Foust, Donald Franklin [Scotia, NY; Duggal, Anil Raj [Niskayuna, NY; Shiang, Joseph John [Niskayuna, NY; Nealon, William Francis [Gloversville, NY; Bortscheller, Jacob Charles [Clifton Park, NY
2008-03-25
The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.
High Performance OLED Panel and Luminaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, Jeffrey
2017-02-20
In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementarymore » light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.« less
NASA Astrophysics Data System (ADS)
Zhu, Yiting; Narendran, Nadarajah; Tan, Jianchuan; Mou, Xi
2014-09-01
The organic light-emitting diode (OLED) has demonstrated its novelty in displays and certain lighting applications. Similar to white light-emitting diode (LED) technology, it also holds the promise of saving energy. Even though the luminous efficacy values of OLED products have been steadily growing, their longevity is still not well understood. Furthermore, currently there is no industry standard for photometric and colorimetric testing, short and long term, of OLEDs. Each OLED manufacturer tests its OLED panels under different electrical and thermal conditions using different measurement methods. In this study, an imaging-based photometric and colorimetric measurement method for OLED panels was investigated. Unlike an LED that can be considered as a point source, the OLED is a large form area source. Therefore, for an area source to satisfy lighting application needs, it is important that it maintains uniform light level and color properties across the emitting surface of the panel over a long period. This study intended to develop a measurement procedure that can be used to test long-term photometric and colorimetric properties of OLED panels. The objective was to better understand how test parameters such as drive current or luminance and temperature affect the degradation rate. In addition, this study investigated whether data interpolation could allow for determination of degradation and lifetime, L70, at application conditions based on the degradation rates measured at different operating conditions.
Evaluation of OLED and edge-lit LED lighting panels
NASA Astrophysics Data System (ADS)
Mou, Xi; Narendran, Nadarajah; Zhu, Yiting; Freyssinier, Jean Paul
2016-09-01
Solid-state lighting (SSL) offers a new technology platform for lighting designers and end-users to illuminate spaces with low energy demand. Two types of SSL sources include organic light-emitting diodes (OLEDs) and light-emitting diodes (LEDs). OLED is an area light source, and its primary competing technology is the edge-lit LED panel. Generally, both of these technologies are considered similar in shape and appearance, but there is little understanding of how people perceive discomfort glare from large area light sources. The objective of this study was to evaluate discomfort glare for the two lighting technologies under similar operating conditions by gathering observers' reactions. The human factors study results showed no statistically significant difference in human response to discomfort glare between OLED and edge-lit LED panels when the two light sources produced the same lighting stimulus. This means both technologies appeared equally glary beyond a certain luminance.
Stress Testing of Organic Light- Emitting Diode Panels and Luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Lynn; Rountree, Kelley; Mills, Karmann
This report builds on previous DOE efforts with OLED technology by updating information on a previously benchmarked OLED product (the Chalina luminaire from Acuity Brands) and provides new benchmarks on the performance of Brite 2 and Brite Amber OLED panels from OLEDWorks. During the tests described here, samples of these devices were subjected to continuous operation in stress tests at elevated ambient temperature environments of 35°C or 45°C. In addition, samples were also operated continuously at room temperature in a room temperature operational life test (RTOL). One goal of this study was to investigate whether these test conditions can acceleratemore » failure of OLED panels, either through panel shorting or an open circuit in the panel. These stress tests are shown to provide meaningful acceleration of OLED failure modes, and an acceleration factor of 2.6 was calculated at 45°C for some test conditions. In addition, changes in the photometric properties of the emitted light (e.g., luminous flux and chromaticity maintenance) was also evaluated for insights into the long-term stability of these products compared to earlier generations. Because OLEDs are a lighting system, electrical testing was also performed on the panel-driver pairs to provide insights into the impact of the driver on long-term panel performance.« less
Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Michael
Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S.more » Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.« less
Driving platform for OLED lighting investigations
NASA Astrophysics Data System (ADS)
Vogel, Uwe; Elgner, Andreas; Kreye, Daniel; Amelung, Jörg; Scholles, Michael
2006-08-01
OLED technology may be excellently suitable for lighting applications by combining high efficiency, cost effective manufacturing and the use of low cost materials. Certain issues remain to be solved so far, including OLED brightness, color, lifetime, large area uniformity and encapsulation. Another aspect, that might be capable in addressing some of the mentioned issues, is OLED lighting electrical driving. We report on the design of a driving platform for OLED lighting test panels or substrates. It is intended for being a test environment for lighting substrates as well as demonstration/presentation environment. It is based on a 128-channel passive-matrix driver/controller ASIC OC2. Its key component is an MSP430-compatible 16-bit micro-controller core including embedded Flash memory (program), EEPROM (parameter), and RAM (data memory). A significant feature of the device is an electronic approach for improving the lifetime/uniformity behavior of connected OLED. The embedded micro-controller is the key to the high versatility of OC2, since by firmware modification it can be adapted to various applications and conditions. Here its application for an OLED lighting driving platform is presented. Major features of this platform are PC-control mode (via USB interface), stand-alone mode (no external control necessary, just power supply), on-board OLED panel parameter storage, flat geometry of OLED lighting panel carrier (board), AC and DC driving regimes, adjustable reverse voltage, dedicated user SW (PC/Windows-based), sub-tile patterning and single sub-tile control, combination of multiple channels for increasing driving current. This publication contains results of the project "High Brightness OLEDs for ICT & Next Generation Lighting Applications" (OLLA), funded by the European Commission.
Kirigami-based three-dimensional OLED concepts for architectural lighting
NASA Astrophysics Data System (ADS)
Kim, Taehwan; Price, Jared S.; Grede, Alex; Lee, Sora; Jackson, Thomas N.; Giebink, Noel C.
2017-08-01
Dramatic improvements in white organic light emitting diode (OLED) performance and lifetime over the past decade are driving commercialization of this technology for solid-state lighting applications. As white OLEDs attempt to gain a foothold in the market, however, the biggest challenge outside of lowering their manufacturing cost arguably now lies in creating an architecturally adaptable form factor that will drive public adoption and differentiate OLED lighting from established LED products. Here, we present concepts based on kirigami (the Japanese art of paper cutting and folding) that enable intricate three-dimensional (3D) OLED lighting structures from two dimensional layouts. Using an ultraflexible, encapsulated OLED device architecture on 25 60 μm thick clear polyimide film substrate with simple cut and fold patterns, we demonstrate a series of different lighting concepts ranging from a simple `pop up' structure to more complex designs such as stretchable window blind-like panel, candle flame, and multi-element globe lamp. We only find slight degradation in OLED electrical performance when these designs are shaped into 3D. Our results point to an alternate paradigm for OLED lighting that moves beyond traditional 2D panels toward 3D designs that deliver unique and creative new opportunities for lighting.
To enhance light extraction of OLED devices by multi-optic layers including a micro lens array
NASA Astrophysics Data System (ADS)
Chiu, Chuang-Hung; Chien, Chao-Heng; Kuo, Yu-Xaong; Lee, Jen-Chi
2014-10-01
In recent years, OLED has advantages including that larger light area, thinner thickness, excellent light uniformity, and can be as a flexible light source. Many display panel and lighting have been started to use the OLED due to OLED without back light system, thus how to make and employ light extracting layer could be important issue to enhance OLED brightness. The purpose of this study is to enhance the light extraction efficiency and light emitting area of OLED, so the micro lens array and the prism reflection layer were provided to enhance the surface light extracting efficiency of OLD. Finally the prism layer and diffusing layer were used to increase the uniformity of emitting area of OLED, which the efficiency of 31% increasing to compare with the OLED without light extracting film.
[Progress of light extraction enhancement in organic light-emitting devices].
Liu, Mo; Li, Tong; Wang, Yan; Zhang, Tian-Yu; Xie, Wen-Fa
2011-04-01
Organic light emitting devices (OLEDs) have been used in flat-panel displays and lighting with a near-30-year development. OLEDs possess many advantages, such as full solid device, fast response, flexible display, and so on. As the application of phosphorescence material, the internal quantum efficiency of OLED has almost reached 100%, but its external quantum efficiency is still not very high due to the low light extraction efficiency. In this review the authors summarizes recent advances in light extraction techniques that have been developed to enhance the light extraction efficiency of OLEDs.
A spectral measurement method for determining white OLED average junction temperatures
NASA Astrophysics Data System (ADS)
Zhu, Yiting; Narendran, Nadarajah
2016-09-01
The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, Jeffrey; Kondakova, Marina; Boroson, Michael
2016-05-25
In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.
Large-area high-efficiency flexible PHOLED lighting panels
NASA Astrophysics Data System (ADS)
Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.
2012-09-01
Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.
NASA Astrophysics Data System (ADS)
Ding, Lei; Wang, Lu-Wei; Zhou, Lei; Zhang, Fang-hui
2016-12-01
An out-coupling membrane embedded with a scattering film of SiO2 spheres and polyethylene terephthalate (PET) plastic was successfully developed for 150 × 150 mm2 green OLEDs. Comparing with a reference OLED panel, an approximately 1-fold enhancement in the forward emission was obtained with an out-coupling membrane adhered to the surface of the external glass substrate of the panel. Moreover, it was verified that the emission color at different viewing angles can be stabilized without apparent spectral distortion. Particularly, the uniformity of the large-area OLEDs was greatly improved. Theoretical calculation clarified that the improved performance of the lighting panels is primarily attributed to the effect of particle scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Qibing
2017-10-06
This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.
GATEWAY Demonstrations: OLED Lighting in the Offices of DeJoy, Knauf & Blood, LLP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Naomi J.
At the offices of the accounting firm of DeJoy, Knauf & Blood, LLP in Rochester, NY, the GATEWAY program evaluated a new lighting system that incorporates a number of different OLED luminaires. Evaluation of the OLED products included efficacy performance, field measurements of panel color, flicker measurements, and staff feedback.
GATEWAY Report Brief: Evaluating OLED Lighting in the Accounting Office of DeJoy, Knauf & Blood LLP
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Summary of GATEWAY report evaluating a new lighting system, at the offices of the accounting firm of DeJoy, Knauf & Blood, LLP in Rochester, NY, that incorporates a number of different OLED luminaires. Evaluation of the OLED products included efficacy performance, field measurements of panel color, flicker measurements, and staff feedback.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong
2012-09-01
We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.
Zhao, Xin-Dong; Li, Yan-Qing; Xiang, Heng-Yang; Zhang, Yi-Bo; Chen, Jing-De; Xu, Lu-Hai; Tang, Jian-Xin
2017-01-25
Inverted organic light-emitting diode (OLED) has attracted extensive attention due to the demand in active-matrix OLED display panels as its geometry enables the direct connection with n-channel transistor backplane on the substrate. One key challenge of high-performance inverted OLED is an efficient electron-injection layer with superior electrical and optical properties to match the indium tin oxide cathode on substrate. We here propose a synergistic electron-injection architecture using surface modification of ZnO layer to simultaneously promote electron injection into organic emitter and enhance out-coupling of waveguided light. An efficient inverted white OLED is realized by introducing the nanoimprinted aperiodic nanostructure of ZnO for broadband and angle-independent light out-coupling and inserting an n-type doped interlayer for energy level tuning and injection barrier lowering. As a result, the optimized inverted white OLEDs have an external quantum efficiency of 42.4% and a power efficiency of 85.4 lm W 1- , which are accompanied by the superiority of angular color stability over the visible wavelength range. Our results may inspire a promising approach to fabricate high-efficiency inverted OLEDs for large-scale display panels.
Luminance uniformity compensation for OLED panels based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Peng; Yang, Gang; Jiang, Quan; Yu, Jun-Sheng; Wu, Qi-Peng; Shang, Fu-Hai; Yin, Wei; Wang, Jun; Zhong, Jian; Luo, Kai-Jun
2009-09-01
Aiming at the problem of luminance uniformity for organic lighting-emitting diode (OLED) panels, a new brightness calculating method based on bilinear interpolation is proposed. The irradiance time of each pixel reaching the same luminance is figured out by Matlab. Adopting the 64×32-pixel, single color and passive matrix OLED panel as adjusting luminance uniformity panel, a new circuit compensating scheme based on FPGA is designed. VHDL is used to make each pixel’s irradiance time in one frame period written in program. The irradiance brightness is controlled by changing its irradiance time, and finally, luminance compensation of the panel is realized. The simulation result indicates that the design is reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Michael; Spindler, Jeff
For this DOE award, Acuity Brands Lighting developed a novel OLED luminaire system featuring panel-integrated drivers at each individual OLED panel. The luminaire has a base station that receives user commands and performs AC/DC conversion. A power line communication (PLC) protocol is used to provide both power and digital control to each panel. A 66-panel CanvisTM luminaire using state-of-art OLED panels based on this system was successfully constructed. This is a first demonstration of such a luminaire architecture. It is also the first known implementation of this number of independently addressable nodes with a PLC protocol. This luminaire system architecturemore » has added benefits in the flexibility of using multiple panel vendors for a given product, forward compatibility with future panels, and reduced luminaire wiring complexity and assembly time.« less
Analysis of current driving capability of pentacene TFTs for OLEDs
NASA Astrophysics Data System (ADS)
Ryu, Gi Seong; Byun, Hyun Sook; Xu, Yong Xian; Pyo, Kyung Soo; Choe, Ki Beom; Song, Chung Kun
2005-01-01
The flexible display and the application of Roll-To-Roll process is difficult because high temperature process of a-Si;H TFT and poly-Si TFT limited the use of plastic substrate. We proposed AMOLED using Pentacene TFT (OTFT) to fabricate flexible display. The first stage for OTFT application to OLED, we analyzed OTFT as driving device of OLED. The process performed on glass and plastic (PET) substrate that is coated ITO and PVP is used for gate insulator. The field effect mobility of the fabricated OTFT is 0.1~0.3cm2/V"sec and Ion/Ioff current ratio is 103~105. OLED is fabricated with two stories structure of TPD and Alq3, and we can observe the light at 5V by the naked eye. The wavelength of observed lights is 530nm ~550nm. We can confirm the driving of OLED due to OTFT using Test panel and observe OLED control by gate voltage of OTFT. Also, we verify designed structure and process, and make a demonstration fabricating 64 by 64 backplane based on Test panel.
Principles of phosphorescent organic light emitting devices.
Minaev, Boris; Baryshnikov, Gleb; Agren, Hans
2014-02-07
Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.
Progress of OLED devices with high efficiency at high luminance
NASA Astrophysics Data System (ADS)
Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong
2014-03-01
Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.
Recent progress in flexible OLED displays
NASA Astrophysics Data System (ADS)
Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.
2001-09-01
Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.
Development of High Efficacy, Low Cost Phosphorescent Oled Lightning Luminaire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Hack
In this two year program, UDC together with Armstrong World Industries, Professor Stephen Forrest (University of Michigan) and Professor Mark Thompson (University of Southern California) planned to develop and deliver high efficiency OLED lighting luminaires as part of an integrated ceiling illumination system that exceed the Department of Energy (DOE) 2010 performance projections. Specifically the UDC team in 2010 delivered two prototype OLED ceiling illumination systems, each consisting of four individual OLED lighting panels on glass integrated into Armstrong's novel TechZone open architecture ceiling systems, at an overall system efficacy of 51 lm/W, a CRI = 85 and a projectedmore » lifetime to 70% of initial luminance to exceed 10,000 hours. This accomplishment represents a 50% increase in luminaire efficacy and a factor of two in lifetime over that outlined in the solicitation. In addition, the team has also delivered one 15cm x 15cm lighting panel fabricated on a flexible metal foil substrate, demonstrating the possibility using OLEDs in a range of form factors. During this program, our Team has pursued the commercialization of these OLED based ceiling luminaires, with a goal to launch commercial products within the next three years. We have proven that our team is ideally suited to develop these highly novel and efficient solid state lighting luminaires, having both the technical experience and commercial strategy to leverage work performed under this contract. Our calculations show that the success of our program could lead to energy savings of more than 0.5 quads or 8 MMTC (million metric tons of carbon) per year by 2016.« less
Flexible AMOLED backplane using pentacene TFT
NASA Astrophysics Data System (ADS)
Song, Chung Kun; Ryu, Gi Seong
2005-01-01
In this paper we fabricated a panel consisting of an array of organic TFTs (OTFT) and organic LEDs (OLED) in order to demonstrate the possible application of OTFTs to flexible active matrix OLED (AMOLED). The panel was composed of 64×64 pixels on 4 inch size PET substrate in which each pixel had one OTFT integrated with one green OLED. The panel successfully demonstrated to display some letters and pictures by emitting green light with luminance of 20 cd/m2 at 6 V, which was controlled by the gate voltage of OTFT. In addition we also developed fabrication processes for pentacene TFT with PVP gate on PET substrate. The OTFTs produced the maximum mobility of 1.2 cm2/V"sec and on/off current ratio of 2×106.
Optical analysis of down-conversion OLEDs
NASA Astrophysics Data System (ADS)
Krummacher, Benjamin; Klein, Markus; von Malm, Norwin; Winnacker, Albrecht
2008-02-01
Phosphor down-conversion of blue organic light-emitting diodes (OLEDs) is one approach to generate white light, which offers the possibility of easy color tuning, a simple device architecture and color stability over lifetime. In this article previous work on down-conversion devices in the field of organic solid state lighting is briefly reviewed. Further, bottom emitting down-conversion OLEDs are studied from an optical point of view. Therefore the physical processes occurring in the down-conversion layer are translated into a model which is implemented in a ray tracing simulation. By comparing its predictions to experimental results the model is confirmed. For the experiments a blue-emitting polymer OLED (PLED) panel optically coupled to a series of down-conversion layers is used. Based on results obtained from ray tracing simulation some of the implications of the model for the performance of down-conversion OLEDs are discussed. In particular it is analysed how the effective reflectance of the underlying blue OLED and the particle size distribution of the phosphor powder embedded in the matrix of the down-conversion layer influence extraction efficiency.
Light extraction block with curved surface
Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.
2016-03-22
Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.
An electron transporting blue emitter for OLED
NASA Astrophysics Data System (ADS)
Qi, Boyuan; Luo, Jiaxiu; Li, Suyue; Xiao, Lixin; Sun, Wenfang; Chen, Zhijian; Qu, Bo; Gong, Qihuang
2010-11-01
After the premier commercialization of OLED in 1997, OLED has been considered as the candidate for the next generation of flat panel display. In comparison to liquid crystal display (LCD) and plasma display panel (PDP), OLED exhibits promising merits for display, e.g., flexible, printable, micro-buildable and multiple designable. Although many efforts have been made on electroluminescent (EL) materials and devices, obtaining highly efficient and pure blue light is still a great challenge. In order to improve the emission efficiency and purity of the blue emission, a new bipolar blue light emitter, 2,7-di(2,2':6',2"-terpyridine)- 2,7-diethynyl-9,9-dioctyl-9H-fluorene (TPEF), was designed and synthesized. A blue OLED was obtained with the configuration of ITO/PEDOT/PVK:CBP:TPEF/LiF/Al. The device exhibits a turn-on voltage of 9 V and a maximum brightness of 12 cd/m2 at 15 V. The device gives a deep blue emission located at 420 nm with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.10). We also use TPEF as electron transporting material in the device of ITO/PPV/TPEF/LiF/Al, the turn-on voltage is 3 V. It is proved the current in the device was enhanced indeed by using the new material.
A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.
In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Cheng-Hung
The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3 + year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm andmore » an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin Bluhm; James Coffey; Roman Korotkov
2011-01-02
Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources ofmore » elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of this project would provide doped ZnO coated on inexpensive soda lime glass resulting in a significantly lower cost relative to the current ITO coated Flat Panel Display Glass substrates. Additional benefits will be a more consistent TCO that does not need an activation step with better optical performance. Clearly, this will serve to enhance penetration of OLED technologies into the lighting market.« less
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-01-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach. PMID:27170543
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-12
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
NASA Astrophysics Data System (ADS)
Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung
2016-05-01
Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.
NASA Astrophysics Data System (ADS)
Cai, Min
Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs' performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.
Technical trends of large-size photomasks for flat panel displays
NASA Astrophysics Data System (ADS)
Yoshida, Koichiro
2017-06-01
Currently, flat panel displays (FPDs) are one of the main parts for information technology devices and sets. From 1990's to 2000's, liquid crystal displays (LCDs) and plasma displays had been mainstream FPDs. In the middle of 2000's, demand of plasma displays declined and organic light emitting diodes (OLEDs) newly came into FPD market. And today, major technology of FPDs are LCDs and OLEDs. Especially for mobile devices, the penetration of OLEDs is remarkable. In FPDs panel production, photolithography is the key technology as same as LSI. Photomasks for FPDs are used not only as original master of circuit pattern, but also as a tool to form other functional structures of FPDs. Photomasks for FPDs are called as "Large Size Photomasks(LSPMs)", since the remarkable feature is " Size" which reaches over 1- meter square and over 100kg. In this report, we discuss three LSPMs technical topics with FPDs technical transition and trend. The first topics is upsizing of LSPMs, the second is the challenge for higher resolution patterning, and the last is "Multi-Tone Mask" for "Half -Tone Exposure".
2009-01-01
coatings include flexible liquid crystal displays, OLEDs , and photovoltaic modules.15 Additional applications include packaging for medical devices...copyright, see http://jap.aip.org/jap/copyright.jsp ics of TFT Technology on Flexible Substrates, Flexible Flat Panel Dis- plays, edited by G. P. Crawford...grade “Teonex Q65” is commonly used in the organic light emitting diode OLED field because it is both heat stabilized and coated with a scratch
Evaluation of a 15-inch widescreen OLED with sunlight-readable resistive touch panel
NASA Astrophysics Data System (ADS)
Hufnagel, Bruce D.; Tchon, Joseph L.; Bahadur, Birendra
2012-06-01
A commercially available 15-inch active-matrix organic light-emitting diode (AMOLED) television was modified to include a sunlight-readable resistive touch panel for technical evaluation with regard to a variety of rugged military and aerospace applications. By removing the circular polarizer (CP) from the AMOLED and relying on the touch panel's CP, the authors were able to minimize change in display luminance while adding touch capability and reducing reflectance.
Evaluation of inorganic and organic light-emitting diode displays for signage application
NASA Astrophysics Data System (ADS)
Sharma, Pratibha; Kwok, Harry
2006-08-01
High-brightness, inorganic light-emitting diodes (LEDs) have been successfully utilized for edge-lighting of large displays for signage. Further interest in solid-state lighting technology has been fueled with the emergence of small molecule and polymer-based organic light-emitting diodes (OLEDs). In this paper, edgelit inorganic LED-based displays and state-of-the-art OLED-based displays are evaluated on the basis of electrical and photometric measurements. The reference size for a signage system is assumed to be 600 mm x 600mm based on the industrial usage. With the availability of high power light-emitting diodes, it is possible to develop edgelit signage systems of the standard size. These displays possess an efficacy of 18 lm/W. Although, these displays are environmentally friendly and efficient, they suffer from some inherent limitations. Homogeneity of displays, which is a prime requirement for illuminated signs, is not accomplished. A standard deviation of 3.12 lux is observed between the illuminance values on the surface of the display. In order to distribute light effectively, reflective gratings are employed. Reflective gratings aid in reducing the problem but fail to eliminate it. In addition, the overall cost of signage is increased by 50% with the use of these additional components. This problem can be overcome by the use of a distributed source of light. Hence, the organic-LEDs are considered as a possible contender. In this paper, we experimentally determine the feasibility of using OLEDs for signage applications and compare their performance with inorganic LEDs. Passive matrix, small-molecule based, commercially available OLEDs is used. Design techniques for implementation of displays using organic LEDs are also discussed. It is determined that tiled displays based on organic LEDs possess better uniformity than the inorganic LED-based displays. However, the currently available OLEDs have lower light-conversion efficiency and higher costs than the conventional, inorganic LEDs. But, signage panels based on OLEDs can be made cheaper by avoiding the use of acrylic sheet and reflective gratings. Moreover, the distributed light output and light weight of OLEDs and the potential to be built inexpensively on flexible substrates can make OLEDs more beneficial for future signage applications than the inorganic LEDs.
Vacuum-deposited, nonpolymeric flexible organic light-emitting devices.
Gu, G; Burrows, P E; Venkatesh, S; Forrest, S R; Thompson, M E
1997-02-01
We demonstrate mechanically flexible, organic light-emitting devices (OLED's) based on the nonpolymetric thin-film materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and N, N(?) -diphenyl- N, N(?) -bis(3-methylphenyl)1- 1(?) biphenyl-4, 4(?) diamine (TPD). The single heterostructure is vacuum deposited upon a transparent, lightweight, thin plastic substrate precoated with a transparent, conducting indium tin oxide thin film. The flexible OLED performance is comparable with that of conventional OLED's deposited upon glass substrates and does not deteriorate after repeated bending. The large-area (~1 - cm>(2)) devices can be bent without failure even after a permanent fold occurs if they are on the convex substrate surface or over a bend radius of ~0.5>cm if they are on the concave surface. Such devices are useful for ultralightweight, flexible, and comfortable full-color flat panel displays.
NASA Astrophysics Data System (ADS)
Nichols, Jonathan A.
Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.
High efficiency and stable white OLED using a single emitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian
2016-01-18
The ultimate objective of this project was to demonstrate an efficient and stable white OLED using a single emitter on a planar glass substrate. The focus of the project is on the development of efficient and stable square planar phosphorescent emitters and evaluation of such class of materials in the device settings. Key challenges included improving the emission efficiency of molecular dopants and excimers, controlling emission color of emitters and their excimers, and improving optical and electrical stability of emissive dopants. At the end of this research program, the PI has made enough progress to demonstrate the potential of excimer-basedmore » white OLED as a cost-effective solution for WOLED panel in the solid state lighting applications.« less
Shan, Tong; Liu, Yulong; Tang, Xiangyang; Bai, Qing; Gao, Yu; Gao, Zhao; Li, Jinyu; Deng, Jian; Yang, Bing; Lu, Ping; Ma, Yuguang
2016-10-26
Great efforts have been devoted to develop efficient deep blue organic light-emitting diodes (OLEDs) materials meeting the standards of European Broadcasting Union (EBU) standard with Commission International de L'Eclairage (CIE) coordinates of (0.15, 0.06) for flat-panel displays and solid-state lightings. However, high-performance deep blue OLEDs are still rare for applications. Herein, two efficient deep blue emitters, PIMNA and PyINA, are designed and synthesized by coupling naphthalene with phenanthreneimidazole and pyreneimidazole, respectively. The balanced ambipolar transporting natures of them are demonstrated by single-carrier devices. Their nondoped OLEDs show deep blue emissions with extremely small CIE y of 0.034 for PIMNA and 0.084 for PyINA, with negligible efficiency roll-off. To take advantage of high photoluminescence quantum efficiency of PIMNA and large fraction of singlet exciton formation of PyINA, doped devices are fabricated by dispersing PyINA into PIMNA. A significantly improved maximum external quantum efficiency (EQE) of 5.05% is obtained through very effective energy transfer with CIE coordinates of (0.156, 0.060), and the EQE remains 4.67% at 1000 cd m -2 , which is among the best of deep blue OLEDs reported matching stringent EBU standard well.
A Laboratory-Based Course in Display Technology
ERIC Educational Resources Information Center
Sarik, J.; Akinwande, A. I.; Kymissis, I.
2011-01-01
A laboratory-based class in flat-panel display technology is presented. The course introduces fundamental concepts of display systems and reinforces these concepts through the fabrication of three display devices--an inorganic electroluminescent seven-segment display, a dot-matrix organic light-emitting diode (OLED) display, and a dot-matrix…
Development of 8-hydroxyquinoline metal based organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Feng, Xiaodong
Because of its potential application for flat panel displays, solid-state lighting and 1.5 mum emitter for fiber optical communications, organic light-emitting diodes (OLEDs) have been intensively researched. One of the major problems with current OLED technology relates to inefficient electron injection at the cathode interface, which causes high driving voltage and poor device stability. Making a low resistance cathode contact for electron injection is critical to device performance. This work mainly focuses on cathode interface design and engineering. The Ohmic contact using a structure of C60/LiF/Al has been developed in electron only devices. It is found that application of the C60/LiF/Al contact to Alq based OLEDs leads to a dramatic reduction in driving voltages, a significant improvement in power efficiency, and a much slower aging process. A new cathode structure based on metal-organic-metal (MOM) tri-layer films has been developed. It is found that MOM cathodes reduce reflection by deconstructive optical interference from two metal films. The absolute reflectance from the MOM tr-ilayer films can be reduced to as low as 7% in the visible light spectrum. In actual working devices, the reflectance can be reduced from ˜80% to ˜20%. MOM cathodes provide a potential low-cost solution for high contrast full-color OLED displays. Low voltage Erq based OLEDs at 1.5 mum emission have been developed. The Erq/Ag cathode interface has been found to be efficient for electron injection. Dramatic improvement in driving voltage and power efficiency has been realized by implementing Bphen and C60 into Erq devices as an electron transport layer. Integration of Erq devices on Si wafers has also been demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, Gary S.; Bluhm, Martin; Coffey, James
2011-01-02
Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources ofmore » elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.« less
Assessment of OLED displays for vision research.
Cooper, Emily A; Jiang, Haomiao; Vildavski, Vladimir; Farrell, Joyce E; Norcia, Anthony M
2013-10-23
Vision researchers rely on visual display technology for the presentation of stimuli to human and nonhuman observers. Verifying that the desired and displayed visual patterns match along dimensions such as luminance, spectrum, and spatial and temporal frequency is an essential part of developing controlled experiments. With cathode-ray tubes (CRTs) becoming virtually unavailable on the commercial market, it is useful to determine the characteristics of newly available displays based on organic light emitting diode (OLED) panels to determine how well they may serve to produce visual stimuli. This report describes a series of measurements summarizing the properties of images displayed on two commercially available OLED displays: the Sony Trimaster EL BVM-F250 and PVM-2541. The results show that the OLED displays have large contrast ratios, wide color gamuts, and precise, well-behaved temporal responses. Correct adjustment of the settings on both models produced luminance nonlinearities that were well predicted by a power function ("gamma correction"). Both displays have adjustable pixel independence and can be set to have little to no spatial pixel interactions. OLED displays appear to be a suitable, or even preferable, option for many vision research applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mike Hack
In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing themore » efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.« less
Recent advances in AM OLED technologies for application to aerospace and military systems
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles
2012-06-01
While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.
NASA Astrophysics Data System (ADS)
Anderson, Michele Lynn
Increasing the efficiency and durability of organic light-emitting diodes (OLEDs) has attracted attention recently due to their prospective wide-spread use as flat-panel displays. The performance and efficiency of OLEDs is understood to be critically dependent on the quality of the device heterojunctions, and on matching the ionization potentials (IP) and the electron affinities (EA) of the luminescent material (LM) with those of the hole (HTA) and electron (ETA) transport agents, respectively. The color and bandwidth of OLED emission color is thought to reflect the packing of the molecules in the luminescent layer. Finally, materials stability under OLED operating conditions is a significant concern. LM, HTA, and ETA thin films were grown in ultra-high vacuum using the molecular beam epitaxy technique. Thin film structure was determined in situ using reflection high energy electron diffraction (RHEED) and ex situ using UV-Vis spectroscopy. LM, HTA, and ETA occupied frontier orbitals (IP) were characterized by ultraviolet photoelectron spectroscopy (UPS), and their unoccupied frontier orbitals (EA) estimated from UV-Vis and fluorescence spectroscopies in combination with the UPS results. The stability of the molecules toward vacuum deposition was verified by compositional analysis of thin film X-ray photoelectron spectra. The stability of these materials toward redox processes was evaluated by cyclic voltammetry in nonaqueous media. Electrochemical data provide a more accurate estimation of the EA since the energetics for addition of an electron to a neutral molecule can be probed directly. The energetic barriers to charge injection into each layer of the device has been correlated to OLED turn-on voltage, indicating that these measurements may be used to screen potential combinations of materials for OLEDs. The chemical reversibility of LM voltammetry appears to limit the performance and lifetimes of solid-state OLEDs due to degradation of the organic layers. The role of oxygen as an electron trap in OLEDs has also been verified electrochemically. Finally, a more accurate determination of the offset of the occupied energy levels at the interface between two organic layers has been achieved via in situ monitoring of the UPS spectrum during heterojunction formation.
Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro
2017-01-31
Blue light containing rich melanopsin-stimulating (melanopic) component has been reported to enhance arousal level, but it is unclear whether the determinant of the effects is the absolute or relative content of melanopic component. We compared the autonomic and psychomotor arousal effects of melanopic-enriched blue light of organic light-emitting diode (OLED) with those of OLED lights with lesser absolute amount of melanopic component (green light) and with greater absolute but lesser relative content (white light). Using a ceiling light consisting of 120 panels (55 × 55 mm square) of OLED modules with adjustable color and brightness, we examined the effects of blue, green, and white lights (melanopic photon flux densities, 0.23, 0.14, and 0.38 μmol/m 2 /s and its relative content ratios, 72, 17, and 14%, respectively) on heart rate variability (HRV) during exposures and on the performance of psychomotor vigilance test (PVT) after exposures in ten healthy subjects with normal color vision. For each of the three colors, five consecutive 10-min sessions of light exposures were performed in the supine position, interleaved by four 10-min intervals during which 5-min PVT was performed under usual fluorescent light in sitting position. Low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.15-0.40 Hz) power and LF-to-HF ratio (LF/HF) of HRV during light exposures and reaction time (RT) and minor lapse (RT >500 ms) of PVT were analyzed. Heart rate was higher and the HF power reflecting autonomic resting was lower during exposures to the blue light than the green and white lights, while LF/HF did not differ significantly. Also, the number of minor lapse and the variation of reaction time reflecting decreased vigilance were lower after exposures to the blue light than the green light. The effects of blue OLED light for maintaining autonomic and psychomotor arousal levels depend on both absolute and relative contents of melanopic component in the light.
NASA Astrophysics Data System (ADS)
Hatakeyama, Takuji; Ikuta, Toshiaki; Shiren, Kazushi; Nakajima, Kiichi; Nomura, Shintaro; Ni, Jingping
2016-09-01
Organic light-emitting diodes (OLEDs) play an important role in the new generation of flat-panel displays. Conventional OLEDs employing fluorescent materials together with triplet-triplet annihilation suffer from a relatively low internal quantum efficiency (IQE) of 62.5%. On the other hand, the IQE of OLEDs employing phosphorescent or thermally activated delayed fluorescence (TADF) materials can reach 100%. However, these materials exhibit very broad peaks with a full-width at half-maximum (FWHM) of 70-100 nm and cannot satisfy the color-purity requirements for displays. Therefore, the latest commercial OLED displays employ blue fluorescent materials with a relatively low IQE, and efficient blue emitters with a small FWHM are highly needed. In our manuscript, we present organic molecules that exhibit ultrapure blue fluorescence based on TADF. These molecules consist of three benzene rings connected by one boron and two nitrogen atoms, which establish a rigid polycyclic framework and significant localization of the highest occupied and lowest unoccupied molecular orbitals by a multiple resonance effect. An OLED device based on the new emitter exhibits ultrapure blue emission at 467 nm with an FWHM of 28 nm, Commission Internationale de l'Eclairage (CIE) coordinates of (0.12, 0.13), and an IQE of 100%, which represent record-setting performance for blue OLED devices.
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier
2007-04-01
eMagin Corporation has recently developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. AMOLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. The new OLED-XL devices gave the promise of improvements in usable lifetime over 6X what the standard full color, white, and green devices could provide. The US Army's RDECOM CERDEC NVESD performed life tests on several standard and OLED-XL panels from eMagin under a Cooperative Research and Development Agreement (CRADA). Displays were tested at room temperature, utilizing eMagin's Design Reference Kit driver, allowing computer controlled optimization, brightness adjustment, and manual temperature compensation. The OLED Usable Lifetime Model, developed under a previous NVESD/eMagin SPIE paper presented at DSS 2005, has been adjusted based on the findings of these tests. The result is a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed.
Assessment of OLED displays for vision research
Cooper, Emily A.; Jiang, Haomiao; Vildavski, Vladimir; Farrell, Joyce E.; Norcia, Anthony M.
2013-01-01
Vision researchers rely on visual display technology for the presentation of stimuli to human and nonhuman observers. Verifying that the desired and displayed visual patterns match along dimensions such as luminance, spectrum, and spatial and temporal frequency is an essential part of developing controlled experiments. With cathode-ray tubes (CRTs) becoming virtually unavailable on the commercial market, it is useful to determine the characteristics of newly available displays based on organic light emitting diode (OLED) panels to determine how well they may serve to produce visual stimuli. This report describes a series of measurements summarizing the properties of images displayed on two commercially available OLED displays: the Sony Trimaster EL BVM-F250 and PVM-2541. The results show that the OLED displays have large contrast ratios, wide color gamuts, and precise, well-behaved temporal responses. Correct adjustment of the settings on both models produced luminance nonlinearities that were well predicted by a power function (“gamma correction”). Both displays have adjustable pixel independence and can be set to have little to no spatial pixel interactions. OLED displays appear to be a suitable, or even preferable, option for many vision research applications. PMID:24155345
Light management in flexible OLEDs
NASA Astrophysics Data System (ADS)
Harkema, Stephan; Pendyala, Raghu K.; Geurts, Christian G. C.; Helgers, Paul L. J.; Levell, Jack W.; Wilson, Joanne S.; MacKerron, Duncan
2014-10-01
Organic light-emitting diodes (OLEDs) are a promising lighting technology. In particular OLEDs fabricated on plastic foils are believed to hold the future. These planar devices are subject to various optical losses, which requires sophisticated light management solutions. Flexible OLEDs on plastic substrates are as prone to losses related to wave guiding as devices on glass. However, we determined that OLEDs on plastic substrates are susceptible to another loss mode due to wave guiding in the thin film barrier. With modeling of white polymer OLEDs fabricated on PEN substrates, we demonstrate that this loss mode is particularly sensitive to polarized light emission. Furthermore, we investigated how thin film barrier approaches can be combined with high index light extraction layers. Our analysis shows that OLEDs with a thin film barrier consisting of an inorganic/organic/inorganic layer sequence, a low index inorganic negatively affects the OLED efficiency. We conclude that high index inorganics are more suitable for usage in high efficiency flexible OLEDs.
Tae Lim, Jong; Lee, Hyunkoo; Cho, Hyunsu; Kwon, Byoung-Hwa; Sung Cho, Nam; Kuk Lee, Bong; Park, Jonghyurk; Kim, Jaesu; Han, Jun-Han; Yang, Jong-Heon; Yu, Byoung-Gon; Hwang, Chi-Sun; Chu Lim, Seong; Lee, Jeong-Ik
2015-01-01
Graphene has attracted considerable attention as a next-generation transparent conducting electrode, because of its high electrical conductivity and optical transparency. Various optoelectronic devices comprising graphene as a bottom electrode, such as organic light-emitting diodes (OLEDs), organic photovoltaics, quantum-dot LEDs, and light-emitting electrochemical cells, have recently been reported. However, performance of optoelectronic devices using graphene as top electrodes is limited, because the lamination process through which graphene is positioned as the top layer of these conventional OLEDs is a lack of control in the surface roughness, the gapless contact, and the flexion bonding between graphene and organic layer of the device. Here, a multilayered graphene (MLG) as a top electrode is successfully implanted, via dry bonding, onto the top organic layer of transparent OLED (TOLED) with flexion patterns. The performance of the TOLED with MLG electrode is comparable to that of a conventional TOLED with a semi-transparent thin-Ag top electrode, because the MLG electrode makes a contact with the TOLED with no residue. In addition, we successfully fabricate a large-size transparent segment panel using the developed MLG electrode. Therefore, we believe that the flexion bonding technology presented in this work is applicable to various optoelectronic devices. PMID:26626439
Improving the performance of doped pi-conjugated polymers for use in organic light-emitting diodes
Gross; Muller; Nothofer; Scherf; Neher; Brauchle; Meerholz
2000-06-08
Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays. Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped pi-conjugated polymer layers improve the injection of holes in OLED devices; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.
High efficiency blue and white phosphorescent organic light emitting devices
NASA Astrophysics Data System (ADS)
Eom, Sang-Hyun
Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L'Eclairage (CIE) coordinates of (0.16, 0.28). High efficiency white PHOLEDs are also demonstrated by incorporating green and red phosphorescent emitters together with the deep-blue emitter FIr6. Similar to the FIr6-only devices, the D-EML structure with high triplet energy charge transport materials leads to a maximum external quantum efficiency of (19 +/- 1) %. Using the p-i-n device structure, a peak power efficiency of (40 +/- 2) lm/W and (36 +/- 2) lm/W at 100 cd/m2 were achieved, and the white PHOLED possesses a CRI of 79 and CIE coordinates of (0.37, 0.40). The limited light extraction from the planar-type OLEDs is also one of the remaining challenges to the OLED efficiency. Here we have developed a simple soft lithography technique to fabricate a transparent, close-packed hemispherical microlens arrays. The application of such microlens arrays to the glass surface of the large-area fluorescent OLEDs enhanced the light extraction efficiency up to (70 +/- 7)%. It is also shown that the light extraction efficiency of the OLEDs is affected by microlens contact angle, OLEDs size, and detailed layer structure of the OLEDs.
Islam, Amjad; Zhang, Dongdong; Peng, Ruixiang; Yang, Rongjuan; Hong, Ling; Song, Wei; Wei, Qiang; Duan, Lian; Ge, Ziyi
2017-09-05
Blue organic light-emitting diodes (OLEDs) are necessary for flat-panel display technologies and lighting applications. To make more energy-saving, low-cost and long-lasting OLEDs, efficient materials as well as simple structured devices are in high demand. However, a very limited number of blue OLEDs achieving high stability and color purity have been reported. Herein, three new sky-blue emitters, 1,4,5-triphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEI), 1-(4-methoxyphenyl)-4,5-diphenyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (TPEMeOPhI) and 1-phenyl-2,4,5-tris(4-(1,2,2-triphenylvinyl)phenyl)-1H-imidazole (3TPEI), with a combination of imidazole and tetraphenylethene groups, have been developed. High photoluminescence quantum yields are obtained for these materials. All derivatives have demonstrated aggregation-induced emission (AIE) behavior, excellent thermal stability with high decomposition and glass transition temperatures. Non-doped sky-blue OLEDs with simple structure have been fabricated employing these materials as emitters and realized high efficiencies of 2.41 % (4.92 cd A -1 , 2.70 lm W -1 ), 2.16 (4.33 cd A -1 , 2.59 lm W -1 ) and 3.13 % (6.97 cd A -1 , 4.74 lm W -1 ) for TPEI, TPEMeOPhI and 3TPEI, with small efficiency roll-off. These are among excellent results for molecules constructed from the combination of imidazole and TPE reported so far. The high performance of a 3TPEI-based device shows the promising potential of the combination of imidazole and AIEgen for synthesizing efficient electroluminescent materials for OLED devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integration of organic LEDs with inorganic LEDs for a hybrid lighting system
NASA Astrophysics Data System (ADS)
Kong, H. J.; Park, J. W.; Kim, Y. M.
2013-01-01
We demonstrate that a surface-emitting hybrid light source can be realized by a combination of organic and inorganic light-emitting devices (LEDs). To this end, a blue inorganic LED bar is deployed at one side of a transparent light guide plate (LGP), and a yellow organic LED (OLED) is in contact with the rear surface of the LGP. In such a configuration, it is found that the overall luminance is almost equivalent to the sum of the luminances measured from each light source, and the overall luminance uniformity is determined mainly by the luminance uniformity of the OLED panel at high luminances. We have achieved a white color showing the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (x = 0.34, y = 0.33), the power efficiency of 9.3 lm/W, the luminance uniformity of 63% at the luminance of 3100 cd m-2, the color rendering index as high as 89.3, and the correlated color temperature finely tunable within the range between 3000 and 8000 K. Such a system facilitates color tuning by adjusting their luminous intensities and hence the implementation of the emotional lighting system.
Printing method for organic light emitting device lighting
NASA Astrophysics Data System (ADS)
Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol
2013-03-01
Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.
New Materials and Device Designs for Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
O'Brien, Barry Patrick
Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green/blue structure to produce light with high color rendering index. Another part of this work describes the fabrication of a 14.7" diagonal full color active-matrix OLED display on plastic substrate. The backplanes were designed and fabricated in the ASU Flexible Display Center and required significant engineering to develop; a discussion of that process is also included.
