Methods for suppressing isomerization of olefin metathesis products
Firth, Bruce E.; Kirk, Sharon E.
2015-10-27
A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.
Methods for suppressing isomerization of olefin metathesis products
Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.
2015-09-22
A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.
Metathesis process for preparing an alpha, omega-functionalized olefin
Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.
2010-10-12
A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.
Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
Schrodi, Yann [Agoura Hills, CA
2011-11-29
This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
Schrodi, Yann
2013-07-09
This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
Schrodi, Yann
2016-02-09
This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis
Schrodi, Yann
2015-09-22
This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.
ERIC Educational Resources Information Center
Greco, George E.
2007-01-01
An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…
Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Zhibin; Lu, Yixuan
A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact withmore » a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.« less
Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei
2018-01-01
The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a high value α-olefin product with high carbon utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Pu; Ye, Lin; Sun, Zhenyu
Industrial olefin metathesis catalysts generally suffer from low reaction rates and require harsh reaction conditions for moderate activities. This is due to their inability to prevent metathesis active sites (MAS) from aggregation and their intrinsic poor adsorption and activation of olefin molecules. Here, isolated tungstate species as single molecular MAS is immobilized inside zeolite pores by Bronsted acid sites (BAS) on the inner surface. It is demonstrated for the first time that unoccupied BAS in atomic proximity to MAS enhance olefin adsorption and greatly facilitate the formation of metallocycle intermediates in a stereospecific manner. Thus, effective cooperative catalysis takes placemore » over the BAS-MAS pair. In consequence, for the cross-metathesis of ethene and trans-2-butene to propene, under the same mild reaction conditions, the propene production rate over WOx/USY is ca. 7,300 times that over the industrial WO3/SiO2 based catalyst. A propene yield up to 79% (80% selectivity) without observable deactivation was obtained over WOx/USY for a wide range of reaction conditions.« less
Methods of refining natural oils, and methods of producing fuel compositions
Firth, Bruce E.; Kirk, Sharon E.
2015-10-27
A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.
Methods of refining natural oils and methods of producing fuel compositions
Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S
2015-11-04
A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.
Functionalized linear and cyclic polyolefins
Tuba, Robert; Grubbs, Robert H.
2018-02-13
This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.
Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis
USDA-ARS?s Scientific Manuscript database
Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...
Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z
2015-01-01
Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210
Controlled Ring-Opening Metathesis Polymerization by Molybdenum and Tungsten Alkylidene Complexes
1988-07-29
weights and low polydispersities (as low as 1.03) consistent with a living catalyst system employing 50, 100, 200, and 400 eq of monomer. The reactions are...secondary metathesis of polymer chains Bulky alkoxide ligands Wittig-like reaction Ring-opening metathesis polymerization (ROMP) Feast monomer Cyclic...olefins Retro Diels-Alder reaction Norbornene (NBE) Low temperature column chromatography Endo-,endo-5,6-dicarbomethoxynorbornene Discrete, soluble
ERIC Educational Resources Information Center
Lutz, E. F.
1986-01-01
Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)
Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert
2016-05-04
Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Refining of plant oils to chemicals by olefin metathesis.
Chikkali, Samir; Mecking, Stefan
2012-06-11
Plant oils are attractive substrates for the chemical industry. Their scope for the production of chemicals can be expanded by sophisticated catalytic conversions. Olefin metathesis is an example, which also illustrates generic issues of "biorefining" to chemicals. Utilization on a large scale requires high catalyst activities, which influences the choice of the metathesis reaction. The mixture of different fatty acids composing a technical-grade plant oil substrate gives rise to a range of products. This decisively determines possible process schemes, and potentially provides novel chemicals and intermediates not employed to date. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.
Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian
2016-08-22
Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis
NASA Astrophysics Data System (ADS)
Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel
In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.
Molybdenum chloride catalysts for Z-selective olefin metathesis reactions
NASA Astrophysics Data System (ADS)
Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.
2017-01-01
The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.
Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.
Meng, Xiangtao; Edgar, Kevin J
2015-11-05
Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nonproductive events in ring-closing metathesis using ruthenium catalysts.
Stewart, Ian C; Keitz, Benjamin K; Kuhn, Kevin M; Thomas, Renee M; Grubbs, Robert H
2010-06-30
The relative TONs of productive and nonproductive metathesis reactions of diethyl diallylmalonate are compared for eight different ruthenium-based catalysts. Nonproductive cross metathesis is proposed to involve a chain-carrying ruthenium methylidene. A second more-challenging substrate (dimethyl allylmethylallylmalonate) that forms a trisubstituted olefin product is used to further delineate the effect of catalyst structure on the relative efficiencies of these processes. A steric model is proposed to explain the observed trends.
Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis
Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; ...
2014-12-17
In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, withmore » activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.« less
Metathesis of alkanes and related reactions.
Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle
2010-02-16
The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of olefins or the selective transformation of ethylene into propylene. Alkane metathesis represents a powerful tool for making progress in a variety of areas, perhaps most notably in the petroleum and petrochemical fields. Modern civilization is currently confronting a host of problems that relate to energy production and its effects on the environment, and judicious application of alkane metathesis to the processing of fuels such as crude oil and natural gas may well afford solutions to these difficulties.
A two-color fluorogenic carbene complex for tagging olefins via metathesis reaction
NASA Astrophysics Data System (ADS)
Wirtz, Marcel; Grüter, Andreas; Heib, Florian; Huch, Volker; Zapp, Josef; Herten, Dirk-Peter; Schmitt, Michael; Jung, Gregor
2015-12-01
We describe a fluorogenic ruthenium (II) carbene complex in which the chromophore is directly connected to the metal center. The compound introduces a boron dipyrromethene (BODIPY) moiety into target double bonds by metathesis. Tagging of terminal double bonds is demonstrated on immobilized styrene units on a glass surface. We also show that two compounds with distinguishable fluorescence properties are formed in the model reaction with styrene. The outcome of the metathesis reaction is characterized by 19F-NMR, optical spectroscopy, and, finally, single-molecule trajectories. This labeling scheme, in our perception, is of particular interest in the fields of interfacial science and biorthogonal ligation in combination with super-resolution imaging.
Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.
2010-01-01
A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867
Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.
Sulake, Rohidas S; Chen, Chinpiao
2015-03-06
The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate.
Ibrahem, Ismail; Yu, Miao; Schrock, Richard R.; Hoveyda, Amir H.
2009-01-01
The first highly Z- and enantioselective class of ring-opening/cross-metathesis (ROCM) reactions is presented. Transformations are promoted in the presence of <2 mol % of chiral stereogenic-at-Mo monoaryloxide complexes, which bear an adamantylimido ligand and are prepared and used in situ. Reactions involve meso oxabicyclic substrates and afford the desired pyrans in 50–85% yield and in up to >98:<2 enantiomer ratio (er). Importantly, the desired chiral pyrans are thus obtained bearing a Z olefin either exclusively (>98:<2 Z:E) or predominantly (≥87:13 Z:E). PMID:19249833
Methods of refining and producing dibasic esters and acids from natural oil feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.
Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.
NASA Astrophysics Data System (ADS)
Gułajski, Łukasz; Grela, Karol
Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.
Methods of refining and producing dibasic esters and acids from natural oil feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Thomas E; Cohen, Steven A; Gildon, Demond L
2015-04-07
Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.
Methods of refining and producing dibasic esters and acids from natural oil feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.
2016-03-15
Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.
Z-Selective Catalytic Olefin Cross-Metathesis
Meek, Simon J.; O’Brien, Robert V.; Llaveria, Josep; Schrock, Richard R.; Hoveyda, Amir H.
2011-01-01
Alkenes are found in a great number of biologically active molecules and are employed in numerous transformations in organic chemistry. Many olefins exist as E or higher energy Z isomers. Catalytic procedures for stereoselective formation of alkenes are therefore valuable; nonetheless, methods for synthesis of 1,2-disubstituted Z olefins are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and allylic amides, employed thus far only in E-selective processes; the corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. Transformations, promoted by catalysts that contain the highly abundant and inexpensive molybdenum, are amenable to gram scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. Utility is demonstrated by syntheses of anti-oxidant C18 (plasm)-16:0 (PC), found in electrically active tissues and implicated in Alzheimer’s disease, and the potent immunostimulant KRN7000. PMID:21430774
Getty, Kendra; Delgado-Jaime, Mario Ulises; Kennepohl, Pierre
2007-12-26
Ru K-edge XAS data indicate that second generation ruthenium-based olefin metathesis precatalysts (L = N-heterocyclic carbene) possess a more electron-deficient metal center than in the corresponding first generation species (L = tricyclohexylphosphine). This surprising effect is also observed from DFT calculations and provides a simple rationale for the slow phosphine dissociation kinetics previously noted for second-generation metathesis precatalysts.
New ROMP Synthesis of Ferrocenyl Dendronized Polymers.
Liu, Xiong; Ling, Qiangjun; Zhao, Li; Qiu, Guirong; Wang, Yinghong; Song, Lianxiang; Zhang, Ying; Ruiz, Jaime; Astruc, Didier; Gu, Haibin
2017-10-01
First- and second-generation Percec-type dendronized ferrocenyl norbornene macromonomers containing, respectively, three and nine ferrocenyl termini are synthesized and polymerized by ring-opening metathesis polymerization using Grubbs' third-generation olefin metathesis catalyst with several monomer/catalyst feed ratios between 10 and 50. The rate of polymerization is highly dependent on the generation of the dendronized macromonomers, but all these ring-opening metathesis polymerization reactions are controlled, and near-quantitative monomer conversions are achieved. The numbers of ferrocenyl groups obtained are in agreement with the theoretical ones according to the cyclic voltammetry studies as determined using the Bard-Anson method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.
2012-01-01
Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680
Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis
Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.
2016-01-01
Olefin metathesis has made a significant impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is very limited. In this manuscript, we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of an in situ-generated catalyst with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents and proceed to high conversion at ambient temperature within four hours. Many alkenyl chlorides, bromides and fluorides can be obtained in up to 91 percent yield and complete Z selectivity. This method can be used to easily synthesize biologically active compounds and to perform the site- and stereoselective fluorination of other organic compounds. PMID:27008965
2014-01-01
Conspectus One of the most important challenges in catalyst design is the synthesis of stable promoters without compromising their activity. For this reason, it is important to understand the factors leading to decomposition of such catalysts, especially if side-products negatively affect the activity and selectivity of the starting complex. In this context, the understanding of termination and decomposition processes in olefin metathesis is receiving significant attention from the scientific community. For example, the decomposition of ruthenium olefin metathesis precatalysts in alcohol solutions can occur during either the catalyst synthesis or the metathesis process, and such decomposition has been found to be common for Grubbs-type precatalysts. These decomposition products are usually hydridocarbonyl complexes, which are well-known to be active in several transformations such as hydrogenation, terminal alkene isomerization, and C–H activation chemistry. The reactivity of these side products can be unwanted, and it is therefore important to understand how to avoid them and maybe also important to keep an open mind and think of ways to use these in other catalytic reactions. A showcase of these decomposition studies is reported in this Account. These reports analyze the stability of ruthenium phenylindenylidene complexes, highly active olefin metathesis precatalysts, in basic alcohol solutions. Several different decomposition processes can occur under these conditions depending on the starting complex and the alcohol used. These indenylidene-bearing metathesis complexes display a completely different behavior compared with that of other metathesis precatalysts and show an alternative competitive alcoholysis pathway, where rather than forming the expected hydrido carbonyl complexes, the indenylidene fragment is transformed into a η1-indenyl, which then rearranges to its η5-indenyl form. In particular, [RuCl(η5-(3-phenylindenylidene)(PPh3)2] has been found to be extremely active in numerous transformations (at least 20) as well as compatible with a broad range of reaction conditions, rendering it a versatile catalytic tool. It should be stated that the η5-phenyl indenyl ligand shows enhanced catalytic activity over related half-sandwich ruthenium complexes. The analogous half-sandwich (cyclopentadienyl and indenyl) ruthenium complexes show lower activity in transfer hydrogenation and allylic alcohol isomerization reactions. In addition, this catalyst allows access to new phenylindenyl ruthenium complexes, which can be achieved in a very straightforward manner and have been successfully used in catalysis. This Account provides an overview of how mechanistic insights into decomposition and stability of a well-known family of ruthenium metathesis precatalysts has resulted in a series of novel and versatile ruthenium complexes with unexpected reactivity. PMID:25264626
ERIC Educational Resources Information Center
Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.
2007-01-01
A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…
Catalyst system comprising a first catalyst system tethered to a supported catalyst
Angelici, Robert J.; Gao, Hanrong
1998-08-04
The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.
Catalyst system comprising a first catalyst system tethered to a supported catalyst
Angelici, R.J.; Gao, H.
1998-08-04
The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.
NASA Astrophysics Data System (ADS)
Edwards, Jacob T.; Merchant, Rohan R.; McClymont, Kyle S.; Knouse, Kyle W.; Qin, Tian; Malins, Lara R.; Vokits, Benjamin; Shaw, Scott A.; Bao, Deng-Hui; Wei, Fu-Liang; Zhou, Ting; Eastgate, Martin D.; Baran, Phil S.
2017-04-01
Olefin chemistry, through pericyclic reactions, polymerizations, oxidations, or reductions, has an essential role in the manipulation of organic matter. Despite its importance, olefin synthesis still relies largely on chemistry introduced more than three decades ago, with metathesis being the most recent addition. Here we describe a simple method of accessing olefins with any substitution pattern or geometry from one of the most ubiquitous and variegated building blocks of chemistry: alkyl carboxylic acids. The activating principles used in amide-bond synthesis can therefore be used, with nickel- or iron-based catalysis, to extract carbon dioxide from a carboxylic acid and economically replace it with an organozinc-derived olefin on a molar scale. We prepare more than 60 olefins across a range of substrate classes, and the ability to simplify retrosynthetic analysis is exemplified with the preparation of 16 different natural products across 10 different families.
Synthesis of interlocked molecules by olefin metathesis
NASA Astrophysics Data System (ADS)
Clark, Paul Gregory
A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic polyammonium scaffold. Diolefin polyether fragments were coordinated and "clipped" around the ammonium sites within the polymer backbone using ring-closing olefin metathesis, giving the molecular "charm bracelet". Confirmation of the interlocked nature of the product was achieved via 1H NMR spectroscopy and two-dimensional diffusion ordered NMR spectroscopy. A simple strategy for a one-pot, multi-component synthesis of polyrotaxanes using acyclic diene metathesis polymerization was developed. The polyrotaxanes were characterized by traditional 1H NMR spectroscopy as well as size exclusion chromatography, and the interlocked topology was confirmed using two-dimension diffusion-ordered NMR spectroscopy. The dynamic, self-correcting nature of the ADMET polymerization was also explored through the equilibration of a capped polyammonium polymer in the presence of dibenzo-24-crown-8 ether and olefin metathesis catalysts. The efficiency and ease with which these mechanically interlocked macromolecules can be assembled should facilitate rapid modulation to achieve versatile polyrotaxane architectures. Flexible, switchable [c2]daisy-chain dimers (DCDs) were synthesized, where the macromer ammonium binding site was adjacent to the crown-type recognition structure and separated from the cap by an alkyl chain. A DCD of this topology is expected to have an extended structure in the bound conformation (when the ammonium was coordinated to the crown). Several different macromer candidates were designed to allow access to DCDs with flexible alkyl chains between the ammonium binding site and the cap, and a number of synthetic routes were explored in an effort to access these challenging materials. While the first generation DCD structure proved to be unstable due to a labile ester linkage, work is continuing toward the development of several cap structures in an effort to replace the ester linkage with an ether linkage, which, in the second generation model systems, has proven much more stable to the acidic and basic conditions necessary to induce switching of the dimeric architecture. One of the efforts in our lab is directed at the synthesis of 18F-labeled nanoparticles to be used as tumor imaging agents in positron emission tomography. We have been working to optimize fluorine incorporation while minimizing NP crosslinking. Because of evidence of NP side-reactions with the potassium carbonate base, we have begun to use potassium benzoate solid-state beads. To analyze the fluorinated NPs, various sorbents were explored. It was found that silica sorbents rapidly reacted and bound to the NPs, while the NPs remained unreactive and mobile on alumina. Further analysis of the NPs has been accomplished using 2D-DOSY NMR spectroscopy. Future work with the NPs will involve a systematic evaluation of the role of water on the extent of fluorination, as well as functionalization of the NPs with Cy5.5 dye for use in studies on eyes to be done in collaboration with researchers at the Mayo Clinic.
Mutlu, Hatice; Montero de Espinosa, Lucas; Türünç, Oĝuz
2010-01-01
Summary We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET) polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS. PMID:21160555
Kinetically E-selective macrocyclic ring-closing metathesis
NASA Astrophysics Data System (ADS)
Shen, Xiao; Nguyen, Thach T.; Koh, Ming Joo; Xu, Dongmin; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.
2017-01-01
Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization—a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib—a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis—was prepared by RCM carried out at a substrate concentration 20 times greater than when a ruthenium carbene was used.
Smith, Catherine M; O'Doherty, George A
2003-05-29
[reaction: see text] The enantioselective syntheses of three natural products from Cryptocarya latifolia have been achieved in 13-15 steps from ethyl sorbate. The route relies upon an enantio- and regioselective Sharpless dihydroxylation and a palladium-catalyzed reduction to establish the absolute stereochemistry. The route also relies upon a highly (E)-selective olefin cross-metathesis reaction to form trans-delta-hydroxy-1-enoates. The resulting delta-hydroxy-1-enoates were subsequently converted into cryptocarya triacetate, cryptocaryolone, and cryptocaryolone diacetate.
Asymmetric Total Synthesis of (-)-(3 R)-Inthomycin C.
Balcells, Sandra; Haughey, Maxwell B; Walker, Johannes C L; Josa-Culleré, Laia; Towers, Christopher; Donohoe, Timothy J
2018-06-04
A short (10 step) and efficient (15% overall yield) synthesis of the natural product (-)-(3 R)-inthomycin C is reported. The key steps comprise three C-C bond-forming reactions: (i) a vinylogous Mukaiyama aldol, (ii) an olefin cross-metathesis reaction, and (iii) an asymmetric Mukaiyama-Kiyooka aldol. This route is notable for its brevity and has the advantage of lacking stoichiometric tin-promoted cross-coupling reactions present in previous approaches. Initial investigations on the biological activity of (-)-(3 R)-inthomycin C and structural analogues on human cancer cell lines are also described for the first time.
Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis**
Herbert, Myles B.; Marx, Vanessa M.; Pederson, Richard L.; Grubbs, Robert H.
2013-01-01
The shortest synthetic routes to nine cis-pheromones containing a variety of functionality, including an unconjugated (E,Z) diene, are reported. These lepidopteran pheromones are used extensively for pest control, and were easily prepared using ruthenium-based Z-selective cross metathesis, highlighting the advantages of this method over less efficient ways to form Z-olefins. Important insight into the mechanism of Z-selective metathesis was uncovered during experimentation and subsequently explored. PMID:23055437
Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis.
Kim, Young-Woo; Grossmann, Tom N; Verdine, Gregory L
2011-06-01
This protocol provides a detailed procedure for the preparation of stapled α-helical peptides, which have proven their potential as useful molecular probes and as next-generation therapeutics. Two crucial features of this protocol are (i) the construction of peptide substrates containing hindered α-methyl, α-alkenyl amino acids and (ii) the ring-closing olefin metathesis (RCM) of the resulting resin-bound peptide substrates. The stapling systems described in this protocol, namely bridging one or two turns of an α-helix, are highly adaptable to most peptide sequences, resulting in favorable RCM kinetics, helix stabilization and promotion of cellular uptake.
Markley, Jana L; Maitra, Soma; Hanson, Paul R
2016-02-05
A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility.
Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts.
Bailey, Gwendolyn A; Foscato, Marco; Higman, Carolyn S; Day, Craig S; Jensen, Vidar R; Fogg, Deryn E
2018-06-06
The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl 2 (L)(═CHC 6 H 4 - o-O i Pr); the Grela catalyst nG (a derivative of HII with a nitro group para to O i Pr); the Piers catalyst PII, [RuCl 2 (L)(═CHPCy 3 )]OTf; the third-generation Grubbs catalyst GIII, RuCl 2 (L)(py) 2 (═CHPh); and dianiline catalyst DA, RuCl 2 (L)( o-dianiline)(═CHPh), in all of which L = H 2 IMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl 2 (H 2 IMes)(κ 2 -C 3 H 6 ), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25-40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl 2 (H 2 IMes)(═CH 2 ), Ru-1. Direct evidence for methylidene coupling is presented, via the controlled decomposition of transiently stabilized adducts of Ru-1, RuCl 2 (H 2 IMes)L n (═CH 2 ) (L n = py n' ; n' = 1, 2, or o-dianiline). These adducts were synthesized by treating in situ-generated metallacyclobutane Ru-2 with pyridine or o-dianiline, and were isolated by precipitating at low temperature (-116 or -78 °C, respectively). On warming, both undergo methylidene coupling, liberating ethylene and forming RuCl 2 (H 2 IMes)L n . A mechanism is proposed based on kinetic studies and molecular-level computational analysis. Bimolecular coupling emerges as an important contributor to the instability of Ru-1, and a potentially major pathway for decomposition of fast-initiating, phosphine-free metathesis catalysts.
Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors
2017-01-01
Metallacyclobutanes are an important class of organometallic intermediates, due to their role in olefin metathesis. They can have either planar or puckered rings associated with characteristic chemical and physical properties. Metathesis active metallacyclobutanes have short M–Cα/α′ and M···Cβ distances, long Cα/α′–Cβ bond length, and isotropic 13C chemical shifts for both early d0 and late d4 transition metal compounds for the α- and β-carbons appearing at ca. 100 and 0 ppm, respectively. Metallacyclobutanes that do not show metathesis activity have 13C chemical shifts of the α- and β-carbons at typically 40 and 30 ppm, respectively, for d0 systems, with upfield shifts to ca. −30 ppm for the α-carbon of metallacycles with higher dn electron counts (n = 2 and 6). Measurements of the chemical shift tensor by solid-state NMR combined with an orbital (natural chemical shift, NCS) analysis of its principal components (δ11 ≥ δ22 ≥ δ33) with two-component calculations show that the specific chemical shift of metathesis active metallacyclobutanes originates from a low-lying empty orbital lying in the plane of the metallacyclobutane with local π*(M–Cα/α′) character. Thus, in the metathesis active metallacyclobutanes, the α-carbons retain some residual alkylidene character, while their β-carbon is shielded, especially in the direction perpendicular to the ring. Overall, the chemical shift tensors directly provide information on the predictive value about the ability of metallacyclobutanes to be olefin metathesis intermediates. PMID:28776018
NASA Astrophysics Data System (ADS)
Mauldin, Timothy C.
Modern society's immense and ill-fated reliance on petrochemical-based polymeric materials will likely necessitate a shift in polymer production paradigms in the near future. The work presented herein attempts to address this issue via a two-pronged approach. First, efforts to improve the duration of composite materials by incorporation of a self-healing function are discussed, the fruitful application of which can potentially reduce or eliminate the massive carbon footprints associated with the repair/replacement of damaged materials. And second, polymeric materials derived predominately from natural and renewable feedstock---namely vegetable oils---are developed. Early microcapsule-based self-healing materials utilized dicyclopentadiene-filled microcapsules and Grubbs' olefin metathesis catalyst to initiate the healing mechanism. However, the patent-protected catalyst, made from the precious metal ruthenium and sometimes costly ligands, will likely never be inexpensive and therefore limit large-scale applications. Hence, clever approaches to reduce the healing catalyst loading in self-healing polymers are of great interest. To this end, our efforts have revolved around solving the problem of the relatively inefficient use of Grubbs' catalyst during the healing mechanism. Given that the mismatch of the olefin metathesis polymerization and Grubbs' catalyst dissolution (in monomer) kinetics is a known cause of this inefficient use of the catalyst, we attempted to tune the "latency" (i.e. pot life) of the olefin metathesis polymerization to ensure more complete dissolution of catalyst in monomer. In an alternative approach to improving efficient catalyst dissolution, we developed a simple model to predict relative dissolution rates of Grubbs' catalyst in a small library of healing monomers. This model was shown experimentally to be able to aid in the selection of, for example, reactive monomer additives that can yield impressive improvements in catalyst dissolution at small loadings. Furthermore, we have recently developed a novel rheokinetic technique designed to mimic the self-healing mechanism. This new analytical technique allows for collection of copious amounts of information related to the self-healing mechanism (e.g. healing kinetics, rheological and mechanical changes of polymerizing healing agents, adhesive interactions between healing agent and polymer matrix, etc.) to be extracted from a single experiment. New polymers derived from renewable feeds were synthesized via olefin metathesis polymerization techniques, which are ideally suited to react with the unactivated olefins (i.e. non-styrenic, non-acrylated, non-conjugated, etc.) prominent in most vegetable oils. Various vegetable oils were modified to contain norbornenyl functional groups via the high-pressure Diels-Alder addition of cyclopentadiene to their olefins to yield ROMP-reactive monomers. These monomers, polymerized in the presence of Grubbs' catalyst and the occasional comonomer, were able to yield highly crosslinked thermosets with ambient temperature storage moduli, glass transition temperatures and decomposition temperatures comparable to their currently-used, petrochemical-based counterparts. Other research thrusts in this area have focused on the development of renewable thermoplastic polymers. Vegetable oils were chemically modified to yield a series of alpha,o-dienes, from which polymers were formed via acyclic diene metathesis (ADMET). The resulting polymers were shown to have unique material properties, comparable to that of other biopolyesters (poly(lactic acid), poly(glycolides), poly(caprolactones), etc.) and common, petrochemical-derived polyesters.
Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.
