relatively unexplored dinitroso and polynitroso compounds, and suggest areas of further development involving these compounds. (126 references.) PMID:16100619

  2. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  3. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  4. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function.

    PubMed

    Rizzo, William B

    2014-03-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. © 2013.

  5. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    PubMed

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Procerenone: a Fatty Acid Triterpenoid from the Fruit Pericarp of Omphalocarpum procerum (Sapotaceae)

    PubMed Central

    Ngamgwe, Rosine Fotsing; Yankam, Raoul; Chouna, Jean Rodolphe; Lanz, Christian; Furrer, Julien; Schürch, Stefan; Kaiser, Marcel; Lenta, Bruno Ndjakou; Ngouela, Silvère; Tsamo, Etienne; Brenneisen, Rudolf

    2014-01-01

    Phytochemical investigation of a dichloromethane-methanol (1:1) extract of the fruit pericarp of Omphalocarpum procerum which exhibited antiplasmodial activity during preliminary screening led to the isolation of the new fatty ester triterpenoid 3β-hexadecanoyloxy-28-hydroxyolean-12-en-11-one (1), together with five known compounds 2-6. The structure of the new compound as well as those of the known compounds was established by means of spectroscopic methods and by comparison with previously reported data. Compounds 1- 4 were evaluated in-vitro for their cytotoxicity against L6 cell lines and antiprotozoal activities against Plasmodium falciparum, Leishmania donovani, Trypanosoma brucei rhodesiense and Trypanosoma cruzi (species responsible for human malaria, visceral leishmaniasis, African trypanosomiasis and Chagas disease, respectively). The tested compounds showed weak to moderate antiprotozoal activity and, no significant effect was detected regarding their cytotoxic potency. PMID:25587333

  7. Fatty acid content profile and main constituents of Corylus avellana kernel in wild type and cultivars growing in Italy.

    PubMed

    Granata, M U; Bracco, F; Gratani, L; Catoni, R; Corana, F; Mannucci, B; Sartori, F; Martino, E

    2017-01-01

    The kernel composition (moisture, ash, protein, carbohydrate, calories, fat, monounsaturated and polyunsaturated fatty acids) of two hazelnut (Corylus avellana L.) cultivars ('Tonda Gentile Trilobata' and 'Tonda Gentile Romana') and of two wild types growing in different climatic conditions (north-west and central Italy) was evaluated. The main kernel component was fatty acid (65.9 ± 1.8%, mean value), and the most abundant fatty acid in hazelnut was oleic acid (C18:1) (83.5 ± 1.0%, mean value). The saturated fatty acids are the minor compounds in kernel hazelnut, resulting in a unsatured fatty acid to saturated (U/S) fatty acid ratio of 9.0 ± 1.6. Compared to other tree nuts and vegetable oils, hazelnut oil is among the ones with the highest contents of monounsaturated and the lowest content of saturated fatty acid. Thus, hazelnut may be beneficial for the human diet preventing cholesterol-based atherosclerosis and ischemic cardiovascular diseases.

  8. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport.

    PubMed

    Li, Feng; Zhu, Lizhong

    2014-07-01

    The effects of the surfactants, Tween 80 and sodium dodecyl benzene sulfonate (SDBS) on a membrane's fatty acid composition and the transmembrane transport of phenanthrene were investigated. The results indicated that both surfactants could modify the composition of fatty acids of Citrobacter sp. Strain SA01 cells, 50 mg L(-1) of both surfactants changed the composition of the fatty acids the most, increasing the amount of unsaturated fatty acids. The comparison of fatty acid profiles with diphenylhexatriene fluorescence anisotropy, a probe for plasma membrane fluidity, suggested that an increased amount of unsaturated fatty acids corresponded to greater membrane fluidity. In addition, increased unsaturated fatty acids promoted phenanthrene to partition from the extracellular matrix to cell debris, which increased reverse partitioning from the cell debris to the cytochylema. The results of this study were expected in that the addition of a surfactant is a simple and effective method for accelerating the rate-limiting step of transmembrane transport of hydrophobic organic compounds (HOCs) in bioremediation.

  9. [The fatty acids and fatty aldehydes of blood as a biochemical of multiple organ failure].

    PubMed

    Osipenko, A N; Akulich, N V; Marochkov, A V

    2012-10-01

    The article presents the results of analysis of fatty acids and fatty aldehydes of plasma and blood erythrocytes in patients with the syndrome of multiple organ failure. The increase of relative level of mono-unsaturated fatty acids and decrease of poly-saturated fatty acids and saturated stearic acid in blood plasma is demonstrated. The reliable alterations in erythrocytes concerning the content of saturated palmitic and poly-saturated linoleic fatty acids are detected. In patients with multiple organ failure the decrease of level of fatty aldehydes and cholesterol in blood plasma is established too. The conclusion is made about significant role of mono non-saturated fatty acids in disorders of systemic haemodynamics and evaluation of degree of disorder of lipid metabolism between cells and blood plasma lipoproteins.

  10. Isolation and identification of mosquito (Aedes aegypti ) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis (Parkinson) Fosberg).

    PubMed

    Jones, A Maxwell P; Klun, Jerome A; Cantrell, Charles L; Ragone, Diane; Chauhan, Kamlesh R; Brown, Paula N; Murch, Susan J

    2012-04-18

    Dried male inflorescences of breadfruit ( Artocarpus altilis , Moraceae) are burned in communities throughout Oceania to repel flying insects, including mosquitoes. This study was conducted to identify chemicals responsible for mosquito deterrence. Various crude extracts were evaluated, and the most active, the hydrodistillate, was used for bioassay-guided fractionation. The hydrodistillate and all fractions displayed significant deterrent activity. Exploratory GC-MS analysis revealed more than 100 distinctive peaks, and more than 30 compounds were putatively identified, including a mixture of terpenes, aldehydes, fatty acids, and aromatics. A systematic bioassay-directed study using adult Aedes aegypti females identified capric, undecanoic, and lauric acid as primary deterrent constituents. A synthetic mixture of fatty acids present in the most active fraction and individual fatty acids were all significantly more active than N,N-diethyl-m-toluamide (DEET). These results provide support for this traditional practice and indicate the potential of male breadfruit flowers and fatty acids as mosquito repellents.

  11. Simultaneous extraction and derivatization of amino acids and free fatty acids in meat products.

    PubMed

    Leggio, Antonella; Belsito, Emilia Lucia; De Marco, Rosaria; Liguori, Angelo; Siciliano, Carlo; Spinella, Mariagiovanna

    2012-06-08

    In meat products the contents of free amino acids and free fatty acids are two important parameters used to establish their quality. These compounds play a very important role in defining the sensorial characteristics and acceptability of meat products. An innovative procedure for the measurement of free amino acid and fatty acid contents in meat and meat derivatives was developed. A single experiment can be performed in order to determine simultaneously the free amino acid and free fatty acid profiles. The analytes of interest are rapidly extracted from the meat matrix and derivatized by using methyl chloroformate. This reagent allows the transformation of the two groups of analytes into the corresponding N-methyloxycarbonyl amino acid methyl esters and fatty acid methyl esters that can easily be extracted and sampled for their further identification and quantitation. The measurement of the obtained amino acid and fatty acid derivatives is performed by GC/MS analysis and their concentrations are calculated by using two appropriate internal standards. The main advantage of the proposed protocol is the determination at the same time of two important classes of analytes that are of great importance in food analysis and characterization. Moreover, minimal sample manipulation and preparation, and reduced total extraction times are required to obtain the response with respect to conventional procedures, in which instead the analysis of both the two classes of compounds must be performed separately. The helpfulness of the protocol was tested in the analysis of a cured meat product that is typical of the South of Italy. The optimized protocol successfully allowed the determination of thirteen free amino acids and six free fatty acids, namely those most abundant in the lipid content of the cured meat product under evaluation. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Saturated Fatty Acid Requirer of Neurospora crassa

    PubMed Central

    Henry, Susan A.; Keith, Alec D.

    1971-01-01

    Dietary saturated fatty acids containing 12- to 18-carbon atoms satisfy growth requirements of Neurospora crassa mutant cel (previously named ol; Perkins et al., reference 11); unsaturated fatty acids are synthesized by direct desaturation when an appropriate saturate is available. Odd-chain saturates, 15 carbons and 17 carbons long, satisfy the requirement, and elaidic acid (18:1 Δ9trans) results in slow growth. Oleic acid and other cis-unsaturated fatty acids do not satisfy growth requirements; however, oleic acid plus elaidic acid result in growth at a faster rate than elaidate alone. The use of a spin-label fatty acid reveals that hyphae produced by cel during a slow basal level of growth have lipids that reflect a relatively rigid state of viscosity compared to wild type. cel Supplemented with fatty acids and wild type supplemented in the same way have lipids of the same viscosities as reflected by electron spin resonance. PMID:4323964

  13. Omega-3 fatty acids and anorexia.

    PubMed

    Goncalves, Carolina G; Ramos, Eduardo J B; Suzuki, Susumu; Meguid, Michael M

    2005-07-01

    To review the mechanisms of action of omega-3 fatty acids and their role in the brain, as well as their therapeutic implications in anorexia. Recent studies have demonstrated that omega-3 fatty acids modulate changes in the concentrations and actions of several orexigenic and anorexigenic neuropeptides in the brain, including neuropeptide Y, alpha-melanocyte stimulating hormone and the neurotransmitters serotonin and dopamine. In patients with acute and chronic inflammatory conditions, low tissue concentrations of omega-3 fatty acids and high concentrations of proinflammatory cytokines are found, in association with anorexia and decreased food intake. The data suggest that omega-3 fatty acid supplementation suppresses proinflammatory cytokine production and improves food intake by normalizing hypothalamic orexigenic peptides and neurotransmitters. Based on current data, omega-3 fatty acid supplementation has a role in the treatment of anorexia by stimulating the production and release of orexigenic neurotransmitters in food intake regulatory nuclei in the hypothalamus.

  14. What contribution do detergent fatty alcohols make to sewage discharges and the marine environment?

    PubMed

    Mudge, Stephen M; Meier-Augenstein, Wolfram; Eadsforth, Charles; DeLeo, Paul

    2010-10-06

    To investigate the potential sources of fatty alcohols arriving at a WWTP and entering the receiving waters, a study was conducted at Treborth North Wales using compound specific stable isotope mass spectrometry (¹³C and ²H). Samples were collected from soils, marine sediments, detergents used in the catchment and in the WWTP. Total fatty alcohol concentrations decreased in the liquid phases through the treatment works with the majority of the compounds accumulating in the sludge (biosolids). Natural plant based detergents have δ¹³C values between -26 and -32‰ while petroleum-based detergents occupy a range between -25 and -30‰. The corresponding δ²H values are -250‰ for natural sourced materials and -50‰ for oil-based detergents which enable these two sources to be separated. The influent to the WWTP contained fatty alcohols which originated mainly from faecal sources and natural surfactants (∼75%) with a smaller amount potentially derived from petroleum-based surfactants (∼25%). The effluents from the WWTP contained mainly short chain compounds with a chain length less than C¹⁶. Their δ²H stable isotope signature was different to the other potential sources examined and suggests bacterial synthesis during the treatment processes. The sludge had relatively high concentrations of fatty alcohols as would be expected from their low water solubility. The stable isotopic signatures were consistent with a mixture of faecal and detergent sources. The sludge in this area is routinely spread on agricultural land as a fertiliser and may find its way back into the sea via land runoff. On the basis of the mean discharge rates and the mean C₁₂ concentration in the effluent, this WWTP would contribute ∼300 g day⁻¹ to the receiving waters. The marine sediment samples had short chain fatty alcohols that are typical of marine production and with stable isotope values that indicate exclusive marine production for the C₁₄ potentially mixed with

  15. Relative irritancy of free fatty acids of different chain length.

    PubMed

    Stillman, M A; Maibach, H I; Shalita, A R

    1975-01-01

    Free fatty acids of human skin surface lipids have previously been implicated in the pathogenesis of acne vulgaris because of their apparent irritant and comedogenic properties. Prior studies on the relative irritancy of free fatty acids revealed the saturated C8 to C14 fatty acids and a C18 dienoic unsaturated fatty acid (linoleic) to be most irritating. Saturated free fatty acids from C3 to C18, and unsaturated C18 free fatty acids were applied daily under occlusive patch tests to human skin until detectable erythema appeared. The most irritating fatty acids were C8 through C12. Of the unsaturated fatty acids tested, only linoleic acid produced irritation.

  16. Use of a topical anhydrous silicone base containing fatty acids from pracaxi oil in a patient with a diabetic ulcer

    PubMed Central

    Simmons, Chris V; Banov, Fabiana

    2015-01-01

    Objectives: The treatment of diabetic ulceration of the lower extremities is a complicated task due to the nature of the ulcer and potential underlying comorbidities. This report describes the case of a 61-year-old male patient with Type 2 Diabetes who presented with an ulcerative leg wound. The objective of this study was to evaluate the outcome of a topical compounded treatment. Methods: The patient applied a compounded medicine containing 2% mupirocin in a topical anhydrous silicone base containing fatty acids from pracaxi oil directly to the ulcer for 63 days, 3 times daily. This regimen was supplemented with exercise and an additional compounded medicine applied to the wound margins in order to increase circulation. Results: By the end of the application period, the patient’s ulcer was fully closed. Conclusion: A topical anhydrous silicone compounding base containing fatty acids from pracaxi oil may be useful in the treatment of patients with diabetic ulcers. PMID:27489690

  17. Role of serotonin in fatty acid-induced non-alcoholic fatty liver disease in mice.

    PubMed

    Ritze, Yvonne; Böhle, Maureen; Haub, Synia; Hubert, Astrid; Enck, Paul; Zipfel, Stephan; Bischoff, Stephan C

    2013-12-09

    Saturated fatty acids are thought to be of relevance for the development of non-alcoholic fatty liver disease and obesity. However, the underlying mechanisms are poorly understood. In previous studies we found that food-derived carbohydrates such as fructose alter the intestinal serotonergic system while inducing fatty liver disease in mice. Here, we examined the effect of fatty acid quantity (11% versus 15%) and quality (saturated, monounsaturated, or polyunsaturated fatty acids) on hepatic fat accumulation, intestinal barrier and the intestinal serotonergic system. C57BL/6 mice had free access to diets enriched with one of the three fatty acids or standard diet, for 8 weeks. In an additional experiment mice were fed diets enriched with saturated, monounsaturated fatty acids or standard diet supplemented with tryptophan (0.4 g/(kg.d), 8 weeks) or not. Hepatic fat accumulation, small intestinal barrier impairment and components of the serotonergic system were measured with RT-PCR, western blot or immunoassays. For statistical analysis t-test and one-way ANOVA with Tukey's post hoc test and Bartlett's test for equal variances was used. Hepatic triglycerides, liver weight and liver to body weight ratio were significantly changed depending on the fat quality but not fat quantity. In contrast, fat quantity but not quality decreased the expression of the tight junction proteins occludin and claudin-1 in the small intestine. These changes seemed to result in enhanced portal vein endotoxin concentrations and fatty liver disease after feeding diet enriched with saturated and monounsaturated fatty acids but not polyunsaturated fatty acids. Neither fatty acid quantity nor quality significantly influenced the intestinal serotonergic system. Similarly, tryptophan supplementation had no impact on small intestinal barrier or fatty liver disease. In conclusion, diets rich in saturated or monounsaturated fatty acids promote the development of fatty liver disease in mice, likely

  18. Role of serotonin in fatty acid-induced non-alcoholic fatty liver disease in mice

    PubMed Central

    2013-01-01

    Background Saturated fatty acids are thought to be of relevance for the development of non-alcoholic fatty liver disease and obesity. However, the underlying mechanisms are poorly understood. In previous studies we found that food-derived carbohydrates such as fructose alter the intestinal serotonergic system while inducing fatty liver disease in mice. Here, we examined the effect of fatty acid quantity (11% versus 15%) and quality (saturated, monounsaturated, or polyunsaturated fatty acids) on hepatic fat accumulation, intestinal barrier and the intestinal serotonergic system. Methods C57BL/6 mice had free access to diets enriched with one of the three fatty acids or standard diet, for 8 weeks. In an additional experiment mice were fed diets enriched with saturated, monounsaturated fatty acids or standard diet supplemented with tryptophan (0.4 g/(kg.d), 8 weeks) or not. Hepatic fat accumulation, small intestinal barrier impairment and components of the serotonergic system were measured with RT-PCR, western blot or immunoassays. For statistical analysis t-test and one-way ANOVA with Tukey’s post hoc test and Bartlett’s test for equal variances was used. Results Hepatic triglycerides, liver weight and liver to body weight ratio were significantly changed depending on the fat quality but not fat quantity. In contrast, fat quantity but not quality decreased the expression of the tight junction proteins occludin and claudin-1 in the small intestine. These changes seemed to result in enhanced portal vein endotoxin concentrations and fatty liver disease after feeding diet enriched with saturated and monounsaturated fatty acids but not polyunsaturated fatty acids. Neither fatty acid quantity nor quality significantly influenced the intestinal serotonergic system. Similarly, tryptophan supplementation had no impact on small intestinal barrier or fatty liver disease. Conclusion In conclusion, diets rich in saturated or monounsaturated fatty acids promote the

  19. Fortification of foods with omega-3 polyunsaturated fatty acids.

    PubMed

    Ganesan, Balasubramanian; Brothersen, Carl; McMahon, Donald J

    2014-01-01

    A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA) consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements. Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable. This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative compounds to reduce and eventually eliminate fishy flavor is important

  20. Nuclear receptors and nonalcoholic fatty liver disease.

    PubMed

    Cave, Matthew C; Clair, Heather B; Hardesty, Josiah E; Falkner, K Cameron; Feng, Wenke; Clark, Barbara J; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A; McClain, Craig J; Prough, Russell A

    2016-09-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  1. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.

    PubMed

    ALLISON, M J; BRYANT, M P; KATZ, I; KEENEY, M

    1962-05-01

    Allison, M. J. (Dairy Cattle Research Branch, USDA, Beltsville, Md.), M. P. Bryant, I. Katz, and M. Keeney. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J. Bacteriol. 83:1084-1093. 1962.-A number of strains of rumen bacteria require branched-chain volatile fatty acids for growth. A strain of Ruminococcus flavefaciens that requires either isovalerate or isobutyrate incorporates radioactive carbon from isovalerate-1-C(14) and isovalerate-3-C(14) into leucine and into the lipid fraction of the cells. Evidence obtained by both paper and gas chromatography indicated that most of the label in the lipid of cells grown in isovalerate-1-C(14) was in a branched-chain 15-carbon fatty acid, with some in a 17-carbon acid; about 7.5% of the C(14) was recovered in a branched-chain 15-carbon aldehyde. The aldehydes were in the phospholipid fraction and were presumably present as plasmalogen.A strain of R. albus was shown to require isobutyrate, 2-methyl-n-butyrate, or 2-ketoisovalerate for growth. This strain did not incorporate appreciable C(14) from isovalerate-1-C(14) or isovalerate-3-C(14). When grown in a medium containing isobutyrate-1-C(14), most of the cellular C(14) was found in the lipid fraction. Analysis of the lipid demonstrated that the label was present mainly as branched-chain 14-carbon and 16-carbon fatty acids, with 11% of the C(14) present in 14- and 16-carbon carbonyl compounds, presumably branched-chain aldehydes.Branched-chain 14-, 15-, and 16-carbon fatty acids are major components of the lipids of these rumen bacteria. The possibility that these acids and aldehydes, which are found in ruminant body and milk lipids, may be of microbial origin is discussed.

  2. Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria.

    PubMed

    Pustovidko, Antonina V; Rokitskaya, Tatiana I; Severina, Inna I; Simonyan, Ruben A; Trendeleva, Tatiana A; Lyamzaev, Konstantin G; Antonenko, Yuri N; Rogov, Anton G; Zvyagilskaya, Renata A; Skulachev, Vladimir P; Chernyak, Boris V

    2013-09-01

    Previously it has been shown by our group that berberine and palmatine, penetrating cations of plant origin, when conjugated with plastoquinone (SkQBerb and SkQPalm), can accumulate in isolated mitochondria or in mitochondria of living cells and effectively protect them from oxidative damage. In the present work, we demonstrate that SkQBerb, SkQPalm, and their analogs lacking the plastoquinone moiety (C10Berb and C10Palm) operate as mitochondria-targeted compounds facilitating protonophorous effect of free fatty acids. These compounds induce proton transport mediated by small concentrations of added fatty acids both in planar and liposomal model lipid membranes. In mitochondria, such an effect can be carried out by endogenous fatty acids and the adenine nucleotide translocase.