Methodological comparison on OLED and OLET fabrication
NASA Astrophysics Data System (ADS)
Suppiah, Sarveshvaran; Hambali, Nor Azura Malini Ahmad; Wahid, Mohamad Halim Abd; Retnasamy, Vithyacharan; Shahimin, Mukhzeer Mohamad
2018-02-01
The potential of organic semiconductor devices for light generation is demonstrated by the commercialization of display technologies based on organic light emitting diode (OLED). In OLED, organic materials play the role of light emission once the current is passed through. However, OLED do have major drawbacks whereby it suffers from photon loss and exciton quenching. Organic light emitting transistor (OLET) emerged as the new technology to compensate the efficiency and brightness loss encountered in OLED. The structure has combinational capability to switch the electronic signal such as the field effect transistor (FET) as well as light generation. The aim of this study is to methodologically compare and contrast fabrication process and evaluate feasibility of both organic light emitting diode (OLED) and organic light emitting transistor (OLET). The proposed light emitting layer in this study is poly [2-methoxy-5- (2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV).
Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming
2014-06-03
Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.
Light emitting device having peripheral emissive region
Forrest, Stephen R
2013-05-28
Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.
OLED Lighting Products: Capabilities, Challenges, Potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, N. J.; Leon, F. A.
A report that focuses on the potential for architectural OLED lighting – describing currently available OLED products as well as promised improvements, and addressing the technology and market hurdles that have thus far prevented wider use of OLEDs.
Encapsulation of organic light emitting diodes
NASA Astrophysics Data System (ADS)
Visweswaran, Bhadri
Organic Light Emitting Diodes (OLEDs) are extremely attractive candidates for flexible display and lighting panels due to their high contrast ratio, light weight and flexible nature. However, the materials in an OLED get oxidized by extremely small quantities of atmospheric moisture and oxygen. To obtain a flexible OLED device, a flexible thin-film barrier encapsulation with low permeability for water is necessary. Water permeates through a thin-film barrier by 4 modes: microcracks, contaminant particles, along interfaces, and through the bulk of the material. We have developed a flexible barrier film made by Plasma Enhanced Chemical Vapor Deposition (PECVD) that is devoid of any microcracks. In this work we have systematically reduced the permeation from the other three modes to come up with a barrier film design for an operating lifetime of over 10 years. To provide quantitative feedback during barrier material development, techniques for measuring low diffusion coefficient and solubility of water in a barrier material have been developed. The mechanism of water diffusion in the barrier has been identified. From the measurements, we have created a model for predicting the operating lifetime from accelerated tests when the lifetime is limited by bulk diffusion. To prevent the particle induced water permeation, we have encapsulated artificial particles and have studied their cross section. A three layer thin-film that can coat a particle at thicknesses smaller than the particle diameter is identified. It is demonstrated to protect a bottom emission OLED device that was contaminated with standard sized glass beads. The photoresist and the organic layers below the barrier film causes sideways permeation that can reduce the lifetime set by permeation through the bulk of the barrier. To prevent the sideways permeation, an impermeable inorganic grid made of the same barrier material is designed. The reduction in sideways permeation due to the impermeable inorganic grid is demonstrated in an encapsulated OLED. In this work, we have dealt with three permeation mechanisms and shown solution to each of them. These steps give us reliable flexible encapsulation that has a lifetime of greater than 10 years.
Extracting and shaping the light of OLED devices
NASA Astrophysics Data System (ADS)
Riedel, Daniel; Dlugosch, Julian; Wehlus, Thomas; Brabec, Christoph
2015-09-01
Before the market entry of organic light emitting diodes (OLEDs) into the field of general illumination can occur, limitations in lifetime, luminous efficacy and cost must be overcome. Additional requirements for OLEDs used for general illumination may be imposed by workplace glare reduction requirements, which demand limited luminance for high viewing angles. These requirements contrast with the typical lambertian emission characteristics of OLEDs, which result in the same luminance levels for all emission angles. As a consequence, without additional measures glare reduction could limit the maximum possible luminance of lambertian OLEDs to relatively low levels. However, high luminance levels are still desirable in order to obtain high light output. We are presenting solutions to overcome this dilemma. Therefore this work is focused on light-shaping structures for OLEDs with an internal light extraction layer. Simulations of beam-shaping structures and shapes are presented, followed by experimental measurements to verify the simulations of the most promising structures. An investigation of the loss channels has been carried out and the overall optical system efficiency was evaluated for all structures. The most promising light shaping structures achieve system efficiencies up to 80%. Finally, a general illumination application scenario has been simulated. The number of OLEDs needed to illuminate an office room has been deduced from this scenario. By using light-shaping structures for OLEDs, the number of OLEDs needed to reach the mandatory illuminance level for a workplace environment can be reduced to one third compared to lambertian OLEDs.
NASA Astrophysics Data System (ADS)
Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.
2006-09-01
The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.
Long-Lived Flexible Displays Employing Efficient and Stable Inverted Organic Light-Emitting Diodes.
Fukagawa, Hirohiko; Sasaki, Tsubasa; Tsuzuki, Toshimitsu; Nakajima, Yoshiki; Takei, Tatsuya; Motomura, Genichi; Hasegawa, Munehiro; Morii, Katsuyuki; Shimizu, Takahisa
2018-05-29
Although organic light-emitting diodes (OLEDs) are promising for use in applications such as in flexible displays, reports of long-lived flexible OLED-based devices are limited due to the poor environmental stability of OLEDs. Flexible substrates such as plastic allow ambient oxygen and moisture to permeate into devices, which degrades the alkali metals used for the electron-injection layer in conventional OLEDs (cOLEDs). Here, the fabrication of a long-lived flexible display is reported using efficient and stable inverted OLEDs (iOLEDs), in which electrons can be effectively injected without the use of alkali metals. The flexible display employing iOLEDs can emit light for over 1 year with simplified encapsulation, whereas a flexible display employing cOLEDs exhibits almost no luminescence after only 21 d with the same encapsulation. These results demonstrate the great potential of iOLEDs to replace cOLEDs employing alkali metals for use in a wide variety of flexible organic optoelectronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
van Elsbergen, V.; Boerner, H.; Löbl, H.-P.; Goldmann, C.; Grabowski, S. P.; Young, E.; Gaertner, G.; Greiner, H.
2008-08-01
Organic light emitting diodes (OLEDs) provide potential for power-efficient large area light sources that combine revolutionary properties. They are thin and flat and in addition they can be transparent, colour-tuneable, or flexible. We review the state of the art in white OLEDs and present performance data for three-colour hybrid white OLEDs on indexmatched substrates. With improved optical outcoupling 45 lm/W are achieved. Using a half-sphere to collect all the light that is in the substrate results in 80 lm/W. Optical modelling supports the experimental work. For decorative applications features like transparency and colour tuning are very appealing. We show results on transparent white OLEDs and two ways to come to a colour-variable OLED. These are lateral separation of different colours in a striped design and direct vertical stacking of the different emitting layers. For a striped colour tuneable OLED 36 lm/W are achieved in white with improved optical outcoupling.
Contrast-enhancement in organic light-emitting diodes.
Wu, Zhaoxin; Wang, Liduo; Qiu, Yong
2005-03-07
A high-contrast organic light-emitting diode (OLED) structure is presented. Because of poor contrast of conventional OLED resulting from high reflective metal cathode, the hybrid cathode structure was developed for low reflectivity. It consists the semitransparent cathode layers, passivation layers and a thick light-absorbing film. By optical reflectivity measurement and OLED electrical characterization tests for both OLED with the hybrid cathode and conventional OLED, it was found that the spectrum reflectance of OLED with hybrid cathode is among 8%-12%, about eight times lower than the conventional one when the two types of devices have similar turn-on voltages and current-voltage characteristics. The hybrid cathode for the high-contrast OLED is easily fabricated and its optical reflectance is slightly dependent on wavelength.
Highly efficient white OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
Murano, Sven; Burghart, Markus; Birnstock, Jan; Wellmann, Philipp; Vehse, Martin; Werner, Ansgar; Canzler, Tobias; Stübinger, Thomas; He, Gufeng; Pfeiffer, Martin; Boerner, Herbert
2005-10-01
The use of organic light-emitting diodes (OLEDs) for large area general lighting purposes is gaining increasing interest during the recent years. Especially small molecule based OLEDs have already shown their potential for future applications. For white light emission OLEDs, power efficiencies exceeding that of incandescent bulbs could already be demonstrated, however additional improvements are needed to further mature the technology allowing for commercial applications as general purpose illuminating sources. Ultimately the efficiencies of fluorescent tubes should be reached or even excelled, a goal which could already be achieved in the past for green OLEDs.1 In this publication the authors will present highly efficient white OLEDs based on an intentional doping of the charge carrier transport layers and the usage of different state of the art emission principles. This presentation will compare white PIN-OLEDs based on phosphorescent emitters, fluorescent emitters and stacked OLEDs. It will be demonstrated that the reduction of the operating voltage by the use of intentionally doped transport layers leads to very high power efficiencies for white OLEDs, demonstrating power efficiencies of well above 20 lm/W @ 1000 cd/m2. The color rendering properties of the emitted light is very high and CRIs between 85 and 95 are achieved, therefore the requirements for standard applications in the field of lighting applications could be clearly fulfilled. The color coordinates of the light emission can be tuned within a wide range through the implementation of minor structural changes.
GATEWAY Demonstrations: OLED Lighting in the Offices of Aurora Lighting Design, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Naomi J.
At the offices of Aurora Lighting Design, Inc., in Grayslake, IL, the GATEWAY program conducted its first investigation involving OLED lighting. The project experienced several challenges, but also highlighted a number of promising attributes – which indicate that with continued improvements in efficacy, longevity, size, and flexibility, OLEDs could provide a new tool for creative and effective lighting.
OLEDs for lighting: new approaches
NASA Astrophysics Data System (ADS)
Duggal, Anil R.; Foust, Donald F.; Nealon, William F.; Heller, Christian M.
2004-02-01
OLED technology has improved to the point where it is now possible to envision developing OLEDs as a low cost solid state light source. In order to realize this, significant advances have to be made in device efficiency, lifetime at high brightness, high throughput fabrication, and the generation of illumination quality white light. In this talk, the requirements for general lighting will be reviewed and various approaches to meeting them will be outlined. Emphasis will be placed on a new monolithic series-connected OLED design architecture that promises scalability without high fabrication cost or design complexity.
Development of functional nano-particle layer for highly efficient OLED
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyun; Kim, Min-Hoi; Choi, Haechul; Choi, Yoonseuk
2015-12-01
Organic light emitting diodes (OLEDs) are now widely commercialized in market due to many advantages such as possibility of making thin or flexible devices. Nevertheless there are still several things to obtain the high quality flexible OLEDs, one of the most important issues is the light extraction of the device. It is known that OLEDs have the typical light loss such as the waveguide loss, plasmon absorption loss and internal total reflection. In this paper, we demonstrate the one-step processed light scattering films with aluminum oxide nano-particles and polystyrene matrix composite to achieve highly efficient OLEDs. Optical characteristics and surface roughness of light scattering film was optimized by changing the mixing concentration of Al2O3 nano-particles and investigated with the atomic force microscopy and hazemeter, respectively.
Concepts for high efficient white OLEDs for lighting applications
NASA Astrophysics Data System (ADS)
Hunze, A.; Krause, R.; Seidel, S.; Weiss, O.; Kozlowski, F.; Schmid, G.; Meyer, J.; Kröger, M.; Johannes, H. H.; Kowalsky, W.; Dobbertin, T.
2007-09-01
Apart from usage of organic light emitting diodes for flat panel display applications OLEDs are a potential candidate for the next solid state lighting technology. One key parameter is the development of high efficient, stable white devices. To realize this goal there are different concepts. Especially by using highly efficient phosphorescent guest molecules doped into a suitable host material high efficiency values can be obtained. We started our investigations with a single dopant and extended this to a two phosphorescent emitter approach leading to a device with a high power efficiency of more than 25 lm/W @ 1000 cd/m2. The disadvantage of full phosphorescent device setups is that esp. blue phosphorescent emitters show an insufficient long-term stability. A possibility to overcome this problem is the usage of more stable fluorescent blue dopants, whereas, due to the fact that only singlet excitons can decay radiatively, the efficiency is lower. With a concept, proposed by Sun et al.1 in 2006, it is possible to manage the recombination zone and thus the contribution from the different dopants. With this approach stable white color coordinates with sufficient current efficiency values have been achieved.
NASA Astrophysics Data System (ADS)
Chang, Hong-Wei; Lee, Jonghee; Hofmann, Simone; Hyun Kim, Yong; Müller-Meskamp, Lars; Lüssem, Björn; Wu, Chung-Chih; Leo, Karl; Gather, Malte C.
2013-05-01
The performance of both organic light-emitting diodes (OLEDs) and organic solar cells (OSC) depends on efficient coupling between optical far field modes and the emitting/absorbing region of the device. Current approaches towards OLEDs with efficient light-extraction often are limited to single-color emission or require expensive, non-standard substrates or top-down structuring, which reduces compatibility with large-area light sources. Here, we report on integrating solution-processed nano-particle based light-scattering films close to the active region of organic semiconductor devices. In OLEDs, these films efficiently extract light that would otherwise remain trapped in the device. Without additional external outcoupling structures, translucent white OLEDs containing these scattering films achieve luminous efficacies of 46 lm W-1 and external quantum efficiencies of 33% (both at 1000 cd m-2). These are by far the highest numbers ever reported for translucent white OLEDs and the best values in the open literature for any white device on a conventional substrate. By applying additional light-extraction structures, 62 lm W-1 and 46% EQE are reached. Besides universally enhancing light-extraction in various OLED configurations, including flexible, translucent, single-color, and white OLEDs, the nano-particle scattering film boosts the short-circuit current density in translucent organic solar cells by up to 70%.
GATEWAY Report Brief: OLED Lighting in the Offices of Aurora Lighting Design, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Summary of a GATEWAY report evaluation at the offices of Aurora Lighting Design, Inc., in Grayslake, IL, where the GATEWAY program conducted its first investigation involving OLED lighting. The project experienced several challenges, but also highlighted a number of promising attributes – which indicate that with continued improvements in efficacy, longevity, size, and flexibility, OLEDs could provide a new tool for creative and effective lighting.
Thin Film Packaging Solutions for High Efficiency OLED Lighting Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-06-30
The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000more » hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercialization effort, the project team believes, will lead to increasing market attention and broader demand for more efficient, wide area general purpose white OLED lighting in the coming years.« less
Nucleation and Growth Control of ZnO via Impurity-mediated Crystallization
2015-01-02
Characteristics of Crystalline Silicon/Si Quantum Dot/Poly(3,4-ethylenedioxythiophene) Hybrid Solar Cells ”, G. Uchida, Y. Wang, D. Ichida, H. Seo, K. Kamataki, N...Electron Transfer of Dye-Sensitized Solar Cell Using Vanadium Doped TiO2 ”, H. Seo, Y. Wang, D. Ichida, G. Uchida, N. Itagaki, K. Koga, M. Shiratani, S...conductive oxide (TCO) in flat-panel displays, touch screens on smartphones, organic light-emitting diodes (OLEDs), solar cells , etc [1-6]. The resistivity
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Top-emitting organic light-emitting diodes.
Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl
2011-11-07
We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.
Extremely efficient flexible organic light-emitting diodes with modified graphene anode
NASA Astrophysics Data System (ADS)
Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo
2012-02-01
Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.
Recent advances in light outcoupling from white organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Gather, Malte C.; Reineke, Sebastian
2015-01-01
Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically <30%). Here, we provide an introduction to the underlying physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.
Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel
2010-01-01
We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580
On the Properties and Design of Organic Light-Emitting Devices
NASA Astrophysics Data System (ADS)
Erickson, Nicholas C.
Organic light-emitting devices (OLEDs) are attractive for use in next-generation display and lighting technologies. In display applications, OLEDs offer a wide emission color gamut, compatibility with flexible substrates, and high power efficiencies. In lighting applications, OLEDs offer attractive features such as broadband emission, high-performance, and potential compatibility with low-cost manufacturing methods. Despite recent demonstrations of near unity internal quantum efficiencies (photons out per electron in), OLED adoption lags conventional technologies, particularly in large-area displays and general lighting applications. This thesis seeks to understand the optical and electronic properties of OLED materials and device architectures which lead to not only high peak efficiency, but also reduced device complexity, high efficiency under high excitation, and optimal white-light emission. This is accomplished through the careful manipulation of organic thin film compositions fabricated via vacuum thermal evaporation, and the introduction of a novel device architecture, the graded-emissive layer (G-EML). This device architecture offers a unique platform to study the electronic properties of varying compositions of organic semiconductors and the resulting device performance. This thesis also introduces an experimental technique to measure the spatial overlap of electrons and holes within an OLED's emissive layer. This overlap is an important parameter which is affected by the choice of materials and device design, and greatly impacts the operation of the OLED at high excitation densities. Using the G-EML device architecture, OLEDs with improved efficiency characteristics are demonstrated, achieving simultaneously high brightness and high efficiency.
NASA Astrophysics Data System (ADS)
Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon
2015-01-01
Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06547f
Numerical study of the light output intensity of the bilayer organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Lu, Feiping
2017-02-01
The structure of organic light-emitting diodes (OLEDs) is one of most important issues that influence the light output intensity (LOI) of OLEDs. In this paper, based on a simple but accurate optical model, the influences of hole and electron transport layer thickness on the LOI of bilayer OLEDs, which with N,N0- bis(naphthalen-1-yl)-N,N0- bis(phenyl)- benzidine (NPB) or N,N'- diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4-diamine (TPD) as hole transport layer, with tris(8-hydroxyquinoline) aluminum (Alq3) as electron transport and light emitting layers, were investigated. The laws of LOI for OLEDs under different organic layer thickness values were obtained. The results show that the LOI of devices varies in accordance with damped cosine or sine function as the increasing of organic layer thickness, and the results show that the bilayer OLEDs with the structure of Glass/ITO/NPB (55 nm)/Alq3 (75 nm)/Al and Glass/ITO/TPB (60 nm)/Alq3 (75 nm)/Al have most largest LOI. When the thickness of Alq3 is less than 105 nm, the OLEDs with TPD as hole transport layer have larger LOI than that with NPB as hole transport layer. The results obtained in this paper can present an in-depth understanding of the working mechanism of OLEDs and help ones fabricate high efficiency OLEDs.
OLED with improved light outcoupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen; Sun, Yiru
2016-11-29
An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standardmore » OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.« less
FDTD analysis of the light extraction efficiency of OLEDs with a random scattering layer.
Kim, Jun-Whee; Jang, Ji-Hyang; Oh, Min-Cheol; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jae-Hyun; Lee, Jeong-Ik
2014-01-13
The light extraction efficiency of OLEDs with a nano-sized random scattering layer (RSL-OLEDs) was analyzed using the Finite Difference Time Domain (FDTD) method. In contrast to periodic diffraction patterns, the presence of an RSL suppresses the spectral shift with respect to the viewing angle. For FDTD simulation of RSL-OLEDs, a planar light source with a certain spatial and temporal coherence was incorporated, and the light extraction efficiency with respect to the fill factor of the RSL and the absorption coefficient of the material was investigated. The design results were compared to the experimental results of the RSL-OLEDs in order to confirm the usefulness of FDTD in predicting experimental results. According to our FDTD simulations, the light confined within the ITO-organic waveguide was quickly absorbed, and the absorption coefficients of ITO and RSL materials should be reduced in order to obtain significant improvement in the external quantum efficiency (EQE). When the extinction coefficient of ITO was 0.01, the EQE in the RSL-OLED was simulated to be enhanced by a factor of 1.8.
Weak-microcavity organic light-emitting diodes with improved light out-coupling.
Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee
2008-08-18
We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.
White OLED devices and processes for lighting applications
NASA Astrophysics Data System (ADS)
Ide, Nobuhiro; Tsuji, Hiroya; Ito, Norihiro; Matsuhisa, Yuko; Houzumi, Shingo; Nishimori, Taisuke
2010-05-01
In these days, the basic performances of white OLEDs are dramatically improved and application of OLEDs to "Lighting" is expected to be true in the near future. We have developed various technologies for OLED lighting with the aid of the Japanese governmental project, "High-efficiency lighting based on the organic light-emitting mechanism." In this project, a white OLED with high efficiency (37 lm/W) and high quality emission characteristics (CRI of 95 with a small variation of chromaticity in different directions and chromaticity just on the black-body radiation curve) applicable to "Lighting" was realized by a two-unit structure with a fluorescent deep blue emissive unit and a phosphorescent green and red emissive unit. Half-decay lifetime of this white OLED at 1,000 cd/m2 was over 40,000 h. A heat radiative, thin encapsulation structure (less than 1 mm) realized a very stable emission at high luminance of over 3,000 cd/m2. A new deposition source with a hot-wall and a rate controllable valve was developed. Thickness uniformity within +/- 3% at high deposition rate of over 8 nm/s, high material utilization of over 70 %, and repeatable deposition rate controllability were confirmed.
Electrochemical models for the radical annihilation reactions in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Armstrong, Neal R.; Anderson, Jeffrey D.; Lee, Paul A.; McDonald, Erin; Wightman, R. M.; Hall, Hank K.; Hopkins, Tracy; Padias, Anne; Thayumanavan, Sankaran; Barlow, Stephen; Marder, Seth R.
1998-12-01
Bilayer organic light emitting diodes (OLEDs), based upon vacuum deposited molecules, or single layer OLEDs, based upon spin-cast polymeric materials, doped with these same molecules, produce light from emissive states of the lumophores which are created through annihilation reactions of radical species, which can be modeled through solution electrochemistry. Difference seen in solution reduction and oxidation potentials of molecular components of OLEDs are a lower limit estimate to the differences in energy of these same radical species in the condensed phase environmental. The light emitted from an aluminum quinolate (Alq3)/triarylamine (TPD)-based OLED, or an Alq3/PVK single layers OLED, can be reproduce from solution cross reactions of Alq3/TPD+. The efficiency of this process increases as the oxidation potential of the TPD increases, due to added substituents. Radical cations and anions of solubilized version of quinacridone dopants (DIQA) which have been used to enhance efficiencies in these OLEDs, are shown to be electrochemically more stable than Alq3 and Alq3, and DIQA radical annihilation reactions produce the same emissive state as in the quinacridone-doped OLEDs. Electrochemical studies demonstrate the ways in which other dopants might enhance the efficiency and shift the color output of OLEDs, across the entire visible and near-IR spectrum. Chemical degradation pathways of these same molecular components, which they may undergo during OLED operation, are also revealed by these electrochemical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaynor, Whitney
OLED lighting has immense potential as aesthetically pleasing, energy-efficient general illumination. Unlike other light sources, such as incandescents, fluorescents, and inorganic LEDs, OLEDs naturally emit over a large-area surface. They are glare free, do not need to be shaded, and are cool to the touch, requiring no heatsink. The best efficiencies and lifetimes reported are on par with or better than current forms of illumination. However, the cost for OLED lighting remains high – so much so that these products are not market competitive and there is very low consumer demand. We believe that flexible, plastic-based devices will highlight themore » advantages of aesthetically-pleasing OLED lighting systems while paving the way for lowering both materials and manufacturing costs. These flexible devices require new development in substrate and support technology, which was the focus of the work reported here. The project team, led by Sinovia Technologies, has developed integrated plastic substrates to serve as supports for flexible OLED lighting. The substrates created in this project would enable large-area, flexible devices and are specified to perform three functions. They include a barrier to protect the OLED from moisture and oxygen-related degradation, a smooth, highly conductive transparent electrode to enable large-area device operation, and a light scattering layer to improve emission efficiency. Through the course of this project, integrated substrates were fabricated, characterized, evaluated for manufacturing feasibility and cost, and used in white OLED demonstrations to test their impact on flexible OLED lighting. Our integrated substrates meet or exceed the DOE specifications for barrier performance in water vapor and oxygen transport rates, as well as the transparency and conductivity of the anode film. We find that these integrated substrates can be manufactured in a completely roll-to-roll, high throughput process and have developed and demonstrated manufacturing methods that can produce thousands of feet of material without defects. We have evaluated the materials and manufacturing costs of these films at scale and find that they meet the current and future cost targets for bringing down the cost of OLED lighting while enabling future roll-to-roll manufacturing of the complete device. And finally, we have demonstrated that the inherent light-scattering properties of our films enhance white OLED emission efficiency from 20% to 50% depending on the metric. This work has shown that these substrates can be created, manufactured, and will perform as needed to enable flexible OLED lighting to enter the marketplace.« less
Advances in OLED/OPD-based sensors and spectrometer-on-a-chip (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Kaudal, Rajiv; Manna, Eeshita; Fungura, Fadzai; Shinar, Ruth
2016-09-01
We describe ongoing advances toward achieving all-organic optical sensors and a spectrometer on a chip. Two-dimensional combinatorial arrays of microcavity OLEDs (μcOLEDs) with systematically varying optical cavity lengths are fabricated on a single chip by changing the thickness of different organic and/or spacer layers sandwiched between two metal electrodes (one very thin) that form the cavity. The broad spectral range is achieved by utilizing materials that result in white OLEDs (WOLEDs) when fabricated on a standard ITO substrate. The tunable and narrower emissions from the μcOLEDs serve as excitation sources in luminescent sensors and in monitoring light absorption. For each wavelength, the light from the μcOLED is partially absorbed by a sample under study and the light emitted by an electronically excited sample, or the transmitted light is detected by a photodetector (PD). To obtain a compact monitor, an organic PD (OPD) or a perovskite-based PD is integrated with the μcOLED array. We show the potential of encompassing a broader wavelength range by using WOLED materials to fabricate the μcOLEDs. The utility of the all-organic analytical devices is demonstrated by monitoring oxygen, and bioanalytes based on oxygen detection, as well as the absorption spectra of dyes.
Tandem Organic Light-Emitting Diodes.
Fung, Man-Keung; Li, Yan-Qing; Liao, Liang-Sheng
2016-12-01
A tandem organic light-emitting diode (OLED) is an organic optoelectronic device that has two or more electroluminescence (EL) units connected electrically in series with unique intermediate connectors within the device. Researchers have studied this new OLED architecture with growing interest and have found that the current efficiency of a tandem OLED containing N EL units (N > 1) should be N times that of a conventional OLED containing only a single EL unit. Therefore, this new architecture is potentially useful for constructing high-efficiency, high-luminance, and long-lifetime OLED displays and organic solid-state lighting sources. In a tandem OLED, the intermediate connector plays a crucial role in determining the effectiveness of the stacked EL units. The interfaces in the connector control the inner charge generation and charge injection into the adjacent EL units. Meanwhile, the transparency and the thickness of the connector affect the light output of the device. Therefore, the intermediate connector should be made to meet both the electrical and optical requirements for achieving optimal performance. Here, recent advances in the research of the tandem OLEDs is discussed, with the main focus on material selection and interface studies in the intermediate connectors, as well as the optical design of the tandem OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near-field photometry for organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat
2013-03-01
Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.
Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device
NASA Astrophysics Data System (ADS)
Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin
2012-06-01
We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.
High-performance organic light-emitting diodes comprising ultrastable glass layers
Rodríguez-Viejo, Javier
2018-01-01
Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials’ glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used. PMID:29806029
Luo, Yu; Wang, Chunhui; Wang, Li; Ding, Yucheng; Li, Long; Wei, Bin; Zhang, Jianhua
2014-07-09
High-efficiency organic light-emitting diodes (OLEDs) have generated tremendous research interest. One of the exciting possibilities of OLEDs is the use of flexible plastic substrates, which unfortunately have a mismatching refractive index compared with the conventional ITO anode and the air. To unlock the light loss on flexible plastic, we report a high-efficiency flexible OLED directly fabricated on a double-sided nanotextured polycarbonate substrate by thermal nanoimprint lithography. The template for the nanoimprint process is a replicate from a silica arrayed with nanopillars and fabricated by ICP etching through a SiO2 colloidal spheres mask. It has been shown that with the internal quasi-periodical scattering gratings the efficiency enhancement can reach 50% for a green light OLED, and with an external antireflection structure, the normal transmittance is increased from 89% to 94% for paraboloid-like pillars. The OLED directly fabricated on the double-sided nanotextured polycarbonate substrate has reached an enhancing factor of ∼2.8 for the current efficiency.
Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gang
2003-01-01
Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thusmore » OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.« less
Progress in wet-coated organic light-emitting devices for lighting
NASA Astrophysics Data System (ADS)
Liu, Jie; Ye, Qing; Lewis, Larry N.; Duggal, Anil R.
2007-09-01
Here we present recent progress in developing efficient wet-coated organic light-emitting devices (OLEDs) for lighting applications. In particular, we describe a novel approach for building efficient wet-coated dye-doped blue phosphorescent devices. Further, a novel approach for achieving arbitrary emission patterning for OLEDs is discussed. This approach utilizes a photo-induced chemical doping strategy for selectively activating charge injection materials, thus enabling devices with arbitrary emission patterning. This approach may provide a simple, low cost path towards specialty lighting and signage applications for OLED technology.
Full-color OLED on silicon microdisplay
NASA Astrophysics Data System (ADS)
Ghosh, Amalkumar P.
2002-02-01
eMagin has developed numerous enhancements to organic light emitting diode (OLED) technology, including a unique, up- emitting structure for OLED-on-silicon microdisplay devices. Recently, eMagin has fabricated full color SVGA+ resolution OLED microdisplays on silicon, with over 1.5 million color elements. The display is based on white light emission from OLED followed by LCD-type red, green and blue color filters. The color filters are patterned directly on OLED devices following suitable thin film encapsulation and the drive circuits are built directly on single crystal silicon. The resultant color OLED technology, with hits high efficiency, high brightness, and low power consumption, is ideally suited for near to the eye applications such as wearable PCS, wireless Internet applications and mobile phone, portable DVD viewers, digital cameras and other emerging applications.
NASA Astrophysics Data System (ADS)
Levell, Jack W.; Harkema, Stephan; Pendyala, Raghu K.; Rensing, Peter A.; Senes, Alessia; Bollen, Dirk; MacKerron, Duncan; Wilson, Joanne S.
2013-09-01
A general challenge in Organic Light Emitting Diodes (OLEDs) is to extract the light efficiently from waveguided modes within the device structure. This can be accomplished by applying an additional scattering layer to the substrate which results in outcoupling increases between 0% to <100% in external quantum efficiency. In this work, we aim to address this large variation and show that the reflectivity of the OLED is a simple and useful predictor of the efficiency of substrate scattering techniques without the need for detailed modeling. We show that by optimizing the cathode and anode structure of glass based OLEDs by using silver and an ITO free high conductive Agfa Orgacon™ PEDOT:PSS we are able to increase the external quantum efficiency of OLEDs with the same outcoupling substrates from 2.4% to 5.6%, an increase of 130%. In addition, Holst Centre and partners are developing flexible substrates with integrated light extraction features and roll to roll compatible processing techniques to enable this next step in OLED development both for lighting and display applications. These devices show promise as they are shatterproof substrates and facilitate low cost manufacture.
Organic light-emitting device with a phosphor-sensitized fluorescent emission layer
Forrest, Stephen [Ann Arbor, MI; Kanno, Hiroshi [Osaka, JP
2009-08-25
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).
Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun
2017-07-31
Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levermore, Levermore; Pang, Huiqing; Rajan, Kamala
2014-09-16
Embodiments may provide a first device that may comprise a substrate, a plurality of conductive bus lines disposed over the substrate, and a plurality of OLED circuit elements disposed on the substrate, where each of the OLED circuit elements comprises one and only one pixel electrically connected in series with a fuse. Each pixel may further comprise a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. The fuse of each of the plurality of OLED circuit elements may electrically connect each of the OLED circuit elements to at leastmore » one of the plurality of bus lines. Each of the plurality of bus lines may be electrically connected to a plurality of OLED circuit elements that are commonly addressable and at least two of the bus lines may be separately addressable.« less
High Efficiency Stacked Organic Light-Emitting Diodes Employing Li2O as a Connecting Layer
NASA Astrophysics Data System (ADS)
Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Ishida, Hiroki; Takahashi, Hisakazu; Shibata, Kenichi; Mameno, Kazunobu
2006-12-01
We demonstrate the high-efficiency stacked organic light-emitting diodes (OLEDs) introducing new connecting layers. In the green stacked OLEDs, the external efficiencies increase proportionally to the number of the stacked units without suffering the decrease in power efficiency. The current, power and external efficiencies at 0.5 mA/cm2 of the stacked OLED with six stacked units (6-stacked OLED) have reached 235 cd/A, 46.6 lm/W, and 65.8%, respectively. Furthermore, we have applied the connecting layers to a white stacked OLED and fabricated an active-matrix full-color display with a low temperature polysilicon thin film transistor backplane. In the device, the current efficiency of the white 2-stacked OLED is enhanced by a factor of 2.2. The initial luminance drop is significantly suppressed for the white 2-stacked OLED compared to 1-stacked OLED. The proposed white stacked OLED technology can be applied to a full-color display for a practical use.
2016-03-31
transcutaneously via the outer ear using a high-resolution, addressable array of organic light emitting diodes (OLEDs) manufactured on a flexible...therapeutic optical stimulation in optogenetically modified neural tissue. Keywords: Optogenetics; neuromodulation; organic light emitting diode ...the outer ear using a high-resolution, two-dimensional (2-D), addressable array of red organic light - emitting diodes (OLEDs) manufactured on a thin
Polarized electroluminescence from edge-emission organic light emitting devices
NASA Astrophysics Data System (ADS)
Ran, G. Z.; Jiang, D. F.
2011-01-01
We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.
Light-modulating pressure sensor with integrated flexible organic light-emitting diode.
Cheneler, D; Vervaeke, M; Thienpont, H
2014-05-01
Organic light-emitting diodes (OLEDs) are used almost exclusively for display purposes. Even when implemented as a sensing component, it is rarely in a manner that exploits the possible compliance of the OLED. Here it is shown that OLEDs can be integrated into compliant mechanical micro-devices making a new range of applications possible. A light-modulating pressure sensor is considered, whereby the OLED is integrated with a silicon membrane. It is shown that such devices have potential and advantages over current measurement techniques. An analytical model has been developed that calculates the response of the device. Ray tracing numerical simulations verify the theory and show that the design can be optimized to maximize the resolution of the sensor.
NASA Astrophysics Data System (ADS)
Toyama, Toshihiko; Ichihara, Tokuyuki; Yamaguchi, Daisuke; Okamoto, Hiroaki
2007-10-01
Thin-film light emitting devices based on organic materials have been gathering attentions for applying a flat-panel display and a solid-state lighting. Alternatively, inorganic technologies such as Si-based thin-film technology have been growing almost independently. It is then expected that combining the Si-based thin-film technology with the organic light emitting diode (OLED) technology will develop innovative devices. Here, we report syntheses of the hybrid light emitting diode (LED) with a heterostructure consisting of p-type SiC x and tris-(8-hydroxyquinoline) aluminum films and characterization for the hybrid LEDs. We present the energy diagram of the heterostructure, and describe that the use of high dark conductivities of the p-type SiC x as well as inserting wide-gap intrinsic a-SiC x at the p-type SiC x/Alq interface are effective for improving device performance.
Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothberg, Lewis
2012-11-30
Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less
Hwang, Ju Hyun; Lee, Hyun Jun; Shim, Yong Sub; Park, Cheol Hwee; Jung, Sun-Gyu; Kim, Kyu Nyun; Park, Young Wook; Ju, Byeong-Kwon
2015-02-14
Extremely low-haze light extraction from organic light-emitting diodes (OLEDs) was achieved by utilizing nanoscale corrugation, which was simply fabricated with plasma treatment and sonication. The haze of the nanoscale corrugation for light extraction (NCLE) corresponds to 0.21% for visible wavelengths, which is comparable to that of bare glass. The OLEDs with NCLE showed enhancements of 34.19% in current efficiency and 35.75% in power efficiency. Furthermore, the OLEDs with NCLE exhibited angle-stable electroluminescence (EL) spectra for different viewing angles, with no change in the full width at half maximum (FWHM) and peak wavelength. The flexibility of the polymer used for the NCLE and plasma treatment process indicates that the NCLE can be applied to large and flexible OLED displays.
A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui
2014-05-01
A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.
Degradation in organic light emitting devices
NASA Astrophysics Data System (ADS)
Dinh, Vincent Vinh
This thesis is about the fundamental causes of degradation in tris(8-Hydroxyquinoline) Aluminum (Alq3)-based organic light emitting diodes (OLEDs). Degradation typically occurs when a current is forced through an insulating material. Since the insulator does not support conduction waves (in its ground state), chemical restructuring must occur to accommodate the current. OLEDs have many technical advantages over the well known semiconductor-based light emitting diodes (LEDs). OLEDs have quantum efficiencies ˜1% (˜10 times higher than the LEDs), and operational power thresholds ˜.05mW (˜100 lower than the LEDs). OLEDs are preferred in power limited and portable devices; devices such as laptops and displays consume ˜1/4 of the supplied power---any power saving is significant. Other advantages, like better compliance to curved surfaces and ease of fabrication, give the OLEDs an even greater edge over the LEDs. OLEDs must have at least comparable or better lifetimes to remain attractive. Typical OLEDs last several 100hrs compared to the several 1000hrs for the LEDs. For reliable OLED application, it is necessary to understand the above breakdown mechanism. In this thesis, we attempt to understand the breakdown by looking at how OLEDs are made, how they work, and when they don't. In the opening sections, we give an overview of OLEDs and LEDs, especially how sustained luminescence is achieved through current circulation. Then in Chapter 2, we look at the basic components in the OLEDs. In Chapter 3 we look at how a hole material (like poly-vinyl carbazole or PVK) establishes an excitonic environment for the sustained luminescence in Alq3. We then approximate how potential is distributed when a simple luminescence system is in operation. In Chapter 4, we look at ways of measuring this distribution via the OLED impedance. Finally in Chapter 5, we look at the OLED stability under light emission conditions via PVK and Alq3 photoemission and photoabsorption spectra. Implicit throughout our study, we assume that regions of high electric field will likely induce chemical changes and hence breakdown in the OLED. Our electrical measurements suggest that at least 6% of the applied potential may be concentrated at the interfaces. Spectroscopic measurements suggest that chemical reaction does occur there (namely the electrode/Alq3 interface), thus leading to device failure and suggest a course of action to avoid this fate with other OLED systems.
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-01-01
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs. PMID:28211516
NASA Astrophysics Data System (ADS)
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-02-01
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo
2017-02-17
An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.
Integration of transmissible organic electronic devices for sensor application
NASA Astrophysics Data System (ADS)
Tam, Hoi Lam; Wang, Xizu; Zhu, Furong
2013-09-01
A high performance proximity sensor that integrates a front semitransparent organic photodiode (OPD) and an organic light-emitting diode (OLED) is demonstrated. A 0.3-nm-thick plasma-polymerized fluorocarbon film (CFX)-modified thin silver interlayer, serving simultaneously as a semitransparent cathode for the OPD and an anode for OLED, is used to vertically connect the functional organic electronic components. A microcavity OLED is formed between a semitransparent Ag/CFX interlayer and the rear Al cathode enhancing the forward electroluminescence emission in the integrated device. The semitransparent-OPD/OLED stack is designed using an optical admittance analysis method. In the integrated sensor, the front semitransparent OPD component enables a high transmission of light emitted by the integrated OLED unit and a high absorption when light is reflected from objects, thereby to increase the signal/noise ratio. The design and fabrication flexibility of an integrated semitransparent-OPD/OLED device also has cost benefit, making it possible for application in organic proximity sensors.
High light-quality OLEDs with a wet-processed single emissive layer.
Singh, Meenu; Jou, Jwo-Huei; Sahoo, Snehasis; S S, Sujith; He, Zhe-Kai; Krucaite, Gintare; Grigalevicius, Saulius; Wang, Ching-Wu
2018-05-08
High light-quality and low color temperature are crucial to justify a comfortable healthy illumination. Wet-process enables electronic devices cost-effective fabrication feasibility. We present herein low color temperature, blue-emission hazards free organic light emitting diodes (OLEDs) with very-high light-quality indices, that with a single emissive layer spin-coated with multiple blackbody-radiation complementary dyes, namely deep-red, yellow, green and sky-blue. Specifically, an OLED with a 1,854 K color temperature showed a color rendering index (CRI) of 90 and a spectrum resemblance index (SRI) of 88, whose melatonin suppression sensitivity is only 3% relative to a reference blue light of 480 nm. Its maximum retina permissible exposure limit is 3,454 seconds at 100 lx, 11, 10 and 6 times longer and safer than the counterparts of compact fluorescent lamp (5,920 K), light emitting diode (5,500 K) and OLED (5,000 K). By incorporating a co-host, tris(4-carbazoyl-9-ylphenyl)amine (TCTA), the resulting OLED showed a current efficiency of 24.9 cd/A and an external quantum efficiency of 24.5% at 100 cd/m 2 . It exhibited ultra-high light quality with a CRI of 93 and an SRI of 92. These prove blue-hazard free, high quality and healthy OLED to be fabrication feasible via the easy-to-apply wet-processed single emissive layer with multiple emitters.
NASA Astrophysics Data System (ADS)
Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.
2016-08-01
Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm-2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments.
Morton, Andrew; Murawski, Caroline; Pulver, Stefan R.; Gather, Malte C.
2016-01-01
Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optically controlling behaviour in live animals. Using devices with a pin OLED architecture, sufficient illumination intensity (0.3 mW.mm−2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can further broaden their utility in optogenetics experiments. PMID:27484401
NASA Astrophysics Data System (ADS)
Kim, Bong Sung; Chae, Heeyeop; Chung, Ho Kyoon; Cho, Sung Min
2018-06-01
The electrical and optical properties of tandem organic light-emitting diodes (OLEDs), in which a fluorescent and phosphorescent emitting units are connected by an organic charge-generation layer (CGL), were experimentally analyzed. To investigate the internal properties of the tandem OLEDs, we fabricated and compared two single, two homo-tandem, and two hetero-tandem OLEDs using the fluorescent and phosphorescent units. From the experimental results of the OLEDs obtained at the same current density, the voltage across the CGL as well as the individual emission spectra and luminance of each unit of tandem OLEDs were obtained and compared with the theoretical simulation results. The analysis method proposed in this study can be utilized as a method to verify the accuracy of optical or electrical computer simulation of tandem OLED and it will be useful to understand the overall electrical and optical characteristics of tandem OLEDs.
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Koo, Hyun; Cho, Sunghwan
2015-04-01
Wet process of soluble organic light emitting diode (OLED) materials has attracted much attention due to its potential as a large-area manufacturing process with high productivity. Electrospray (ES) deposition is one of candidates of organic thin film formation process for OLED. However, to fabricate red, green, and blue emitters for color display, a fine metal mask is required during spraying emitter materials. We demonstrate a mask-less color pixel patterning process using ES of soluble OLED materials and selective biasing on pixel electrodes and a spray nozzle. We show red and green line patterns of OLED materials. It was found that selective patterning can be allowed by coulomb repulsion between nozzle and pixel. Furthermore, we fabricated blue fluorescent OLED devices by vacuum evaporation and ES processes. The device performance of ES processed OLED showed nearly identical current-voltage characteristics and slightly lower current efficiency compared to vacuum processed OLED.
Large area organic light emitting diodes with multilayered graphene anodes
NASA Astrophysics Data System (ADS)
Moon, Jaehyun; Hwang, Joohyun; Choi, Hong Kyw; Kim, Taek Yong; Choi, Sung-Yool; Joo, Chul Woong; Han, Jun-Han; Shin, Jin-Wook; Lee, Bong Joon; Cho, Doo-Hee; Huh, Jin Woo; Park, Seung Koo; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik
2012-09-01
In this work, we demonstrate fully uniform blue fluorescence graphene anode OLEDs, which have an emission area of 10×7 mm2. Catalytically grown multilayered graphene films have been used as the anode material. In order to compensate the current drop, which is due to the graphene's electrical resistance, we have furnished metal bus lines on the support. Processing and optical issues involved in graphene anode OLED fabrications are presented. The fabricated OLEDs with graphene anode showed comparable performances to that of ITO anode OLEDs. Our works shows that metal bus furnished graphene anode can be extended into large area OLED lighting applications in which flexibility and transparency is required.