2010-01-01
(eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werkema, Evan; Yahia, Ahmed; Maron, Laurent
2010-04-06
Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with themore » starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.« less
Schmidt, Bernd; Kunz, Oliver
2013-01-01
Starting from the conveniently available ex-chiral pool building block (R,R)-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i) a site-selective cross metathesis, (ii) a highly diastereoselective extended tethered RCM to furnish a (Z,E)-configured dienyl carboxylic acid and (iii) a Ru-lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.
Metathesis-mediated synthesis of (R)-10-methyl-2-tridecanone, the southern corn rootworm pheromone.
Shikichi, Yasumasa; Mori, Kenji
2012-01-01
(R)-10-Methyl-2-tridecanone, the female sex pheromone of the southern corn rootworm (Diabrotica undecimpunctata howardi Barber), was synthesized in 9 steps from methyl (S)-3-hydroxy-2-methylpropanoate in a 15.7% overall yield. Olefin cross metathesis between (R)-6-methyl-1-nonene and 5-hexen-2-one employing Grubbs' first-generation catalyst was the key step of the synthesis.
Toward chemical propulsion: synthesis of ROMP-propelled nanocars.
Godoy, Jazmin; Vives, Guillaume; Tour, James M
2011-01-25
The synthesis and ring-opening metathesis polymerization (ROMP) activity of two nanocars functionalized with an olefin metathesis catalyst is reported. The nanocars were attached to a Hoveyda-Grubbs first- or second-generation metathesis catalyst via a benzylidene moiety. The catalytic activity of these nanocars toward ROMP of 1,5-cyclooctadiene was similar to that of their parent catalysts. The activity of the Hoveyda-Grubbs first-generation catalyst-functionalized nanocar was further tested with polymerization of norbornene. Hence, the prospect is heightened for a ROMP process to propel nanocars across a surface by providing the translational force.
Process for the synthesis of unsaturated alcohols
Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon
2007-02-13
A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.
Some current problems in oxidation kinetics
NASA Technical Reports Server (NTRS)
Benson, S. W.
1972-01-01
Experimental data in low temperature and high temperature oxidations are examined from the point of view of reported quantitative inconsistencies. Activation energies for tBuO2 metathesis reactions with alkanes appear to be 7 kcal/mole higher than for comparable reactions of HO2. Related isomerization reactions are examined in the light of these differences without reaching any simple conclusions. The Russell mechanism for a 6-membered, cyclic, transition state for termination of primary and secondary alkyl peroxy radicals is shown to be either inconsistent with thermochemical data, or else unique to solution reactions. Addition reactions of O3 with olefins and acetylenes are shown thermochemically to have the possibility of following concerted and biradical pathways, respectively. Recent data showing strong inhibition by PbO coated surfaces of both oxidation and pyrolysis of i-C4H10 are examined in terms of mechanism.
Méndez, Luciana; Poeylaut-Palena, Andrés A; Mata, Ernesto G
2018-05-16
The application of the reagent-based diversification strategy for generation of libraries of biologically promising β-lactam derivatives is described. Key features are the versatility of the linker used and the cross-metathesis functionalization at the cleavage step. From an immobilized primary library, diversity was expanded by applying different cleavage conditions, leading to a series of cholesterol absorption inhibitor analogues together with interesting hybrid compounds through incorporation of a chalcone moiety.
Recent advances in heterobimetallic catalysis across a "transition metal-tin" motif.
Das, Debjit; Mohapatra, Swapna Sarita; Roy, Sujit
2015-06-07
Heterobimetallic catalysts, bearing a metal-metal bond between a transition metal (TM) and a tin atom, are very promising due to their ability in mediating a wide variety of organic transformations. Indeed the utilization of such catalysts is a challenging and evolving area in the field of homogeneous catalysis. Catalysis across a 'TM-Sn' motif is an emerging area in the broader domain of multimetallic catalysis. The present review apprises the chemists' community of the past, present and future scope of this versatile catalytic motif. The TM-Sn catalyzed reactions presented include, among others, Friedel-Crafts alkylation, carbonylation, polymerization, cyclization, olefin metathesis, Heck coupling, hydroarylation Michael addition and tandem coupling. The mechanistic aspects of the reactions have been highlighted as well.
Directed evolution of artificial metalloenzymes for in vivo metathesis
NASA Astrophysics Data System (ADS)
Jeschek, Markus; Reuter, Raphael; Heinisch, Tillmann; Trindler, Christian; Klehr, Juliane; Panke, Sven; Ward, Thomas R.
2016-09-01
The field of biocatalysis has advanced from harnessing natural enzymes to using directed evolution to obtain new biocatalysts with tailor-made functions. Several tools have recently been developed to expand the natural enzymatic repertoire with abiotic reactions. For example, artificial metalloenzymes, which combine the versatile reaction scope of transition metals with the beneficial catalytic features of enzymes, offer an attractive means to engineer new reactions. Three complementary strategies exist: repurposing natural metalloenzymes for abiotic transformations; in silico metalloenzyme (re-)design; and incorporation of abiotic cofactors into proteins. The third strategy offers the opportunity to design a wide variety of artificial metalloenzymes for non-natural reactions. However, many metal cofactors are inhibited by cellular components and therefore require purification of the scaffold protein. This limits the throughput of genetic optimization schemes applied to artificial metalloenzymes and their applicability in vivo to expand natural metabolism. Here we report the compartmentalization and in vivo evolution of an artificial metalloenzyme for olefin metathesis, which represents an archetypal organometallic reaction without equivalent in nature. Building on previous work on an artificial metallohydrolase, we exploit the periplasm of Escherichia coli as a reaction compartment for the ‘metathase’ because it offers an auspicious environment for artificial metalloenzymes, mainly owing to low concentrations of inhibitors such as glutathione, which has recently been identified as a major inhibitor. This strategy facilitated the assembly of a functional metathase in vivo and its directed evolution with substantially increased throughput compared to conventional approaches that rely on purified protein variants. The evolved metathase compares favourably with commercial catalysts, shows activity for different metathesis substrates and can be further evolved in different directions by adjusting the workflow. Our results represent the systematic implementation and evolution of an artificial metalloenzyme that catalyses an abiotic reaction in vivo, with potential applications in, for example, non-natural metabolism.
Methods for the synthesis of olefins and derivatives
Burk, Mark J; Pharkya, Priti; Van Dien, Stephen J; Burgard, Anthony P; Schilling, Christophe H
2013-06-04
The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.
Methods for the synthesis of olefins and derivatives
Burk, Mark J [San Diego, CA; Pharkya, Priti [San Diego, CA; Van Dien, Stephen J [Encinitas, CA; Burgard, Anthony P [Bellefonte, PA; Schilling, Christophe H [San Diego, CA
2011-09-27
The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.
Methods for synthesis of olefins and derivatives
Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.
2016-06-14
The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.
NASA Astrophysics Data System (ADS)
Śliwa, Paweł; Handzlik, Jarosław
2010-06-01
Performance of 31 DFT methods in thermochemistry of olefin metathesis involving the model catalyst (PH 3) 2(Cl) 2Ru dbnd CH 2 is studied using the CCSD(T) reference energies. The best methods are M06, ωB97X-D and PBE0, followed by MPW1B95, LC-ωPBE, M05-2X and B1B95. Among 20 functionals tested in reproduction of experimental PCy 3 dissociation energy for the Grubbs catalyst (H 2IMes)(PCy 3)(Cl) 2Ru dbnd CHPh, the M06-class and M05-2X methods are most accurate. ωB97X-D overestimates the dissociation energy, whereas MPW1B95, LC-ωPBE, PBE0 and B1B95 underestimate it, similarly to other methods, which give larger errors. LC-ωPBE, B1B95, MPW1B95 and PBE0 provide the best geometries.
Activating catalysts with mechanical force.
Piermattei, Alessio; Karthikeyan, S; Sijbesma, Rint P
2009-05-01
Homogeneously catalysed reactions can be 'switched on' by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to activate latent catalysts by mechanically breaking bonds between a metal and one of its ligands. We have found that silver(I) complexes of polymer-functionalized N-heterocyclic carbenes, which are latent organocatalysts, catalyse a transesterification reaction when exposed to ultrasound in solution. Furthermore, ultrasonic activation of a ruthenium biscarbene complex with appended polymer chains results in catalysis of olefin metathesis reactions. In each case, the catalytic activity results from ligand dissociation, brought about by transfer of mechanical forces from the polymeric substituents to the coordination bond. Mechanochemical catalyst activation has potential applications in transduction and amplification of mechanical signals, and mechanically initiated polymerizations hold promise as a novel repair mechanism in self-healing materials.
Methods of making organic compounds by metathesis
Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John
2015-09-01
Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
NASA Astrophysics Data System (ADS)
Mazar, Mark Nickolaus
With increasing demand for chemicals and fuels, and finite traditional crude oil resources, there is a growing need to invent, establish, or optimize chemical processes that convert gasifiable carbon-based feedstocks (e.g., coal, natural gas, oil sands, or biomass) into the needed final products. Catalysis is central to almost every industrial chemical process, including alkane metathesis (AM) and the methanol-to-hydrocarbons (MTH) process, which represent final steps in a sequence of hydrocarbon conversion reactions. An in depth understanding of AM and MTH is essential to the selective production of the desired end products. In this dissertation, ab initio density functional theory simulations provide unique mechanistic and thermodynamic insight of specific elementary steps involved in AM and MTH as performed on zeolite supports. Zeolites have been employed throughout the petroleum industry because of their ability to perform acid-catalyzed reactions (e.g., cracking or MTH). The crystalline structure of zeolites imparts regular microporous networks and, in turn, the selective passage of molecules based on shape and functionality. Many different elements can be grafted onto or substituted into zeolites, resulting in a broad range of catalytic behavior. However, due to the variety of competing and secondary reactions that occur at experimental conditions, it is often difficult to extract quantitative information regarding individual elementary steps. ab initio calculations can be particularly useful for this purpose. Alkane metathesis (i.e., the molecular redistribution or chain length averaging of alkanes) is typically performed by transition metal hydrides on amorphous alumina or silica supports. In Chapter 3, the feasibility of AM in zeolites is assessed by using a grafted Ta-hydride complex to explore the full catalytic cycle in the self-metathesis of ethane. The decomposition of a Ta-metallacyclobutane reaction intermediate that forms during olefin metathesis is responsible for the largest activation energy of the catalytic cycle. This assessment is similar to the findings of alkane metathesis studies on alumina/silica supports and indicates that the entire AM cycle can be performed in zeolites by isolated single-atom transition metal hydrides. Performed over acid form zeolites, MTH is used in the conversion of methanol into a broad range of hydrocarbons, including alkenes, alkanes, and aromatics. For reasons that are not yet rigorously quantified, product selectivities vary dramatically based on the choice of catalyst and reaction conditions. The methylation of species containing double bonds (i.e., co-catalysts) is central to the overall process. Distinct structure-function relationships were found with respect to the elementary steps in the methylation and beta-scission of olefins. In Chapter 4, the role of zeolite topology in the step-wise methylation of ethene by surface methoxides is investigated. Elementary steps are studied across multiple frameworks (i.e., BEA, CHA, FER, MFI, and MOR) constituting a wide variety of confinement environments. The reaction of surface methoxides with ethene is found to require a transition state containing a primary carbocation. The barrier height is found to decrease nearly monotonically with respect to the degree of dispersion interactions stabilizing the primary carbocationic species in the transition state. In addition, quantification of the ``local'' dispersion energy indicates that confinement effects can not be simply correlated to pore size. The beta-scission of olefins plays an important role in the product selectivities of many important chemical processes, including MTH. In Chapter 5, beta-scission modes involving C6 and C8 isomers are investigated at a single, isolated Bronsted acid site within H-ZSM-5. We find that the relative enthalpic barriers of beta-scission elementary steps can be rationalized by the substitution order of the two different carbocationic carbon atoms that are present in the reactant (C+) and transition states (betaC). In fact, the increase in charge required by the betaC atom to go from the physi/chemi-sorbed reactant state to the beta-scission transition state (+0.23e-0.33e) is found to correlate almost linearly with the intrinsic activation energy (89-233 kJ mol-1). The charge of the betaC atom depends, to a large extent, on the substitution order of both the C+ and betaC atoms and, therefore, each beta-scission mode is a sub-category onto itself. Isomerization reactions, which are fast with respect to beta-scission, enable reactant hydrocarbons to explore and find low barrier beta-scission pathways. Selectivities predicted on the basis of the relative barrier heights of beta-scission modes accessible to C6 and C8 species indicate general agreement with experimental observations.
Lu, Yongshang; Larock, Richard C
2009-01-01
Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.
Berrocal, José Augusto; Nieuwenhuizen, Marko M L; Mandolini, Luigi; Meijer, E W; Di Stefano, Stefano
2014-08-28
Olefin cross-metathesis of diluted dichloromethane solutions (≤0.15 M) of the 28-membered macrocyclic alkene C1, featuring a 1,10-phenanthroline moiety in the backbone, as well as of catenand 1, composed of two identical interlocked C1 units, generates families of noninterlocked oligomers Ci. The composition of the libraries is strongly dependent on the monomer concentration, but independent of whether C1 or 1 is used as feedstock, as expected for truly equilibrated systems. Accordingly, the limiting value 0.022 M approached by the equilibrium concentration of C1 when the total monomer concentration approaches the critical value, as predicted by the Jacobson-Stockmayer theory, provides a reliable estimate of the thermodynamically effective molarity. Catenand 1 behaves as a virtual component of the dynamic libraries, in that there is no detectable trace of its presence in the equilibrated mixtures, but becomes the major component - in the form of its copper(I) complex - when olefin cross-metathesis is carried out in the presence of a copper(I) salt.
Cross enyne metathesis of para-substituted styrenes: a kinetic study of enyne metathesis.
Giessert, Anthony J; Diver, Steven T
2005-01-20
[Reaction: see text] The intermolecular enyne metathesis between alkynes and styrene derivatives was developed to study electronic effects in enyne metathesis. A Hammett plot for the overall reaction, catalyst initiation and vinyl carbene turnover was determined with the second generation Grubbs ruthenium carbene catalyst.
Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.
2017-01-01
Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908
Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J
2017-06-01
Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.
Catalytic coupling of sp2- and sp-hybridized carbon-hydrogen bonds with vinylmetalloid compounds.
Marciniec, Bogdan
2007-10-01
In the Account given herein, it has been shown that silylative coupling of olefins, well-recognized as a new catalytic route for the activation of double bond C-H bond of olefins and double bond C-Si bond of vinylsilicon compounds with ethylene elimination, can be extended over both other vinylmetalloid derivatives (double bond C-E) (where E = Ge, B, and others) as well as the activation of triple bond C-H, double bond C aryl-H, and -O-H bond of alcohols and silanols. This general transformation is catalyzed by transition-metal complexes (mainly Ru and Rh) containing or initiating TM-H and/or TM-E bonds (inorganometallics). This new general catalytic route for the activation of double bond C-H and triple bond C-H as well as double bond C-E bonds called metallative coupling or trans-metalation (cross-coupling, ring-closing, and polycondensation) constitutes an efficient method (complementary to metathesis) for stereo- and regioselective synthesis of a variety of molecular and macromolecular compounds of vinyl-E (E = Si, B, and Ge) and ethynyl-E (E = Si and Ge) functionality, also potent organometallic reagents for efficient synthesis of highly pi-conjugated organic compounds. The mechanisms of the catalysis of this deethenative metalation have been supported by equimolar reactions of TM-H and/or TM-E with initial substances and reactions with deuterium-labeled reagents.
Guron, Marta; Wei, Xiaolan; Carroll, Patrick J; Sneddon, Larry G
2010-07-05
The ruthenium-catalyzed metathesis reactions of dialkenyl-substituted ortho- and meta-carboranes provide excellent routes to both cyclic-substituted o-carboranes and new types of main-chain m-carborane polymers. The adjacent positions of the two olefins in the 1,2-(alkenyl)(2)-o-carboranes strongly favor the formation of ring-closed (RCM) products with the reactions of 1,2-(CH(2)=CHCH(2))(2)-1,2-C(2)B(10)H(10) (1), 1,2-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,2-C(2)B(10)H(10) (2), 1,2-(CH(2)=CHSiMe(2))(2)-1,2-C(2)B(10)H(10) (3), 1,2-(CH(2)=CHCH(2)SiMe(2))(2)-1,2-C(2)B(10)H(10) (4), and 1,2-[CH(2)=CH(CH(2))(4)SiMe(2)](2)-1,2-C(2)B(10)H(10) (5) affording 1,2-(-CH(2)CH=CHCH(2)-)-C(2)B(10)H(10) (10), 1,2-[-CH(2)(CH(2))(3)CH=CH(CH(2))(3)CH(2)-]-1,2-C(2)B(10)H(10) (11), 1,2-[-SiMe(2)CH=CHSiMe(2)-]-1,2-C(2)B(10)H(10) (12), 1,2-[-SiMe(2)CH(2)CH=CHCH(2)SMe(2)-]-C(2)B(10)H(10) (13), and 1,2-[-SiMe(2)(CH(2))(4)CH=CH(CH(2))(4)SiMe(2)-]-C(2)B(10)H(10) (14), respectively, in 72-97% yields. On the other hand, the reaction of 1,2-(CH(2)-CHCH(2)OC(=O))(2)-1,2-C(2)B(10)H(10) (6) gave cyclo-[1,2-(1',8'-C(=O)OCH(2)CH=CHCH(2)OC(=O))-1,2-C(2)B(10)H(10)](2) (15a) and polymer 15b resulting from intermolecular metathesis reactions. The nonadjacent positions of the alkenyl groups in the 1,7-(alkenyl)(2)-m-carboranes, 1,7-(CH(2)=CHCH(2))(2)-1,7-C(2)B(10)H(10) (7), 1,7-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,7-C(2)B(10)H(10) (8), and 1,7-(CH(2)=CHCH(2)SiMe(2))(2)-1,7-C(2)B(10)H(10) (9), disfavor the formation of RCM products, and in these cases, acyclic diene metathesis polymerizations (ADMET) produced new types of main chain m-carborane polymers. The structures of 3, 9, 11, 12, 13, and 15a were crystallographically confirmed.
Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.
2016-07-05
Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.
A tandem cross-metathesis/semipinacol rearrangement reaction.
Plummer, Christopher W; Soheili, Arash; Leighton, James L
2012-05-18
An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.
Synthesis of 5/7-, 5/8- and 5/9-bicyclic lactam templates as constraints for external beta-turns.
Duggan, Heather M E; Hitchcock, Peter B; Young, Douglas W
2005-06-21
The 5/7-, 5/8- and 5/9-bicyclic lactams 3, 17, 5 and 6 have been synthesised as single diastereoisomers by a route involving ring closing olefin metathesis. The X-ray crystal structure of the amino acid hydrochloride has been carried out and compared to that of the saturated external beta-turn constraint 18.
Hong, Benke; Hu, Dachao; Wu, Jinbao; Zhang, Jing; Li, Houhua; Pan, Yingming; Lei, Xiaoguang
2017-07-04
We report herein our synthetic efforts towards the divergent syntheses of (-)-huperzine Q (1), (+)-lycopladine B (2), (+)-lycopladine C (3), and (-)-lycopladine D (4). The 10-step total synthesis of (-)-huperzine Q (1) and the first total syntheses of (+)-lycopladines B (2) and C (3) were accomplished through a series of cascade reactions. Our approach involved a Michael addition/aldol/intramolecular C-alkylation sequence to forge the 6/9 spirocycle ring, and this was followed by an ethylene-accelerated carbonyl-olefin metathesis to construct the common 6/5/9 ring system. Finally, late-stage enamine bromofunctionalization enabled us to access (-)-huperzine Q (1), (+)-lycopladine B (2), and (+)-lycopladine C (3), and a tandem C4-epimerization/retro-Claisen condensation furnished (-)-4-epi-lycopladine D (63). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Samantaray, Manoja K; Kavitake, Santosh; Morlanés, Natalia; Abou-Hamad, Edy; Hamieh, Ali; Dey, Raju; Basset, Jean-Marie
2017-03-08
Two compatible organometallic complexes, W(Me) 6 (1) and TiNp 4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO 2-700 ) to synthesize the well-defined bimetallic precatalyst [(≡Si-O-)W(Me) 5 (≡Si-O-)Ti(Np) 3 ] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in 1 H- 1 H multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(≡Si-O-)W(Me) 5 ] (3), with a TON of 98, for propane metathesis at 150 °C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by β-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 °C) using a well-defined bimetallic system prepared via the SOMC approach.
Asymmetric Synthesis of Apratoxin E.
Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang
2016-10-21
An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.
Rix, Diane; Caïjo, Fréderic; Laurent, Isabelle; Gulajski, Lukasz; Grela, Karol; Mauduit, Marc
2007-09-28
Whereas the boomerang ligand of Hoveyda-Grubbs pre-catalysts can be modified by attachment of a pyridinium tag to its benzylidene moiety, a precise adjustment of the length of the spacer allows the optimum balance to be reached between the activity of the catalyst and its recoverability, exceeding 98% after 6 catalytic runs in the best case.
Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting
2006-08-01
aryl iodide to the Grignard reagent . Treatment of the magnesium compound with allyl bromide and CuCN·2LiCl afforded benzoate 4-11, which was then...cyclization of a linear peptide by conventional coupling agents to form a new amide bond (Scheme 1-12)36,44 Some common reagents are...dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), and expensive reagents such as HATU or PyBroP, which are more efficient.44 Racemization of the chiral
Alkene metathesis: the search for better catalysts.
Deshmukh, Prashant H; Blechert, Siegfried
2007-06-28
Alkene metathesis catalyst development has made significant progress over recent years. Research in metathesis catalyst design has endeavoured to tackle three key issues: those of (i) catalyst efficiency and activity, (ii) substrate scope and selectivity--particularly stereoselective metathesis reactions--and (iii) the minimization of metal impurities and catalyst recycling. This article describes a brief history of metathesis catalyst development, followed by a survey of more recent research, with a particular emphasis on ruthenium catalysts.
Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong
2017-06-01
Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.
Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier
2004-03-19
Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.
Ilies, Laurean; Asako, Sobi; Nakamura, Eiichi
2011-05-25
The reaction of an aryl Grignard reagent with a cyclic or acyclic olefin possessing a directing group such as pyridine or imine results in the stereospecific substitution of the olefinic C-H bond syn to the directing group. The reaction takes place smoothly and without isomerization of the product olefin in the presence of a mild oxidant (1,2-dichloro-2-methylpropane) and an aromatic cosolvent. Several lines of evidence suggest that the reaction proceeds via iron-catalyzed olefinic C-H bond activation rather than an oxidative Mizoroki-Heck-type reaction.
Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew
2009-07-07
A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring.
Shoji, Takao; Kim, Shokaku; Chiba, Kazuhiro
2017-03-27
Azanucleosides, in which the 4'-oxygen atom has been replaced with a nitrogen atom, have drawn much attention owing to their anticancer and antivirus activity, and tolerance towards nucleases. However, the traditional synthetic strategy requires multiple steps and harsh conditions, thereby limiting the structural and functional diversity of the products. Herein we describe the synthesis of azanucleosides by an electrochemical reaction in a lithium perchlorate-nitroethane medium, followed by postmodification at the 4'-N position. N-Acryloyl prolinol derivatives were converted into azanucleosides by anodic activation of the N-α-C-H bond. Moreover, the use of nitroethane instead of nitromethane lowered the oxidation potential of the N-acryloyl prolinols and increased the Faradic yield. The prepared azanucleosides were efficiently functionalized at the 4'-N-acryloyl group with a lipophilic alkanethiol and a fluorescent dye by conjugate addition and olefin cross-metathesis, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Timothy A; Tupy, Michael J; Abraham, Timothy W
A wax comprises a metathesis product and/or a product that resembles, at least in part, a product which may be formed from a metathesis reaction. The wax may be used to form articles for example, candles (container candles, votive candles, and/or a pillar candles), crayons, fire logs or tarts. The wax commonly includes other components in addition to the metathesis product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Timothy A.; Tupy, Michael J.; Abraham, Timothy W.
A wax comprises a metathesis product and/or a product that resembles, at least in part, a product which may be formed from a metathesis reaction. The wax may be used to form articles, for example, candles (container candles, votive candles, and/or a pillar candles), crayons, fire logs, or tarts. The wax commonly includes other components in addition to the metathesis product.
Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands
Pribisko, Melanie A.; Ahmed, Tonia S.; Grubbs, Robert H.
2014-01-01
Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer. PMID:25484484
Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands.
Pribisko, Melanie A; Ahmed, Tonia S; Grubbs, Robert H
2014-12-14
Two new Ru-based metathesis catalysts, 3 and 4 , have been synthesized for the purpose of comparing their catalytic properties to those of their cis -selective nitrate analogues, 1 and 2 . Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2 , they maintained high cis -selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis -selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disselkamp, Robert S.; Denslow, Kayte M.; Hart, Todd R.