  3. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings

    SciTech Connect

    Uranga, Carla C.; Beld, Joris; Mrse, Anthony; Córdova-Guerrero, Iván; Burkart, Michael D.; Hernández-Martínez, Rufina

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.

  5. Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death

    PubMed Central

    Ahowesso, Constance; Black, Paul N.; Saini, Nipun; Montefusco, David; Chekal, Jessica; Malosh, Chrysa; Lindsley, Craig W.; Stauffer, Shaun R.; DiRusso, Concetta C.

    2015-01-01

    Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6 µM for all cell lines except human adipocytes (39 µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb 13C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut. PMID:26394026

  6. Fatty Amide Determination in Neutral Molecular Fractions of Green Crude Hydrothermal Liquefaction Oils From Algal Biomass

    DOE PAGES

    Palardy, Oliver; Behnke, Craig; Laurens, Lieve M. L.

    2017-07-05

    Even though hydrothermal liquefaction (HTL) is a promising route to produce crude oils (referred to as 'green crude'), the molecular composition of the nitrogen fraction of such green crude oils is not fully understood. The goal of this work was to identify and quantify the fraction of fatty amides in green crude oils obtained from five different samples derived from Desmodesmus armatus, Tetraselmis sp., and Chlorella sp. biomass treated under different HTL conditions (260 or 340 degrees C as batch or continuous processes). The goal of this work was to elucidate the nature of the high nitrogen content of themore » green crude oils. We identified at least 19 distinct fatty amides present in green crude oils and quantified them based on relevant standards in purified fractions after functional group-based separation and enrichment. It was not known how much these compounds contributed to the oils or which molecular fraction they are associated with. We found that fatty amides exclusively partitioned with the neutral fraction of the oils and belonged mainly to one of five categories, based on their functional group substitution, i.e., fatty amides, monomethyl, dimethyl, monoethanolamide, and diethanolamide. The quantification of fatty amides in the neutral oil fraction was based on respective fatty amide standards, after verification of consistency in response factors between molecules with different substitutions of the amide group. Here, we found that the amount of fatty amides found in each of the five samples varied considerably and ranged between 1.4 and 3.0% of the green crude oils, with the highest levels detected in the sample with the highest oil content, after HTL of biomass derived from a nutrient deprived Chlorella sp. culture.« less

  7. Profiling and relative quantification of multiply nitrated and oxidized fatty acids.

    PubMed

    Milic, Ivana; Griesser, Eva; Vemula, Venukumar; Ieda, Naoya; Nakagawa, Hidehiko; Miyata, Naoki; Galano, Jean-Marie; Oger, Camille; Durand, Thierry; Fedorova, Maria

    2015-07-01

    The levels of nitro fatty acids (NO2-FA), such as nitroarachidonic, nitrolinoleic, nitrooleic, and dinitrooleic acids, are elevated under various inflammatory conditions, and this results in different anti-inflammatory effects. However, other multiply nitrated and nitro-oxidized FAs have not been studied so far. Owing to the low concentrations in vivo, NO2-FA analytics usually relies on targeted gas chromatography-tandem mass spectrometry (MS/MS) or liquid chromatography-MS/MS, and thus require standard compounds for method development. To overcome this limitation and increase the number and diversity of analytes, we performed in-depth mass spectrometry (MS) profiling of nitration products formed in vitro by incubating fatty acids with NO2BF4, and ONOO(-). The modified fatty acids were used to develop a highly specific and sensitive multiple reaction monitoring LC-MS method for relative quantification of 42 different nitrated and oxidized species representing three different groups: singly nitrated, multiply nitrated, and nitro-oxidized fatty acids. The method was validated in in vitro nitration kinetic studies and in a cellular model of nitrosative stress. NO2-FA were quantified in lipid extracts from 3-morpholinosydnonimine-treated rat primary cardiomyocytes after 15, 30, and 70 min from stress onset. The relatively high levels of dinitrooleic, nitroarachidonic, hydroxynitrodocosapenataenoic, nitrodocosahexaenoic, hydroxynitrodocosahexaenoic, and dinitrodocosahexaenoic acids confirm the presence of multiply nitrated and nitro-oxidized fatty acids in biological systems for the first time. Thus, in vitro nitration was successfully used to establish a targeted LC-MS/MS method that was applied to complex biological samples for quantifying diverse NO2-FA. Graphical Abstract Schematic representation of study design which combined in vitro nitration of different fatty acids, MS/MS characterization and optimization of MRM method for relative quantification, which was

  8. MALDI-TOF and electrospray tandem mass spectrometric analysis of fatty acyl-CoA esters

    NASA Astrophysics Data System (ADS)

    Hankin, Joseph A.; Murphy, Robert C.

    1997-11-01

    Coenzyme A (CoA) thioesters play a central role in many biochemical reactions, and methods for sensitive identification of these compounds are important for studies of cellular processes. The direct analysis of intact long-chain fatty acyl CoA esters was investigated using matrix assisted laser desorption time-of-flight and electrospray ionization mass spectrometry. Both techniques resulted in the formation of abundant positive and negative ions indicative of the molecular weight of the fatty acyl CoA molecular species. Several structurally significant fragment ions, in particular positive ions indicative of the fatty acyl portion of the molecule, were formed during ionization processes. Metastable (MALDI-TOF) and collision-induced decomposition (quadrupole tandem mass spectrometry) of these molecular ion species resulted in the formation of similar product ions independent of the mode of ionization. Abundant product ions, corresponding to the fatty acyl portion as well as the pantetheine-ADP portion of the molecule, were observed with both ionization techniques. Decomposition of the [M + H]+ ion of hexadecyl coenzyme A (C16:0 CoA) at m / z 1006 yielded a prominent product ion at m / z 499 which was characteristic of the fatty acyl portion of the molecule. Similar fatty acyl product ion fragments corresponding to a neutral loss of 609 were found for the [M + H]+ species of all the fatty acyl CoA esters investigated. This prominent and diagnostic fragment could be used to detect molecular species of CoA esters present in complex biological mixtures.

  9. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    PubMed

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  10. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia.

    PubMed

    Aktas, Mehmet; Elmastas, Mahfuz; Ozcicek, Fatih; Yilmaz, Necmettin

    2016-01-01

    Iron deficiency anemia (IDA) is one of the most common nutritional disorders in the world. In the present study, we evaluated erythrocyte membrane fatty acid composition in premenopausal patients with IDA. Blood samples of 102 premenopausal women and 88 healthy control subjects were collected. After the erythrocytes were separated from the blood samples, the membrane lipids were carefully extracted, and the various membrane fatty acids were measured by gas chromatography (GC). Statistical analyses were performed with the SPSS software program. We used blood ferritin concentration <15 ng/mL as cut-off for the diagnosis of IDA. The five most abundant individual fatty acids obtained were palmitic acid (16:0), oleic acid (18:1, n-9c), linoleic acid (18:2, n-6c), stearic acid (18:0), and erucic acid (C22:1, n-9c). These compounds constituted about 87% of the total membrane fatty acids in patients with IDA, and 79% of the total membrane fatty acids in the control group. Compared with control subjects, case patients had higher percentages of palmitic acid (29.9% case versus 25.3% control), oleic acid (16.8% case versus 15.1% control), and stearic acid (13.5% case versus 10.5% control), and lower percentages of erucic acid (11.5% case versus 13.6% control) and linoleic acid (15.2% case versus 15.4% control) in their erythrocyte membranes. In conclusion, the total-erythrocyte-membrane saturated fatty acid (SFA) composition in premenopausal women with IDA was found to be higher than that in the control group; however, the total-erythrocyte-membrane unsaturated fatty acid (UFA) composition in premenopausal women with IDA was found to be lower than that in the control group. The differences in these values were statistically significant.

  11. Increasing Fatty Acid Oxidation Remodels the Hypothalamic Neurometabolome to Mitigate Stress and Inflammation

    PubMed Central

    McFadden, Joseph W.; Aja, Susan; Li, Qun; Bandaru, Veera V. R.; Kim, Eun-Kyoung; Haughey, Norman J.; Kuhajda, Francis P.; Ronnett, Gabriele V.

    2014-01-01

    Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism. PMID:25541737

  12. Hydroformylation of olefinic compounds in the presence of a cobalt catalyst and an organic nitrile promoter

    SciTech Connect

    Virnig, M.J.

    1986-09-16

    A process for preparing a formylated olefinic fatty compound is described comprising reacting an olefinic fatty compound having at least 9 carbon atoms with carbon monoxide and hydrogen in the presence of a catalytic amount of a soluble cobalt salt catalyst and a promoter comprised of an organic nitrile selected from the group consisting of cyano-substituted alkanes having from 2 to 44 carbon atoms and cyano-substituted alkanes having from 4 to 22 carbon atoms containing no substituent other than cyano.

  13. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  14. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids

    PubMed Central

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action. PMID:27840623

  15. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids.

    PubMed

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action.

  16. Production of medium chain length fatty alcohols from glucose in Escherichia coli.

    PubMed

    Youngquist, J Tyler; Schumacher, Martin H; Rose, Joshua P; Raines, Thomas C; Politz, Mark C; Copeland, Matthew F; Pfleger, Brian F

    2013-11-01

    Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressed in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed-batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a titer of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol/g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli. © 2013 Published by Elsevier Inc.

  17. Design, synthesis and 64Cu labeling of fatty acid analogs containing dithiosemicarbazone chelate.

    PubMed

    Arano, Y; Magata, Y; Horiuchi, K; Matsumoto, K; Fujibayashi, Y; Ohmomo, Y; Tanaka, C; Saji, H; Yokoyama, A

    1989-01-01

    For the development of 62Cu labeled fatty acid analogs, two fatty acid analogs, containing dithiosemicarbazone (DTS) molecule as the 62Cu coordinating site, were designed and synthesized: a fatty acid analog containing DTS molecule at the omega-position, (a) the 12,13-dioxotetradecanoic acid di(N-methyl-thiosemicarbazone) (FA-DTS), and an omega-phenyl fatty acid analog containing DTS molecule at the para-position, (b) the p-carboxyundecylphenylglyoxal-di (N-methylthiosemicarbazone] (PFA-DTS). FA-DTS was synthesized by the reaction of ethyl diethoxyacetate with ethyl 11-bromonundecanate by successive decarboxylation and hydrolysis and final condensation with N-methylthiosemicarbazide. PFA-DTS was synthesized by the Friedel-Craft acylation of ethyl 11-phenylundecanate, selenium oxidation of the acetophenone derivative, followed by the condensation with N-methylthiosemicarbazide. Radiolabeling of FA-DTS and PFA-DTS with [64Cu]copper acetate was simple, rapid and quantitative. When injected into mice, both compounds were distributed and retained in the myocardium. These results offer a good basis for further development of 62Cu labeled fatty acid analogs.

  18. Positive selection systems for discovery of novel polyester biosynthesis genes based on fatty acid detoxification.

    PubMed Central

    Kranz, R G; Gabbert, K K; Madigan, M T

    1997-01-01

    The photosynthetic bacterium Rhodobacter capsulatus can grow with short- to long-chain fatty acids as the sole carbon source (R. G. Kranz, K. K. Gabbert, T. A. Locke, and M. T. Madigan, Appl. Environ. Microbiol. 63:3003-3009, 1997). Concomitant with growth on fatty acids is the production to high levels of the polyester storage compounds called polyhydroxyalkanoates (PHAs). Here, we describe colony screening and selection systems to analyze the production of PHAs in R. capsulatus. A screen with Nile red dissolved in acetone distinguishes between PHA producers and nonproducers. Unlike the wild type, an R. capsulatus PhaC- strain with the gene encoding PHA synthase deleted is unable to grow on solid media containing high concentrations of certain fatty acids. It is proposed that this deficiency is due to the inability of the PhaC- strain to detoxify the surrounding medium by consumption of fatty acids and their incorporation into PHAs. This fatty acid toxicity phenotype is used in selection for the cloning and characterization of heterologous phaC genes. PMID:9251190

  19. Fluorescent fatty acid analogs as a tool to study development of the picornavirus replication organelles.

    PubMed

    Viktorova, Ekaterina G; Ford-Siltz, Lauren A; Nchoutmboube, Jules; Belov, George A

    2014-05-01

    Genome replication of positive strand RNA viruses of eukaryotes is universally associated with specialized membranous structures referred to as replication organelles. Accumulating evidence show that new membrane synthesis is important for the development of the replication organelles of diverse picornaviruses and likely for other positive strand RNA viruses as well. The hydrophobic part of the structural phospholipid molecules defining the barrier properties of biological membranes consists of two long chain fatty acid moieties attached to the glycerol backbone. Fluorescent long chain fatty acid analogs represent a very convenient tool to monitor membrane synthesis in infected cells offering significant advantages over conventional radioactively labeled compounds. Bodipy-containing fatty acid analogs are readily imported from the extracellular media and utilized in lipid synthesis by cellular machinery. The strong fluorescence of the Bodipy group allows monitoring the molecules in situ by fluorescent microscopy as well as provides an opportunity for quantitative assessment of fatty acid import in a multi-well plate format. Moreover lipids with incorporated fluorescent fatty acid chain can be resolved by thin layer chromatography and easily identified using conventional UV imaging systems thus providing a simple and convenient way of monitoring the perturbation of the lipid synthesis pathways upon infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings.

    PubMed

    Uranga, Carla C; Beld, Joris; Mrse, Anthony; Córdova-Guerrero, Iván; Burkart, Michael D; Hernández-Martínez, Rufina

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Production of medium chain length fatty alcohols from glucose in Escherichia coli

    PubMed Central

    Youngquist, J. Tyler; Schumacher, Martin H.; Rose, Joshua P.; Raines, Thomas C.; Politz, Mark C.; Copeland, Matthew F.; Pfleger, Brian F.

    2013-01-01

    Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressed in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed-batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a titer of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol / g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli. PMID:24141053

  2. Liraglutide reduces fatty degeneration in hepatic cells via the AMPK/SREBP1 pathway.

    PubMed

    Wang, Yan-Gui; Yang, Tian-Lun

    2015-11-01

    Recent studies have suggested that liraglutide could have a potential function in improving non-alcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism remains unclear. The aim of the present study was to investigate the role of the AMP-activated protein kinase (AMPK)/sterol regulatory element binding protein 1 (SREBP1) pathway in mediating the effect of liraglutide in reducing fatty degeneration in an in vitro NAFLD model. To resemble the NAFLD condition in vitro, L-02 cells were treated with 0.5 mM free fatty acids (FFAs) for 24 h. Liraglutide could affect the expression of AMPKα1, phosphorylated AMPKα1 and SREBP1 in a dose-dependent manner in FFA-exposed L-02 cells, as demonstrated by western blot analysis. The intracellular lipid accumulation was significantly decreased, as shown by oil red O staining. A significant decrease in the content of triglyceride and total cholesterol was observed when the FFA-exposed L-02 cells were incubated with liraglutide. In addition, the increased expression of liver-type fatty acid-binding protein in FFA-exposed L-02 cells was suppressed by liraglutide. These effects were reversed by compound C, an AMPK inhibitor. In conclusion, this study has demonstrated that liraglutide can reduce fatty degeneration induced by FFAs in hepatocytes, and this effect may be partially mediated by the AMPK/SREBP1 pathway.

  3. Acute fatty liver of pregnancy.

    PubMed Central

    Korula, J.; Malatjalian, D. A.; Badley, B. W.

    1982-01-01

    Acute fatty liver of pregnancy (AFLP) is rare and is peculiar to the latter half of pregnancy. Despite the high rates of death among affected mothers and their fetuses, early recognition of the disease and immediate delivery of the infant may improve the chances of survival. This paper describes a case of AFLP, characterized by a rapid decrease in the size of the liver, a greatly prolonged prothrombin time and minimal increases in the serum transaminase levels, in which an immediate cesarean section followed by vigorous supportive care led to survival of both mother and infant. It is clear that guidelines on treatment are necessary if the management of such cases is to be successful. Images FIG. 2 PMID:6751513

  4. Omega-3 polyunsaturated fatty acids.

    PubMed

    Hull, Mark A

    2011-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are naturally occurring omega (ω)-3 long-chain polyunsaturated fatty acids (PUFAs), which are found in highest quantities in oily fish such as sardines and mackerel. Epidemiological studies of the association between fish intake, ω-3 PUFA intake or blood ω-3 PUFA levels and colorectal cancer (CRC) risk have not consistently suggested beneficial effects of ω-3 PUFAs on CRC (and other gastrointestinal cancer) risk. However, dietary administration of one or both of the main ω-3 PUFAs in rodent models of colorectal carcinogenesis has been demonstrated to reduce colorectal tumour size and multiplicity, compatible with CRC chemopreventative activity. EPA has now been demonstrated to reduce rectal polyp number and size in patients with familial adenomatous polyposis. A randomized polyp prevention trial of EPA is underway in order to test chemopreventative efficacy against 'sporadic' colorectal neoplasia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Consequences of Essential Fatty Acids

    PubMed Central

    Lands, Bill

    2012-01-01

    Essential fatty acids (EFA) are nutrients that form an amazingly large array of bioactive mediators that act on a large family of selective receptors. Nearly every cell and tissue in the human body expresses at least one of these receptors, allowing EFA-based signaling to influence nearly every aspect of human physiology. In this way, the health consequences of specific gene-environment interactions with these nutrients are more extensive than often recognized. The metabolic transformations have similar competitive dynamics for the n-3 and n-6 homologs when converting dietary EFA from the external environment of foods into the highly unsaturated fatty acid (HUFA) esters that accumulate in the internal environment of cells and tissues. In contrast, the formation and action of bioactive mediators during tissue responses to stimuli tend to selectively create more intense consequences for n-6 than n-3 homologs. Both n-3 and n-6 nutrients have beneficial actions, but many common health disorders are undesired consequences of excessive actions of tissue n-6 HUFA which are preventable. This review considers the possibility of preventing imbalances in dietary n-3 and n-6 nutrients with informed voluntary food choices. That action may prevent the unintended consequences that come from eating imbalanced diets which support excessive chronic actions of n-6 mediators that harm human health. The consequences from preventing n-3 and n-6 nutrient imbalances on a nationwide scale may be very large, and they need careful evaluation and implementation to avoid further harmful consequences for the national economy. PMID:23112921

  6. Membrane toxicity of antimicrobial compounds from essential oils.

    PubMed

    Di Pasqua, Rosangela; Betts, Gail; Hoskins, Nikki; Edwards, Mike; Ercolini, Danilo; Mauriello, Gianluigi

    2007-06-13

    Natural antimicrobial compounds perform their action mainly against cell membranes. The aim of this work was to evaluate the interaction, meant as a mechanism of action, of essential oil antimicrobial compounds with the microbial cell envelope. The lipid profiles of Escherichia coli O157:H7, Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Pseudomonas fluorescens, and Brochothrix thermosphacta cells treated with thymol, carvacrol, limonene, eugenol, and cinnamaldehyde have been analyzed by gas chromatography. In line with the fatty acids analysis, the treated cells were also observed by scanning electron microscopy (SEM) to evaluate structural alterations. The overall results showed a strong decrease of the unsaturated fatty acids (UFAs) for the treated cells; in particular, the C18:2trans and C18:3cis underwent a notable reduction contributing to the total UFA decreases, while the saturated fatty acid C17:0 raised the highest concentration in cinnamaldehyde-treated cells. SEM images showed that the used antimicrobial compounds quickly exerted their antimicrobial activities, determining structural alterations of the cell envelope.

  7. Effects of Substituted Pyridazinones (San 6706, San 9774, San 9785) on Glycerolipids and Their Associated Fatty Acids in the Leaves of Vicia faba and Hordeum vulgare1

    PubMed Central

    Khan, Mobashsher-Uddin; Lem, Nora W.; Chandorkar, Kashinath R.; Williams, John P.

    1979-01-01

    The fatty acids of the major glycerolipids from the leaves of Vicia faba and Hordeum vulgare plants treated with three different concentrations of pyridazinone derivatives were analyzed. These compounds showed multiple effects on the levels of lipids and pigments. At low concentrations, the primary effect of San 9785 was on the level of linolenic acid (18:3) in the galactolipids of V. faba, whereas the effect of San 6706 was primarily on the trans-Δ3-hexadecenoic acid (16:1) content in phosphatidylglycerol. At higher concentrations, the two compounds reduced the content of both fatty acids in the leaves. The results appear to indicate a differential effect of these herbicides on fatty acid accumulation and a difference in susceptibility of two fatty acids in the species examined. Electron microscopic studies revealed that two herbicides caused different abnormalities in V. faba chloroplast ultrastructure. Images PMID:16660953

  8. A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry

    USDA-ARS?s Scientific Manuscript database

    The melting point is one of the most important physical properties of a chemical compound and plays a significant role in determining possible applications. For fatty acid esters the melting point is essential for a variety of food and non-food applications, the latter including biodiesel and its c...