A new LTPS TFT AC pixel circuit for an AMOLED
NASA Astrophysics Data System (ADS)
Yongwen, Zhang; Wenbin, Chen
2013-01-01
This work presents a new voltage programmed pixel circuit for an active-matrix organic light-emitting diode (AMOLED) display. The proposed pixel circuit consists of six low temperature polycrystalline silicon thin-film transistors (LTPS TFTs), one storage capacitor, and one OLED, and is verified by simulation work using HSPICE software. Besides effectively compensating for the threshold voltage variation of the driving TFT and OLED, the proposed pixel circuit offers an AC driving mode for the OLED, which can suppress the degradation of the OLED. Moreover, a high contrast ratio can be achieved by the proposed pixel circuit since the OLED does not emit any light except for the emission period.
Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander
2015-04-22
Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.
Fluorescent filtered electrophosphorescence
Forrest, Stephen; Sun, Yiru; Giebink, Noel; Thompson, Mark E.
2010-08-03
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.
Fluorescent filtered electrophosphorescence
Forrest, Stephen R [Princeton, NJ; Sun, Yiru [Princeton, NJ; Giebink, Noel [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA
2009-01-06
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.
Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes
Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun
2015-01-01
Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061
Enhanced Light Extraction from OLEDs Fabricated on Patterned Plastic Substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hippola, Chamika; Kaudal, Rajiv; Manna, Eeshita
A key scientific and technological challenge in organic light-emitting diodes (OLEDs) is enhancing the light outcoupling factor η out, which is typically <20%. This paper reports experimental and modeling results of a promising approach to strongly increase η out by fabricating OLEDs on novel flexible nanopatterned substrates that result in a >2× enhancement in green phosphorescent OLEDs (PhOLEDs) fabricated on corrugated polycarbonate (PC). The external quantum efficiency (EQE) reaches 50% (meaning ηout ≥50%); it increases 2.6x relative to a glass/ITO device and 2× relative to devices on glass/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) or flat PC/PEDOT:PSS. A significant enhancement is also observed formore » blue PhOLEDs with EQE 1.7× relative to flat PC. The corrugated PC substrates are fabricated efficiently and cost-effectively by direct room-temperature molding. These substrates successfully reduce photon losses due to trapping/waveguiding in the organic+anode layers and possibly substrate, and losses to plasmons at the metal cathode. Focused ion beam gauged the conformality of the OLEDs. Dome-shaped convex nanopatterns with height of ~280–400 nm and pitch ~750–800 nm were found to be optimal. Lastly, substrate design and layer thickness simulations, reported first for patterned devices, agree with the experimental results that present a promising method to mitigate photon loss paths in OLEDs.« less
Chen, Dustin; Zhao, Fangchao; Tong, Kwing; ...
2016-07-08
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
NASA Astrophysics Data System (ADS)
Reckziegel, S.; Kreye, D.; Puegner, T.; Vogel, U.; Scholles, M.; Grillberger, C.; Fehse, K.
2009-02-01
In this paper we present an optoelectronic integrated circuit (OEIC) based on monolithic integration of organic lightemitting diodes (OLEDs) and CMOS technology. By the use of integrated circuits, photodetectors and highly efficient OLEDs on the same silicon chip, novel OEICs with combined sensors and actuating elements can be realized. The OLEDs are directly deposited on the CMOS top metal. The metal layer serves as OLED bottom electrode and determines the bright area. Furthermore, the area below the OLED electrodes can be used for integrated circuits. The monolithic integration of actuators, sensors and electronics on a common silicon substrate brings significant advantages in most sensory applications. The developed OEIC combines three different types of sensors: a reflective sensor, a color sensor and a particle flow sensor and is configured with an orange (597nm) emitting p-i-n OLED. We describe the architecture of such a monolithic OEIC and demonstrate a method to determine the velocity of a fluid being conveyed pneumatically in a transparent capillary. The integrated OLEDs illuminate the capillary with the flowing fluid. The fluid has a random reflection profile. Depending on the velocity and a random contrast difference, more or less light is reflected back to the substrate. The integrated photodiodes located at different fixed points detect the reflected light and using crosscorrelation, the velocity is calculated from the time in which contrast differences move over a fixed distance.
Enhanced Light Extraction from OLEDs Fabricated on Patterned Plastic Substrates
Hippola, Chamika; Kaudal, Rajiv; Manna, Eeshita; ...
2018-02-19
A key scientific and technological challenge in organic light-emitting diodes (OLEDs) is enhancing the light outcoupling factor η out, which is typically <20%. This paper reports experimental and modeling results of a promising approach to strongly increase η out by fabricating OLEDs on novel flexible nanopatterned substrates that result in a >2× enhancement in green phosphorescent OLEDs (PhOLEDs) fabricated on corrugated polycarbonate (PC). The external quantum efficiency (EQE) reaches 50% (meaning ηout ≥50%); it increases 2.6x relative to a glass/ITO device and 2× relative to devices on glass/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) or flat PC/PEDOT:PSS. A significant enhancement is also observed formore » blue PhOLEDs with EQE 1.7× relative to flat PC. The corrugated PC substrates are fabricated efficiently and cost-effectively by direct room-temperature molding. These substrates successfully reduce photon losses due to trapping/waveguiding in the organic+anode layers and possibly substrate, and losses to plasmons at the metal cathode. Focused ion beam gauged the conformality of the OLEDs. Dome-shaped convex nanopatterns with height of ~280–400 nm and pitch ~750–800 nm were found to be optimal. Lastly, substrate design and layer thickness simulations, reported first for patterned devices, agree with the experimental results that present a promising method to mitigate photon loss paths in OLEDs.« less
NASA Astrophysics Data System (ADS)
Boerner, Herbert
2006-04-01
Today, organic light emitting diodes are used in small to medium displays in portable electronic equipment like MP3 players and mobile phones. Their thin form factor, together with good readability due to low angular dependence of the emission makes them attractive for these applications. The rapid progress in the last years has lifted the performance of OLEDs to a level where one can seriously start to consider applications in lighting markets. Whereas it is obvious that first applications will be in less demanding niche markets, clearly the most interesting target is the general illumination market. In this report, first applications requirements will be described, followed by a brief review of state of the art monochrome OLEDs. The main part deals with the various ways in which monochrome devices can be combined into white ones, giving examples of existing solutions. The conclusion is that for the white OLED design, there no clear winner yet. Given the rapid progress in material and device development, one can expect that within a few years white OLEDs will be available which can start to penetrate the general lighting market.
Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.
Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei
2017-11-01
Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
White organic light-emitting diodes with fluorescent tube efficiency.
Reineke, Sebastian; Lindner, Frank; Schwartz, Gregor; Seidler, Nico; Walzer, Karsten; Lüssem, Björn; Leo, Karl
2009-05-14
The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
Final Report DOE SSL Grant (No. DE-EE0006673) Advanced Light Extraction Structure for OLED Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Gregory; Monickam, Selina
The innovation proposed in this grant is to demonstrate a novel internal light extraction (ILE) design that can maximize the energy efficiency of Organic Light Emitting Diode (OLED) lighting devices without negatively impacting the device voltage, efficacy or angular color dependences. Even though, OLEDs have unique features compared to its inorganic counterparts, LEDs, in terms of technology development and market readiness levels, it still lags LEDs by several years. The main challenges as identified in the National Research Council’s 2013 Assessment on Solid State Lighting, are the cost of the materials and the low light extraction efficacy [1]. Improving themore » light extraction will improve both the $/Klm and lm/W, two important metrics DOE uses to measure the cost effectiveness of a light source.« less
Lee, Hyungjin; Lee, Donghwa; Ahn, Yumi; Lee, Eun-Woo; Park, Lee Soon; Lee, Youngu
2014-08-07
Highly flexible and efficient silver nanowire-based organic light-emitting diodes (OLEDs) have been successfully fabricated by employing a n-type hole injection layer (HIL). The silver nanowire-based OLEDs without light outcoupling structures exhibited excellent device characteristics such as extremely low turn-on voltage (3.6 V) and high current and power efficiencies (44.5 cd A(-1) and 35.8 lm W(-1)). In addition, flexible OLEDs with the silver nanowire transparent conducting electrode (TCE) and n-type HIL fabricated on plastic substrates showed remarkable mechanical flexibility as well as device performance.
Transparent Carbon Nanotube layers as cathodes in OLEDs
NASA Astrophysics Data System (ADS)
Papadimitratos, Alexios; Nasibulin, Albert; Kauppinen, Esko; Zakhidov, Anvar; Solarno Inc Collaboration; Aalto University Collaboration; UT Dallas Collaboration
2011-03-01
Organic Light Emitting diodes (OLEDs) have attracted high interest in recent years due to their potential use in future lighting and display applications. Reported work on OLEDs traditionally utilizes low work function materials as cathodes that are expensive to fabricate because of the high vacuum processing. Transparent carbon nanotube (CNT) sheets have excellent mechanical and electrical properties. We have already shown earlier that multi-wall (MWCNT) as well as single CNT (SWCNT) sheets can be used as effective anodes in bright OLEDs [,]. The true advantage of using the CNT sheets lies in flexible devices and new architectures with CNT sheet as layers in tandem devices with parallel connection. In this work, we are investigating the possibility of using SWCNT as cathodes in OLEDs. SWCNT sheets have been reported to show lower work function compared to MWCNT. Our work attempts to demonstrate transparent OLED devices with CNT anodes and cathodes. In the process, OLEDs with CNT cathodes have been fabricated in normal and inverted configurations using inorganic oxides (MoO3,ZnO) as invertion layers.
High Efficiency, Illumination Quality OLEDs for Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph Shiang; James Cella; Kelly Chichak
The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature ismore » 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.« less
Spectroscopic investigation and luminescent properties of Schiff base metal complex for OLED
NASA Astrophysics Data System (ADS)
Gondia, N. K.; Priya, J.; Sharma, S. K.
2018-05-01
Organic light emitting diode (OLED) display technology has demonstrated high efficiency and brightness, is leading to a strong commercial interest. One of the remaining problems with the OLED technology is efficiency and colour saturation. The efficiency of OLED devices can be improved by doping the host organic layer with a suitable phosphorescent material in the emissive layer. We have synthesized a Schiff base zinc metal complex for OLEDs applications. Metal complex was characterized by FTIR, HNMR technique. PL emission spectra were recorded by keeping excitation wavelength fixed at 240 nm. A strong intense emission peak was observed at 410 nm. CIE chromaticity colour coordinates were observed at x =0.239 & y = 0.159. HOMO/LUMO energy gap were found to be -0.223 and -0.067 respectively for prepared zinc metal complex. It could be considered as a good light emitting phosphor material for possible application as emissive layer in OLEDs.
Study on constant-step stress accelerated life tests in white organic light-emitting diodes.
Zhang, J P; Liu, C; Chen, X; Cheng, G L; Zhou, A X
2014-11-01
In order to obtain reliability information for a white organic light-emitting diode (OLED), two constant and one step stress tests were conducted with its working current increased. The Weibull function was applied to describe the OLED life distribution, and the maximum likelihood estimation (MLE) and its iterative flow chart were used to calculate shape and scale parameters. Furthermore, the accelerated life equation was determined using the least squares method, a Kolmogorov-Smirnov test was performed to assess if the white OLED life follows a Weibull distribution, and self-developed software was used to predict the average and the median lifetimes of the OLED. The numerical results indicate that white OLED life conforms to a Weibull distribution, and that the accelerated life equation completely satisfies the inverse power law. The estimated life of a white OLED may provide significant guidelines for its manufacturers and customers. Copyright © 2014 John Wiley & Sons, Ltd.
OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien
What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through themore » device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high-efficiency OLED demonstrated in 1987. Thus, we expect to see exciting advances in the science, technology and commercialization in the coming years. We hope that this book helps to advance the field in some small way. Contributors to this monograph are experts from top academic institutions, industry and national laboratories who provide comprehensive and up-to-date coverage of the rapidly evolving field of OLEDs. Furthermore, this monograph collects in one place, for the first time, key topics across the field of OLEDs, from fundamental chemistry and physics, to practical materials science and engineering topics, to aspects of design and manufacturing. The monograph synthesizes and puts into context information scattered throughout the literature for easy review in one book. The scope of the monograph reflects the necessity to focus on new technological challenges brought about by the transition to manufacturing. In the Section 1, all materials of construction of the OLED device are covered, from substrate to encapsulation. In Section 2, for the first time, additional challenges in devices and processing are addressed. This book is geared towards a broad audience, including materials scientists, device physicists, synthetic chemists and electrical engineers. Furthermore, this book makes a great introduction to scientists in industry and academia, as well as graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films. This book is a comprehensive source for OLED R&D professionals from all backgrounds and institutions.« less
Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander
2014-08-13
Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode
NASA Astrophysics Data System (ADS)
Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa
2015-04-01
Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.
OLED integrated silicon membranes for light-modulation devices
NASA Astrophysics Data System (ADS)
Cheneler, David; Vervaeke, Michael; Thienpont, Hugo; Lambertini, Vito G.; Brignone, Mauro
2014-05-01
Organic light-emitting diodes (OLEDs) are most frequently used for display purposes and while they have also been utilized in sensing applications, their innate compliance has not previously been exploited for these applications. However, in this manuscript it is shown that OLEDs are compatible with microfabrication methods used in the production of micro mechanical devices. In particular it is shown that the compliance of OLEDs can be utilized in, and not limited to, a new generation of opto-mechanical pressure sensors. A fabrication process for a light-modulating pressure sensor is described. Prototypes were fabricated and tested and the response compared to an analytical theory developed by the authors. It is shown with simple circuitry, a resolution of 11.4 Pa up to 350 kPa is attainable using this technology.
Investigation of mixed-host organic light emitting diodes
NASA Astrophysics Data System (ADS)
Yeh Yee, Kee
One of the limiting factors to the OLED stability or lifetime is the charge buildup at the bilayer heterojunction (HJ) between the hole transport layer (HTL) and electron transport layer (ETL). In recent years, this abrupt interface has been moderated by mixing HTL and ETL to form a single mixed-host, light emitting layer. For uniformly mixed-host (UM) OLED, the device lifetime and also the efficiency were improved due to the spatial broadening of the recombination zone. Similar device architectures, such as the step-wise graded mixed-host (SGM-OLED) and the continuously graded mixed-host (CGM-OLED) have also been implemented by a number of researchers. In this work, a premix of hole transport material (HTM) and electron transport material (ETM), namely TPD and Alq, is prepared for one-step thermal evaporation of the mixed-host light emitting layer (EML). Depending on the evaporation rate, the CGM-OLEDs with different concentration profiles of HTM and ETM in the EML are obtained, which are inversely proportional to each other.
NASA Astrophysics Data System (ADS)
Kwak, Bong-Choon; Lim, Han-Sin; Kwon, Oh-Kyong
2011-03-01
In this paper, we propose a pixel circuit immune to the electrical characteristic variation of organic light-emitting diodes (OLEDs) for organic light-emitting diode-on-silicon (OLEDoS) microdisplays with a 0.4 inch video graphics array (VGA) resolution and a 6-bit gray scale. The proposed pixel circuit is implemented using five p-channel metal oxide semiconductor field-effect transistors (MOSFETs) and one storage capacitor. The proposed pixel circuit has a source follower with a diode-connected transistor as an active load for improving the immunity against the electrical characteristic variation of OLEDs. The deviation in the measured emission current ranges from -0.165 to 0.212 least significant bit (LSB) among 11 samples while the anode voltage of OLED is 0 V. Also, the deviation in the measured emission current ranges from -0.262 to 0.272 LSB in pixel samples, while the anode voltage of OLED varies from 0 to 2.5 V owing to the electrical characteristic variation of OLEDs.
NASA Astrophysics Data System (ADS)
Fukagawa, Hirohiko; Morii, Katsuyuki; Hasegawa, Munehiro; Gouda, Shun; Tsuzuki, Toshimitsu; Shimizu, Takahisa; Yamamoto, Toshihiro
2015-10-01
The OLED is one of the key devices for realizing future flexible displays and lightings. One of the biggest challenges left for the OLED fabricated on a flexible substrate is the improvement of its resistance to oxygen and moisture. A high barrier layer [a water vapor transmission rate (WVTR) of about 10-6 g/m2/day] is proposed to be necessary for the encapsulation of conventional OLEDs. Some flexible high barrier layers have recently been demonstrated; however, such high barrier layers require a complex process, which makes flexible OLEDs expensive. If an OLED is prepared without using air-sensitive materials such as alkali metals, no stringent encapsulation is necessary for such an OLED. In this presentation, we will discuss our continuing efforts to develop an inverted OLED (iOLED) prepared without using alkali metals. iOLEDs with a bottom cathode are considered to be effective for realizing air-stable OLEDs since the electron injection layer (EIL) can be prepared by fabrication processes that might damage the organic layers, resulting in the enhanced range of materials suitable for EILs. We have demonstrated that a highly efficient and relatively air-stable iOLED can be realized by employing poly(ethyleneimine) as an EIL. Dark spot formation was not observed after 250 days in the poly(ethyleneimine)-based iOLED encapsulated by a barrier film with a WVTR of 10-4 g/m2/day. In addition, we have demonstrated the fabrication of a highly operational stable iOLED utilizing a newly developed EIL. The iOLED exhibits an expected half-lifetime of over 10,000 h from an initial luminance of 1,000 cd/m2.
NASA Astrophysics Data System (ADS)
Kajiyama, Yoshitaka; Joseph, Kevin; Kajiyama, Koichi; Kudo, Shuji; Aziz, Hany
2014-02-01
A shadow mask technique capable of realizing high resolution (>330 pixel-per-inch) and ˜100% aperture ratio Organic Light-Emitting Diode (OLED) full color displays is demonstrated. The technique utilizes polyimide contact shadow masks, patterned by laser ablation. Red, green, and blue OLEDs with very small feature sizes (<25 μm) are fabricated side by side on one substrate. OLEDs fabricated via this technique have the same performance as those made by established technology. This technique has a strong potential to achieve high resolution OLED displays via standard vacuum deposition processes even on flexible substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y.S. Tyan
2009-06-30
Lighting consumes more than 20% of electricity generated in the United States. Solid state lighting relies upon either inorganic or organic light-emitting diodes (OLEDs). OLED devices because of their thinness, fast response, excellent color, and efficiency could become the technology of choice for future lighting applications, provided progress is made to increase power efficiency and device lifetime and to develop cost-effective manufacturing processes. As a first step in this process, Eastman Kodak Company has demonstrated an OLED device architecture having an efficacy over 50 lm/W that exceeds the specifications of DOE Energy Star Program Requirements for Solid State Lighting. Themore » project included work designed to optimize an OLED device, based on a stacked-OLED structure, with performance parameters of: low voltage; improved light extraction efficiency; improved internal quantum efficiency; and acceptable lifetime. The stated goal for the end of the project was delivery of an OLED device architecture, suitable for development into successful commercial products, having over 50 lum/W power efficiency and 10,000 hours lifetime at 1000 cd/m{sup 2}. During the project, Kodak developed and tested a tandem hybrid IES device made with a fluorescent blue emitter, a phosphorescent yellow emitter, and a phosphorescent red emitter in a stacked structure. The challenge was to find low voltage materials that do not absorb excessive amounts of emitted light when the extraction enhancement structure is applied. Because an extraction enhancement structure forces the emitted light to travel several times through the OLED layers before it is emitted, it exacerbates the absorption loss. A variety of ETL and HTL materials was investigated for application in the low voltage SSL device structure. Several of the materials were found to successfully yield low operating device voltages without incurring excessive absorption loss when the extraction enhancement structure was applied. An internal extraction layer comprises two essential components: a light extraction element (LEE) that does the actual extraction of emitted light and a light coupling layer (LCL) that allows the emitted light to interact with the extraction element. Modeling results show that the optical index of the LCL needs to be high, preferably higher than that of the organic layers with an n value of {approx}1.8. In addition, since the OLED structure needs to be built on top of it the LCL needs to be physically and chemically benign. As the project concluded, our focus was on the tandem hybrid device, which proved to be the more efficient architecture. Cost-efficient device fabrication will provide the next challenges with this device architecture in order to allow this architecture to be commercialized.« less
Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin
2017-07-10
It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
Tong, Kwing; Liu, Xiaofeng; Zhao, Fangchao; ...
2017-07-18
A flexible, nanocomposite substrate for maximizing light outcoupling efficiencies of organic light-emitting diodes (OLEDs) is introduced. In depth investigation is performed on designing the integrated strategy based on considerations of surface conductivity, microcavity tuning, and internal light scattering. The resulting nanocomposite substrate consists of silver nanowires as the electrode and a high-index polymer layer and a light-scattering layer for light extraction. It is able to outcouple both the waveguide and the substrate modes, two modes accounting for significant losses in OLED device efficiency. With enhanced light outcoupling, white OLEDs subsequently fabricated on the nanocomposite substrates demonstrate performance metrics of 107more » lm W -1 power efficiency and 49% external quantum efficiency at 1000 cd m -2. Thus, the nanocomposite substrate is fabricated by solution processes at low temperatures for potentially low manufacturing cost.« less
NASA Astrophysics Data System (ADS)
Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo
2016-08-01
A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.
NASA Astrophysics Data System (ADS)
Moon, Byung Seuk; Lee, Soo-Hyoung; Huh, Yoon Ho; Kwon, O. Eun; Park, Byoungchoo; Lee, Bumjoo; Lee, Seung-Hyun; Hwang, Inchan
2015-04-01
We herein report an investigation of the effect of rough thin films of SiO2 granules deposited on glass substrates of organic light-emitting devices (OLEDs) by using a simple, low-cost and scalable process based on a powder spray of SiO2 granules in vacuum, known as the aerosol-deposition method, with regard to their external light-extraction capabilities. The rough and hazy thin SiO2 films produced by using aerosol-deposition and acting as scattering centers were able to efficiently reduce the light-trapping loss in the glass substrate (glass mode) for internally-generated photons and to enhance the external quantum efficiency (EQE) of the OLEDs. Based on aerosol-deposited silica films with a thickness of 800 nm and a haze of 22% on glass substrates, the EQE of phosphorescent green OLEDs was found to be enhanced by 17%, from an EQE of 7.0% for smooth bare glass substrates to an EQE of 8.2%. Furthermore, the EQEs of fluorescent blue and phosphorescent red OLEDs were shown to be enhanced by 16%, from an EQE of 3.7% to 4.3%, and by 16%, from an EQE of 9.3% to 10.8%, respectively. These improvements in the EQEs without serious changes in the emission spectra or the Lambertian emitter property clearly indicate the high potential of the aerosol-deposition technique for the realization of highly-efficient light extraction in colorful OLED lighting.
Novel nano-OLED based probes for very high resolution optical microscopy
NASA Astrophysics Data System (ADS)
Zhao, Yiying
Near-field scanning optical microscopy (NSOM) has been applied in the study of nanomaterials, microelectronics, photonics, plasmonics, cells, and molecules. However, conventional NSOM relies on optically pumped probes, suffering low optical transmission, heating of the tip, and poor reproducibility of probe fabrication, increasing the cost, impeding usability, reducing practical imaging resolution, and limiting NSOM's utility. In this thesis, I demonstrate a novel probe based on a nanoscale, electrically pumped organic light-emitting device (OLED) formed on the tip of a low-cost, commercially available atomic force microscopy (AFM) probe. I describe the structure, fabrication, and principles of this novel probe's operation, and discuss its potential to overcome the limitations of conventional NSOM probes. The broader significance of this work in the field of organic optoelectronics is also discussed. Briefly, OLEDs consist of organic thin films sandwiched between two electrodes. Under bias, electrons and holes are injected into the organic layers, leading to radiative recombination. Depositing a small molecular OLED in vacuum onto a pyramid-tipped AFM probe results in a laminar structure that is highly curved at the tip. Simple electrical modeling predicts concentration of electric field and localized electron injection into the organic layers at the tip, improving the local charge balance in an otherwise electron-starved OLED. Utilizing an "inverted" OLED structure (i.e. cathode on the "bottom"), light emission is localized to sub-200 nm sized, green light emitting regions on probe vertices; light output power in the range of 0.1-0.5 nanowatts was observed, comparable to that of typical fiber based NSOM probes but with greater power efficiency. Massive arrays of similar sub-micron OLEDs were also fabricated by depositing onto textured silicon substrates, demonstrating the superior scalability of the probe fabrication process (e.g. relative to pulled glass fibers). The investigation of the effect of non-planar substrate geometry on charge injection, transport and recombination provides broader insights into OLEDs made on rough substrates, general understanding of OLED operation (e.g. filamentary charge conduction) and degradation, and potentially helps to improve technologically important "inverted" OLED structures.
Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, Martin, E-mail: martin.weis@stuba.sk; Otsuka, Takako; Taguchi, Dai
2015-04-21
Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the devicemore » performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.« less
NASA Astrophysics Data System (ADS)
Guedes, Andre F. S.; Guedes, Vilmar P.; Tartari, Simone; Cunha, Idaulo Jose
2016-09-01
The development of Organic Light Emitting Diode (OLED), using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The OLED are the base Poly(3,4-ethylenedioxythiophene), PEDOT, Poly(p-phenylenevinylene), PPV, and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by UV-Visible Spectroscopy (UV-Vis), Optical Parameters (OP) and Scanning Electron Microscopy (SEM). In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by UV-Vis has demonstrated that the PET/ITO/PEDOT/PPV/PANI-X1/Al layer does not have displacement of absorption for wavelengths greaters after spin-coating and electrodeposition. Thus, the spectral irradiance of the OLED informed the irradiance of 100 W/m2, and this result, compared with the standard Light Emitting Diode (LED), has indicated that the OLED has higher irradiance. After 1200 hours of electrical OLED tests, the appearance of nanoparticles visible for images by SEM, to the migration process of organic semiconductor materials, was present, then. Still, similar to the phenomenon of electromigration observed in connections and interconnections of microelectronic devices, the results have revealed a new mechanism of migration, which raises the passage of electric current in OLED.
Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts
NASA Astrophysics Data System (ADS)
Zhou, Dong-Ying; Cui, Lin-Song; Zhang, Ying-Jie; Liao, Liang-Sheng; Aziz, Hany
2014-10-01
Tandem organic light-emitting devices (OLEDs), i.e., OLEDs containing multiple electroluminescence (EL) units that are vertically stacked, are attracting significant interest because of their ability to realize high current efficiency and long operational lifetime. However, stacking multiple EL units in tandem OLEDs increases driving voltage and complicates fabrication process relative to their standard single unit counterparts. In this paper, we demonstrate low driving voltage tandem OLEDs via utilizing exciplex-forming hosts in the EL units instead of conventional host materials. The use of exciplex-forming hosts reduces the charge injection barriers and the trapping of charges on guest molecules, resulting in the lower driving voltage. The use of exciplex-forming hosts also allows using fewer layers, hence simpler EL configuration which is beneficial for reducing the fabrication complexity of tandem OLEDs.
NASA Astrophysics Data System (ADS)
Kurata, K.; Kashiwabara, K.; Nakajima, K.; Mizoguchi, Y.; Ohtani, N.
2011-12-01
Hole transport properties of organic light-emitting diodes (OLEDs) with a thin hole-blocking layer (HBL) were evaluated by time-of-flight measurement. Electroluminescence (EL) spectra of OLEDs with various HBL thicknesses were also evaluated. The results clearly show that the time-resolved photocurrent response and the emission color strongly depend on HBL thickness. This can be attributed to hole-tunneling through the thin HBL. We successfully fabricated a white OLED by controlling the thickness of HBL.
Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin
2016-01-26
Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).
Integration of OLEDs in biomedical sensor systems: design and feasibility analysis
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.
2010-04-01
Organic (electronic) Light Emitting Diodes (OLEDs) have been shown to have applications in the field of lighting and flexible display. These devices can also be incorporated in sensors as light source for imaging/fluorescence sensing for miniaturized systems for biomedical applications and low-cost displays for sensor output. The current device capability aligns well with the aforementioned applications as low power diffuse lighting and momentary/push button dynamic display. A top emission OLED design has been proposed that can be incorporated with the sensor and peripheral electrical circuitry, also based on organic electronics. Feasibility analysis is carried out for an integrated optical imaging/sensor system, based on luminosity and spectrum band width. A similar study is also carried out for sensor output display system that functions as a pseudo active OLED matrix. A power model is presented for device power requirements and constraints. The feasibility analysis is also supplemented with the discussion about implementation of ink-jet printing and stamping techniques for possibility of roll to roll manufacturing.
DNA bases thymine and adenine in bio-organic light emitting diodes.
Gomez, Eliot F; Venkatraman, Vishak; Grote, James G; Steckl, Andrew J
2014-11-24
We report on the use of nucleic acid bases (NBs) in organic light emitting diodes (OLEDs). NBs are small molecules that are the basic building blocks of the larger DNA polymer. NBs readily thermally evaporate and integrate well into the vacuum deposited OLED fabrication. Adenine (A) and thymine (T) were deposited as electron-blocking/hole-transport layers (EBL/HTL) that resulted in increases in performance over the reference OLED containing the standard EBL material NPB. A-based OLEDs reached a peak current efficiency and luminance performance of 48 cd/A and 93,000 cd/m(2), respectively, while T-based OLEDs had a maximum of 76 cd/A and 132,000 cd/m(2). By comparison, the reference OLED yielded 37 cd/A and 113,000 cd/m(2). The enhanced performance of T-based devices is attributed to a combination of energy levels and structured surface morphology that causes more efficient and controlled hole current transport to the emitting layer.
NASA Astrophysics Data System (ADS)
Hai-Jung In,; Oh-Kyong Kwon,
2010-03-01
A simple pixel structure using a video data correction method is proposed to compensate for electrical characteristic variations of driving thin-film transistors (TFTs) and the degradation of organic light-emitting diodes (OLEDs) in active-matrix OLED (AMOLED) displays. The proposed method senses the electrical characteristic variations of TFTs and OLEDs and stores them in external memory. The nonuniform emission current of TFTs and the aging of OLEDs are corrected by modulating video data using the stored data. Experimental results show that the emission current error due to electrical characteristic variation of driving TFTs is in the range from -63.1 to 61.4% without compensation, but is decreased to the range from -1.9 to 1.9% with the proposed correction method. The luminance error due to the degradation of an OLED is less than 1.8% when the proposed correction method is used for a 50% degraded OLED.
High-efficient and brightness white organic light-emitting diodes operated at low bias voltage
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong
2010-10-01
White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.
NASA Astrophysics Data System (ADS)
Chung, Seungjun; Lee, Jae-Hyun; Jeong, Jaewook; Kim, Jang-Joo; Hong, Yongtaek
2009-06-01
We report substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes (OLEDs). Heat dissipation behavior of top-emission OLEDs fabricated on silicon, glass, and planarized stainless steel substrates was measured by using an infrared camera. Peak temperature measured from the backside of each substrate was saturated to be 21.4, 64.5, and 40.5 °C, 180 s after the OLED was operated at luminance of 10 000 cd/m2 and 80% luminance lifetime was about 198, 31, and 96 h, respectively. Efficient heat dissipation through the highly thermally conductive substrates reduced temperature increase, resulting in much improved OLED lifetime.
Han, Tae-Hee; Choi, Mi-Ri; Jeon, Chan-Woo; Kim, Yun-Hi; Kwon, Soon-Ki; Lee, Tae-Woo
2016-01-01
Although solution processing of small-molecule organic light-emitting diodes (OLEDs) has been considered as a promising alternative to standard vacuum deposition requiring high material and processing cost, the devices have suffered from low luminous efficiency and difficulty of multilayer solution processing. Therefore, high efficiency should be achieved in simple-structured small-molecule OLEDs fabricated using a solution process. We report very efficient solution-processed simple-structured small-molecule OLEDs that use novel universal electron-transporting host materials based on tetraphenylsilane with pyridine moieties. These materials have wide band gaps, high triplet energy levels, and good solution processabilities; they provide balanced charge transport in a mixed-host emitting layer. Orange-red (~97.5 cd/A, ~35.5% photons per electron), green (~101.5 cd/A, ~29.0% photons per electron), and white (~74.2 cd/A, ~28.5% photons per electron) phosphorescent OLEDs exhibited the highest recorded electroluminescent efficiencies of solution-processed OLEDs reported to date. We also demonstrate a solution-processed flexible solid-state lighting device as a potential application of our devices. PMID:27819053
Lee, Ho Won; Jeong, Hyunjin; Kim, Young Kwan; Ha, Yunkyoung
2015-10-01
Recently, white organic light-emitting diodes (OLEDs) have aroused considerable attention because they have the potential of next-generation flexible displays and white illuminated applications. White OLED applications are particularly heading to the industry but they have still many problems both materials and manufacturing. Therefore, we proposed that the new iridium compounds of orange emitters could be demonstrated and also applied to flexible white OLEDs for verification of potential. First, we demonstrated the chemical properties of new orange iridium compounds. Secondly, conventional two kinds of white phosphorescent OLEDs were fabricated by following devices; indium-tin oxide coated glass substrate/4,4'-bis[N-(napthyl)-N-phenylamino]biphenyl/N,N'-dicarbazolyl-3,5-benzene doped with blue and new iridium compounds for orange emitting 8 wt%/1,3,5-tris[N-phenylbenzimidazole-2-yl]benzene/lithium quinolate/aluminum. In addition, we fabricated white OLEDs using these emitters to verify the potential on flexible substrate. Therefore, this work could be proposed that white light applications can be applied and could be extended to additional research on flexible applications.
NASA Astrophysics Data System (ADS)
Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.
2013-01-01
Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.
All-solution processed transparent organic light emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander
2015-11-01
In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.
NASA Astrophysics Data System (ADS)
Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo
2005-06-01
We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.
NASA Astrophysics Data System (ADS)
Sam, F. Laurent M.; Dabera, G. Dinesha M. R.; Lai, Khue T.; Mills, Christopher A.; Rozanski, Lynn J.; Silva, S. Ravi P.
2014-08-01
Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m-2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m-2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed.
Development of high sensitivity and high speed large size blank inspection system LBIS
NASA Astrophysics Data System (ADS)
Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko
2017-07-01
The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dustin; Zhao, Fangchao; Tong, Kwing
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Fina, Michael Dane
Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative quenching (improved internal quantum efficiency) and improvement in light extraction (improved outcoupling efficiency). Furthermore, the electrical model is used to construct a positional radiative efficiency map that when combined with the optical enhancement reveals the overall external quantum efficiency enhancement.
NASA Astrophysics Data System (ADS)
Qu, Yue; Slootsky, Michael; Forrest, Stephen
2015-10-01
We demonstrate a method for extracting waveguided light trapped in the organic and indium tin oxide layers of bottom emission organic light emitting devices (OLEDs) using a patterned planar grid layer (sub-anode grid) between the anode and the substrate. The scattering layer consists of two transparent materials with different refractive indices on a period sufficiently large to avoid diffraction and other unwanted wavelength-dependent effects. The position of the sub-anode grid outside of the OLED active region allows complete freedom in varying its dimensions and materials from which it is made without impacting the electrical characteristics of the device itself. Full wave electromagnetic simulation is used to study the efficiency dependence on refractive indices and geometric parameters of the grid. We show the fabrication process and characterization of OLEDs with two different grids: a buried sub-anode grid consisting of two dielectric materials, and an air sub-anode grid consisting of a dielectric material and gridline voids. Using a sub-anode grid, substrate plus air modes quantum efficiency of an OLED is enhanced from (33+/-2)% to (40+/-2)%, resulting in an increase in external quantum efficiency from (14+/-1)% to (18+/-1)%, with identical electrical characteristics to that of a conventional device. By varying the thickness of the electron transport layer (ETL) of sub-anode grid OLEDs, we find that all power launched into the waveguide modes is scattered into substrate. We also demonstrate a sub-anode grid combined with a thick ETL significantly reduces surface plasmon polaritons, and results in an increase in substrate plus air modes by a >50% compared with a conventional OLED. The wavelength, viewing angle and molecular orientational independence provided by this approach make this an attractive and general solution to the problem of extracting waveguided light and reducing plasmon losses in OLEDs.
Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung
2017-05-01
In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.
Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge
2013-02-01
In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.
Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices
NASA Astrophysics Data System (ADS)
Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa
2014-10-01
Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.
Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display
NASA Astrophysics Data System (ADS)
Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing
2015-06-01
Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V-1s-1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.
Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display.
Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B; Zhang, Qing
2015-06-29
Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm(2)V(-1)s(-1) and the high channel current on/off ratio of ~10(5) of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays.
Investigation of organic light emitting diodes for interferometric purposes
NASA Astrophysics Data System (ADS)
Pakula, Anna; Zimak, Marzena; Sałbut, Leszek
2011-05-01
Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.
Manipulating Refractive Index in Organic Light-Emitting Diodes.
Salehi, Amin; Chen, Ying; Fu, Xiangyu; Peng, Cheng; So, Franky
2018-03-21
In a conventional organic light-emitting diode (OLED), only a fraction of light can escape to the glass substrate and air. Most radiation is lost to two major channels: waveguide modes and surface plasmon polaritons. It is known that reducing the refractive indices of the constituent layers in an OLED can enhance light extraction. Among all of the layers, the refractive index of the electron transport layer (ETL) has the largest impact on light extraction because it is the layer adjacent to the metallic cathode. Oblique angle deposition (OAD) provides a way to manipulate the refractive index of a thin film by creating an ordered columnar void structure. In this work, using OAD, the refractive index of tris(8-hydroxyquinoline)aluminum (Alq3) can be tuned from 1.75 to 1.45. With this low-index ETL deposited by OAD, the resulting phosphorescent OLED shows nearly 30% increase in light extraction efficiency.
Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia
2009-08-27
The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device.1 It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to downmore » convert part of the emission from a blue light source with a system of external phosphors.2 A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component.3 A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML).4 New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering operating voltages, particularly if this is to be achieved in a device that can be manufactured at low cost. To avoid the efficiency losses associated with phosphorescence quenching by back-energy transfer from the dopant onto the host, the triplet excited states of the host material must be higher in energy than the triplet excited state of the dopant.5 This must be accomplished without sacrificing the charge transporting properties of the composite.6 Similar problems limit the efficiency of OLED-based displays, where blue light emitters are the least efficient and least stable. We previously demonstrated the utility of organic phosphine oxide (PO) materials as electron transporting HMs for FIrpic in blue OLEDs.7 However, the high reluctance of PO materials to oxidation and thus, hole injection limits the ability to balance charge injection and transport in the EML without relying on charge transport by the phosphorescent dopant. PO host materials were engineered to transport both electrons and holes in the EML and still maintain high triplet exciton energy to ensure efficient energy transfer to the dopant (Figure 1). There are examples of combining hole transporting moieties (mainly aromatic amines) with electron transport moieties (e.g., oxadiazoles, triazines, boranes)8 to develop new emitter and host materials for small molecule and polymer9 OLEDs. The challenge is to combine the two moieties without lowering the triplet energy of the target molecule. For example, coupling of a dimesitylphenylboryl moiety with a tertiary aromatic amine (FIAMBOT) results in intramolecular electron transfer from the amine to the boron atom through the bridging phenyl. The mesomeric effect of the dimesitylphenylboryl unit acts to extend conjugation and lowers triplet exciton energies (< 2.8 eV) rendering such systems inadequate as ambipolar hosts for blue phosphors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei
Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less
OLED-based physiologically-friendly very low-color temperature illumination for night
NASA Astrophysics Data System (ADS)
Jou, Jwo-Huei; Shen, Shih-Ming; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Wang, Yi-Shan; Chen, Chien-Chih; Wang, Ching-Chun; Hsieh, Chun-Yu; Lin, Chin-Chiao; Chen, Chien-Tien
2012-09-01
Numerous medical research studies reveal intense white or blue light to drastically suppress at night the secretion of melatonin (MLT), a protective oncostatic hormone. Lighting devices with lower color-temperature (CT) possess lesser MLT suppression effect based on the same luminance, explaining why physicians have long been calling for the development of lighting sources with low CT or free from blue emission for use at night to safeguard human health. We will demonstrate in the presentation the fabrication of OLED devices with very-low CT, especially those with CT much lower than that of incandescent bulbs (2500K) or even candles (2000K). Without any light extraction method, OLEDs with an around 1800K CT are easily obtainable with an efficacy of 30 lm/W at 1,000 nits. To also ensure high color-rendering to provide visual comfort, low CT OLEDs composing long wavelength dominant 5-spectrum emission have been fabricated. While keeping the color-rendering index as high as 85 and CT as low as 2100K, the resulting efficacy can also be much greater than that of incandescent bulbs (15 lm/W), proving these low CT OLED devices to be also capable of being energy-saving and high quality. The color-temperature can be further decreased to 1700K or lower upon removing the undesired short wavelength emission but on the cost of losing some color rendering index. It is hoped that the devised energy-saving, high quality low CT OLED could properly echo the call for a physiologically-friendly illumination for night, and more attention could be drawn to the development of MLT suppression-less non-white light.
NASA Astrophysics Data System (ADS)
Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng
2013-09-01
A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.
Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan
2010-01-01
In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033
Intern Abstract for Spring 2016
NASA Technical Reports Server (NTRS)
Gibson, William
2016-01-01
The Human Interface Branch - EV3 - is evaluating Organic lighting-emitting diodes (OLEDs) as an upgrade for current displays on future spacecraft. OLEDs have many advantages over current displays. Conventional displays require constant backlighting which draws a lot of power, but with OLEDs they generate light themselves. OLEDs are lighter, and weight is always a concern with space launches. OLEDs also grant greater viewing angles. OLEDs have been in the commercial market for almost ten years now. What is not known is how they will perform in a space-like environment; specifically deep space far away from the Earth's magnetosphere. In this environment, the OLEDs can be expected to experience vacuum and galactic radiation. The intern's responsibility has been to prepare the OLED for a battery of tests. Unfortunately, it will not be ready for testing at the end of the internship. That being said much progress has been made: a) Developed procedures to safely disassemble the tablet. b) Inventoried and identified critical electronic components. c) 3D printed a testing apparatus. d) Wrote software in Python that will test the OLED screen while being radiated. e) Built circuits to restart the tablet and the test pattern, and ensure it doesn't fall asleep during radiation testing. f) Built enclosure that will house all of the electronics Also, the intern has been working on a way to take messages from a simulated Caution and Warnings system, process said messages into packets, send audio packets to a multicast address that audio boxes are listening to, and output spoken audio. Currently, Cautions and Warnings use a tone to alert crew members of a situation, and then crew members have to read through their checklists to determine what the tone means. In urgent situations, EV3 wants to deliver concise and specific alerts to the crew to facilitate any mitigation efforts on their part. Significant progress was made on this project: a) Open channel with the simulated Caution and Warning system to acquire messages. b) Configure audio boxes. c) Grab pre-recorded audio files. d) Packetize the audio stream. A third project that was assigned to implement LED indicator modules for an Omnibus project. The Omnibus project is investigating better ways designing lighting for the interior of spacecraft-both spacecraft lighting and avionics box status lighting indication. The current scheme contains too much of the blue light spectrum that disrupts the sleep cycle. The LED indicator modules are to simulate the indicators running on a spacecraft. Lighting data will be gathered by human factors personal and use in a model underdevelopment to model spacecraft lighting. Significant progress was made on this project: Designed circuit layout a) Tested LEDs at LETF. b) Created GUI for the indicators. c) Created code for the Arduino to run that will illuminate the indicator modules.
Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan
2015-03-01
In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.
Li, Xiaoyue; Zhang, Juanye; Zhao, Zifeng; Wang, Liding; Yang, Hannan; Chang, Qiaowen; Jiang, Nan; Liu, Zhiwei; Bian, Zuqiang; Liu, Weiping; Lu, Zhenghong; Huang, Chunhui
2018-03-01
Organic light-emitting diodes (OLEDs) based on red and green phosphorescent iridium complexes are successfully commercialized in displays and solid-state lighting. However, blue ones still remain a challenge on account of their relatively dissatisfactory Commission International de L'Eclairage (CIE) coordinates and low efficiency. After analyzing the reported blue iridium complexes in the literature, a new deep-blue-emitting iridium complex with improved photoluminescence quantum yield is designed and synthesized. By rational screening host materials showing high triplet energy level in neat film as well as the OLED architecture to balance electron and hole recombination, highly efficient deep-blue-emission OLEDs with a CIE at (0.15, 0.11) and maximum external quantum efficiency (EQE) up to 22.5% are demonstrated. Based on the transition dipole moment vector measurement with a variable-angle spectroscopic ellipsometry method, the ultrahigh EQE is assigned to a preferred horizontal dipole orientation of the iridium complex in doped film, which is beneficial for light extraction from the OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid State Lighting OLED Manufacturing Roundtable Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2010-03-31
Summary of a meeting of OLED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.