We have studied the effect of cavitating ultrasound on the heterogeneous aqueous hydrogenation of cis-2-buten-1-ol (C4 olefin) and cis-2-penten-1-ol (C5 olefin) on Pd-black to form the trans-olefins (trans-2-buten-1-ol and trans-2-penten-1-ol) and saturated alcohols (1-butanol and 1-pentanol, respectively). Silent (and magnetically stirred) experiments served as control experiments. As described in an earlier publication by our group, we have added an inert dopant, 1-propanol, in the reaction mixture to ensure the rapid onset of cavitation in the ultrasound-assisted reactions that can lead to altered selectivity compared to silent reaction systems [R.S. Disselkamp, Ya-Huei Chin, C.H.F. Peden, J. Catal. 227 (2004) 552]. Themore » motivation for this study is to examine whether cavitating ultrasound can reduce the [trans-olefin/saturated alcohol] molar ratio during the course of the reaction. This could have practical application in that it may offer an alternative processing methodology of synthesizing healthier edible seed oils by reducing trans-fat content.We have observed that cavitating ultrasound results in a [(trans-olefin/saturated alcohol)ultrasound/(trans-olefin/saturated alcohol)silent] ratio quantity less than 0.5 at the reaction mid-point for both the C4 and C5 olefin systems. This indicates that ultrasound reduces trans-olefin production compared to the silent control experiment. Furthermore, there is an added 30% reduction for the C5 versus C4 olefin compounds again at reaction mid-point. We attribute differences in the ratio quantity as a moment of inertia effect. In principle, the C4 versus C5 olefins has a {approx}52% increase in moment of inertia about C2 C3 double bond slowing isomerization. Since seed oils are C18 multiple cis-olefins and have a moment of inertia even greater than our C5 olefin here, our study suggests that even a greater reduction in trans-olefin content may occur for partial hydrogenation of C18 seed oils.« less
Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis
NASA Astrophysics Data System (ADS)
Nguyen, Thach T.; Koh, Ming Joo; Mann, Tyler J.; Schrock, Richard R.; Hoveyda, Amir H.
2017-12-01
Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.
Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis.
Nguyen, Thach T; Koh, Ming Joo; Mann, Tyler J; Schrock, Richard R; Hoveyda, Amir H
2017-12-20
Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity-namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products-and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.
Young, David G J; Burlison, Joseph A; Peters, Ulf
2003-05-02
The assembly of medium sized rings (7-9) was achieved by using the metathesis of dienes linked by a cobalt hexacarbonyl complexed alkyne with either Grubbs' or Schrock's catalysts. The products of metathesis were subjected to transformations involving the dicobalt hexacarbonyl complexes, for example, decomplexation to liberate cyclic alkynes or Pauson-Khand reaction.
Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory
ERIC Educational Resources Information Center
Schepmann, Hala G.; Mynderse, Michelle
2010-01-01
The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…
NASA Astrophysics Data System (ADS)
Grandner, Jessica Marie
Computational methods were used to determine the mechanisms and selectivities of organometallic-catalyzed reactions. The first half of the dissertation focuses on the study of metathesis catalysts in collaboration with the Grubbs group at CalTech. Chapter 1 describes the studies of the decomposition modes of several ruthenium-based metathesis catalysts. These studies were performed to better understand the decomposition of such catalysts in order to prevent decomposition (Chapter 1.2) or utilize decomposed catalysts for alternative reactions (Chapter 1.1). Chapter 2.1 describes the computational investigation of the origins of stereoretentive metathesis with ruthenium-based metathesis catalysts. These findings were then used to computationally design E-selective metathesis catalysts (Chapter 2.2). While the first half of the dissertation was centered around ruthenium catalysts, the second half of the dissertation pertains to iron-catalyzed reaction, in particular, iron-catalyzed reactions by P450 enzymes. The elements of Chapter 3 concentrate on the stereo- and chemo-selectivity of P450-catalyzed C-H hydroxylations. By combining multiple computational methods, the inherent activity of the iron-oxo catalyst and the influence of the active site on such reactions were illuminated. These discoveries allow for the engineering of new substrates and mutant enzymes for tailored C-H hydroxylation. While the mechanism of C-H hydroxylations catalyzed by P450 enzymes has been well studied, there are several P450-catalyzed transformations for which the mechanism is unknown. The components of Chapter 4 describe the use of computations to determine the mechanisms of complex, multi-step reactions catalyzed by P450s. The determination of these mechanisms elucidates how these enzymes react with various functional groups and substrate architectures and allows for a better understanding of how drug-like compounds may be broken down by human P450s.
Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.
Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less
Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene
Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.; ...
2017-09-27
Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less
Strategy Toward the Total Synthesis of Epothilones A and B
1999-07-01
2-(iV-morpholino)ethanesulfonic acid ). 1 mM EGTA(1.2-di(2-aminoethoxy)ethane-/V..V..V’.Af’-tetraaceticacid). 0.5 mM MgCl2, 1 mM GTP. and 3 M... acid ), 1 mM EGTA. 0.5 nM MgCU. ImM GTP and 3M glyceropH £6- Tta concentration of tubulin in MTP was estimated to be about 85%. Assembly was...fragment projected for the olefin metathesis step. For this purpose, it would be appropriate to reach a carboxylic acid (cf. 28, Scheme 4) for
Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds
NASA Astrophysics Data System (ADS)
Koledina, K. F.; Gubaidullin, I. M.
2016-05-01
The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.
Direct observation of OH production from the ozonolysis of olefins
NASA Astrophysics Data System (ADS)
Donahue, Neil M.; Kroll, Jesse H.; Anderson, James G.; Demerjian, Kenneth L.
Ozone olefin reactions may be a significant source of OH in the urban atmosphere, but current evidence for OH production is indirect and contested. We report the first direct observation of OH radicals from the reaction of ozone with a series of olefins (ethene, isoprene, trans-2-butene and 2,3 dimethyl-2-butene) in 4-6 torr of nitrogen. Using LIF to directly observe the steady-state of OH produced by the initial ozone-olefin reaction and subsequently destroyed by the OH-olefin reaction, we are able to establish OH yields broadly consistent with indirect values. The identification of the OH is unequivocal, and there is no indication that it is produced by a secondary process. To support these observations, we present a complete ab-initio potential energy surface for the O3-ethene reaction, extending from the reactants to available products.
Poly(aryleneethynylene)s: Properties, Applications and Synthesis Through Alkyne Metathesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Michael; Yu, Chao; Jin, Yinghua
2017-06-26
Functional polymeric materials have seen their way into every facet of materials chemistry and engineering. In this review article, we focus on a promising class of polymers, poly(aryleneethynylene)s, by covering several of the numerous applications found thus far for these materials. Additionally, we survey the current synthetic strategies used to create these polymers, with a focus on the emerging technique of alkyne metathesis. An overview is presented of the most recent catalytic systems that support alkyne metathesis as well as the more useful alkyne metathesis reaction capable of synthesizing poly(aryleneethynylene)s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Brent Gunnoe
2011-02-17
Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials.more » A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt, which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.« less
Chemical Modification of Cellulose Esters for Oral Drug Delivery
NASA Astrophysics Data System (ADS)
Meng, Xiangtao
Polymer functional groups have critical impacts upon physical, chemical and mechanical properties, and thus affect the specific applications of the polymer. Functionalization of cellulose esters and ethers has been under extensive investigation for applications including drug delivery, cosmetics, food ingredients, and automobile coating. In oral delivery of poorly water-soluble drugs, amorphous solid dispersion (ASD) formulations have been used, prepared by forming miscible blends of polymers and drugs to inhibit crystallization and enhance bioavailability of the drug. The Edgar and Taylor groups have revealed that some cellulose o-carboxyalkanoates were highly effective as ASD polymers, with the pendant carboxylic acid groups providing both specific polymer-drug interactions and pHtriggered release through swelling of the ionized polymer matrix. While a variety of functional groups such as hydroxyl and amide groups are also of interest, cellulose functionalization has relied heavily on classical methods such as esterification and etherification for appending functional groups. These methods, although they have been very useful, are limited in two respects. First, they typically employ harsh reaction conditions. Secondly, each synthetic pathway is only applicable for one or a narrow group of functionalities due to restrictions imposed by the required reaction conditions. To this end, there is a great impetus to identify novel reactions in cellulose modification that are mild, efficient and ideally modular. In the initial effort to design and synthesize cellulose esters for oral drug delivery, we developed several new methods in cellulose functionalization, which can overcome drawbacks of conventional synthetic pathways, provide novel cellulose derivatives that are otherwise inaccessible, and present a platform for structure-property relationship study. Cellulose o-hydroxyalkanoates were previously difficult to access as the hydroxyl groups, if not protected, react with carboxylic acid/carbonyl during a typical esterification reaction or ring opening of lactones, producing cellulose-g-polyester and homopolyester. We demonstrated the viability of chemoselective olefin hydroboration-oxidation in the synthesis of cellulose o-hydroxyesters in the presence of ester groups. Cellulose esters with terminally olefinic side chains were transformed to the target products by two-step, one-pot hydroborationoxidation reactions, using 9-borabicyclo[3.3.1]nonane (9-BBN) as hydroboration agent, followed by oxidizing the organoborane intermediate to a primary alcohol using mildly alkaline H2O2. The use of 9-BBN as hydroboration agent and sodium acetate as base catalyst in oxidation successfully avoided cleavage of ester linkages by borane reduction and base catalyzed hydrolysis. With the impetus of modular and efficient synthesis, we introduced olefin crossmetathesis (CM) in polysaccharide functionalization. Using Grubbs type catalyst, cellulose esters with terminally olefinic side chains were reacted with various CM partners including acrylic acid, acrylates and acrylamides to afford families of functionalized cellulose esters. Molar excesses of CM partners were used in order to suppress potential crosslinking caused by self-metathesis between terminally olefinic side chains. Amide CM partners can chelate with the ruthenium catalyst and cause low conversions in conventional solvents such as THF. While the inherent reactivity toward CM and tendency of acrylamides to chelate Ru is influenced by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides. We observed that the CM products are prone to crosslinking during storage, and found that the crosslinking is likely caused by free radical abstraction of gamma-hydrogen of the alpha,beta-unsaturation and subsequent recombination. We further demonstrated successful hydrogenation of these alpha,beta-unsaturated acids, esters, and amides, thereby eliminating the potential for radical-induced crosslinking during storage. The alpha,beta-unsaturation on CM products can cause crosslinking due to gamma-H abstraction and recombination if not reduced immediately after reaction. Instead of eliminating the double bond by hydrogenation, we described a method to make use of these reactive conjugated olefins by post-CM thiol-Michael addition. Under amine catalysis, different CM products and thiols were combined and reacted. Using proper thiols and catalyst, complete conversion can be achieved under mild reaction conditions. The combination of the two modular reactions creates versatile access to multi-functionalized cellulose derivatives. Compared with conventional reactions, these reactions enable click or click-like conjugation of functional groups onto cellulose backbone. The modular profile of the reactions enables clean and informative structure-property relationship studies for ASD. These approaches also provide opportunities for the synthesis of chemically and architecturally diverse cellulosic polymers that are otherwise difficult to access, opening doors for many other applications such as antimicrobial, antifouling, in vivo drug delivery, and bioconjugation. We believe that the cellulose functionalization approaches we pioneered can be expanded to the modification of other polysaccharides and polymers, and that these reactions will become useful tools in the toolbox of polymer/polysaccharide chemists.
Method to upgrade bio-oils to fuel and bio-crude
Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka
2013-12-10
This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.
Hydrogenation catalysts were derived from Mo(Co)/sub 6//alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, R.G.
1979-01-01
Alumina hydrogenation catalysts were derived from mo(CO)/sub 6//alumina with characteristics dependent upon the activation temperature, degree of alumina hydroxylation, and carrier gas used. Decomposition of Mo(CO)/sub 6/ at 100/sup 0/C on partially hydroxylated alumina in helium or hydrogen yielded Mo(CO)/sub 3//alumina, which catalyzed olefin metathesis in helium carrier and both metathesis and hydrogenation in hydrogen carrier. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina at 100/sup 0/C in helium and in hydrogen resulted in complete decarbonylation and partial oxidation of molybdenum; this catalyst was 10 times as active as Mo(CO)/sub 3//alumina for hydrogenation. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina atmore » 500/sup 0/C in helium gave essentially Mo(0)/alumina, which catalyzed hydrogenation, methanation, and hydrogenolysis in hydrogen. Catalysts activated on dehydroxylated alumina were ten times more active for methanation at 300/sup 0/C than catalyst activated on partially hydroxylated alumina and showed differences in selectivity for cyclopropane hydrogenolysis at 100/sup 0/C.« less
Method of dehalogenation using diamonds
Farcasiu, Malvina; Kaufman, Phillip B.; Ladner, Edward P.; Anderson, Richard R.
2000-01-01
A method for preparing olefins and halogenated olefins is provided comprising contacting halogenated compounds with diamonds for a sufficient time and at a sufficient temperature to convert the halogenated compounds to olefins and halogenated olefins via elimination reactions.
Catalytic metathesis of carbon dioxide with heterocumulenes mediated by titanium isopropoxide.
Ghosh, Rajshekhar; Samuelson, Ashoka G
2005-04-21
The insertion of an isopropoxide ligand of titanium isopropoxide into heterocumulenes gives a product that carries out metathesis at elevated temperatures by undergoing insertion of a second heterocumulene in a head to head fashion, followed by an extrusion reaction.
Fe-Catalyzed C–C Bond Construction from Olefins via Radicals
2017-01-01
This Article details the development of the iron-catalyzed conversion of olefins to radicals and their subsequent use in the construction of C–C bonds. Optimization of a reductive diene cyclization led to the development of an intermolecular cross-coupling of electronically-differentiated donor and acceptor olefins. Although the substitution on the donor olefins was initially limited to alkyl and aryl groups, additional efforts culminated in the expansion of the scope of the substitution to various heteroatom-based functionalities, providing a unified olefin reactivity. A vinyl sulfone acceptor olefin was developed, which allowed for the efficient synthesis of sulfone adducts that could be used as branch points for further diversification. Moreover, this reactivity was extended into an olefin-based Minisci reaction to functionalize heterocyclic scaffolds. Finally, mechanistic studies resulted in a more thorough understanding of the reaction, giving rise to the development of a more efficient second-generation set of olefin cross-coupling conditions. PMID:28094980
Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism
Fickel, Dustin W.; Sabnis, Kaiwalya D.; Li, Luanyi; ...
2016-09-09
In this paper, by means of in situ FTIR and ex situ 13C NMR studies, the initial periods of the chloromethane-to-olefins (CTO) reaction over SAPO-34 were probed in order to investigate the activation period of the reaction and to elucidate the formation of the catalyst active site. A methylated benzene species has been observed to form during the initial activation period of the reaction, and a direct positive correlation was constructed between the formation of this species and the catalytic activity. The data thus indicate that these methylated benzene species contribute to the formation of active sites within SAPO-34 formore » the CTO reaction. This is the first known report identifying a direct semi-quantitative correlation between the catalyst activity and growth of a methylated benzene active species, during the activation period of the chloromethane to olefins reaction. Finally, the findings here in correspond well to those reported for the methanol to olefins reaction, suggesting that a similar ‘hydrocarbon pool’ mechanism may be responsible for the formation of light olefins in CTO chemistry as well.« less
Increased functionality of methyl oleate using alkene metathesis
USDA-ARS?s Scientific Manuscript database
A series of alkene cross metathesis reactions were performed using a homogeneous ruthenium based catalyst. Using this technology, a variety of functional groups can be incorporated into the biobased starting material, methyl oleate. Trans-stilbene, styrene, methyl cinnamate and hexen-3-ol were all s...
Brownholland, David P.
2017-01-01
A synthetic route that utilizes a cross-metathesis reaction with Δ22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies. PMID:28300584
Finnegan, David F; Snapper, Marc L
2011-05-20
Processes that form multiple carbon-carbon bonds in one operation can generate molecular complexity quickly and therefore be used to shorten syntheses of desirable molecules. We selected the hetero-Pauson-Khand (HPK) cycloaddition and ring-closing metathesis (RCM) as two unique carbon-carbon bond-forming reactions that could be united in a tandem ruthenium-catalyzed process. In doing so, complex polycyclic products can be obtained in one reaction vessel from acyclic precursors using a single ruthenium additive that can catalyze sequentially two mechanistically distinct transformations.
Hearn, D.
1985-04-09
Transetherification is carried out in a catalytic distillation reactor, wherein the catalytic structure also serves as a distillation structure, by feeding a first ether to the catalyst bed to at least partially dissociate it into a first olefin and a first alcohol while concurrently therewith feeding either a second olefin (preferably a tertiary olefin) having a higher boiling point than said first olefin or a second alcohol having a higher boiling point than said first alcohol to the catalyst whereby either the second olefin and the first alcohol or the first olefin and the second alcohol react to form a second ether which has a higher boiling point than the first ether, which second ether is concurrently removed as a bottoms in the concurrent reaction-distillation to force that reaction to completion, while the unreacted first olefin or first alcohol is removed in the overhead. 1 fig.
Hearn, Dennis
1985-01-01
Transetherification is carried out in a catalytic distillation reactor, wherein the catalytic structure also serves as a distillation structure, by feeding a first ether to the catalyst bed to at least partially dissociate it into a first olefin and a first alcohol while concurrently therewith feeding either a second olefin (preferably a tertiary olefin) having a higher boiling point than said first olefin or a second alcohol having a higher boiling point than said first alcohol to the catalyst whereby either the second olefin and the first alcohol or the first olefin and the second alcohol react to form a second ether which has a higher boiling point than the first ether, which second ether is concurrently removed as a bottoms in the concurrent reaction-distillation to force that reaction to completion, while the unreacted first olefin or first alcohol is removed in the overhead.
NASA Astrophysics Data System (ADS)
Guron, Marta
There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly(methylcarbosilane) converted into boron-carbide/silicon-carbide ceramics with high char yields. These polymer blends were also shown to be useful as reagents for synthesis of hafnium-boride/hafnium-carbide/silicon carbide and zirconium-boride/zirconium-carbide/silicon carbide composites.
Reactions of C1 Building Blocks
NASA Astrophysics Data System (ADS)
Stöcker, Michael
The chapter “Reactions of C1 Building Blocks” covers the direct conversion of methane to aromatics, the methanol-to-hydrocarbons (MTHC) conversion with respect to gasoline (methanol to gasoline) and olefins (methanol to olefins, methanol-to-propene) as well as some combinations like the TIGAS and Mobil's olefin-to-gasoline and distillate processes. The main focus within this chapter will be on the industrial processes, especially concerning the MTHC reactions - including catalytic systems, reaction conditions, process - and to a minor extent related to the mechanistic aspects and kinetic considerations.
Brownholland, David P; Covey, Douglas F
2017-05-01
A synthetic route that utilizes a cross-metathesis reaction with Δ 22 steroids has been developed to prepare sterols with varying C-27 side-chains. Natural sterols containing hydroxyl groups at the 25 and (25R)-26 positions were prepared. Enantiomers of cholesterol and (3β,25R)-26-hydroxycholesterol (27-hydroxycholesterol) trideuterated at C-19 were prepared for future biological studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis of the carbocyclic core of the cornexistins by ring-closing metathesis.
Clark, J Stephen; Marlin, Frederic; Nay, Bastien; Wilson, Claire
2003-01-09
An advanced intermediate in the synthesis of the phytotoxins cornexistin and hydroxycornexistin has been synthesized. Sequential palladium-mediated sp(2)-sp(3) fragment coupling and ring-closing diene metathesis have been used to construct the nine-membered carbocyclic core found in the natural products. [reaction--see text
Recent advances in the development of alkyne metathesis catalysts
Wu, Xian
2011-01-01
Summary The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review. PMID:21286398
Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide
Rathke, J.W.; Klingler, R.J.
1993-03-30
A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.
Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide
Rathke, Jerome W.; Klingler, Robert J.
1993-01-01
A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.
Castagnolo, Daniele; Botta, Lorenzo; Botta, Maurizio
2009-07-27
An efficient and stereoselective synthesis of D,L-gulose was described. The key step of the synthetic route is represented by a multicomponent enyne cross metathesis-hetero Diels-Alder reaction which allows the formation of the pyran ring from cheap and commercially available substrates in a single synthetic step. The synthesis of D,L-gulose was accomplished without the use of protecting groups making this approach highly desirable also in terms of atom economy.
Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M
2014-09-05
An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.
Platform Chemicals from an Oilseed Biorefinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tupy, Mike; Schrodi Yann
2006-11-06
The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced inmore » this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.« less
Borguet, Yannick; Sauvage, Xavier; Zaragoza, Guillermo; Demonceau, Albert
2010-01-01
Summary The tandem catalysis of ring-closing metathesis/atom transfer radical reactions was investigated with the homobimetallic ruthenium–indenylidene complex [(p-cymene)Ru(μ-Cl)3RuCl(3-phenyl-1-indenylidene)(PCy3)] (1) to generate active species in situ. The two catalytic processes were first carried out independently in a case study before the whole sequence was optimized and applied to the synthesis of several polyhalogenated bicyclic γ-lactams and lactones from α,ω-diene substrates bearing trihaloacetamide or trichloroacetate functionalities. The individual steps were carefully monitored by 1H and 31P NMR spectroscopies in order to understand the intimate details of the catalytic cycles. Polyhalogenated substrates and the ethylene released upon metathesis induced the clean transformation of catalyst precursor 1 into the Ru(II)–Ru(III) mixed-valence compound [(p-cymene)Ru(μ-Cl)3RuCl2(PCy3)], which was found to be an efficient promoter for atom transfer radical reactions under the adopted experimental conditions. PMID:21160564
A DFT Study of Tungsten-Methylidene Formation on a W/ZSM-5 Zeolite: The Metathesis Active Site.
Maihom, Thana; Probst, Michael; Limtrakul, Jumras
2015-10-26
Tungsten-methylidene formation from ethene on either the W(IV) , W(V) , or W(VI) active sites of a W/ZSM-5 zeolite is investigated by using the M06-L functional. The reaction is assumed to proceed in two steps; the first step is the [2+2] cycloaddition between ethene and the W-O active site to form an oxametallacycle intermediate. The intermediate is then decomposed to produce the W-methylidene active site from the metathesis reaction. The overall activation barrier of the reaction on W(VI) (27.3 kcal mol(-1) ) is considerably lower than the ones for W(IV) and W(V) (69.4 and 37.1 kcal mol(-1) , respectively). Moreover, the reaction involving the W(VI) site also stabilizes intermediates and products to a larger extent than the ones on the W(IV) and W(V) sites. As a result, we have demonstrated that the reaction of the W-methylidene metathesis active site is both kinetically and thermodynamically favored to occur on the W(VI) active site of the zeolite. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yashiro, Kazuki; Hanaya, Kengo; Shoji, Mitsuru; Sugai, Takeshi
2015-01-01
We have synthesized artepillin C, a diprenylated p-hydroxycinnamate originally isolated from Brazilian propolis and exhibiting antioxidant and antitumor activities, from 2,6-diallylphenol. Replacement of the terminal vinyl with 2,2-dimethylvinyl group by olefin cross-metathesis and subsequent transformation yielded 2,6-diprenyl-1,4-hydroquinone diacetate. Candida antarctica lipase B-catalyzed deacetylation in 2-propanol regioselectively removed the less hindered acetyl group to give 2,6-diprenyl-1,4-hydroquinone 1-monoacetate. After triflation of the liberated 4-hydroxy group, a three-carbon side chain was introduced by palladium-mediated alkenylation with methyl acrylate. Final hydrolysis of the esters furnished artepillin C.
Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena
2013-07-02
Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.
A high-performance renewable thermosetting resin derived from eugenol.
Harvey, Benjamin G; Sahagun, Christopher M; Guenthner, Andrew J; Groshens, Thomas J; Cambrea, Lee R; Reams, Josiah T; Mabry, Joseph M
2014-07-01
A renewable bisphenol, 4,4'-(butane-1,4-diyl)bis(2-methoxyphenol), was synthesized on a preparative scale by a solvent-free, Ru-catalyzed olefin metathesis coupling reaction of eugenol followed by hydrogenation. After purification, the bisphenol was converted to a new bis(cyanate) ester by standard techniques. The bisphenol and cyanate ester were characterized rigorously by NMR spectroscopy and single-crystal X-ray diffraction studies. After complete cure, the cyanate ester exhibited thermal stability in excess of 350 °C and a glass transition temperature (Tg ) of 186 °C. As a result of the four-carbon chain between the aromatic rings, the thermoset displayed a water uptake of only 1.8% after a four day immersion in 85 °C water. The wet Tg of the material (167 °C) was only 19 °C lower than the dry Tg , and the material showed no significant degradation as a result of the water treatment. These results suggest that this resin is well suited for maritime environments and provide further evidence that full-performance resins can be generated from sustainable feedstocks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical study of photoinduced epoxidation of olefins catalyzed by ruthenium porphyrin.
Ishikawa, Atsushi; Sakaki, Shigeyoshi
2011-05-12
Epoxidation of olefin by [Ru(TMP)(CO)(O)](-) (TMP = tetramesitylporphine), which is a key step of the photocatalyzed epoxidation of olefin by [Ru(TMP)(CO)], is studied mainly with the density functional theory (DFT) method, where [Ru(Por)(CO)] is employed as a model complex (Por = unsubstituted porphyrin). The CASSCF method was also used to investigate the electronic structure of important species in the catalytic cycle. In all of the ruthenium porphyrin species involved in the catalytic cycle, the weight of the main configuration of the CASSCF wave function is larger than 85%, suggesting that the static correlation is not very large. Also, unrestricted-DFT-calculated natural orbitals are essentially the same as CASSCF-calculated ones, here. On the basis of these results, we employed the DFT method in this work. Present computational results show characteristic features of this reaction, as follows: (i) The epoxidation reaction occurs via carboradical-type transition state. Neither carbocation-type nor concerted oxene-insertion-type character is observed in the transition state. (ii) Electron and spin populations transfer from the olefin moiety to the porphyrin ring in the step of the C-O bond formation. (iii) Electron and spin populations of the olefin and porphyrin moieties considerably change around the transition state. (iv) The atomic and spin populations of Ru change little in the reaction, indicating that the Ru center keeps the +II oxidation state in the whole catalytic cycle. (v) The stability of the olefin adduct [Ru(Por)(CO)(O)(olefin)](-) considerably depends on the kind of olefin, such as ethylene, n-hexene, and styrene. In particular, styrene forms a stable olefin adduct. And, (vi) interestingly, the difference in the activation barrier among these olefins is small in the quantitative level (within 5 kcal/mol), indicating that this catalyst can be applied to various substrates. This is because the stabilities and electronic structures of both the olefin adduct and the transition state are similarly influenced by the substituent of olefin.
Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions
Lupinetti, Anthony J [Los Alamos, NM; Garcia, Eduardo [Los Alamos, NM; Abney, Kent D [Los Alamos, NM
2004-12-14
The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fickel, Dustin W.; Sabnis, Kaiwalya D.; Li, Luanyi
In this paper, by means of in situ FTIR and ex situ 13C NMR studies, the initial periods of the chloromethane-to-olefins (CTO) reaction over SAPO-34 were probed in order to investigate the activation period of the reaction and to elucidate the formation of the catalyst active site. A methylated benzene species has been observed to form during the initial activation period of the reaction, and a direct positive correlation was constructed between the formation of this species and the catalytic activity. The data thus indicate that these methylated benzene species contribute to the formation of active sites within SAPO-34 formore » the CTO reaction. This is the first known report identifying a direct semi-quantitative correlation between the catalyst activity and growth of a methylated benzene active species, during the activation period of the chloromethane to olefins reaction. Finally, the findings here in correspond well to those reported for the methanol to olefins reaction, suggesting that a similar ‘hydrocarbon pool’ mechanism may be responsible for the formation of light olefins in CTO chemistry as well.« less
Park, Kang Hyun; Jung, Il Gu; Chung, Young Keun
2004-04-01
Co/Rh (Co:Rh = 2:2) heterobimetallic nanoparticles derived from Co(2)Rh(2)(CO)(12) react with alkynes and alpha,beta-unsaturated aldehydes such as acrolein, crotonaldehyde, and cinnamic aldehyde and release products resulting from [2 + 2 + 1]cycloaddition of alkyne, carbon monoxide, and alkene. alpha,beta-Unsaturated aldehydes act as a CO and alkene source. These reactions produce 2-substituted cyclopentenones.
In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coelho, Pedro S.; Brustad, Eric M.; Arnold, Frances H.
The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cellsmore » expressing the heme enzymes are also provided by the present invention.« less
Labelling Polymers and Micellar Nanoparticles via Initiation, Propagation and Termination with ROMP
Thompson, Matthew P.; Randolph, Lyndsay M.; James, Carrie R.; Davalos, Ashley N.; Hahn, Michael E.
2014-01-01
In this paper we compare and contrast three approaches for labelling polymers with functional groups via ring-opening metathesis polymerization (ROMP). We explored the incorporation of functionality via initiation, termination and propagation employing an array of novel initiators, termination agents and monomers. The goal was to allow the generation of selectively labelled and well-defined polymers that would in turn lead to the formation of labelled nanomaterials. Norbornene analogues, prepared as functionalized monomers for ROMP, included fluorescent dyes (rhodamine, fluorescein, EDANS, and coumarin), quenchers (DABCYL), conjugatable moieties (NHS esters, pentafluorophenyl esters), and protected amines. In addition, a set of symmetrical olefins for terminally labelling polymers, and for the generation of initiators in situ is described. PMID:24855496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Yu, Chao; Long, Hai
2015-05-08
Highly stable permanently interlocked aryleneethynylene molecular cages were synthesized from simple triyne monomers using dynamic alkyne metathesis. The interlocked complexes are predominantly formed in the reaction solution in the absence of any recognition motif and were isolated in a pure form using column chromatography. This study is the first example of the thermodynamically controlled solution-phase synthesis of interlocked organic cages with high stability.
Lee, Kyong-Hwan; Shin, Dae-Hyun
2007-01-01
Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the characteristics of liquid product on the pyrolysis of plastic mixtures were strongly influenced by lapse time of reaction and degradation temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Yu, Chao; Zhang, Chenxi
A dynamic covalent approach towards rigid aryleneethynylene covalent organic polyhedrons (COPs) was explored. Our study on the relationship of the COP structures and the geometry of their building blocks reveals that the topology of aryleneethynylene COPs strongly depends on the size of the building blocks. A tetramer (D2h symmetric), dimer, or interlocked complex can be formed from monomers with the same face-to-edge angle but in different sizes. As alkyne metathesis is a self-exchange reaction and non-directional, the cyclooligomerization of multi-alkyne monomers involves both intramolecular cyclization and intermolecular metathesis reaction, resulting in complicated thermodynamic process disturbed by kinetic competition. Although amore » tetrahedron-shaped tetramer (Td symmetric) has comparable thermodynamic stability to a D2h symmetric tetramer, its formation is kinetically disfavored and was not observed experimentally. Aryleneethynylene COPs consist of purely unsaturated carbon backbones and exhibit large internal cavities, which would have interesting applications in host-guest chemistry and development of porous materials.« less
Gordon, Christopher P.; Yamamoto, Keishi; Searles, Keith; Shirase, Satoru
2018-01-01
Metal alkylidenes, which are key organometallic intermediates in reactions such as olefination or alkene and alkane metathesis, are typically generated from metal dialkyl compounds [M](CH2R)2 that show distinctively deshielded chemical shifts for their α-carbons. Experimental solid-state NMR measurements combined with DFT/ZORA calculations and a chemical shift tensor analysis reveal that this remarkable deshielding originates from an empty metal d-orbital oriented in the M–Cα–Cα′ plane, interacting with the Cα p-orbital lying in the same plane. This π-type interaction inscribes some alkylidene character into Cα that favors alkylidene generation via α-H abstraction. The extent of the deshielding and the anisotropy of the alkyl chemical shift tensors distinguishes [M](CH2R)2 compounds that form alkylidenes from those that do not, relating the reactivity to molecular orbitals of the respective molecules. The α-carbon chemical shifts and tensor orientations thus predict the reactivity of metal alkyl compounds towards alkylidene generation. PMID:29675237
Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum
NASA Technical Reports Server (NTRS)
Rodriguez, Marc (Inventor); Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor)
2014-01-01
Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.
Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents
2016-01-01
Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418
Roberts, E S; Vaz, A D; Coon, M J
1991-01-01
As we have briefly described elsewhere, cytochrome P-450 catalyzes the oxidative deformylation of cyclohexane carboxaldehyde to yield cyclohexene and formic acid in a reaction believed to involve a peroxyhemiacetal-like adduct formed between the substrate and molecular oxygen-derived hydrogen peroxide. This reaction is a useful model for the demethylation reactions catalyzed by the steroidogenic P-450s, aromatase, and lanosterol demethylase. In the present study, the cytochrome P-450-catalyzed formation of olefinic products from a series of xenobiotic aldehydes has been demonstrated. Isobutyraldehyde and trimethylacetaldehyde, but not propionaldehyde, are converted to the predicted olefinic products, suggesting a requirement for branching at the alpha carbon. In addition, the four C5 aldehydes of similar hydrophobicity were compared for their ability to undergo the reaction. The straight-chain valeraldehyde gave no olefinic products with five different rabbit liver microsomal P-450 isozymes. However, increasing activity was seen with the other isomers in the order of isovaleraldehyde, 2-methylbutyraldehyde, and trimethylacetaldehyde, with all of the P-450 cytochromes. The catalytic rate with trimethylacetaldehyde is highest with antibiotic-inducible P-450 form 3A6, followed by phenobarbital-inducible form 2B4 and ethanol-inducible form 2E1. Citronellal, a beta-branched aldehyde that is found in many essential oils and is widely used as an odorant and a flavorant, was found to undergo the oxidative deformylation reaction to yield 2,6-dimethyl-1,5-heptadiene, but only with P-450 2B4. The oxidative cleavage reaction with olefin formation appears to be widespread, as judged by the variety of aldehydes that serve as substrates and of P-450 cytochromes that serve as catalysts. PMID:1924356
Integrated process and dual-function catalyst for olefin epoxidation
Zhou, Bing; Rueter, Michael
2003-01-01
The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.
Mechanism of olefin epoxidation in the presence of a titanium-containing zeolite
NASA Astrophysics Data System (ADS)
Danov, S. M.; Krasnov, V. L.; Sulimov, A. V.; Ovcharova, A. V.
2013-11-01
The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.
Pinaud, Julien; Trinh, Thi Kim Hoang; Sauvanier, David; Placet, Emeline; Songsee, Sriprapai; Lacroix-Desmazes, Patrick; Becht, Jean-Michel; Tarablsi, Bassam; Lalevée, Jacques; Pichavant, Loïc; Héroguez, Valérie; Chemtob, Abraham
2018-01-09
1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH + BPh 4 - ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl 2 (p-cymene)] 2 precatalyst, the highly active RuCl 2 (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature. To the best of our knowledge, this is the first example of a photogenerated NHC. Its exploitation in photoROMP has resulted in a simplified process compared to current photocatalysts, because only stable commercial or easily synthesized reagents are required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.
In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...
Highly efficient molybdenum-based catalysts for enantioselective alkene metathesis
Malcolmson, Steven J.; Meek, Simon J.; Sattely, Elizabeth S.; Schrock, Richard R.; Hoveyda, Amir H.
2009-01-01
Discovery of efficient catalysts is one of the most compelling objectives of modern chemistry. Chiral catalysts are in particularly high demand, as they facilitate synthesis of enantiomerically enriched small molecules that are critical to developments in medicine, biology and materials science1. Especially noteworthy are catalysts that promote—with otherwise inaccessible efficiency and selectivity levels—reactions demonstrated to be of great utility in chemical synthesis. Here we report a class of chiral catalysts that initiate alkene metathesis1 with very high efficiency and enantioselectivity. Such attributes arise from structural fluxionality of the chiral catalysts and the central role that enhanced electronic factors have in the catalytic cycle. The new catalysts have a stereogenic metal centre and carry only monodentate ligands; the molybdenum-based complexes are prepared stereoselectively by a ligand exchange process involving an enantiomerically pure aryloxide, a class of ligands scarcely used in enantioselective catalysis2,3. We demonstrate the application of the new catalysts in an enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, through an alkene metathesis reaction that cannot be promoted by any of the previously reported chiral catalysts. PMID:19011612
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H
The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cellsmore » expressing the heme enzymes are also provided by the present invention.« less
Transition-Metal-Catalyzed C-H Alkylation Using Alkenes.
Dong, Zhe; Ren, Zhi; Thompson, Samuel J; Xu, Yan; Dong, Guangbin
2017-07-12
Alkylation reactions represent an important organic transformation to form C-C bonds. In addition to conventional approaches with alkyl halides or sulfonates as alkylating agents, the use of unactivated olefins for alkylations has become attractive from both cost and sustainability viewpoints. This Review summarizes transition-metal-catalyzed alkylations of various carbon-hydrogen bonds (addition of C-H bonds across olefins) using regular olefins or 1,3-dienes up to May 2016. According to the mode of activation, the Review is divided into two sections: alkylation via C-H activation and alkylation via olefin activation.
NASA Astrophysics Data System (ADS)
McMillan, Paul F.; Gryko, Jan; Bull, Craig; Arledge, Richard; Kenyon, Anthony J.; Cressey, Barbara A.
2005-03-01
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr 2) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300 °C. Syntheses at higher temperatures gave rise to microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.
Solowey, Douglas P; Mane, Manoj V; Kurogi, Takashi; Carroll, Patrick J; Manor, Brian C; Baik, Mu-Hyun; Mindiola, Daniel J
2017-11-01
Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CH t Bu(CH 3 ) (PNP=N[2-P(CHMe 2 ) 2 -4-methylphenyl] 2 - ), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C 4 to C 8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.
NASA Astrophysics Data System (ADS)
Solowey, Douglas P.; Mane, Manoj V.; Kurogi, Takashi; Carroll, Patrick J.; Manor, Brian C.; Baik, Mu-Hyun; Mindiola, Daniel J.
2017-11-01
Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.
Activation of olefins via asymmetric Bronsted acid catalysis
Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas; ...
2018-03-30
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less
Activation of olefins via asymmetric Bronsted acid catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuji, Nobuya; Kennemur, Jennifer L.; Buyck, Thomas
The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Bronsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Bronsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Bronsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. In conclusion, the methodologymore » gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (–)-Boivinianin A.« less
A Solomon link through an interwoven molecular grid.
Beves, Jonathon E; Danon, Jonathan J; Leigh, David A; Lemonnier, Jean-François; Vitorica-Yrezabal, Iñigo J
2015-06-22
A molecular Solomon link was synthesized through the assembly of an interwoven molecular grid consisting of four bis(benzimidazolepyridyl)benzthiazolo[5,4-d]thiazole ligands and four zinc(II), iron(II), or cobalt(II) cations, followed by ring-closing olefin metathesis. NMR spectroscopy, mass spectrometry, and X-ray crystallography confirmed the doubly interlocked topology, and subsequent demetalation afforded the wholly organic Solomon link. The synthesis, in which each metal ion defines the crossing point of two ligand strands, suggests that interwoven molecular grids should be useful scaffolds for the rational construction of other topologically complex structures. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
2017-01-01
The selectivity toward lower olefins during the methanol-to-olefins conversion over H-SAPO-34 at reaction temperatures between 573 and 773 K has been studied with a combination of operando UV–vis diffuse reflectance spectroscopy and online gas chromatography. It was found that the selectivity toward propylene increases in the temperature range of 573–623 K, while it decreases in the temperature range of 623–773 K. The high degree of incorporation of olefins, mainly propylene, into the hydrocarbon pool affects the product selectivity at lower reaction temperatures. The nature and dynamics of the active and deactivating hydrocarbon species with increasing reaction temperature were revealed by a non-negative matrix factorization of the time-resolved operando UV–vis diffuse reflectance spectra. The active hydrocarbon pool species consist of mainly highly methylated benzene carbocations at temperatures between 573 and 598 K, of both highly methylated benzene carbocations and methylated naphthalene carbocations at 623 K, and of only methylated naphthalene carbocations at temperatures between 673 and 773 K. The operando spectroscopy results suggest that the nature of the active species also influences the olefin selectivity. In fact, monoenylic and highly methylated benzene carbocations are more selective to the formation of propylene, whereas the formation of the group of low methylated benzene carbocations and methylated naphthalene carbocations at higher reaction temperatures (i.e., 673 and 773 K) favors the formation of ethylene. At reaction temperatures between 573 and 623 K, catalyst deactivation is caused by the gradual filling of the micropores with methylated naphthalene carbocations, while between 623 and 773 K the formation of neutral poly aromatics and phenanthrene/anthracene carbocations are mainly responsible for catalyst deactivation, their respective contribution increasing with increasing reaction temperature. Methanol pulse experiments at different temperatures demonstrate the dynamics between methylated benzene and methylated naphthalene carbocations. It was found that methylated naphthalene carbocations species are deactivating and block the micropores at low reaction temperatures, while acting as the active species at higher reaction temperatures, although they give rise to the formation of extended hydrocarbon deposits. PMID:28824823
Liu, Qiang; Wu, Lipeng; Fleischer, Ivana; Selent, Detlef; Franke, Robert; Jackstell, Ralf; Beller, Matthias
2014-06-02
An efficient domino ruthenium-catalyzed reverse water-gas-shift (RWGS)-hydroformylation-reduction reaction of olefins to alcohols is reported. Key to success is the use of specific bulky phosphite ligands and triruthenium dodecacarbonyl as the catalyst. Compared to the known ruthenium/chloride system, the new catalyst allows for a more efficient hydrohydroxymethylation of terminal and internal olefins with carbon dioxide at lower temperature. Unwanted hydrogenation of the substrate is prevented. Preliminary mechanism investigations uncovered the homogeneous nature of the active catalyst and the influence of the ligand and additive in individual steps of the reaction sequence. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi
2009-12-01
Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.
Ho, Chun-Yu; Ng, Sze-Sze; Jamison, Timothy F.
2011-01-01
Described are several classes of unusual or unprecedented carbonyl-ene-type reactions, including those between alpha olefins and aromatic aldehydes. Catalyzed by nickel, these processes complement existing Lewis acid-catalyzed methods in several respects. Not only are monosubstituted alkenes, aromatic aldehydes, and tert-alkyl aldehydes effective substrates, but monosubstituted olefins also react faster than those that are more substituted, and large or electron-rich aldehydes are more effective than small or electron-poor ones. Conceptually, in the presence of a nickel-phosphine catalyst, the combination of off-the-shelf alkenes, silyl triflates, and triethylamine functions as a replacement for an allylmetal reagent. PMID:16620106
Method and apparatus for conversion of carbonaceous materials to liquid fuel
Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.
2015-12-01
Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Paul F.; Gryko, Jan; Bull, Craig
A new solid-state metathesis synthesis route was applied to obtain bulk samples of amorphous or microcrystalline Si and Ge. The method involves reaction of Zintl phases such as NaSi or NaGe, with ammonium or metal (e.g., CuCl, CoBr{sub 2}) halides. The driving force for the solid-state reaction is provided by the formation of alkali halides and the transition metals or metal silicides, or gaseous ammonia and hydrogen. The semiconductors were purified by washing to remove other solid products. The amorphous semiconductors were obtained in bulk form from reactions carried out at 200-300{sup o}C. Syntheses at higher temperatures gave rise tomore » microcrystalline semiconductors, or to micro-/nanocrystalline particles contained within the amorphous material. Similar crystalline/amorphous composites were obtained after heat treatment of bulk amorphous materials.« less
Ohyoshi, Takayuki; Tamura, Yuki; Hayakawa, Ichiro; Hirai, Go; Miyazawa, Yamato; Funakubo, Shota; Sodeoka, Mikiko; Kigoshi, Hideo
2016-12-28
We have established an efficient synthetic methodology for the 13-oxyingenol natural derivative (13-oxyingenol-13-dodecanoate-20-hexanoate), featuring a ring-closing olefin metathesis reaction for the "direct" construction of a highly strained inside-outside framework and a Mislow-Evans-type [2,3]-sigmatropic rearrangement for the stereoselective introduction of the hydroxy group at C5. We also synthesized artificial analogs of 13-oxyingenol and ingenol by using our synthetic strategy. In vitro activation assays of protein kinase C (PKC) α and δ revealed that the dodecanoyl group at O13 on 13-oxyingenol analogs had a significant role in PKCδ activation. The PKCα- or PKCδ-activating 13-oxyingenol and ingenol analogs induced both distinct morphological changes and increases of CD11b expression in HL-60 cells, which would be typical signs of HL-60 cell differentiation to macrophage-like cells, as expected by previous reports. Intriguingly, however, similar differentiation phenotypes were observed with the use of 13-oxyingenol natural derivatives and 13-oxyingenol-13-dodecanoate showing a remarkably less potent PKCα or PKCδ activation ability, which the PKC inhibitor Gö6983 diminished. This indicated the involvement of other PKC isozymes or related kinase activities. 13-Oxyingenol analogs, which induced HL-60 cell differentiation, also induced HL-60 cell death, similar to the action of a phorbol ester, a strong PKC activator.
Yao, Qingwei
2002-06-27
[reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.
Nestola, Marco; Schmidt, Torsten C
2017-07-07
The determination of mineral oil aromatic hydrocarbons (MOAH) in foodstuffs gained in importance over the last years as carcinogenicity cannot be excluded for certain MOAH. The existence of olefins in foodstuffs, such as edible oils and fats, can be problematic for the determination of MOAH by LC-GC-FID. Removal of these interfering substances by HPLC based on polarity differences is not possible. During gas chromatographic separation heavily overloaded peaks are observed rendering the detection of small mineral oil contaminations almost impossible. Therefore, removal of these olefins is necessary before subjection of the sample to LC-GC-FID. Epoxidation of olefins to increase their polarity proved to be a valuable tool in the past. Precision and trueness of the results as shown in a collaborative trial, however, are relying on exact reaction conditions. Additionally, it is known that certain MOAH are oxidized during epoxidation and therefore get lost. In the scope of this work, hydroboration, bromohydrin reaction, and epoxidation were examined for their potential for derivatization of unsaturated hydrocarbons with increased robustness and higher recovery of MOAH. Epoxidation by meta-chloroperoxybenzoic acid (mCPBA) delivered the best removal of olefins. Factors influencing this reaction were enlightened. Adaption of the reaction conditions and time-controlled automation increased the recovery of polycyclic MOAH. Good precision (RSD r <1.5%) and recovery (95-102%) for MOAH were also observed for sunflower and olive oils spiked with a lubricating mineral oil (at 24.5mg/kg of MOAH). The trueness of the method was verified by analyzing collaborative trial samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Qian, Qingyun; Ruiz-Martínez, Javier; Mokhtar, Mohamed; Asiri, Abdullah M; Al-Thabaiti, Shaeel A; Basahel, Suliman N; van der Bij, Hendrik E; Kornatowski, Jan; Weckhuysen, Bert M
2013-08-19
The formation of hydrocarbon pool (HCP) species during methanol-to-olefin (MTO) and ethanol-to-olefin (ETO) processes have been studied on individual micron-sized SAPO-34 crystals with a combination of in situ UV/Vis, confocal fluorescence, and synchrotron-based IR microspectroscopic techniques. With in situ UV/Vis microspectroscopy, the intensity changes of the λ=400 nm absorption band, ascribed to polyalkylated benzene (PAB) carbocations, have been monitored and fitted with a first-order kinetics at low reaction temperatures. The calculated activation energy (Ea ) for MTO, approximately 98 kJ mol(-1) , shows a strong correlation with the theoretical values for the methylation of aromatics. This provides evidence that methylation reactions are the rate-determining steps for the formation of PAB. In contrast for ETO, the Ea value is approximately 60 kJ mol(-1) , which is comparable to the Ea values for the condensation of light olefins into aromatics. Confocal fluorescence microscopy demonstrates that during MTO the formation of the initial HCP species are concentrated in the outer rim of the SAPO-34 crystal when the reaction temperature is at 600 K or lower, whereas larger HCP species are gradually formed inwards the crystal at higher temperatures. In the case of ETO, the observed egg-white distribution of HCP at 509 K suggests that the ETO process is kinetically controlled, whereas the square-shaped HCP distribution at 650 K is indicative of a diffusion-controlled process. Finally, synchrotron-based IR microspectroscopy revealed a higher degree of alkylation for aromatics for MTO as compared to ETO, whereas high reaction temperatures favor dealkylation processes for both the MTO and ETO processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yuan, Wen-Kui; Cui, Tao; Liu, Wei; Wen, Li-Rong; Li, Ming
2018-03-16
A new CuI/1,10-phen-catalyzed reaction for the synthesis of 3-ylideneoxindoles from readily available isatins and ethyl isocyanoacetate, in which ethyl isocyanoacetate acts as a latent two-carbon donor like the Wittig reagent, is reported. A tandem procedure including 1,3-dipolar cycloaddition/inverse 1,3-dipolar ring opening/olefination allows the preparation of 3-ylideneoxindoles with broad functional group tolerance.
Synthesis and Properties of a Precision Sulfonated Trimethylene-Styrene Polyelectrolyte
NASA Astrophysics Data System (ADS)
Kennemur, Justin; Neary, William; Bohlmann, Michele; Kendrick, Aaron
We recently reported successful ring-opening metathesis polymerization of 4-phenylcyclopentene to afford a precision ethylene-styrene type copolymer with a phenyl branch at exactly every fifth carbon along the backbone following mild hydrogenation of the backbone olefins. (http://dx.doi.org/10.1002/marc.201600121) Compared to polystyrene, this material shows a markedly reduced glass transition temperature (Tg 17 °C) and remains amorphous. We have now extended the function of this polymer via sulfonation of the phenyl branches to produce a precision polyelectrolyte with an ionic charge spacing at every fifth carbon along the chain. The reduced yet precise charge density coupled with the low Tg of the native material translates into a variety of properties that are unique to this system and potentially useful as an addition to the limited set of available polyelectrolyte materials. Synthetic aspects in addition to thermal and mechanical properties will be discussed. Graduate Student.
Getty, Kendra; Delgado-Jaime, Mario Ulises
2010-01-01
The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030
Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing
2013-07-19
A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.
Ramachary, Dhevalapally B; Venkaiah, Chintalapudi; Reddy, Y Vijayendar; Kishor, Mamillapalli
2009-05-21
In this paper we describe new multi-catalysis cascade (MCC) reactions for the one-pot synthesis of highly functionalized non-symmetrical malonates. These metal-free reactions are either five-step (olefination/hydrogenation/alkylation/ketenization/esterification) or six-step (olefination/hydrogenation/alkylation/ketenization/esterification/alkylation), and employ aldehydes/ketones, Meldrum's acid, 1,4-dihydropyridine/o-phenylenediamine, diazomethane, alcohols and active ethylene/acetylenes, and involve iminium-, self-, self-, self- and base-catalysis, respectively. Many of the products have direct application in agricultural and pharmaceutical chemistry.
Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkel, T.C.; Blanc, R.; Zeid, J.