  9. Microencapsulation for the improved delivery of bioactive compounds into foods.

    PubMed

    Champagne, Claude P; Fustier, Patrick

    2007-04-01

    The development of functional foods through the addition of bioactive compounds holds many technological challenges. Microencapsulation is a useful tool to improve the delivery of bioactive compounds into foods, particularly probiotics, minerals, vitamins, phytosterols, lutein, fatty acids, lycopene and antioxidants. Several microencapsulation technologies have been developed for use in the food industry and show promise for the production of functional foods. Moreover, these technologies could promote the successful delivery of bioactive ingredients to the gastrointestinal tract. Future research is likely to focus on aspects of delivery and the potential use of co-encapsulation methodologies, where two or more bioactive ingredients can be combined to have a synergistic effect.

  10. Headspace solid-phase microextraction of higher fatty acid ethyl esters in white rum aroma.

    PubMed

    Pino, J; Martí, M P; Mestres, M; Pérez, J; Busto, O; Guasch, J

    2002-04-19

    Fatty acid ethyl esters are the main components of rum aroma and play an important sensorial impact in these distilled alcoholic beverages. Herein, a method for analysing these volatile compounds is described. It involves a separation and concentration step using headspace solid-phase microextraction and determination by capillary gas chromatography using flame ionisation detection. The influence of different parameters related to the isolation and concentration step, such as ethanol concentration, ionic strength, sample volume, time and temperature of extraction, was studied. The developed method enabled recoveries >91% for the analyzed compounds with limits of detection between 0.007 and 0.027 mg/l, all of them lower than the range of concentrations found in rum samples. The method was successfully applied to the analysis of fatty acid ethyl esters in different commercial white rums.

  11. Clinical implications of fatty pancreas: Correlations between fatty pancreas and metabolic syndrome

    PubMed Central

    Lee, Jun Seok; Kim, Sang Heum; Jun, Dae Won; Han, Jee Hye; Jang, Eun Chul; Park, Ji Young; Son, Byung Kwan; Kim, Seong Hwan; Jo, Yoon Ju; Park, Young Sook; Kim, Yong Soo

    2009-01-01

    AIM: To investigate the clinical implications of lipid deposition in the pancreas (fatty pancreas). METHODS: The subjects of this study were 293 patients who had undergone abdominal computed tomography (CT) and sonography. Fatty pancreas was diagnosed by sonographic findings and subdivided into mild, moderate, and severe fatty pancreas groups comparing to the retroperitoneal fat echogenicity. RESULTS: Fatty pancreas was associated with higher levels for visceral fat, waist circumference, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol, triglyceride, high density lipoprotein, free fatty acid, γ-GTP, insulin, and the homeostasis model assessment of insulin resistance (HOMA-IR) than the control group (P < 0.05). HOMA-IR, visceral fat, triglyceride, and ALT also tended to increase with the degree of fat deposition in the pancreas on sonography. In a multivariate logistic regression analysis, HOMA-IR, visceral fat, and ALT level were independently related to fatty pancreas after adjustment for age, body mass index, and lipid profile. The incidence of metabolic syndrome in the fatty pancreas group was significantly higher than in the control group, and the numbers of metabolic syndrome parameters were significantly higher in the fatty pancreas group (P < 0.05). CONCLUSION: Sonographic fatty pancrease showed higher insulin resistance, visceral fat area, triglyceride, and ALT levels than normal pancreases. Fatty pancreas also showed a strong correlation with metabolic syndrome. PMID:19370785

  12. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.

  13. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  14. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story

    NASA Astrophysics Data System (ADS)

    Dippold, Michaela A.; Kuzyakov, Yakov

    2016-02-01

    Fatty acids have been used as plant and microbial biomarkers, and knowledge about their transformation pathways in soils and sediments is crucial for interpreting fatty acid signatures, especially because the formation, recycling and decomposition processes are concurrent. We analyzed the incorporation of free fatty acids into microbial fatty acids in soil by coupling position-specific 13C labeling with compound-specific 13C analysis. Position-specifically and uniformly 13C labeled palmitate were applied in an agricultural Luvisol. Pathways of fatty acids were traced by analyzing microbial utilization of 13C from individual molecule positions of palmitate and their incorporation into phospholipid fatty acids (PLFA). The fate of palmitate 13C in the soil was characterized by the main pathways of microbial fatty acid metabolism: Odd positions (C-1) were preferentially oxidized to CO2 in the citric acid cycle, whereas even positions (C-2) were preferentially incorporated into microbial biomass. This pattern is a result of palmitate cleavage to acetyl-CoA and its further use in the main pathways of C metabolism. We observed a direct, intact incorporation of more than 4% of the added palmitate into the PLFA of microbial cell membranes, indicating the important role of palmitate as direct precursor for microbial fatty acids. Palmitate 13C was incorporated into PLFA as intact alkyl chain, i.e. the C backbone of palmitate was not cleaved, but palmitate was incorporated either intact or modified (e.g. desaturated, elongated or branched) according to the fatty acid demand of the microbial community. These modifications of the incorporated palmitate increased with time. Future PLFA studies must therefore consider the recycling of existing plant and microbial-derived fatty acids. This study demonstrates the intact uptake and recycling of free fatty acids such as palmitate in soils, as well as the high turnover and transformation of cellular PLFA. Knowledge about the intact

  15. Dual bioactivity of resveratrol fatty alcohols: differentiation of neural stem cells and modulation of neuroinflammation.

    PubMed

    Hauss, Frédérique; Liu, Jiawei; Michelucci, Alessandro; Coowar, Djalil; Morga, Eleonora; Heuschling, Paul; Luu, Bang

    2007-08-01

    The synthesis of resveratrol fatty alcohols (RFAs), a new class of small molecules presenting strong potential for the treatment of neurological diseases, is described. RFAs, hybrid compounds combining the resveratrol nucleus and omega-alkanol side chains, are able to modulate neuroinflammation and to induce differentiation of neural stem cells into mature neurons. Acting on neuroprotection and neuroregeneration, RFAs represent an innovative approach for the treatment or cure of neuropathies.

  16. Cinnamyl alcohols and methyl esters of fatty acids from Wedelia prostrata callus cultures.

    PubMed

    El-Mawla, Ahmed M A Abd; Farag, Salwa F; Beuerle, Till

    2011-01-01

    Two methyl esters of fatty acids, namely octadecanoic acid methyl ester (methyl stearate) and hexadecanoic acid methyl ester (methyl palmitate), in addition to four cinnamyl alcohol derivatives, sinapyl alcohol, coniferyl alcohol, p-coumaryl alcohol and coniferyl alcohol 4-O-glucoside (coniferin), were isolated from callus cultures of Wedelia prostrata. The structure of coniferin was established by spectroscopic and chemical methods, while the other compounds were identified by gas chromatography-mass spectrometry and thin layer chromatography in comparison with standards.

  17. The first total synthesis of (±)-4-methoxydecanoic acid: a novel antifungal fatty acid

    PubMed Central

    Carballeira, Néstor M.; Miranda, Carlos; Parang, Keykavous

    2009-01-01

    The hitherto unknown (±)-4-methoxydecanoic acid was synthesized in six steps and in 25% overall yield starting from commercially available 4-penten-1-ol. The title compound demonstrated seventeen fold higher antifungal activity (MIC = 1.5 mM) against Candida albicans ATCC 60193 and Cryptococcus. neoformans ATCC 66031 when compared to unsubstituted n-decanoic acid. Our results demonstrate that Mid-chain methoxylation appears to be a viable strategy for increasing the fungitoxicity of fatty acids. PMID:20161109

  18. Omega-3 fatty acids for cystic fibrosis.

    PubMed

    Oliver, Colleen; Jahnke, Nikki

    2011-08-10

    Studies suggest that a diet rich in omega-3 essential fatty acids may have beneficial anti-inflammatory effects for chronic conditions such as cystic fibrosis. To determine whether there is evidence that omega-3 polyunsaturated fatty acid supplementation reduces morbidity and mortality and to identify any adverse events associated with supplementation. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Authors and persons interested in the subject of the review were contacted.Date of last search: 10 March 2011. Randomised controlled trials in people with cystic fibrosis comparing omega-3 fatty acid supplements with placebo. Two authors independently selected studies for inclusion, extracted data and assessed the risk of bias of the studies. The searches identified 13 studies; four studies with 91 participants were included. Two studies compared omega-3 fatty acids to olive oil for six weeks. One study compared a liquid dietary supplement containing omega-3 fatty acids to one without for six months. One study compared omega-3 fatty acids and omega-6 fatty acids to a control (capsules with customised fatty acid blends) for three months. Only one short-term study (19 participants) comparing omega-3 to placebo reported a significant improvement in lung function and Shwachman score and a reduction in sputum volume in the omega-3 group. Another study (43 participants) demonstrated a significant increase in serum phospholipid essential fatty acid content and a significant drop in the n-6/n-3 fatty acid ratio following omega-3 fatty acid supplementation compared to control. The longer-term study (17 participants) demonstrated a significant increase in essential fatty acid content in neutrophil membranes and a significant decrease in the leukotriene B4 to leukotriene B5 ratio

  19. Fatty acid composition of selected prosthecate bacteria.

    PubMed

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  20. PPARs: fatty acid sensors controlling metabolism.

    PubMed

    Poulsen, Lars la Cour; Siersbæk, Majken; Mandrup, Susanne

    2012-08-01

    The peroxisome proliferator activated receptors (PPARs) are nuclear receptors that play key roles in the regulation of lipid metabolism, inflammation, cellular growth, and differentiation. The receptors bind and are activated by a broad range of fatty acids and fatty acid derivatives and they thereby serve as major transcriptional sensors of fatty acids. Here we review the function, regulation, and mechanism of the different PPAR subtypes with special emphasis on their role in the regulation of lipid metabolism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves.

    PubMed

    Racovita, Radu C; Peng, Chen; Awakawa, Takayoshi; Abe, Ikuro; Jetter, Reinhard

    2015-05-01

    The present work aimed at a comprehensive chemical characterization of the cuticular wax mixtures covering leaves of the monocot species Aloe arborescens. The wax mixtures were found to contain typical aliphatic compound classes in characteristic chain length distributions, including alkanes (predominantly C31), primary alcohols (predominantly C28), aldehydes (predominantly C32), fatty acid methyl esters (predominantly C28) and fatty acids (bimodal distribution around C32 and C28). Alkyl esters ranging from C42 to C52 were identified, and found to mainly contain C28 alcohol linked to C16-C20 acids. Three other homologous series were identified as 3-hydroxy fatty acids (predominantly C28), their methyl esters (predominantly C28), and 2-alkanols (predominantly C31). Based on structural similarities and homolog distributions, the biosynthetic pathways leading to these novel wax constituents can be hypothesized. Further detailed analyses showed that the A. arborescens leaf was covered with 15 μg/cm(2) wax on its adaxial side and 36 μg/cm(2) on the abaxial side, with 3:2 and 1:1 ratios between epicuticular and intracuticular wax layers on each side, respectively. Terpenoids were found mainly in the intracuticular waxes, whereas very-long-chain alkanes and fatty acids accumulated to relatively high concentrations in the epicuticular wax, hence near the true surface of the leaf.

  2. Evaluation of salicylic acid fatty ester prodrugs for UV protection.

    PubMed

    Im, Jong Seob; Balakrishnan, Prabagar; Oh, Dong Hoon; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Yong, Chul Soon; Choi, Han-Gon

    2011-07-01

    The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin. Their k' values were proportional to the degree of carbon-carbon saturation in the side chain. All these fatty esters were highly stable in 2-propanol, acetonitrile and glycerin, but unstable in methanol and ethanol. They were relatively unstable in liver and skin homogenates. In particular, C16SA was mostly hydrolyzed to its parent compound in hairless mouse liver and skin homogenates, suggesting that it might be converted to salicylic acid after its topical administration. In the skin permeation and accumulation study, C16SA showed the poorest permeation in all skins, suggesting that it could not be permeated in the skin. Furthermore, C14SA and C16SA were less accumulated in delipidized skin compared with normal skin or stripped skin, suggesting that these esters had relatively strong affinities for lipids compared with the other prodrugs in the skin. C16SA showed significantly higher dermal accumulation in all skins compared with its parent salicylic acid. Thus, the palmitoyl oxysalicylate (C16SA) might be a potential candidate for UV protection due to its absence of skin permeation, smaller uptake in the lipid phase and relatively lower skin accumulation.

  3. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR-/- mice by suppressing fatty acid desaturases.

    PubMed

    Njoroge, Sarah W; Laposata, Michael; Boyd, Kelli L; Seegmiller, Adam C

    2015-01-01

    Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to overexpression of fatty acid desaturases that can be reversed by supplementation with the long-chain polyunsaturated fatty acids docosahexaenoate and eicosapentaenoate. However, these findings have not been tested in vivo. The current study aimed to test these results in an in vivo model system, the CFTR(-/-) knockout mouse. When compared with wild-type mice, the knockout mice exhibited fatty acid abnormalities similar to those seen in cystic fibrosis patients and other model systems. The abnormalities were confined to lung, ileum and pancreas, tissues that are affected by the disease. Similar to in vitro models, these fatty acid changes correlated with increased expression of Δ5- and Δ6-desaturases and elongase 5. Dietary supplementation with high-dose free docosahexaenoate or a combination of lower-dose docosahexaenoate and eicosapentaenoate in triglyceride form corrected the fatty acid abnormalities and reduced expression of the desaturase and elongase genes in the ileum and liver of knockout mice. Only the high-dose docosahexaenoate reduced histologic evidence of disease, reducing mucus accumulation in ileal sections. These results provide in vivo support for the hypothesis that fatty acid abnormalities in cystic fibrosis result from abnormal expression and activity of metabolic enzymes in affected cell types. They further demonstrate that these changes can be reversed by dietary n-3 fatty acid supplementation, highlighting the potential therapeutic benefit for cystic fibrosis patients.

  4. Evaluation of fatty proportion in fatty liver using least squares method with constraints.

    PubMed

    Li, Xingsong; Deng, Yinhui; Yu, Jinhua; Wang, Yuanyuan; Shamdasani, Vijay

    2014-01-01

    Backscatter and attenuation parameters are not easily measured in clinical applications due to tissue inhomogeneity in the region of interest (ROI). A least squares method(LSM) that fits the echo signal power spectra from a ROI to a 3-parameter tissue model was used to get attenuation coefficient imaging in fatty liver. Since fat's attenuation value is higher than normal liver parenchyma, a reasonable threshold was chosen to evaluate the fatty proportion in fatty liver. Experimental results using clinical data of fatty liver illustrate that the least squares method can get accurate attenuation estimates. It is proved that the attenuation values have a positive correlation with the fatty proportion, which can be used to evaluate the syndrome of fatty liver.

  5. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  6. Vigorous Mold Growth in Soils After Addition of Water-Insoluble Fatty Substances

    PubMed Central

    Krause, Frank P.; Lange, Willy

    1965-01-01

    Various water-insoluble fatty compounds, when added to soil in finely divided form, will support as high-caloric nutrients a visible, vigorous growth of the molds, Fusarium solani Mart., F. diversisporum Sherb., and F. equiseti. n-Paraffins and olefins are most effective, because the effect of additives is reduced to the extent that oxygen atoms are introduced into the molecule. n-Fatty alcohols support growth in soil almost as well as the paraffins; however, growth is reduced when branched-chain compounds are added as nutrients. Compounds that will support mold growth when added to air-dried soil as finely powdered solids will not do so when incorporated at temperatures above their melting point, but will produce dense growth when applied to wet soil in this form. Mold growth is correlated with degradation of fatty matter. The rate of degradation is controlled by the availability of water, oxygen, and the basic inorganic nutrients. Images Fig. 1 Fig. 2 PMID:14325872

  7. Methodologies for investigating natural medicines for the treatment of nonalcoholic fatty liver disease (NAFLD).

    PubMed

    Kim, Moon Sun; Kung, Sidney; Grewal, Thomas; Roufogalis, Basil D

    2012-02-01

    Non-alcoholic fatty liver disease (NAFLD) is emerging as a prominent condition in Western countries. In this review we describe the characteristics and current treatments of NAFLD and discuss opportunities for developing new therapeutic management approaches, with a particular emphasis on development of animal studies and in vitro assays for identification of components of natural product medicines. The main manifestation of NAFLD is hepatic lipid accumulation in the form of lipid droplets (LDs), known as hepatic steatosis (fatty liver). Current treatments for NAFLD generally aim to reduce triglyceride (TG) accumulation, often utilizing thiazolidinedines (TZDs) and fibrates, which are known to lower TG levels in hyperlipidemia, diabetes and metabolic syndrome. Both of these compounds act through activation of nuclear receptors of the Peroxisome Proliferator-Activated Receptor (PPAR) family, thereby activating genes involved in triglyceride metabolism. Thus treatment using natural PPAR α and PPAR γ ligands, such as polyunsaturated fatty acids (PUFA), has also been considered. Alternatively, natural medicines for the treatment of NAFLD have a long and successful history of controlling disease without prominent side effects. However, active compounds in natural medicine responsible for lowering hepatic TG levels are yet poorly characterized. This points to the need for medium-high throughput screening assays to identify active components within natural herbs. As outlined in this review, the quantification of the size and number of lipid droplets could provide an opportunity to screen compound libraries derived from natural medicine for their potential to reduce NAFLD.

  8. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactylic esters of fatty acids. 172.848 Section... § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food in accordance with the following prescribed conditions: (a) They are prepared from lactic acid and fatty acids...

  9. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  10. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... Sucrose fatty acid esters. Sucrose fatty acid esters identified in this section may be safely used in accordance with the following prescribed conditions: (a) Sucrose fatty acid esters are the mono-, di-, and...

  11. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these substances...

  12. 21 CFR 178.3480 - Fatty alcohols, synthetic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fatty alcohols, synthetic. 178.3480 Section 178... § 178.3480 Fatty alcohols, synthetic. Synthetic fatty alcohols may be safely used as components of... following prescribed conditions: (a) The food additive consists of fatty alcohols meeting the...

  13. 21 CFR 178.3480 - Fatty alcohols, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty alcohols, synthetic. 178.3480 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3480 Fatty alcohols, synthetic. Synthetic fatty... consists of fatty alcohols meeting the specifications and definition prescribed in § 172.864 of...

  14. 21 CFR 178.3480 - Fatty alcohols, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fatty alcohols, synthetic. 178.3480 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3480 Fatty alcohols, synthetic. Synthetic fatty... consists of fatty alcohols meeting the specifications and definition prescribed in § 172.864 of...

  15. Effects of sub-lethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile of Listeria monocytogenes, Escherichia coli and Salmonella enteritidis.

    PubMed

    Siroli, Lorenzo; Patrignani, Francesca; Gardini, Fausto; Lanciotti, Rosalba

    2015-09-01

    The aim of this work was to investigate the modifications of cell membrane fatty acid composition and volatile molecule profiles of Listeria monocytogenes, Salmonella enteritidis, Escherichia coli, during growth in the presence of different sub-lethal concentrations of thyme and oregano essential oils as well as carvacrol, thymol, trans-2-hexenal and citral. The results evidenced that the tested molecules induced noticeable modifications of membrane fatty acid profiles and volatile compounds produced during the growth. Although specific differences in relation to the species considered were identified, the tested compounds induced a marked increase of some membrane associated fatty acids, particularly unsaturated fatty acids, trans-isomers, and specific released free fatty acids. These findings can contribute to the comprehension of the stress response mechanisms used by different pathogenic microorganisms often involved in food-borne diseases in relation to the exposure to sub-lethal concentrations of natural antimicrobials.

  16. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH).

    PubMed

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Romagnoli, Romeo; Martinelli, Adriano; Tuccinardi, Tiziano

    2015-06-05

    Fatty acid amide hydrolase (FAAH) inhibitors have gained attention as potential therapeutic targets in the management of neuropathic pain. Here, we report a series of pyrazole phenylcyclohexylcarbamate derivatives standing on the known carbamoyl FAAH inhibitor URB597. Structural modifications led to the recognition of compound 22 that inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM). The most active compounds of this series showed significant selectivity toward monoacylglycerol lipase (MAGL) enzyme. In addition, molecular modeling and reversibility behavior of the new class of FAAH inhibitors are presented in this article.