Printable candlelight-style organic light-emitting diode
NASA Astrophysics Data System (ADS)
Jou, J. H.; Singh, M.; Song, W. C.; Liu, S. H.
2017-06-01
Candles or oil lamps are currently the most friendly lighting source to human eyes, physiology, ecosystems, artifacts, environment, and night skies due to their blue light-less emission. Candle light also exhibits high light-quality that provides visual comfort. However, they are relatively low in power efficacy (0.3 lm/W), making them energy-wasting, besides having problems like scorching hot, burning, catching fire, flickering, carbon blacking, oxygen consuming, and release of green house gas etc. In contrast, candlelight organic light-emitting diode (OLED) can be made blue-hazard free and energy-efficient. The remaining challenges are to maximize its light-quality and enable printing feasibility, the latter of which would pave a way to cost-effective manufacturing. We hence demonstrate herein the design and fabrication of a candlelight OLED via wet-process. From retina protection perspective, its emission is 13, 12 and 8 times better than those of the blue-enriched white CFL, LED and OLED. If used at night, it is 9, 6 and 4 times better from melatonin generation perspective.
High Intensity Organic Light-emitting Diodes
NASA Astrophysics Data System (ADS)
Qi, Xiangfei
This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and can be expanded to study other thermal issues in more sophisticated structures.
Bui, Thanh-Tuân; Goubard, Fabrice; Ibrahim-Ouali, Malika; Gigmes, Didier
2018-01-01
The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years. PMID:29507635
NASA Astrophysics Data System (ADS)
Liguori, R.; Botta, A.; Pragliola, S.; Rubino, A.; Venditto, V.; Velardo, A.; Aprano, S.; Maglione, M. G.; Prontera, C. T.; De Girolamo Del Mauro, A.; Fasolino, T.; Minarini, C.
2017-06-01
The electroluminescence (EL) of isotactic and syndiotactic poly(N-pentenyl-carbazole) (PPK), achieved by coordination polymerization, is studied in order to investigate the interrelation between the polymer tacticity and their physical-chemical properties. The use of these polymers in organic light-emitting diode (OLED) fabrication is also explored. Thermal and x-ray diffraction analyses of PPKs show that the isotactic stereoisomer is semicrystalline, whereas the syndiotactic one is amorphous. Optical analysis of both stereoisomers, carried out on film samples, reveals the presence of two different excimers: ‘sandwich-like’ and ‘partially overlapping’. Nevertheless, the emission intensity ratio between ‘sandwich-like’ and ‘partially overlapping’ excimers is higher in the isotactic than in the syndiotactic stereoisomer. Using the synthesized polymers as OLED emitting layers, the influence of the polymer tacticity on the EL properties of the device is highlighted. In detail, while blue OLEDs are obtained by using the syndiotactic stereoisomer, OLEDs with a multilayer structure fabricated with the isotactic stereoisomer emit white light. The contribution of three different emissions (fluorescence, phosphorescence and electromer emissions) with comparable intensities to the detected white light is discussed.
Peng, Song; Zhao, Yihuan; Fu, Caixia; Pu, Xuemei; Zhou, Liang; Huang, Yan; Lu, Zhiyun
2018-06-07
A series of blue-emissive 7-(diphenylamino)-4-phenoxycoumarin derivatives bearing -CF 3 , -OMe, or -N(Me) 2 substituents on the phenoxy subunit were synthesized. Although both the -CF 3 and -N(Me) 2 modifications were found to trigger redshifted fluorescence, the -OMe substitution was demonstrated to exert an unexpected blueshift color-tuning effect toward the deep-blue region. The reason is that the moderate electron-donating -OMe group can endow coumarins with unaltered HOMO but elevated LUMO energy levels. Moreover, the -OMe substitution was found to be beneficial to the thermal stability of these coumarins. Therefore, the trimethoxy-substituted objective compound can act as a high-performance deep-blue organic light-emitting diode (OLED) emitter, and OLED based on it emits deep-blue light with CIE coordinates of (0.148, 0.084), maximum luminance of 7800 cd m -2 , and maximum external quantum efficiency of 5.1 %. These results not only shed light on the molecular design strategy for high-performance deep-blue OLED emitters through color-tuning, but also show the perspective of coumarin derivatives as deep-blue OLED emitters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible top-emitting OLEDs for lighting: bending limits
NASA Astrophysics Data System (ADS)
Schwamb, Philipp; Reusch, Thilo C.; Brabec, Christoph J.
2013-09-01
Flexible OLED light sources have great appeal due to new design options, being unbreakable and their low weight. Top-emitting OLED device architectures offer the broadest choice of substrate materials including metals which are robust, impermeable to humidity, and good thermal conductors making them promising candidates for flexible OLED device substrates. In this study, we investigate the bending limits of flexible top-emitting OLED lighting devices with transparent metal electrode and thin film encapsulation on a variety of both metal and plastic foils. The samples were subjected to concave and convex bending and inspected by different testing methods for the onset of breakdown for example visible defects and encapsulation failures. The critical failure modes were identified as rupture of the transparent thin metal top electrode and encapsulation for convex bending and buckling of the transparent metal top electrode for concave bending. We investigated influences from substrate material and thickness and top coating thickness. The substrate thickness is found to dominate bending limits as expected by neutral layer modeling. Coating shows strong improvements for all substrates. Bending radii <15mm are achieved for both convex and concave testing without damage to devices including their encapsulation.
Three-peak standard white organic light-emitting devices for solid-state lighting
NASA Astrophysics Data System (ADS)
Guo, Kunping; Wei, Bin
2014-12-01
Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).
An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.
Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo
2017-11-01
The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.
Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials
Kappaun, Stefan; Slugovc, Christian; List, Emil J. W.
2008-01-01
Even though organic light-emitting device (OLED) technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs), further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III) complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers. PMID:19325819
Emi-Flective Display Device with Attribute of High Glare-Free-Ambient-Contrast-Ratio
NASA Astrophysics Data System (ADS)
Yang, Bo-Ru; Hsu, Chuan-Wei; Shieh, Han-Ping D.
2007-11-01
We have demonstrated the integration of an organic light emitting device (OLED) and a reflective liquid crystal display (R-LCD) which was termed an emi-flective display. The glare-free-ambient-contrast-ratio (GFA-CR) was used to evaluate the image quality of display devices under ambient light. Through integrating the OLED with R-LCD, the GFA-CR of the device achieved an improvement by a factor of 8 compared with that of the OLED alone. Moreover, the integrated R-LCD showed a GFA-CR of 100:1 within a viewing cone of 20° which can suppress the wash-out of OLED and is more power-saving in the sunlight. Therefore, an emi-flective display is a promising technique for mobile applications.
Life prediction for white OLED based on LSM under lognormal distribution
NASA Astrophysics Data System (ADS)
Zhang, Jianping; Liu, Fang; Liu, Yu; Wu, Helen; Zhu, Wenqing; Wu, Wenli; Wu, Liang
2012-09-01
In order to acquire the reliability information of White Organic Light Emitting Display (OLED), three groups of OLED constant stress accelerated life tests (CSALTs) were carried out to obtain failure data of samples. Lognormal distribution function was applied to describe OLED life distribution, and the accelerated life equation was determined by Least square method (LSM). The Kolmogorov-Smirnov test was performed to verify whether the white OLED life meets lognormal distribution or not. Author-developed software was employed to predict the average life and the median life. The numerical results indicate that the white OLED life submits to lognormal distribution, and that the accelerated life equation meets inverse power law completely. The estimated life information of the white OLED provides manufacturers and customers with important guidelines.
NASA Astrophysics Data System (ADS)
Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei
2014-04-01
A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.
Fukagawa, Hirohiko; Shimizu, Takahisa; Kamada, Taisuke; Yui, Shota; Hasegawa, Munehiro; Morii, Katsuyuki; Yamamoto, Toshihiro
2015-01-01
Organic light-emitting diodes (OLEDs) have been intensively studied as a key technology for next-generation displays and lighting. The efficiency of OLEDs has improved markedly in the last 15 years by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime and the relatively high cost owing to the costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent materials, which have been developed in the past few years, as the host material for the phosphorescent emitter. Our newly developed PHOLED employing only 1 wt% phosphorescent emitter exhibits an external quantum efficiency of over 20% and a long operational lifetime of about 20 times that of an OLED consisting of a conventional host material and 1 wt% phosphorescent emitter. PMID:25985084
Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko
2017-01-01
Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%. PMID:28139768
NASA Astrophysics Data System (ADS)
Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl
2012-02-01
Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.
NASA Astrophysics Data System (ADS)
Matsuoka, Kenichi; Albrecht, Ken; Yamamoto, Kimihisa; Fujita, Katsuhiko
2017-01-01
Thermally activated delayed fluorescence (TADF) materials emerged as promising light sources in third generation organic light-emitting diodes (OLED). Much effort has been invested for the development of small molecular TADF materials and vacuum process-based efficient TADF-OLEDs. In contrast, a limited number of solution processable high-molecular weight TADF materials toward low cost, large area, and scalable manufacturing of solution processed TADF-OLEDs have been reported so far. In this context, we report benzophenone-core carbazole dendrimers (GnB, n = generation) showing TADF and aggregation-induced emission enhancement (AIEE) properties along with alcohol resistance enabling further solution-based lamination of organic materials. The dendritic structure was found to play an important role for both TADF and AIEE activities in the neat films. By using these multifunctional dendritic emitters as non-doped emissive layers, OLED devices with fully solution processed organic multilayers were successfully fabricated and achieved maximum external quantum efficiency of 5.7%.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2015-06-23
The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.
Stacked white OLED having separate red, green and blue sub-elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.
Electroluminescent apparatus having a structured luminescence conversion layer
Krummacher, Benjamin Claus [Sunnyvale, CA
2008-09-02
An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.
NASA Astrophysics Data System (ADS)
Furno, Mauro; Rosenow, Thomas C.; Gather, Malte C.; Lüssem, Björn; Leo, Karl
2012-10-01
We report on a theoretical framework for the efficiency analysis of complex, multi-emitter organic light emitting diodes (OLEDs). The calculation approach makes use of electromagnetic modeling to quantify the overall OLED photon outcoupling efficiency and a phenomenological description for electrical and excitonic processes. From the comparison of optical modeling results and measurements of the total external quantum efficiency, we obtain reliable estimates of internal quantum yield. As application of the model, we analyze high-efficiency stacked white OLEDs and comment on the various efficiency loss channels present in the devices.
Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend
NASA Astrophysics Data System (ADS)
Reyes, R.; Cremona, M.; Teotonio, E. E. S.; Brito, H. F.; Malta, O. L.
2004-09-01
Light emission from organic electroluminescent diodes (OLEDs) in which mixed samarium and europium β-diketonate complexes, [Sm 0.7Eu 0.3(TTA) 3(TPPO) 2], was used as the emitting layer is described. The electroluminescence spectra exhibit narrow peaks arising from 4f-intraconfigurational transitions of the Sm 3+ and Eu 3+ ions and a broad emission band attributed to the electrophosphorescence of the TTA ligand. The intensity ratio of the peaks determined by the bias voltage applied to the OLED, together with the ligand electrophosphorescence, allows to obtain a voltage-tunable color light source.
Electroluminescent Properties in Organic Light-Emitting Diode Doped with Two Guest Dyes
NASA Astrophysics Data System (ADS)
Mori, Tatsuo; Kim, Hyeong-Gweon; Mizutani, Teruyoshi; Lee, Duck-Chool
2001-09-01
An organic light-emitting diode (OLED) with a squarylium dye-doped aluminium quinoline (Alq3) emission layer prepared by vapor deposition method has a pure red emission. However, since its luminance and electroluminescence (EL) efficiency is poor, the authors attended to improve the EL efficiency by doping a photosensitizer dye (a styryl dye, DCM) in an emission layer. The EL efficiency and luminance of DCM- and Sq-doped OLEDs are 2-3 times higher than those of only Sq-doped OLEDs. It was found that the excited energy is transferred from Alq3 to Sq through DCM.
NASA Astrophysics Data System (ADS)
Ran, G. Z.; Jiang, D. F.; Kan, Q.; Chen, H. D.
2010-12-01
We have observed a strongly polarized edge-emission from an organic light emitting device (OLED) with a silicon anode and a stacked Sm/Au (or Ag) cathode. For the OLED with a Sm/Au cathode, the transverse magnetic (TM) mode is stronger than the transverse electric (TE) mode by a factor of 2, while the polarization ratio of TM:TE is close to 300 for that with a Sm/Ag cathode. The polarization results from the scattering of surface plasmon polaritons at the device boundary. Such a silicon-based OLED is potentially an electrically excited SPP source in plasmonics.
NASA Astrophysics Data System (ADS)
Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy
2016-03-01
We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).
Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices.
Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa
2014-10-24
Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C(2')] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)₂Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)₂Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)₂Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.
Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment
NASA Astrophysics Data System (ADS)
Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool
2016-01-01
Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.
Carbon Nanotube Driver Circuit for 6 × 6 Organic Light Emitting Diode Display
Zou, Jianping; Zhang, Kang; Li, Jingqi; Zhao, Yongbiao; Wang, Yilei; Pillai, Suresh Kumar Raman; Volkan Demir, Hilmi; Sun, Xiaowei; Chan-Park, Mary B.; Zhang, Qing
2015-01-01
Single-walled carbon nanotube (SWNT) is expected to be a very promising material for flexible and transparent driver circuits for active matrix organic light emitting diode (AM OLED) displays due to its high field-effect mobility, excellent current carrying capacity, optical transparency and mechanical flexibility. Although there have been several publications about SWNT driver circuits, none of them have shown static and dynamic images with the AM OLED displays. Here we report on the first successful chemical vapor deposition (CVD)-grown SWNT network thin film transistor (TFT) driver circuits for static and dynamic AM OLED displays with 6 × 6 pixels. The high device mobility of ~45 cm2V−1s−1 and the high channel current on/off ratio of ~105 of the SWNT-TFTs fully guarantee the control capability to the OLED pixels. Our results suggest that SWNT-TFTs are promising backplane building blocks for future OLED displays. PMID:26119218
NASA Astrophysics Data System (ADS)
Chang, Shu-Hsuan; Chang, Yung-Cheng; Yang, Cheng-Hong; Chen, Jun-Rong; Kuo, Yen-Kuang
2006-02-01
Organic light-emitting diodes (OLEDs) have been extensively developed in the past few years. The OLED displays have advantages over other displays, such as CRT, LCD, and PDP in thickness, weight, brightness, response time, viewing angle, contrast, driving power, flexibility, and capability of self-emission. In this work, the optical and electronic properties of multilayer OLED devices are numerically studied with an APSYS (Advanced Physical Model of Semiconductor Devices) simulation program. Specifically, the emission and absorption spectra of the Alq 3, DCM, PBD, and SA light-emitting layers, and energy band diagrams, electron-hole recombination rates, and current-voltage characteristics of the simulated OLED devices, typically with a multilayer structure of metal/Alq 3/EML/TPD/ITO constructed by Lim et al., are investigated and compared to the experimental results. The physical models utilized in this work are similar to those presented by Ruhstaller et al. and Hoffmann et al. The simulated results indicate that the emission spectra of the Alq 3, DCM, PBD, and SA light-emitting layers obtained in this study are in good agreement with those obtained experimentally by Zugang et al. Optimization of the optical and electronic performance of the multilayer OLED devices are attempted. In order to further promote the research results, the whole numerical simulation process for optimizing the design of OLED devices has been applied to a project-based course of OLED device design to enhance the students' skills in photonics device design at the Graduate Institute of Photonics of National Changhua University of Education in Taiwan. In the meantime, the effectiveness of the course has been proved by various assessments. The application of the results is a useful point of reference for the research on photonics device design and engineering education. Therefore, it proffers a synthetic effect between innovation and practical application.
Chen, Shuming; Kwok, Hoi Sing
2010-01-04
Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.
Structured luminescence conversion layer
Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin
2012-12-11
An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.
Lee, Jeong-Hwan; Shin, Hyun; Kim, Jae-Min; Kim, Kwon-Hyeon; Kim, Jang-Joo
2017-02-01
The use of exciplex forming cohosts and phosphors incredibly boosts the efficiency of organic light-emitting diodes (OLEDs) by providing a barrier-free charge injection into an emitting layer and a broad recombination zone. However, most of the efficient OLEDs based on the exciplex forming cohosts has suffered from the short operational lifetime. Here, we demonstrated phosphorescent OLEDs (PhOLEDs) having both high efficiency and long lifetime by using a new exciplex forming cohost composed of N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) and (1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide) (PO-T2T). The red-emitting PhOLEDs using the exciplex forming cohost achieved a maximum external quantum efficiency (EQE) of 34.1% and power efficiency of 62.2 lm W 1- with low operating voltages and low efficiency roll-offs. More importantly, the device demonstrated a long lifetime around 2249 h from 1000 cd m -2 to 900 cd m -2 (LT 90 ) under a continuous flow of constant current. The efficiencies of the devices are the highest for red OLEDs with an LT 90 > 1000 h.
NASA Astrophysics Data System (ADS)
Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.
2011-04-01
The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.
Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J
2014-03-07
Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).
NASA Astrophysics Data System (ADS)
Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.
2014-03-01
Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.
Highly efficient fully transparent inverted OLEDs
NASA Astrophysics Data System (ADS)
Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.
2007-09-01
One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.
Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode-Organic Interface
NASA Astrophysics Data System (ADS)
Saikia, Dhrubajyoti; Sarma, Ranjit
2018-01-01
The performance of an organic light-emitting diode (OLED) with a vacuum-deposited perylene layer over a fluorine-doped tin oxide (FTO) surface is reported. To investigate the effect of the perylene layer on OLED performance, different thicknesses of perylene are deposited on the FTO surface and their current density-voltages (J-V), luminance-voltages (L-V) and device efficiency characteristics at their respective thickness are studied. Further analysis is carried out with an UV-visible light double-beam spectrophotometer unit, a four-probe resistivity unit and a field emission scanning electron microscope set up to study the optical transmittance, sheet resistance and surface morphology of the bilayer anode film. We used N,N'-bis(3-methyl phenyl)- N,N'(phenyl)-benzidine (TPD) as the hole transport layer, Tris(8-hydroxyquinolinato)aluminum (Alq3) as a light-emitting layer and lithium fluoride as an electron injection layer. The luminance efficiency of an OLED structure with a 9-nm-thick perylene interlayer is increased by 2.08 times that of the single-layer FTO anode OLED. The maximum value of current efficiency is found to be 5.25 cd/A.
Chen, Mengyun; Zhao, Yang; Yan, Lijia; Yang, Shuai; Zhu, Yanan; Murtaza, Imran; He, Gufeng; Meng, Hong; Huang, Wei
2017-01-16
White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures-2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission-to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm 2 V -1 s -1 . This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Jie; Lewis, Larry N.; Duggal, Anil R.
2007-06-01
Organic light-emitting devices (OLEDs) usually employ at least one organic semiconductor layer that acts as a hole-injection material. The prototypical example is a conjugated polymer such as poly(3,4-ethylenedioxythiophene) heavily p doped with polystyrene sulfonic acid. Here, the authors describe a chemical doping strategy for hole injection material formulation that enables spatial patterning of the material conductivity through optical activation. The strategy utilizes an organic photoacid generator (PAG) dispersed in a polymeric organic semiconductor host. Upon UV irradiation, the PAG decomposes and generates a strong protonic acid that subsequently p dopes the host. The authors demonstrate an OLED made with such a light-activated hole-injection material and show that arbitrary emission patterning can be accomplished. This approach may provide a simple, low cost path toward specialty lighting and signage applications for OLED technology.
Simple single-emitting layer hybrid white organic light emitting with high color stability
NASA Astrophysics Data System (ADS)
Nguyen, C.; Lu, Z. H.
2017-10-01
Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.
Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.
Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang
2012-03-12
The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.
NASA Astrophysics Data System (ADS)
He, Yi
2000-10-01
Organic light-emitting devices (OLEDs) made of single-layer and double-layer polymer thin films have been fabricated and studied. The hole transporting (polymer A) and emissive (polymer B) polymers were poly(9,9' -dioctyl fluorene-2,7-diyl)-co-poly(diphenyl-p-tolyl-amine-4,4 '-diyl) and poly(9,9'-dioctyl fluorene-2,7-diyl)-co-poly(benzothiadiazole 2,5-diyl), respectively. The optical bandgaps of polymer A and B were 2.72 and 2.82 eV, respectively. The photoluminescence (PL) peaks for polymer A and B were 502 and 546 nm, respectively. The electroluminescence (EL) peak for polymer B was 547 nm. No EL has been observed from polymer A single layer OLEDs. To obtain the spectral distribution of the emission properties of the light-emitting devices, a new light-output measurement technique was developed. Using this technique, the spectral distribution of the luminance, radiance, photon density emission can be obtained. Moreover, the device external quantum efficiency calculated using this technique is accurate and insensitive to the light emission spectrum shape. Organic light-emitting devices have been fabricated and studied on both glass and flexible plastic substrates. The OLEDs showed a near-linear relationship between the luminance and the applied current density over four orders of magnitude. For the OLEDs fabricated on the glass substrate, luminance ˜9,300 cd/m2, emission efficiency ˜14.5 cd/A, luminescence power efficiency ˜2.26 lm/W, and external quantum efficiency ˜3.85% have been achieved. For the OLEDs fabricated on the flexible plastic substrates, both aluminum and calcium were used as cathode materials. The achieved maximum OLED luminance, emission efficiency, luminescence power efficiency, and external quantum efficiency were ˜13,000 cd/m2, ˜66.1 cd/A, ˜17.2 lm/W, and 16.7%, respectively. To make an active-matrix organic light-emitting display (AM-OLED), a two-TFT pixel electrode circuit was designed and fabricated based on amorphous silicon TFT technology. This circuit was capable of providing continuous pixel excitation and a simple driving scheme. However, it showed an output current variation of ˜40% to 80% due to the drive TFT threshold voltage (V th) shift after long-term operation. To improve the pixel circuit electrical reliability, a four-TFT pixel electrode circuit was proposed and fabricated. This circuit only showed an output current variation <1% for the high currents (>0.5muA) even when a TFT Vth shift as large as 3V was present. This four-TFT pixel electrode circuit was used to fabricate small size active-matrix monochrome organic light-emitting display.
Stacked white OLED having separate red, green and blue sub-elements
Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael
2014-07-01
The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
Novel Encapsulation Method for Flexible Organic Light-Emitting Diodes using Poly(dimethylsiloxane)
NASA Astrophysics Data System (ADS)
Han, Jeong-Min; Han, Jin-Woo; Chun, Ji-Yun; Ok, Chul-Ho; Seo, Dae-Shik
2008-12-01
We have developed a novel encapsulation method for flexible organic light-emitting diodes (OLEDs) using poly(dimethylsiloxane) (PDMS). The new method, which uses polycarbonate film, silicon dioxide, and PDMS, was found to enhance the lifetime of OLEDs in air. Optical measurements of the preservation of calcium films encapsulated with PDMS showed that the water and oxygen permeation rates of the PDMS encapsulation were reduced from a level of 0.57 g m-2 d-1 (bare substrate) to 1×10-7 g m-2 d-1. These results indicate that the PDMS barrier coatings have a good potential for flexible OLED applications.
A new AC driving circuit for a top emission AMOLED
NASA Astrophysics Data System (ADS)
Yongwen, Zhang; Wenbin, Chen; Haohan, Liu
2013-05-01
A new voltage programmed pixel circuit with top emission design for active-matrix organic light-emitting diode (AMOLED) displays is presented and verified by HSPICE simulations. The proposed pixel circuit consists of five poly-Si TFTs, and can effectively compensate for the threshold voltage variation of the driving TFT. Meanwhile, the proposed pixel circuit offers an AC driving mode for the OLED by the two adjacent pulse voltage sources, which can suppress the degradation of the OLED. Moreover, a high contrast ratio can be achieved by the proposed pixel circuit since the OLED does not emit any light except for the emission period.
AMOLED (active matrix OLED) functionality and usable lifetime at temperature
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan
2005-05-01
Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.
NASA Astrophysics Data System (ADS)
Hua, Wang; Du, Xiaogang; Su, Wenming; Lin, Wenjing; Zhang, Dongyu
2014-02-01
In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4'-N,N'-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N')iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2']picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.
Highly efficient phosphorescent, TADF, and fluorescent OLEDs (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kim, Jang-Joo; Kim, Kwon-Hyeon; Moon, Chang-Ki; Shin, Hyun
2016-09-01
High efficiency OLEDs based on phosphorescent, thermally activated delayed fluorescent (TADF) and fluorescent emitters will be presented. We will show that EQEs over 60% is achievable if OLEDs are fabricated using organic semiconductors with the refractive indices of 1.5 and fully horizontal emitting dipoles without any extra light extracting structure. We will also show that reverse intersystem crossing RISC rate plays an important role to reduce the efficiency roll-off in efficient TADF and fluorescent OLEDs and a couple to methods will be presented to increase the RISC rate in the devices.
NASA Astrophysics Data System (ADS)
Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo
2017-11-01
Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.
NASA Astrophysics Data System (ADS)
Sarma, Kalluri
2015-05-01
Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.
NASA Astrophysics Data System (ADS)
Saikia, Dhrubajyoti; Sarma, Ranjit
2018-03-01
The influence of thin layer of nickel oxide (NiO) over the fluorine-doped tin oxide (FTO) surface on the performance of Organic light-emitting diode (OLED) is reported. With an optimal thickness of NiO (10 nm), the luminance efficiency is found to be increased as compared to the single FTO OLED. The performance of OLED is studied by depositing NiO films at different thicknesses on the FTO surface and analyzed their J-V and L-V characteristics. Further analysis is carried out by measuring sheet resistance and optical transmittance. The surface morphology is studied with the help of FE-SEM images. Our results indicate that NiO (10 nm) buffer layer is an excellent choice to increase the efficiency of FTO based OLED devices within the charge tunneling region. The maximum value of current efficiency is found to be 7.32 Cd/A.
Evaluation of an organic light-emitting diode display for precise visual stimulation.
Ito, Hiroyuki; Ogawa, Masaki; Sunaga, Shoji
2013-06-11
A new type of visual display for presentation of a visual stimulus with high quality was assessed. The characteristics of an organic light-emitting diode (OLED) display (Sony PVM-2541, 24.5 in.; Sony Corporation, Tokyo, Japan) were measured in detail from the viewpoint of its applicability to visual psychophysics. We found the new display to be superior to other display types in terms of spatial uniformity, color gamut, and contrast ratio. Changes in the intensity of luminance were sharper on the OLED display than those on a liquid crystal display. Therefore, such OLED displays could replace conventional cathode ray tube displays in vision research for high quality stimulus presentation. Benefits of using OLED displays in vision research were especially apparent in the fields of low-level vision, where precise control and description of the stimulus are needed, e.g., in mesopic or scotopic vision, color vision, and motion perception.
Meng, Mei; Song, Wook; Kim, You-Hyun; Lee, Sang-Youn; Jhun, Chul-Gyu; Zhu, Fu Rong; Ryu, Dae Hyun; Kim, Woo-Young
2013-01-01
High efficiency blue organic light emitting diodes (OLEDs), based on 2-me-thyl-9,10-di(2-naphthyl) anthracene (MADN) doped with 4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl (BCzVBi), were fabricated using two different electron transport layers (ETLs) of tris(8-hydroxyquinolino)-aluminum (Alq3) and 4,7-di-phenyl-1,10-phenanthroline (Bphen). Bphen ETL layers favored the efficient hole-electron recombination in the emissive layer of the BCzVBi-doped blue OLEDs, leading to high luminous efficiency and quantum efficiency of 8.34 cd/A at 100 mA/cm2 and 5.73% at 100 cd/m2, respectively. Maximum luminance of blue OLED with Bphen ETL and Alq3 ETL were 10670 cd/m2, and CIExy coordinates of blue OLEDs were (0.180, 0279) and (0.155, 0.212) at 100 cd/m2.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei
A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.
Storage of charge carriers on emitter molecules in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Weichsel, Caroline; Burtone, Lorenzo; Reineke, Sebastian; Hintschich, Susanne I.; Gather, Malte C.; Leo, Karl; Lüssem, Björn
2012-08-01
Organic light-emitting diodes (OLEDs) using the red phosphorescent emitter iridium(III)bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate) [Ir(MDQ)2(acac)] are studied by time-resolved electroluminescence measurements. A transient overshoot after voltage turn-off is found, which is attributed to electron accumulation on Ir(MDQ)2(acac) molecules. The mechanism is verified via impedance spectroscopy and by application of positive and negative off-voltages. We calculate the density of accumulated electrons and find that it scales linearly with the doping concentration of the emitter. Using thin quenching layers, we locate the position of the emission zone during normal OLED operation and after voltage turn-off. In addition, the transient overshoot is also observed in three-color white-emitting OLEDs. By time- and spectrally resolved measurements using a streak camera, we directly attribute the overshoot to electron accumulation on Ir(MDQ)2(acac). We propose that similar processes are present in many state-of-the-art OLEDs and believe that the quantification of charge carrier storage will help to improve the efficiency of OLEDs.
Kim, Jin Hee; Joo, Chul Woong; Lee, Jonghee; Seo, Yoon Kyung; Han, Joo Won; Oh, Ji Yoon; Kim, Jong Su; Yu, Seunggun; Lee, Jae Hyun; Lee, Jeong-Ik; Yun, Changhun; Choi, Bum Ho; Kim, Yong Hyun
2016-09-01
Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) films as transparent electrodes for organic light-emitting diodes (OLEDs) are doped with a new solvent 1,3-dimethyl-2-imidazolidinone (DMI) and are optimized using solvent post-treatment. The DMI doped PSS films show significantly enhanced conductivities up to 812.1 S cm(-1) . The sheet resistance of the PSS films doped with DMI is further reduced by various solvent post-treatment. The effect of solvent post-treatment on DMI doped PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PSS films with the new solvent of DMI can be a promising transparent electrode for low-cost, efficient ITO-free white OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Junction-Free Electrospun Ag Fiber Electrodes for Flexible Organic Light-Emitting Diodes.
Choi, Junhee; Shim, Yong Sub; Park, Cheol Hwee; Hwang, Ha; Kwack, Jin Ho; Lee, Dong Jun; Park, Young Wook; Ju, Byeong-Kwon
2018-02-01
Fabrication of junction-free Ag fiber electrodes for flexible organic light-emitting diodes (OLEDs) is demonstrated. The junction-free Ag fiber electrodes are fabricated by electrospun polymer fibers used as an etch mask and wet etching of Ag thin film. This process facilitates surface roughness control, which is important in transparent electrodes based on metal wires to prevent electrical instability of the OLEDs. The transmittance and resistance of Ag fiber electrodes can be independently adjusted by controlling spinning time and Ag deposition thickness. The Ag fiber electrode shows a transmittance of 91.8% (at 550 nm) at a sheet resistance of 22.3 Ω □ -1 , leading to the highest OLED efficiency. In addition, Ag fiber electrodes exhibit excellent mechanical durability, as shown by measuring the change in resistance under repeatable mechanical bending and various bending radii. The OLEDs with Ag fiber electrodes on a flexible substrate are successfully fabricated, and the OLEDs show an enhancement of EQE (≈19%) compared to commercial indium tin oxide electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shin, Hee-Sun; Lee, Won-Kyu; Park, Sang-Guen; Kuk, Seung-Hee; Han, Min-Koo
2009-03-01
A new hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) pixel circuit for active-matrix organic light emission diodes (AM-OLEDs), which significantly compensates the OLED current degradation by memorizing the threshold voltage of driving TFT and suppresses the threshold voltage shift of a-Si:H TFTs by negative bias annealing, is proposed and fabricated. During the first half of each frame, the driving TFT of the proposed pixel circuit supplies current to the OLED, which is determined by modified data voltage in the compensation scheme. The proposed pixel circuit was able to compensate the threshold voltage shift of the driving TFT as well as the OLED. During the remaining half of each frame, the proposed pixel circuit induces the recovery of the threshold voltage degradation of a-Si:H TFTs owing to the negative bias annealing. The experimental results show that the proposed pixel circuit was able to successfully compensate for the OLED current degradation and suppress the threshold voltage degradation of the driving TFT.
Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi
2014-01-27
Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. < 2.4 V for onset and < 3 V for 1000 cd/m2, and high efficiency of 32.5 lm/W (13.3%), 58.8 lm/W (14.3%), 55.1 lm/W (14.6%), 24.9 lm/W (13.7%) and 45.1 lm/W (13.5%) for blue, green, yellow, red and white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.
Simulation for light extraction efficiency of OLEDs with spheroidal microlenses in hexagonal array
NASA Astrophysics Data System (ADS)
Bae, Hyungchul; Kim, Jun Soo; Hong, Chinsoo
2018-05-01
A theoretical model based on ray optics is used to simulate the optical performance of organic light-emitting diodes (OLEDs) with spheroidal microlens arrays (MLAs) in a hexagonal array configuration using the Monte Carlo method. In simulations, ray tracing was performed until 20 reflections occurred from the metal cathode, with 10 consecutive reflections permitted in a single lens pattern. The parameters describing the shape and array of the lens pattern of a MLA are its radius, height, contact angle, and fill factor (FF). Many previous results on how these parameters affect light extraction efficiency (LEE) are inconsistent. In this paper, these contradictory results are discussed and explained by introducing a new parameter. To examine light extraction from an OLED through a MLA, the LEE enhancement is studied considering the effect of absorption by indium tin oxide during multiple reflections from the metal cathode. The device size where LEE enhancement is unchanged with changing lens pattern was identified for a fixed FF; under this condition, the optimal LEE enhancement, 84%, can be obtained using an OLED with a close-packed spheroidal MLA. An ideal maximum LEE enhancement of 120% was achieved with a device with an infinite-sized MLA. The angular intensity distribution of light emitted through a MLA is considered in addition to LEE enhancement for an optimized MLA.
Polymeric Smart Skin Materials: Concepts, Materials, and Devices
2006-03-31
nanotube actuators for both sensing and active control of surfaces. State-of-the-art OLED and photovoltaic materials have been developed for display...format. 14. SUBJECT TERMS Multi-sensor paints; carbon nanotube materials and devices; OLED , 15. NUMBER OF PAGES nhntovnlthir ndni elp.trAn-nntjc ’vicn...Significant advances in organic light emitting device ( OLED ) materials has also been achieved as is evident from the publications and invention
Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex
NASA Astrophysics Data System (ADS)
Verma, Anand; Zink, Daniel M.; Fléchon, Charlotte; Leganés Carballo, Jaime; Flügge, Harald; Navarro, José M.; Baumann, Thomas; Volz, Daniel
2016-03-01
Using printed organic light-emitting diodes (OLEDs) for lighting, smart-packaging and other mass-market applications has remained a dream since the first working OLED devices were demonstrated in the late 1980s. The realization of this long-term goal is hindered by the very low abundance of iridium and problems when using low-cost wet chemical production processes. Abundant, solution-processable Cu(I) complexes promise to lower the cost of OLEDs. A new copper iodide NHetPHOS emitter was prepared and characterized in solid state with photoluminescence spectroscopy and UV photoelectron spectroscopy under ambient conditions. The photoluminescence quantum efficiency was determined as 92 ± 5 % in a thin film with yellowish-green emission centered around 550 nm. This puts the material on par with the most efficient copper complexes known so far. The new compound showed superior solubility in non-polar solvents, which allowed for the fabrication of an inkjet-printed OLED device from a decalin-based ink formulation. The emission layer could be processed under ambient conditions and was annealed under air. In a very simple stack architecture, efficiency values up to 45 cd A-1 corresponding to 13.9 ± 1.9 % EQE were achieved. These promising results open the door to printed, large-scale OLED devices with abundant copper emitters.
Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions
NASA Astrophysics Data System (ADS)
Tokito, Shizuo; Tsutsui, Tetsuo; Taga, Yasunori
1999-09-01
In this article we demonstrate strongly directed pure red, green, and blue emissions in the organic light-emitting diodes (OLEDs) with a planar microcavity defined by a pair of dielectric mirror and a metal mirror. By careful control of the cavity mode and the position of the resonance wavelength, the strong directionality in the forward direction as well as the spectral narrowing and the intensity enhancement are realized in the microcavity OLEDs. The intensity enhancements at the resonance wavelength are 1.5-5 compared to the noncavity OLEDs, and the chromaticity coordinates of the emission colors are the ideal primary colors. The experimental results are compared to theoretically calculated ones.
NASA Astrophysics Data System (ADS)
Pham, S.-T.; Ikemoto, K.; Suzuki, K. Z.; Izumi, T.; Taka, H.; Kita, H.; Sato, S.; Isobe, H.; Mizukami, S.
2018-02-01
Magneto-electroluminescence (MEL) effects are observed in single-layer organic light-emitting devices (OLEDs) comprising only macrocyclic aromatic hydrocarbons (MAHs). The fluorescence devices were prepared using synthesized MAHs, namely, [n]cyclo-meta-phenylene ([n]CMP, n = 5, 6). The MEL ratio of the resulting OLED is 1%-2% in the spectral wavelength range of 400-500 nm, whereas it becomes negative (-1.5% to -2%) in the range from 650 to 700 nm. The possible physical origins of the sign change in the MEL are discussed. This wavelength-dependent sign change in the MEL ratio could be a unique function for future single-layer OLEDs capable of magnetic-field-induced color changes.
Design and implementation of organic LED-based displays for signage application
NASA Astrophysics Data System (ADS)
Sharma, Pratibha; Kwok, Harry
2006-06-01
Organic light-emitting diodes (OLEDs) have been utilized successfully for various applications such as microdisplays in cell-phones and digital cameras. However, the application of OLEDs for large area signage displays has not yet been established. This paper presents novel design techniques for implementing OLEDs as light sources for signage application. The designs are examined on the basis of signage uniformity, cost and manufacturing complexity. Advantages and limitations of each design are described. It is determined that a trade-off is required to choose a design for implementation. After evaluation and comparison of the designs, the most optimal design is chosen and implemented. Measurement results with the optimal design are described.
Long-lifetime thin-film encapsulated organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Wong, F. L.; Fung, M. K.; Tao, S. L.; Lai, S. L.; Tsang, W. M.; Kong, K. H.; Choy, W. M.; Lee, C. S.; Lee, S. T.
2008-07-01
Multiple fluorocarbon (CFx) and silicon nitride (Si3N4) bilayers were applied as encapsulation cap on glass-based organic light-emitting diodes (OLEDs). When CFx/Si3N4 bilayers were deposited onto the OLED structure, the devices showed performance worse than one without any encapsulation. The adverse effects were attributed to the damage caused by reaction species during the thin-film deposition processes. To solve this problem, a CuPc interlayer was found to provide effective protection to the OLED structure. With a structure of CuPc/(CFx/Si3N4)×5, the encapsulated device showed an operation lifetime over 8000 h (higher than 80% of that achieved with a conventional metal encapsulation).
Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth
2013-05-17
Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and consequently enhances light outcoupling from the OLEDs by ~60%, and it increases the PL directed toward the OPD. The multiple functional structures of multicolor microcavity OLED pixels/microporous scattering films/OPDs enable generation of enhanced individually addressable sensor arrays, devoid of interfering issues, for O2 and pH as well as for other analytes and biochemical parameters. Copyright © 2013 Elsevier B.V. All rights reserved.
Restraining for switching effects in an AC driving pixel circuit of the OLED-on-silicon
NASA Astrophysics Data System (ADS)
Liu, Yan-Yan; Geng, Wei-Dong; Dai, Yong-Ping
2010-03-01
The AC driving scheme for OLEDs, which uses the pixel circuit with two transistors and one capacitor (2T1C), can extend the lifetime of the active matrix organic light-emitting diode (AMOLED) on silicon, but there are switching effects during the switch of AC signals, which result in the voltage variation on the storage capacitor and cause the current glitch in OLED. That would decrease the gray scale of the OLED. This paper proposes a novel pixel circuit consisting of three transistors and one capacitor to realize AC driving for the OLED-on-silicon while restraining the switching effects. Simulation results indicate that the proposed circuit is less sensitive to switching effects. Also, another pixel circuit is proposed to further reduce the driving current to meet the current constraints for the OLED-on-silicon.
NASA Astrophysics Data System (ADS)
Chiu, Tien-Lung; Chuang, Ya-Ting
2015-02-01
Transition metal oxides, such as molybdenum trioxide (MoO3), tungsten trioxide (WO3) and vanadium pent-oxide (V2O5), are well-known hole injection materials used for organic electronic devices. These materials promote work functions of anodes, reduce energy barriers, and facilitate hole transport at the interface between the inorganic anode and organic hole-transporting layer (HTL). In this study, we characterized the transmittance spectra and work function of these materials. Furthermore, we employed a hole-injection layer (HIL) in a blue phosphorescent organic light-emitting diode (OLED) to evaluate their hole-injection capacity by detecting the variation in the emission spectra. Thus, we utilized an OLED structure that has fast electron transporting dynamics to establish the recombination zone located at emitting layer and a partial HTL close to the anode. We used these three transition metal oxides individually as HILs sandwiched between the ITO anode and HTL and concluded that the strength of emissive light from the HTL was determined by their hole-injection capacity, depending on work function. The small amount of HTL emission light of the V2O5 OLED was explained by the high work function of 5.8 eV for the V2O5 film. However, the V2O5 OLED demonstrated the least favorable optoelectrical performance because of its low transmittance and high resistance of the V2O5 film. Ultimately, the 5 nm-MoO3 OLED exhibited the highest device performance because of its high material conductivity and transparency in the visible band.
Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup
2016-01-01
Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening. PMID:27250743
Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup
2016-06-02
Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.
A new OLED SPICE model for pixel circuit simulation in OLED-on-silicon microdisplay design
NASA Astrophysics Data System (ADS)
Bohua, Zhao; Ran, Huang; Jianhui, Bu; Yinxue, Lü; Yiqi, Wang; Fei, Ma; Guohua, Xie; Zhensong, Zhang; Huan, Du; Jiajun, Luo; Zhengsheng, Han; Yi, Zhao
2012-07-01
A new equivalent circuit model of organic-light-emitting-diode (OLED) is proposed. As the single-diode model is able to approximate OLED behavior as well as the multiple-diode model, the new model will be built based on it. In order to make sure that the experimental and simulated data are in good agreement, the constant resistor is exchanged for an exponential resistor in the new model. Compared with the measured data and the results of the other two OLED SPICE models, the simulated I—V characteristics of the new model match the measured data much better. This new model can be directly incorporated into an SPICE circuit simulator and presents good accuracy over the whole operating voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang; Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024
2014-02-15
In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37)more » as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.« less
Naturally formed graded junction for organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Shao, Yan; Yang, Yang
2003-09-01
In this letter, we report naturally-formed graded junctions (NFGJ) for organic light-emitting diodes (OLEDs). These junctions are fabricated using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. Upon heating, materials sublimate sequentially according to their vaporizing temperatures forming the graded junction. Two kinds of graded structures, sharp and shallow graded junctions, can be formed based on the thermal properties of the selected materials. The NFGJ OLEDs have shown excellent performance in both brightness and lifetime compared with heterojunction devices.
RCWA and FDTD modeling of light emission from internally structured OLEDs.
Callens, Michiel Koen; Marsman, Herman; Penninck, Lieven; Peeters, Patrick; de Groot, Harry; ter Meulen, Jan Matthijs; Neyts, Kristiaan
2014-05-05
We report on the fabrication and simulation of a green OLED with an Internal Light Extraction (ILE) layer. The optical behavior of these devices is simulated using both Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time-Domain (FDTD) methods. Results obtained using these two different techniques show excellent agreement and predict the experimental results with good precision. By verifying the validity of both simulation methods on the internal light extraction structure we pave the way to optimization of ILE layers using either of these methods.
Polarized micro-cavity organic light-emitting devices.
Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk
2009-04-27
We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-01-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-02-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.