2007-03-12
This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in themore » presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort to improve membrane coating solution stability resulted in the finding that membrane performance loss could be reversed for all poisoning cases except hydrogen sulfide exposure. This discovery offers the potential to extend membrane lifetime through cyclic regeneration. We also found that certain mixed carriers exhibited greater stability in reducing environments than exhibited by silver salt alone. These results offer promise that solutions to deal with carrier poisoning are possible. The main achievement of this program was the progress made in gaining a more complete understanding of the membrane stability challenges faced in the use of facilitated olefin transport membranes. Our systematic study of facilitated olefin transport uncovered the full extent of the stability challenge, including the first known identification of olefin conditioning and its impact on membrane development. We believe that significant additional fundamental research is required before facilitated olefin transport membranes are ready for industrial implementation. The best-case scenario for further development of this technology would be identification of a novel carrier that is intrinsically more stable than silver ions. If the stability problems could be largely circumvented by development of a new carrier, it would provide a clear breakthrough toward finally recognizing the potential of facilitated olefin transport. However, even if such a carrier is identified, additional development will be required to insure that the membrane matrix is a benign host for the olefin-carrier complexation reaction and shows good long-term stability.« less
dos Santos, Tatiane R; Harnisch, Falk; Nilges, Peter; Schröder, Uwe
2015-03-01
Electroorganic synthesis can be exploited for the production of biofuels from fatty acids and triglycerides. With Coulomb efficiencies (CE) of up to 50 %, the electrochemical decarboxylation of fatty acids in methanolic and ethanolic solutions leads to the formation of diesel-like olefin/ether mixtures. Triglycerides can be directly converted in aqueous solutions by using sonoelectrochemistry, with olefins as the main products (with a CE of more than 20 %). The latter reaction, however, is terminated at around 50 % substrate conversion by the produced side-product glycerol. An energy analysis shows that the electrochemical olefin synthesis can be an energetically competitive, sustainable, and--in comparison with established processes--economically feasible alternative for the exploitation of fats and oils for biofuel production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
α-Fluorovinyl Weinreb Amides and α- Fluoroenones from a Common Fluorinated Building Block
Ghosh, Arun K.; Banerjee, Shaibal; Sinha, Saikat; Kang, Soon Bang; Zajc, Barbara
2009-01-01
Synthesis and reactivity of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfonyl)fluoroacetamide, a building block for Julia olefination, is reported. This reagent undergoes condensation reactions with aldehydes and cyclic ketones, to give α-fluorovinyl Weinreb amides. Olefination reactions proceed under mild, DBU-mediated conditions, or in the presence of NaH. DBU-mediated condensations proceed with either E or Z-selectivity, depending upon reaction conditions, whereas NaH-mediated reactions are ≥98% Z-stereoselective. Conversion of the Weinreb amide moiety in N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide to ketones, followed by oxidation, resulted in another set of olefination reagents, namely (1,3-benzothiazol-2-ylsulfonyl)fluoromethyl phenyl and propyl ketones. In the presence of DBU, these compounds react with aldehydes tested to give α-fluoroenones with high Z-selectivity. The use of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide as a common fluorinated intermediate in the synthesis of α-fluorovinyl Weinreb amides and α-fluoroenones has been demonstrated. Application of the Weinreb amide to α-fluoro allyl amine synthesis is also shown. PMID:19361189
Old Yellow Enzyme: Stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization
Meah, Younus; Massey, Vincent
2000-01-01
The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme. PMID:10995477
Photosensitized cleavage of some olefins as potential linkers to be used in drug delivery
NASA Astrophysics Data System (ADS)
Dinache, Andra; Smarandache, Adriana; Simon, Agota; Nastasa, Viorel; Tozar, Tatiana; Pascu, Alexandru; Enescu, Mironel; Khatyr, Abderrahim; Sima, Felix; Pascu, Mihail-Lucian; Staicu, Angela
2017-09-01
A study of photosensitized cleavage of different olefins as potential linkers for drug carrier complexes is reported. The role of singlet oxygen and the kinetic rates for light induced reactions were estimated by time-resolved measurements of singlet oxygen phosphorescence (at 1270 nm) obtained via 532 nm pulse laser excitation of a photosensitizer. The mixture of each studied olefin with verteporfin (used as photosensitizer) were exposed to low energy visible radiation. The rate constants for singlet oxygen quenching by studied olefins were determined. The irradiated solutions were investigated by FTIR spectroscopy and potential photoproducts were suggested. The experimental results were compared with simulations made by DFT method.
NASA Astrophysics Data System (ADS)
Sayed, Moein B.
Olefin oligomerization and alkylation (by methanol) of ethene, propene, and isobutene on HZSM-5 have been studied in typical conditions of the catalytic Mobil methanol to gasoline (MTG) process. This has been to identify the most likely light olefin involved as a key intermediate and the most likely mechanism by which such a light olefin propagates to gasoline in the MTG process. Reactions involving bulky intermediates are restricted within the narrow channels of ZSM-5. The oligomerization of ethene and isobutene appears to be an example of such restricted reactions. Zeolite dealumination seems to assist in overcoming the steric barrier by increasing both the zeolite pore volume and the population of the site (silanol) hosting the adsorbate. Spectral i.r. evidence reveals a role of zeolite Lewis acidity as a precursor in initiating olefin protonation by the zeolite Brønsted acidity. Both i.r. and GC—MS data consistently reveal a product distribution similar to that obtained in the MTG process, which suggests a dominant oligomerization and/or alkylation to be the mechanism leading to gasoline in the MTG process. However, the higher reactivity detected for olefin alkylation indicates alkylation to be the favoured mechanism. Propene is more likely to be a key intermediate, whereas isobutene contributes with a role being increasingly dominant over the more dealuminated ZSM-5 surfaces. Ethene, in contrast, shows poor reactivity, which can be enhanced by the zeolite dealumination.
Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.
2000-01-01
This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.
Salih, Nabaz; Adams, Harry; Jackson, Richard F W
2016-09-16
A range of 7-oxo, 8-oxo, and 9-oxo amino acids, analogues of 8-oxo-2-aminodecanoic acid, one of the key components of the cyclic tetrapeptide apicidin, have been prepared by a three-step process involving copper-catalyzed allylation of serine-, aspartic acid-, and glutamic acid-derived organozinc reagents, followed by cross-metathesis of the resulting terminal alkenes with unsaturated ketones and hydrogenation. The intermediate 7-oxo-5-enones underwent a highly diastereoselective (dr ≥96:4) acid-catalyzed aza-Michael reaction to give trans-2,5-disubstituted pyrrolidines, 5-substituted proline derivatives. The aza-Michael reaction was first observed when the starting enones were allowed to stand in solution in deuterochloroform but can be efficiently promoted by catalytic amounts of dry HCl.
A study on an unusual SN2 mechanism in the methylation of benzyne through nickel-complexation.
Hatakeyama, Makoto; Sakamoto, Yuki; Ogata, Koji; Sumida, Yuto; Sumida, Tomoe; Hosoya, Takamitsu; Nakamura, Shinichiro
2017-10-11
In this study, three reaction mechanisms of a benzyne-nickel (Ni) complex ([Ni(C 6 H 4 )(dcpe)]) with iodomethane during the methylation process were investigated, namely (a) S N 2 reaction of the benzyne-Ni complex with iodomethane, (b) concerted σ-bond metathesis during the bond breaking/forming processes, and (c) oxidative addition of iodomethane to the Ni-center and the subsequent reductive elimination process. DFT calculations revealed that the reaction barrier of the S N 2 reaction is slightly lower than those of the other mechanisms. The results of orbital analyses suggest that [Ni(C 6 H 4 )(dcpe)] forms a metallacycle structure between benzyne and the Ni II (3d 8 ) center instead of the η 2 -structure with the Ni 0 (3d 10 ) center. The metallacycle structures became inappropriate as the intermediates of oxidative addition in the formation of the Ni II -Me bond, avoiding further oxidation to the high-valent Ni IV . The high free energy along σ-bond metathesis was generated from the steric hindrance, thus invoking methylation and Ni-I bond formation concertedly.
Syntheses and structures of alkaline earth metal bis(diphenylamides).
Gärtner, Martin; Fischer, Reinald; Langer, Jens; Görls, Helmar; Walther, Dirk; Westerhausen, Matthias
2007-06-11
Various preparative procedures are employed in order to synthesize alkaline earth metal bis(diphenylamides) such as (i) metalation of HNPh2 with the alkaline earth metal M, (ii) metalation of HNPh2 with MPh2, (iii) metathesis reaction of MI2 with KNPh2, (iv) metalation of HNPh2 with PhMI in THF, and (v) metathesis reaction of PhMI with KNPh2 followed by a dismutation reaction yielding MPh2 and M(NPh2)2. The magnesium compounds [(diox)MgPh2]infinity (1) and (thf)2Mg(NPh2)2 (2) show tetracoordinate metal atoms, whereas in (dme)2Ca(NPh2)2 (3), (thf)4Sr(NPh2)2 (4), and (thf)4Ba(NPh2)2 (5) the metals are 6-fold coordinated. Additional agostic interactions between an ipso-carbon of one of the phenyl groups of the amide ligand and the alkaline earth metal atom lead to unsymmetric coordination of the NPh2 anions with two strongly different M-N-C angles in 3-5.
Li, Heng; Zhang, Wen-Xiong; Xi, Zhenfeng
2013-09-16
A variety of ester-substituted cyclopentadiene derivatives have been synthesized by one-pot reactions of 1,4-dilithio-1,3-butadienes, CO, and acid chlorides. Direct deprotonation of the ester-substituted cyclopentadienes with Ae[N(SiMe3 )2 ]2 (Ae=Ca, Sr, Ba) efficiently generated members of a new class of heavier alkaline earth (Ca, Sr, Ba) metallocenes in good to excellent yields. Single-crystal X-ray structural analysis demonstrated that these heavier alkaline earth metallocenes incorporated two intramolecularly coordinated ester pendants and multiply-substituted cyclopentadienyl ligands. The corresponding transition metal metallocenes, such as ferrocene derivatives and half-sandwich cyclopentadienyl tricarbonylrhenium complexes, could be generated highly efficiently by metathesis reactions. The multiply-substituted cyclopentadiene ligands bearing an ester pendant, and the corresponding heavier alkaline earth and transition-metal metallocenes, may have further applications in coordination chemistry, organometallic chemistry, and organic synthesis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamohammadi, Sogand; Reactor and Catalysis Research Center; Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir
2014-02-01
Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion.more » - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH{sub 3}-TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH{sub 3}-TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion.« less
Sherman, Eric S.; Fuller, Peter H.; Kasi, Dhanalakshmi; Chemler, Sherry R.
2008-01-01
An expanded substrate scope and in depth analysis of the reaction mechanism of the copper(II) carboxylate promoted intramolecular carboamination of unactivated alkenes is described. This method provides access to N-functionalized pyrrolidines and piperidines. Both aromatic and aliphatic γ- and δ-alkenyl N-arylsulfonamides undergo the oxidative cyclization reaction efficiently. N-Benzoyl-2-allylaniline also underwent the oxidative cyclization. The terminal olefin substrates examined were more reactive than those with internal olefins, and the latter terminated in elimination rather than carbon-carbon bond formation. The efficiency of the reaction was enhanced by the use of more organic soluble copper(II) carboxylate salts, copper(II) neodecanoate in particular. The reaction times were reduced by the use of microwave heating. High levels of diastereoselectivity were observed in the synthesis of 2,5-disubstituted pyrrolidines, wherein the cis substitution pattern predominates. The mechanism of the reaction is discussed in the context of the observed reactivity and in comparison to analogous reactions promoted by other reagents and conditions. Our evidence supports a mechanism wherein the N-C bond is formed via intramolecular syn aminocupration and the C-C bond is formed via intramolecular addition of a primary carbon radical to an aromatic ring. PMID:17428100
1,10-Phenanthroline-stabilized palladium nanoparticles dispersed in a polyethylene glycol (PEG) matrix is synthesized which is found to be a stable and active catalyst for the selective hydrogenation of olefins using molecular hydrogen under mild reaction conditions. A variety of...
Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.
Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M
2013-09-23
Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Benedict T W.; Ye, Lin; Change, G.G. Z.
Here, we report that the pore opening of SAPO-34 can be significantly modified by an adsorbed surface methoxy species during induction of the catalytic methanol-to-olefins process, which offers molecular sieving properties due to physical obstacle of the methoxy group and its adsorption modification to other hydrocarbons. X-ray powder diffraction and Rietveld refinement clearly reveal that the adsorbed single carbon atom as the methoxy group is dynamically created from methanol dehydration on a Brønsted acid site in close proximity to the pore windows. As a result, industrial desirable smaller olefins such as ethylene and propylene can be favourably made at themore » expenses of higher olefins. The structures and fundamental understanding in alteration in the olefins selectivity during induction may allow rational optimisation in catalytic performance under the complex fluidisation conditions.« less
D'Annibale, Andrea; Ciaralli, Laura; Bassetti, Mauro; Pasquini, Chiara
2007-08-03
The ring-closing metathesis (RCM) reactions of homoallylic acrylates bearing alkyl substituents on various positions of their skeleton afford the corresponding pentenolides in the presence of carbene ruthenium catalysts. For R3 = R4 = H, or R3 = Me, R4 = H, the reactions are catalyzed by complex [RuCl2(PCy3)2(=CHPh)], while a second-generation Grubbs catalyst is required when R3 = H and R4 = Me, R3 = R4 = Me, or R3 = i-Pr and R4 = H. Alkyl substitution at the homoallylic carbon (R1, R2) increases the yield of the reaction when both the acrylic and/or homoallylic double bonds are methyl-substituted. The interaction of the catalyst with the substrate in the initiation stage involves the homoallylic double bond rather than the acrylic moiety, and the resulting alkylidene species from the first-generation Grubbs catalyst can be observed by 1H and 31P NMR. The racemic tobacco constituents 4-isopropyl-5,6-dihydropyran-2-one and 4-isopropyltetrahydropyran-2-one are prepared via a short reaction sequence, involving the RCM reaction as the key transformation.
Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim
2016-02-24
Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.
Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao
2014-09-24
An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.
Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms.
Gisdakis, Philip; Antonczak, Serge; Köstlmeier, Sibylle; Herrmann, Wolfgang A; Rösch, Notker
1998-09-04
A spiro attack on a peroxo group is calculated to be the preferred reaction pathway for olefin epoxidation with the catalytic system CH 3 ReO 3 /H 2 O 2 (see picture). This finding is supported by density functional calculations on more than ten transition states for the most probable mechanisms. Hydration has significant effects on various reaction species: it stabilizes the intermediates and destabilizes, with one exception, the transition states. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Ring-rearrangement metathesis of nitroso Diels-Alder cycloadducts.
Vincent, Guillaume; Kouklovsky, Cyrille
2011-03-01
Strained nitroso Diels-Alder bicyclo[2.2.1] or [2.2.2] adducts functionalized with alkene side chains of diverse length undergo a ring-rearrangement metathesis process with external alkenes and Grubbs II or Hoveyda-Grubbs II ruthenium catalysts, under microwave irradiation or classical heating, to deliver cis-fused bicycles of various ring sizes, which contain a N-O bond. These scaffolds are of synthetic relevance for the generation of molecular diversity and to the total synthesis of alkaloids. The observation of unexpected reactions, such as epimerization or one-carbon homologation of the alkene side chain, is also reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.
1997-09-01
In the oxidative conversion of natural gas to ethylene/lower olefins over SrO (17.3 wt.%)/La{sub 2}O{sub 3} (17.9 wt.%)/SA5205 catalyst diluted with inert solid particles (inerts/catalyst(w/w) = 2.0) in the presence of limited O{sub 2}, the exothermic oxidative conversion reactions of natural gas are coupled with the endothermic C{sub 2+} hydrocarbon thermal cracking reactions for avoiding hot spot formation and eliminating heat removal problems. Because of this, the process is operated in the most energy-efficient and safe manner. The influence of various process variables (viz. temperature, NG/O{sub 2} and steam/NG ratios in feed, and space velocity) on the conversion of carbonmore » and also of the individual hydrocarbons in natural gas, the selectivity for C{sub 2}-C{sub 4} olefins, and also on the net heat of reactions in the process has been thoroughly investigated. By carrying out the process at 800--850 C in the presence of steam (H{sub 2}O/NG {le} 0.2) and using limited O{sub 2} in the feed (NG/O{sub 2} = 12--18), high selectivity for ethylene (about 60%) or C{sub 2}-C{sub 4} olefins (above 80%) at the carbon conversion (>15%) of practical interest could be achieved at high space velocity ({ge}34,000 cm{sup 3}/g (catalyst) h), requiring no external energy and also without forming coke or tar-like products. The net heat of reactions can be controlled and the process can be made mildly exothermic or even close to thermoneutral by manipulating the O{sub 2} concentration in the feed.« less
Rapid solid-state metathesis route to transition-metal doped titanias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu
2015-12-15
Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganesemore » doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.« less
NASA Astrophysics Data System (ADS)
Nicovich, J. M.; Wine, P. H.; Mazumder, S.; Hatzis, G. P.; Jiang, M.
2016-12-01
Laser flash photolysis of Cl2CO/N2/CO2/X mixtures (X = CF3CH=CH2, E-CF3CH=CHCl, E-CF3CH=CHF, (CF3)2CHOCH3, and CF3CF2CH2OCH3), has been coupled with time-resolved detection of Cl atoms by atomic resonance fluorescence spectroscopy to study the kinetics of Cl + X reactions as a function of temperature (T) and pressure (P). The Cl + X reactions were chosen for study because (1) the compounds X are potentially useful substitutes for ozone depleting substances in practical applications, (2) literature results demonstrate that Cl + X reactions are 60-120 times faster than the corresponding OH + X reactions at ambient T and P, suggesting that reaction with Cl is a significant atmospheric loss process for the compounds X, and (3) to our knowledge, Cl + X kinetics have not previously been studied as functions of T and P. For the Cl + olefin reactions, falloff curves are measured over the approximate T ranges 220-300 K. At elevated temperatures, equilibrium constants are determined for Cl + olefin association/dissociation, thus allowing C-Cl bond strengths in the product haloalkyl radicals to be evaluated. Arrhenius expressions are determined for the (P-independent) Cl + ether reactions over the approximate range of T 200-500K. The Cl + CF3CF2CH2OCH3 reaction is quite fast and its rate coefficient is nearly independent of T. The Cl + (CF3)2CHOCH3 reaction is somewhat slower and has a non-Arrhenius T dependence.
NASA Astrophysics Data System (ADS)
Danyushevsky, V. Ya.; Murzin, V. Yu.; Kuznetsov, P. S.; Shamsiev, R. S.; Katsman, E. A.; Khramov, E. V.; Zubavichus, Y. V.; Berenblyum, A. S.
2018-01-01
Results on the conversion of stearic acid to olefins over Ni-Ag/γ-Al2O3 catalysts are presented. XANES and EXAFS experiments in situ and DFT calculations were applied to reveal the structure of active sites therein. It is shown that the introduction of Ag to Ni catalysts leads to an increase in the olefin yield. After a reduction in hydrogen (350°C, 3 h) alumina-supported nanoparticles of nickel sulfides and metallic Ag are formed. The role of metal hydrides formed during the reaction is extensively discussed.
Wang, Bo; Lu, Chengxi; Zhang, Shu-Yu; He, Gang; Nack, William A; Chen, Gong
2014-12-05
A method is reported for palladium-catalyzed N-quinolyl carboxamide-directed olefination of the unactivated C(sp(3))-H bonds of phthaloyl alanine with a broad range of vinyl iodides at room temperature. This reaction represents the first example of the stereoretentive installation of multisubstituted terminal and internal olefins onto unactivated C(sp(3))-H bonds. These methods enable access to a wide range of challenging β-vinyl α-amino acid products in a streamlined and controllable fashion, beginning from simple precursors.
Design of new disulfide-based organic compounds for the improvement of self-healing materials.
Matxain, Jon M; Asua, José M; Ruipérez, Fernando
2016-01-21
Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, diphenyl disulfide-based compounds (Ph2S2) appear to be among the best candidates to develop materials with optimum self-healing properties. However, few is known regarding both the reaction mechanism and the electronic structure that make possible such properties. In this vein, theoretical approaches are of great interest. In this work, we have carried out theoretical calculations on a wide set of different disulfide compounds, both aromatic and aliphatic, in order to elucidate the prevalent reaction mechanism and the necessary electronic conditions needed for improved self-healing properties. Two competitive mechanisms were considered, namely, the metathesis and the radical-mediated mechanism. According to our calculations, the radical-mediated mechanism is the responsible for this process. The formation of sulfenyl radicals strongly depends on the S-S bond strength, which can be modulated chemically by the use of proper derivatives. At this point, amino derivatives appear to be the most promising ones. In addition to the S-S bond strength, hydrogen bonding between disulfide chains seems to be relevant to favour the contact among disulfide units. This is crucial for the reaction to take place. The calculated hydrogen bonding energies are of the same order of magnitude as the S-S bond energies. Finally, reaction barriers have been analysed for some promising candidates. Two reaction mechanisms were compared, namely, the [2+2] metathesis reaction mechanism and the [2+1] radical-mediated mechanism. No computational evidence for the existence of any transition state for the metathesis mechanism was found, which indicates that the radical-mediated mechanism is the one responsible in the self-healing process of these materials. Interestingly, the calculated reaction barriers are around 10 kcal mol(-1) regardless the substituent employed. All these results suggest that the radical formation and the structural role of the hydrogen bonding prevale over kinetics. Having this in mind, as a conclusion, some new compounds are proposed for the design of future self-healing materials with improved features.
Pentavalent uranium trans-dihalides and -pseudohalides.
Lewis, Andrew J; Nakamaru-Ogiso, Eiko; Kikkawa, James M; Carroll, Patrick J; Schelter, Eric J
2012-05-21
Pentavalent uranium complexes of the formula U(V)X(2)[N(SiMe(3))(2)](3) (X = F(-), Cl(-), Br(-), N(3)(-), NCS(-)) are accessible from the oxidation of U(III)[N(SiMe(3))(2)](3) through two sequential, one-electron oxidation reactions (halides) and substitution through salt metathesis (pseudohalides). Uranium(v) mixed-halides are also synthesized by successive one-electron oxidation reactions.
Cobalt carbide nanoprisms for direct production of lower olefins from syngas
NASA Astrophysics Data System (ADS)
Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui
2016-10-01
Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer-Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson-Schulz-Flory distribution, which is characterized by a maximum C2-C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2-C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.
Lips, Sebastian; Frontana-Uribe, Bernardo Antonio; Dörr, Maurice; Schollmeyer, Dieter; Franke, Robert; Waldvogel, Siegfried R
2018-04-20
Heterobiaryls consisting of a phenol and a benzofuran motif are of significant importance for pharmaceutical applications. An attractive sustainable, metal- and reagent-free, electrosynthetic, and highly efficient method, that allows access to (2-hydroxyphenyl)benzofurans is presented. Upon the electrochemical dehydrogenative C-C cross-coupling reaction, a metathesis of the benzo moiety at the benzofuran occurs. This gives rise to a substitution pattern at the hydroxyphenyl moiety which would not be compatible by a direct coupling process. The single-step protocol is easy to conduct in an undivided electrolysis cell, therefore scalable, and inherently safe. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neutral Fe(IV) alkylidenes, including some that bind dinitrogen.
Lindley, Brian M; Jacobs, Brian P; MacMillan, Samantha N; Wolczanski, Peter T
2016-03-11
Neutral, formally Fe(IV) alkylidene species are sought as plausible olefin metathesis catalysts, and the synthesis of several is described herein. The complexes are prepared via nucleophilic attack (Nu = MeLi, PhCH2K, 2-picolyllithium, Me2PCH2Li, MePhPCH2Li, Ph2PCH2Li) at the imine of cationic [mer-{κ-C,N,C-(C6H4-yl)-2-CH=N(2-C6H4-C(iPr)=)}Fe(PMe3)3][B(3,5-CF3-C6H3)4]. In contrast, MeMgCl and mesityllithium displaced and deprotonated bound PMe3, respectively. Structural details are provided for mer-{κ-C,N,C-(C6H4-yl)-2-CH(Bn)N(2-C6H4-C(iPr))}Fe{trans-(PMe3)2}N2 and {κ-C,N,C,P-(C6H4-yl)-2-CH(CH2PMe2)N(2-C6H4-C(iPr)=)}Fe(PMe3)2.
C-Glycosyl Analogs of Oligosaccharides
NASA Astrophysics Data System (ADS)
Vauzeilles, Boris; Urban, Dominique; Doisneau, Gilles; Beau, Jean-Marie
This chapter covers the synthesis of a large collection of "C-oligosaccharides ", synthetic analogs of naturally occurring oligosaccharides in which a carbon atom replaces the anomeric, interglycosidic oxygen atom. These non-natural constructs are stable to chemical and enzymatic degradation, and are primarily devised to probe carbohydrate-based biological processes. These mainly target carbohydrate-protein interactions such as the modulation of glycoenzyme (glycosylhydrolases and transferases) activities or the design of ligands for lectin Carbohydrate Recognition Domains. The discussion is based on the key carbon-carbon bond assembling steps on carbohydrate templates: ionic (anionic and cationic chemistries, sigmatropic rearrangements) or radical assemblage, and olefin metathesis. Synthetic schemes in which at least one of the monosaccharide units is constructed by total synthesis or by cyclization of acyclic chiral chains are presented separately in a "partial de novo synthesis" section. The review also provides comments, when they are known, on the conformational and binding properties of these synthetic analogs, as well as their biological behavior when tested.
Sequence Effects in Conjugated Donor-Acceptor Trimers and Polymers.
Zhang, Shaopeng; Hutchison, Geoffrey R; Meyer, Tara Y
2016-06-01
To investigate the sequence effect on donor-acceptor conjugated oligomers and polymers, the trimeric isomers PBP and BPP, comprising dialkoxy phenylene vinylene (P), benzothiadiazole vinylene (B), and alkyl endgroups with terminal olefins, are synthesized. Sequence effects are evident in the optical/electrochemical properties and thermal properties. Absorption maxima for PBP and BPP differ by 41 nm and the electrochemical band gaps by 0.1 V. The molar emission intensity is five times greater in PBP than BPP. Both trimers are crystalline and the melting points differ by 17 °C. The PBP and BPP trimers are used as macromonomers in an acyclic diene metathesis polymerization to give PolyPBP and PolyBPP. The optical and electrochemical properties are similar to those of their trimer precursors-sequence effects are still evident. These results suggest that sequence is a tunable variable for electronic materials and that the polymerization of oligomeric sequences is a useful approach to introducing sequence into polymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins
NASA Astrophysics Data System (ADS)
Liu, Guosheng; Wu, Yichen
Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.