  17. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  18. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media.

    PubMed

    Di Pasqua, Rosangela; Hoskins, Nikki; Betts, Gail; Mauriello, Gianluigi

    2006-04-05

    Major active compounds from essential oils are well-known to possess antimicrobial activity against both pathogen and spoilage microorganisms. The aim of this work was to determine the alteration of the membrane fatty acid profile as an adaptive mechanism of the cells in the presence of a sublethal concentration of antimicrobial compound in response to a stress condition. Methanolic solutions of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol were added into growth media of Escherichia coli O157:H7, Salmonella enterica serovar typhimurium, Pseudomonas fluorescens, Brochothrix thermosphacta, and Staphylococcus aureus strains. Fatty acid extraction and gas chromatographic analysis were performed to assess changes in membrane fatty acid composition. Substantial changes were observed on the long chain unsaturated fatty acids when the E. coli and Salmonella strains grew in the presence of limonene and cinnamaldehyde and carvacrol and eugenol, respectively. All compounds influenced the fatty acid profile of B. thermosphacta, while Pseudomonas and S. aureus strains did not show substantial changes in their fatty acid compositions.

  19. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-12-02

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained.

  20. Long-acting estrogenic responses of estradiol fatty acid esters.

    PubMed

    Vazquez-Alcantara, M A; Menjivar, M; Garcia, G A; Díaz-Zagoya, J C; Garza-Flores, J

    1989-12-01

    Estradiol esters at C-17 and C-3 with palmitic, stearic and oleic acids were chemically synthesized and then evaluated for their long-acting estrogenic responses in ovariectomized rats. The duration of the biological effects was measured after a single subcutaneous dose of 0.1 mumol of each ester and compared with those observed with 17 beta-estradiol, estradiol 3-benzoate and estradiol 17-enanthate. Vaginal citology, uterophyc action, serum gonadotropins inhibition and 17 beta-estradiol levels were measured 0, 5, 10, 20, 30 and 60 days after injection. The results disclosed that most of the estradiol derivatives evaluated exhibited a long-acting estrogenic action. However, the monoesters at C-17 showed longer effects that monoesters at C-3, while the estradiol diesters exhibited the shortest effects. In addition as shown by its low serum levels, all estradiol esters with unsaturated fatty acids show a decreased E2 absorption. The overall results indicated that esterification of E2 with long chain fatty acids provided long-acting properties to it, being higher with C-17 esters. Whether some of these compounds could be employed in substitutive endocrine therapy remains to be established.

  1. Nitrodifluoraminoterphenyl compounds and processes

    DOEpatents

    Lerom, M.W.; Peters, H.M.

    1975-07-08

    This patent relates to the nitrodifluoraminoterphenyl compounds: 3,3''-bis (difluoramino)-2,2'' 4,4', 4'',6,6',6''-octanitro-m-terphenyl (DDONT) and 3,3''-bis(difluoramino)-2,2',2''4,4',4'',6,6',6''-nonanitro-m-terphenyl (DDNONA). Procedures are described wherein diamino precursors of the indicated compounds are prepared and the final compounds are obtained by a fluorination operation. The compounds are highly energetic and suitable for use as explosives and particularly in exploding bridge wire (EBW) detonators. (auth)

  2. Saturated Fatty Acid Mutant of Saccharomyces cerevisiae with an Intact Fatty Acid Synthetase

    PubMed Central

    Meyer, Karl H.; Schweizer, Eckhart

    1974-01-01

    A Saccharomyces cerevisiae conditional mutant, LK 181, is described which grows at 37 C only when supplemented with a saturated fatty acid of 12 to 14 carbon atoms chain length. At 22 C, however, no fatty acid supplementation is required for growth. The fatty acid concentration required for optimal growth at 37 C is about four times lower for LK 181 than for fatty acid synthetase-deficient mutants. In contrast to all fatty acid synthetase mutants so far examined, mutant LK 181 cannot grow with palmitic acid. The addition of palmitic, palmitoleic, or oleic acid to the culture medium prevents LK 181 growth at temperatures between 22 and 37 C. In vivo as well as in vitro, cellular de novo fatty acid biosynthesis from acetate is unimpaired in this mutant. It is suggested that endogenously synthesized fatty acids, due to their chain lengths of 16 and more carbon atoms, cannot supplement the mutant LK 181. It is concluded that the exogeneously supplied fatty acids act as allosteric effectors for a mutationally altered cellular protein to restore its biological function at elevated temperatures, rather than as a substitute for endogenously synthesized long-chain fatty acids. PMID:4590462

  3. Antisense technologies targeting fatty acid synthetic enzymes.

    PubMed

    Lin, Jinshun; Liu, Feng; Jiang, Yuyang

    2012-05-01

    Fatty acid synthesis is a coordinated process involving multiple enzymes. Overexpression of some of these enzymes plays important roles in tumor growth and development. Therefore, these enzymes are attractive targets for cancer therapies. Antisense agents provide highly specific inhibition of the expression of target genes and thus have served as powerful tools for gene functional studies and potential therapeutic agents for cancers. This article reviews different types of antisense agents and their applications in the modulation of fatty acid synthesis. Patents of antisense agents targeting fatty acid synthetic enzymes are introduced. In addition, miR-122 has been shown to regulate the expression of fatty acid synthetic enzymes, and thus antisense agent patents that inhibit miR-122 expression are also discussed.

  4. Uridine Prevents Fenofibrate-Induced Fatty Liver

    PubMed Central

    Le, Thuc T.; Urasaki, Yasuyo; Pizzorno, Giuseppe

    2014-01-01

    Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD+/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD) and acyl-CoA oxidase 1 (ACOX1), and induces excessive accumulation of long chain fatty acids (LCFA) and very long chain fatty acids (VLCFA). Uridine co-administration at a daily dosage of 400 mg/kg raises NAD+/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver. PMID:24475249

  5. [Omega-3 fatty acids and cognition].

    PubMed

    Hashimoto, Michio

    2014-04-01

    Docosahexaenoic acid, the most abundant omega3 fatty acid in the brain, plays a role in cognitive development, learning ability, neuronal membrane plasticity, synaptogenesis, and neurogenesis, all of which are involved in synaptic transmission and the well-being of normal brain functions, and search on the functionality is still in progress. Establishment of prevention and treatment of neuropsychiatric illnesses, such as dementia is not easy, but from numerous basic and epidemiological studies, increase of omega3 fatty acid dietary intake is reported likely to prevent the onset of dementia. This paper is outlined the relevance of cognitive function and omega3 fatty acids, especially docosahexaenoic acid, and the possibility of preventive effect of the fatty acid on dementia.

  6. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects.

  7. Omega-3 Fatty Acid supplementation during pregnancy.

    PubMed

    Greenberg, James A; Bell, Stacey J; Ausdal, Wendy Van

    2008-01-01

    Omega-3 fatty acids are essential and can only be obtained from the diet. The requirements during pregnancy have not been established, but likely exceed that of a nonpregnant state. Omega-3 fatty acids are critical for fetal neurodevelopment and may be important for the timing of gestation and birth weight as well. Most pregnant women likely do not get enough omega-3 fatty acids because the major dietary source, seafood, is restricted to 2 servings a week. For pregnant women to obtain adequate omega-3 fatty acids, a variety of sources should be consumed: vegetable oils, 2 low-mercury fish servings a week, and supplements (fish oil or algae-based docosahexaenoic acid).

  8. Sulfonyl Fluoride Inhibitors of Fatty Acid Amide Hydrolase

    PubMed Central

    Alapafuja, Shakiru O.; Nikas, Spyros P.; Bharatan, Indu; Shukla, Vidyanand G.; Nasr, Mahmoud L.; Bowman, Anna L.; Zvonok, Nikolai; Li, Jing; Shi, Xiaomeng; Engen, John R.; Makriyannis, Alexandros

    2013-01-01

    Sulfonyl fluorides are known to inhibit esterases. Early work from our laboratory has identified hexadecyl sulfonylfluoride (AM374) as a potent in vitro and in vivo inhibitor of fatty acid amide hydrolase (FAAH). We now report on later generation sulfonyl fluoride analogs that exhibit potent and selective inhibition of FAAH. Using recombinant rat and human FAAH we show that 5-(4-hydroxyphenyl)pentanesulfonyl fluoride (AM3506) has similar inhibitory activity for both the rat and the human enzyme, while rapid dilution assays and mass spectrometry analysis suggest that the compound is a covalent modifier for FAAH and inhibits its action in an irreversible manner. Our SAR results are highlighted by molecular docking of key analogs. PMID:23083016

  9. In vitro trypanocidal activity of dibutyltin dichloride and its fatty acid derivatives.

    PubMed

    Shuaibu, M N; Kanbara, H; Yanagi, T; Ichinose, A; Ameh, D A; Bonire, J J; Nok, A J

    2003-09-01

    Searching for new compounds against pathogenic trypanosomes has been substantially accelerated by the development of in vitro screening assays. In an attempt to explore the chemotherapeutic potential of organotin compounds and to broaden the search for newer trypanocides, fatty acid derivatives of dibutyltin dichloride were synthesized and their in vitro trypanocidal profiles studied on Trypanosoma brucei brucei, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. A 24-h time course experiment was conducted with various concentrations of the compounds using a 24-well microtiter plate technique. The compounds tested were trypanocidal in a dose-dependent fashion: inhibiting survival and growth, resulting in irreversible morphological deformation and the eventual death of the parasites. The minimum inhibitory concentrations of the tested diorganotins are at low micromolar ranges: from 0.15-0.75 microM for T. b. brucei, T. b. gambiense and T. b. rhodesiense. These observations suggest that organotin has chemotherapeutic potential.

  10. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  11. Apolar compounds in seaweeds from fernando de noronha archipelago (northeastern coast of Brazil).

    PubMed

    Ferreira, Leandro De Santis; Turatti, Izabel Cristina Casanova; Lopes, Norberto Peporine; Guaratini, Thais; Colepicolo, Pio; Oliveira Filho, Eurico Cabral; Garla, Ricardo Clapis

    2012-01-01

    Hyphenated techniques of gas chromatography coupled to mass spectrometer were used to determine fatty acids in eleven species of seaweeds from Fernando de Noronha archipelago. The main compounds detected in all studied species were the alcohol phytol and the fatty acids 14 : 0; 15 : 0; 16 : 0; 18 : 0; 18 : 1 n(9); 18 : 2 Δ(9,12); 20 : 4; 20 : 5. These fatty acids are commonly found in seaweeds present in warm regions. Thus, we found no specificity in the presence of a particular set of fatty acids and the studied species indicating that they are not useful as taxonomic indicators. However, they could be used in a comparative study with algae found in polluted area because many of the studied seaweeds are widespread and Fernando de Noronha has low human influence.

  12. Apolar Compounds in Seaweeds from Fernando de Noronha Archipelago (Northeastern Coast of Brazil)

    PubMed Central

    Ferreira, Leandro De Santis; Turatti, Izabel Cristina Casanova; Lopes, Norberto Peporine; Guaratini, Thais; Colepicolo, Pio; Oliveira Filho, Eurico Cabral; Garla, Ricardo Clapis

    2012-01-01

    Hyphenated techniques of gas chromatography coupled to mass spectrometer were used to determine fatty acids in eleven species of seaweeds from Fernando de Noronha archipelago. The main compounds detected in all studied species were the alcohol phytol and the fatty acids 14 : 0; 15 : 0; 16 : 0; 18 : 0; 18 : 1 n9; 18 : 2 Δ9,12; 20 : 4; 20 : 5. These fatty acids are commonly found in seaweeds present in warm regions. Thus, we found no specificity in the presence of a particular set of fatty acids and the studied species indicating that they are not useful as taxonomic indicators. However, they could be used in a comparative study with algae found in polluted area because many of the studied seaweeds are widespread and Fernando de Noronha has low human influence. PMID:22272200

  13. Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae

    NASA Astrophysics Data System (ADS)

    Wang, Renjun; Wang, You; Tang, Xuexi

    2012-09-01

    The inhibitory effects of methanol extracts from the tissues of three macroalgal species on the growths of three marine red tide microalgae were assessed under laboratory conditions. Extracts of Sargassum thunbergii (Mertens ex Roth) Kuntz tissue had stronger inhibitory effects than those of either Sargassum pallidum (Turner) C. Agardh or Sargassum kjellmanianum Yendo on the growths of Heterosigma akashiwo (Hada) Hada, Skeletonema costatum (Grev.) Grev, and Prorocentrum micans Ehrenberg. Methanol extracts of S. thunbergii were further divided into petroleum ether, ethyl acetate, butanol, and distilled water phases by liquid-liquid fractionation. The petroleum ether and ethyl acetate fractions had strong algicidal effects on the microalgae. Gas chromatography-mass spectrometry analyses of these two phases identified nine fatty acids, most of which were unsaturated fatty acids. In addition, pure compounds of four of the nine unsaturated fatty acids had effective concentrations below 5 mg/L. Therefore, unsaturated fatty acids are a component of the allelochemicals in S. thunbergii tissue.

  14. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). 721.10629 Section 721.10629 Protection... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a...

  15. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). 721.10629 Section 721.10629 Protection... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a...

  16. Effects of simple rain-shelter cultivation on fatty acid and amino acid accumulation in 'Chardonnay' grape berries.

    PubMed

    Meng, Nan; Ren, Zhi-Yuan; Yang, Xiao-Fan; Pan, Qiu-Hong

    2017-07-29

    Fatty acids and amino acids are the precursors of aliphatic and aromatic volatile compounds, higher alcohols and esters. They are also nutrition for yeast metabolism during fermentation. However, few reports have been concerned about the effect of viticulture practices on the accumulation of fatty acids and amino acids in wine grapes. This study aimed to explore the accumulation of these compounds in developing Vitis vinifera L. cv. Chardonnay grape berries under two vintages, and compare the influences of the rain-shelter cultivation and open-field cultivation. Fifteen fatty acids and 21 amino acids were detected in total. The rain-shelter cultivation led to an increase in the total concentration of fatty acids, and a decrease in the total concentration of amino acids compared with the open-field cultivation in 2012, while no significant difference was observed between two cultivation modes in 2013 vintage. Concentrations of palmitoleic acid, isoleucine and cysteine were significantly promoted in the rain-shelter grape berries, whereas those of tyrosine and ornithine were markedly reduced in both vintages. The rain-shelter cultivation of wine grapes in the rainy region is beneficial for improving grape quality and fermentation activity by influence on the concentration of fatty acids and amino acids. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... of fatty acids. The food additive salts of fatty acids may be safely used in food and in the... salts of the fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty acids...

  18. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  19. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris [Portola Valley, CA; Broun, Pierre [Burlingame, CA; van de Loo, Frank [Weston, AU; Boddupalli, Sekhar S [Manchester, MI

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  20. [Acute fatty liver of pregnancy].

    PubMed

    Bacq, Y; Constans, T; Body, G; Choutet, P; Lamisse, F

    1986-01-01

    The authors analyse 115 cases of acute fatty liver of pregnancy, proven histologically. Characteristics of the condition is the finding of central nuclei in the hepatocytes containing microvesicular droplets. The disease occurs more frequently in primiparous women (54 per cent) and usually occurs in the third trimester of the pregnancy. A pre-icteric phase usually precedes the jaundice and during that time there is usually vomiting and/or nausa with abdominal pain or anarexia. In 92 per cent of case there is transient loss of consciousness with hepatic encephalopathy. Further tests show that there is more defective liver function than would be expected from the extent of cell lysis; and there is defective renal function. The worst complications are intestinal haemorrhages (48 per cent of cases)--genital bleeding (43 per cent of cases)--shock--diffuse intravascular coagulation and complications associated with coma. Maternal mortality at present runs at 25 per cent and fetal mortality at 60 per cent. The condition does not recur. Early evacuation of the uterus is recommended by most authors and does probably improve the outlook. The various hypotheses concerning the aetiology are discussed.

  1. Ultrasound in fatty acid chemistry: synthesis of a 1-pyrroline fatty acid ester isomer from methyl ricinoleate.

    PubMed

    Lie Ken Jie, M S; Syed-Rahmatullah, M S; Lam, C K; Kalluri, P

    1994-12-01

    A novel 1-pyrroline fatty acid ester isomer (viz. 8-5-hexyl-1-pyrrolin-2-yl) octanoate) has been synthesized from methyl ricinoleate by two routes with an overall yield of 42 and 30%, respectively. Most of the reactions are carried out under concomitant ultrasonic irradiation (20 KHz, ca. 53 watts/cm2). Under such a reaction condition, the reaction time is considerably shortened, and product yields are high. Dehydrobromination under concomitant ultrasonic irradiation of methyl 9, 10-dibromo-12-hydroxyoctadecanoate with KOH in EtOH furnishes methyl 12-hydroxy-9-octadecynoate (66%) within 15 min. Hydration of the latter under ultrasound with mercury(II)acetate in aqueous tetrahydrofuran yields exclusively methyl 12-hydroxy-9-oxo-octadecanoate (95%) in 30 min. The hydroxy group in the latter compound is transformed to the azido function via the mesylate, and treatment of the azido-oxo intermediate (methyl 12-azido-9-oxooctadecanoate) with Ph3P under ultrasonic irradiation furnishes the requisite 1-pyrroline fatty acid ester (77%). The same azido-oxo intermediate has also been obtained by the oxidation of methyl 12-azido-9-cis-octadecenoate using benzoquinone and a catalytic amount of Pd(II)chloride in aqueous tetrahydrofuran under concomitant ultrasonic irradiation (90 min) to give the product in 45% yield. The latter reaction does not take place even under prolonged silent stirring of the reaction mixture.

  2. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  3. Omega-3 fatty acids and cardiovascular disease.

    PubMed

    Jain, A P; Aggarwal, K K; Zhang, P-Y

    2015-01-01

    Cardioceuticals are nutritional supplements that contain all the essential nutrients including vitamins, minerals, omega-3-fatty acids and other antioxidants like a-lipoic acid and coenzyme Q10 in the right proportion that provide all round protection to the heart by reducing the most common risks associated with the cardiovascular disease including high low-density lipoprotein cholesterol and triglyceride levels and factors that contribute to coagulation of blood. Omega-3 fatty acids have been shown to significantly reduce the risk for sudden death caused by cardiac arrhythmias and all-cause mortality in patients with known coronary heart disease. Omega-3 fatty acids are also used to treat hyperlipidemia and hypertension. There are no significant drug interactions with omega-3 fatty acids. The American Heart Association recommends consumption of two servings of fish per week for persons with no history of coronary heart disease and at least one serving of fish daily for those with known coronary heart disease. Approximately 1 g/day of eicosapentaenoic acid plus docosahexaenoic acid is recommended for cardio protection. Higher dosages of omega-3 fatty acids are required to reduce elevated triglyceride levels (2-4 g/day). Modest decreases in blood pressure occur with significantly higher dosages of omega-3 fatty acids.

  4. [Elimination of all trans fatty acids].

    PubMed

    Katan, M B

    2008-02-09

    At the start of the 20th century, the production of trans fatty acids was originally largely driven by the increasing demand for margarine. The two Dutch margarine firms Van den Bergh and Jurgens played an important role in this early development. In the early 1990s it was shown that trans fatty acids increase the risk of heart disease. Unilever, the successor to Van den Bergh and Jurgens, then took the lead in eliminating trans fatty acids from retail foods worldwide. As a result, intake in The Netherlands fell from 15 g per day in 1980 to 3 g per day in 2003. Dairy products and meat are now the major source of trans fatty acids. The effects on health of these ruminant trans fatty acids are unclear. There are three lessons to be learned from the rise and fall of trans fatty acids. First, a history of safe use does not guarantee safety of food components, because routine surveillance will fail to detect adverse effects on common illnesses with long incubation periods. Second, it shows that it is more effective and easier to change the composition of foods than to change consumer behaviour. And third, governments can have a major impact on consumers' health by mandating the use of healthier food ingredients.

  5. Cistus ladanifer L. Shrub is Rich in Saturated and Branched Chain Fatty Acids and their Concentration Increases in the Mediterranean Dry Season.