Kondakov, Denis Y
2015-06-28
Studies of delayed electroluminescence in highly efficient fluorescent organic light-emitting diodes (OLEDs) of many dissimilar architectures indicate that the triplet-triplet annihilation (TTA) significantly increases yield of excited singlet states-emitting molecules in this type of device thereby contributes substantially to their efficiency. Towards the end of the 2000s, the essential role of TTA in realizing highly efficient fluorescent devices was widely recognized. Analysis of a diverse set of fluorescent OLEDs shows that high efficiencies are often cor-related to TTA extents. It is therefore likely that it is the long-term empirical optimization of OLED efficiencies that has resulted in fortuitous emergence of TTA as a large and ubiquitous contributor to efficiency. TTA contributions as high as 20-30% are common in the state-of-the-art OLEDs, and even become dominant in special cases, where TTA is shown to substantially exceed the spin-statistical limit. The fundamental features of OLED efficiency enhancement via TTA-molecular structure-dependent contributions, current density-dependent intensities in practical devices and frequently observed antagonistic relationships between TTA extent and OLED lifetime-came to be understood over the course of the next few years. More recently, however, there was much less reported progress with respect to all-important quantitative details of the TTA mechanism. It should be emphasized that, to this day and despite the decades of work on improving blue phosphorescent OLEDs as well as the recent advent of thermally activated delayed fluorescence OLEDs, the majority of practical blue OLEDs still rely on TTA. Considering such practical importance of fluorescent blue OLEDs, the design of blue OLED-compatible materials capable of substantially exceeding the spin-statistical limit in TTA, elimination of the antagonistic relationship between TTA-related efficiency gains and lifetime losses, and designing devices with an extended range of current densities producing near-maximum TTA electroluminescence are the areas where future improvements would be most beneficial. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jin-Hoon; Triambulo, Ross E.; Park, Jin-Woo
2017-03-01
We investigated the charge injection properties of silver nanowire networks (AgNWs) in a composite-like structure with poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS). The composite films acted as the anodes and hole transport layers (HTLs) in organic light-emitting diodes (OLEDs). The current density (J)-voltage (V)-luminance (L) characteristics and power efficiency (ɛ) of the OLEDs were measured to determine their electrical and optical properties. The charge injection properties of the AgNWs in the OLEDs during operation were characterized via impedance spectroscopy (IS) by determining the variations in the capacitances (C) of the devices with respect to the applied V and the corresponding frequency (f). All measured results were compared with results for OLEDs fabricated on indium tin oxide (ITO) anodes. The OLEDs on AgNWs showed lower L and ɛ values than the OLEDs on ITO. It was also observed that AgNWs exhibit excellent charge injection properties and that the interfaces between the AgNWs and the HTL have very small charge injection barriers, resulting in an absence of charge carrier traps when charges move across these interfaces. However, in the AgNW-based OLED, there was a large mismatch in the number of injected holes and electrons. Furthermore, the highly conductive electrical paths of the AgNWs in the composite-like AgNW and PEDOT:PSS structure allowed a large leakage current of holes that did not participate in radiative recombination with the electrons; consequently, a lower ɛ was observed for the AgNW-based OLEDs than for the ITO-based OLEDs. To match the injection of electrons by the electron transport layer (ETL) in the AgNW-based OLED with that of holes by the AgNW/PEDOT:PSS composite anode, the electron injection barrier of the ETL was decreased by using the low work function polyethylenimine ethoxylated (PEIE) doped with n-type cesium carbonate (Cs2CO3). With the doped-PEIE, the performance of the AgNW-based OLED was significantly enhanced through the balanced injection of holes and electrons, which clearly verified our analysis results by IS.
Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs
Burns, Samantha; MacLeod, Jennifer; Trang Do, Thu; Sonar, Prashant; Yambem, Soniya D.
2017-01-01
Thermal annealing of the emissive layer of an organic light emitting diode (OLED) is a common practice for solution processable emissive layers and reported annealing temperatures varies across a wide range of temperatures. We have investigated the influence of thermal annealing of the emissive layer at different temperatures on the performance of OLEDs. Solution processed polymer Super Yellow emissive layers were annealed at different temperatures and their performances were compared against OLEDs with a non-annealed emissive layer. We found a significant difference in the efficiency of OLEDs with different annealing temperatures. The external quantum efficiency (EQE) reached a maximum of 4.09% with the emissive layer annealed at 50 °C. The EQE dropped by ~35% (to 2.72%) for OLEDs with the emissive layers annealed at 200 °C. The observed performances of OLEDs were found to be closely related to thermal properties of polymer Super Yellow. The results reported here provide an important guideline for processing emissive layers and are significant for OLED and other organic electronics research communities. PMID:28106082
Study of a new type anode of OLED by MIC poly-Si
NASA Astrophysics Data System (ADS)
Li, Yang; Meng, Zhiguo; Wu, Chunya; Man, Wong; Hoi, Kwok Sing; Xiong, Shaozhen
2007-11-01
In this paper, a boron-doped poly-Si crystallized by solution-based metal induced (S-MIC) as the anode of organic light emitting diode (OLED) was studied. The semi-transparent and semi-reflective anode of OLED systemized with the high reflectivity of Al cathode could form a micro-cavity structure with a low Q to improve the efficiency. The maximum luminance efficiency of red OLED made by Alq3: DCJTB (1.5wt %)( 30nm) with the poly-Si anode is 2.66cd/A, higher than that of the OLED with the ITO anodes by 30%. In order to improve the device performance, some key to optimize the character of MIC poly-Si thin film are analyzed theoretically. A new kind of TFT/OLED coupling structure in AMOLED was proposed, in which the pixel electrode of OLED was made by the same poly-Si thin film with its driver TFT's drain electrode. So that this coupling structure will simplify the AMOLED processes flow.
Organic light emitting device structure for obtaining chromaticity stability
Tung, Yeh-Jiun [Princeton, NJ; Ngo, Tan [Levittown, PA
2007-05-01
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
Organic light emitting device structures for obtaining chromaticity stability
Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.
2005-04-26
The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.
Duan, Lian; Tsuboi, Taiju; Qiu, Yong; Li, Yanrui; Zhang, Guohui
2012-06-18
Tandem organic light emitting diodes (OLEDs) are ideal for lighting applications due to their low working current density at high brightness. In this work, we have studied an efficient electron transporting layer of KBH(4) doped 9,10-bis(3-(pyridin-3-yl)phenyl)anthracene (DPyPA) which is located adjacent to charge generation layer of MoO(3)/NPB. The excellent transporting property of the DPyPA:KBH(4) layer helps the tandem OLED to achieve a lower voltage than the tandem device with the widely used tris-(8-hydroxyquinoline)aluminum:Li. For the tandem white OLED with a fluorescent blue unit and a phosphorescent yellow unit, we've achieved a high current efficiency of 75 cd/A, which can be further improved to 120 cd/A by attaching a diffuser layer.
NASA Astrophysics Data System (ADS)
Ching-Lin Fan,; Hui-Lung Lai,; Jyu-Yu Chang,
2010-05-01
In this paper, we propose a novel pixel design and driving method for active-matrix organic light-emitting diode (AM-OLED) displays using low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs). The proposed threshold voltage compensation circuit, which comprised five transistors and two capacitors, has been verified to supply uniform output current by simulation work using the automatic integrated circuit modeling simulation program with integrated circuit emphasis (AIM-SPICE) simulator. The driving scheme of this voltage programming method includes four periods: precharging, compensation, data input, and emission. The simulated results demonstrate excellent properties such as low error rate of OLED anode voltage variation (<1%) and high output current. The proposed pixel circuit shows high immunity to the threshold voltage deviation characteristics of both the driving poly-Si TFT and the OLED.
NASA Astrophysics Data System (ADS)
Plint, Trevor; Lessard, Benoît H.; Bender, Timothy P.
2016-04-01
In this study, we have assessed the potential application of group 13 and 14 metal and metalloid phthalocyanines ((X)n-MPcs) and their axially substituted derivatives as hole-transporting layers in organic light emitting diodes (OLEDs). OLEDs studied herein have the generic structure of glass/ITO/(N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB) or (X)n-MPc)(50 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (80 nm), where X is an axial substituent group. OLEDs using chloro aluminum phthalocyanine (Cl-AlPc) showed good peak luminance values of 2620 ± 113 cd/m2 at 11 V. To our knowledge, Cl-AlPc has not previously been shown to work as a hole transport material (HTL) in OLEDs. Conversely, the di-chlorides of silicon, germanium, and tin phthalocyanine (Cl2-SiPc, Cl2-GePc, and Cl2-SnPc, respectively) showed poor performance compared to Cl-AlPc, having peak luminances of only 38 ± 4 cd/m2 (12 V), 23 ± 1 cd/m2 (8.5 V), and 59 ± 5 cd/m2 (13.5 V), respectively. However, by performing a simple axial substitution of the chloride groups of Cl2-SiPc with pentafluorophenoxy groups, the resulting bis(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) containing OLED had a peak luminance of 5141 ± 941 cd/m2 (10 V), a two order of magnitude increase over its chlorinated precursor. This material showed OLED characteristics approaching those of a baseline OLED based on the well-studied triarylamine NPB. Attempts to attach the pentafluorophenoxy axial group to both SnPc and GePc were hindered by synthetic difficulties and low thermal stability, respectively. In light of the performance improvements observed by simple axial substitution of SiPc in OLEDs, the use of axially substituted MPcs in organic electronic devices remains of continuing interest to us and potentially the field in general.
Air-stable flexible organic light-emitting diodes enabled by atomic layer deposition.
Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu
2015-01-16
Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10(-4) g m(-2) day(-1)] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10,000 h.
Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition
NASA Astrophysics Data System (ADS)
Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu
2015-01-01
Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10-4 g m-2 day-1] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10 000 h.
[The role of BCP in electroluminescence of multilayer organic light-emitting devices].
Deng, Zhao-Ru; Yang, Sheng-Yi; Lou, Zhi-Dong; Meng, Ling-Chuan
2009-03-01
As a hole-blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is usually used in blue and white light electroluminescent devices. The ability of blocking holes of BCP layer depends on its thickness, and basically holes can tunnel through thin BCP layer. In order to know the role of BCP layer in electroluminescence (EL) of multilayer organic light-emitting diodes (OLEDs), in the present paper, the authors designed a multilayer OLED ITO/NPB/BCP/Alq3 : DCJTB/Alq3/Al and investigated the influence of thickness of BCP on the EL spectra of multilayer OLEDs at different applied voltages. The experimental data show that thin BCP layer can block holes partially and tune the energy transfer between different emissive layers, and in this way, it is easy to obtain white emission, but its EL spectra will change with the applied voltages. The EL spectra of multilayer device will remain relatively stable when BCP layer is thick enough, and the holes can hardly tunnel through when the thickness of BCP layer is more than 15 nm. Furthermore, the stability of EL spectra of the multilayer OLED at different applied voltages was discussed.
AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentle, A. R., E-mail: angus.gentle@uts.edu.au; Smith, G. B.; Yambem, S. D.
Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissivemore » material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.« less
Solar spectrum matching with white OLED and monochromatic LEDs.
Yu, Hui-Yuan; Cao, Guan-Ying; Zhang, Jing-Hui; Yang, Yi; Sun, Wen-Liang; Wang, Li-Ping; Zou, Nian-Yu
2018-04-01
In this paper, the solar spectrum matching in the visible range of 380-780 nm with white organic light-emitting diode (OLED) and monochromatic light-emitting diodes (LEDs) is investigated. The correlation index ( R 2 ) is used to evaluate the difference between the matching spectrum and the solar spectrum. The optimal combination is obtained by the least squares method. We also perform subtraction experiments to find the optimal combination. We utilize a common white OLED device design and just change the species of monochromatic LEDs used. We report and evaluate different degrees of matching effects. The results show that the correlation index of the best combination can reach 94.09% with white OLED and 36 monochromatic LEDs. We define three levels of performance as an evaluation system in accordance with the matching effect. The level is excellent with an R 2 above 90.14%. The good level is from 86.65% to 58.28%. From 42.08% to 33.06% is the reasonable level. Compared with other methods, using white OLED combined with monochromatic LEDs achieves the best solar spectrum matching effect. The results can be applied to different requirements of engineering practice.
Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Duan, Lian
2018-02-01
Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence-sensitized fluorescence (TSF) offer the possibility of attaining an ultimate high efficiency with low roll-off utilizing noble-metal free, easy-to-synthesize, pure organic fluorescent emitters. However, the performances of TSF-OLEDs are still unsatisfactory. Here, TSF-OLEDs with breakthrough efficiencies even at high brightnesses by suppressing the competitive deactivation processes, including direct charge recombination on conventional fluorescent dopants (CFDs) and Dexter energy transfer from the host to the CFDs, are demonstrated. On the one hand, electronically inert terminal-substituents are introduced to protect the electronically active core of the CFDs; on the other hand, delicate device structures are designed to provide multiple energy-funneling paths. As a result, unprecedentedly high maximum external quantum efficiency/power efficiency of 24%/71.4 lm W -1 in a green TSF-OLED are demonstrated, which remain at 22.6%/52.3 lm W -1 even at a high luminance of 5000 cd m -2 . The work unlocks the potential of TSF-OLEDs, paving the way toward practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Passivated p-type silicon: Hole injection tunable anode material for organic light emission
NASA Astrophysics Data System (ADS)
Zhao, W. Q.; Ran, G. Z.; Xu, W. J.; Qin, G. G.
2008-02-01
We find that hole injection can be enhanced simply by selecting a lower-resistivity p-Si anode to match an electron injection enhancement for organic light emitting diodes with ultrathin-SiO2-layer-passivated p-Si anode (Si-OLED). For a Si-OLED with ordinary AlQ electron transport layer, the optimized resistivity of the p-Si anode is 40Ωcm; for that with n-doped Bphen electron transport layer, it decreases to 5Ωcm. Correspondingly, the maximum power efficiency increases from 0.3to1.9lm /W, even higher than that of an indium tin oxide control device (1.4lm/W). This passivated p-type silicon is a hole injection tunable anode material for OLED.
Light management in perovskite solar cells and organic LEDs with microlens arrays
Peer, Akshit; Biswas, Rana; Park, Joong -Mok; ...
2017-04-28
Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.
Color in the corners: ITO-free white OLEDs with angular color stability.
Gaynor, Whitney; Hofmann, Simone; Christoforo, M Greyson; Sachse, Christoph; Mehra, Saahil; Salleo, Alberto; McGehee, Michael D; Gather, Malte C; Lüssem, Björn; Müller-Meskamp, Lars; Peumans, Peter; Leo, Karl
2013-08-07
High-efficiency white OLEDs fabricated on silver nanowire-based composite transparent electrodes show almost perfectly Lambertian emission and superior angular color stability, imparted by electrode light scattering. The OLED efficiencies are comparable to those fabricated using indium tin oxide. The transparent electrodes are fully solution-processable, thin-film compatible, and have a figure of merit suitable for large-area devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Active matrix organic light emitting diode (OLED)-XL life test results
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier
2008-04-01
OLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. As a result of this need, the US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to improve the lifetime of OLED displays. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications, and RDECOM CERDEC NVESD ran life tests on these displays, finding over 200% lifetime improvement for the XL devices over the standard displays. Early results were published at the 2007 SPIE Defense and Security Symposium. Further life testing of XL and standard devices at ambient conditions and at high temperatures will be presented this year along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed. This is a continuation of the paper "Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications" presented at SPIE DSS in 2007.
Preparation of SiO2 Passivation Thin Film for Improved the Organic Light-Emitting Device Life Time
NASA Astrophysics Data System (ADS)
Hong, Jeong Soo; Kim, Sang Mo; Kim, Kyung-Hwan
2011-08-01
To improve the organic light-emitting diode (OLED) lifetime, we prepared a SiO2 thin film for OLED passivation using a facing target sputtering (FTS) system as a function of oxygen gas flow rate and working pressure. The properties of the SiO2 thin film were examined by Fourier transform infrared (FT-IR), photoluminescence (PL) intensity measurement, field emission scanning electron microscopy (FE-SEM), and ultraviolet-visible (UV-vis) spectrometry that As a result, we found that a SiO2 thin film is formed at a 2 sccm oxygen gas flow rate and results the minimum damage to the organic layer is observed at a 1 mTorr working pressure. Also, from the water vapor transmission rate (WVTR), we observed that all of the as-deposited SiO2 thin films showed the ability of blocking moisture. After the properties were evaluated, an optimized SiO2 thin film was applied to OLED passivation. As a result, the property of the OLED fabricated by SiO2 passivation is similar to the OLED fabricated by glass passivation. However, the performance of OLED was degraded by enhancing of SiO2 passivation. This is the organic layer of the device is exposed to plasma for a prolonged period. Therefore, a method of minimizing damage to the organic layer and optimum conditions for what are important.
NASA Astrophysics Data System (ADS)
Saikia, D.; Sarma, R.
2017-06-01
Vanadium pentoxide layer deposited on the fluorine-doped tin oxide (FTO) anode by vacuum deposition has been investigated in organic light-emitting diode (OLED). With 12 nm optimal thickness of V2O5, the luminance efficiency is increased by 1.66 times compared to the single FTO-based OLED. The improvement of current efficiency implies that there is a better charge injection and better controlling of hole current. To investigate the performance of OLED by the buffer layer, V2O5 films of different thicknesses were deposited on the FTO anode and their J- V and L- V characteristics were studied. Further analysis was carried out by measuring sheet resistance, optical transmittance and surface morphology with the FE-SEM images. This result indicates that the V2O5 (12 nm) buffer layer is a good choice for increasing the efficiency of FTO-based OLED devices within the tunnelling region. Here the maximum value of current efficiency is found to be 2.83 cd / A.
NASA Astrophysics Data System (ADS)
Lim, Jong-Wook; Jun Kang, Seong; Lee, Sunghun; Kim, Jang-Joo; Kim, Han-Ki
2012-07-01
We report on transparent Ti-In-Sn-O (TITO) multicomponent anodes prepared by co-sputtering anatase TiO2-x and ITO targets to produce highly efficient phosphorescent organic light emitting diodes (OLEDs). In spite of the incorporation of low cost TiO2, the crystalline TITO electrode annealed at temperature of 600 °C showed a sheet resistance of 18.06 Ω/sq, an optical transmittance of 87.96% at a wavelength of 550 nm, and a work function of 4.71 eV comparable to conventional ITO electrode. Both the quantum (21.69%) and power efficiencies (90.92 lm/W) of the phosphorescent OLED fabricated on the TITO anode were higher than those of the OLED with the reference ITO anode due to the high transparency of the TITO electrodes. This indicates that the TITO electrode is a promising indium-saving electrode that can replace high-cost ITO electrodes in the manufacture of low-cost, highly efficient phosphorescent OLEDs.
High-Performance Organic Light-Emitting Diode with Substitutionally Boron-Doped Graphene Anode.
Wu, Tien-Lin; Yeh, Chao-Hui; Hsiao, Wen-Ting; Huang, Pei-Yun; Huang, Min-Jie; Chiang, Yen-Hsin; Cheng, Chien-Hong; Liu, Rai-Shung; Chiu, Po-Wen
2017-05-03
The hole-injection barrier between the anode and the hole-injection layer (HIL) is of critical importance to determine the device performance of organic light-emitting diodes (OLEDs). Here, we report on a record-high external quantum efficiency (EQE) (24.6% in green phosphorescence) of OLEDs fabricated on both rigid and flexible substrates, with the performance enhanced by the use of nearly defect-free and high-mobility boron-doped graphene as an effective anode and hexaazatriphenylene hexacarbonitrile as a new type of HIL. This new structure outperforms the existing graphene-based OLEDs, in which MoO 3 , AuCl 3 , or bis(trifluoromethanesulfonyl)amide are typically used as a doping source for the p-type graphene. The improvement of the OLED performance is attributed mainly to the appreciable increase of the hole conductivity in the nearly defect-free boron-doped monolayer graphene, along with the high work function achieved by the use of a newly developed hydrocarbon precursor containing boron in the graphene growth by chemical vapor deposition.
Choo, Dong Chul; Seo, Su Yul; Kim, Tae Whan; Jin, You Young; Seo, Ji Hyun; Kim, Young Kwan
2010-05-01
The electrical and the optical properties in green organic light-emitting devices (OLEDs) fabricated utilizing tris(8-hydroxyquinoline)aluminum (Alq3)/4,7-diphenyl-1,10-phenanthroline (BPhen) multiple heterostructures acting as an electron transport layer (ETL) were investigated. The operating voltage of the OLEDs with a multiple heterostructure ETL increased with increasing the number of the Alq3/BPhen heterostructures because more electrons were accumulated at the Alq3/BPhen heterointerfaces. The number of the leakage holes existing in the multiple heterostructure ETL of the OLEDs at a low voltage range slightly increased due to an increase of the internal electric field generated from the accumulated electrons at the Alq3/BPhen heterointerface. The luminance efficiency of the OLEDs with a multiple heterostructure ETL at a high voltage range became stabilized because the increase of the number of the heterointerface decreased the quantity of electrons accumulated at each heterointerface.
NASA Astrophysics Data System (ADS)
Li, Kun; Wang, Hu; Li, Huiying; Li, Ye; Jin, Guangyong; Gao, Lanlan; Marco, Mazzeo; Duan, Yu
2017-08-01
Transparent conductive electrode (TCE) platforms are required in many optoelectronic devices, including organic light emitting diodes (OLEDs). To date, indium tin oxide based electrodes are widely used in TCEs but they still have few limitations in term of achieving flexible OLEDs and display techniques. In this paper, highly-flexible and ultra-thin TCEs were fabricated for use in OLEDs by combining single-layer graphene (SLG) with thin silver layers of only several nanometers in thickness. The as-prepared SLG + Ag (8 nm) composite electrodes showed low sheet resistances of 8.5 Ω/□, high stability over 500 bending cycles, and 74% transmittance at 550 nm wavelength. Furthermore, SLG + Ag composite electrodes employed as anodes in OLEDs delivered turn-on voltages of 2.4 V, with luminance exceeding 1300 cd m-2 at only 5 V, and maximum luminance reaching up 40 000 cd m-2 at 9 V. Also, the devices could work normally under less than the 1 cm bending radius.
Improvement in lifetime of green organic light-emitting device
NASA Astrophysics Data System (ADS)
Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo Gun; Kim, Hyun Jin; Ko, Hang Ju; Han, Myung-Soo; Kim, Hwe Jong; Hong, Kyung Jin
2010-02-01
We have proposed a novel encapsulation method with simple process in comparison with conventional encapsulation technique. Here, the encapsulation film of silicon dioxide is steady for external environment because this can be designed to cover the emitting organic material from air. Silicon dioxide of 220 nm was deposited by plasma enhanced chemical vapor deposition and etched by reactive ion etching system. Then, Alq3 was used as a material to emitting layer in the green (organic light emitting device) OLED and TPD in the hole transportation layer was used for the harmonious transportation of hole. Luminance was measured with 40 hour intervals at the air-exposed condition. After 400, 1,000, 1,600, and 2,000 hours, luminance of green OLED were 7,366, 7,200, 6,210, and 5,100 cd/m2, respectively. Luminance of green OLED doesn't decrease until 2,000 hours. As a results, proposed encapsulation technique can increase the life time of green OLED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeuchi, J.; Hamamatsu, H.; Miyamoto, T.
2015-08-28
The electronic structure of a polymer-cathode interface of an operating organic light-emitting diode (OLED) was directly investigated using hard X-ray photoelectron spectroscopy (HAXPES). The potential distribution profile of the light-emitting copolymer layer as a function of the depth under the Al/Ba cathode layer in the OLED depended on the bias voltage. We found that band bending occurred in the copolymer of 9,9-dioctylfluorene (50%) and N-(4-(2-butyl)-phenyl)diphenylamine (F8-PFB) layer near the cathode at 0 V bias, while a linear potential distribution formed in the F8-PFB when a bias voltage was applied to the OLED. Direct observation of the built-in potential and that bandmore » bending formed in the F8-PFB layer in the operating OLED suggested that charges moved in the F8-PFB layer before electron injection from the cathode.« less
Electron-irradiated n+-Si as hole injection tunable anode of organic light-emitting diode
NASA Astrophysics Data System (ADS)
Li, Y. Z.; Wang, Z. L.; Wang, Y. Z.; Luo, H.; Xu, W. J.; Ran, G. Z.; Qin, G. G.
2013-01-01
Traditionally, n-type silicon is not regarded as a good anode of organic light emitting diode (OLED) due to the extremely low hole concentration in it; however, when doped with Au element which acts as carrier generation centers, it can be, as shown in our previous work. In this study, we demonstrate a new kind of carrier generation centers in n+-type silicon, which are the defects produced by 5 MeV electron irradiation. The density of carrier generation centers in the irradiated n+-Si anode can be controlled by tuning the electron irradiation time, and thus hole injection current in the OLEDs with the irradiated n+-Si anode can be optimized, leading to their much higher maximum efficiencies than those of the OLEDs with non-irradiated n+-Si anode. For a green phosphorescent OLED with the irradiated n+-Si anode, the current efficiency and power efficiency reach up to 12.1 cd/A and 4.2 lm/W, respectively.
Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.
Graf, Arko; Murawski, Caroline; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C
2018-03-01
While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs. Here, the OLED performance is investigated in detail and it is found that local conduction hot-spots lead to pronounced trion emission. Analysis of the emissive dipole orientation shows a strong horizontal alignment of the SWCNTs with an average inclination angle of 12.9° with respect to the plane, leading to an exceptionally high outcoupling efficiency of 49%. The SWCNT-based OLEDs represent a highly attractive platform for emission across the entire nIR. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
OLED microdisplays in near-to-eye applications: challenges and solutions
NASA Astrophysics Data System (ADS)
Vogel, Uwe; Richter, Bernd; Wartenberg, Philipp; König, Peter; Hild, Olaf R.; Fehse, Karsten; Schober, Matthias; Bodenstein, Elisabeth; Beyer, Beatrice
2017-06-01
Wearable augmented-reality (AR) has already started to be used productively mainly in manufacturing industry and logistics. Next step will be to move wearable AR from "professionals to citizens" by enabling networked, everywhere augmented-reality (in-/outdoor localisation, scene recognition, cloud access,…) which is non-intrusive, exhibits intuitive user-interaction, anytime safe and secure use, and considers personal privacy protection (user's and others). Various hardware improvements (e.g., low-power, seamless interactivity, small form factor, ergonomics,…), as well as connectivity and network integration will become vital for consumer adoption. Smart-Glasses (i.e., near-to-eye (NTE) displays) have evolved as major devices for wearable AR, that hold potential to become adopted by consumers soon. Tiny microdisplays are a key component of smart-glasses, e.g., creating images from organic light emitting diodes (OLED), that have become popular in mobile phone displays. All microdisplay technologies on the market comprise an image-creating pixel modulation, but only the emissive ones (for example, OLED and LED) feature the image and light source in a single device, and therefore do not require an external light source. This minimizes system size and power consumption, while providing exceptional contrast and color space. These advantages make OLED microdisplays a perfect fit for near-eye applications. Low-power active-matrix circuitry CMOS backplane architecture, embedded sensors, emission spectra outside the visible and high-resolution sub-pixel micro-patterning address some of the application challenges (e.g., long battery life, sun-light readability, user interaction modes) and enable advanced features for OLED microdisplays in near-to-eye displays, e.g., upcoming connected augmented-reality smart glasses. This report is to analyze the challenges in addressing those features and discuss solutions.
Höfle, Stefan; Schienle, Alexander; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander
2014-05-01
Inverted device architectures for organic light-emitting diodes (OLEDs) require suitable interfaces or buffer layers to enhance electron injection from highwork-function transparent electrodes. A solution-processable combination of ZnO and PEI is reported, that facilitates electron injection and enables efficient and air-stable inverted devices. Replacing the metal anode by highly conductive polymers enables transparent OLEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Influence of MnO3 on Photoelectric Performance in Organic Light Emitting Diodes].
Guan, Yun-xia; Chen, Li-jia; Chen, Ping; Fu, Xiao-qiang; Niu, Lian-bin
2016-03-01
Organic Light Emitting Diodes (OLEDs) has been a promising new research point that has received much attention recently. Emission in a conventional OLED originates from the recombination of carriers (electrons and holes) that are injected from external electrodes. In the device, Electrons, on the other hand, are injected from the Al cathode to an electron-transporting layer and travel to the same emissive zone. Holes are injected from the transparent ITO anode to a hole-transporting layer and holes reach an emitting zone through the holetransporting layer. Electrons and holes recombine at the emissive film to formsinglet excited states, followed by emissive light. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission zone emitting the photons. These photons will have the reflection and transmission at each interface and the interference will determine the intensity profile. The emissive light reflected at the interfaces or the metallic electrode returns to the emissive layer and affects the radiation current efficiency. Microcavity OLED can produce saturated colors and narrow the emission spetrum as a new kind of technique. In the paper, we fabricate microcavity OLED using glass substrate. Ag film acts as the anode reflector mirror; NPB serves as the hole-transporting material; Alq3 is electron-transporting material and organic emissive material; Ag film acts as cathode reflector mirror. The microcavity OLED structures named as A, B, C and D are glass/Ag(15 nm)/MoO3 (x nm)/NPB(50 nm)/Alq3 (60 nm)/A1(100 nm). Here, A, x = 4 nm; B, x = 7 nm; C, x = 10 nm; D, x = 13 nm. The characteristic voltage, brightness and current of these devices are investigated in the electric field. The luminance from the Devices A, B, C and D reaches the luminance of 928, 1 369, 2 550 and 2 035 cd x m(-2), respectively at 13 V. At 60 mA x cm(-2), the current efficiency of the microcavity OLEDs using MnO3 are about 2.2, 2.6, 3.1 and 2.6 cd x A(-2) respectively. It is found that electrons are majority carriers and holes are minority carriers in this microcavity OLEDs. MnO3 film can improve hole injection ability from 4 to 10 nm. In addition, hole injection ability is increased with the increasing thickness of the MnO3 film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peer, Akshit; Biswas, Rana; Park, Joong -Mok
Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.
Next generation smart window display using transparent organic display and light blocking screen.
Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk
2018-04-02
Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.
Fabrication of Electrophoretic Display Driven by Membrane Switch Array
NASA Astrophysics Data System (ADS)
Senda, Kazuo; Usui, Hiroaki
2010-04-01
Electrophoretic devices (EPDs) and organic light-emitting diodes (OLEDs) have potential application in a large-area flexible displays, such as digital signage. For this purpose, a new backplane is capable of driving a large unit is required instead of thin-film transistors. In this paper we describe the fabrication of a membrane switch array suitable for driving large-scale flat-panel displays. An array of membrane switches was prepared using flexible printed circuit (FPC) technology of polyimide films, by combining low-temperature processes of lamination and copper electroplating methods. An array of 256 matrix switches with a pixel size of 7 mm2 was prepared to drive the EPD front panel. The switches were driven at a voltage of about 40 V and a frequency of 10 Hz. The operation characteristics agreed well with the result of the theoretical calculation. The calculation also suggested that driving voltage can be lowered by increasing pixel size. The contact resistance of the membrane switch was as low as 0.2 Ω, which implies the wide applicability of this device for driving a variety of elements.
Dielectric impedance and optical performance of quantum dots doped OLEDs
NASA Astrophysics Data System (ADS)
Jobin, Marc; Pellodi, Cédric; Emmenegger, Nicolas
2016-04-01
We investigate the effect of the incorporation of CdSe quantum dots (QD) in the standard ITO/TPD/Alq3/Al organic light emitting diodes (OLED's). The OLED's structures have been prepared in a double glove box coupled to a vacuum chamber containing both low and high temperature evaporators. For the standard (undoped) OLED's, the hole transport layer (HTL) consisting of 50nm of TPD is deposited by spin coating (8000rpm during 60 sec) and the 40nm of Alq3 were deposited at 2A/sec (organic crucible Radak-I). 150nm of Al were finally evaporated at 5A/s. For the CdSe-doped OLED's, the procedure was the same expect that the QD's were mixed with TPD in toluene before spin coating. During the thermal processing if the film, the QD's are expected to segregate to the surface, and then will be located at the TPD/Alq3 interface. The various layers were imaged by Atomic Force Microscopy (AFM) at each phase of the structure deposition, and we could indeed visualize the segregated QD's above the TPD film. AFM was systematically used to monitor the homogeneity and the thickness of the various films. The impedance of the non-encapsulated films structures were measured in air in the 40-40MHz frequency range, with bias at 0V (non-emitting), 2V (low emission) and 8V (strong emission). The corresponding dielectric spectra were analyzed with the standard Havriliak-Negami (HV) formula, where the conductive term has been subtracted from the data in case of light emission. We have measured a relaxation ranging from 100kHZ for the unbiased structure to 1MHz for 8V (strong emission). Apart from this expected relaxation, we found a second relaxation mechanism around 10 MHz. The origin of this second peak will be discussed. To monitor the optical emission of the OLED's, we have built a specific bench which allows for the quantitative measurement of the emission spectra and the dynamics behavior of the OLED's (raising and falling time). We found that the incorporation of the QD's unfortunately results in the decrease of the light emission but with a favorable modification of the light spectrum (around 700nm).
Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J
2015-05-01
Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.
Quantitative description of charge-carrier transport in a white organic light-emitting diode
NASA Astrophysics Data System (ADS)
Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K.
2011-10-01
We present a simulation model for the analysis of charge-carrier transport in organic thin-film devices, and apply it to a three-color white hybrid organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emission. We simulate a series of single-carrier devices, which reconstruct the OLED layer sequence step by step. Thereby, we determine the energy profiles for hole and electron transport, show how to discern bulk from interface limitation, and identify trap states.
Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo
2014-09-03
Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode
NASA Astrophysics Data System (ADS)
Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan
2014-07-01
We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.
Liu, Huijun; Zeng, Jiajie; Guo, Jingjing; Nie, Han; Zhao, Zujin; Tang, Ben Zhong
2018-06-01
Nondoped organic light-emitting diodes (OLEDs) possess merits of higher stability and easier fabrication than doped devices. However, luminescent materials with high exciton utilization are generally unsuitable for nondoped OLEDs because of severe emission quenching and exciton annihilation in neat films. Herein, we wish to report a novel molecular design of integrating aggregation-induced delayed fluorescence (AIDF) moiety within host materials to explore efficient luminogens for nondoped OLEDs. By grafting 4-(phenoxazin-10-yl)benzoyl to common host materials, we develop a series of new luminescent materials with prominent AIDF property. Their neat films fluoresce strongly and can fully harvest both singlet and triplet excitons with suppressed exciton annihilation. Nondoped OLEDs of these AIDF luminogens exhibit excellent luminance (~100000 cd m-2), outstanding external quantum efficiencies (22.1-22.6%), negligible efficiency roll-off and improved operational stability. To the best of our knowledge, these are the most efficient nondoped OLEDs reported so far. This convenient and versatile molecular design is of high significance for the advance of nondoped OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei
2015-10-15
We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc ismore » a promising HIL material for highly efficient OLEDs.« less
White organic light-emitting diodes with 4 nm metal electrode
NASA Astrophysics Data System (ADS)
Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian
2015-10-01
We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.
NASA Astrophysics Data System (ADS)
Endo, Kuniaki; Adachi, Chihaya
2014-03-01
We demonstrate organic light-emitting diodes (OLEDs) with enhanced out-coupling efficiency containing nanostructures imprinted by an alumina nanohole array template that can be applied to large-emitting-area and flexible devices using a roll-to-roll process. The nanostructures are imprinted on a glass substrate by an ultraviolet nanoimprint process using an alumina nanohole array mold and then an OLED is fabricated on the nanostructures. The enhancement of out-coupling efficiency is proportional to the root-mean-square roughness of the nanostructures, and a maximum improvement of external electroluminescence quantum efficiency of 17% is achieved. The electroluminescence spectra of the OLEDs indicate that this improvement is caused by enhancement of the out-coupling of surface plasmon polaritons.
Degradation of Bilayer Organic Light-Emitting Diodes Studied by Impedance Spectroscopy.
Sato, Shuri; Takata, Masashi; Takada, Makoto; Naito, Hiroyoshi
2016-04-01
The degradation of bilayer organic light-emitting diodes (OLEDs) with a device structure of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) (hole transport layer) and tris-(8-hydroxyquinolate)aluminum (Alq3) (emissive layer and electron transport layer) has been studied by impedance spectroscopy and device simulation. Two modulus peaks are found in the modulus spectra of the OLEDs below the electroluminescence threshold. After aging of the OLEDs, the intensity of electroluminescence is degraded and the modulus peak due to the Alq3 layer is shifted to lower frequency, indicating that the resistance of the Alq3 layer is increased. Device simulation reveals that the increase in the resistance of the Alq3 layer is due to the decrease in the electron mobility in the Alq3 layer.
Characteristics of blue organic light emitting diodes with different thick emitting layers
NASA Astrophysics Data System (ADS)
Li, Chong; Tsuboi, Taiju; Huang, Wei
2014-08-01
We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.
NASA Astrophysics Data System (ADS)
Tsutsui, Tetsuo; Takada, Noriyuki
2013-11-01
The technical history of when and how the basic understanding of the emission efficiency of organic light-emitting diodes (OLEDs) was established over the last 50 years is described. At first, our understanding of emission efficiency in single-crystal and thin-film electroluminescence (EL) devices in the early stages before the Eastman-Kodak breakthrough, that is, the introduction of the concept of multilayer structures, is examined. Then our contemplation travels from the Eastman-Kodak breakthrough towards the presently widely accepted concept of emission efficiency. The essential issues concerning the emission efficiency of OLEDs are summarized to help readers to obtain a common understanding of OLED efficiency problems, and detailed discussions on the primary factors that determine emission efficiency are given. Finally, some comments on remaining issues are presented.
NASA Astrophysics Data System (ADS)
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing
2014-03-01
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing
2014-03-17
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m(2) with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing
2014-01-01
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742
Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, J. S.; Giebink, N. C., E-mail: ncg2@psu.edu
2015-06-29
Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series ofmore » analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.« less
NASA Astrophysics Data System (ADS)
Kao, I.-Ling; Ku, Chun-Neng; Chen, Yi-Ping; Lin, Ding-Zheng
2012-09-01
We proposed an internal nanostructure with a high reflective index planarization layer to solve the optical loss due to the reflective index mismatch between ITO and glass substrate. In our experiments, we found the electrical property of OLED device was significantly influenced by the internal nanostructures without planarization layer. Moreover, the internal extraction structure (IES) is not necessarily beneficial for light extraction. Therefore, we proposed a new substrate combine both internal and external extraction structure (EES) to extract trapping light. We successfully developed a high refractive index (N 1.7) planarization material with flat surface (RMS roughness < 2 nm), and improved about 70% device efficiency compared to traditional glass substrate.
High ambient contrast ratio OLED and QLED without a circular polarizer
NASA Astrophysics Data System (ADS)
Tan, Guanjun; Zhu, Ruidong; Tsai, Yi-Shou; Lee, Kuo-Chang; Luo, Zhenyue; Lee, Yuh-Zheng; Wu, Shin-Tson
2016-08-01
A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized.
NASA Astrophysics Data System (ADS)
Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui; Liao, Liang-Sheng
2015-06-01
A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO2 film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.
Xu, Ting; Zhou, Jun-Gui; Huang, Chen-Chao; Zhang, Lei; Fung, Man-Keung; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng
2017-03-29
Herein we report a novel design philosophy of tandem OLEDs incorporating a doping-free green phosphorescent bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) (Ir(ppy) 2 (acac)) as an ultrathin emissive layer (UEML) into a novel interface-exciplex-forming structure of 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and 1,3,5-tri(p-pyrid-3-yl-phenyl)benzene (TmPyPB). Particularly, relatively low working voltage and remarkable efficiency are achieved and the designed tandem OLEDs exhibit a peak current efficiency of 135.74 cd/A (EQE = 36.85%) which is two times higher than 66.2 cd/A (EQE = 17.97%) of the device with a single emitter unit. This might be one of the highest efficiencies of OLEDs applying ultrathin emitters without light extraction. Moreover, with the proposed structure, the color gamut of the displays can be effectively increased from 76% to 82% NTSC if the same red and blue emissions as those in the NTSC are applied. A novel form of harmonious fusion among interface exciplex, UEML, and tandem structure is successfully realized, which sheds light on further development of ideal OLED structure with high efficiency, simplified fabrication, low power consumption, low cost, and improved color gamut, simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Xiaoman; Zuo, Weiwei; Liu, Yingliang, E-mail: liuylxn@sohu.com
Highlights: • The D–A–D electroluminescent molecular glasses are synthesized. • Non-doped red electroluminescent film is fabricated by spin-coating. • Red OLED shows stable wavelength, luminous efficiency and chromaticity. • CIE1931 coordinate is in accord with standard red light in PAL system. - Abstract: Organic light-emitting molecular glasses (OEMGs) are synthesized through the introduction of nonplanar donor and branched aliphatic chain into electroluminescent emitters. The target OEMGs are characterized by {sup 1}H NMR, {sup 13}C NMR, IR, UV–vis and fluorescent spectra as well as elemental analysis, TG and DSC. The results indicated that the optical, electrochemical and electroluminescent properties of OEMGsmore » are adjusted successfully by the replacement of electron-donating group. The non-doped OLED device with a standard red electroluminescent emission is achieved by spin-coating the THF solution of OEMG with a triphenylamine moiety. This non-doped red OLED device takes on an electrically stable electroluminescent performance, including the stable maximum electroluminescent wavelength of 640 nm, the stable luminous efficiency of 2.4 cd/A and the stable CIE1931 coordinate of (x, y) = (0.64, 0.35), which is basically in accord with the CIE1931 coordinate (x, y) = (0.64, 0.33) of standard red light in PAL system.« less
Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS
NASA Astrophysics Data System (ADS)
Zheng, Yan-Qiong; Yu, Jun-Le; Wang, Chao; Yang, Fang; Wei, Bin; Zhang, Jian-Hua; Zeng, Cheng-Hui; Yang, Yang
2018-06-01
This work shows a promising approach to improve device performance by optimizing the electron transport and hole injection layers for tetraphenyldibenzoperiflanthene (DBP):rubrene-based red fluorescent organic light-emitting diodes (OLEDs). We compared the effect of two electron transport layers (ETLs), and found that the rubrene/bathophenanthroline (Bphen) ETL-based OLED showed a much higher external quantum efficiency (EQE) (4.67%) than the Alq3 ETL-based OLED (EQE of 3.08%). The doping ratio of DBP in rubrene was tuned from 1.0 wt% to 4.5 wt%, and the 1.5 wt%-DBP:rubrene-based OLED demonstrated the highest EQE of 5.24% and lowest turn-on voltage of 2.2 V. Atomic force microscopy images indicated that 1.5 wt% DBP-doped rubrene film exhibited a regular strip shape, and this regular surface was favorable to the hole and electron recombination in the emitting layer. Finally, the sorbitol-doped poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was used to further improve the EQE; doping with 6 wt% sorbitol achieved the highest current efficiency of 7.03 cd A‑1 and an EQE of 7.50%. The significantly enhanced performance implies that the hole injection is a limiting factor for DBP:rubrene-based red fluorescent OLEDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.
2014-03-21
Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. Wemore » discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.« less
NASA Astrophysics Data System (ADS)
Krotkus, Simonas; Nehm, Frederik; Janneck, Robby; Kalkura, Shrujan; Zakhidov, Alex A.; Schober, Matthias; Hild, Olaf R.; Kasemann, Daniel; Hofmann, Simone; Leo, Karl; Reineke, Sebastian
2015-03-01
Recently, bilayer resist processing combined with development in hydrofluoroether (HFE) solvents has been shown to enable single color structuring of vacuum-deposited state-of-the-art organic light-emitting diodes (OLED). In this work, we focus on further steps required to achieve multicolor structuring of p-i-n OLEDs using a bilayer resist approach. We show that the green phosphorescent OLED stack is undamaged after lift-off in HFEs, which is a necessary step in order to achieve RGB pixel array structured by means of photolithography. Furthermore, we investigate the influence of both, double resist processing on red OLEDs and exposure of the devices to ambient conditions, on the basis of the electrical, optical and lifetime parameters of the devices. Additionally, water vapor transmission rates of single and bilayer system are evaluated with thin Ca film conductance test. We conclude that diffusion of propylene glycol methyl ether acetate (PGMEA) through the fluoropolymer film is the main mechanism behind OLED degradation observed after bilayer processing.
Katchman, Benjamin A.; Smith, Joseph T.; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O’Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S.
2016-01-01
Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875
Katchman, Benjamin A; Smith, Joseph T; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O'Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S
2016-07-04
Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm(2). Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers.
NASA Astrophysics Data System (ADS)
Plint, Trevor G.; Lessard, Benoît H.; Bender, Timothy P.