Living olefin polymerization processes
Schrock, Richard R.; Baumann, Robert
1999-01-01
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
Living olefin polymerization processes
Schrock, R.R.; Baumann, R.
1999-03-30
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
Living olefin polymerization processes
Schrock, Richard R.; Baumann, Robert
2003-08-26
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
Living olefin polymerization processes
Schrock, Richard R.; Bauman, Robert
2006-11-14
Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.
Coke formation and carbon atom economy of methanol-to-olefins reaction.
Wei, Yingxu; Yuan, Cuiyu; Li, Jinzhe; Xu, Shutao; Zhou, You; Chen, Jingrun; Wang, Quanyi; Xu, Lei; Qi, Yue; Zhang, Qing; Liu, Zhongmin
2012-05-01
The methanol-to-olefins (MTO) process is becoming the most important non-petrochemical route for the production of light olefins from coal or natural gas. Maximizing the generation of the target products, ethene and propene, and minimizing the production of byproducts and coke, are major considerations in the efficient utilization of the carbon resource of methanol. In the present work, the heterogeneous catalytic conversion of methanol was evaluated by performing simultaneous measurements of the volatile products generated in the gas phase and the confined coke deposition in the catalyst phase. Real-time and complete reaction profiles were plotted to allow the comparison of carbon atom economy of methanol conversion over the catalyst SAPO-34 at varied reaction temperatures. The difference in carbon atom economy was closely related with the coke formation in the SAPO-34 catalyst. The confined coke compounds were determined. A new type of confined organics was found, and these accounted for the quick deactivation and low carbon atom economy under low-reaction-temperature conditions. Based on the carbon atom economy evaluation and coke species determination, optimized operating conditions for the MTO process are suggested; these conditions guarantee high conversion efficiency of methanol. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of (±)-Tetrapetalone A-Me Aglycon**
Carlsen, Peter N.; Mann, Tyler J.; Hoveyda, Amir H.
2014-01-01
The first synthesis of (±)-tetrapetalone A-Me aglycon is described. Key bond-forming reactions include Nazarov cyclization, a ring-closing metathesis (RCM) promoted with complete diastereoselectivity by a chiral Mo-based complex, tandem conjugate reduction-intramolecular aldol cyclization, and oxidative dearomatization. PMID:25045072
Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions
2016-01-01
The [2 + 2] photocycloaddition is undisputedly the most important and most frequently used photochemical reaction. In this review, it is attempted to cover all recent aspects of [2 + 2] photocycloaddition chemistry with an emphasis on synthetically relevant, regio-, and stereoselective reactions. The review aims to comprehensively discuss relevant work, which was done in the field in the last 20 years (i.e., from 1995 to 2015). Organization of the data follows a subdivision according to mechanism and substrate classes. Cu(I) and PET (photoinduced electron transfer) catalysis are treated separately in sections 2 and 4, whereas the vast majority of photocycloaddition reactions which occur by direct excitation or sensitization are divided within section 3 into individual subsections according to the photochemically excited olefin. PMID:27018601
2015-01-01
A discontinuity exists between the importance of the cation–olefin reaction as the principal C–C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation–olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation–olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation–olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on reactions that combine an initiated cyclization reaction with a turnover defining β-hydride elimination, fluorination, and oxygenation. These latter demetalation schemes lead to new compounds functionalized at the C3 carbon of the A-ring (steroid numbering convention) and thus provide access to interesting potentially bioactive targets. Progress toward efficient and diverse polycyclization reactions has been achieved by investing in both synthetic challenges and fundamental organometallic reactivity. In addition to an interest in the entrance and exit of the metal catalyst from this reaction scheme, we have been intrigued by the role of neighboring group participation in the cyclase phase. Computational studies have served to provide nuance and clarity on several key aspects, including the role (and consequences) of neighboring group participation in cation generation and stabilization. For example, these calculations have demonstrated that traversing carbonium ion transition states significantly impacts the kinetics of competitive 6-endo and 5-exo A-ring forming reactions. The resulting nonclassical transition states then become subject to a portion of the strain energy inherent to bicyclic structures, with the net result being that the 6-endo pathway becomes kinetically favored for alkene nucleophiles, in contrast to heteroatom nucleophiles which progress through classical transition states and preferentially follow 5-exo pathways. These vignettes articulate our approach to achieving the desired catalyst control. PMID:24845777
Association of Ions and Fractional Crystallization.
ERIC Educational Resources Information Center
Scaife, Charles W. J.; Dubs, Richard L.
1983-01-01
Presents an experiment in which color is used as an additional characteristic when purifying and identifying crystals of two soluble salts obtained from a metathesis reaction. Indicates that the experiment has been used with both nonmajors and inorganic chemistry students in at least their third term. (JN)
Li, Ying; Hu, Yuan-Yuan; Zhang, Song-Lin
2013-11-21
The utility of allylsamarium bromide, both as a nucleophilic reagent and a single-electron transfer reagent, in the reaction of carbonyl compounds with allylsamarium bromide in the presence of diethyl phosphate is reported in this communication. From a synthetic point of view, a simple one-pot method for the preparation of terminal olefins is developed.
Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study
Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon
2018-01-17
A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less
Cooperative Metal+Ligand Oxidative Addition and Sigma-Bond Metathesis: A DFT Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Kent G.; Cundari, Thomas R.; Gary, J. Brannon
A computational study of the experimentally proposed mechanism of alkyne diboration by a PDICo complex yielded two fundamental catalytic steps that undergo remarkable electronic changes, PDI = bis(imino)-pyridine. The reactions are envisaged via DFT (density functional theory) and MCSCF (multi-configuration self-consistent field) simulations as (i) a cooperative metal+ligand oxidative addition, and (ii) a sigma-bond metathesis induced ligand-to-metal charge transfer. Analysis of the bonding of pertinent intermediates/TSs also yielded important insight that may be illuminating with regards to the larger field of green catalysis that seeks to ennoble base metals through synergy with potentially redox non-innocent (RNI) ligands. For the presentmore » case, massive changes in electronic structure do not incur massive energetic penalties. Finally, in conjunction with previous research, one may postulate that structural and energetic “fluidity” among several electronic states of RNI-M 3d along the reaction coordinate is an essential signature of redox cooperativity and thus ennoblement.« less
Direct, enantioselective α-alkylation of aldehydes using simple olefins.
Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C
2017-11-01
Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.
Direct, enantioselective α-alkylation of aldehydes using simple olefins
Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.
2017-01-01
Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons. PMID:29064486
Direct, enantioselective α-alkylation of aldehydes using simple olefins
NASA Astrophysics Data System (ADS)
Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.
2017-11-01
Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.
Parameters governing ruthenium sawhorse-based decarboxylation of oleic acid
USDA-ARS?s Scientific Manuscript database
Ruthenium-catalyzed decarboxylation of 9-cisoctadecenoic is a path to produce biobased olefins. Here, a mechanistic study of this reaction was undertaken utilizing a closed reaction system and a pressure reactor. The proposed mechanism of an isomerization followed by a decarboxylation reaction was c...
NASA Astrophysics Data System (ADS)
Kusari, Upal
The goal of the work described in this dissertation was two-fold: (1) To use the unique properties of ionic liquids to develop new synthetic routes to boron-containing molecules including substituted decaboranes, ortho-carboranes and chalcogeno-boranes, and (2) to combine newly developed chemical precursors with template routes to fabricate the non-oxide ceramics boron carbide, silicon carbide and boron nitride on the micro- and nano-scales. The first application of ionic liquid and related salt systems to the hydroboration of a variety of olefins with the polyborane cage B10H 14, leading to the syntheses of functionalized decaborane clusters, 6-R-B10H13, was demonstrated. The decaborane olefin-hydroboration reaction was found to proceed with a wide variety of functional olefins, including, alkenyl, halide, phenyl, ether, ester, pinacolborane, ketone and alcohol-containing olefins. These reactions provide a general, simple, one-pot and high-yield alternative route to functional boranes. The functional decaboranes were then converted by another ionic liquid mediated reaction, to its ortho -carborane derivatives 3-R-1,2-Et2C2B 10H9. Experimental and computational studies of the hydroboration mechanism suggest that the ionic liquid induced the formation of the B 10H13- anion which behaved as an electrophile in the olefin-hydroboration reaction. The unique properties of ionic liquids were also found to be useful in mediating the insertion of chalcogen heteroatoms into the borane clusters nido-B10H14, nido-5,6-C2B8H12 and arachno -4-CB8H14 and led to the improved syntheses of the known compounds nido-7-SB10H12, nido-7-SeB10H12, nido-7,9,10-SC 2B8H10, nido-7,9,10-SeC 2B8H10 and arachno-6,9-CSB 8H12, as well as the synthesis of the new 10-vertex selena-monocarbaborane arachno-6,9-CSeB8H12 (˜40% yield). The second part of the thesis demonstrated that newly developed chemical precursors can be used in conjunction with silica bead and diatom frustule templates to generate highly uniform, nanoporous layered materials and 3-D, free-standing nano- and micro-structures of boron carbide, boron nitride and silicon carbide. The retention of structural features on the micron and nanometer length scales, allowed the fabrication of advanced materials with a range of potential applications, as shown by the production of a SiC/BN-microbasket composite using the frustule template-derived boron nitride replicas.
Arene-chromium tricarbonyl complexes in the Pauson-Khand reaction.
Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Pérez-Castells, Javier
2005-12-09
[reactions: see text] We show the use of arene-chromium tricarbonyl complexes in intra- and intermolecular Pauson-Khand reactions. Both styrene and ethynylbenzene complexes react with alkynes and olefins. The synthesis of enynes connected through chromium-complexed aromatic rings is developed. The intramolecular Pauson-Khand reaction occurs in a totally diastereoselective manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.
2016-04-01
In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found tomore » produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between isobutene production and the ratio of basic/acidic sites was demonstrated. An optimized balance of active sites for isobutene production from acetone was obtained with a basic/acidic site ratio of ~2. This technology for the conversion of aqueous mixtures of C2+ mixed oxygenates provides significant advantages over other presently studied catalysts in that its unique properties permit the utilization of a variety of feeds in a consistently selective manner.« less
Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, C.W.
Previous research has suggested that using a more effective hydrogen donor solvent in the low severity coal liquefaction reaction improves coal conversion. In order to understand the results of these methods, both independently and combined, a factorial experiment was designed. Pretreating coal with hydrochloric and sulfurous acid solutions in both water and methanol is compared with pretreating coal using only methanol and with no pretreatment. The effects of these pretreatments on coal liquefaction behavior are contrasted with the ammonium acetate pretreatment. Within each of these, individual reactions are performed with the hydroaromatic 1,2,3,4-tetrahydronaphthalene (tetralin, TET) and the cyclic olefin 1,4,5,8-tetrahydronaphthalenemore » (isotetralin, ISO). The final aspect of the factorial experiment is the comparison of Wyodak subbituminous coal (WY) from the Argonne Premium Sample Bank and Black Thunder subbituminous coal (BT) provided by Amoco. Half of the reactions in the matrix have now been completed. In all but one case, Black Thunder-HCl/H{sub 2}O, the ISO proved to be more reactive than TET. After the other four reactions using this combination are complete, the average conversion may be greater with the cyclic olefin. The second part of this paper describes the current and future work with Fourier transform infrared spectroscopy. The objective of this work is to determine the kinetics of reaction of isotetralin at high temperatures and pressures. This quarter combinations of three products typically produced from isotetralin were used in spectral subtraction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taborga Claure, Micaela; Morrill, Michael R.; Goh, Jin Wai
2016-01-01
Reaction pathways for higher alcohol synthesis from syngas are studied over K/MoS 2domains supported on mesoporous carbon (C) and mixed MgAl oxide (MMO)viaaddition of methanol, ethanol, and ethylene co-feeds.
Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.
Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi
2016-09-19
Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recruiting the Students to Fight Cancer: Total Synthesis of Goniothalamin
ERIC Educational Resources Information Center
Nahra, Fady; Riant, Olivier
2015-01-01
A modified total synthesis of (S)-goniothalamin is described for an advanced course in organic chemistry. This experiment gives students an opportunity to handle organometallic reagents and perform an enzymatic kinetic resolution and a metathesis reaction, all in the same synthesis. Furthermore, students learn flame-drying techniques for the…
Rhodium Phosphine-π-Arene Intermediates in the Hydroamination of Alkenes
Liu, Zhijian; Yamamichi, Hideaki; Madrahimov, Sherzod T.; Hartwig, John F.
2011-01-01
A detailed mechanistic study of the intramolecular hydroamination of alkenes with amines catalyzed by rhodium complexes of a biaryldialkylphosphine are reported. The active catalyst is shown to contain the phosphine ligand bound in a κ1, η6 form in which the arene is π-bound to rhodium. Addition of deuterated amine to an internal olefin showed that the reaction occurs by trans addition of the N-H bond across the C=C bond, and this stereochemistry implies that the reaction occurs by nucleophilic attack of the amine on a coordinated alkene. Indeed, the cationic rhodium fragment binds the alkene over the secondary amine, and the olefin complex was shown to be the catalyst resting state. The reaction was zero-order in substrate, when the concentration of olefin was high, and a primary isotope effect was observed. The primary isotope effect, in combination with the observation of the alkene complex as the resting state, implies that nucleophilic attack of the amine on the alkene is reversible and is followed by turnover-limiting protonation. This mechanism constitutes an unusual pathway for rhodium-catalyzed additions to alkenes and is more closely related to the mechanism for palladium-catalyzed addition of amide N-H bonds to alkenes. PMID:21309512
High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis
NASA Astrophysics Data System (ADS)
Röttger, Max; Domenech, Trystan; van der Weegen, Rob; Breuillac, Antoine; Nicolaÿ, Renaud; Leibler, Ludwik
2017-04-01
Windmills, cars, and dental restoration demand polymer materials and composites that are easy to process, assemble, and recycle while exhibiting outstanding mechanical, thermal, and chemical resistance. Vitrimers, which are polymer networks able to shuffle chemical bonds through exchange reactions, could address these demands if they were prepared from existing plastics and processed with fast production rates and current equipment. We report the metathesis of dioxaborolanes, which is rapid and thermally robust, and use it to prepare vitrimers from polymers as different as poly(methyl methacrylate), polystyrene, and high-density polyethylene that, although permanently cross-linked, can be processed multiple times by means of extrusion or injection molding. They show superior chemical resistance and dimensional stability and can be efficiently assembled. The strategy is applicable to polymers with backbones made of carbon-carbon single bonds.
Effect of Feedstock and Catalyst Impurities on the Methanol‐to‐Olefin Reaction over H‐SAPO‐34
Vogt, Charlotte; Ruiz‐Martínez, Javier
2016-01-01
Abstract Operando UV/Vis spectroscopy with on‐line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H‐SAPO‐34 as a methanol‐to‐olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mechanisms. In the presence of low amounts of feed impurities, the induction and active periods of the process are prolonged. Feed impurities are thus beneficial in the formation of the initial hydrocarbon pool, but also aid in the unwanted formation of deactivating coke species by a separate, competing mechanism favoring coke species over olefins. Further, feedstock impurities strongly influence the location of coke deposits, and thus influence the deactivation mechanism, whereas a study of the organic impurities retained after calcination reveals that these species are less relevant for catalyst activity and function as “seeds” for coke formation only. PMID:28163792
Design of highly selective ethanol dehydration nanocatalysts for ethylene production.
Austin, Natalie; Kostetskyy, Pavlo; Mpourmpakis, Giannis
2018-02-22
Rational design of catalysts for selective conversion of alcohols to olefins is key since product selectivity remains an issue due to competing etherification reactions. Using first principles calculations and chemical rules, we designed novel metal-oxide-protected metal nanoclusters (M 13 X 4 O 12 , with M = Cu, Ag, and Au and X = Al, Ga, and In) exhibiting strong Lewis acid sites on their surface, active for the selective formation of olefins from alcohols. These symmetrical nanocatalysts, due to their curvature, show unfavorable etherification chemistries, while favoring the olefin production. Furthermore, we determined that water removal and regeneration of the nanocatalysts is more feasible compared to the equivalent strong acid sites on solid acids used for alcohol dehydration. Our results demonstrate an exceptional stability of these new nanostructures with the most energetically favorable being Cu-based. Thus, the high selectivity and stability of these in-silico-predicted novel nanoclusters (e.g. Cu 13 Al 4 O 12 ) make them attractive catalysts for the selective dehydration of alcohols to olefins.
NASA Astrophysics Data System (ADS)
Liu, Qing; Wen, Dafen; Yang, Yanran; Fei, Zhaoyang; Zhang, Zhuxiu; Chen, Xian; Tang, Jihai; Cui, Mifen; Qiao, Xu
2018-03-01
Hierarchical porous ZSM-5 (HP-ZSM-5) zeolites were synthesized by hydrothermal crystallization method adding triethoxyvinylsilane as the growth-inhibitor at different hydrothermal crystallized temperatures. The properties of the obtained samples were characterized by XRD, SEM, N2-sorption, uptake of ethylene, 27Al MAS NMR, NH3-TPD, and Py-IR. It was found that the mesopore was introduced and the acidity was adjusted over HP-ZSM-5 samples successfully. The hydrothermal crystallized temperature had an important influence on the porous structure and surface properties. The catalytic performance for chloromethane to light-olefins (CMTO) were also investigated. Compared with ZSM-5 samples, HP-ZSM-5 samples exhibited enhanced stability and increased selectivity of light-olefins for CMTO reaction because of the introduction of the abundant mesopore and appropriate acidity. The lifetime (the duration of chloromethane conversion >98%) and selectivity of light-olefins reached 115 h and 69.3%, respectively.
Extension of the bambus[n]uril family: microwave synthesis and reactivity of allylbambus[n]urils.
Rivollier, Julie; Thuéry, Pierre; Heck, Marie-Pierre
2013-02-01
Microwave irradiations allow the preparation of unsaturated bambusurils in 85% yield compared to 20% yield under classical reaction conditions. Five new bambusurils were synthesized including unsaturated derivatives Allyl(8)BU[4] and Allyl(12)BU[6] bearing diallylglycoluril units. The reactivity of Allyl(8)BU[4] was tested in a variety of organic reactions showing that this macrocycle acts as a classical double bond-bearing product. The first monofunctionalized bambusuril Allyl(7)HepBU[4] prepared by a cross metathesis reaction is also reported.
Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts
Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.; ...
2015-12-01
Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less
Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.
Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less
Base catalyzed synthesis of bicyclo[3.2.1]octane scaffolds.
Boehringer, Régis; Geoffroy, Philippe; Miesch, Michel
2015-07-07
The base-catalyzed reaction of achiral 1,3-cyclopentanediones tethered to activated olefins afforded in high yields bicyclo[3.2.1]octane-6,8-dione or bicyclo[3.2.1]octane-6-carboxylate derivatives bearing respectively three or five stereogenic centers. The course of the reaction is closely related to the reaction time and to the base involved in the reaction.
Dake, Gregory R; Fenster, Erik E; Patrick, Brian O
2008-09-05
A synthetic approach to the A-B ring system within the fusicoccane family of diterpenes is presented. Key steps in this approach are a diastereoselective Pauson-Khand reaction, a Norrish 1 photofragmentation, a Charette cyclopropanation, and a ring-closing metathesis process.
O'Neill, Paul M; Mukhtar, Amira; Ward, Stephen A; Bickley, Jamie F; Davies, Jill; Bachi, Mario D; Stocks, Paul A
2004-09-02
[reaction: see text] Thiol-olefin co-oxygenation (TOCO) of substituted allylic alcohols generates alpha-hydroxyperoxides that can be condensed in situ with various ketones to afford a series of functionalized 1,2,4-trioxanes in good yields. Manipulation of the phenylsulfenyl group in 4a allows for convenient modification to the spiro-trioxane substituents, and we describe, for the first time, the preparation of a new class of antimalarial prodrug.
Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen
2015-02-21
A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO.
Carraher, Jack M; Pestovsky, Oleg; Bakac, Andreja
2012-05-21
Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe(3+) in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe(2+). The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe(2+). The photochemistry in the presence of halide ions (X(-) = Cl(-), Br(-)) generates ethyl halides via halogen atom abstraction from FeX(n)(3-n) by ethyl radicals. Near-quantitative yields of C(2)H(5)X are obtained at ≥0.05 M X(-). Competition experiments with Co(NH(3))(5)Br(2+) provided kinetic data for the reaction of ethyl radicals with FeCl(2+) (k = (4.0 ± 0.5) × 10(6) M(-1) s(-1)) and with FeBr(2+) (k = (3.0 ± 0.5) × 10(7) M(-1) s(-1)). Photochemical decarboxylation of propionic acid in the presence of Cu(2+) generates ethylene and Cu(+). Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu(+) to Cu(2+), and removes gaseous olefins to prevent accumulation of Cu(+)(olefin) complexes and depletion of Cu(2+). The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.
Development of a Terpenoid Alkaloid-like Compound Library Based on the Humulene Skeleton.
Kikuchi, Haruhisa; Nishimura, Takehiro; Kwon, Eunsang; Kawai, Junya; Oshima, Yoshiteru
2016-10-24
Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp 3 -rich terpenoid scaffolds and nitrogen-containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid-like compounds based on Lewis-acid-catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid-like compound library has a high level of three-dimensional-shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid-like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid-like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gantner, Martin; Schwarzmann, Günter; Sandhoff, Konrad; Kolter, Thomas
2014-12-01
Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Amino Acid Degradations Produced by Lipid Oxidation Products.
Hidalgo, Francisco J; Zamora, Rosario
2016-06-10
Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.
Phosphine-alkene ligands as mechanistic probes in the Pauson-Khand reaction.
Ferrer, Catalina; Benet-Buchholz, Jordi; Riera, Antoni; Verdaguer, Xavier
2010-07-26
An alkyne tetracarbonyl dicobalt complex with a chelated phosphine-alkene ligand, in which the phosphorus atom and the alkene from the ligand are attached to the same cobalt atom has been prepared, isolated, and characterized by X-ray crystallography. The complex serves as a mechanistic model for an intermediate of the Pauson-Khand (PK) reaction. Although the alkene fragment is located in an equatorial coordination site with an appropriate orientation, and, therefore, should undergo insertion, it failed to give the PK product upon either thermal or N-methylmorpholine N-oxide activation. However, a phosphine-alkene complex that contains a terminal alkene readily provided the corresponding PK product. We attribute this change in reactivity to the different ability of each olefin to undergo 1,2-insertion. These results provide further insights into the factors that govern a crucial step in the PK reaction, the olefin insertion.
Catalyst–Controlled C–O versus C–N Allylic Functionalization of Terminal Olefins
Strambeanu, Iulia I.; White, M. Christina
2014-01-01
The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid co-catalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin isomerization/oxidative amination. PMID:23855956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Anthuvan John, E-mail: quantajohn@gmail.com; Banu, I. B. Shameem
2015-06-24
Optically efficient europium activated alkaline earth metal tungstate nano phosphor (SrWO{sub 4}) with different doping concentrations have been synthesized by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The XRD and Raman spectra results indicated that the prepared powders exhibit a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 854 cm{sup −1}, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO{sub 4}]{sup 2−} tetrahedron groups. Analysis of the emission spectra with different Eu{sup 3+} concentrations revealed that the optimum dopant concentration for SrWO{sub 4}: x Eu{sup 3+} phosphormore » is about 8 mol% of Eu{sup 3+}.The red emission intensity of the SSM prepared SrWO{sub 4}: 0.08Eu{sup 3+} phosphors are 2 times greater than that of the commercial Y{sub 2}O{sub 2}S: Eu{sup 3+} red phosphor prepared by the conventional solid state reaction method. All the results indicate that the phosphor is a promising red phosphor pumped by NUV InGaN chip for fabricating WLED.« less
Du, Xueqiong; Sun, Yue; Zhang, Mingzu; He, Jinlin; Ni, Peihong
2017-04-26
Polyphosphoesters (PPEs), as potential candidates for biocompatible and biodegradable polymers, play an important role in material science. Various synthetic methods have been employed in the preparation of PPEs such as polycondensation, polyaddition, ring-opening polymerization, and olefin metathesis polymerization. In this study, a series of linear PPEs has been prepared via one-step Michael addition polymerization. Subsequently, camptothecin (CPT) derivatives containing disulfide bonds and azido groups were linked onto the side chain of the PPE through Cu(I)-catalyzed azidealkyne cyclo-addition "click" chemistry to yield a reduction-responsive polymeric prodrug P(EAEP-PPA)-g-ss-CPT. The chemical structures were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared, ultraviolet-visible spectrophotometer, and high performance liquid chromatograph analyses, respectively. The amphiphilic prodrug could self-assemble into micelles in aqueous solution. The average particle size and morphology of the prodrug micelles were measured by dynamic light scattering and transmission electron microscopy, respectively. The results of size change under different conditions indicate that the micelles possess a favorable stability in physiological conditions and can be degraded in reductive medium. Moreover, the studies of in vitro drug release behavior confirm the reduction-responsive degradation of the prodrug micelles. A methyl thiazolyl tetrazolium assay verifies the good biocompatibility of P(EAEP-PPA) not only for normal cells, but also for tumor cells. The results of cytotoxicity and the intracellular uptake about prodrug micelles further demonstrate that the prodrug micelles can efficiently release CPT into 4T1 or HepG2 cells to inhibit the cell proliferation. All these results show that the polyphosphoester-based prodrug can be used for triggered drug delivery system in cancer treatment.
Computational study of productive and non-productive cycles in fluoroalkene metathesis.
Rybáčková, Markéta; Hošek, Jan; Šimůnek, Ondřej; Kolaříková, Viola; Kvíčala, Jaroslav
2015-01-01
A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda-Grubbs 2(nd) generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues.