    PubMed

    Guerreiro, Olinda; Alves, Susana P; Duarte, Maria F; Bessa, Rui J B; Jerónimo, Eliana

    2015-05-01

    The Cistus ladanifer L. shrub is a widespread species of the Mediterranean region that is available as a feed source for ruminants all the year round, constituting a source of energy and nutrients when most of the vegetation is dry. However, there is no trustworthy information about the fatty acid composition of C. ladanifer, as well as no information about the seasonal and age related changes in their fatty acid composition. Thus, we collected the aerial parts of C. ladanifer plants of two age groups [young vs. older ones (2-6 years old)] during four consecutive seasons to characterize their fatty acid composition. The fatty acid composition of C. ladanifer is dominated by saturated fatty acids including the occurrence of two methyl branched chain fatty acids (BCFA), the iso-19:0 and iso-21:0, which as far as we know were detected for the first time in shrubs. Also, we demonstrated that several labdane type compounds might interfere with the fatty acid analysis of C. ladanifer. Marked seasonal changes in BCFA and polyunsaturated fatty acids (PUFA) were found, suggesting that BCFA can replace PUFA in plant lipids at high environmental temperatures.

  6. Location and biosynthesis of monoterpenyl fatty acyl esters in rose petals.

    PubMed

    Dunphy, Patrick J

    2006-06-01

    The upper epidermal layer of cells and the epicuticular wax surface of Lady Seton rose petals are sites of biosynthesis and accumulation, respectively, of a family of terpenyl fatty acyl esters. These esters are based mainly on the acyclic monoterpene alcohol geraniol coupled primarily to fatty acids of chain lengths 16-20 and in mass terms represent from 14% to 64% of the total monoterpenes present in the petals. The lipophilic nature of these non-volatile esters of the monoterpene alcohols contrasts with that of the lipophilic volatile parent alcohols themselves and with the hydrophilic, non-volatile, glucoside derivative of the other principal petal fragrant compounds, the phenylpropanoids, beta-phenyl ethanol and benzyl alcohol. These latter compounds are also synthesised and are resident in the petal. Biosynthetic studies confirmed that the petal upper epidermal cell layer has the capacity to incorporate mevalonic acid into the monoterpene component of the fatty acyl ester. The biosynthesis of the monoterpene component of the fatty acyl ester occurs via the mevalonic acid pathway in Lady Seton as well as in the hybrid tea rose Fragrant Cloud. In the latter flower the biosynthesis of geraniol was biosynthetically trans as was the formation of nerol and citronellol. Both geraniol and nerol were shown to be precursors of citronellol via an NADPH dependent reductase reaction. Oleic acid is assimilated into the acyl moiety of the terpenyl ester in Lady Seton isolated petal discs. It is probable that the lipophilic non-volatile terpenyl fatty acyl esters represent a stable storage form of the corresponding alcohols from their residency within the epicuticular wax layer. These acyl esters may realise, on hydrolysis, additional aroma notes from the living flower and potentially commercially significant quantities of the fragrant terpenols during oil of rose essence production.

  7. Comparison of sterols and fatty acids in two species of Ganoderma

    PubMed Central

    2012-01-01

    Background Two species of Ganoderma, G. sinense and G. lucidum, are used as Lingzhi in China. Howerver, the content of triterpenoids and polysaccharides, main actives compounds, are significant different, though the extracts of both G. lucidum and G. sinense have antitumoral proliferation effect. It is suspected that other compounds contribute to their antitumoral activity. Sterols and fatty acids have obvious bioactivity. Therefore, determination and comparison of sterols and fatty acids is helpful to elucidate the active components of Lingzhi. Results Ergosterol, a specific component of fungal cell membrane, was rich in G. lucidum and G. sinense. But its content in G. lucidum (median content 705.0 μg·g-1, range 189.1-1453.3 μg·g-1, n = 19) was much higher than that in G. sinense (median content 80.1 μg·g-1, range 16.0-409.8 μg·g-1, n = 13). Hierarchical clustering analysis based on the content of ergosterol showed that 32 tested samples of Ganoderma were grouped into two main clusters, G. lucidum and G. sinense. Hierarchical clustering analysis based on the contents of ten fatty acids showed that two species of Ganoderma had no significant difference though two groups were also obtained. The similarity of two species of Ganoderma in fatty acids may be related to their antitumoral proliferation effect. Conclusions The content of ergosterol is much higher in G. lucidum than in G. sinense. Palmitic acid, linoleic acid, oleic acid, stearic acid are main fatty acids in Ganoderma and their content had no significant difference between G. lucidum and G. sinense, which may contribute to their antitumoral proliferation effect. PMID:22293530

  8. A high-performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples.

    PubMed

    Castro-Gómez, Pilar; Fontecha, Javier; Rodríguez-Alcalá, Luis M

    2014-10-01

    Isolation is the main bottleneck in the analysis of fatty acids in biological samples and foods. In the last few decades some methods described direct derivatization procedures bypassing these steps. They involve the utilization of methanolic HCL or BF3 as catalysts, but several evidences from previous works suggest these reagents are unstable, lead to the formation of artifacts and alter the distribution of specific compounds as hydroxy fatty acids or CLA. However, the main issue is that they are excellent esterification reagents but poor in transterification, being not suitable for the analysis of all lipid classes and leading to erroneous composition quantitations. The present research work is a comprehensive comparison of six general methylation protocols using base, acid or base/acid catalysts plus a proposed method in the analysis of total fatty acids in lipid standards mixtures, foodstuff and biological samples. The addition of aprotic solvents to the reaction mixture to avoid alterations was also tested. Results confirmed that procedures solely involving acid catalyst resulted in incomplete derivatizations and alteration of the fatty acid profile, partially corrected by addition of the aprotic solvent. The proposed method combining sodium methoxyde and sulfuric acid showed absence of alteration of the FAME profile and the best values for response factors (short chain fatty acids to PUFA), accuracy in the determination of total cholesterol and derivatization performance, thus showing a high reliability in the determination of the total fatty acid composition in biological samples and foods. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Quantification of Fatty Acid Oxidation Products Using On-line High Performance Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Levison, Bruce S.; Zhang, Renliang; Wang, Zeneng; Fu, Xiaoming; DiDonato, Joseph A.; Hazen, Stanley L.

    2013-01-01

    Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty. Measures of specific-oxidized fatty acid derivatives help in identifying oxidation pathways in pathological processes. We used liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) as efficient, selective and sensitive methods for identifying and analyzing multiple specific fatty acid peroxidation products in human plasma and other biological matrices. We then distilled the essential components of a number of these analyses to provide an efficient protocol by which fatty acid oxidation products and their parent compounds can be determined. In this protocol, addition of synthetic internal standard to the sample, followed by base hydrolysis at elevated temperature, and liquid-liquid phase sample extraction with lighter than water solvents facilitates isolation of the oxidized fatty acid species. These species can be identified and accurately quantified using stable isotope dilution and multiple reaction monitoring. Use of a coupled multiplexed gradient HPLC system on the front end enables high-throughput chromatography and more efficient use of mass spectrometer time. PMID:23499838

  10. [Fast analysis of common fatty acids in edible vegetable oils by ultra-performance convergence chromatography-mass spectrometry].

    PubMed

    Lin, Chunhua; Xie, Xianqing; Fan, Naili; Tu, Yuanhong; Chen, Yan; Liao, Weilin

    2015-04-01

    A fast analytical method for five common fatty acids in six edible vegetable oils was developed by ultra-performance convergence chromatography-mass spectrometry (UPC2-MS). The five fatty acids are palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. Their contents in the corn oil, sunflower oil, soybean oil, tea oil, rapeseed oil and peanut oil were compared. The chromatographic separation was performed on an ACQUITY UPC2 BEH 2-EP column (100 mm x 2.1 mm, 1.7 µm) using the mobile phases of carbon dioxide and methanol/acetonitrile (1:1, v/v) with gradient elution. The separated compounds were detected by negative electrospray ionization ESF-MS. The results showed that the reasonable linearities were achieved for all the analytes over the range of 0.5-100 mg/L with the correlation coefficients (R2) of 0.9985-0.9998. The limits of quantification (S/N ≥ 10) of the five fatty acids were 0.15-0.50 mg/L. The recoveries of the five fatty acids at three spiked levels were in the range of 89.61%-108.50% with relative standard deviations of 0.69%-3.01%. The developed method showed high performance, good resolution and fast analysis for the underivatized fatty acids. It has been successfully used to detect the five fatty acids from corn oil, sunflower oil, soybean oil, tea oil rapeseed oil and peanut oil.

  11. [Multiple emulsions; bioactive compounds and functional foods].

    PubMed

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  12. Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae.

    PubMed

    Teixeira, Paulo Gonçalves; Ferreira, Raphael; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2017-03-15

    In vivo production of fatty acid-derived chemicals in Saccharomyces cerevisiae requires strategies to increase the intracellular supply of either acyl-CoA or free fatty acids (FFAs), since their cytosolic concentrations are quite low in a natural state for this organism. Deletion of the fatty acyl-CoA synthetase genes FAA1 and FAA4 is an effective and straightforward way to disable re-activation of fatty acids and drastically increase FFA levels. However, this strategy causes FFA over-accumulation and consequential release to the extracellular medium, which results in a significant loss of precursors that compromises the process yield. In the present study, we aimed for dynamic expression of the fatty acyl-CoA synthetase gene FAA1 to regulate FFA and acyl-CoA pools in order to improve fatty alcohol production yields. We analyzed the metabolite dynamics of a faa1Δ faa4Δ strain constitutively expressing a carboxylic acid reductase from Mycobacterium marinum (MmCAR) and an endogenous alcohol dehydrogenase (Adh5) for in vivo production of fatty alcohols from FFAs. We observed production of fatty acids and fatty alcohols with different rates leading to high levels of FFAs not being converted to the final product. To address the issue, we expressed the MmCAR + Adh5 pathway together with a fatty acyl-CoA reductase from Marinobacter aquaeolei to enable fatty alcohol production simultaneously from FFA and acyl-CoA, respectively. Then, we expressed FAA1 under the control of different promoters in order to balance FFA and acyl-CoA interconversion rates and to achieve optimal levels for conversion to fatty alcohols. Expressing FAA1 under control of the HXT1 promoter led to an increased accumulation of fatty alcohols per OD600 up to 41% while FFA levels were decreased by 63% compared with the control strain. Fine-tuning and dynamic regulation of key metabolic steps can be used to improve cell factories when the rates of downstream reactions are limiting. This avoids loss of

  13. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis

    PubMed Central

    Lee, Jung Hoon; Wada, Taira; Febbraio, Maria; He, Jinhan; Matsubara, Tsutomu; Lee, Min Jae; Gonzalez, Frank J.; Xie, Wen

    2010-01-01

    Background & Aims The aryl hydrocarbon receptor (AhR) is a PAS domain transcription factor previously known as the “dioxin receptor” or “xenobiotic receptor.” The goal of this study is to determine the endobiotic role of AhR in hepatic steatosis. Methods Wild type, constitutively activated AhR (CA-AhR) transgenic, AhR null (AhR-/-), and fatty acid translocase CD36/FAT null (CD36-/-) mice were used to investigate the role of AhR in steatosis and the involvement of CD36 in the steatotic effect of AhR. The promoters of the mouse and human CD36 genes were cloned and their regulation by AhR was analyzed. Results Activation of AhR induced spontaneous hepatic steatosis characterized by the accumulation of triglycerides. The steatotic effect of AhR is likely due to the combined upregulation of CD36 and fatty acid transport proteins (FATPs), suppression of fatty acid oxidation, inhibition of hepatic export of triglycerides, increase in peripheral fat mobilization, and increased hepatic oxidative stress. Promoter analysis established CD36 as a novel transcriptional target of AhR. Activation of AhR in liver cells induced CD36 gene expression and enhanced fatty acid uptake. The steatotic effect of an AhR agonist was inhibited in CD36-/- mice. Conclusions Our study reveals a novel link between AhR-induced steatosis and the expression of CD36. Industrial or military exposures to dioxin and related compounds have been linked to increased prevalence of fatty liver in humans. Results from this study may help to establish AhR and its target CD36 as novel therapeutic and preventive targets for fatty liver disease. PMID:20303349

  14. METABOLIC FUNCTION OF BRANCHED-CHAIN VOLATILE FATTY ACIDS, GROWTH FACTORS FOR RUMINOCOCCI II.

    PubMed Central

    Allison, M. J.; Bryant, M. P.; Katz, I.; Keeney, M.

    1962-01-01

    Allison, M. J. (Dairy Cattle Research Branch, USDA, Beltsville, Md.), M. P. Bryant, I. Katz, and M. Keeney. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes. J. Bacteriol. 83:1084–1093. 1962.—A number of strains of rumen bacteria require branched-chain volatile fatty acids for growth. A strain of Ruminococcus flavefaciens that requires either isovalerate or isobutyrate incorporates radioactive carbon from isovalerate-1-C14 and isovalerate-3-C14 into leucine and into the lipid fraction of the cells. Evidence obtained by both paper and gas chromatography indicated that most of the label in the lipid of cells grown in isovalerate-1-C14 was in a branched-chain 15-carbon fatty acid, with some in a 17-carbon acid; about 7.5% of the C14 was recovered in a branched-chain 15-carbon aldehyde. The aldehydes were in the phospholipid fraction and were presumably present as plasmalogen. A strain of R. albus was shown to require isobutyrate, 2-methyl-n-butyrate, or 2-ketoisovalerate for growth. This strain did not incorporate appreciable C14 from isovalerate-1-C14 or isovalerate-3-C14. When grown in a medium containing isobutyrate-1-C14, most of the cellular C14 was found in the lipid fraction. Analysis of the lipid demonstrated that the label was present mainly as branched-chain 14-carbon and 16-carbon fatty acids, with 11% of the C14 present in 14- and 16-carbon carbonyl compounds, presumably branched-chain aldehydes. Branched-chain 14-, 15-, and 16-carbon fatty acids are major components of the lipids of these rumen bacteria. The possibility that these acids and aldehydes, which are found in ruminant body and milk lipids, may be of microbial origin is discussed. PMID:13860622

  15. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats

    PubMed Central

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Background: Hydrogen peroxide (H2O2) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H2O2-induced oxidative stress in male rats. Methods: After randomization, male Wistar rats were divided into four groups (n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H2O2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Results: Administration of H2O2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H2O2, geraniol, and geraniol+H2O2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H2O2-treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H2O2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H2O2 and control groups. Conclusions: H2O2-induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H2O2-induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H2O2-induced alterations. PMID:28163957

  16. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks.

    PubMed

    d'Espaux, Leo; Ghosh, Amit; Runguphan, Weerawat; Wehrs, Maren; Xu, Feng; Konzock, Oliver; Dev, Ishaan; Nhan, Melissa; Gin, Jennifer; Reider Apel, Amanda; Petzold, Christopher J; Singh, Seema; Simmons, Blake A; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D

    2017-07-01

    Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four heterologous FARs, finding highest activity and endoplasmic reticulum localization from a Mus musculus FAR. After screening an additional twenty-one single-gene edits, we identified increasing FAR expression; deleting competing reactions encoded by DGA1, HFD1, and ADH6; overexpressing a mutant acetyl-CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the Δ9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2g/L fatty alcohols in shake flasks, and 6.0g/L in fed-batch fermentation, corresponding to ~ 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7g/L in shake flasks. Altogether, our work represents progress towards efficient and renewable microbial production of fatty acid-derived products. Published by Elsevier Inc.

  17. Targeted metabolomics of Physaria fendleri, an industrial crop producing hydroxy fatty acids.

    PubMed

    Cocuron, Jean-Christophe; Anderson, Brooke; Boyd, Alison; Alonso, Ana Paula

    2014-03-01

    Physaria fendleri (syn. Lesquerella) is a Brassicaceae producing lesquerolic acid, a highly valued hydroxy fatty acid that could be used for several industrial applications, such as cosmetics, lubricating greases, paints, plastics and biofuels. Free of toxins, Physaria oil is an attractive alternative to imported castor (Ricinus communis) oil, and is hence on the verge of commercialization. Gas chromatography-mass spectrometry analysis of fatty acid methyl esters revealed that lesquerolic acid was synthesized and accumulated in the embryos, reaching 60% (w/w) of the total fatty acids. The sequential extraction and characterization of biomass compounds revealed that Physaria embryo metabolism switched from protein to fatty acid biosynthesis between 18 and 24 days post-anthesis (DPA). In order to unravel the metabolic pathways involved in fatty acid synthesis, a targeted metabolomics study was conducted on Physaria embryos at different stages of development. For this purpose, two novel high-throughput liquid chromatography-tandem mass spectrometry methods were developed and validated to quantify sugars, sugar alcohols and amino acids. Specificity was achieved using multiple reaction monitoring, and the limits of quantification were in the pmole-fmole range. The comparative metabolomic study underlined that: (i) the majority of the metabolites accumulate in Physaria embryos between 18 and 27 DPA; (ii) the oxidative pentose phosphate pathway, glycolysis, the tricarboxilic acid cycle and the anaplerotic pathway drain a substantial amount of carbon; and (iii) ribulose-1,5-bisphosphate is present, which specifically indicates that the Calvin cycle is occurring. The importance and the relevance of these findings regarding fatty acid synthesis were discussed.

  18. Premixed ignition behavior of C{sub 9} fatty acid esters: A motored engine study

    SciTech Connect

    Zhang, Yu.; Yang, Yi; Boehman, Andre L.

    2009-06-15

    An experimental study on the premixed ignition behavior of C{sub 9} fatty acid esters has been conducted in a motored CFR engine. For each test fuel, the engine compression ratio was gradually increased from the lowest point (4.43) to the point where significant high temperature heat release (HTHR) was observed. The engine exhaust was sampled and analyzed through GC-FID/TCD and GC-MS. Combustion analysis showed that the four C{sub 9} fatty acid esters tested in this study exhibited evidently different ignition behavior. The magnitude of low temperature heat release (LTHR) follows the order, ethyl nonanoate > methyl nonanoate >> methyl 2-nonenoate > methyl 3-nonenoate. The lower oxidation reactivity for the unsaturated fatty acid esters in the low temperature regime can be explained by the reduced amount of six- or seven-membered transition state rings formed during the oxidation of the unsaturated esters due to the presence of a double bond in the aliphatic chain of the esters. The inhibition effect of the double bond on the low temperature oxidation reactivity of fatty acid esters becomes more pronounced as the double bond moves toward the central position of the aliphatic chain. GC-MS analysis of exhaust condensate collected under the engine conditions where only LTHR occurred showed that the alkyl chain of the saturated fatty acid esters participated in typical paraffin-like low temperature oxidation sequences. In contrast, for unsaturated fatty acid esters, the autoignition can undergo olefin ignition pathways. For all test compounds, the ester functional group remains largely intact during the early stage of oxidation. (author)

  19. Distinctive lipid composition of the copepod Limnocalanus macrurus with a high abundance of polyunsaturated fatty acids.

    PubMed

    Hiltunen, Minna; Strandberg, Ursula; Keinänen, Markku; Taipale, Sami; Kankaala, Paula

    2014-09-01

    We studied the copepod Limnocalanus macrurus for seasonal variation in the composition of fatty acids, wax esters and sterols in large boreal lakes, where it occurs as a glacial-relict. Vast wax ester reserves of Limnocalanus were accumulated in a period of only two months, and comprised mono- and polyunsaturated fatty acids (PUFA) and saturated fatty alcohols. In winter, the mobilization of wax esters was selective, and the proportion of long-chain polyunsaturated wax esters declined first. PUFA accounted for >50% of all fatty acids throughout the year reaching up to ca. 65% during late summer and fall. Long-chain PUFA 20:5n-3 and 22:6n-3 together comprised 17-40% of all fatty acids. The rarely reported C24 and C26 very-long-chain PUFA (VLC-PUFA) comprised 6.2 ± 3.4 % of all fatty acids in August and 2.1 ± 1.7% in September. The VLC-PUFA are presumably synthesized by Limnocalanus from shorter chain-length precursors because they were not found in the potential food sources. We hypothesize that these VLC-PUFA help Limnocalanus to maximize lipid reserves when food is abundant. Sterol content of Limnocalanus, consisting ca. 90% of cholesterol, did not show great seasonal variation. As a lipid-rich copepod with high abundance of PUFA, Limnocalanus is excellent quality food for fish. The VLC-PUFA were also detected in planktivorous fish, suggesting that these compounds can be used as a trophic marker indicating feeding on Limnocalanus.

  20. Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India.

    PubMed

    Kang, Mingjie; Fu, Pingqing; Aggarwal, Shankar G; Kumar, Sudhanshu; Zhao, Ye; Sun, Yele; Wang, Zifa

    2016-12-01

    Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C19C33), n-fatty acids (C12C30) and n-alcohols (C16C32) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7-1.1 μm and 4.7-5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8-68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi.

  1. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase.