2018-01-01
We have incorporated chloro boron subphthalocyanine (Cl-BsubPc) and chloro boron subnapthalocyanines (Cl-ClnBsubNcs) into organic light emitting diodes (OLEDs) that enabled an overall warm white emission with CIE coordinates close to that of a 60 W incandescent lightbulb. More specifically, we have shown that Cl-BsubPc and Cl-ClnBsubNcs can be used as dopant emitters in a simple host-dopant architecture, and we have compared the use of NPB and Alq3 as potential hosts for these materials. When doped into Alq3, Cl-BsubPc shows a strong orange emission, and Cl-ClnBsubNcs shows a moderately strong red emission. We have further demonstrated that Cl-BsubPc and Cl-ClnBsubNcs can be co-doped into the same layer giving combined orange and red emission peaks. A "cascade" energy transfer mechanism of sequential absorption and re-emission is proposed. Device performance characteristics such as luminance, current efficiency, photoluminescence efficiency, and external quantum efficiency are tabulated. Additionally, in view of ongoing research into white emitting OLEDs for indoor lighting purposes, the Colour Rendering Index (CRI), R9 values, and CIE co-ordinates for these devices are also discussed. We conclude from this study that the BsubNc chromophore has potential application as a red dopant in OLEDs including for indoor lighting. Additionally, given the scope for axial and peripheral derivatization of the BsubNc motif, we believe that this chromophore has many unexplored molecular design handles that will affect its ultimate performance and application in OLEDs and other opto-electronic devices.
NASA Astrophysics Data System (ADS)
Huang, Qingyu; Zhao, Suling; Xu, Zheng; Fan, Xing; Shen, Chongyu; Yang, Qianqian
2014-04-01
Highly efficient fluorescence organic light-emitting diodes (OLEDs) based on the mixed 4,4',4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl)mesityl]borane (1:1) system are reported. The electroluminescence due to the exciplex emission is red shifted when the thickness of the electron-transporting layer increases. The prepared OLEDs achieve a low turn-on voltage of 2.1 V, a high current efficiency of 36.79 cd/A, and a very high luminescence of 17 100 cd/m2, as well as a low efficiency roll-off. The current efficiency of the optimized OLED is maintained at more than 28.33 cd/A up to 10 000 cd m-2. The detailed recombination mechanism of the prepared OLEDs is investigated by the transient electroluminescence method. It is concluded that there are no contributions from trapped charges and annihilations of triplet-triplet excitons to the detected electroluminescence.
Co-evaporation of fluoropolymer additives for improved thermal stability of organic semiconductors
NASA Astrophysics Data System (ADS)
Price, Jared S.; Wang, Baomin; Grede, Alex J.; Shen, Yufei; Giebink, Noel C.
2017-08-01
Reliability remains an ongoing challenge for organic light emitting diodes (OLEDs) as they expand in the marketplace. The ability to withstand operation and storage at elevated temperature is particularly important in this context, not only because of the inverse dependence of OLED lifetime on temperature, but also because high thermal stability is fundamentally important for high power/brightness operation as well as applications such as automotive lighting, where interior car temperatures often exceed the ambient by 50 °C or more. Here, we present a strategy to significantly increase the thermal stability of small molecule OLEDs by co-depositing an amorphous fluoropolymer, Teflon AF, to prevent catastrophic failure at elevated temperatures. Using this approach, we demonstrate that the thermal breakdown limit of common hole transport materials can be increased from typical temperatures of ˜100 °C to more than 200 °C while simultaneously improving their electrical transport properties. Similar thermal stability enhancements are demonstrated in simple bilayer OLEDs. These results point toward a general approach to engineer morphologically-stable organic electronic devices that are capable of operating or being stored in extreme thermal environments.
Zhou, Huanyu; Cheong, Hahn-Gil; Park, Jin-Woo
2016-05-01
We investigated the electronic properties of composite-type hybrid transparent conductive electrodes (h-TCEs) based on Ag nanowire networks (AgNWs) and indium tin oxide (ITO). These h-TCEs were developed to replace ITO, and their mechanical flexibility is superior to that of ITO. However, the characteristics of charge carriers and the mechanism of charge-carrier transport through the interface between the h-TCE and an organic material are not well understood when the h-TCE is used as the anode in a flexible organic light-emitting diode (f-OLED). AgNWs were spin coated onto polymer substrates, and ITO was sputtered atop the AgNWs. The electronic energy structures of h-TCEs were investigated by ultraviolet photoelectron spectroscopy. f-OLEDs were fabricated on both h-TCEs and ITO for comparison. The chemical bond formation at the interface between the h-TCE and the organic layer in f-OLEDs was investigated by X-ray photoelectron spectroscopy. The performances of f-OLEDs were compared based on the analysis results.
NASA Astrophysics Data System (ADS)
Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo
2014-10-01
We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.
NASA Astrophysics Data System (ADS)
Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan
2013-12-01
Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.
Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode
Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I
2015-01-01
Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370
NASA Astrophysics Data System (ADS)
Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong
2011-03-01
In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.
NASA Astrophysics Data System (ADS)
Anugrah, I. R.; Mudzakir, A.; Sumarna, O.
2017-09-01
Teaching materials used in Indonesia generally just emphasize remembering skill so that the students’ science literacy is low. Innovation is needed to transform traditional teaching materials so that it can stimulate students’ science literacy, one of which is by context-based approach. This study focused on the construction of context-based module for high school using Organic Light-Emitting Diode (OLED) topics. OLED was chosen because it is an up-to-date topic and relevant to real life. This study used Model of Educational Reconstruction (MER) to reconstruct science content structure about OLED through combining scientist’s perspectives with student’s preconceptions and national curriculum. Literature review of OLED includes its definition, components, characteristics and working principle. Student’s preconceptions about OLED are obtained through interviews. The result shows that student’s preconceptions have not been fully similar with the scientist’s perspective. One of the reasons is that some of the related Chemistry concepts are too complicated. Through curriculum analysis, Chemistry about OLED that are appropriate for high school are Bohr’s atomic theory, redox and organic chemistry including polymers and aromatics. The OLED context and its Chemistry concept were developed into context-based module by adapting science literacy-based learning. This module is expected to increase students’ science literacy performance.
NASA Astrophysics Data System (ADS)
Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan
2015-02-01
In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.
Huang, Qinglan; Evmenenko, Guennadi; Dutta, Pulak; Marks, Tobin J
2003-12-03
Molecule-scale structure effects at organic light-emitting diodes (OLED) anode-organic transport layer interfaces are probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine molecules differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure, charge injection and electroluminescence properties. Dramatic variations in hole injection magnitude and OLED performance can be correlated with the molecular structures and electrochemically derived heterogeneous electron-transfer rates of such triarylamine fragments, placed precisely at the anode-hole transport layer interface. Very bright and efficient ( approximately 70 000 cd/m2 and approximately 2.5% forward external quantum efficiency) OLEDs have thereby been fabricated.
Manufacturing Process for OLED Integrated Substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Cheng-Hung; McCamy, James; Ashtosh, Ganjoo
2017-01-27
The primary objective of this project is to demonstrate manufacturing processes for technologies that will enable commercialization of a large-area and low-cost “integrated substrate” product for rigid OLED SSL lighting. The integrated substrate product will consist of a low cost, float glass substrate combined with a transparent conductive anode film layer, and light out-coupling (internal and external extraction layers) structures. In combination, these design elements will enable an integrated substrate meeting or exceeding 2015 performance targets for cost ($60/m2), extraction efficiency (50%) and sheet resistance (<10 ohm/sq).
Highly efficient organic light-emitting diodes with a quantum dot interfacial layer.
Ryu, Seung Yoon; Hwang, Byoung Har; Park, Ki Wan; Hwang, Hyeon Seok; Sung, Jin Woo; Baik, Hong Koo; Lee, Chang Ho; Song, Seung Yong; Lee, Jun Yeob
2009-02-11
Advanced organic light-emitting diodes (OLEDs), based on a multiple structure, were achieved in combination with a quantum dot (QD) interfacial layer. The authors used core/shell CdSe/ZnS QDs passivated with trioctylphosphine oxide (TOPO) and TOPO-free QDs as interlayers. Multiple-structure OLEDs (MOLEDs) with TOPO-free QDs showed higher device efficiency because of a well-defined interfacial monolayer formation. Additionally, the three-unit MOLED showed high performance for device efficiency with double-structured QD interfacial layers due to the enhanced charge balance and recombination probability.
NASA Astrophysics Data System (ADS)
Shinar, J.; Shinar, R.
The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk
2014-10-15
The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightnessmore » of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.« less
Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming; Che, Chi-Ming
2015-08-01
The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba- nido -undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3 ) and 0.96 (for Zn-1 ), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1 -OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3 -OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively.
Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang
2016-02-10
Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials.
Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.
2017-12-01
The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.
New PSM optimized for stable resolution of fine holes in FPD
NASA Astrophysics Data System (ADS)
Imashiki, Nobuhisa; Yoshikawa, Yutaka; Hayase, Michihiko
2017-07-01
Recently, due to increases in the definition of high function panels for mobile devices such as smartphones and tablets, LCD panel TFT and OLED (organic electro luminescence display) circuits are becoming increasingly denser and more miniaturized by the year. TFT and OLED circuits are composed of several layers, such as gate, semiconductor and contact hole (C / H). It is particularly difficult to obtain a stable resolution for C/H due to the decrease in the C/H process margin (EL, DOF, MEEF) as a result of increases in the density of the circuit. Moreover, C/H productivity has also markedly decreased due to an increase in the exposure dose. In response to this, attenuated phase shift mask (Att. PSM) for large size photomasks have been proposed as a means to improve the process margin in FPD. We have developed new PSM that can further improve the process margin and the productivity of C/H via the effective positioning of a high transmittance phase shift film. Using a 1.5um sized hole as the target, we confirmed the improvement effect of the optimized PSM via a software simulation and an exposure test. Hereafter it is necessary for us to optimize the new PSM for each panel process so as to allow us to use this mask in actual processes.
NASA Astrophysics Data System (ADS)
Lee, Jaemin; Ameen, Shahid; Lee, Changjin
2016-04-01
After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.
Electroluminescence property of organic light emitting diode (OLED)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim
2013-12-16
Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.
Efficient red, green, blue and white organic light-emitting diodes with same exciplex host
NASA Astrophysics Data System (ADS)
Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua
2016-03-01
Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.
Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film
NASA Astrophysics Data System (ADS)
Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro
2007-04-01
Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.
Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer
NASA Astrophysics Data System (ADS)
Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing
2017-09-01
Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.
Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H
2010-07-19
A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.
Enhanced color purity of blue OLEDs based on well-design structure
NASA Astrophysics Data System (ADS)
Du, Qianqian; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Xia, Shuzhen; Zhang, Bingyuan; Wang, Minghong; Fan, Quli
2016-09-01
We have fabricated blue organic light-emitting devices (OLEDs) with higher color purity and stability by optimizing the structure of the Glass/ITO/NPB(50 nm)/ BCzVBi (30 nm)/ TPBi (x nm)/Alq3(20 nm)/LiF/Al. The results show that the introducing of hole blocking layer(HBL) TPBi greatly can improve not only the color purity but the color stability, which owe to its higher the Highest Occupied Molecular Orbital (HOMO) energy levels of 6.2 eV. We expect our work will be useful to optimizing the blue OLEDs structure to enhancing the color property.
NASA Astrophysics Data System (ADS)
Huang, Qinglan
The primary goals of this dissertation were to understand the physical and chemical aspects of organic light-emitting diode (OLED) fundamentals, develop new materials as well as device structures, and enhance OLED electroluminescent (EL) response. Accordingly, this dissertation analyzes the relative effects of indium tin oxide (ITO) anode-hole transporting layer (HTL) contact vs. the intrinsic HTL material properties on OLED EL response. Two siloxane-based HTL materials, 4,4'-bis[(4″ -trichlorosilylpropyl-1″-naphthylphenylamino)biphenyl (NPB-Si2) and 4,4'-bis[(p-trichlorosilylpropylphenyl)phenylamino]biphenyl (TPD-Si2) have thereby been designed, synthesized and covalently bound to ITO surface. They afford a 250% increase in luminance and ˜50% reduction in turn-on voltage vs. comparable 4,4'-bis(1-naphthylphenylamino)biphenyl (NPB) HTL-based devices. These results suggest new strategies for developing OLED HTL structures, with focus on the anode-HTL contact. Furthermore, archetypical OLED device structures have been refined by simultaneously incorporating the TPD-Si2 layer and a hole- and exciton-blocking/electron transport layer (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) in tris(8-hydroxyquinolato)aluminum(III) and tetrakis(2-methyl-8-hydroxyquinolinato)borate-based OLEDs. The refined device structures lead to high performance OLEDs such as green-emitting OLEDs with maximum luminance (Lmax) ˜ 85,000 cd/m2, power and forward external quantum efficiencies (eta p and etaext) as high as 15.2 lm/W and 4.4 +/- 0.5%, respectively, and blue-emitting OLEDs with Lmax 30,000 cd/m 2, and ˜5.0 lm/W and 1.6 +/- 0.2% etap and eta ext, respectively. The high performance is attributed to synergistically enhanced hole/electron injection and recombination efficiency. In addition, molecule-scale structure effects at ITO anode-HTL interfaces have been systematically probed via a self-assembly approach. A series of silyltriarylamine precursors differing in aryl group and linker density have been designed and synthesized for this purpose. These precursors form conformal and largely pin-hole free self-assembled monolayers (SAMs) on the anode surface with A-level thickness control. Followed by deposition of a HTL on top of the SAMs, the probe molecules are placed precisely at the anode-HTL interface, resulting in varied hole injection magnitude and OLED response. The large interfacial molecular structure effects afford an approach to tuning OLED hole injection flux over one to two orders of magnitude, resulting in up to 3 fold variation in OLED brightness at identical bias and up to a 2 V driving voltage modulation at identical brightness.
Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.
Wong, Michael Y; Zysman-Colman, Eli
2017-06-01
The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lei, Xia; Yu, Junsheng; Zhao, Juan; Jiang, Yadong
2011-11-01
The electroluminescence (EL) characteristics of phosphorescent organic light-emitting diodes (OLEDs) with an undoped bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] emissive layer (EML) of various film thicknesses were studied. The results showed that the intensity of green light emission decreased rapidly with the increasing thickness of (pbi)2Ir(acac), which was relevant to the triplet excimer emission. It suggested that the concentration quenching of monomer emission in the undoped (pbi)2Ir(acac) film was mainly due to the formation of triplet excimer and partly due to the triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). A green OLED with a maximum luminance of 26,531 cd/m2, a current efficiency of 36.2 cd/A, and a power efficiency of 32.4 lm/W was obtained, when the triplet excimer emission was eliminated. Moreover, the white OLED with low efficiency roll-off was realized due to the broadened recombination zone and reduced quenching effects in the EML when no electron blocking layer was employed.
Gan, Lin; Li, Xianglong; Cai, Xinyi; Liu, Kunkun; Li, Wei; Su, Shi-Jian
2018-01-01
The design of orange-light emitting, thermally activated, delayed fluorescence (TADF) materials is necessary and important for the development and application of organic light-emitting diodes (OLEDs). Herein, two donor-acceptor-donor (D-A-D)-type orange TADF materials based on fluorenone and acridine, namely 2,7-bis(9,9-dimethylacridin-10(9 H )-yl)-9 H -fluoren-9-one (27DACRFT, 1 ) and 3,6-bis(9,9-dimethylacridin-10(9 H )-yl)-9 H -fluoren-9-one (36DACRFT, 2 ), were successfully synthetized and characterized. The studies on their structure-property relationship show that the different configurations have a serious effect on the photoluminescence and electroluminescence performance according to the change in singlet-triplet splitting energy (Δ E ST ) and excited state geometry. This indicates that a better configuration design can reduce internal conversion and improve triplet exciton utilization of TADF materials. Importantly, OLEDs based on 2 exhibited a maximum external quantum efficiency of 8.9%, which is higher than the theoretical efficiency of the OLEDs based on conventional fluorescent materials.
Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo
2016-03-21
We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications.
Ordered materials for organic electronics and photonics.
O'Neill, Mary; Kelly, Stephen M
2011-02-01
We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bhansali, Unnat S.
Organic Light Emitting Diodes (OLEDs) have made tremendous progress over the last decade and are under consideration for use as solid-state lighting sources to replace the existing incandescent and fluorescent technology. Use of metal-organic phosphorescent complexes as bright emitters and efficient charge transporting organic semiconductors has resulted in OLEDs with internal quantum efficiency ˜ 100% and power efficiency ˜100 lm/W (green OLEDs) at 1000 cd/m2. For lighting applications, white OLEDs (WOLEDs) are required to have a color rendering index (CRI) > 80, correlated color temperature (CCT) (2700 ≤ WOLEDs ≤ 6500 °K), power efficiency > 100 lm/W and a lifetime > 25,000 hrs (at 70% of its original lumen value) at a brightness of 1000 cd/m2. Typically, high CRIs and high power efficiencies are obtained by either a combination of a blue fluorescent emitter with green and red phosphorescent emitters or a stack of blue, green and red phosphorescent emitters doped in a host material. In this work, we implement a single-emitter WOLEDs (SWOLEDs) approach by using monomer (blue) and broad excimer emissions (green and orange) from a self-sensitizing Pt-based phosphorescent complex, designed and synthesized by Prof. M.A. Omary's group. We have optimized and demonstrated high efficiency turquoise-blue OLEDs from monomer emission of Pt(ptp)2-bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) doped in a phosphine-oxide based host molecule and an electron transport molecule. The device peak power efficiency and external quantum efficiency were maintained >40 lm/W and >11%, respectively throughout the wide range of dopant concentrations (1% to 10%). A monotonic increase in the excimer/monomer emission intensity ratio is observed at the higher doping concentrations within 1%-10%, causing a small green-shift in the color. The peak performance of 60 -- 70 lm/W for the best optimized device represents the highest power efficiency known to date for blue OLEDs. Typically, the commercially available and most commonly used Ir-based emitters suffer from triplet-triplet annihilation and self-quenching issues due to their long triplet excited lifetimes (˜1 mus). The performance of these OLEDs is hence very sensitive to the dopant concentration. On the other hand, Pt(ptp)2 is a self-sensitizing, fast phosphor with triplet lifetimes ~100 ns and near unity quantum yield at room temperature. We have demonstrated high peak efficiency yellow OLEDs from undoped (neat) thin films of the emitter complex (>30 lm/W) and near 100% Internal Quantum Efficiency (IQE) with faster radiative recombination rate than doped films, thus proving the existence of self-sensitization in electroluminescence. We have successfully combined the monomer emission (low dopant concentrations) and excimer emission of Pt(ptp)2 to achieve high CRI SWOLEDs using a 2-layer and a 3-layer graded-doping design. The best color metrics were a CRI=62 and a CCT = 3452 K for a WOLED with the highest power efficiency = 31.3 lm/W and EQE = 17.4%, representing excellent performance for single-emitter WOLEDs.
Comparative study of graphene and its derivative materials as an electrode in OLEDs
NASA Astrophysics Data System (ADS)
Srivastava, Anshika; Kumar, Brijesh
2018-04-01
In current scenario, the organic materials have given a revolutionary evolution in the electronics industry. As, the organic light emitting diodes (OLEDs) have almost replaced the conventional technologies due to the use of organic based materials. However, the next generations OLEDs are intensively desired nowadays for high definition display technology. There are various concern involved in the successful design of OLEDs. Electrodes are one of the electrical conductors, which play a vital role in the construction of OLEDs. The performance of OLED is majorly affected by the material used for electrodes. Due to the requirement of transparent, flexible and inexpensive anodes in bottom emissive OLEDs, ITO was replaced by graphene material. Graphene is a single layer 2-dimensional transparent carbon allotrope which showed prodigious potential to escalate the device performance. Although graphene demonstrated impressive characteristics in various applications, it showed unfavorable work function for many other devices. Thus, derivative materials of graphene such as graphene oxide, graphane and β - graphdiyne were synthesized by several researchers. By comparing graphene and its derivatives as an anode of OLEDs, it has been found that graphene oxide showed the preeminent performance among all. In this paper, all the comparisons are investigated by using a standard device constructed by piling layers of anode/ m_MTDATA/ NPB/ Alq3: QAD/ Alq3/ cathode in TCAD ATLAS device simulator.
Recent advances in conjugated polymers for light emitting devices.
Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan
2011-01-01
A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.
Recent Advances in Conjugated Polymers for Light Emitting Devices
AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan
2011-01-01
A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938
Park, Byoungchoo; Park, Chan Hyuk; Kim, Mina; Han, Mi-Young
2009-06-08
We present the results of a study of highly linear polarized light emissions from an Organic Light-Emitting Device (OLED) that consisted of a flexible Giant Birefringent Optical (GBO) multilayer polymer reflecting polarizer substrate. Luminous Electroluminescent (EL) emissions over 4,500 cd/m(2) were produced from the polarized OLED with high peak efficiencies in excess of 6 cd/A and 2 lm/W at relatively low operating voltages. The direction of polarization for the emitted EL light corresponded to the passing (ordinary) axis of the GBO-reflecting polarizer. Furthermore, the estimated polarization ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis could be as high as 25 when measured over the whole emitted luminance range.
Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell
NASA Astrophysics Data System (ADS)
Chen, Chun-Yu; Chang, Hao-Wen; Chang, Yu-Fan; Chang, Bo-Jie; Lin, Yuan-Sheng; Jian, Pei-Siou; Yeh, Han-Cheng; Chien, Hung-Ta; Chen, En-Chen; Chao, Yu-Chiang; Meng, Hsin-Fei; Zan, Hsiao-Wen; Lin, Hao-Wu; Horng, Sheng-Fu; Cheng, Yen-Ju; Yen, Feng-Wen; Lin, I.-Feng; Yang, Hsiu-Yuan; Huang, Kuo-Jui; Tseng, Mei-Rurng
2011-11-01
A continuous roll-to-roll compatible blade-coating method for multi-layers of general organic semiconductors is developed. Dissolution of the underlying film during coating is prevented by simultaneously applying heating from the bottom and gentle hot wind from the top. The solvent is immediately expelled and reflow inhibited. This method succeeds for polymers and small molecules. Uniformity is within 10% for 5 cm by 5 cm area with a mean value of tens of nanometers for both organic light-emitting diode (OLED) and solar cell structure with little material waste. For phosphorescent OLED 25 cd/A is achieved for green, 15 cd/A for orange, and 8 cd/A for blue. For fluorescent OLED 4.3 cd/A is achieved for blue, 9 cd/A for orange, and 6.9 cd/A for white. For OLED with 2 cm by 3 cm active area, the luminance variation is within 10%. Power conversion efficiency of 4.1% is achieved for polymer solar cell, similar to spin coating using the same materials. Very-low-cost and high-throughput fabrication of efficient organic devices is realized by the continuous blade-only method.
Blue organic light-emitting diodes based on terpyridine-substituted triphenylamine chromophores
NASA Astrophysics Data System (ADS)
Fan, Congbin; Wang, Xiaomei; Luo, Jianfang
2017-02-01
Two terpyridine-substituted triphenylamine chromophores, namely 4-[4-(2,2‧:6‧,2″-terpyridinyl)]phenyltriphenylamine (chromophore I) and 4-[4-(2,2‧:6‧,2″-terpyridinyl)] styryltriphenylamine (chromophore II), have been designed and applied as emitters in organic light-emitting diodes (OLED). Chromophore I and II exhibit high thermal stability with decomposition temperatures higher than 334 °C. And these chromophores show significantly different luminescent performance due to the role of different rigid phenyl/flexible styryl unit interlinking terpyridine and triphenylamine units which have different lowest unoccupied molecular orbital (LUMO) levels. The fluorescence lifetime of chromophore I is 3-fold longer than that of chromophore II and the maximum brightness of device used chromophore I as an emitting-layer in OLED is 28-fold larger than that of chromophore II in OLED. Chromophore I as an emitter in OLED exhibits blue electroluminescence peak at 460 nm (Commission Internationale de L'Eclairage (CIE) x = 0.19, y = 0.22). By using chromophore I as an emitter in a four layers device, an efficient blue emission with the maximum brightness 3000 cd/m2 and maximum luminescence efficiency 3.6 cd/A is obtained.
Zhang, Dongdong; Song, Xiaozeng; Li, Haoyuan; Cai, Minghan; Bin, Zhengyang; Huang, Tianyu; Duan, Lian
2018-05-17
Fluorescent organic light-emitting diodes with thermally activated delayed fluorescent sensitizers (TSF-OLEDs) have aroused wide attention, the power efficiencies of which, however, are limited by the mutual exclusion of high electron-transport mobility and large triplet energy of electron-transporting materials (ETMs). Here, an asymmetric anthracene derivative with electronic properties manipulated by different side groups is developed as an ETM to promote TSF-OLED performances. Multiple intermolecular interactions are observed, leading to a kind of "cable-like packing" in the crystal and favoring the simultaneous realization of high electron-transporting mobility and good exciton-confinement ability, albeit the low triplet energy of the ETM. The optimized TSF-OLEDs exhibit a record-high maximum external quantum efficiency/power efficiency of 24.6%/76.0 lm W -1 , which remain 23.8%/69.0 lm W -1 at a high luminance of even 5000 cd m -2 with an extremely low operation voltage of 3.14 V. This work opens a new paradigm for designing ETMs and also paves the way toward practical application of TSF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng
2014-01-01
A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10(-3) A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 10(4) and output current up to 3.5 × 10(-4) A at V(scan) = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.
Liu, Lihui; Shang, Wenjuan; Han, Chao; Zhang, Qing; Yao, Yao; Ma, Xiaoqian; Wang, Minghao; Yu, Hongtao; Duan, Yu; Sun, Jie; Chen, Shufen; Huang, Wei
2018-02-28
Graphene as one of the most promising transparent electrode materials has been successfully applied in organic light-emitting diodes (OLEDs). However, traditional poly(methyl methacrylate) (PMMA) transfer method usually results in hardly removed polymeric residues on the graphene surface, which induces unwanted leakage current, poor diode behavior, and even device failure. In this work, we proposed a facile and efficient two-in-one method to obtain clean graphene and fabricate OLEDs, in which the poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-(4-sec-butylphenyl)imino)-1,4-phenylene) (TFB) layer was inserted between the graphene and PMMA film both as a protector during the graphene transfer and a hole-injection layer in OLEDs. Finally, green OLED devices were successfully fabricated on the PMMA-free graphene/TFB film, and the device luminous efficiency was increased from 64.8 to 74.5 cd/A by using the two-in-one method. Therefore, the proposed two-in-one graphene transfer method realizes a high-efficient graphene transfer and device fabrication process, which is also compatible with the roll-to-roll manufacturing. It is expected that this work can enlighten the design and fabrication of the graphene-based optoelectronic devices.
Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma
2017-02-01
Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.
NASA Astrophysics Data System (ADS)
Shaw-Stewart, James; Mattle, Thomas; Lippert, Thomas; Nagel, Matthias; Nüesch, Frank; Wokaun, Alexander
2013-08-01
Laser-induced forward transfer (LIFT) has already been used to fabricate various types of organic light-emitting diodes (OLEDs), and the process itself has been optimised and refined considerably since OLED pixels were first demonstrated. In particular, a dynamic release layer (DRL) of triazene polymer has been used, the environmental pressure has been reduced down to a medium vacuum, and the donor receiver gap has been controlled with the use of spacers. Insight into the LIFT process's effect upon OLED pixel performance is presented here, obtained through optimisation of three-colour polyfluorene-based OLEDs. A marked dependence of the pixel morphology quality on the cathode metal is observed, and the laser transfer fluence dependence is also analysed. The pixel device performances are compared to conventionally fabricated devices, and cathode effects have been looked at in detail. The silver cathode pixels show more heterogeneous pixel morphologies, and a correspondingly poorer efficiency characteristics. The aluminium cathode pixels have greater green electroluminescent emission than both the silver cathode pixels and the conventionally fabricated aluminium devices, and the green emission has a fluence dependence for silver cathode pixels.
Overcoming the limitations of silver nanowire electrodes for light emitting applications
NASA Astrophysics Data System (ADS)
Chen, Dustin Yuan
The global lighting market is projected to exceed 100 billion dollars by 2020, undergoing rapid transitions driven by technological advancements. In conjunction with increased demand for new technology, global regulations have become increasingly stringent, mandating the development and implementation of more fuel-efficient light sources. As prior generations of lighting technology such as incandescent bulbs and florescent lighting progressively become phased out, newer technologies such as light emitting diodes (LEDs) and organic light emitting diodes (OLEDs) have become progressively popular and commonplace. Though they still lag behind LEDs in terms of market penetration, OLEDs have garnered increasing amounts of attention in recent years due to unique attributes such as their exotic and large scale form factors, mechanical flexibility, and potential for high volume, low-cost manufacturing. Unfortunately, the costs for OLED manufacturing are currently still prohibitively high for several applications, with the anode and substrate representing 20-25 percent of this total cost. Significant technical and processing improvements for OLED substrates are of utmost necessity for fiscal cost reduction and commercialization of OLED technology. Silver nanowires have gained traction as a potential replacement for the current status quo, indium tin oxide (ITO) due to attributes such as flexibility, low cost processing, and high optoelectronic properties. However, due to nanoscale size effects, the integration of silver nanowires in both process flows and operational use has proven to be problematic. This work makes several key contributions towards enabling the use of silver nanowires for practical and commercial applications within the lighting industry. First, a novel method for the fabrication of a high temperature-stable, flexible substrate with surface roughness (Ra) < 2 nm is presented, based on atomic layer deposition of a conformal metal oxide film on silver nanowires. This development of a thermally stable AgNW based substrate is critical for the future of flexible OLEDs, as both polymers and AgNWs are unstable at elevated temperatures required for certain OLED processing. However, at the time publication, no solutions existed for flexible OLED substrates simultaneously having thermal stability in excess of 230 °C for more than a few minutes while maintaining a smooth surface for subsequent device fabrication. The thermally stable silver nanowires developed in this work are able to withstand temperatures of 500 °C in ramping tests, and when integrated with a thermally stable polymer matrix, withstand temperatures of 300 °C for at least 6 hours, representing an increase in allowable processing temperatures of 70 °C for several hours longer. Resulting polymer light emitting devices (PLEDs) requiring high temperature processing fabricated on this thermally stable exhibit comparable performance to the same devices fabricated on ITO, validating its compatibility for integration in traditional process flows, and validity for use in extreme processing conditions. Secondly, the aforementioned method is applied to understanding the electrical stability of silver nanowires. At the time of publication, previous works on the electrical failure of silver nanowires centered on the observation of failure under current flow, without a solution offered for how to mitigate the phenomenon. However, because the underlying purpose of these electrodes is to transport current, providing a solution for the failure flow is paramount to the success of AgNWs in future commercial applications. The importance of the development of this solution cannot be understated, especially in light of the fact that silver nanowires have been shown to fail under electrical stresses below typical operating conditions of various optoelectronic devices. The same technique mentioned previously can be leveraged for electrically stable silver nanowire networks, which show significant morphological stability over pristine silver nanowires when electrically stressed at normal operating conditions for OLEDs. These electrically stable substrates were able to produce high performance OLEDs with lifetimes 140% longer than the same devices fabricated on ITO, and 20% higher than non-electrically stable AgNW-based substrates. Thirdly, the thermally and electrically stable substrate was used to fabricate a high performing perovskite quantum dot light-emitting device exhibiting high flexibility. The use of quantum dots instead of perovskite precursors and post treatment to convert the precursors to perovskite allowed for several new innovations. Due to the elimination of highly polar solvents typically required with perovskite precursors, a broadened range of architectures can be achieved. Furthermore, due to the small dimensions of the quantum dots in contrast to thick films of perovskite formed from precursors, the active layer can extremely thin, allowing for high mechanical flexibility. The performance metrics achieved of 10.4 cd/A, 8.1 lm/W, and 2.6% EQE at a brightness of 1000 cd/m2 were enabled in part by the substrate, which further allowed for the high mechanical performance. The electroluminescence performance of the perovskite quantum dot LEDs was found to be virtually fully recoverable after being subjected to a bending radius of 2.5 mm, or repeated cycles of bending and unbending to a 4 mm radius, representing the first report of a highly flexible and mechanically perovskite quantum dot light emitting device with high electroluminescence performance. The improved stability of AgNWs with regards to both manufacturing and operational use, in addition to proof of concept in various light emitting devices demonstrates the potential of this technology for large-scale, commercial lighting applications.
Metal Complexes for Organic Optoelectronic Applications
NASA Astrophysics Data System (ADS)
Huang, Liang
Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i.e. Pd3O3, enables the fabrication of stable devices achieving nearly 1000h. at 1000cd/m2 without any outcoupling enhancement while simultaneously achieving peak external quantum efficiencies of 19.9%. Chapter 4 discusses tetradentate platinum and palladium complexes as deep blue emissive materials for display and lighting applications. The platinum complex PtNON, achieved a peak external quantum efficiency of 24.4 % and CIE coordinates of (0.18, 0.31) in a device structure designed for charge confinement and the palladium complexes Pd2O2 exhibited peak external quantum efficiency of up to 19.2%.
NASA Astrophysics Data System (ADS)
Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng
2014-01-01
A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04870e
Recent progress of high performance polymer OLED and OPV materials for organic printed electronics.
Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji
2014-06-01
The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.
Improvements of phosphorescent white OLEDs performance for lighting application.
Lee, Jonghee; Chu, Hye Yong; Lee, Jeong-Ik; Song, Ki-Im; Lee, Su Jin
2008-10-01
We developed white OLED device with high power efficiency, in which blue and orange phosphorescent emitters were used. By introduction of multi-functional interlayer which has partial doping of orange dopant inside EBL, we report WOLEDs with peak external efficiencies up to (14.1% EQE, 31.3 Im/W) without light out-coupling technique. At 1000 cd/m2, the performance achieved was 11.9% EQE, 18.7 Im/W with CIE = (0.39, 0.44). We also found that WOLED performances are related with doping ratio of the orange dopant that was inserted inside EBL.
Recent progress of high performance polymer OLED and OPV materials for organic printed electronics
Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji
2014-01-01
The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported. PMID:27877671
Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode.
Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; Del Mauro, Anna De Girolamo; Maglione, Maria Grazia; Minarini, Carla
2013-08-09
In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.
Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode
NASA Astrophysics Data System (ADS)
Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; De Girolamo Del Mauro, Anna; Grazia Maglione, Maria; Minarini, Carla
2013-08-01
In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.
Nozoe, Soichiro; Kinoshita, Nobuaki; Matsuda, Masaki
2016-04-01
By using the short-time electrocrystallization technique, phthalocyanine (Pc)-based Mott insulator Co(Pc)(CN)2 . 2CHCl3 nanocrystals were fabricated and applied to organic light-emiting diodes (OLEDs). The fabricated device having the configuration ITO/Co(Pc)(CN)2 . 2CHCl3/Alq3/Al, in which ITO is indium-tin oxide and Alq3 is tris(8-hydroxyquinolinato)aluminum, showed clear emission from Alq3, suggesting the Mott insulator Co(Pc)(CN)2 . 2CHCl3 can work as useful hole-injection and transport material in OLEDs.
Recent progress of high performance polymer OLED and OPV materials for organic printed electronics
NASA Astrophysics Data System (ADS)
Sekine, Chizu; Tsubata, Yoshiaki; Yamada, Takeshi; Kitano, Makoto; Doi, Shuji
2014-06-01
The development of organic printed electronics has been expanding to a variety of applications and is expected to bring innovations to our future life. Along with this trend, high performance organic materials with cost-efficient fabrication processes and specific features such as thin, light weight, bendable, and low power consumption are required. A variety of organic materials have been investigated in the development of this field. The basic guidelines for material design and the recent progress of polymer-based organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs) are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plint, Trevor; Lessard, Benoît H.; Bender, Timothy P.
In this study, we have assessed the potential application of group 13 and 14 metal and metalloid phthalocyanines ((X){sub n}-MPcs) and their axially substituted derivatives as hole-transporting layers in organic light emitting diodes (OLEDs). OLEDs studied herein have the generic structure of glass/ITO/(N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) or (X){sub n}-MPc)(50 nm)/Alq{sub 3} (60 nm)/LiF (1 nm)/Al (80 nm), where X is an axial substituent group. OLEDs using chloro aluminum phthalocyanine (Cl-AlPc) showed good peak luminance values of 2620 ± 113 cd/m{sup 2} at 11 V. To our knowledge, Cl-AlPc has not previously been shown to work as a hole transport material (HTL) in OLEDs. Conversely, the di-chlorides of silicon, germanium, andmore » tin phthalocyanine (Cl{sub 2}-SiPc, Cl{sub 2}-GePc, and Cl{sub 2}-SnPc, respectively) showed poor performance compared to Cl-AlPc, having peak luminances of only 38 ± 4 cd/m{sup 2} (12 V), 23 ± 1 cd/m{sup 2} (8.5 V), and 59 ± 5 cd/m{sup 2} (13.5 V), respectively. However, by performing a simple axial substitution of the chloride groups of Cl{sub 2}-SiPc with pentafluorophenoxy groups, the resulting bis(pentafluorophenoxy) silicon phthalocyanine (F{sub 10}-SiPc) containing OLED had a peak luminance of 5141 ± 941 cd/m{sup 2} (10 V), a two order of magnitude increase over its chlorinated precursor. This material showed OLED characteristics approaching those of a baseline OLED based on the well-studied triarylamine NPB. Attempts to attach the pentafluorophenoxy axial group to both SnPc and GePc were hindered by synthetic difficulties and low thermal stability, respectively. In light of the performance improvements observed by simple axial substitution of SiPc in OLEDs, the use of axially substituted MPcs in organic electronic devices remains of continuing interest to us and potentially the field in general.« less
Xu, Ting; Zhang, Ye-Xin; Wang, Bo; Huang, Chen-Chao; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng
2017-01-25
A novel exciplex-forming host is applied so as to design highly simplified reddish orange light-emitting diodes (OLEDs) with low driving voltage, high efficiency, and an extraordinarily low efficiency roll-off, by combining N,N-10-triphenyl-10H-spiro [acridine-9,9'-fluoren]-3'-amine (SAFDPA) with 4,7-diphenyl-1,10-phenanthroline (Bphen) doped with trivalent iridium complex bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate)iridium(III) (Ir(MDQ) 2 (acac)). The reddish orange OLEDs achieve a strikingly high power efficiency (PE) of 31.80 lm/W with an ultralow threshold voltage of 2.24 V which is almost equal to the triplet energy level of the phosphorescent reddish orange emitting dopant. The power efficiency of the device with the exciplex-forming host is enhanced, achieving 36.2% mainly owing to the lower operating voltage by the novel exciplex forming cohost, compared with the reference device (23.54 lm/W). Moreover, the OLEDs show extraordinarily low current efficiency (CE) roll-off to 1.41% at the brightness from 500 to 5000 cd/m 2 with a maximal CE of 32.87 cd/A (EQE max = 11.01%). The devices display a good reddish orange color (CIE of (0.628, 0.372) at 500 cd/m 2 ) nearly without color shift with increasing brightness. Co-host architecture phosphorescent OLEDs show a simpler device structure, lower working voltage, and a better efficiency and stability than those of the reference devices without the cohost architecture, which helps to simplify the OLED structure, lower the cost, and popularize OLED technology.
Fu, Qiang; Chen, Jiangshan; Shi, Changsheng; Ma, Dongge
2012-12-01
The widely used hole-transporting host 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) blended with either a hole-transporting or an electron-transporting small-molecule material as a mixed-host was investigated in the phosphorescent organic light-emitting diodes (OLEDs) fabricated by the low-cost solution-process. The performance of the solution-processed OLEDs was found to be very sensitive to the composition of the mixed-host systems. The incorporation of the hole-transporting 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) into TCTA as the mixed-host was demonstrated to greatly reduce the driving voltage and thus enhance the efficiency due to the improvement of hole injection and transport. On the basis of the mixed-host of TCTA:TAPC, we successfully fabricated low driving voltage and high efficiency blue and white phosphorescent OLEDs. A maximum forward viewing current efficiency of 32.0 cd/A and power efficiency of 25.9 lm/W were obtained in the optimized mixed-host blue OLED, which remained at 29.6 cd/A and 19.1 lm/W at the luminance of 1000 cd/m(2) with a driving voltage as low as 4.9 V. The maximum efficiencies of 37.1 cd/A and 32.1 lm/W were achieved in a single emissive layer white OLED based on the TCTA:TAPC mixed-host. Even at 1000 cd/m(2), the efficiencies still reach 34.2 cd/A and 23.3 lm/W and the driving voltage is only 4.6 V, which is comparable to those reported from the state-of-the-art vacuum-evaporation deposited white OLEDs.
NASA Astrophysics Data System (ADS)
Xu, Lisong
As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material compositions of these layers, we were able to achieve high-efficiency WOLEDs with controllable white emission characteristics. We showed that we can use the ultra-thin co-doped layer and two blue emitting layers to manipulate exciton confinement to certain zones and energy transfer pathways between the various hosts and dopants. Third, a blue phosphorescent dopant tris[1-(2,6-diisopropylphenyl)-2-phenyl-1H-imidazole]iridium(III) (Ir(iprpmi)3) with a low ionization potential (HOMO 4.8 eV) and propensity for hole-trapping was studied in WOLEDs. In a bipolar host, 2,6-bis(3-(carbazol-9-yl)phenyl)-pyridine (DCzPPy), Ir(iprpmi)3 was found to trap holes at low concentrations but transport holes at higher concentrations. By adjusting the dopant concentration and thereby the location of the recombination zone, we were able to demonstrate blue and white OLEDs with external quantum efficiencies over 20%. The fabricated WOLEDs shows high color stability over a wide range of luminance. Moreover, the device lifetime has also been improved with Ir(iprpmi)3 as the emitter compared to FIrpic. Last, we analyzed OLED degradation using Laser Desorption Time-Of-Flight Mass Spectrometry (LDI-TOF-MS) technique. By carefully and systematically comparing the LDI-TOF patterns of electrically/optically stressed and controlled (unstressed) OLED devices, we were able to identify some prominent degradation byproducts and trace possible chemical pathways involving specific host and dopant materials.
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth
2008-07-01
The basic photophysics, transport properties, state of the art, and challenges in OLED science and technology, and the major developments in structurally integrated OLED-based luminescent chemical and biological sensors are reviewed briefly. The dramatic advances in OLED performance have resulted in devices with projected continuous operating lifetimes of ~2 × 105 h (~23 yr) at ~150 Cd m-2 (the typical brightness of a computer monitor or TV). Consequently, commercial products incorporating OLEDs, e.g., cell phones, MP3 players, and, most recently, OLED TVs, are rapidly proliferating. The progress in elucidating the photophysics and transport properties, occurring in tandem with the development of OLEDs, has been no less dramatic. It has resulted in a detailed understanding of the dynamics of trapped and mobile negative and positive polarons (to which the electrons and holes, respectively, relax upon injection), and of singlet and triplet excitons. It has also yielded a detailed understanding of the spin dynamics of polarons and triplet excitons, which affects their overall dynamics significantly. Despite the aforementioned progress, there are outstanding challenges in OLED science and technology, notably in improving the efficiency of the devices and their stability at high brightness (>1000 Cd m-2). One of the most recent emerging OLED-based technologies is that of structurally integrated photoluminescence-based chemical and biological sensors. This sensor platform, pioneered by the authors, yields uniquely simple and potentially very low-cost sensor (micro)arrays. The second part of this review describes the recent developments in implementing this platform for gas phase oxygen, dissolved oxygen (DO), anthrax lethal factor, and hydrazine sensors, and for a DO, glucose, lactate, and ethanol multianalyte sensor.
2017-01-01
A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure. The scope of the presented procedure enables the synthesis of a library of polymers with emissive colors spanning the visible spectrum where the dopant incorporation, position of brush growth, and brush thickness are readily controlled. The chain-ends of the polymer brushes remain intact, affording subsequent chain extension and formation of well-defined diblock architectures. This high level of structure and function control allows for the facile preparation of random ternary copolymers and red–green–blue arrays to yield white emission. PMID:28691078
Page, Zachariah A; Narupai, Benjaporn; Pester, Christian W; Bou Zerdan, Raghida; Sokolov, Anatoliy; Laitar, David S; Mukhopadhyay, Sukrit; Sprague, Scott; McGrath, Alaina J; Kramer, John W; Trefonas, Peter; Hawker, Craig J
2017-06-28
A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure. The scope of the presented procedure enables the synthesis of a library of polymers with emissive colors spanning the visible spectrum where the dopant incorporation, position of brush growth, and brush thickness are readily controlled. The chain-ends of the polymer brushes remain intact, affording subsequent chain extension and formation of well-defined diblock architectures. This high level of structure and function control allows for the facile preparation of random ternary copolymers and red-green-blue arrays to yield white emission.