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-06-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.
On the track to silica-supported tungsten oxo metathesis catalysts: input from 17O solid-state NMR.
Merle, Nicolas; Girard, Guillaume; Popoff, Nicolas; De Mallmann, Aimery; Bouhoute, Yassine; Trébosc, Julien; Berrier, Elise; Paul, Jean-François; Nicholas, Christopher P; Del Rosal, Iker; Maron, Laurent; Gauvin, Régis M; Delevoye, Laurent; Taoufik, Mostafa
2013-09-03
The grafting of an oxo chloro trisalkyl tungsten derivative on silica dehydroxylated at 700 °C was studied by several techniques that showed reaction via W-Cl cleavage, to afford a well-defined precatalyst for alkene metathesis. This was further confirmed by DFT calculations on the grafting process. (17)O labeling of the oxo moiety of a series of related molecular and supported tungsten oxo derivatives was achieved, and the corresponding (17)O MAS NMR spectra were recorded. Combined experimental and theoretical NMR studies yielded information on the local structure of the surface species. Assessment of the (17)O NMR parameters also confirmed the nature of the grafting pathway by ruling out other possible grafting schemes, thanks to highly characteristic anisotropic features arising from the quadrupolar and chemical shift interactions.
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-01-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559
Synthesis of rhenium nitride crystals with MoS2 structure
NASA Astrophysics Data System (ADS)
Kawamura, Fumio; Yusa, Hitoshi; Taniguchi, Takashi
2012-06-01
Rhenium nitride (ReN2) crystals were synthesized from a metathesis reaction between ReCl5 and Li3N under high pressure. The reaction was well controlled by the addition of a large amount of NaCl as reaction inhibitor to prevent a violent exothermic reaction. The largest rhenium nitride crystals obtained had a millimeter-order size with a platelet shape. X-ray diffraction analysis revealed that rhenium nitride has MoS2 structure similar to hexagonal rhenium diboride (ReB2) which has recently been investigated as an ultra-hard material. The structure was different from any structures previously predicted for ReN2 by theoretical calculations.
Development of a Lewis Base Catalyzed Selenocyclization Reaction
ERIC Educational Resources Information Center
Collins, William
2009-01-01
The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…
Vatansever, Fatma; Hamblin, Michael R.
2016-01-01
Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original trioctylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm. PMID:28360819
Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A
2017-08-04
The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.
Saptal, Vitthal B; Bhanage, Bhalchandra M
2016-08-09
In this report, the activity of N-heterocyclic olefins (NHOs) as a newly emerging class of organocatalyst is investigated for the chemical fixation of carbon dioxide through reactions with aziridines to form oxazolidinones and the N-formylation of amines with polymethylhydrosiloxane (PMHS) or 9-borabicyclo[3.3.1]nonane (9-BBN) as the reducing agent under mild conditions. The exocyclic carbon atoms of NHOs are highly nucleophilic owing to the electron-donating ability of the two nitrogen atoms. This high nucleophilicity of the NHOs activates CO2 molecules to form zwitterionic NHO-carboxylate (NHO-CO2 ) adducts, which are active in formylation reactions as well as the carboxylation of aziridines to oxazolidinones. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arnold, Jeffrey S; Mwenda, Edward T; Nguyen, Hien M
2014-04-01
Dynamic kinetic asymmetric amination of branched allylic acetimidates has been applied to the synthesis of 2-alkyl-dihydrobenzoazepin-5-ones. These seven-membered-ring aza ketones are prepared in good yield with high enantiomeric excess by rhodium-catalyzed allylic substitution with 2-amino aryl aldehydes followed by intramolecular olefin hydroacylation of the resulting alkenals. This two-step procedure is amenable to varied functionality and proves useful for the enantioselective preparation of these ring systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Findlater, Michael; Cartwright-Sykes, Alison; White, Peter S; Schauer, Cynthia K; Brookhart, Maurice
2011-08-10
Syntheses of the olefin hydride complexes [(POCOP)M(H)(olefin)][BAr(f)(4)] (6a-M, M = Ir or Rh, olefin = C(2)H(4); 6b-M, M = Ir or Rh, olefin = C(3)H(6); POCOP = 2,6-bis(di-tert-butylphosphinito)benzene; BAr(f) = tetrakis(3,5-trifluoromethylphenyl)borate) are reported. A single-crystal X-ray structure determination of 6b-Ir shows a square-pyramidal coordination geometry for Ir, with the hydride ligand occupying the apical position. Dynamic NMR techniques were used to characterize these complexes. The rates of site exchange between the hydride and the olefinic hydrogens yielded ΔG(++) = 15.6 (6a-Ir), 16.8 (6b-Ir), 12.0 (6a-Rh), and 13.7 (6b-Rh) kcal/mol. The NMR exchange data also established that hydride migration in the propylene complexes yields exclusively the primary alkyl intermediate arising from 1,2-insertion. Unexpectedly, no averaging of the top and bottom faces of the square-pyramidal complexes is observed in the NMR spectra at high temperatures, indicating that the barrier for facial equilibration is >20 kcal/mol for both the Ir and Rh complexes. A DFT computational study was used to characterize the free energy surface for the hydride migration reactions. The classical terminal hydride complexes, [M(POCOP)(olefin)H](+), are calculated to be the global minima for both Rh and Ir, in accord with experimental results. In both the Rh ethylene and propylene complexes, the transition state for hydride migration (TS1) to form the agostic species is higher on the energy surface than the transition state for in-place rotation of the coordinated C-H bond (TS2), while for Ir, TS2 is the high point on the energy surface. Therefore, only for the case of the Rh complexes is the NMR exchange rate a direct measure of the hydride migration barrier. The trends in the experimental barriers as a function of M and olefin are in good agreement with the trends in the calculated exchange barriers. The calculated barriers for the hydride migration reaction in the Rh complexes are ∼2 kcal/mol higher than for the Ir complexes, despite the fact that the energy difference between the olefin hydride ground state and the agostic alkyl structure is ∼4 kcal/mol larger for Ir than for Rh. This feature, together with the high barrier for interchange of the top and bottom faces of the complexes, is proposed to arise from the unique coordination geometry of the agostic complexes and the strong preference for a cis-divacant octahedral geometry in four-coordinate intermediates. © 2011 American Chemical Society
Zhang, Weiyi; Yuan, Jiayin
2016-07-01
Herein, the synthesis of a series of poly(4-alkyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid)s is reported either via straightforward free radical polymerization of their corresponding ionic liquid monomers or via anion metathesis of the polymer precursors bearing halide as counter anion. The ionic liquid monomers are first prepared via N-alkylation reaction of commercially available 1-vinyl-1,2,4-triazole with alkyl iodides, followed by anion metathesis with targeted fluorinated anions. The thermal properties and solubilities of these poly(ionic liquid)s have been systematically investigated. Interestingly, it is found that the poly(4-ethyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid) exhibited an improved loading capacity of transition metal ions in comparison with its imidazolium counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Imamoglu, Yavuz; Aydogdu, Cemil; Karabulut, Solmaz; Düz, Bülent
In the last 20 years metal atom-containing polymers have become important classes of polymers [1]. Properties like high thermic stability, electric, and photo conductometry make them very interesting for producing films, fibers, and coating [2]. Many of these compounds can be synthesized by conventional methods [3]. For producing metal-containing polymers anionic, cationic, and radicalic polymerizations were used [4-6]. Metal-containing polymers were also synthesized via acyclic diene metathesis (ADMET) polymerization that is facilitated by Schrock’s molybdenum alkylidene, or Grubbs’ ruthenium carbene catalyst [7-9]. In 1979, Gilet and coworkers succeeded in synthesizing metathetically active species from electrochemical reduction of WCl6 and MoCl5 [10,11]. In the light of these works, we have showed that electrochemically generated tungsten-based active species (WCl6-e--Al-CH2Cl2) catalyzes various metathesis-related reactions [12-16].
Paderes, Monissa C.; Belding, Lee; Fanovic, Branden; Dudding, Travis; Keister, Jerome B.
2012-01-01
Alkene difunctionalization reactions are important in organic synthesis. We have recently shown that copper(II) complexes can promote and catalyze intramolecular alkene aminooxygenation, carboamination, and diamination reactions. In this contribution, we report a combined experimental and theoretical examination of the mechanism of the copper(II)-promoted olefin aminooxygenation reaction. Kinetics experiments revealed a mechanistic pathway involving an equilibrium reaction between a copper(II) carboxylate complex and the γ-alkenyl sulfonamide substrate and a rate-limiting intramolecular cis-addition of N–Cu across the olefin. Kinetic isotope effect studies support that the cis-aminocupration is the rate-determining step. UV/Vis spectra support a role for the base in the break-up of copper(II) carboxylate dimer to monomeric species. Electron paramagnetic resonance (EPR) spectra provide evidence for a kinetically competent N–Cu intermediate with a CuII oxidation state. Due to the highly similar stereochemical and reactivity trends among the CuII-promoted and catalyzed alkene difunctionalization reactions we have developed, the cis-aminocupration mechanism can reasonably be generalized across the reaction class. The methods and findings disclosed in this report should also prove valuable to the mechanism analysis and optimization of other copper(-II) carboxylate promoted reactions, especially those that take place in aprotic organic solvents. PMID:22237868
Zhao, Jincan; Fang, Hong; Han, Jianlin; Pan, Yi
2014-05-02
Cu-catalyzed dehydrogenation-olefination and esterification of C(sp(3))-H bonds of cycloalkanes with TBHP as an oxidant has been developed. The reaction involves four C-H bond activations and gives cycloallyl ester products directly from cycloalkanes and aromatic aldehydes.
ERIC Educational Resources Information Center
Wamser, Carl C.; Scott, Lawrence T.
1985-01-01
Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)
Microwave-Assisted Debromination of α-Bromoketones with Triarylstibanes in Water.
Murata, Yuki; Sugawara, Yoshiyuki; Matsumura, Mio; Kakusawa, Naoki; Yasuike, Shuji
2017-01-01
Several α-bromoarylketones were reacted with triarylstibanes under microwave irradiation in water to obtain the corresponding debrominated ketones. Under similar reaction conditions, 1,2-elimination of vic-dibromides in water afforded the corresponding E-olefins. This reaction is the first example of organoantimony compounds utilized for organic transformation in water.
Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.
Borkar, Santosh Ramdas; Aidhen, Indrapal Singh
2017-04-18
Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.
Catalysts for low-energy aldehyde processes
NASA Technical Reports Server (NTRS)
Gupta, A.; Rembaum, A.; Frazier, C.; Gray, H. B.
1977-01-01
Photochemical reaction of dicobalt octacarbonyl with polymeric support systems results in formation of polymer bonded metal catalyst. Catalyst is used in hydroformylation (addition of carbon dioxide and hydrogen) of olefins to yield aldehydes.
Breaking the regioselectivity rule for acrylate insertion in the Mizoroki-Heck reaction.
Wucher, Philipp; Caporaso, Lucia; Roesle, Philipp; Ragone, Francesco; Cavallo, Luigi; Mecking, Stefan; Göttker-Schnetmann, Inigo
2011-05-31
In modern methods for the preparation of small molecules and polymers, the insertion of substrate carbon-carbon double bonds into metal-carbon bonds is a fundamental step of paramount importance. This issue is illustrated by Mizoroki-Heck coupling as the most prominent example in organic synthesis and also by catalytic insertion polymerization. For unsymmetric substrates H(2)C = CHX the regioselectivity of insertion is decisive for the nature of the product formed. Electron-deficient olefins insert selectively in a 2,1-fashion for electronic reasons. A means for controlling this regioselectivity is lacking to date. In a combined experimental and theoretical study, we now report that, by destabilizing the transition state of 2,1-insertion via steric interactions, the regioselectivity of methyl acrylate insertion into palladium-methyl and phenyl bonds can be inverted entirely to yield the opposite "regioirregular" products in stoichiometric reactions. Insights from these experiments will aid the rational design of complexes which enable a catalytic and regioirregular Mizoroki-Heck reaction of electron-deficient olefins.
Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.
Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia
2015-12-21
Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes
NASA Astrophysics Data System (ADS)
Ahuja, Ritu; Punji, Benudhar; Findlater, Michael; Supplee, Carolyn; Schinski, William; Brookhart, Maurice; Goldman, Alan S.
2011-02-01
Aromatic hydrocarbons are among the most important building blocks in the chemical industry. Benzene, toluene and xylenes are obtained from the high temperature thermolysis of alkanes. Higher alkylaromatics are generally derived from arene-olefin coupling, which gives branched products—that is, secondary alkyl arenes—with olefins higher than ethylene. The dehydrogenation of acyclic alkanes to give alkylaromatics can be achieved using heterogeneous catalysts at high temperatures, but with low yields and low selectivity. We present here the first catalytic conversion of n-alkanes to alkylaromatics using homogeneous or molecular catalysts—specifically ‘pincer’-ligated iridium complexes—and olefinic hydrogen acceptors. For example, the reaction of n-octane affords up to 86% yield of aromatic product, primarily o-xylene and secondarily ethylbenzene. In the case of n-decane and n-dodecane, the resulting alkylarenes are exclusively unbranched (that is, n-alkyl-substituted), with selectivity for the corresponding o-(n-alkyl)toluene.
Immobilization of molecular catalysts in supported ionic liquid phases.
Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk
2010-09-28
In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.
Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye
2013-10-11
One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computational chemistry and aeroassisted orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.
1985-01-01
An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.
Li, Yi; Xu, Ming-Hua
2014-05-16
The first Rh-catalyzed asymmetric tandem cyclization of nitrogen- or oxygen-bridged 5-alkynones with arylboronic acids was achieved. The simple catalytic system involving a rhodium(I) complex with readily available chiral BINAP ligand promotes the reaction to proceed in a highly stereocontrolled manner. This protocol provides a very reliable and practical access to a variety of chiral heterocyclic tertiary allylic alcohols possessing a tetrasubstituted carbon stereocenter and an all-carbon tetrasubstituted olefin functionality in good yields with great enantioselectivities up to 99% ee.
Victor, Napoleon John; Gana, Janardhanan; Muraleedharan, Kannoth Manheri
2015-10-12
This report introduces N-methylpyrrolidone hydroperoxide (NMPOOH)/base as an excellent reagent system for hydroxy-directed syn selective epoxidation of electron-deficient olefins, characterized by high diastereoselectivity, short reaction times and remarkable chemoselectivity, especially in presence of oxidatively labile nitrogen or sulfur atoms. NMPOOH also proves efficient in the oxidation of electron-deficient aromatic aldehydes, in the removal of oxazolidinone chiral auxiliary, and in the functionalization of alkenes and alkynes, showing wide application potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ball, Liam T; Lloyd-Jones, Guy C; Russell, Christopher A
2012-03-05
1-Hydroxy-1,2-benziodoxol-3(1H)-one (IBA) is an efficient terminal oxidant for gold-catalysed, three-component oxyarylation reactions. The use of this iodine(III) reagent expands the scope of oxyarylation to include styrenes and gem-disubstituted olefins, substrates that are incompatible with the previously reported Selectfluor-based methodology. Diverse arylsilane coupling partners can be employed, and in benzotrifluoride, homocoupling is substantially reduced. In addition, the IBA-derived co-products can be recovered and recycled. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barteau, Mark A.
2006-10-04
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Few reactions are as conceptually simple or as devilishly difficult as the epoxidation of ethylene to form ethylene oxide:
1994-08-01
Diels - Alder reactions (58-60), Claisen rearrangements (43-45), olefin isomerization (73), a O-elimination (74), an asymmetric ketone reduction (54...phosphorothioate hapten3 ........ 19 Figure 5. Carboxylic acid hydrolysis .................... 21 Figure 6. Reaction coordinates for antibody catalyzed ...and catalyze the reaction. Thus, it is important to design transition analogs that closely mimic the transition state in every possible chemical
Deuterium separation by infrared-induced addition reaction
Marling, John B.
1977-01-01
A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.
ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID
An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...
NASA Astrophysics Data System (ADS)
Moradiyan, Eshagh; Halladj, Rouein; Askari, Sima; Moghimpour Bijani, Parisa
2017-08-01
SAPO-34 as a catalyst has high selectivity and hydrothermal stability, but it is rapidly deactivated by the formation of coke in its micropores. Evaluating the natural Clinoptilolite capability as a binder in nanocomposite catalysts is of interest because of its low cost, and accelerating the reaction. The SAPO-34/Clinoptilolite (S/C) nanocomposite catalysts were synthesized via ultrasonic-assisted hydrothermal method using Clinoptilolite as a binder. Subsequent performance of the catalyst was investigated in the methanol to olefins (MTO) reaction. The structures of synthesized nanocomposite were characterized with several methods such as XRD, XRF, FESEM, TEM, NH3-TPD, FT-IR, and nitrogen adsorption techniques. The modified Clinoptilolite was attained using nitric acid treatment. Although the physicochemical analysis indicated that HNO3-treatment decreases the crystallinity of the Clinoptilolite, the specific surface area of natural zeolite enhances considerably from 20.07 to 187.8 m2/g. The nanocomposite catalysts showed high selectivity toward light olefins with 100% conversion and 90% selectivity to light olefins as desired products at 450 °C. Nanocomposite with the additional diffusion paths for mass transfer provided by binder-filled space ascend to higher catalytic lifetimes in compare with free SAPO-34 catalyst.
Richard Schrock, Robert Grubbs, and Metathesis Method in Organic Synthesis
Organic Synthesis Resources with Additional Information Richard R. Schrock of the Massachusetts Institute Nobel Prize in Chemistry "for the development of the metathesis method in organic synthesis" ] Chauvin, Grubbs and Schrock "for the development of the metathesis method in organic synthesis,"
Prosodically Driven Metathesis in Mutsun
ERIC Educational Resources Information Center
Butler, Lynnika
2013-01-01
Among the many ways in which sounds alternate in the world's languages, changes in the order of sounds (metathesis) are relatively rare. Mutsun, a Southern Costanoan language of California which was documented extensively before the death of its last speaker in 1930, displays three patterns of synchronic consonant-vowel (CV) metathesis. Two of…
Membrane systems for energy efficient separation of light gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devlin, D.J.; Archuleta, T.; Barbero, R.
1997-04-01
Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separationmore » opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.« less
Marco-Contelles, José; de Opazo, Elsa
2002-05-31
The free radical cyclization (FR) and the ring-closing metathesis (RCM) reaction have been analyzed in order to develop new and original synthetic protocols for the synthesis of enantiomerically pure, highly functionalized, medium-sized carbocycles from carbohydrates. As a result, we report here for the first time examples of the 7-exo FR cyclization of acyclic radical precursors derived from sugars. This process appears to be extremely sensitive to the conformational mobility of the radical species in the transition state. The use of two isopropylidene groups blocking four of the total present hydroxyl groups and a good radical acceptor (as an alpha,beta-unsaturated ester) are mandatory conditions for a successful ring closure protocol. The RCM reaction by using Grubbs' catalyst on selected carbohydrate-derived precursors has afforded variable yields of the expected unsaturated cycloheptane or cycloctane derivatives. The synthesis of the cycloheptitols has been carried out in good yields, regardless of the absolute configuration at the different stereocenters and the nature of the O-functional groups bound in allylic positions to one of the double bonds implicated in the metathesis reaction. Conversely, in the cyclooctane synthesis, we have observed that the success of the reaction depends not only on the absolute configuration at the different stereocenters close to the double bonds but also on the nature of the O-protecting groups on these stereocenters. Finally, the RCM strategy has been used in an attempt to prepare natural (+)-calystegine B(2) from D-glucose. The synthesis of compound 92 from D-glucose constitutes a formal total synthesis of (+)-calystegine B(2), showing the importance of the steric hindrance in allylic positions for a successful RCM reaction.
Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin
2018-05-01
Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.
Learning metathesis: Evidence for syllable structure constraints.
Finley, Sara
2017-02-01
One of the major questions in the cognitive science of language is whether the perceptual and phonological motivations for the rules and patterns that govern the sounds of language are a part of the psychological reality of grammatical representations. This question is particularly important in the study of phonological patterns - systematic constraints on the representation of sounds, because phonological patterns tend to be grounded in phonetic constraints. This paper focuses on phonological metathesis, which occurs when two adjacent sounds switch positions (e.g., ca st pronounced as ca ts ). While many cases of phonological metathesis appear to be motivated by constraints on syllable structure, it is possible that these metathesis patterns are merely artifacts of historical change, and do not represent the linguistic knowledge of the speaker (Blevins & Garrett, 1998). Participants who were exposed to a metathesis pattern that can be explained in terms of structural or perceptual improvement were less likely to generalize to metathesis patterns that did not show the same improvements. These results support a substantively biased theory in which phonological patterns are encoded in terms of structurally motivated constraints.
Learning metathesis: Evidence for syllable structure constraints
Finley, Sara
2016-01-01
One of the major questions in the cognitive science of language is whether the perceptual and phonological motivations for the rules and patterns that govern the sounds of language are a part of the psychological reality of grammatical representations. This question is particularly important in the study of phonological patterns – systematic constraints on the representation of sounds, because phonological patterns tend to be grounded in phonetic constraints. This paper focuses on phonological metathesis, which occurs when two adjacent sounds switch positions (e.g., cast pronounced as cats). While many cases of phonological metathesis appear to be motivated by constraints on syllable structure, it is possible that these metathesis patterns are merely artifacts of historical change, and do not represent the linguistic knowledge of the speaker (Blevins & Garrett, 1998). Participants who were exposed to a metathesis pattern that can be explained in terms of structural or perceptual improvement were less likely to generalize to metathesis patterns that did not show the same improvements. These results support a substantively biased theory in which phonological patterns are encoded in terms of structurally motivated constraints. PMID:28082764
NASA Astrophysics Data System (ADS)
Javad Azarhoosh, Mohammad; Halladj, Rouein; Askari, Sima
2017-10-01
In this study, a new kinetic model for methanol to light olefins (MTO) reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism was presented and the kinetic parameters was obtained using a genetic algorithm (GA) and genetic programming (GP). Several kinetic models for the MTO reactions have been presented. However, due to the complexity of the reactions, most reactions are considered lumped and elementary, which cannot be deemed a completely accurate kinetic model of the process. Therefore, in this study, the LHHW mechanism is presented as kinetic models of MTO reactions. Because of the non-linearity of the kinetic models and existence of many local optimal points, evolutionary algorithms (GA and GP) are used in this study to estimate the kinetic parameters in the rate equations. Via the simultaneous connection of the code related to modelling the reactor and the GA and GP codes in the MATLAB R2013a software, optimization of the kinetic models parameters was performed such that the least difference between the results from the kinetic models and experiential results was obtained and the best kinetic parameters of MTO process reactions were achieved. A comparison of the results from the model with experiential results showed that the present model possesses good accuracy.
Inorganic Halogen Oxidizer Research.
1982-04-21
Hexafluorophosphate , High Detonation Pressure Explosives. 20. (Continued) (71.7 weight %). The formation and decomposition mechanism of NF4+ salts was...low-tern- Reaction of NFSbF, with CsBrF 4 0. Although CsBrF[O perature metathesis using a cesium salt is superior to a lithium reacts with HF...yield of perchloryl fluoride (97%) is achieved with a mixture of fluorosulfonic acid and SbF 5 as fluorinating medium. Potassium, sodium, lithium
Wang, Yong , Liu; Wei, [Richland, WA
2012-01-24
The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.
Hydrogen transport membranes for dehydrogenation reactions
Balachandran,; Uthamalingam, [Hinsdale, IL
2008-02-12
A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.
Fang, Xianjie; Jackstell, Ralf; Franke, Robert; Beller, Matthias
2014-10-06
A general and highly chemo-, regio-, and stereoselective synthesis of α,β-unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted α,β-unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid-base catalyst system. In view of the easy availability of the substrates, the high atom-efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of α,β-unsaturated aldehydes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real World of Industrial Chemistry: The SHOP Process: An Example of Industrial Creativity.
ERIC Educational Resources Information Center
Reuben, Bryan; Wittcoff, Harold
1988-01-01
Discusses the Shell Higher Olefins Process (SHOP) in the manufacture of primary C11-C15 fatty alcohols. Offers examples and explanations of the four-step process. Gives uses for reaction products. (ML)
Kotha, Sambasivarao; Chavan, Arjun S; Goyal, Deepti
2015-05-11
We describe diverse approaches to various dienes and their utilization in the Diels-Alder reaction to produce a variety of polycycles. The dienes covered here are prepared by simple alkylation reaction or via the Claisen rearrangement or by enyne metathesis of alkyne or enyne building blocks. Here, we have also included the Diels-Alder chemistry of dendralenes, a higher analog of cross-conjugated dienes. The present article is inclusive of o-xylylene derivatives that are generated in situ starting with benzosultine or benzosulfone derivatives. The Diels-Alder reaction of these dienes with various dienophiles gave diverse polycyclic systems and biologically important targets.
Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization
NASA Astrophysics Data System (ADS)
James, Carrie Rae
Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a novel way of facilitating cellular uptake of PNA. This materials strategy represents the first direct polymerization of nucleic acids, and presents a novel method for arranging biological information on the nanoscale at high density in order to confer novel attributes.
Methods for treating a metathesis feedstock with metal alkoxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe
Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.
Marvin, Christopher C.; Voight, Eric A.; Suh, Judy M.; Paradise, Christopher L.; Burke, Steven D.