    PubMed

    Bisogno, T; Melck, D; De Petrocellis, L; Bobrov MYu; Gretskaya, N M; Bezuglov, V V; Sitachitta, N; Gerwick, W H; Di Marzo, V

    1998-07-30

    Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis of bioactive fatty acid amides and esters such as the endogenous cannabinoid receptor ligands, anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol, and the putative sleep inducing factor cis-9-octadecenoamide (oleamide). Most FAAH blockers developed to date also inhibit cytosolic phospholipase A2 (cPLA2) and/or bind to the CB1 cannabinoid receptor subtype. Here we report the finding of four novel FAAH inhibitors, two of which, malhamensilipin A and grenadadiene, were screened out of a series of thirty-two different algal natural products, and two others, arachidonoylethylene glycol (AEG) and arachidonoyl-serotonin (AA-5-HT) were selected out of five artificially functionalized polyunsaturated fatty acids. When using FAAH preparations from mouse neuroblastoma N18TG2 cells and [14C]anandamide as a substrate, the IC50s for these compounds ranged from 12.0 to 26 microM, the most active compound being AA-5-HT. This substance was also active on FAAH from rat basophilic leukaemia (RBL-2H3) cells (IC50 = 5.6 microM), and inhibited [14C]anandamide hydrolysis by both N18TG2 and RBL-2H3 intact cells without affecting [14C]anandamide uptake. While AEG behaved as a competitive inhibitor and was hydrolyzed to arachidonic acid (AA) by FAAH preparations, AA-5-HT was resistant to FAAH-catalyzed hydrolysis and behaved as a tight-binding, albeit non-covalent, mixed inhibitor. AA-5-HT did not interfere with cPLA2-mediated, ionomycin or antigen-induced release of [3H]AA from RBL-2H3 cells, nor with cPLA2 activity in cell-free experiments. Finally, AA-5-HT did not activate CB1 cannabinoid receptors since it acted as a very weak ligand in in vitro binding assays, and, at 10-15 mg/kg body weight, it was not active in the 'open field', 'hot plate' and rectal hypothermia tests carried out in mice. Conversely AEG behaved as a cannabimimetic substance in these tests as well as in the 'ring' immobility test where AA-5

  2. [Dietary fatty acids, intestinal microbiota and cancer].

    PubMed

    Juste, Catherine

    2005-07-01

    The interactions between dietary fatty acids (FA) and the intestinal microbiota were reviewed, with their possible relationships to colon and breast cancers. Free and esterified FA in the colon are from dietary, endogenous and microbial origin. Their quantity and quality vary according to dietary FA. Some FA but not all are powerful antimicrobial agents, and different bacteria exhibit distinct sensitivity to FA. These data converge to suggest that dietary FA could influence the biodiversity of the intestinal microbiota and its functions. Conversely, bacteria can modify lipid substrates due to their enormous metabolic potential, and several studies demonstrated that dietary FA did influence the nature of the metabolites produced. Some of these, like hydroxylated FA or sn-1,2-diglycerides, have recognized biological activities on the intestinal mucosa, either as surfactants or intracellular messengers. The intestinal microbiota also represents a substantial source of usual and unusual FA whose biological activities remain to be explored. Dietary FA can influence the secretion of bile and bile acids into the duodenum, the bile acid flux and/or concentration into the feces and that of cholesterol and its bacterial products. This is expected to modify the cytotoxicity of the colonic contents which remains to be evaluated under different lipid diets. Lastly, the intestinal microbiota is very efficient in hydrolyzing conjugated endobiotics and xenobiotics, and this favours the reactivation and the enterohepatic circulation of compounds which have been eliminated through the bile. Hormones are especially concerned, and the intestinal microbiota could thus be implicated in breast cancer. Some dietary FA are known to increase bacterial beta-glucuronidases whereas their effect on other bacterial hydrolases or other enzymes capable of modifying the steroid nucleus remains unknown. In conclusion, numerous data suggest that a strong relationship could exist between dietary FA

  3. Identification of poultry meat-derived fatty acids functioning as quorum sensing signal inhibitors to autoinducer-2 (AI-2).

    PubMed

    Widmer, K W; Soni, K A; Hume, M E; Beier, R C; Jesudhasan, P; Pillai, S D

    2007-11-01

    Autoinducer-2 (AI-2) is a compound that plays a key role in bacterial cell-to-cell communication (quorum sensing). Previous research has shown certain food matrices inhibit this signaling compound. Using the reporter strain, Vibrio harveyi BB170, quorum-sensing inhibitors contained in poultry meat wash (PMW) samples were characterized by molecular weight and hydrophobic properties using liquid chromatography systems. Most fractions that demonstrated AI-2 inhibition were 13.7 kDa or less, and had hydrophobic properties. Hexane was used to extract inhibitory compounds from a PMW preparation and the extract was further separated by gas chromatography (GC). Several fatty acids were identified and quantified. Linoleic acid, oleic acid, palmitic acid, and stearic acid were each tested for inhibition at 0.1, 1, and 10 mM concentrations. All samples expressed AI-2 inhibition (ranging from approximately 25% to 99%). Fatty acids, combined in concentrations equivalent to those determined by GC analysis, expressed inhibition at 59.5%, but higher combined concentrations (10- and 100-fold) had inhibition at 84.4% and 69.5%, respectively. The combined fatty acids (100-fold) did not demonstrate a substantial decrease in colony plate counts, despite presenting high AI-2 inhibition. These fatty acids, through modulating quorum sensing by inhibition, may offer a unique means to control foodborne pathogens and reduce microbial spoilage.

  4. Direct determination of resin and fatty acids in process waters of paper industries by liquid chromatography/mass spectrometry.

    PubMed

    Rigol, A; Latorre, A; Lacorte, S; Barceló, D

    2003-04-01

    Liquid chromatography/mass spectrometry (LC/MS)-based methods were developed for the analysis of 10 resin acids and five fatty acids in process waters of paper industries. No fragmentation of target compounds was observed using atmospheric pressure chemical ionization (APCI) with negative ionization. The [M - H](-) ion permitted the individual quantification of fatty and aromatic resin acids, whereas the non-aromatic resin acids presented a single and common ion at m/z 301. Separation with two columns of different polarity permitted peak confirmation. The method that used a C(8) column with 2-propanol in the mobile phase allowed a certain separation and identification of the non-aromatic resin acids, whereas the method using a C(18) column provided detection limits 10-fold lower for fatty acids. Limits of detection were 0.10 ng for all compounds. Direct sample introduction was compared with liquid-liquid extraction, with similar recoveries (70-101%). Whereas slightly lower detection limits were obtained with liquid-liquid extraction, better reproducibility was observed for direct sample introduction. Resin and fatty acids were determined in process waters of several paper industries. Palmitic, dehydroabietic and non-aromatic resin acids were encountered in most water samples, at levels between 22 and 403 micro g l(-1). LC/MS with direct sample introduction was found to be a good alternative to traditional liquid-liquid extraction and gas chromatography for the analysis of such compounds since no derivatization was required and sample manipulation was minimal.

  5. Atmospheric photochemistry at a fatty acid coated air/water interface

    NASA Astrophysics Data System (ADS)

    George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James

    2017-04-01

    Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could

  6. Phase behavior and bilayer properties of fatty acids: hydrated 1:1 acid-soaps.

    PubMed

    Cistola, D P; Atkinson, D; Hamilton, J A; Small, D M

    1986-05-20

    The physical properties in water of a series of 1:1 acid-soap compounds formed from fatty acids and potassium soaps with saturated (10-18 carbons) and omega-9 monounsaturated (18 carbons) hydrocarbon chains have been studied by using differential scanning calorimetry (DSC), X-ray diffraction, and direct and polarized light microscopy. DSC showed three phase transitions corresponding to the melting of crystalline water, the melting of crystalline lipid hydrocarbon chains, and the decomposition of the 1:1 acid-soap compound into its parent fatty acid and soap. Low- and wide-angle X-ray diffraction patterns revealed spacings that corresponded (with increasing hydration) to acid-soap crystals, hexagonal type II liquid crystals, and lamellar liquid crystals. The lamellar phase swelled from bilayer repeat distances of 68 (at 45% H2O) to 303 A (at 90% H2O). Direct and polarized light micrographs demonstrated the formation of myelin figures as well as birefringent optical textures corresponding to hexagonal and lamellar mesophases. Assuming that 1:1 potassium hydrogen dioleate and water were two components, we constructed a temperature-composition phase diagram. Interpretation of the data using the Gibbs phase rule showed that, at greater than 30% water, hydrocarbon chain melting was accompanied by decomposition of the 1:1 acid-soap compound and the system changed from a two-component to a three-component system. Comparison of hydrated 1:1 fatty acid/soap systems with hydrated soap systems suggests that the reduced degree of charge repulsion between polar groups causes half-ionized fatty acids in excess water to form bilayers rather than micelles.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Headspace analysis of polar organic compounds in biological matrixes using solid phase microextraction (SPME)

    USDA-ARS?s Scientific Manuscript database

    Analysis of biological fluids and waste material is difficult and tedious given the sample matrix. A rapid automated method for the determination of volatile fatty acids and phenolic and indole compounds was developed using a multipurpose sampler (MPS) with solid phase microextraction (SPME) and GC-...

  8. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  9. Fatty acid metabolism in lambs fed citrus pulp.

    PubMed

    Lanza, M; Scerra, M; Bognanno, M; Buccioni, A; Cilione, C; Biondi, L; Priolo, A; Luciano, G

    2015-06-01

    In the present study, we have hypothesized that replacing barley with high proportions of dried citrus pulp in a concentrate-based diet for lambs could increase the intake of unsaturated fatty acids and could reduce the rate of the ruminal biohydrogenation of PUFA, with a consequent improvement of the intramuscular fatty acid composition. To test this hypothesis, 26 Comisana lambs were divided into 3 groups and for 56 d were fed a barley-based concentrate diet (CON; 8 lambs) or 2 diets in which barley was replaced with 24% (CIT24; 9 lambs) or 35% (CIT35; 9 lambs) dried citrus pulp. An overall improvement of the fatty acid composition of LM from lambs fed citrus pulp-containing diets was found. The PUFA/SFA ratio was lower (P < 0.05) in the LM from lambs in the CON group compared with both the CIT24 and CIT35 groups. The thrombogenic index was lower (P < 0.05) in meat from lambs fed the CIT35 diet compared with those fed the CON diet. The CIT35 diet increased the proportion of C20:5 n-3 in the LM (P < 0.05), whereas the CIT24 diet enhanced that of C22:6 -3 (P < 0.05) compared with the CON diet. Some of these results might be explained considering that feeding the CIT24 and CIT35 diets increased the intake of total fatty acids (P < 0.05) and of C18:3 n-3 (P < 0.01) compared with feeding the CON treatment. On the other hand, phenolic compounds present in citrus pulp could have inhibited the ruminal biohydrogenation of PUFA. This is supported by the fact that regardless of the level of inclusion in the diet, citrus pulp increased the proportion of rumenic acid (P < 0.001) in LM compared with the CON diet. The plasma from lambs fed both CIT24 and CIT35 diets had a greater percentage of vaccenic acid (VA; < 0.001) compared with that from lambs fed the CON diet, and the CIT35 diet increased the proportion of rumenic acid in plasma compared with the CON treatment (P < 0.05). In the ruminal fluid, stearic acid (SA) tended to decrease, and the sum of CLA tended to increase

  10. Changes in fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols.

    PubMed

    Nowak, Agnieszka; Greń, Izabela; Mrozik, Agnieszka

    2016-12-01

    The changes in the cellular fatty acid composition of Stenotrophomonas maltophilia KB2 during co-metabolic degradation of monochlorophenols in the presence of phenol as well as its adaptive mechanisms to these compounds were studied. It was found that bacteria were capable of degrading 4-chlorophenol (4-CP) completely in the presence of phenol, while 2-chlorophenol (2-CP) and 3-chlorophenol (3-CP) they degraded partially. The analysis of the fatty acid profiles indicated that adaptive mechanisms of bacteria depended on earlier exposure to phenol, which isomer they degraded, and on incubation time. In bacteria unexposed to phenol the permeability and structure of their membranes could be modified through the increase of hydroxylated and cyclopropane fatty acids, and straight-chain and hydroxylated fatty acids under 2-CP, 3-CP and 4-CP exposure, respectively. In the exposed cells, regardless of the isomer they degraded, the most important changes were connected with the increase of the contribution of branched fatty acid on day 4 and the content of hydroxylated fatty acids on day 7. The changes, particularly in the proportion of branched fatty acids, could be a good indicator for assessing the progress of the degradation of monochlorophenols by S. maltophilia KB2. In comparison, in phenol-degrading cells the increase of cyclopropane and straight-chain fatty acid content was established. These findings indicated the degradative potential of the tested strain towards the co-metabolic degradation of persistent chlorophenols, and extended the current knowledge about the adaptive mechanisms of these bacteria to such chemicals.

  11. Brain phospholipids as dietary source of (n-3) polyunsaturated fatty acids for nervous tissue in the rat.

    PubMed

    Bourre, J M; Dumont, O; Durand, G

    1993-06-01

    In a previous work, we calculated the dietary alpha-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in alpha-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, approximately 60 mg of (n-3) fatty acids/100 g of diet, i.e., approximately 130 mg/1,000 kcal] rather than alpha-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., approximately 440 mg/1,000 kcal].

  12. Heritability of Nonalcoholic Fatty Liver Disease

    PubMed Central

    Schwimmer, Jeffrey B.; Celedon, Manuel A.; Lavine, Joel E.; Salem, Rany; Campbell, Nzali; Schork, Nicholas J.; Shiehmorteza, Masoud; Yokoo, Takeshi; Chavez, Alyssa; Middleton, Michael S.; Sirlin, Claude B.

    2010-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States. The etiology is believed to be multi-factorial with a substantial genetic component; however, the heritability of NAFLD is undetermined. Therefore, a familial aggregation study was performed to test the hypothesis that NAFLD is highly heritable. Methods Overweight children with biopsy-proven NAFLD and overweight children without NAFLD served as probands. Family members were studied including magnetic resonance imaging to quantify liver fat fraction. Fatty liver was defined as a liver fat fraction ≥ 5%. Etiologies for fatty liver other than NAFLD were excluded. Narrow-sense heritability estimates for fatty liver (dichotomous) and fat fraction (continuous) were calculated using variance components analysis adjusted for covariate effects. Results Fatty liver was present in 17% of siblings and 37% of parents of overweight children without NAFLD. Fatty liver was significantly more common in siblings (59%) and parents (78%) of children with NAFLD. Liver fat fraction was correlated with body mass index (BMI), although the correlation was significantly stronger for families of children with NAFLD than those without NAFLD. Adjusted for age, sex, race, and BMI, heritability of fatty liver was 1.000 and of liver fat fraction 0.386. Conclusion Family members of children with NAFLD should be considered at high risk for NAFLD. These data suggest that familial factors are a major determinant of whether an individual has NAFLD. Studies examining the complex relations between genes and environment in the development and progression of NAFLD are warranted. PMID:19208353

  13. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs.

  14. Fatty acids and the Endoplasmic Reticulum in Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Gentile, Christopher L.; Frye, Melinda A.; Pagliassotti, Michael J.

    2011-01-01

    Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning public health concernin westernized nations. The obesity-related disorder is associated with an increased risk of cardiovascular disease, type 2 diabetes and liver failure. Although the underlying pathogenesis of NAFLD is unclear, increasing evidence suggests that excess saturated fatty acids presented to or stored within the liver may play a role in both the development and progression of the disorder. Aputative mechanism linking saturated fatty acids to NAFLD may been doplasmic reticulum (ER) stress. Specifically, excess saturated fatty acids may induce an ER stress response that, if left unabated, can activate stress signaling pathways, cause hepatocyte cell death, and eventually lead to liver dysfunction. In the current review we discuss the involvement of saturated fatty acids in the pathogenesis of NAFLD with particular emphasis on the role of ER stress. PMID:21328622

  15. Simple conversion of fatty nitriles to primary fatty amines through iron(II)-tmphen catalyzed hydrosilylation

    NASA Astrophysics Data System (ADS)

    Subekti, A.; Irawadi, T. T.; Darmawan, N.

    2017-03-01

    Hydrosilylation, a mild and save method, for reduction of fatty nitriles to primary fatty amines has been described. Using catalytic amount of iron(II)-tmphen complex, different long chain of fatty nitriles are reduced in good conversion number. The effect of the reaction times and the silane number toward the conversion was also studied in this work. The analysis by using gas chromatography showed that the the highest fatty nitriles conversion to its primary amines was achieved with nitrile:silane ratio 1:7 at 100°C for 24h under inert gas atmosphere. This commercially available and inexpensive catalyst and silane utilization offer a new method which is accessible for both laboratory and large scale primary fatty amines production.

  16. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  17. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  18. Influence of Zeolite on fatty acid composition and egg quality in Tunisian Laying Hens

    PubMed Central

    2012-01-01

    Background The health benefits of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) are generally recognized. Unfortunately, in most Mediterranean countries, the recommended daily intake of these compounds is rarely met. Therefore, enrichment of commonly occurring foods can boost intake of these fatty acids. In this regard, eggs are an interesting target, as they form an integral part of the diet. Result Zeolite (Clinoptilolites) was added to Laying Hens feed at concentrations 1% or 2% and was evaluated for its effects on performance of the production and on egg quality. The Laying Hens were given access to 110 g of feed mixtures daily that was either a basal diet or a ‘zeolite diet’ (the basal diet supplemented with clinoptilolite at a level of 1% or 2%). It was found that zeolite treatment had a positive and significatif (p < 0.05) effect on some parameters that were measured like egg height and eggshell strength. While dietary zeolite supplementation tended to/or has no significant effects on total egg, eggshell, yolk and albumen weights. It was found also that zeolite mainly increases level of polyunsaturated fatty acids in egg. Conclusion This study showed the significance of using zeolite, as a feed additive for Laying Hens, as part of a comprehensive program to control egg quality and to increase level of polyunsaturated fatty acids on egg. PMID:22676421

  19. Dietary omega-3 and omega-6 fatty acids compete in producing tissue compositions and tissue responses.

    PubMed

    Lands, Bill

    2014-11-01

    Serious food-related health disorders may be prevented by recognizing the molecular processes that connect the dietary intake of vitamin-like fatty acids to tissue accumulation of precursors of potent hormone-like compounds that cause harmful tissue responses. Conversion of dietary 18-carbon omega-3 and omega-6 polyunsaturated fatty acids to tissue 20- and 22-carbon highly unsaturated fatty acids (HUFAs) is catalyzed by promiscuous enzymes that allow different types of fatty acid to compete among each other for accumulation in tissue HUFA. As a result, food choices strongly influence the types of accumulated tissue HUFA. However, the conversion of tissue HUFA to active hormones and their receptor-mediated actions occurs with discriminating enzymes and receptors that give more intense responses for the omega-6 and omega-3 hormones. Undesired chronic health disorders, which are made worse by excessive omega-6 hormone actions, can be prevented by eating more omega-3 fats, less omega-6 fats, and fewer calories per meal.

  20. Characterization of enzymatically prepared sugar medium-chain fatty acid monoesters.

    PubMed

    Zhang, Xi; Wei, Wei; Cao, Xi; Feng, Fengqin

    2015-06-01

    Sugar medium-chain fatty acid esters are a new type of biodegradable, non-toxic, non-irritant and non-ionic surfactant with proven antimicrobial activity. Various sugar medium-chain fatty monoesters were prepared enzymatically using Lipozyme TLIM in organic solvent. Properties such as surface tension, antimicrobial activity, and ability to foam, emulsify and stabilize emulsions at room temperature were evaluated to conduct systematic studies on the structure-function relationships of these compounds. Results showed that all monoesters displayed good surface activity properties. In particular, sucrose monolaurate was the most excellent surfactant among 12 monoesters. Sugar monoesters containing C8 to C12 alkyl chains showed a broad spectrum of increasing antimicrobial activity. All tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than Escherichia coli O157:H7 (Gram-negative bacterium). Methyl α-d-glycoside monoesters were the most effective, whereas raffinose monoesters possessed poor antimicrobial activity. Generally, the length of fatty acid chain (hydrophobic group) and sugar groups (hydrophilic group) for sugar medium-chain fatty acid monoesters both affected the surface properties and antimicrobial activities. © 2014 Society of Chemical Industry.