Plant Growth Absorption Spectrum Mimicking Light Sources
Jou, Jwo-Huei; Lin, Ching-Chiao; Li, Tsung-Han; Li, Chieh-Ju; Peng, Shiang-Hau; Yang, Fu-Chin; Justin Thomas, K. R.; Kumar, Dhirendra; Chi, Yun; Hsu, Ban-Dar
2015-01-01
Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants. PMID:28793503
Li, Wei; Li, Jiuyan; Liu, Di; Li, Deli; Wang, Fang
2016-08-24
Low driving voltage and high power efficiency are basic requirements when practical applications of organic light emitting diodes (OLEDs) in displays and lighting are considered. Two novel host materials m-PyCNmCP and 3-PyCNmCP incorporating cyanopyridine moiety as electron-transporting unit are developed for use in fac-tris(2-phenylpyridine)iridium(III) (Ir(ppy)3) based green phosphorescent OLEDs (PhOLEDs). Extremely low turn-on voltages of 2.01 and 2.27 V are realized, which are even lower than the theoretical limit of the emitted photon energy (hv)/electron charge (e) (2.37 V) of Ir(ppy)3. High power efficiency of 101.4 lm/W (corresponding to a maximum external quantum efficiency of 18.4%) and 119.3 lm/W (24.7%) are achieved for m-PyCNmCP and 3-PyCNmCP based green PhOLEDs. The excellent EL performance benefits from the ideal parameters of host materials by combining cyano and pyridine to enhance the n-type feature. The energetic favorable alignment of HOMO/LUMO levels of hosts with adjacent layers and the dopant for easy charge injections and direct charge trapping by dopant, their bipolar feature to balance charge transportations, sufficiently high triplet energy and small singlet/triplet energy difference (0.38 and 0.43 eV) combine to be responsible for the extremely low driving voltages and high power efficiencies of the green PhOLEDs.
Park, Seo Yeon; Choi, Suna; Park, Gi Eun; Kim, Hyung Jong; Lee, Chiho; Moon, Ji Su; Kim, Si Woo; Park, Sungnam; Kwon, Jang Hyuk; Cho, Min Ju; Choi, Dong Hoon
2018-05-02
In this work, three-armed luminogens IAcTr-out and IAcTr-in were synthesized and used as emitters bearing triazine and indenoacridine moieties in thermally activated delayed fluorescence organic light-emitting diodes (OLEDs). These molecules could form a uniform thin film via the solution process and also allowed the subsequent deposition of an electron transporting layer either by vacuum deposition or by an all-solution coating method. Intriguingly, the new luminogens displayed aggregation-induced emission (AIE), which is a unique photophysical phenomenon. As a nondoped emitting layer (EML), IAcTr-in showed external quantum efficiencies (EQEs) of 11.8% for the hybrid-solution processed OLED and 10.9% for the all-solution processed OLED with a low efficiency roll-off. This was evident by the higher photoluminescence quantum yield and higher rate constant of reverse intersystem crossing of IAcTr-in, as compared to IAcTr-out. These AIE luminogens were used as dopants and mixed with the well-known host material 1,3-bis( N-carbazolyl)benzene (mCP) to produce a high-efficiency OLED with a two-component EML. The maximum EQE of 17.5% was obtained when using EML with IAcTr-out doping (25 wt %) into mCP, and the OLED with EML bearing IAcTr-in and mCP showed a higher maximum EQE of 18.4% as in the case of the nondoped EML-based device.
Wang, Zixing; Wang, Hedan; Zhu, Jun; Wu, Peng; Shen, Bowen; Dou, Dehai; Wei, Bin
2017-06-28
The application of exciplex energy has become a unique way to achieve organic light-emitting diodes (OLEDs) with high efficiencies, low turn-on voltage, and low roll-off. Novel δ-carboline derivatives with high triplet energy (T 1 ≈ 2.92 eV) and high glass transition temperature (T g ≈ 153 °C) were employed to manipulate exciplex emissions in this paper. Deep blue (peak at 436 nm) and pure blue (peak at 468 nm) thermally activated delayed fluorescence (TADF) of exciplex OLEDs were demonstrated by utilizing them as emitters with the maximum current efficiency (CE) of 4.64 cd A -1 , power efficiency (PE) of 2.91 lm W -1 , and external quantum efficiency (EQE) of 2.36%. Highly efficient blue phosphorescent OLEDs doped with FIrpic showed a maximum CE of 55.6 cd A -1 , PE of 52.9 lm W -1 , and EQE of 24.6% respectively with very low turn on voltage at 2.7 V. The devices still remain high CE of 46.5 cd A -1 at 100 cd m -2 , 45.4 cd A -1 at 1000 cd m -2 and 42.3 cd A -1 at 5000 cd m -2 with EQE close to 20% indicating low roll-off. Manipulating blue exciplex emissions by chemical structure gives an ideal strategy to fully utilize all exciton energies for lighting of OLEDs.
Miao, Yanqin; Tao, Peng; Wang, Kexiang; Li, Hongxin; Zhao, Bo; Gao, Long; Wang, Hua; Xu, Bingshe; Zhao, Qiang
2017-11-01
Two highly efficient red neutral iridium(III) complexes, Ir1 and Ir2, were rationally designed and synthesized by selecting two pyridylimidazole derivatives as the ancillary ligands. Both Ir1 and Ir2 show nearly the same photoluminescence emission with the maximum peak at 595 nm (shoulder band at about 638 nm) and achieve high solution quantum yields of up to 0.47 for Ir1 and 0.57 for Ir2. Employing Ir1 and Ir2 as emitters, the fabricated red organic light-emitting diodes (OLEDs) show outstanding performance with the maximum external quantum efficiency (EQE), current efficiency (CE), and power efficiency (PE) of 20.98%, 33.04 cd/A, and 33.08 lm/W for the Ir1-based device and 22.15%, 36.89 cd/A, and 35.85 lm/W for the Ir2-based device, respectively. Furthermore, using Ir2 as red emitter, a trichromatic hybrid white OLED, showing good warm white emission with low correlated color temperature of <2200 K under the voltage of 4-6 V, was fabricated successfully. The white device also realizes excellent device efficiencies with the maximum EQE, CE, and PE reaching 22.74%, 44.77 cd/A, and 46.89 lm/W, respectively. Such high electroluminescence performance for red and white OLEDs indicates that Ir1 and Ir2 as efficient red phosphors have great potential for future OLED displays and lightings applications.
NASA Astrophysics Data System (ADS)
Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan
2017-07-01
Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.
NASA Astrophysics Data System (ADS)
Jin, Sung-Ho
2009-08-01
Highly efficient light-emitting materials based on phenylquinoline-carbazole derivative has been synthesized for organic-light emitting diodes (OLEDs). The materials form high quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron donating and electron withdrawing groups on carbazoylphenylquinoline. Non-doped deep-blue OLEDs using Et-CVz-PhQ as the emitter show bright emission (CIE coordinates, x=0.156, y=0.093) with an external quantum efficiency of 2.45 %. Furthermore, the material works as an excellent host material for BCzVBi to get high-performance OLEDs with excellent deep-blue CIE coordinates (x=0.155, y=0.157), high power efficiency (5.98 lm/W), and high external quantum efficiency (5.22 %). Cyclometalated Ir(III) μ-chloride bridged dimers were synthesized by iridium trichloride hydrate with an excess of our developed deep-blue emitter, Et-CVz-PhQ. The Ir(III) complexes were prepared by the dimers with the corresponding ancillary ligands. The chloride bridged diiridium complexes can be easily converted to mononuclear Ir(III) complexes by replacing the two bridging chlorides with bidentate monoanionic ancillary ligands. Among the various types of ancillary ligands, we firstly used picolinic acid N-oxide, including picolinic acid and acetylacetone as an ancillary ligands for Ir(III) complexes. The PhOLEDs also shows reasonably high brightness and good luminance efficiency of 20,000 cd/m2 and 12 cd/A, respectively.
NASA Astrophysics Data System (ADS)
Zakirov, Andrey; Belousov, Sergei; Valuev, Ilya; Levchenko, Vadim; Perepelkina, Anastasia; Zempo, Yasunari
2017-10-01
We demonstrate an efficient approach to numerical modeling of optical properties of large-scale structures with typical dimensions much greater than the wavelength of light. For this purpose, we use the finite-difference time-domain (FDTD) method enhanced with a memory efficient Locally Recursive non-Locally Asynchronous (LRnLA) algorithm called DiamondTorre and implemented for General Purpose Graphical Processing Units (GPGPU) architecture. We apply our approach to simulation of optical properties of organic light emitting diodes (OLEDs), which is an essential step in the process of designing OLEDs with improved efficiency. Specifically, we consider a problem of excitation and propagation of surface plasmon polaritons (SPPs) in a typical OLED, which is a challenging task given that SPP decay length can be about two orders of magnitude greater than the wavelength of excitation. We show that with our approach it is possible to extend the simulated volume size sufficiently so that SPP decay dynamics is accounted for. We further consider an OLED with periodically corrugated metallic cathode and show how the SPP decay length can be greatly reduced due to scattering off the corrugation. Ultimately, we compare the performance of our algorithm to the conventional FDTD and demonstrate that our approach can efficiently be used for large-scale FDTD simulations with the use of only a single GPGPU-powered workstation, which is not practically feasible with the conventional FDTD.
Organic light-emitting diodes from homoleptic square planar complexes
Omary, Mohammad A
2013-11-12
Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").
NASA Astrophysics Data System (ADS)
Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon
2015-03-01
Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.
Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs
NASA Astrophysics Data System (ADS)
Cheng, Tsung-Chin; Ku, Ting-An; Huang, Kuo-You; Chou, Ang-Sheng; Chang, Po-Han; Chang, Chao-Chen; Yue, Cheng-Feng; Liu, Chia-Wei; Wang, Po-Han; Wong, Ken-Tsung; Wu, Chih-I.
2018-01-01
In this work, we report a simple method for solution-processed organic light emitting devices (OLEDs), where single-layer graphene acts as the anode and the hexa-peri-hexabenzocoronene exfoliating agent (HBC-6ImBr) provides surface modification. In SEM images, the PEDOT:PSS solution fully covered the graphene electrode after coating with HBC-6ImBr. The fabricated solution-processed OLEDs with a single-layer graphene anode showed outstanding brightness at 3182 cd/m2 and current efficiency up to 6 cd/A which is comparable to that of indium tin oxide films, and the OLED device brightness performance increases six times compared to tri-layer graphene treated with UV-Ozone at the same driving voltage. This method can be used in a wide variety of solution-processed organic optoelectronics on surface-modified graphene anodes.
NASA Astrophysics Data System (ADS)
Auer-Berger, Manuel; Tretnak, Veronika; Wenzl, Franz-Peter; Krenn, Joachim; List-Kratochvil, Emil J. W.
2017-02-01
With the invention of phosphorescent emitter material, organic light emitting diodes with internal quantum yields of up to 100% can be realized. Still, the extraction of the light from the OLED stack is a bottleneck, which hampers the availability of OLEDs with large external quantum efficiencies. In this contribution, we highlight the advantages of integrating aluminum nanodisc arrays into the OLED stack. By this, not only the out-coupling of light can be enhanced, but also the emission color can be tailored and controlled. By means of extinction- and fluorescence spectroscopy measurements we are able to show how the sharp features observed in the extinction measurements correlate with a very selective fluorescence enhancement of the organic emitter materials used in these studies. At the same time, localized surface plasmon resonances of the individual nanodiscs further modify the emission spectrum, e.g., by filtering the green emission tail. A combination of these factors leads to a modification of the emission color in between CIE1931 (x,y) chromaticity coordinates of (0.149, 0.225) and (0.152, 0.352). After accounting for the sensitivity of the human eye, we are able to demonstrate that this adjustment of the chromaticity coordinates goes is accompanied by an increase in device efficiency.
Active matrix organic light emitting diode (AMOLED)-XL performance and life test results
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Lum, Alden K.; Ghosh, Amalkumar P.; Prache, Olivier; Wacyk, Ihor
2009-05-01
The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. RDECOM CERDEC NVESD conducted life tests on these displays, finding over 200% lifetime improvement for the OLED-XL devices over the standard OLED displays, publishing results at the 2007 and 2008 SPIE Defense and Security Symposia1,2. In 2008, eMagin Corporation made additional improvements on the lifetime of their displays and developed the first SXGA (1280 × 1024 triad pixels) OLED microdisplay. A summary of the life and performance tests run at CERDEC NVESD will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be desirable.
High-performance light-emitting diodes based on carbene-metal-amides
NASA Astrophysics Data System (ADS)
Di, Dawei; Romanov, Alexander S.; Yang, Le; Richter, Johannes M.; Rivett, Jasmine P. H.; Jones, Saul; Thomas, Tudor H.; Abdi Jalebi, Mojtaba; Friend, Richard H.; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan
2017-04-01
Organic light-emitting diodes (OLEDs) promise highly efficient lighting and display technologies. We introduce a new class of linear donor-bridge-acceptor light-emitting molecules, which enable solution-processed OLEDs with near-100% internal quantum efficiency at high brightness. Key to this performance is their rapid and efficient utilization of triplet states. Using time-resolved spectroscopy, we establish that luminescence via triplets occurs within 350 nanoseconds at ambient temperature, after reverse intersystem crossing to singlets. We find that molecular geometries exist at which the singlet-triplet energy gap (exchange energy) is close to zero, so that rapid interconversion is possible. Calculations indicate that exchange energy is tuned by relative rotation of the donor and acceptor moieties about the bridge. Unlike other systems with low exchange energy, substantial oscillator strength is sustained at the singlet-triplet degeneracy point.
Zhou, Lu; Yang, Lei; Yu, Mengjie; Jiang, Yi; Liu, Cheng-Fang; Lai, Wen-Yong; Huang, Wei
2017-11-22
Manufacturing small-molecule organic light-emitting diodes (OLEDs) via inkjet printing is rather attractive for realizing high-efficiency and long-life-span devices, yet it is challenging. In this paper, we present our efforts on systematical investigation and optimization of the ink properties and the printing process to enable facile inkjet printing of conjugated light-emitting small molecules. Various factors on influencing the inkjet-printed film quality during the droplet generation, the ink spreading on the substrates, and its solidification processes have been systematically investigated and optimized. Consequently, halogen-free inks have been developed and large-area patterning inkjet printing on flexible substrates with efficient blue emission has been successfully demonstrated. Moreover, OLEDs manufactured by inkjet printing the light-emitting small molecules manifested superior performance as compared with their corresponding spin-cast counterparts.
Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes
NASA Astrophysics Data System (ADS)
Ecton, Jeremy Exton
Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a microcavity organic light emitting diode (MOLED), significant enhancement in the external quantum efficiency was achieved. The optimized MOLED structure achieved a light out-coupling enhancement of 1.35 compared to the non-cavity structure with a peak EQE of 34.2%. In addition to demonstrating a high light out-coupling enhancement, the microcavity effect of a narrow band emitter in a MOLED was elucidated.
Metamaterial devices for molding the flow of diffuse light (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wegener, Martin
2016-09-01
Much of optics in the ballistic regime is about designing devices to mold the flow of light. This task is accomplished via specific spatial distributions of the refractive index or the refractive-index tensor. For light propagating in turbid media, a corresponding design approach has not been applied previously. Here, we review our corresponding recent work in which we design spatial distributions of the light diffusivity or the light-diffusivity tensor to accomplish specific tasks. As an application, we realize cloaking of metal contacts on large-area OLEDs, eliminating the contacts' shadows, thereby homogenizing the diffuse light emission. In more detail, metal contacts on large-area organic light-emitting diodes (OLEDs) are mandatory electrically, but they cast optical shadows, leading to unwanted spatially inhomogeneous diffuse light emission. We show that the contacts can be made invisible either by (i) laminate metamaterials designed by coordinate transformations of the diffusion equation or by (ii) triangular-shaped regions with piecewise constant diffusivity, hence constant concentration of scattering centers. These structures are post-optimized in regard to light throughput by Monte-Carlo ray-tracing simulations and successfully validated by model experiments.
Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.
Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong
2014-02-10
Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.
Organic light-emitting diodes with a spacer enhanced exciplex emission
NASA Astrophysics Data System (ADS)
Yan, Fei; Chen, Rui; Sun, Handong; Wei Sun, Xiao
2014-04-01
By introducing a spacer molecule into the blended exciplex emissive layer, the performance of the bulk heterojunction exciplex organic light-emitting diodes (OLEDs) was improved dramatically; the maximum luminous efficiency was enhanced by about 22% from 7.9 cd/A to 9.7 cd/A, and the luminous efficiency drop was reduced by 28% at 400 mA/cm2. Besides the suppressed annihilation of exciton, the time-resolved photoluminescence measurements indicated that the spacer enhanced the delayed fluorescence through increasing the backward intersystem crossing rate from the triplet to singlet exciplex state. This method is useful for developing high performance exciplex OLEDs.
NASA Astrophysics Data System (ADS)
Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Chuan-Hung; Cheng, Chien-Lung; Liao, Teh-Chao
2009-12-01
The influence of heat dissipation on the performances of organic light-emitting diode (OLED) is investigated by measuring junction temperature and by calculating the rate of heat flow. The calculated rate of heat flow reveals that the key factors include the thermal conductivity, the substrate thickness, and the UV glue. Moreover, the use of copper substrate can effectively dissipate the joule heat, which then reduces the temperature gradient. Finally, it is shown that the use of a high thermal conductivity thinner substrate can enhance the thermal conductivity of OLED and the luminance efficiency as well.
Charge injection and transport properties of an organic light-emitting diode
Juhasz, Peter; Nevrela, Juraj; Micjan, Michal; Novota, Miroslav; Uhrik, Jan; Stuchlikova, Lubica; Jakabovic, Jan; Harmatha, Ladislav
2016-01-01
Summary The charge behavior of organic light emitting diode (OLED) is investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the charge injection and transport. We concluded that charge is injected into the OLED device mostly through the interfacial states at low voltage region, whereas the thermionic injection dominates in the high voltage region. This comparison of experimental techniques demonstrates their capabilities of identification of major bottleneck of charge injection and transport. PMID:26925351
Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca
2016-01-01
Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy. PMID:27677240
Gan, Lin; Li, Xianglong; Cai, Xinyi; Liu, Kunkun; Li, Wei
2018-01-01
The design of orange-light emitting, thermally activated, delayed fluorescence (TADF) materials is necessary and important for the development and application of organic light-emitting diodes (OLEDs). Herein, two donor–acceptor–donor (D–A–D)-type orange TADF materials based on fluorenone and acridine, namely 2,7-bis(9,9-dimethylacridin-10(9H)-yl)-9H-fluoren-9-one (27DACRFT, 1) and 3,6-bis(9,9-dimethylacridin-10(9H)-yl)-9H-fluoren-9-one (36DACRFT, 2), were successfully synthetized and characterized. The studies on their structure–property relationship show that the different configurations have a serious effect on the photoluminescence and electroluminescence performance according to the change in singlet–triplet splitting energy (ΔE ST) and excited state geometry. This indicates that a better configuration design can reduce internal conversion and improve triplet exciton utilization of TADF materials. Importantly, OLEDs based on 2 exhibited a maximum external quantum efficiency of 8.9%, which is higher than the theoretical efficiency of the OLEDs based on conventional fluorescent materials. PMID:29623130
Hofmann, Oliver; Wang, Xuhua; Demello, John C; Bradley, Donal D C; Demello, Andrew J
2005-08-01
As a first step towards a fully disposable stand-alone diagnostic microchip for determination of urinary human serum albumin (HSA), we report the use of a thin-film organic light emitting diode (OLED) as an excitation source for microscale fluorescence detection. The OLED has a peak emission wavelength of 540 nm, is simple to fabricate on flexible or rigid substrates, and operates at drive voltages below 10 V. In a fluorescence assay, HSA is reacted with Albumin Blue 580, generating a strong emission at 620 nm when excited with the OLED. Filter-less discrimination between excitation light and generated fluorescence is achieved through an orthogonal detection geometry. When the assay is performed in 800 microm deep and 800 microm wide microchannels on a poly(dimethylsiloxane)(PDMS) microchip at flow rates of 20 microL min(-1), HSA concentrations down to 10 mg L(-1) can be detected with a linear range from 10 to 100 mg L(-1). This sensitivity is sufficient for the determination of microalbuminuria (MAU), an increased urinary albumin excretion indicative of renal disease (clinical cut-off levels: 15-40 mg L(-1)).
NASA Astrophysics Data System (ADS)
Wu, Tien-Lin; Huang, Min-Jie; Lin, Chih-Chun; Huang, Pei-Yun; Chou, Tsu-Yu; Chen-Cheng, Ren-Wu; Lin, Hao-Wu; Liu, Rai-Shung; Cheng, Chien-Hong
2018-04-01
Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) materials are promising for the realization of highly efficient light emitters. However, such devices have so far suffered from efficiency roll-off at high luminance. Here, we report the design and synthesis of two diboron-based molecules, CzDBA and tBuCzDBA, which show excellent TADF properties and yield efficient OLEDs with very low efficiency roll-off. These donor-acceptor-donor (D-A-D) type and rod-like compounds concurrently generate TADF with a photoluminescence quantum yield of 100% and an 84% horizontal dipole ratio in the thin film. A green OLED based on CzDBA exhibits a high external quantum efficiency of 37.8 ± 0.6%, a current efficiency of 139.6 ± 2.8 cd A-1 and a power efficiency of 121.6 ± 3.1 lm W-1 with an efficiency roll-off of only 0.3% at 1,000 cd m-2. The device has a peak emission wavelength of 528 nm and colour coordinates of the Commission International de ĺEclairage (CIE) of (0.31, 0.61), making it attractive for colour-display applications.
NASA Astrophysics Data System (ADS)
Hartmann, D.; Sarfert, W.; Meier, S.; Bolink, H.; García Santamaría, S.; Wecker, J.
2010-05-01
Typically high efficient OLED device structures are based on a multitude of stacked thin organic layers prepared by thermal evaporation. For lighting applications these efficient device stacks have to be up-scaled to large areas which is clearly challenging in terms of high through-put processing at low-cost. One promising approach to meet cost-efficiency, high through-put and high light output is the combination of solution and evaporation processing. Moreover, the objective is to substitute as many thermally evaporated layers as possible by solution processing without sacrificing the device performance. Hence, starting from the anode side, evaporated layers of an efficient white light emitting OLED stack are stepwise replaced by solution processable polymer and small molecule layers. In doing so different solutionprocessable hole injection layers (= polymer HILs) are integrated into small molecule devices and evaluated with regard to their electro-optical performance as well as to their planarizing properties, meaning the ability to cover ITO spikes, defects and dust particles. Thereby two approaches are followed whereas in case of the "single HIL" approach only one polymer HIL is coated and in case of the "combined HIL" concept the coated polymer HIL is combined with a thin evaporated HIL. These HIL architectures are studied in unipolar as well as bipolar devices. As a result the combined HIL approach facilitates a better control over the hole current, an improved device stability as well as an improved current and power efficiency compared to a single HIL as well as pure small molecule based OLED stacks. Furthermore, emitting layers based on guest/host small molecules are fabricated from solution and integrated into a white hybrid stack (WHS). Up to three evaporated layers were successfully replaced by solution-processing showing comparable white light emission spectra like an evaporated small molecule reference stack and lifetime values of several 100 h.
NASA Astrophysics Data System (ADS)
Baniya, S.; Pang, Z.; Sun, D.; Basel, T.; Zhai, Y.; Kwon, O.; Choi, H.; Vardeny, Z. V.
2016-09-01
A new type of organic light-emitting diode (OLED) has emerged that shows enhanced operational stability and large internal quantum efficiency approaching 100%, which is based on exciplexes in donor-acceptor (D-A) blends having thermally activated delayed fluorescence (TADF) when doped with fluorescent emitters. We have investigated magnetoelectroluminescence (MEL) and magneto-conductivity in such TADF-based OLEDs, as well as magnetophotoluminescence (MPL) in thin films based on the OLEDs active layers, with various fluorescence emitters. We found that both MEL and MPL responses are thermally activated with substantially lower activation energy compared to that in the pristine undoped D-A exciplex host blend. In addition, both MPL and MEL steeply decrease with the emitters' concentration. This indicates the existence of a loss mechanism, whereby the triplet charge-transfer state in the D-A exciplex host blend may directly decay to the lowest, non-emissive triplet state of the additive fluorescent emitter molecules.
High-efficiency white OLEDs based on small molecules
NASA Astrophysics Data System (ADS)
Hatwar, Tukaram K.; Spindler, Jeffrey P.; Ricks, M. L.; Young, Ralph H.; Hamada, Yuuhiko; Saito, N.; Mameno, Kazunobu; Nishikawa, Ryuji; Takahashi, Hisakazu; Rajeswaran, G.
2004-02-01
Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these devices.
NASA Astrophysics Data System (ADS)
Reyes, R.; Cremona, M.; Achete, C. A.
2011-01-01
Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq3) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq3/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.
NASA Astrophysics Data System (ADS)
Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.
2017-09-01
In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.
Ding, Lei; Tang, Xun; Xu, Mei-Feng; Shi, Xiao-Bo; Wang, Zhao-Kui; Liao, Liang-Sheng
2014-10-22
Lithium hydride (LiH) is employed as a novel n-dopant in the intermediate connector for tandem organic light-emitting diodes (OLEDs) because of its easy coevaporation with other electron transporting materials. The tandem OLEDs with two and three electroluminescent (EL) units connected by a combination of LiH doped 8-hydroxyquinoline aluminum (Alq3) and 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN) demonstrate approximately 2-fold and 3-fold enhancement in current efficiency, respectively. In addition, no extra voltage drop across the intermediate connector is observed. Particularly, the lifetime (T75%) in the tandem OLED with two and three EL units is substantially improved by 3.8 times and 7.4 times, respectively. The doping effect of LiH into Alq3, the charge injection, and transport characteristics of LiH-doped Alq3 are further investigated by ultraviolet photoelectron spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS).
Operating organic light-emitting diodes imaged by super-resolution spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, John T.; Granick, Steve
Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packedmore » chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. As a result, this points the way towards real-time analysis of materials design principles in devices as they actually operate.« less
Operating organic light-emitting diodes imaged by super-resolution spectroscopy
King, John T.; Granick, Steve
2016-06-21
Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packedmore » chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. As a result, this points the way towards real-time analysis of materials design principles in devices as they actually operate.« less
Novel emission phenomena in organic microcavities (Conference Presentation)
NASA Astrophysics Data System (ADS)
Leo, Karl
2016-09-01
Organic light emitting diodes (OLED) are today a mature techology and have reached high efficiency both in monochrome and white devices. One of the main research areas for further improvement is still the optical design which enables many new approaches to enhance efficiency and realize special emission properties. In this talk, I will review our recent work on OLED outcoupling, in particular for devices encapsulated in microcavities and patterned structures.
ITO-free white OLEDs on flexible substrates with enhanced light outcoupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, Barry
2017-02-05
The goal of this research is to further explore and integrate a number of innovative approaches we have developed that can overcome current bottlenecks to realize large-area ITO-free WOLEDs on flexible substrates, with processes and materials that are upscalable and amenable to low-cost production. In doing so, we provide an understanding of various loss mechanisms in OLEDs and how they can be extracted.
NASA Astrophysics Data System (ADS)
Yang, Henglong; Chang, Wen-Cheng; Lin, Yu-Hsuan; Chen, Ming-Hong
2017-08-01
The distinguishable and non-distinguishable 6-bit (64) grayscales of green and red organic light-emitting diode (OLED) were experimentally investigated by using high-sensitive photometric instrument. The feasibility of combining external detection system for quality engineering to compensate the grayscale loss based on preset grayscale tables was also investigated by SPICE simulation. The degradation loss of OLED deeply affects image quality as grayscales become inaccurate. The distinguishable grayscales are indicated as those brightness differences and corresponding current increments are differentiable by instrument. The grayscales of OLED in 8-bit (256) or higher may become nondistinguishable as current or voltage increments are in the same order of noise level in circuitry. The distinguishable grayscale tables for individual red, green, blue, and white colors can be experimentally established as preset reference for quality engineering (QE) in which the degradation loss is compensated by corresponding grayscale numbers shown in preset table. The degradation loss of each OLED colors is quantifiable by comparing voltage increments to those in preset grayscale table if precise voltage increments are detectable during operation. The QE of AMOLED can be accomplished by applying updated grayscale tables. Our preliminary simulation result revealed that it is feasible to quantify degradation loss in terms of grayscale numbers by using external detector circuitry.
Zhang, Heng; Feng, Yuanxiang; Chen, Shuming
2016-10-03
Light-emitting diodes based on organic (OLEDs) and colloidal quantum dot (QLEDs) are widely considered as next-generation display technologies because of their attractive advantages such as self-emitting and flexible form factor. The OLEDs exhibit relatively high efficiency, but their color saturation is quite poor compared with that of QLEDs. In contrast, the QLEDs show very pure color emission, but their efficiency is lower than that of OLEDs currently. To combine the advantages and compensate for the weaknesses of each other, we propose a hybrid tandem structure which integrates both OLED and QLED in a single device architecture. With ZnMgO/Al/HATCN interconnecting layer, hybrid tandem LEDs are successfully fabricated. The demonstrated hybrid tandem devices feature high efficiency and high color saturation simultaneously; for example, the devices exhibit maximum current efficiency and external quantum efficiency of 96.28 cd/A and 25.90%, respectively. Meanwhile, the full width at half-maximum of the emission spectra is remarkably reduced from 68 to 44 nm. With the proposed hybrid tandem structure, the color gamut of the displays can be effectively increased from 81% to 100% NTSC. The results indicate that the advantages of different LED technologies can be combined in a hybrid tandem structure.
Han, Tae-Hee; Kim, Young-Hoon; Kim, Myung Hwan; Song, Wonjun; Lee, Tae-Woo
2016-03-09
We used various nondestructive analyses to investigate various host material systems in the emitting layer (EML) of simple-structured, green phosphorescent organic light-emitting diodes (OLEDs) to clarify how the host systems affect its luminous efficiency (LE) and operational stability. An OLED that has a unipolar single-host EML with conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) showed high operating voltage, low LE (∼26.6 cd/A, 13.7 lm/W), and short lifetime (∼4.4 h @ 1000 cd/m(2)). However, the combined use of a gradient mixed-host EML and a molecularly controlled HIL that has increased surface work function (WF) remarkably decreased operating voltage and improved LE (∼68.7 cd/A, 77.0 lm/W) and lifetime (∼70.7 h @ 1000 cd/m(2)). Accumulated charges at the injecting interfaces and formation of a narrow recombination zone close to the interfaces are the major factors that accelerate degradation of charge injection/transport and electroluminescent properties of OLEDs, so achievement of simple-structured OLEDs with high efficiency and long lifetime requires facilitating charge injection and balanced transport into the EML and distributing charge carriers and excitons in EML.
NASA Astrophysics Data System (ADS)
Lee, Chang-Chun; Shih, Yan-Shin; Wu, Chih-Sheng; Tsai, Chia-Hao; Yeh, Shu-Tang; Peng, Yi-Hao; Chen, Kuang-Jung
2012-07-01
This work analyses the overall stress/strain characteristic of flexible encapsulations with organic light-emitting diode (OLED) devices. A robust methodology composed of a mechanical model of multi-thin film under bending loads and related stress simulations based on nonlinear finite element analysis (FEA) is proposed, and validated to be more reliable compared with related experimental data. With various geometrical combinations of cover plate, stacked thin films and plastic substrate, the position of the neutral axis (NA) plate, which is regarded as a key design parameter to minimize stress impact for the concerned OLED devices, is acquired using the present methodology. The results point out that both the thickness and mechanical properties of the cover plate help in determining the NA location. In addition, several concave and convex radii are applied to examine the reliable mechanical tolerance and to provide an insight into the estimated reliability of foldable OLED encapsulations.
Yu, By Hyeonggeun; Cheng, Yuanhang; Li, Menglin; Tsang, Sai-Wing; So, Franky
2018-05-09
Direct integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED. Because of the efficient photocarrier injection from the hybrid perovskite layer to the OLED, we observed a sub-band gap turn-on of the OLED under NIR illumination. The device showed a NIR-to-visible up-conversion efficiency of 3% and a luminance on/off ratio of 10 3 at only 5 V. Finally, we demonstrate pixel-free NIR imaging using the up-conversion device.
Elze, Tobias; Taylor, Christopher; Bex, Peter J.
2013-01-01
Purpose: In contrast to the dominant medical liquid crystal display (LCD) technology, organic light-emitting diode (OLED) monitors control the display luminance via separate light-emitting diodes for each pixel and are therefore supposed to overcome many previously documented temporal artifacts of medical LCDs. We assessed the temporal and luminance characteristics of the only currently available OLED monitor designed for use in the medical treatment field (SONY PVM2551MD) and checked the authors’ main findings with another SONY OLED device (PVM2541). Methods: Temporal properties of the photometric output were measured with an optical transient recorder. Luminances of the three color primaries and white for all 256 digital driving levels (DDLs) were measured with a spectroradiometer. Between the luminances of neighboring DDLs, just noticeable differences were calculated according to a perceptual model developed for medical displays. Luminances of full screen (FS) stimuli were compared to luminances of smaller stimuli with identical DDLs. Results: All measured luminance transition times were below 300 μs. Luminances were independent of the luminance in the preceding frame. However, for the single color primaries, up to 50.5% of the luminances of neighboring DDLs were not perceptually distinguishable. If two color primaries were active simultaneously, between 36.7% and 55.1% of neighboring luminances for increasing DDLs of the third primary were even decreasing. Moreover, luminance saturation effects were observed when too many pixels were active simultaneously. This effect was strongest for white; a small white patch was close to 400 cd/m2, but in FS the luminance of white saturated at 162 cd/m2. Due to different saturation levels, the luminance of FS green and FS yellow could exceed the luminance of FS white for identical DDLs. Conclusions: The OLED temporal characteristics are excellent and superior to those of LCDs. However, the OLEDs revealed severe perceptually relevant artifacts with implications for applicability to medical imaging. PMID:24007183
Elze, Tobias; Taylor, Christopher; Bex, Peter J
2013-09-01
In contrast to the dominant medical liquid crystal display (LCD) technology, organic light-emitting diode (OLED) monitors control the display luminance via separate light-emitting diodes for each pixel and are therefore supposed to overcome many previously documented temporal artifacts of medical LCDs. We assessed the temporal and luminance characteristics of the only currently available OLED monitor designed for use in the medical treatment field (SONY PVM2551MD) and checked the authors' main findings with another SONY OLED device (PVM2541). Temporal properties of the photometric output were measured with an optical transient recorder. Luminances of the three color primaries and white for all 256 digital driving levels (DDLs) were measured with a spectroradiometer. Between the luminances of neighboring DDLs, just noticeable differences were calculated according to a perceptual model developed for medical displays. Luminances of full screen (FS) stimuli were compared to luminances of smaller stimuli with identical DDLs. All measured luminance transition times were below 300 μs. Luminances were independent of the luminance in the preceding frame. However, for the single color primaries, up to 50.5% of the luminances of neighboring DDLs were not perceptually distinguishable. If two color primaries were active simultaneously, between 36.7% and 55.1% of neighboring luminances for increasing DDLs of the third primary were even decreasing. Moreover, luminance saturation effects were observed when too many pixels were active simultaneously. This effect was strongest for white; a small white patch was close to 400 cd/m(2), but in FS the luminance of white saturated at 162 cd/m(2). Due to different saturation levels, the luminance of FS green and FS yellow could exceed the luminance of FS white for identical DDLs. The OLED temporal characteristics are excellent and superior to those of LCDs. However, the OLEDs revealed severe perceptually relevant artifacts with implications for applicability to medical imaging.
Method to generate high efficient devices which emit high quality light for illumination
Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.
2009-06-30
An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.
Organic Light Emitting Diodes with Opal Photonic Crystal Layer and Carbon Nanotube Anode
NASA Astrophysics Data System (ADS)
Ovalle Robles, Raquel; Del Rocio Nava, Maria; Williams, Christopher; Zhang, Mei; Fang, Shaoli; Lee, Sergey; Baughman, Ray; Zakhidov, Anvar
2007-03-01
We report electroluminescence intensity and spectral changes in light emission from organic light emitting diode (OLEDs) structures, which have thin transparent films of opal photonic crystal (PC). The anode in such PC-OLED is laminated on opal layer from free standing optically transparent multiwall carbon nanotubes (T-CNT) sheets made by dry spinning from CVD grown forests. Silica and polystyrene opal films were grown on glass substrates by vertical sedimentation in colloids in thermal baths and the particle size of opal spheres ranges from 300 nm to 450 nm. The use of T-CNTs, (coated by PEDOT-PSS to avoid shorting) as hole injector, allows to eliminate the use of vacuum deposition of metals and permits to achieve tunneling hole injection regime from CNT tips into Alq^3 emission layer
Active-matrix OLED using 150°C a-Si TFT backplane built on flexible plastic substrate
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Chanley, Charles; Dodd, Sonia R.; Roush, Jared; Schmidt, John; Srdanov, Gordana; Stevenson, Matthew; Wessel, Ralf; Innocenzo, Jeffrey; Yu, Gang; O'Regan, Marie B.; MacDonald, W. A.; Eveson, R.; Long, Ke; Gleskova, Helena; Wagner, Sigurd; Sturm, James C.
2003-09-01
Flexible displays fabricated using plastic substrates have a potential for being very thin, light weight, highly rugged with greatly minimized propensity for breakage, roll-to-roll manufacturing and lower cost. The emerging OLED display media offers the advantage of being a solid state and rugged structure for flexible displays in addition to the many potential advantages of an AM OLED over the currently dominant AM LCD. The current high level of interest in flexible displays is facilitating the development of the required enabling technologies which include development of plastic substrates, low temperature active matrix device and backplane fabrication, and display packaging. In the following we will first discuss our development efforts in the PEN based plastic substrates, active matrix backplane technology, low temperature (150°C) a-Si TFT devices and an AM OLED test chip used for evaluating various candidate designs. We will then describe the design, fabrication and successful evaluation and demonstration of a 64x64 pixel AM OLED test display using a-Si TFT backplane fabricated at 150°C on the flexible plastic substrate.
Arrays of microscopic organic LEDs for high-resolution optogenetics
Steude, Anja; Witts, Emily C.; Miles, Gareth B.; Gather, Malte C.
2016-01-01
Optogenetics is a paradigm-changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. We report a novel optogenetic illumination platform based on high-density arrays of microscopic organic light-emitting diodes (OLEDs). Because of the small dimensions of each array element (6 × 9 μm2) and the use of ultrathin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays, and we demonstrate specific light-induced control of the ionic current across the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks and for acute brain slices, or as implants in vivo. PMID:27386540
NASA Astrophysics Data System (ADS)
Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei
2012-10-01
We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Tim; Institut für Physikalische Chemie, Universität zu Köln, 50939 Köln; Schwab, Tobias
A random scattering approach to enhance light extraction in white top-emitting organic light-emitting diodes (OLEDs) is reported. Through solution processing from fluorinated solvents, a nano-particle scattering layer (NPSL) can be deposited directly on top of small molecule OLEDs without affecting their electrical performance. The scattering length for light inside the NPSL is determined from transmission measurements and found to be in agreement with Mie scattering theory. Furthermore, the dependence of the light outcoupling enhancement on electron transport layer thickness is studied. Depending on the electron transport layer thickness, the NPSL enhances the external quantum efficiency of the investigated white OLEDsmore » by between 1.5 and 2.3-fold. For a device structure that has been optimized prior to application of the NPSL, the maximum external quantum efficiency is improved from 4.7% to 7.4% (1.6-fold improvement). In addition, the scattering layer strongly reduces the undesired shift in emission color with viewing angle.« less
NASA Astrophysics Data System (ADS)
Wang, Shumeng; Wang, Xingdong; Yao, Bing; Zhang, Baohua; Ding, Junqiao; Xie, Zhiyuan; Wang, Lixiang
2015-07-01
To realize power efficient solution-processed phosphorescent organic light-emitting diodes (s-PhOLEDs), the corresponding high driving voltage issue should be well solved. To solve it, efforts have been devoted to the exploitation of novel host or interfacial materials. However, the issues of charge trapping of phosphor and/or charge injection barrier are still serious, largely restraining the power efficiency (PE) levels. Herein, with the utilization of an exciplex-forming couple 4, 4‧, 4″ -tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA) and 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB), the efficient charge injection and transporting, barrier-free hole-electron recombination for the formation of the interfacial exciplex, and elimination of charge traps of phosphors in the emissive layer are realized simultaneously, resulting in a turn-on voltage of 2.36 V, a record high PE of 97.2 lm W-1, as well as extremely low driving voltage of 2.60 V at 100 cd m-2, 3.03 V at 1000 cd m-2 and 4.08 V at 10000 cd m-2. This report is the first time that the PE performance of s-PhOLED approaches 100 lm W-1 high level, even superior to the corresponding state-of-the-art performance of the same color vacuum-deposited PhOLED (v-PhOLED) counterpart. We anticipate this report opens a new avenue for achieving power efficient monochromatic and white s-PhOLEDs with simple structures.
Wang, Shumeng; Wang, Xingdong; Yao, Bing; Zhang, Baohua; Ding, Junqiao; Xie, Zhiyuan; Wang, Lixiang
2015-01-01
To realize power efficient solution-processed phosphorescent organic light-emitting diodes (s-PhOLEDs), the corresponding high driving voltage issue should be well solved. To solve it, efforts have been devoted to the exploitation of novel host or interfacial materials. However, the issues of charge trapping of phosphor and/or charge injection barrier are still serious, largely restraining the power efficiency (PE) levels. Herein, with the utilization of an exciplex-forming couple 4, 4′, 4″ -tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA) and 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB), the efficient charge injection and transporting, barrier-free hole-electron recombination for the formation of the interfacial exciplex, and elimination of charge traps of phosphors in the emissive layer are realized simultaneously, resulting in a turn-on voltage of 2.36 V, a record high PE of 97.2 lm W−1, as well as extremely low driving voltage of 2.60 V at 100 cd m−2, 3.03 V at 1000 cd m−2 and 4.08 V at 10000 cd m−2. This report is the first time that the PE performance of s-PhOLED approaches 100 lm W−1 high level, even superior to the corresponding state-of-the-art performance of the same color vacuum-deposited PhOLED (v-PhOLED) counterpart. We anticipate this report opens a new avenue for achieving power efficient monochromatic and white s-PhOLEDs with simple structures. PMID:26204810
NASA Astrophysics Data System (ADS)
Chang, Yu-Fan; Chiu, Yu-Chian; Chang, Hao-Wen; Wang, Yi-Siang; Shih, Yi-Lun; Wu, Chih-Hao; Liu, Yi-Lun; Lin, Yu-Sheng; Meng, Hsin-Fei; Chi, Yun; Huang, Heh-Lung; Tseng, Mei-Rurng; Lin, Hao-Wu; Zan, Hsiao-Wen; Horng, Sheng-Fu; Juang, Jenh-Yih
2013-09-01
We developed a general method based on fluorescence microscopy to characterize the interface dissolution in multi-layer organic light-emitting diodes (OLEDs) by blade coating. A sharp bi-layer edge was created before blade coating, with the bottom layer being insoluble and top layer soluble. After blade coating, fluorescence images showed that the edge of the top layer shifted when the layer dissolved completely, whereas the bottom layer's edge remained in place as a positioning mark. The dissolution depth was determined to be 15-20 nm when the emissive-layer host of 2,6-bis (3-(9H-carbazol-9-yl)phenyl) pyridine (26DCzPPy) was coated on the hole-transport layer of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine(NPB), which was consistent with a sudden drop in efficiency of orange OLEDs with layer thickness below 20 nm. Thus, the layer thickness of OLEDs was optimized to stay more than 20 nm for blade coating. For a two-color white OLED with the structure TCTA/26DCzPPy:PO-01-TB:FIrpic/TPBI, efficiency was 24 cd/A and 8.5 lm/W at 1000 cd/m2. For a three-color white OLED with Os(fptz)2(dhpm) added as the emitter, the efficiency was 12.3 cd/A and 3.7 lm/W at 1000 cd/m2. For a green device with the structure TCTA/26DCzPPy:Ir(mppy)3/TPBI, the efficiency was 41.9 cd/A and 23.4 lm/W at 1000 cd/m2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fei-ping, E-mail: lufp-sysu@163.com; Liu, Xiao-bin; Xing, Yong-zhong
2014-04-28
Current balance factor (CBF) value, the ratio of the recombination current density and the total current density of a device, has an important function in fluorescence-based organic light-emitting diodes (OLEDs), as well as in the performance of the organic electrophosphorescent devices. This paper investigates the influence of the applied voltage of a device on the CBF value of single layer OLED based on the numerical model of a bipolar single layer OLED with organic layer trap free and without doping. Results show that the largest CBF value can be achieved when the electron injection barrier (ϕ{sub n}) is equal tomore » the hole injection barrier (ϕ{sub p}) in the lower voltage region at any instance. The largest CBF in the higher voltage region can be achieved in the case of ϕ{sub n} > ϕ{sub p} under the condition of electron mobility (μ{sub 0n}) > hole mobility (μ{sub 0p}), whereas the result for the case of μ{sub 0n} < μ{sub 0p}, is opposite. The largest CBF when μ{sub 0n} = μ{sub 0p} can be achieved in the case of ϕ{sub n} = ϕ{sub p} in the entire region of the applied voltage. In addition, the CBF value of the device increases with increasing applied voltage. The results obtained in this paper can present an in-depth understanding of the OLED working mechanism and help in the future fabrication of high efficiency OLEDs.« less
Wang, Shumeng; Wang, Xingdong; Yao, Bing; Zhang, Baohua; Ding, Junqiao; Xie, Zhiyuan; Wang, Lixiang
2015-07-24
To realize power efficient solution-processed phosphorescent organic light-emitting diodes (s-PhOLEDs), the corresponding high driving voltage issue should be well solved. To solve it, efforts have been devoted to the exploitation of novel host or interfacial materials. However, the issues of charge trapping of phosphor and/or charge injection barrier are still serious, largely restraining the power efficiency (PE) levels. Herein, with the utilization of an exciplex-forming couple 4, 4', 4″-tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA) and 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TmPyPB), the efficient charge injection and transporting, barrier-free hole-electron recombination for the formation of the interfacial exciplex, and elimination of charge traps of phosphors in the emissive layer are realized simultaneously, resulting in a turn-on voltage of 2.36 V, a record high PE of 97.2 lm W(-1), as well as extremely low driving voltage of 2.60 V at 100 cd m(-2), 3.03 V at 1000 cd m(-2) and 4.08 V at 10000 cd m(-2). This report is the first time that the PE performance of s-PhOLED approaches 100 lm W(-1) high level, even superior to the corresponding state-of-the-art performance of the same color vacuum-deposited PhOLED (v-PhOLED) counterpart. We anticipate this report opens a new avenue for achieving power efficient monochromatic and white s-PhOLEDs with simple structures.