  1. Amino acids, fatty acids and sterols profile of some marine organisms from Portuguese waters.

    PubMed

    Pereira, David M; Valentão, Patrícia; Teixeira, Natércia; Andrade, Paula B

    2013-12-01

    Marine organisms have been increasingly regarded as good sources of new drugs for human therapeutics and also as nutrients for human diet. The amino acids, fatty acids and sterols profiles of the widely consumed echinoderms Paracentrotus lividus Lamarck (sea urchin), Holothuria forskali Chiaje (sea cucumber), the gastropod molluscs Aplysia fasciata Poiret and Aplysia punctata Cuvier (sea hares), from Portuguese waters, were established by GC-MS analysis. Overall, 10 amino acids, 14 fatty acids and 4 sterols were determined. In general, all species presented the 10 amino acids identified, with the exceptions of H. forskali, in which no glycine, proline, trans-4-hydroxy-proline or phenylalanine were found, and of A. fasciata which did not contain proline. Unsaturated fatty acids were predominant compounds, with those from the ω-6 series, being in higher amounts than their ω-3 homologues, and cholesterol being the main sterol. The amino acids, fatty acids and sterols qualitative and quantitative composition of A. fasciata, A. punctata and H. forskali is reported here for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage.

    PubMed

    Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar

    2009-04-22

    Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.

  3. Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde.

    PubMed

    Rogiers, Gil; Kebede, Biniam T; Van Loey, Ann; Michiels, Chris W

    2017-03-23

    Trans-cinnamaldehyde, the major compound of cinnamon essential oil, is a potentially interesting natural antimicrobial food preservative. Although a number of studies have addressed its mode of action, the factors that determine bacterial sensitivity or tolerance to trans-cinnamaldehyde are poorly understood. We report the detailed characterization of a Listeria monocytogenes Scott A trans-cinnamaldehyde hypersensitive mutant defective in IlvE, which catalyzes the reversible transamination of branched-chain amino acids to the corresponding short-chain α-ketoacids. This mutant showed an 8.4 fold extended lag phase during growth in sublethal concentrations (4 mM), and faster inactivation in lethal concentrations of trans-cinnamaldehyde (6 mM). Trans-cinnamaldehyde hypersensitivity could be corrected by genetic complementation with the ilvE gene and supplementation with branched-chain α-ketoacids. Whole-cell fatty acid analyses revealed an almost complete loss of anteiso branched-chain fatty acids (BCFAs), which was compensated by elevated levels of unbranched saturated fatty acids and iso-BCFAs. Sub-inhibitory concentrations of trans-cinnamaldehyde induced membrane fatty acid adaptations predicted to reduce membrane fluidity, possibly as a response to counteract the membrane fluidizing effect of trans-cinnamaldehyde. These results demonstrate the role of IlvE in BCFA production and the role of membrane composition as an important determinant of trans-cinnamaldehyde sensitivity in L. monocytogenes.

  4. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm.

    PubMed

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo; Kamagata, Yoichi

    2014-02-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.

  5. Beyond blood lipids: phytosterols, statins and omega-3 polyunsaturated fatty acid therapy for hyperlipidemia.

    PubMed

    Micallef, Michelle A; Garg, Manohar L

    2009-12-01

    Phytosterols and omega-3 fatty acids are natural compounds with potential cardiovascular benefits. Phytosterols inhibit cholesterol absorption, thereby reducing total- and LDL cholesterol. A number of clinical trials have established that the consumption of 1.5-2.0 g/day of phytosterols can result in a 10-15% reduction in LDL cholesterol in as short as a 3-week period in hyperlipidemic populations. Added benefits of phytosterol consumption have been demonstrated in people who are already on lipid-lowering medications (statin drugs). On the other hand, omega-3 fatty acid supplementation has been associated with significant hypotriglyceridemic effects with concurrent modifications of other risk factors associated with cardiovascular disease, including platelet function and pro-inflammatory mediators. Recent studies have provided evidence that the combination of phytosterols and omega-3 fatty acids may reduce cardiovascular risk in a complementary and synergistic way. This article reviews the health benefits of phytosterols and omega-3 fatty acids, alone or in combination with statins, for the treatment/management of hyperlipidemia, with particular emphasis on the mechanisms involved.

  6. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  7. Omega 3 fatty acids in the elderly.

    PubMed

    Ubeda, Natalia; Achón, María; Varela-Moreiras, Gregorio

    2012-06-01

    Population ageing affects the entire world population. Also at world level one can observe a sharp increase in the proportion of older people. The challenge posed by population ageing translates into ensuring that the extra years of life will be as good as possible, free from high-cost dependency. Omega-3 fatty acids are now generally recognized as potential key nutrients to prevent the pathological conditions associated to the aging process. Ageing physiological process, its association with quality of life and the impact of omega-3 fatty acids intake and/or status is the focus of the present review. This report deals with the effects of omega-3 fatty acids on normal aging of older adults ( ≥ 65 years) mainly on the effects such as nutritional status itself, cognition, bone health, muscle tonus, and general health status. The preliminary broad search of the literature on the effects of omega-3 fatty acids on normal aging yielded 685 citations. Forty two full text papers were checked for inclusion and thirty six studies were finally included in this review. It may be concluded that paradoxically even though the elderly population is the largest one, the number of studies and the methodology employed clearly lacks of sufficient evidence to establish definite conclusions on the effects of omega-3 fatty acids on aging metabolism without pathological conditions and on quality of life.

  8. Control of bovine hepatic fatty acid oxidation

    SciTech Connect

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-(/sup 14/C)palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C)acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO/sup 2/ and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 ..mu..M). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 ..mu..M and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine.

  9. Omega-3 fatty acids and athletics.

    PubMed

    Simopoulos, Artemis P

    2007-07-01

    Human beings evolved consuming a diet that contained about equal amounts of y-6 and y-3 essential fatty acids. Today, in Western diets, the ratio of y-6 to y-3 fatty acids ranges from approximately 10:1 to 20:1 instead of the traditional range of 1:1 to 2:1. Studies indicate that a high intake of y-6 fatty acids shifts the physiologic state to one that is prothrombotic and proaggregatory, characterized by increases in blood viscosity, vasospasm, and vasoconstriction, and decreases in bleeding time. y-3 fatty acids, however, have anti-inflammatory, antithrombotic, antiarrhythmic, hypolipidemic, and vasodilatory properties. Excessive radical formation and trauma during high-intensity exercise leads to an inflammatory state that is made worse by the increased amount of y-6 fatty acids in Western diets, although this can be counteracted by eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). For the majority of athletes, especially those at the leisure level, general guidelines should include EPA and DHA of about 1 to 2 g/d at a ratio of EPA:DHA of 2:1.

  10. Obesity, fatty liver and liver cancer.

    PubMed

    Qian, Yan; Fan, Jian-Gao

    2005-05-01

    It has been suggested that obesity and fatty liver may be associated with the morbidity and mortality of liver cancer, and the early diagnosis and effective treatment of fatty liver coupled with liver cancer are supposed to improve the prognosis of obese patients. This review was attempted to understand the relationship between obesity, fatty liver and liver cancer. An English-language literature search using PUBMED (1990-2004) on obesity, fatty liver and liver cancer and other related articles in Chinese. Obesity is associated with the risk of death from all cancers and from cancers at individual sites including liver cancer, and it is an independent risk factor for hepatocellular carcinoma (HCC) in patients with alcoholic cirrhosis and cryptogenic cirrhosis. Because nonalcoholic steatohepatitis has been implicated as a major cause of cryptogenic cirrhosis, the development of HCC may be part of progressive nature of this condition. Obesity is associated with the incidence and mortality of HCC. More frequent surveillance for HCC may be warranted in obese patients with fatty liver and attempts should be made to interrupt the progression from simple hepatic steatosis to steatohepatitis, cirrhosis and ultimately HCC.

  11. Ferritin couples iron and fatty acid metabolism.

    PubMed

    Bu, Weiming; Liu, Renyu; Cheung-Lau, Jasmina C; Dmochowski, Ivan J; Loll, Patrick J; Eckenhoff, Roderic G

    2012-06-01

    A physiological relationship between iron, oxidative injury, and fatty acid metabolism exists, but transduction mechanisms are unclear. We propose that the iron storage protein ferritin contains fatty acid binding sites whose occupancy modulates iron uptake and release. Using isothermal microcalorimetry, we found that arachidonic acid binds ferritin specifically and with 60 μM affinity. Arachidonate binding by ferritin enhanced iron mineralization, decreased iron release, and protected the fatty acid from oxidation. Cocrystals of arachidonic acid and horse spleen apoferritin diffracted to 2.18 Å and revealed specific binding to the 2-fold intersubunit pocket. This pocket shields most of the fatty acid and its double bonds from solvent but allows the arachidonate tail to project well into the ferrihydrite mineralization site on the ferritin L-subunit, a structural feature that we implicate in the effects on mineralization by demonstrating that the much shorter saturated fatty acid, caprylate, has no significant effects on mineralization. These combined effects of arachidonate binding by ferritin are expected to lower both intracellular free iron and free arachidonate, thereby providing a previously unrecognized mechanism for limiting lipid peroxidation, free radical damage, and proinflammatory cascades during times of cellular stress.

  12. [Laboratory of Biopolymer Compounds].

    PubMed

    Ostapchuk, A M

    2008-01-01

    General information is presented concerning the Laboratory of Biological Polymeric Compounds at the Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine; equipment, analytical and biophysical methods applied in the laboratory are listed.

  13. Heart testing compound

    DOEpatents

    Knapp, F.F. Jr.; Goodman, M.M.

    1983-06-29

    The compound 15-(p-(/sup 125/I)-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  14. Polynitramino compounds outperform PETN.

    PubMed

    Joo, Young-Hyuk; Shreeve, Jean'ne M

    2010-01-07

    New polynitramino compounds were synthesized and fully characterized using IR and multinuclear ((1)H, (13)C, (15)N) NMR spectroscopy, and elemental analysis as well as single-crystal X-ray diffraction.

  15. Stabilized Lanthanum Sulphur Compounds

    NASA Technical Reports Server (NTRS)

    Reynolds, George H. (Inventor); Elsner, Norbert B. (Inventor); Shearer, Clyde H. (Inventor)

    1985-01-01

    Lanthanum sulfide is maintained in the stable cubic phase form over a temperature range of from 500 C to 1500 C by adding to it small amounts of calcium, barium. or strontium. This novel compound is an excellent thermoelectric material.

  16. Heart testing compound

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.

    1985-01-01

    The compound 15-(p-[.sup.125 I]-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  17. Chemistry of peroxide compounds

    NASA Technical Reports Server (NTRS)

    Volnov, I. I.

    1981-01-01

    The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.

  18. Compound composite odontoma

    PubMed Central

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas. PMID:27194882

  19. Compound composite odontoma.

    PubMed

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas.

  20. Thermodynamics of Organic Compounds

    DTIC Science & Technology

    1979-01-01

    General Techniques for Combustion of Liquid/Soli. Organic Compounds by Oxygen Bomb Calorimetry by Arthur J. Head, William D. Good, and Ccrnelius...Mosselman, Chap. 8; Combustion of Liquid/Solid Organic Compounds with Non-Metallic Hetero-Atoms by Arthur J. Head and William D. Good, Chap. 9; in...0 Box 95085 Washington, DC 20234 Los Angeles, CA 90045 National Bureau of Standards CINDAS Chemical Thermodynamics Division Purdue University

  1. Trans fatty acids and fatty acid composition of mature breast milk in turkish women and their association with maternal diet's.

    PubMed

    Samur, Gülhan; Topcu, Ali; Turan, Semra

    2009-05-01

    The aim of this study was to determine the fatty acid composition and trans fatty acid and fatty acid contents of breast milk in Turkish women and to find the effect of breastfeeding mothers' diet on trans fatty acid and fatty acid composition. Mature milk samples obtained from 50 Turkish nursing women were analyzed. Total milk lipids extracts were transmethylated and analyzed by using gas liquid chromatography to determine fatty acids contents. A questionnaire was applied to observe eating habits and 3 days dietary records from mothers were obtained. Daily dietary intake of total energy and nutrients were estimated by using nutrient database. The mean total trans fatty acids contents was 2.13 +/- 1.03%. The major sources of trans fatty acids in mothers' diets were margarines-butter (37.0%), bakery products and confectionery (29.6%). Mothers who had high level of trans isomers in their milk consumed significantly higher amounts of these products. Saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty acids of human milk constituted 40.7 +/- 4.7%, 26.9 +/- 4.2% and 30.8 +/- 0.6% of the total fatty acids, respectively. The levels of fatty acids in human milk may reflect the current diet of the mother as well as the diet consumed early in pregnancy. Margarines, bakery products and confectionery are a major source of trans fatty acids in maternal diet in Turkey.

  2. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  3. Shrimp Lipids: A Source of Cancer Chemopreventive Compounds

    PubMed Central

    López-Saiz, Carmen-María; Suárez-Jiménez, Guadalupe-Miroslava; Plascencia-Jatomea, Maribel; Burgos-Hernández, Armando

    2013-01-01

    Shrimp is one of the most popular seafoods worldwide, and its lipids have been studied for biological activity in both, muscle and exoskeleton. Free fatty acids, triglycerides, carotenoids, and other lipids integrate this fraction, and some of these compounds have been reported with cancer chemopreventive activities. Carotenoids and polyunsaturated fatty acids have been extensively studied for chemopreventive properties, in both in vivo and in vitro studies. Their mechanisms of action depend on the lipid chemical structure and include antioxidant, anti-proliferative, anti-mutagenic, and anti-inflammatory activities, among others. The purpose of this review is to lay groundwork for future research about the properties of the lipid fraction of shrimp. PMID:24135910

  4. Interaction of coffee compounds with serum albumins. Part II: Diterpenes.

    PubMed

    Guercia, Elena; Forzato, Cristina; Navarini, Luciano; Berti, Federico

    2016-05-15

    Cafestol and 16-O-methylcafestol are diterpenes present in coffee, but whilst cafestol is found in both Coffea canephora and Coffea arabica, 16-O-methylcafestol (16-OMC) was reported to be specific of only C. canephora. The interactions of such compounds, with serum albumins, have been studied. Three albumins have been considered, namely human serum albumin (HSA), fatty acid free HSA (ffHSA) and bovine serum albumin (BSA). The proteins interact with the diterpenes at the interface between Sudlow site I and the fatty acid binding site 6 in a very peculiar way, leading to a significant change in the secondary structure. The diterpenes do not displace reference binding drugs of site 2, but rather they enhance the affinity of the site for the drugs. They, therefore, may alter the pharmacokinetic profile of albumin - bound drugs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bioactive Compounds, Chemical Composition, and Medicinal Value of the Giant Puffball, Calvatia gigantea (Higher Basidiomycetes), from Turkey.

    PubMed

    Kivrak, Ibrahim; Kivrak, Seyda; Harmandar, Mansur

    2016-01-01

    In this study, the compositions of Calvatia gigantea were first analyzed in order to elucidate its chemical basis for development as a health-enhancing food or medicine. This study investigates the chemical composition (nutritional value; phenolic, sugar and fatty acid content; aroma compounds) and antioxidant properties (radical scavenging activity, reducing power, and inhibition of lipid peroxidation) of C. gigantea. The results showed that C. gigantea contains phenolic compounds and sugars and is rich in polyunsaturated fatty acids (67.93%), proteins (34.37%), and carbohydrates (51.97%). The most abundant compounds were gentisic acid (23.26 µg/g; as a phenolic compound), trehalose (9.78 g/100g; as a sugar), and hexanal (34.71%; as an aroma compound). These findings suggest that C. gigantea might be a promising source of medicine and has the potential to be a health food and food supplementary product.

  6. Quantitation of fatty acids, sterols, and tocopherols in turpentine (Pistacia terebinthus Chia) growing wild in Turkey.

    PubMed

    Matthäus, Bertrand; Ozcan, Mehmet Musa

    2006-10-04

    The chemical composition (fatty acids, tocopherols, and sterols) of the oil from 14 samples of turpentine (Pistacia terebinthus L.) fruits is presented in this study. The oil content of the samples varied in a relatively small range between 38.4 g/100 g and 45.1 g/100 g. The dominating fatty acid of the oil is oleic acid, which accounted for 43.0 to 51.3% of the total fatty acids. The total content of vitamin E active compounds in the oils ranged between 396.8 and 517.7 mg/kg. The predominant isomers were alpha- and gamma-tocopherol, with approximate equal amounts between about 110 and 150 mg/kg. The seed oil of P. terebinthus also contained different tocotrienols, with gamma-tocotrienol as the dominate compound of this group, which amounted to between 79 and 114 mg/kg. The total content of sterols of the oils was determined to be between 1341.3 and 1802.5 mg/kg, with beta-sitosterol as the predominent sterol that accounted for more than 80% of the total amount of sterols. Other sterols in noteworthy amounts were campesterol, Delta5-avenasterol, and stigmasterol, which came to about 3-5% of the total sterols.

  7. Omega-3 fatty acids for cystic fibrosis.

    PubMed

    Oliver, Colleen; Watson, Helen

    2016-01-05

    Studies suggest that a diet rich in omega-3 essential fatty acids may have beneficial anti-inflammatory effects for chronic conditions such as cystic fibrosis. This is an updated version of a previously published review. To determine whether there is evidence that omega-3 polyunsaturated fatty acid supplementation reduces morbidity and mortality and to identify any adverse events associated with supplementation. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Authors and persons interested in the subject of the review were contacted.Date of last search: 13 August 2013. Randomised controlled trials in people with cystic fibrosis comparing omega-3 fatty acid supplements with placebo. Two authors independently selected studies for inclusion, extracted data and assessed the risk of bias of the studies. The searches identified 15 studies; four studies with 91 participants (children and adults) were included; duration of studies ranged from six weeks to six months. Two studies were judged to be at low risk of bias based on adequate randomisation but this was unclear in the other two studies. Three of the studies adequately blinded patients, however, the risk of bias was unclear in all studies with regards to allocation concealment and selective reporting.Two studies compared omega-3 fatty acids to olive oil for six weeks. One study compared a liquid dietary supplement containing omega-3 fatty acids to one without for six months. One study compared omega-3 fatty acids and omega-6 fatty acids to a control (capsules with customised fatty acid blends) for three months. Only one short-term study (19 participants) comparing omega-3 to placebo reported a significant improvement in lung function and Shwachman score and a reduction in sputum volume in the omega-3 group. Another

  8. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  9. Biodegradation of nitroaromatic compounds.

    PubMed

    Spain, J C

    1995-01-01

    Nitroaromatic compounds are released into the biosphere almost exclusively from anthropogenic sources. Some compounds are produced by incomplete combustion of fossil fuels; others are used as synthetic intermediates, dyes, pesticides, and explosives. Recent research revealed a number of microbial systems capable of transforming or biodegrading nitroaromatic compounds. Anaerobic bacteria can reduce the nitro group via nitroso and hydroxylamino intermediates to the corresponding amines. Isolates of Desulfovibrio spp. can use nitroaromatic compounds as their source of nitrogen. They can also reduce 2,4,6-trinitrotoluene to 2,4,6-triaminotoluene. Several strains of Clostridium can catalyze a similar reduction and also seem to be able to degrade the molecule to small aliphatic acids. Anaerobic systems have been demonstrated to destroy munitions and pesticides in soil. Fungi can extensively degrade or mineralize a variety of nitroaromatic compounds. For example, Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene and 2,4,6-trinitrotoluene and shows promise as the basis for bioremediation strategies. The anaerobic bacteria and the fungi mentioned above mostly transform nitroaromatic compounds via fortuitous reactions. In contrast, a number of nitroaromatic compounds can serve as growth substrates for aerobic bacteria. Removal or productive metabolism of nitro groups can be accomplished by four different strategies. (a) Some bacteria can reduce the aromatic ring of dinitro and trinitro compounds by the addition of a hydride ion to form a hydride-Meisenheimer complex, which subsequently rearomatizes with the elimination of nitrite. (b) Monooxygenase enzymes can add a single oxygen atom and eliminate the nitro group from nitrophenols. (c) Dioxygenase enzymes can insert two hydroxyl groups into the aromatic ring and precipitate the spontaneous elimination of the nitro group from a variety of nitroaromatic compounds. (d) Reduction of the nitro group to the corresponding

  10. Characterisation of fatty acids in drying oils used in paintings on canvas by GC and GC-MS analysis.

    PubMed

    Cartoni, G; Russo, M V; Spinelli, F; Talarico, F

    2001-01-01

    Of the various binding media used in paintings, this work examines drying oils. During the initial phase of polymerisation and the progressive ageing process, the fraction of unsaturated and polyunsaturated fatty acids undergoes various changes (reticulation, oxidation, etc.), that give rise to characteristic compounds. Within a broader research project, aimed at the characterisation of binding media, a preliminary study was made of the ageing process of linseed oil. In this regard, linseed oil was spread on a glass or canvas support and then dried in the open air. The ageing of the spread linseed oil was monitored by taking samples of the material at regular intervals. After the fatty acids had changed into methylesters, the samples were analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The results obtained have been reported as a ratio between the areas of the chromatographic peaks of the different fatty acids found.

  11. Isolation of individual fatty acids in sediments using preparative capillary gas chromatography (PCGC) for radiocarbon analysis at NIES-TERRA

    NASA Astrophysics Data System (ADS)

    Uchida, Masao; Shibata, Yasuyuki; Kawamura, Kimitaka; Yoneda, Minoru; Mukai, Hitoshi; Tanaka, Atsushi; Uehiro, Takashi; Morita, Masatoshi

    2000-10-01

    Compound-specific radiocarbon analysis (CSRA) of individual fatty acids (140-1190 μg C) in an estuarine sediment sample collected from Tokyo Bay was carried out using a recently developed preparative capillary gas chromatography (PCGC) system and accelerator mass spectrometry (AMS). The results showed that the estimated 14C ages of four components greatly varied from modern age (combined iso and anteiso C 15:0, C 16:0) to 17 000 years BP (C 22:0), while a bulk-phase 14C age of organic matter is 5000 years BP. The 14C ages of the fatty acids derived from phytoplankton and bacteria are much younger than that of the bulk phase. On the other hand, the fatty acid originated from terrestrial higher plants (C 22:0) shows an older 14C age of 17 000 years BP.

  12. Melanogenesis-inhibitory saccharide fatty acid esters and other constituents of the fruits of Morinda citrifolia (noni).

    PubMed

    Akihisa, Toshihiro; Tochizawa, Shun; Takahashi, Nami; Yamamoto, Ayako; Zhang, Jie; Kikuchi, Takashi; Fukatsu, Makoto; Tokuda, Harukuni; Suzuki, Nobutaka

    2012-06-01

    Five new saccharide fatty acid esters, named nonioside P (3), nonioside Q (4), nonioside R (8), nonioside S (10), and nonioside T (14), and one new succinic acid ester, butyl 2-hydroxysuccinate (=4-butoxy-3-hydroxy-4-oxobutanoic acid) (31), were isolated, along with 26 known compounds, including eight saccharide fatty acid esters, 1, 2, 5, 6, 7, 9, 12, and 13, three hemiterpene glycosides, 15, 17, and 18, six iridoid glycosides, 21-25, and 27, and nine other compounds, 20, 28, 29, and 32-37, from a MeOH extract of the fruit of Morinda citrifolia (noni). Upon evaluation of these and five other glycosidic compounds, 11, 16, 19, 26, and 30, from M. citrifolia fruit extract for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), most of the saccharide fatty acid esters, hemiterpene glycosides, and iridoid glycosides showed inhibitory effects with no or almost no toxicity to the cells. These compounds were further evaluated with respect to their cytotoxic activities against two human cancer cell lines (HL-60 and AZ521) and their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Reaction pathways for the deoxygenation of vegetable oils and related model compounds.

    PubMed

    Gosselink, Robert W; Hollak, Stefan A W; Chang, Shu-Wei; van Haveren, Jacco; de Jong, Krijn P; Bitter, Johannes H; van Es, Daan S

    2013-09-01

    Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty acid esters, and specific triglycerides because of their structural similarity to vegetable oils. In this Review we discuss the impact of feedstock, reaction conditions, and nature of the catalyst on the reaction pathways of the deoxygenation of vegetable oils and its derivatives. As such, we conclude on the suitability of model compounds for this reaction. It is shown that the type of catalyst has a significant effect on the deoxygenation pathway, that is, group 10 metal catalysts are active in decarbonylation/decarboxylation whereas metal sulfide catalysts are more selective to hydrodeoxygenation. Deoxygenation studies performed under H2 showed similar pathways for fatty acids, fatty acid esters, triglycerides, and vegetable oils, as mostly deoxygenation occurs indirectly via the formation of fatty acids. Deoxygenation in the absence of H2 results in significant differences in reaction pathways and selectivities depending on the feedstock. Additionally, using unsaturated feedstocks under inert gas results in a high selectivity to undesired reactions such as cracking and the formation of heavies. Therefore, addition of H2 is proposed to be essential for the catalytic deoxygenation of vegetable oil feeds.

  14. Estimation of fish and omega-3 fatty acid intake in pediatric nonalcoholic fatty liver disease

    PubMed Central

    St-Jules, David E; Watters, Corilee A; Brunt, Elizabeth M; Wilkens, Lynne R; Novotny, Rachel; Belt, Patricia; Lavine, Joel E

    2013-01-01

    Introduction Fish and omega-3 fatty acids are reported to be beneficial in pediatric nonalcoholic fatty liver disease (NAFLD), but no studies have assessed their relation to histological severity. The objectives of this study were to evaluate the dietary intake of fish and omega-3 fatty acids in children with biopsy-proven NAFLD, and examine their association with serological and histological indicators of disease. Materials and Methods This was a cross-sectional analysis of 223 children (6–18 years) that participated in the Treatment of Nonalcoholic Fatty Liver Disease in Children trial or the NAFLD Database study conducted by the Nonalcoholic Steatohepatitis Clinical Research Network. The distribution of fish and omega-3 fatty acid intake were determined from responses to the Block Brief 2000 Food Frequency Questionnaire, and analyzed for associations with serum alanine aminotransferase, histological features of fatty liver disease, and diagnosis of steatohepatitis after adjusting for demographic, anthropometric and dietary variables. Results The minority of subjects consumed the recommended eight ounces of fish per week (22/223 (10%)) and 200 mg of long-chain omega-3 fatty acids per day (12/223 (5%)). Lack of fish and long-chain omega-3 fatty acid intake was associated with greater portal (p=0.03 and p=0.10, respectively) and lobular inflammation (p=0.09 and p=0.004, respectively) after controlling for potential confounders. Discussion Fish and omega-3 fatty acid intake were insufficient in children with NAFLD, which may increase susceptibility to hepatic inflammation. Patients with pediatric NAFLD should be encouraged to consume the recommended amount of fish per week. PMID:24177784

  15. Nonpost mold cure compound

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiro

    1997-08-01

    The recent low price trend of electronic products has made IC manufacturing efficiency a top priority in the semiconductor industry. Post mold cure (PMC) process, which generally involves heating the packages in the oven at 175 C for 4 to 8 hours, takes up much longer time than most other assembly processes. If this PMC process can be reduced or eliminated, semiconductor makers will be rewarded with a much higher cost merit. We define the purpose of Non-PMC as 'to get high reliability with suitable physical and electrical properties without PMC'. We compared carious properties of molding compound before and after PMC. We found that curing reaction has almost complete through DSC and C-NMR measurement, but several properties have not stabilized yet, and that not all properties after PMC were better than before PMC. We developed new grade of molding compound considering these facts. And we found that main factors to accomplish non-PMC compound are curability and flowability, and more, increasing of fundamental properties. To accomplish non-PMC, at first, molding compound need to have very high curability. Generally speaking, too high curability causes low flowability, and causes incomplete filing, wire sweep, pad shift, and weak adhesion to inner parts of IC packages. To prevent these failures, various compound properties were studied, and we achieved in adding good flowability to very high curable molding compound. Finally, anti-popcorn property was improved by adding low moisture, high adhesion, high Tg, and high flexural strengths at high temperature. Through this study, we developed new compound grade for various package, especially large QFP using standard ECN resin.

  16. Pediatric Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Delvin, Edgard; Patey, Natasha; Dubois, Josée; Henderson, Melanie; Lévy, Émile

    2015-01-01

    Summary The rapidly increasing prevalence of childhood obesity and its associated co-morbidities such as hypertriglyceridemia, hyper-insulinemia, hypertension, early atherosclerosis, metabolic syndrome, and non-alcoholic fatty liver disease are major public health concerns in many countries. Therefore the trends in child and adolescent obesity should be closely monitored over time, as in the near future, we may anticipate a major increase of young adults with the stigmata of the metabolic syndrome, and of the related non-alcoholic fatty liver disease (NAFLD), that may lead to non-alcoholic steatohepatitis. PMID:28356817

  17. SLC27 fatty acid transport proteins.

    PubMed

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  18. Cells and methods for producing fatty alcohols

    DOEpatents

    Pfleger, Brian F.; Youngquist, Tyler J.

    2017-07-18

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  19. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  20. Omega 3 fatty acids and the eye.

    PubMed

    Cakiner-Egilmez, Tulay

    2008-01-01

    The health benefits of fish oil have been known for decades. Most of the health benefits of fish oil can be attributed to the presence of omega-3 essential fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Clinical studies have suggested that DHA and EPA lower triglycerides; slow the buildup of atherosclerotic plaques; lower blood pressure slightly; as well as reduce the risk of death, heart attack, and arrhythmias. Studies have also shown that omega-3 fatty acids may slow the progression of vision loss from AMD and reverse the signs of dry eye syndrome.

  1. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    PubMed

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-11-23

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer.

  2. Saturated fatty-acids regulate retinoic acid signaling and suppress tumorigenesis by targeting fatty-acid-binding protein 5

    PubMed Central

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L.; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes, and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5 which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  3. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana.

    PubMed

    Jiang, He Zhong; Quan, Xiao Fang; Tian, Wei Xi; Hu, Jiang Miao; Wang, Peng Cheng; Huang, Sheng Zhuo; Cheng, Zhong Quan; Liang, Wen Juan; Zhou, Jun; Ma, Xiao Feng; Zhao, You Xing

    2010-10-15

    Natural inhibitors of fatty acid synthase (FAS) are emerging as potential therapeutic agents to treat cancer and obesity. The bioassay-guided chemical investigation of the hulls of Garcinia mangostana led to the isolation of 13 phenolic compounds (1-13) mainly including xanthone and benzophenone, in which compounds 7, 8, 9, 10, and 11 were isolated from this plant for the first time and compound 9 was a new natural product. These isolates possess strong inhibitory activity of FAS with the IC(50) values ranging from 1.24 to 91.07 μM. The study indicates that two types of natural products, xanthones and benzophenones, could be considered as promising FAS inhibitors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    SciTech Connect

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  5. Genetics Home Reference: non-alcoholic fatty liver disease

    MedlinePlus

    ... Genetics Home Health Conditions NAFLD non-alcoholic fatty liver disease Enable Javascript to view the expand/collapse ... Open All Close All Description Non-alcoholic fatty liver disease ( NAFLD ) is a buildup of excessive fat ...

  6. Fatty Acid–Regulated Transcription Factors in the Liver

    PubMed Central

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  7. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  8. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  9. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  10. Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: a comparative study.

    PubMed

    Bettaieb, Iness; Bourgou, Soumaya; Sriti, Jezia; Msaada, Kamel; Limam, Ferid; Marzouk, Brahim

    2011-08-30

    Cumin (Cuminum cyminum L.) seeds of two geographic origins, Tunisia (TCS) and India (ICS), were studied regarding their fatty acid and essential oil composition. Oil yields were 17.77 and 15.40% for TCS and ICS respectively. Petroselinic acid (C18:1n-12) was the major fatty acid in both varieties, with a higher proportion being found in TCS (55.90% of total fatty acids (TFA)) than in ICS (41.42% TFA). Moreover, the most predominant fatty acids were palmitic, petroselenic and linoleic acids, accounting for more than 91% TFA in both varieties. The unsaturated fatty acid content was high: 70.95% TFA in TCS and 62.17% TFA in ICS. Essential oil yields differed significantly (P < 0.05) between the two varieties: 1.21 and 1.62% for ICS and TCS respectively. A total of 40 compounds were identified, 34 of which were present in both essential oils. The two varieties displayed different chemotypes: γ-terpinene/1-phenyl-1,2-ethanediol for TCS and cuminaldheyde/γ-terpinene for ICS. The study revealed that the biochemical composition of cumin seeds is origin-dependent and that cumin seeds are rich in an unusual fatty acid, petroselinic acid. Besides, cumin essential oil is a rich source of many compounds, including cuminaldehyde and γ-terpinene. The overall results suggest the exploitation of cumin seeds as a low-cost renewable source for industrial processing in the fields of cosmetics, perfumes and pharmaceuticals. Copyright © 2011 Society of Chemical Industry.

  11. Probing the fibrate binding specificity of rat liver fatty acid binding protein.

    PubMed

    Chuang, Sara; Velkov, Tony; Horne, James; Wielens, Jerome; Chalmers, David K; Porter, Christopher J H; Scanlon, Martin J

    2009-09-10

    Liver-fatty acid binding protein (L-FABP) is found in high levels in enterocytes and is involved in cytosolic solubilization of fatty acids. In addition, L-FABP has been shown to bind endogenous and exogenous lipophilic compounds, suggesting that it may also play a role in modulating their absorption and disposition within enterocytes. Previously, we have described binding of L-FABP to a range of drugs, including a series of fibrates. In the present study, we have generated structural models of L-FABP-fibrate complexes and undertaken thermodynamic analysis of the binding of fibrates containing either a carboxylic acid or ester functionality. Analysis of the current data reveals that both the location and the energetics of binding are different for fibrates that contain a carboxylate compared to those that do not. As such, the data presented in this study suggest potential mechanisms that underpin molecular recognition and dictate specificity in the interaction between fibrates and L-FABP.

  12. In vitro biological activities and fatty acid profiles of Pistacia terebinthus fruits and Pistacia khinjuk seeds.

    PubMed

    Hacıbekiroğlu, Işil; Yılmaz, Pelin Köseoğlu; Haşimi, Nesrin; Kılınç, Ersin; Tolan, Veysel; Kolak, Ufuk

    2015-01-01

    This study reports in vitro anticholinesterase, antioxidant and antimicrobial effects of the n-hexane, dichloromethane, ethanol and ethanol-water extracts prepared from Pistacia terebinthus L. fruits and Pistacia khinjuk Stocks seeds as well as their total phenolic and flavonoid contents, and fatty acid compositions. Ethanol and ethanol-water extracts of both species exhibited higher anticholinesterase activity than galanthamine. Among ABTS, DPPH and CUPRAC assays, the highest antioxidant capacity of the extracts was found in the last one. P. terebinthus ethanol extract being rich in flavonoid content showed the best cupric reducing effect. All extracts possessed no antimicrobial activity. The main fatty acid in P. terebinthus fruits (52.52%) and P. khinjuk seeds (59.44%) was found to be oleic acid. Our results indicate that P. terebinthus fruits and P. khinjuk seeds could be a good source of anticholinesterase compounds, and could be phytochemically investigated.

  13. Atmospheric photochemistry at a fatty acid-coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  14. Two new conjugated ketonic fatty acids from the stem bark of Juglans mandshurica.

    PubMed

    Yao, Da-Lei; Zhang, Chang-Hao; Li, Ren; Luo, Jie; Jin, Mei; Piao, Jin-Hua; Zheng, Ming-Shan; Cui, Jiong-Mo; Son, Jong Keun; Li, Gao

    2015-04-01

    The present study was designed to isolate and characterize novel chemical constituents of the stem bark of Juglans mandshurica Maxim. (Juglandaceae). The chemical constituents were isolated and purified by various chromatographic techniques. The structures of the compounds were elucidated on the basis of spectral data (1D and 2D NMR, HR-ESI-MS, CD, UV, and IR) and by the comparisons of spectroscopic data with the reported values in the literatures. Two long chain polyunsaturated fatty acids (1 and 2) were obtained and identified as (S)-(8E,10E)-12-hydroxy-7-oxo-8,10-octadecadienoic acid (1) and (S)-(8E, 10E)-12-hydroxy-7-oxo-8,10-octadecadienoic acid methyl ester (2). To the best of our knowledge, this is the first report on the isolation and structural elucidation of the two new conjugated ketonic fatty acids from this genus. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  15. Determination of free medium-chain fatty acids in beer by stir bar sorptive extraction.

    PubMed

    Horák, Tomás; Culík, Jirí; Jurková, Marie; Cejka, Pavel; Kellner, Vladimír

    2008-07-04

    Free medium-chain fatty acids in beer originate from raw materials, mainly from the fermentation activity of yeasts, and can influence beer taste, vitality of yeasts and also the foam stability of beer. This study presents the development of the method for the determination of free fatty medium-chain acids including caproic acid, caprylic acid, capric acid and lauric acid in beer or wort using stir bar sorptive extraction (SBSE). The combination of this extraction technique with solvent back extraction of the extracted analytes and subsequent gas chromatographic analysis with flame ionization detection was used for the determination of these compounds. The influences of different solvent back solutions, sampling time, solvent back extraction times and different contents of ethanol were studied. The method had high repeatability (RSD <6.7%), good linearity (the correlation coefficients were higher than 0.9963 for quadratic curves over the concentration range 0.5-8.0mg/l) and recoveries 57-89%.

  16. [Biology and biochemical aspects of long-chains polyunsaturated fatty acid during gestation].

    PubMed

    Bautista, Claudia Janet; Zambrano, Elena

    2010-01-01

    During pregnancy, the mother must provide the nutrients necessary for proper differentiation, maturation and growth of fetal organs and systems. During this period, the mother adapts her metabolism to address the continuing demand for substrates to be transferred to the fetus through the placenta. Essential fatty acids cannot be synthesized by humans, therefore, should be consumed as part of the diet. Its derivates, long-chain polyunsaturated fatty acids (LC-PUFAs) from biosynthesis in the maternal liver during pregnancy and lactation are compounds that will form part of the cell membranes of the brain, retina, and liver, fetal and newborn heart, thereby enabling the smooth, activation and regulation of cellular functions. Therefore, adequate nutritional status of the mother during pregnancy and lactation is necessary to ensure adequate product development. This article aims to review some aspects of the adaptive mechanisms of maternal lipid metabolism, mainly from LC-PUFAs compensating energy expenditure and allow the proper development of the product.

  17. Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids.

    PubMed

    Feller, Scott E

    2008-05-01

    A variety of experimental methods indicate unique biophysical properties of membranes containing the highly polyunsaturated omega-3 fatty acid, docosahexaenoic acid (DHA). In the following we review the atomically detailed picture of DHA acyl chains structure and dynamics that has emerged from computational studies of this system in our lab. A comprehensive approach, beginning with ab-initio quantum chemical studies of model compounds representing segments of DHA and ending with large scale classical molecular dynamics simulations of DHA-containing bilayers, is described with particular attention paid to contrasting the properties of DHA with those of saturated fatty acids. Connection with experiment is made primarily through comparison with Nuclear Magnetic Resonance (NMR) studies, particularly those that probe details of the chain structure and dynamics. Our computational results suggest that low torsional energy barriers, comparable to kT at physiological conditions, for the rotatable bonds in the DHA chain are the key to the differences observed between polyunsaturated and saturated acyl chains.

  18. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  19. Compound-specific carbon isotope analysis of a contaminant plume in Kingsford, Michigan, USA

    USGS Publications Warehouse

    Michel, R.L.; Silva, S.R.; Bemis, B.; Godsy, E.M.; Warren, E.

    2001-01-01

    Compound-specific isotope analysis was used to study a contaminated site near Kingsford, Michigan, USA. Organic compounds at three of the sites studied had similar ??13C values indicating that the contaminant source is the same for all sites. At a fourth site, chemical and ??13C values had evolved due to microbial degradation of organics, with the ??13C being much heavier than the starting materials. A microcosm experiment was run to observe isotopic changes with time in the methane evolved and in compounds remaining in the water during degradation. The ??13C values of the methane became heavier during the initial period of the run when volatile fatty acids were being consumed. There was an abrupt decrease in the ??13C values when fatty acids had been consumed and phenols began to be utilized. The ??13C value of the propionate remaining in solution also increased, similar to the results found in the field.

  20. Identification of bitterness-masking compounds from cheese.

    PubMed

    Homma, Ryousuke; Yamashita, Haruyuki; Funaki, Junko; Ueda, Reiko; Sakurai, Takanobu; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2012-05-09

    Bitterness-masking compounds were identified in a natural white mold cheese. The oily fraction of the cheese was extracted and further fractionated by using silica gel column chromatography. The four fractions obtained were characterized by thin-layer chromatography and nuclear magnetic resonance spectroscopy. The fatty acid-containing fraction was found to have the highest bitterness-masking activity against quinine hydrochloride. Bitterness-masking activity was quantitated using a method based on subjective equivalents. At 0.5 mM, the fatty acid mixture, which had a composition similar to that of cheese, suppressed the bitterness of 0.008% quinine hydrochloride to be equivalent to that of 0.0049-0.0060% and 0.5 mM oleic acid to that of 0.0032-0.0038% solution. The binding potential between oleic acid and the bitter compounds was estimated by isothermal titration calorimetry. These results suggest that oleic acid masked bitterness by forming a complex with the bitter compounds.