A simple integrated system for electrophysiologic recordings in animals
Slater, Bernard J.; Miller, Neil R.; Bernstein, Steven L.; Flower, Robert W.
2009-01-01
This technical note describes a modification to a fundus camera that permits simultaneous recording of pattern electroretinograms (pERGs) and pattern visual evoked potentials (pVEPs). The modification consists of placing an organic light-emitting diode (OLED) in the split-viewer pathway of a fundus camera, in a plane conjugate to the subject’s pupil. In this way, a focused image of the OLED can be delivered to a precisely known location on the retina. The advantage of using an OLED is that it can achieve high luminance while maintaining high contrast, and with minimal degradation over time. This system is particularly useful for animal studies, especially when precise retinal positioning is required. PMID:19137347
NASA Astrophysics Data System (ADS)
He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong
2015-12-01
We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.
Zhou, Guijiang; Yang, Xiaolong; Wong, Wai-Yeung; Wang, Qi; Suo, Si; Ma, Dongge; Feng, Jikang; Wang, Lixiang
2011-10-24
With the aim of endowing triplet emitters in the development of organic light-emitting devices (OLEDs) with electron-injection/-transporting (EI/ET) features, the phenylsulfonyl moiety was introduced into the phenyl ring of a 2-phenylpyridine (Hppy) ligand and the yellow phosphorescent heteroleptic iridium(III) complex 1 was developed. It was shown that the SO(2)Ph unit could provide EI/ET character to 1, as indicated from both electrochemical and computational data. Complex 1 is a promising yellow-emitting material for both monochromatic OLEDs and white OLEDs (WOLEDs). The outstanding electronic traits associated with 1, coupled with careful device design, afforded very attractive electroluminescent performances for two-element WOLEDs, including a low turn-on voltage of less than 3.7 V, a maximum brightness of 48,000 cd m(-2), an external quantum efficiency of 13.0%, a luminance efficiency of 34.7 cd A(-1), and a power efficiency of 24.3 Lm W(-1). In addition, a good color rendering index (CRI) of about 74, a stable white color with a Commission Internationale de L'Eclairage (CIE(x,y)) variation of Δ(x, y) < ±(0.02, 0.02), and a correlated color temperature higher than 5130 K were obtained. These encouraging results indicate the potential of these WOLEDs as good candidates for warm indoor lighting sources, as well as the critical contribution of such key EI/ET properties to triplet emitters to advance new OLED research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Young-Sam; Han, Kyung-Hoon; Kim, Jehan; Cho, Doo-Hee; Lee, Jonghee; Han, Yoonjay; Lim, Jong Tae; Cho, Nam Sung; Yu, Byounggon; Lee, Jeong-Ik; Kim, Jang-Joo
2017-01-07
To date, all deposition equipment has been developed to produce planar films. Thus lens arrays with a lens diameter of <1 mm have been manufactured by combining deposition with other technologies, such as masks, surface treatment, molding etc. Furthermore, a nano-lens array (NLA) with a sufficiently small lens diameter (<1 μm) is necessary to avoid image quality degradation in high resolution displays. In this study, an organic NLA made using a conventional deposition technique - without combining with other techniques - is reported. Very interestingly, grazing-incidence small-angle X-ray scattering (GI-SAXS) experiments indicate that the NLA is formed by the crystallization of organic molecules and the resulting increase in surface tension. The lens diameter can be tuned for use with any kind of light by controlling the process parameters. As an example of their potential applications, we use NLAs as a light extraction film for organic light emitting diodes (OLEDs). The NLA is integrated by directly depositing it on the top electrode of a collection of OLEDs. This is a dry process, meaning that it is fully compatible with the current OLED production process. Devices with NLAs exhibited a light extraction efficiency 1.5 times higher than devices without, which corresponds well with simulation results. The simulations show that this high efficiency is due to the reduction of the guided modes by scattering at the NLA. The NLAs also reduce image blurring, indicating that they increase color stability.
NASA Astrophysics Data System (ADS)
Basel, Tek Prasad
We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that one of the major losses that limit the power conversion efficiency of OPV devices is the formation of triplet excitons in the polymer through recombination of charge-transfer (CT) excitons at the interface, and presented a method to suppress the dissociation of CT states by incorporating the spin ½ additive, galvinoxyl in the bulk heterojunction architecture of the active organic blend layer.
NASA Astrophysics Data System (ADS)
Ghosh, Debju; Shinar, Ruth; Cai, Yuankun; Zhou, Zhaoqun; Dalal, Vikram L.; Shinar, Joseph
2007-09-01
Steps towards the improvement of a compact photoluminescence (PL)-based sensor array that is fully structurally integrated are described. The approach is demonstrated for oxygen sensing, which can be monitored via its effect on the PL intensity I or decay time τ of oxygen-sensitive dyes such as Pt octaethylporphryn (PtOEP) and its Pd analog (PdOEP). The integrated components include (1) an organic light emitting device (OLED) excitation source, which is an array of coumarin-doped tris(quinolinolate) Al (Alq 3) pixels, (2) the sensor film, i.e., PdOEP embedded in polystyrene, and (3) the photodetector (PD), which is a plasma-enhanced CVD-grown p-i-n or n-i-p structure, based on amorphous or nanocrystalline (Si,Ge):H. These components are fabricated on common or separate substrates that are attached back-to-back, resulting in sensors with a thickness largely determined by that of the substrates. The fully integrated oxygen sensor is demonstrated first by fabricating each of the three components on a separate substrate. The PD was placed in front of a flow cell containing the sensor film, while the OLED array was "behind" the sensor film. This design showed the expected trend in monitoring different concentration of O II via their effect on I, with improved detection sensitivity achieved by shielding the electromagnetic noise synchronous with the pulsed OLED. The detection sensitivity using the I monitoring mode is expected to further increase by reducing the OLED tail emission. The issue of the OLED background can be eliminated by monitoring the oxygen concentration via its effect on τ, where the OLED is pulsed and τ is measured while the OLED is off. Steps therefore focused also on shortening the response time of the PDs, and understanding the factors affecting their speed. Development of a sensor array, where the PD pixels are fabricated between the OLED pixels on the same side of a common substrate, is also discussed.
NASA Astrophysics Data System (ADS)
Ling, Yongzhou; Lei, Yanlian; Zhang, Qiaoming; Chen, Lixiang; Song, Qunliang; Xiong, Zuhong
2015-11-01
In this work, we report on large magneto-conductance (MC) over 60% and magneto-electroluminescence (MEL) as high as 112% at room temperature in an exciplex-based organic light-emitting diode (OLED) with efficient reverse intersystem crossing (ISC). The large MC and MEL are individually confirmed by the current density-voltage characteristics and the electroluminescence spectra under various magnetic fields. We proposed that this type of magnetic field effect (MFE) is governed by the field-modulated reverse ISC between the singlet and triplet exciplex. The temperature-dependent MFEs reveal that the small activation energy of reverse ISC accounts for the large MFEs in the present exciplex-based OLEDs.
Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer
NASA Astrophysics Data System (ADS)
Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob
2015-07-01
We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.
NASA Astrophysics Data System (ADS)
Kim, Young Min; Park, Young Wook; Choi, Jin Hwan; Ju, Byeong Kwon; Jung, Jae Hoon; Kim, Jai Kyeong
2007-01-01
The authors report the optical and electroluminescent (EL) properties of white organic light-emitting diodes (OLEDs) which have two emitters with similar structures: 1, 1, 4, 4-tetraphenyl-1, 3-butadiene and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline have an emission peak of 400nm around the near ultraviolet, and tris-(8-hydroxyquinoline) aluminum doped with 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran has an emission peak of 580nm producing a yellow color. The EL spectra of the white OLED have shown a broadening through visual range from 400to780nm. This spectral broadening is related to an exciplex emission at the organic solid interface.
NASA Astrophysics Data System (ADS)
Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.
2016-05-01
The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. Electronic supplementary information (ESI) available: XPS spectra, Raman spectra, sheet resistance and transmittance of graphene films with different numbers of layers and different ozone treatment times, doping effect of MoO3 on graphene and GO/G electrodes, performance of green OLEDs with different graphene anodes, a movie showing the flexibility of device. See DOI: 10.1039/c6nr01649a
Suppression of vagal cardiac modulation by blue light in healthy subjects.
Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro
2016-10-05
In the contemporary life environments, our body is increasingly exposed to various sources of colored light, which may affect our physiological functions as non-image-forming effects. We examined the impacts of colored lights on the autonomic functions by the analysis of heart rate variability (HRV). A lighting device consisting of four organic light-emitting diode (OLED) modules (55 × 55 mm 2 ) with adjustable red-green-blue color was secured 24 cm above the eyes of subject lying supine in a light-shielded laboratory. Following a 15-min supine rest, electrocardiogram and respiration were measured continuously during 3-min darkness, 6-min colored OLED illumination, and 3-min darkness under paced breathing (15 breath/min). The measurements were repeated at a 45-min interval for red, green, and blue lights with melanopsin-stimulating photon flux density (MSPFD) of 0.00, 0.10, and 0.20 μmol/m 2 /s, respectively, in 12 healthy subjects (23 ± 2 years, two females). Additionally, the effects of blue lights with 0.20, 0.10, and 0.04 μmol/m 2 /s MSPFD were examined in four healthy subjects (25-39 years, two females). HRV was analyzed for low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.20-0.30 Hz) power and LF-to-HF ratio (LF/HF). Compared to darkness before lighting, HF power decreased (P < 0.001) and LF/HF increased (P = 0.024) during lighting on average of all color lights, whereas HF power showed a greater decrease with blue light than with red and green lights (P < 0.05 for both). The decrease in HF power lasted even during darkness after lighting (P < 0.001). HF power decreased with blue light with 0.20 μmol/m 2 /s MSPFD (P < 0.001) but not with that with 0.10 or 0.04 μmol/m 2 /s (P = 0.1 and 0.9, respectively). Vagal cardiac modulation is suppressed by OLED blue light in healthy subjects most likely through melanopsin-dependent non-image-forming effect.
Flexible Organic Tribotronic Transistor Memory for a Visible and Wearable Touch Monitoring System.
Li, Jing; Zhang, Chi; Duan, Lian; Zhang, Li Min; Wang, Li Duo; Dong, Gui Fang; Wang, Zhong Lin
2016-01-06
A new type of flexible organic tribotronic transistor memory is proposed, which can be written and erased by externally applied touch actions as an active memory. By further coupling with an organic light-emitting diode (OLED), a visible and wearable touch monitoring system is achieved, in which touch triggering can be memorized and shown as the emission from the OLED. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cui, Lin-Song; Deng, Ya-Li; Tsang, Daniel Ping-Kuen; Jiang, Zuo-Quan; Zhang, Qisheng; Liao, Liang-Sheng; Adachi, Chihaya
2016-09-01
Efficient sky-blue organic light-emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) display a three orders of magnitude increase in lifetime, which is superior to those of controlled phosphorescent OLEDs used in this study. The combination of electro-oxidation and photo-oxidation of the TADF emitters in their triplet excited-states is suppressed through molecule design and device engineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Du, Xiaoyang; Tao, Silu; Huang, Yun; Yang, Xiaoxia; Ding, Xulin; Zhang, Xiaohong
2015-11-01
Efficient fluorescence/phosphorescence hybrid white organic light-emitting diodes (OLEDs) with single doped co-host structure have been fabricated. Device using 9-Naphthyl-10 -(4-triphenylamine)anthrancene as the fluorescent dopant and Ir(ppy)3 and Ir(2-phq)3 as the green and orange phosphorescent dopants show the luminous efficiency of 12.4% (17.6 lm/W, 27.5 cd/A) at 1000 cd/m2. Most important to note that the efficiency-brightness roll-off of the device was very mild. With the brightness rising up to 5000 and 10 000 cd/m2, the efficiency could be kept at 11.8% (14.0 lm/W, 26.5 cd/A) and 11.0% (11.8 lm/W, 25.0 cd/A). The Commission Internationale de L'Eclairage (CIE) coordinates and color rending index (CRI) were measured to be (0.45, 0.48) and 65, respectively, and remained the same in a large range of brightness (1000-10 000 cd/m2), which is scarce in the reported white OLEDs. The performance of the device at high luminance (5000 and 10 000 cd/m2) was among the best reported results including fluorescence/phosphorescence hybrid and all-phosphorescent white OLEDs. Moreover, the CRI of the white OLED can be improved to 83 by using a yellow-green emitter (Ir(ppy)2bop) in the device.
Highly efficient blue and warm white organic light-emitting diodes with a simplified structure
NASA Astrophysics Data System (ADS)
Li, Xiang-Long; Ouyang, Xinhua; Chen, Dongcheng; Cai, Xinyi; Liu, Ming; Ge, Ziyi; Cao, Yong; Su, Shi-Jian
2016-03-01
Two blue fluorescent emitters were utilized to construct simplified organic light-emitting diodes (OLEDs) and the remarkable difference in device performance was carefully illustrated. A maximum current efficiency of 4.84 cd A-1 (corresponding to a quantum efficiency of 4.29%) with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.144, 0.127) was achieved by using N,N-diphenyl-4″-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1, 1‧:4‧, 1″-terphenyl]-4-amine (BBPI) as a non-doped emission layer of the simplified blue OLEDs without carrier-transport layers. In addition, simplified fluorescent/phosphorescent (F/P) hybrid warm white OLEDs without carrier-transport layers were fabricated by utilizing BBPI as (1) the blue emitter and (2) the host of a complementary yellow phosphorescent emitter (PO-01). A maximum current efficiency of 36.8 cd A-1 and a maximum power efficiency of 38.6 lm W-1 were achieved as a result of efficient energy transfer from the host to the guest and good triplet exciton confinement on the phosphorescent molecules. The blue and white OLEDs are among the most efficient simplified fluorescent blue and F/P hybrid white devices, and their performance is even comparable to that of most previously reported complicated multi-layer devices with carrier-transport layers.
NASA Astrophysics Data System (ADS)
Lee, Jae-Hoon; Park, Sang-Geun; Jeon, Jae-Hong; Goh, Joon-chul; Huh, Jong-moo; Choi, Joonhoo; Chung, Kyuha; Han, Min-Koo
2007-03-01
We propose and fabricate a new hydrogenated amorphous silicon (a-Si:H) thin-film transistor (TFT) pixel employing a fraction time annealing (FTA), which can supply a negative gate bias during a fraction time of each frame rather than the entire whole frame, in order to improve the organic light emitting diode (OLED) current stability for an active matrix (AM) OLED. When an electrical bias for an initial reference current of 2 μA at 60 °C is applied to an FTA-driven pixel more than 100 h and the temperature is increased up to 60 °C rather than room temperature, the OLED current is reduced by 22% in the FTA-driven pixel, whereas it is reduced by 53% in a conventional pixel. The current stability of the proposed pixel is improved, because the applied negative bias can suppress the threshold voltage degradation of the a-Si:H TFT itself, which may be attributed to hole trapping into SiNx. The proposed fraction time annealing method can successfully suppress Vth shift of the a-Si:H TFT itself due to hole trapping into SiNx induced by negative gate bias annealing.
Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamer, John; Scott, David
In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain somore » through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately 25 USD/m 2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately 780 USD/m 2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to 170 USD/m 2 of good product from the OLEDWorks production line.« less
NASA Astrophysics Data System (ADS)
Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi
2016-09-01
This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.
Three-terminal RGB full-color OLED pixels for ultrahigh density displays.
Fröbel, Markus; Fries, Felix; Schwab, Tobias; Lenk, Simone; Leo, Karl; Gather, Malte C; Reineke, Sebastian
2018-06-26
In recent years, the organic light-emitting diode (OLED) technology has been a rapidly evolving field of research, successfully making the transition to commercial applications such as mobile phones and other small portable devices. OLEDs provide efficient generation of light, excellent color quality, and allow for innovative display designs, e.g., curved shapes, mechanically flexible and/or transparent devices. Especially their self emissive nature is a highly desirable feature for display applications. In this work, we demonstrate an approach for full-color OLED pixels that are fabricated by vertical stacking of a red-, green-, and blue-emitting unit. Each unit can be addressed separately which allows for efficient generation of every color that is accessible by superpositioning the spectra of the individual emission units. Here, we use a combination of time division multiplexing and pulse width modulation to achieve efficient color mixing. The presented device design requires only three independently addressable electrodes, simplifying both fabrication and electrical driving. The device is built in a top-emission geometry, which is highly desirable for display fabrication as the pixel can be directly deposited onto back-plane electronics. Despite the top-emission design and the application of three silver layers within the device, there is only a minor color shift even for large viewing angles. The color space spanned by the three emission sub-units exceeds the sRGB space, providing more saturated green/yellow/red colors. Furthermore, the electrical performance of each individual unit is on par with standard single emission unit OLEDs, showing very low leakage currents and achieving brightness levels above 1000 cd/m 2 at moderate voltages of around 3-4 V.
Tricolor microcavity OLEDs based on P-nc-Si:H films as the complex anodes
NASA Astrophysics Data System (ADS)
Yang, Li; Xingyuan, Liu; Chunya, Wu; Zhiguo, Meng; Yi, Wang; Shaozhen, Xiong
2009-06-01
A P+-nc-Si:H film (boron-doped nc-Si:H thin film) was used as a complex anode of an OLED. As an ideal candidate for the composite anode, the P+-nc-Si:H thin film has a good conductivity with a high work function (~ 5.7 eV) and outstanding optical properties of high reflectivity, transmission, and a very low absorption. As a result, the combination of the relatively high reflectivity of a P+-nc-Si:H film/ITO complex anode with the very high reflectivity of an Al cathode could form a micro-cavity structure with a certain Q to improve the efficiency of the OLED fabricated on it. An RGB pixel generated by microcavity OLEDs is beneficial for both the reduction of the light loss and the improvement of the color purity and the efficiency. The small molecule Alq would be useful for the emitting light layer (EML) of the MOLED, and the P+-nc-Si film would be used as a complex anode of the MOLED, whose configuration can be constructed as Glass/LTO/P+-nc-Si:H/ITO/MoO3/NPB/Alq/LiF/Al. By adjusting the thickness of the organic layer NPB/Alq, the optical length of the microcavity and the REB colors of the device can be obtained. The peak wavelengths of an OLED are located at 486, 550, and 608 nm, respectively. The CIE coordinates are (0.21, 0.45), (0.33, 0.63), and (0.54, 0.54), and the full widths at half maximum (FWHM) are 35, 32, and 39 nm for red, green, and blue, respectively.
Multifunctional organic thin films and their electronic/optical properties
NASA Astrophysics Data System (ADS)
Shao, Yan
The concept of multifunctional organic thin films and their electronic/optical properties has been applied to organic functional device design, fabrication, and characterization. The organic devices involve organic light-emitting diodes (OLEDs) and organic photovoltaic devices (OPV) in this dissertation. In the research of graded junction structure of OLEDs, two kinds of naturally-formed graded junction (NFGJ) structures, sharp and shallow graded junctions, can be formed using single thermal evaporation boat loaded with uniformly mixed charge transport and light-emitting materials. OLEDs with NFGJ have been demonstrated in Chapter 3; the performance is comparable to the heterojunction OLEDs, but with better device lifetime. A novel method to prepare highly uniform mixed organic solid solutions through a high temperature and high-pressure fusion process has been demonstrated in Chapter 4. A series of fused organic solid solution (FOSS) compounds with NPD doped with different organic emitting dopants were prepared and DSC technique was utilized to determine the thermal characteristics. For the first time, the schematic phase diagram for this binary system has been obtained. High performance OLEDs of single color and white emission were fabricated and the device properties were characterized. In Chapter 5, an efficient photovoltaic heterojunction of tetracene and fullerene has been investigated and high performance organic solar cells have been demonstrated by thermal deposition and successive heat treatment. The preliminary conclusion for this enhancement is discussed and supported by atomic force microscopy images, absorption spectra and x-ray diffraction analysis. Additionally, an effective organic photovoltaic heterojunction based on the typical triplet material PtOEP was demonstrated. It is believed that introducing appropriate organic materials with long exciton lifetime is a very promising way to improve photovoltaic performance.
The first tandem, all-exciplex-based WOLED.
Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai
2014-06-04
Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with η(ext) of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies η(ext): 11.6%, η(c): 27.7 cd A(-1), and η(p): 15.8 ml W(-1) with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs.
The First Tandem, All-exciplex-based WOLED
NASA Astrophysics Data System (ADS)
Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai
2014-06-01
Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with ηext of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies ηext: 11.6%, ηc: 27.7 cd A-1, and ηp: 15.8 ml W-1 with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs.
The First Tandem, All-exciplex-based WOLED
Hung, Wen-Yi; Fang, Guan-Cheng; Lin, Shih-Wei; Cheng, Shuo-Hsien; Wong, Ken-Tsung; Kuo, Ting-Yi; Chou, Pi-Tai
2014-01-01
Exploiting our recently developed bilayer interface methodology, together with a new wide energy-gap, low LUMO acceptor (A) and the designated donor (D) layers, we succeeded in fabricating an exciplex-based organic light-emitting diode (OLED) systematically tuned from blue to red. Further optimization rendered a record-high blue exciplex OLED with ηext of 8%. We then constructed a device structure configured by two parallel blend layers of mCP/PO-T2T and DTAF/PO-T2T, generating blue and yellow exciplex emission, respectively. The resulting device demonstrates for the first time a tandem, all-exciplex-based white-light OLED (WOLED) with excellent efficiencies ηext: 11.6%, ηc: 27.7 cd A−1, and ηp: 15.8 ml W−1 with CIE(0.29, 0.35) and CRI 70.6 that are nearly independent of EL intensity. The tandem architecture and blend-layer D/A (1:1) configuration are two key elements that fully utilize the exciplex delay fluorescence, providing a paragon for the use of low-cost, abundant organic compounds en route to commercial WOLEDs. PMID:24895098
Zhang, Tianmu; Shi, Changsheng; Zhao, Chenyang; Wu, Zhongbin; Chen, Jiangshan; Xie, Zhiyuan; Ma, Dongge
2018-03-07
Phosphorescent organic light-emitting diodes (OLEDs) possess the property of high efficiency but have serious efficiency roll-off at high luminance. Herein, we manufactured high-efficiency phosphorescent OLEDs with extremely low roll-off by effectively locating the ultrathin emitting layer (UEML) away from the high-concentration exciton formation region. The strategic exciton management in this simple UEML architecture greatly suppressed the exciton annihilation due to the expansion of the exciton diffusion region; thus, this efficiency roll-off at high luminance was significantly improved. The resulting green phosphorescent OLEDs exhibited the maximum external quantum efficiency of 25.5%, current efficiency of 98.0 cd A -1 , and power efficiency of 85.4 lm W -1 and still had 25.1%, 94.9 cd A -1 , and 55.5 lm W -1 at 5000 cd m -2 luminance, and retained 24.3%, 92.7 cd A -1 , and 49.3 lm W -1 at 10 000 cd m -2 luminance, respectively. Compared with the usual structures, the improvement demonstrated in this work displays potential value in applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenjin, Zeng; Ran, Bi; Hongmei, Zhang, E-mail: iamhmzhang@njupt.edu.cn, E-mail: iamwhuang@njupt.edu.cn
2014-12-14
Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7–tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of hostmore » and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.« less
Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W
2013-06-01
White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.
Facile solution-processed aqueous MoOx for feasible application in organic light-emitting diode
NASA Astrophysics Data System (ADS)
Zheng, Qinghong; Qu, Disui; Zhang, Yan; Li, Wanshu; Xiong, Jian; Cai, Ping; Xue, Xiaogang; Liu, Liming; Wang, Honghang; Zhang, Xiaowen
2018-05-01
Solution-processed techniques attract increasing attentions in organic electronics for their low-cost and scalable manufacturing. We demonstrate the favorite hole injection material of solution-processed aqueous MoOx (s-MoOx) with facile fabrication process and cast successful application to constructing efficient organic light-emitting diodes (OLEDs). Atomic force microscopy and X-ray photoelectron spectroscopy analysis show that s-MoOx behaves superior film morphology and non-stoichiometry with slight oxygen deficiency. With tris(8-hydroxy-quinolinato)aluminium as emitting layer, s-MoOx based OLED shows maximum luminous efficiency of 7.9 cd/A and power efficiency of 5.9 lm/W, which have been enhanced by 43.6% and 73.5%, respectively, in comparison with the counterpart using conventional vacuum thermal evaporation MoOx. Current-voltage, impedance-voltage, phase-voltage and capacitance-voltage characteristics of hole-only devices indicate that s-MoOx with two processes of "spin-coating/annealing" shows mostly enhanced hole injection capacity and thus promoting device performance. Our experiments provide an alternative approach for constructing efficient OLED with solution process.
Kim, Ilhwan; Kim, Bong Sung; Nam, Seunghoon; Lee, Hoo-Jeong; Chung, Ho Kyoon; Cho, Sung Min; Luu, Thi Hoai Thuong; Hyun, Seungmin; Kang, Chiwon
2018-01-01
Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N-methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED. PMID:29614800
Kim, Ilhwan; Kim, Bong Sung; Nam, Seunghoon; Lee, Hoo-Jeong; Chung, Ho Kyoon; Cho, Sung Min; Luu, Thi Hoai Thuong; Hyun, Seungmin; Kang, Chiwon
2018-04-02
Here, we fabricate poly(vinylidene fluoride- co -hexafluoropropene) (PVDF- co -HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N -methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF- co -HFP separator, owing to its low volatility. The cross-linked PVDF- co -HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF- co -HFP separator shows an ionic conductivity of 2.3 × 10 -3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF- co -HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF- co -HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF- co -HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED.
Liu, Yanpeng; Jung, Eun; Wang, Yu; Zheng, Yi; Park, Eun Ji; Cho, Sung Min; Loh, Kian Ping
2014-03-12
An air-stable transparent conductive film with "quasi-freestanding" graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer-by-layer transfer (LBL) on quartz, and modified by 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light-emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m(2) , current efficiency ≈14.7 cd/A). Most importantly, the entire graphene-on-SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly-flexible OLED device, which continues to function without degradation in performance at bending angles >60°. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Zheng-Guang; Jing, Yi-Ming; Lu, Guang-Zhao; Zhou, Jie; Zheng, You-Xuan; Zhou, Liang; Wang, Yi; Pan, Yi
2016-01-01
Due to the high quantum efficiency and wide scope of emission colors, iridium (Ir) (III) complexes have been widely applied as guest materials for OLEDs (organic light-emitting diodes). Contrary to well-developed Ir(III)-based red and green phosphorescent complexes, the efficient blue emitters are rare reported. Like the development of the LED, the absence of efficient and stable blue materials hinders the widely practical application of the OLEDs. Inspired by this, we designed two novel ancillary ligands of phenyl(pyridin-2-yl)phosphinate (ppp) and dipyridinylphosphinate (dpp) for efficient blue phosphorescent iridium complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dfppy = 2-(2,4-difluorophenyl)pyridine) with good electron transport property. The devices using the new iridium phosphors display excellent electroluminescence (EL) performances with a peak current efficiency of 58.78 cd/A, a maximum external quantum efficiency of 28.3%, a peak power efficiency of 52.74 lm/W and negligible efficiency roll-off ratios. The results demonstrated that iridium complexes with pyridinylphosphinate ligands are potential blue phosphorescent materials for OLEDs. PMID:27929124
NASA Astrophysics Data System (ADS)
Ivanov, P.; Petrova, P.; Stanimirov, S.; Tomova, R.
2017-01-01
A new Bis[4-(benzothiazolato-N,C2‧-2-yl)-N,N-dimethylaniline]Iridium(III) acetylacetonate (Me2N-bt) 2Ir(acac) was synthesized and identified by 1H NMR and elemental analysis. The application of the new compound as a dopant in the hole transporting layer (HTL) of Organic light emitting diode (OLED) structure: HTL/EL/ETL, where HTL was N,N’-bis(3-methylphenyl)-N,N’-diphenylbenzidine (TPD), incorporated in Poly(N-vinylcarbazole) (PVK) matrix, EL - electroluminescent layer of Bis(8-hydroxy-2-methylquinoline)-(4-phenylpheno-xy)aluminum (BAlq) and ETL - electron-transporting layer of Tris-(8-hydroxyquinoline) aluminum (Alq3) or Bis[2-(2-benzothiazoly) phenolato]zinc (Zn(btz)2). We established that the electroluminescent spectra of OLEDs at different concentrations of the dopant were basically the sum of the greenish-blue emission of BAlq and yellowish-green emission of Ir complex. It was found that with increasing of the dopant concentration the relative electroluminescent intensity of Iridium complex emission increased and this of BAlq decreased and as a result the fine tuning of OLED color was observed.
Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming
2015-01-01
The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3) and 0.96 (for Zn-1), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1-OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3-OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively. PMID:29142704
NASA Astrophysics Data System (ADS)
Bahl, Mayank; Zhou, Gui-Rong; Heller, Evan; Cassarly, William; Jiang, Mingming; Scarmozzino, Rob; Gregory, G. Groot
2014-09-01
Over the last two decades there has been extensive research done to improve the design of Organic Light Emitting Diodes (OLEDs) so as to enhance light extraction efficiency, improve beam shaping, and allow color tuning through techniques such as the use of patterned substrates, photonic crystal (PCs) gratings, back reflectors, surface texture, and phosphor down-conversion. Computational simulation has been an important tool for examining these increasingly complex designs. It has provided insights for improving OLED performance as a result of its ability to explore limitations, predict solutions, and demonstrate theoretical results. Depending upon the focus of the design and scale of the problem, simulations are carried out using rigorous electromagnetic (EM) wave optics based techniques, such as finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA), or through ray optics based technique such as Monte Carlo ray-tracing. The former are typically used for modeling nanostructures on the OLED die, and the latter for modeling encapsulating structures, die placement, back-reflection, and phosphor down-conversion. This paper presents the use of a mixed-level simulation approach which unifies the use of EM wave-level and ray-level tools. This approach uses rigorous EM wave based tools to characterize the nanostructured die and generate both a Bidirectional Scattering Distribution function (BSDF) and a far-field angular intensity distribution. These characteristics are then incorporated into the ray-tracing simulator to obtain the overall performance. Such mixed-level approach allows for comprehensive modeling of the optical characteristic of OLEDs and can potentially lead to more accurate performance than that from individual modeling tools alone.
White organic light-emitting diodes with Zn-complexes.
Kim, Dong-Eun; Shin, Hoon-Kyu; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo
2014-02-01
This paper reviews OLEDs fabricated using Zn-complexes. Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were synthesized as new electroluminescence materials. The electron affinity (EA) and ionization potential (IP) of Zn complexes were also determined and devices were characterized. Zn complexes such as Zn(HPB)2, Zn(HPB)q, and Zn(phen)q were found to exhibit blue and yellow emissions with wavelengths of 455, 532, and 535 nm, respectively. On the other hand, Zn(HPB)2 and Zn(HPB)q were applied as hole-blocking materials. As a result, the OLED efficiency by using Zn(HPB)2 as a hole-blocking material was improved. In particular, the OLED property of Zn(HPB)2 was found to be better than that of Zn(HPB)q. Moreover, Zn(phen)q was used as an electron-transporting material and compared with Alq3. The performance of the device with Zn(phen)q as an electron-transporting material was improved compared with Alq3-based devices. The Zn complexes can possibly be used as hole-blocking and electron-transporting materials in OLED devices. A white emission was ultimately realized from the OLED devices using Zn-complexes as inter-layer components.
OLED-based biosensing platform with ZnO nanoparticles for enzyme immobilization
NASA Astrophysics Data System (ADS)
Cai, Yuankun; Shinar, Ruth; Shinar, Joseph
2009-08-01
Organic light-emitting diode (OLED)-based sensing platforms are attractive for photoluminescence (PL)-based monitoring of a variety of analytes. Among the promising OLED attributes for sensing applications is the thin and flexible size and design of the OLED pixel array that is used for PL excitation. To generate a compact, fielddeployable sensor, other major sensor components, such as the sensing probe and the photodetector, in addition to the thin excitation source, should be compact. To this end, the OLED-based sensing platform was tested with composite thin biosensing films, where oxidase enzymes were immobilized on ZnO nanoparticles, rather than dissolved in solution, to generate a more compact device. The analytes tested, glucose, cholesterol, and lactate, were monitored by following their oxidation reactions in the presence of oxygen and their respective oxidase enzymes. During such reactions, oxygen is consumed and its residual concentration, which is determined by the initial concentration of the above-mentioned analytes, is monitored. The sensors utilized the oxygen-sensitive dye Pt octaethylporphyrin, embedded in polystyrene. The enzymes were sandwiched between two thin ZnO layers, an approach that was found to improve the stability of the sensing probes.
Furukawa, Taro; Nakanotani, Hajime; Inoue, Munetomo; Adachi, Chihaya
2015-01-01
Recently, triplet harvesting via a thermally activated delayed fluorescence (TADF) process has been established as a realistic route for obtaining ultimate internal electroluminescence (EL) quantum efficiency in organic light-emitting diodes (OLEDs). However, the possibility that the rather long transient lifetime of the triplet excited states would reduce operational stability due to an increased chance for unwarranted chemical reactions has been a concern. Herein, we demonstrate dual enhancement of EL efficiency and operational stability in OLEDs by employing a TADF molecule as an assistant dopant and a fluorescent molecule as an end emitter. The proper combination of assistant dopant and emitter molecules realized a “one-way” rapid Förster energy transfer of singlet excitons from TADF molecules to fluorescent emitters, reducing the number of cycles of intersystem crossing (ISC) and reverse ISC in the TADF molecules and resulting in a significant enhancement of operational stability compared to OLEDs with a TADF molecule as the end emitter. In addition, we found that the presence of this rapid energy transfer significantly suppresses singlet-triplet annihilation. Using this finely-tuned rapid triplet-exciton upconversion scheme, OLED performance and lifetime was greatly improved. PMID:25673259
Active matrix organic light emitting diode (AMOLED) performance and life test results
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Lum, Alden K.; Ghosh, Amalkumar P.; Prache, Olivier; Wacyk, Ihor
2010-04-01
The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XLTM devices for use in their AMOLED microdisplays for head-worn applications. Through Research and Development programs from 2007 to 2009 with the US Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 × 1024 triad pixels) OLED microdisplay. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2007, 2008, and 2009 SPIE Defense and Security Symposia1,2,3. Life and performance tests have continued through 2009, and this data will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be desirable.
Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Kaji, Hironori; Duan, Lian
2018-02-01
Maintaining high efficiency at high brightness levels is an exigent challenge for real-world applications of thermally activated delayed fluorescent organic light-emitting diodes (TADF-OLEDs). Here, versatile indolocarbazole-isomer derivatives are developed as highly emissive emitters and ideal hosts for TADF-OLEDs to alleviate efficiency roll-off. It is observed that photophysical and electronic properties of these compounds can be well modulated by varying the indolocarbazole isomers. A photoluminescence quantum yield (η PL ) approaching unity and a maximum external quantum efficiency (EQE max ) of 25.1% are obtained for the emitter with indolo[3,2-a]carbazolyl subunit. Remarkably, record-high EQE/power efficiency of 26.2%/69.7 lm W -1 at the brightness level of 5000 cd m -2 with a voltage of only 3.74 V are also obtained using the same isomer as the host in a green TADF-OLED. It is evident that TADF hosts with high η PL values, fast reverse intersystem crossing processes, and balanced charge transport properties may open the path toward roll-off-free TADF-OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki
2010-11-01
We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.
Active matrix organic light emitting diode (AMOLED) performance and life test results
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Botkin, Michael E.; Draper, Russell S.; Coletta, Jason
2013-05-01
The U.S. Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. Through Research and Development programs from 2007 to 2012 with the U.S. Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 X 1024 with triad pixels) and WUXGA (1920 X 1200 with triad pixels) OLED microdisplays. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2012, 2011, 2010, 2009, 2008, and 2007 SPIE Defense, Security and Sensing Symposia. Life and performance tests have continued through 2013, and this data will be presented along with a comparison to previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems, where good fits are made, and where further development might be desirable.
Active matrix organic light-emitting diode (AMOLED) performance and life test results
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Ghosh, Amalkumar; Prache, Olivier; Wacyk, Ihor; Ali, Tariq; Khayrullin, Ilyas
2011-06-01
The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. Through research and development programs from 2007 to 2010 with the US Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 X 1024 triad pixels) OLED microdisplay. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2007, 2008, 2009, and 2010 SPIE Defense and Security Symposia1,2,3,4. Life and performance tests have continued through 2010, and this data will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be desirable.
Active matrix organic light emitting diode (AMOLED) performance and life test results
NASA Astrophysics Data System (ADS)
Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Draper, Russell S.; Ghosh, Amalkumar; Prache, Olivier; Wacyk, Ihor
2012-06-01
The US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to characterize the ongoing improvements in the lifetime of OLED displays. This CRADA also called for the evaluation of OLED performance as the need arises, especially when new products are developed or when a previously untested parameter needs to be understood. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications. Through Research and Development programs from 2007 to 2011 with the US Government, eMagin made additional improvements in OLED life and developed the first SXGA (1280 X 1024 triad pixels) and WUXGA (1920 X 1200) OLED microdisplays. US Army RDECOM CERDEC NVESD conducted life and performance tests on these displays, publishing results at the 2011, 2010, 2009, 2008, and 2007 SPIE Defense, Security and Sensing Symposia1,2,3,4,5. Life and performance tests have continued through 2012, and this data will be presented along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems by determining where good fits are made and where further development might be desirable.
Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph
2006-05-24
A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.
Quantitative Analysis of the Efficiency of OLEDs.
Sim, Bomi; Moon, Chang-Ki; Kim, Kwon-Hyeon; Kim, Jang-Joo
2016-12-07
We present a comprehensive model for the quantitative analysis of factors influencing the efficiency of organic light-emitting diodes (OLEDs) as a function of the current density. The model takes into account the contribution made by the charge carrier imbalance, quenching processes, and optical design loss of the device arising from various optical effects including the cavity structure, location and profile of the excitons, effective radiative quantum efficiency, and out-coupling efficiency. Quantitative analysis of the efficiency can be performed with an optical simulation using material parameters and experimental measurements of the exciton profile in the emission layer and the lifetime of the exciton as a function of the current density. This method was applied to three phosphorescent OLEDs based on a single host, mixed host, and exciplex-forming cohost. The three factors (charge carrier imbalance, quenching processes, and optical design loss) were influential in different ways, depending on the device. The proposed model can potentially be used to optimize OLED configurations on the basis of an analysis of the underlying physical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yukun; Solid-State Lighting Engineering Research Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ
Size-tunable bimetallic bowtie nanoantennas have been utilized to suppress the efficiency roll-off characteristics in organic light-emitting diodes (OLEDs) using both the numerical and experimental approaches. The resonant range can be widened by the strong dual-atomic couplings in bimetallic bowtie nanoantennas. Compared with the green OLED with conventional bowtie nanoantennas at a high current density of 800 mA/cm{sup 2}, the measured efficiency roll-off ratio of the OLED with size-modulated bowtie nanoantennas is decreased from 53.2% to 41.8%, and the measured current efficiency is enhanced by 29.9%. When the size-modulated bowtie nanoantennas are utilized in blue phosphorescent OLEDs, the experimental roll-off ratio ismore » suppressed from 43.6% to 25.9% at 250 mA/cm{sup 2}, and the measured current efficiency is also enhanced significantly. It is proposed that the efficiency roll-off suppression is mainly related to the enhanced localized surface plasmon effect, which leads to a shorter radiative lifetime.« less
Multifunction Habitat Workstation/OLED Development
NASA Technical Reports Server (NTRS)
Schumacher, Shawn; Salazar, George; Schmidt, Oron
2013-01-01
This paper gives a general outline of both a multifunction habitat workstation and the research put into an Organic Light Emitting Diode (OLED) device. It first covers the tests that the OLED device will go through to become flight ready along with reasoning. Guidelines for building an apparatus to house the display and its components are given next, with the build of such following. The three tests the OLED goes through are presented (EMI, Thermal/Vac, Radiation) along with the data recovered. The second project of a multifunction workstation is then discussed in the same pattern. Reasoning for building such a workstation with telepresence in mind is offered. Build guidelines are presented first, with the build timeline following. Building the workstation will then be shown in great detail along with accompanying photos. Once the workstation has been discussed, the versatility of its functions are given. The paper concludes with future views and concepts that can added when the time or technology presents itself.
Triarylborane-Based Materials for OLED Applications.
Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan
2017-09-13
Multidisciplinary research on organic fluorescent molecules has been attracting great interest owing to their potential applications in biomedical and material sciences. In recent years, electron deficient systems have been increasingly incorporated into fluorescent materials. Triarylboranes with the empty p orbital of their boron centres are electron deficient and can be used as strong electron acceptors in conjugated organic fluorescent materials. Moreover, their applications in optoelectronic devices, energy harvesting materials and anion sensing, due to their natural Lewis acidity and remarkable solid-state fluorescence properties, have also been investigated. Furthermore, fluorescent triarylborane-based materials have been commonly utilized as emitters and electron transporters in organic light emitting diode (OLED) applications. In this review, triarylborane-based small molecules and polymers will be surveyed, covering their structure-property relationships, intramolecular charge transfer properties and solid-state fluorescence quantum yields as functional emissive materials in OLEDs. Also, the importance of the boron atom in triarylborane compounds is emphasized to address the key issues of both fluorescent emitters and their host materials for the construction of high-performance OLEDs.
Chitnis, Dipti; Kalyani, N Thejo; Dhoble, Sanjay
2018-05-31
We report on the comprehension of novel europium activated hybrid organic Eu(dmh) 3 phen (Eu: europium, dmh: 2,6-dimethyl-3,5-heptanedione, phen: 1,10 phenanthroline) organo-metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV-vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV-vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross-section σ(λ), radiative lifetime (τ 0 ) and oscillator strength (f) were calculated from UV-vis spectra. The relative intensity ratio (R-ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light-emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert-Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid-state lighting. Copyright © 2018 John Wiley & Sons, Ltd.