2009-01-01
The synthesis of didemniserinolipid B utilizing a ketalization/ring-closing metathesis (K/RCM) strategy is described. In the course of this work, a novel 2-allyl-4-fluorophenyl auxiliary for relay ring-closing metathesis (RRCM) was developed which increased the yield of the RCM. The resulting 6,8-dioxabicyclo[3.2.1]octene core was selectively functionalized by complimentary dihydroxylation and epoxidation routes to install the C10 axial alcohol. This bicyclic ketal core was further functionalized by etherification and an alkene cross metathesis with an unsaturated α-phenylselenyl ester en route to completing the total synthesis. PMID:18811201
Qu, Jianping; Helmchen, Günter
2017-10-17
Metal catalyzed allylic substitution is a cornerstone of organometallic and synthetic chemistry. Enantioselective versions have been developed with catalysts derived from transition metals, most notably molybdenum, nickel, ruthenium, rhodium, iridium, palladium, and copper. The palladium- and the iridium-catalyzed versions have turned out to be particularly versatile in organic synthesis because of the very broad scope of the nucleophile and great functional group compatibility. Assets of the iridium-catalyzed reaction are the formation of branched, chiral products from simple monosubstituted allylic substrates, high degrees of regio- and enantioselectivity, and use of modular, readily available chiral ligands. The possibility to use carbon, nitrogen, oxygen, and sulfur compounds as well as fluoride as nucleophiles allows a wide range of chiral building blocks to be prepared. Our Account begins with the presentation of fundamental reaction schemes and chiral ligands. We will focus our discussion on reactions promoted by phosphoramidite ligands, though numerous chiral ligands have been employed. The subsequent section presents a brief overview of reaction mechanism and experimental conditions. Two versions of the iridium-catalyzed allylic substitution have emerged. In type 1 reactions (introduced in 1997), linear allylic esters are commonly used as substrates under basic reaction conditions. In type 2 reactions (introduced in 2007), environmentally friendly branched allylic alcohols can be reacted under acidic conditions; occasionally, derivatives of allylic alcohols have also been applied. A unique feature of the type 2 reactions is that highly electrophilic allylic intermediates can be brought to reaction with weakly activated alkenes. The subsequent text is ordered according to the strategies followed to transform allylic substitution products to desired targets, most of which are natural products or drugs. Syntheses starting with an intermolecular allylic substitution are discussed first. Some fairly complex targets, for example, the potent nitric oxide inhibitor (-)-nyasol and the drug (-)-protrifenbute, have been synthesized via less than five steps from simple starting materials. Most targets discussed are cyclic compounds. Intermolecular allylic substitution with subsequent ring closing metathesis is a powerful strategy for their synthesis. Highlights are stereodivergent syntheses of Δ 9 -tetrahydrocannabinols (THC), wherein iridium- and organocatalysis are combined (dual catalysis). The combination of allylic alkylation with a Diels-Alder reaction was utilized to synthesize the ketide apiosporic acid and the drug fesoterodine (Toviaz). Sequential allylic amination, hydroboration and Suzuki-Miyaura coupling generates enones suitable for conjugate addition reactions; this strategy was employed in syntheses of a variety of alkaloids, for example, the poison frog alkaloid (+)-cis-195A (pumiliotoxin C). Intramolecular substitutions offer interesting possibilities to build up stereochemical complexity via short synthetic routes. For example, in diastereoselective cyclizations of chiral compounds, substrate control can be overruled by catalyst control in order to generate cis- and trans-isomers selectively from a given precursor. This approach was used to prepare a variety of piperidine and pyrrolidine alkaloids. Finally, complex polycyclic structures, including the structurally unusual indolosesquiterpenoid mycoleptodiscin A, have been generated diastereo- and enantioselectively from olefins by polyene cyclizations and from electron-rich arenes, such as indoles, in dearomatization reactions.
Xenon fluorides show potential as fluorinating agents
NASA Technical Reports Server (NTRS)
Chernick, C. L.; Shieh, T. C.; Yang, N. C.
1967-01-01
Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.
Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu
2011-01-04
Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.
ERIC Educational Resources Information Center
Sharpless, William D.; Peng Wu; Hansen, Trond Vidar; Lindberg, James G.
2005-01-01
The click chemistry uses only the most reliable reactions to build complex molecules from olefins, electrophiles and heteroatom linkers. A variation on Huisgen's azide-alkyne 1,2,3-triazole synthesis, the addition of the copper (I), the premium example of the click reaction, catalyst strongly activates terminal acetylenes towards the 1,3-dipole in…
Recent advances in transition metal-catalyzed N -atom transfer reactions of azides
Driver, Tom G.
2011-01-01
Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243
Singh, Om V.; Han, Hyunsoo
2007-01-01
The SN2′ reaction of 6-vinyl-5,6-dihydro-4H-[1,3]oxazines with Grignard reagents in the presence of CuCN was studied, and high trans selectivity for the formation of double bond was observed with a variety of RMgX. The SN2′ reaction, coupled with regioselective asymmetric aminohydroxylation reaction, provided a highly efficient route for the asymmetric synthesis of D-threo-N-acetylsphingosine. PMID:18958293
“Click, Click, Cyclize”: A DOS Approach to Sultams Utilizing Vinyl Sulfonamide Linchpins
Zhou, Aihua; Rayabarapu, Dinesh; Hanson, Paul R.
2009-01-01
A diversity-oriented synthesis (DOS) strategy termed “Click, Click, Cyclize” is reported. This approach relies on functional group (FG) pairing between a vinyl sulfonamide and an array of functional groups to synthesize skeletally diverse sultams. Several FG pairing pathways on central tertiary vinyl sulfonamide linchpins have been developed including intramolecular Heck, aza-Michael, ring-closing enyne metathesis, Pauson—Khand, and chemoselective oxidation/Baylis—Hillman reactions. PMID:19115841
Hydrogenation Reactions on Au/TiC(001): Effects of Au-C Interactions on the Dissociation of H-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, J.A.; Florez, E.; Gomez, T.
2010-10-01
Density functional calculations carried out for realistic models evidence that Au particles supported on TiC(001) are very active towards H2 dissociation. The molecular mechanisms show that the support is not a mere spectator but plays a major role in the catalyzed reaction and acts as a reservoir of atomic H, making this system an excellent candidate as a catalyst for the hydrogenation of olefins and hydrodesulfurization reactions.
Sasaki, S; Ishibashi, N; Kuwamura, T; Sano, H; Matoba, M; Nisikawa, T; Maeda, M
1998-11-03
A series of 6,11-ethanobenzo[b]quinolizinium derivatives was synthesized through the Diels-Alder reaction between azoniaanthracne and the corresponding 1,1-disubstituted olefin. After a systematic investigation for achieving rapid synthesis, it was found that the reaction is accelerated in polar media such as H2O and trifluoroethanol. In particular, excellent acceleration was effected by microwave irradiation. The new fluorine-substituted ligands thus obtained exhibited potential affinity toward NMDA receptors.
Asymmetric intermolecular Pauson-Khand reaction of symmetrically substituted alkynes.
Ji, Yining; Riera, Antoni; Verdaguer, Xavier
2009-10-01
The asymmetric intermolecular Pauson-Khand reaction of symmetric alkynes has been accomplished for the first time. N-Phosphino-p-tolylsulfinamide (PNSO) ligands have been identified as efficient ligands in this process. The chirality of the cobalt S-bonded sulfinyl moiety was found to direct olefin insertion into one of the two possible cobalt-carbon bonds in the alkyne complex. Reaction of symmetric alkynes allows for a simplified experimental protocol since there is no need for separation of diastereomeric complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Jesse E.; Schaidle, Joshua A.; Ruddy, Daniel A.
2017-04-26
Conversion of biomass to fuels remains as one of the most promising approach to support our energy needs. It has been previously shown that the gasification of non-edible cellulosic biomass can be used to derive fuels like methanol and dimethyl ether (DME). However, the use of methanol and DME is limited due to the fact that they have low energy densities, poor lubricity and lower viscosity when compared to long-chain hydrocarbons. Increasing the blending percentage can also lead to undesired amounts of oxygenated molecules in the transportation fuel infrastructure, which restrict their applicability as jet or diesel fuels. Consequently, themore » petroleum-derived hydrocarbons remain as the main constituent of the middle-distillate based fuels. One way to increase the share of biofuels in middle-distillates is to use methanol/DME as building blocks for producing renewable, energy-dense hydrocarbons. One way to achieve this is by catalytically converting the DME and methanol to light olefins, followed by oligomerization to higher molecular weight premium alkanes, which can directly be used as kerosene/diesel fuels. Here, we report the catalytic dimerization of biomass-derived deoxygenated olefins into transportation fuel-range hydrocarbons under liquid-phase stirred-batch conditions. Specifically, the effect of operating conditions, such as reaction temperature, solvent-type, reaction duration and olefin-structure, on the conversion, selectivity and kinetics of dimerization of triptene (2,3,3-trimethyl-1-butene) were investigated. Triptene, as previously reported, is one of the major products of DME-homologation reaction over a BEA zeolite4. We show that triptene can be converted to high quality middle-distillates using a commercially available ion-exchange acid resin, Amberlyst-35 (dry) by the process of catalytic dimerization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frias, JA; Richman, JE; Erickson, JS
2011-03-25
OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C] myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be themore » physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.« less
Amewu, Richard; Gibbons, Peter; Mukhtar, Amira; Stachulski, Andrew V; Ward, Stephen A; Hall, Charlotte; Rimmer, Karen; Davies, Jill; Vivas, Livia; Bacsa, John; Mercer, Amy E; Nixon, Gemma; Stocks, Paul A; O'Neill, Paul M
2010-05-07
Thiol-Olefin Co-Oxygenation (TOCO) methodology has been applied to the synthesis of a small library of weak base and polar 1,2,4-trioxanes. The 1,2,4-trioxane units synthesised exhibit remarkable stability as they survive base catalysed hydrolysis and mixed anhydride/amine coupling reactions. This unique stability feature has enabled a range of novel substitution patterns to be incorporated within the spiro 1,2,4-trioxane unit. Selected analogues express potent in vitro nM antimalarial activity, low cytotoxicity and oral activity in the Plasmodium berghei mouse model of malaria.
Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter
2013-01-02
Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts.
Easter, Quinn T; Blum, Suzanne A
2018-02-05
Catalytic cycles are typically depicted as possessing time-invariant steps with fixed rates. Yet the true behavior of individual catalysts with respect to time is unknown, hidden by the ensemble averaging inherent to bulk measurements. Evidence is presented for variable chemical kinetics at individual catalysts, with a focus on ring-opening metathesis polymerization catalyzed by the second-generation Grubbs' ruthenium catalyst. Fluorescence microscopy is used to probe the chemical kinetics of the reaction because the technique possesses sufficient sensitivity for the detection of single chemical reactions. Insertion reactions in submicron regions likely occur at groups of many (not single) catalysts, yet not so many that their unique kinetic behavior is ensemble averaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.
Easter, Quinn T; Blum, Suzanne A
2017-10-23
Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nickel-catalyzed cycloadditions of unsaturated hydrocarbons, aldehydes, and ketones.
Tekavec, Thomas N; Louie, Janis
2008-04-04
The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3,3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon-carbon bond is formed, prior to a competitive beta-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No beta-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C-O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon-carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr).
Nickel-Catalyzed Cycloadditions of Unsaturated Hydrocarbons, Aldehydes, and Ketones
Tekavec, Thomas N.
2014-01-01
The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3, 3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon–carbon bond is formed, prior to a competitive β-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No β-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C–O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon–carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr). PMID:18318544
Cobalt Fischer-Tropsch catalysts having improved selectivity
Miller, James G.; Rabo, Jule A.
1989-01-01
A cobalt Fischer-Tropsch catalyst having an improved steam treated, acid extracted LZ-210 support is taught. The new catalyst system demonstrates improved product selectivity at Fischer-Tropsch reaction conditions evidenced by lower methane production, higher C.sub.5.sup.+ yield and increased olefin production.
2013-03-01
155 Figure 56. Ring heater. ....................................................................................................155 Figure 57...structure, the straight chain paraffins are first combined with high pressure hydrogen. The reaction converts them into a hydrogenated ring -like...bonds in the hydrogenated ring -like molecular structure to form many small olefinic double bonds of unsaturated hydrocarbons. The unsaturated
Acid-catalyzed hydrogenation during kerosene hydrodewaxing over H/ZSM-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longstaff, D.C.; Hanson, F.V.
1996-11-01
Hydrogen addition to the products derived from cracking kerosene over H/ZSM-5 was observed at hydrogen pressures between 4.1-8.7 MPa and at 373-390{degrees}C. At low pressures, kerosene cracking over H/ZSM-5 yielded typical cracked products: aromatics, as well as low molecular weight saturates and olefins. Endothermic reactor temperature profiles were also observed, indicative of cracking reactions. At high hydrogen partial pressures product selectivity was altered in that kerosene cracking gave high yields of low molecular weight paraffins and low yields of olefins and aromatics. Reactor temperature profiles were exothermic, indicative of hydrocracking reactions. A mechanism for acid catalyzed hydrogenation is suggested. Althoughmore » hydrogenation was not observed at lower hydrogen pressures, hydrogen proved beneficial in maintaining catalyst activity at a stable level. Lost catalyst activity was restored by maintaining the catalyst under static hydrogen at 1.4 MPa and 370{degrees}C for 16h. 36 refs., 14 figs., 3 tabs.« less
Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic
Luo, Chaosheng; Wang, Zhen; Huang, Yong
2015-01-01
Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercaw, John E.
2014-05-23
The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the activemore » and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.« less
NASA Astrophysics Data System (ADS)
Brisset, Florian; Vieillard, Julien; Berton, Benjamin; Morin-Grognet, Sandrine; Duclairoir-Poc, Cécile; Le Derf, Franck
2015-02-01
Covalent immobilization of biomolecules on the surface of cyclic olefin copolymer (COC) is still a tough challenge. We developed a robust method for COC surface grafting through reaction with aryldiazonium. Chemical diazonium reduction generated an aryl radical and the formation of a grafted film layer on the organic surface. We also demonstrated that the chemical reduction of diazonium salt was not sufficient to form a film on the COC surface. UV illumination had to be combined with chemical reduction to graft an aryl layer onto the COC surface. We optimized organic film deposition by using different chemical reducers, different reaction times and reagent proportions. We characterized surface modifications by fluorescence microscopy and contact angle measurements, infrared spectroscopy, X-ray photoemission spectroscopy and Raman spectroscopy, and assessed the topography of the aryl film by atomic force microscopy. This original strategy allowed us to evidence various organic functions to graft biomolecules onto COC surfaces with a fast and efficient technique.
Reactivity of fluoroalkanes in reactions of coordinated molecular decomposition
NASA Astrophysics Data System (ADS)
Pokidova, T. S.; Denisov, E. T.
2017-08-01
Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy ( E) and rate constant ( k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole-dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.
Hattori, Hiromu; Kaufmann, Elias; Miyatake-Ondozabal, Hideki; Berg, Regina; Gademann, Karl
2018-04-12
The commercial macrolide antibiotic fidaxomicin was synthesized in a highly convergent manner. Salient features of this synthesis include a β-selective noviosylation, a β-selective rhamnosylation, a ring-closing metathesis, a Suzuki coupling, and a vinylogous Mukaiyama aldol reaction. Careful choice of protecting groups and fine-tuning of the glycosylation reactions led to the first total synthesis of fidaxomicin. In addition, a relay synthesis of fidaxomicin was established, which gives access to a conveniently protected intermediate from the natural material for derivatization. The first total synthesis of a related congener, tiacumicin A, is presented.
Total synthesis of rupestine G and its epimers
Yusuf, Abdullah; Zhao, Jiangyu; Wang, Bianlin; Aibibula, Paruke; Aisa, Haji Akber
2018-01-01
Rupestine G is a guaipyridine sesquiterpene alkaloid isolated from Artemisia rupestris L. The total synthesis of rupestine G and its epimers was accomplished employing a Suzuki reaction to build a terminal diene moiety. The diene was further elaborated into the desired guaipyridine structure by a ring-closing metathesis reaction. Over all, rupestine G and its three epimers were obtained as a mixture in a sequence of nine linear steps with 18.9% yield. Rupestine G and its optically pure isomers were isolated by chiral preparative HPLC and fully characterized by 1H ,13C NMR, HRMS, optical rotation value, and experimental and calculated electronic circular dichroism spectroscopy. PMID:29657802
The Future of Ethenolysis in Biobased Chemistry.
Spekreijse, Jurjen; Sanders, Johan P M; Bitter, Johannes H; Scott, Elinor L
2017-02-08
The desire to utilise biobased feedstocks and develop more sustainable chemistry poses new challenges in catalysis. A synthetically useful catalytic conversion is ethenolysis, a cross metathesis reaction with ethylene. In this Review, the state of the art of ethenolysis in biobased chemistry was extensively examined using methyl oleate as a model compound for fatty acids. Allied to this, the ethenolysis of fatty acid, polymers and more challenging substrates are reviewed. To determine the limiting factors for the application of ethenolysis on biomass, the influence of reaction parameters were investigated and the bottlenecks for reaching high turnover numbers identified. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Z.; Espenson, J.H.
1996-10-16
Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes several classes of reactions of ethyl diazoacetate, EDA. It is the first high valent oxo complex for carbene transfer. Under mild conditions and in the absence of other substrates, EDA was converted to a 9:1 mixture of diethyl maleate and diethyl fumarate. In the presence of alcohols, {alpha}-alkoxy ethyl acetates were obtained in good yield. The yields dropped for the larger and more branched alcohols, the balance of material being diethyl maleate and fumarate. An electron-donating group in the para position of phenols favors the formation of {alpha}-phenoxy ethyl acetates. The usemore » of EDA to form {alpha}-thio ethyl acetates and N-substituted glycine ethyl esters, on the other hand, is hardly affected by the size or structure of the parent thiol or amine, with all of these reactions proceeding in high yield. MTO-catalyzed cycloaddition reactions occur between EDA and aromatic imines, olefins, and carbonyl compounds. Three-membered ring products are formed: aziridines, cyclopropanes, and epoxides, respectively. The reactions favor the formation of trans products, and provide a convenient route for the preparation of aziridines. Intermediate carbenoid and nitrenoid species have been proposed. In the presence of an oxygen source such as an epoxide, ethyl diazoacetate and azibenzil are converted to an oxalic acid monoethyl ester and to benzil; at the same time the epoxide was converted to an olefin. 75 refs., 1 fig., 7 tabs.« less
Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.
Wang, Jia; Zhong, Zhaoping; Zhang, Bo; Ding, Kuan; Xue, Zeyu; Deng, Aidong; Ruan, Roger
2017-02-01
Catalytic fast co-pyrolysis (co-CFP) offers a concise and effective process to achieve an upgraded bio-oil production. In this paper, co-CFP experiments of waste cooking oil (WCO) and tea residual (TR) with HZSM-5 zeolites were carried out. The influences of pyrolysis reaction temperature and H/C ratio on pyrolytic products distribution and selectivities of aromatics were performed. Furthermore, the prevailing synergetic effect of target products during co-CFP process was investigated. Experimental results indicated that H/C ratio played a pivotal role in carbon yields of aromatics and olefins, and with H/C ratio increasing, the synergetic coefficient tended to increase, thus led to a dramatic growth of aromatics and olefins yields. Besides, the pyrolysis temperature made a significant contribution to carbon yields, and the yields of aromatics and olefins increased at first and then decreased at the researched temperature region. Note that 600°C was an optimum temperature as the maximum yields of aromatics and olefins could be achieved. Concerning the transportation fuel dependence and security on fossil fuels, co-CFP of WCO and TR provides a novel way to improve the quality and quantity of pyrolysis bio-oil, and thus contributes bioenergy accepted as a cost-competitive and promising alternative energy. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masteri-Farahani, M., E-mail: mfarahany@yahoo.com; Ghorbani, M.
2016-04-15
Highlights: • Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles were synthesized by using microemulsion system. • The nanoparticles have uniform size of about 25 nm and spherical morphologies. • The prepared nanoparticles act as reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}. - Abstract: Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles (Q = cetyltrimethylammonium cation) were synthesized in water-in-oil (w/o) microemulsion consisted of water/cetyltrimethylammonium bromide/n-butanol/isooctane. Reaction of Na{sub 2}WO{sub 4}, Na{sub 2}HPO{sub 4} and hydrochloric acid within water containing nanoreactors of reverse micelles resulted in the preparation of Q{sub 3}PW{sub 12}O{sub 40} nanoparticles. The resultant nanoparticles weremore » analyzed by physicochemical methods such as FT-IR spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, thermogravimetric analyses (TGA-DTA), scanning and transmission electron microscopy and atomic force microscopy which show nearly uniform spherical nanoparticles with size of about 15 nm. Finally, catalytic activity of the Q{sub 3}PW{sub 12}O{sub 40} nanoparticles was examined in the epoxidation of olefins with H{sub 2}O{sub 2}. The prepared nanoparticles acted as recoverable and reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}.« less
Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity.
Jenner, Zachary B; Crittenden, Christopher M; Gonzalez, Martín; Brodbelt, Jennifer S; Bruns, Kerry A
2017-05-01
Antimicrobial peptides (AMPs) occur widely in nature and have been studied for their therapeutic potential. AMPs are of interest due to the large number of possible chemical structural combinations using natural and unnatural amino acids, with varying effects on their biological activities. Using physicochemical properties from known naturally occurring amphipathic cationic AMPs, several hydrocarbon-stapled lipopeptides (HSLPs) were designed, synthesized, and tested for antimicrobial properties. Peptides were chemically modified by N-terminal acylation, C-terminal amidation, and some were hydrocarbon stapled by intramolecular olefin metathesis. The effects of peptide length, amphipathic character, and stapling on antimicrobial activity were tested against Escherichia coli, three species of Gram-positive bacteria (Staphylococcus aureus, Bacillus megaterium, and Enterococcus faecalis), and two strains of Candida albicans. Peptides were shown to disrupt liposomes of different phospholipid composition, as measured by leakage of a fluorescent compound from vesicles. Peptides with (S)-2-(4'-pentenyl)-alanine substituted for l-alanine in a reference peptide showed a marked increase in antimicrobial activity, hemolysis, and membrane disruption. Stapled peptides exhibited slightly higher antimicrobial potency; those with greatest hydrophobic character showed the greatest hemolysis and liposome leakage, but lower antimicrobial activity. The results support a model of HSLPs as membrane-disruptive AMPs with potent antimicrobial activity and relatively low hemolytic potential at biologically active peptide concentrations. © 2017 Wiley Periodicals, Inc.
Toward Green Acylation of (Hetero)arenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones
2017-01-01
Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero)arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene) as well as of natural products (eugenol and safrole). Furthermore, synthetic applications to drug molecules are showcased. PMID:29392174
Copéret, Christophe
2011-01-05
Stereoselectivity in alkene metathesis is a challenge and can be used as a tool to study active sites under working conditions. This review describes the stereochemical relevance and problems in alkene metathesis (kinetic vs. thermodynamic issues), the use of (E/Z) ratio at low conversions as a tool to characterize active sites of heterogeneous catalysts and finally to propose strategies to improve catalysts based on the current state of the art.
ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID. (R828129)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI
2012-04-03
Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.
Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S
2014-07-07
A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.
Chemical Reactions and Properties of Organosilicon Compounds Related to New Materials.
1985-10-31
out. The compound behaves like an olefin in some reactions, for in- stance addition of hydrogen halides or chlorine: C1 2 HCI Mes 2 SiCl-SiClMes2...polymers have been synthesized which contain some silicon atoms bonded to hydrogen . These become crosslinked when mixed with substances containing several...and highly efficient catalysts, very small amounts are required in this process. Moreover, photocatalysis using polysilanes produces polymers with
Photosensitized oxidation of unsaturated polymers
NASA Technical Reports Server (NTRS)
Golub, M. A.
1979-01-01
The photosensitized oxidation or singlet oxygenation of unsaturated hydrocarbon polymers and of their model compounds was reviewed. Emphasis was on cis and trans forms of 1,4-polyisoprene, 1,4-polybutadiene and 1,2-poly(1,4-hexadiene), and on 1,4-poly(2,3-dimethyl-1,3-butadiene). The microstructural changes which occur in these polymers on reaction with O2-1 in solution were investigated by infrared H-1 and C-13 NMR spectroscopy. The polymers were shown to yield allylic hydroperoxides with shifted double bonds according to the ene mechanism established for simple olefins. The photosensitized oxidation of the above unsaturated polymer exhibited zero order kinetics, the relative rates paralleling the reactivities of the corresponding simple olefins towards O2-1.
Tejedor, David; Méndez-Abt, Gabriela; Cotos, Leandro; García-Tellado, Fernando
2012-03-19
Merging is the game! The coupling of a domino reaction and an internal neutral redox reaction constitutes an excellent manifold for the stereoselective synthesis of di- and trisubstituted olefins featuring a malonate unit, an ester, or a free carboxylic acid as substituents at the allylic position (see scheme; MW=microwave). The reaction utilizes simple starting materials (propargyl vinyl ethers), methanol or water as solvents, and a very simple and bench-friendly protocol. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Matthes, Jochen; Pery, Tal; Gründemann, Stephan; Buntkowsky, Gerd; Sabo-Etienne, Sylviane; Chaudret, Bruno; Limbach, Hans-Heinrich
2004-07-14
Some transition metal complexes are known to catalyze ortho/para hydrogen conversion, hydrogen isotope scrambling, and hydrogenation reactions in liquid solution. Using the example of Vaska's complex, we present here evidence by NMR that the solvent is not necessary for these reactions to occur. Thus, solid frozen solutions or polycrystalline powdered samples of homogeneous catalysts may become heterogeneous catalysts. Comparative liquid- and solid-state studies provide novel insight into the reaction mechanisms.
Rodríguez Rivero, Marta; De La Rosa, Juan Carlos; Carretero, Juan Carlos
2003-12-10
The first asymmetric version of intermolecular Pauson-Khand reactions of unstrained alkenes is described. Generally simple acyclic alkenes exhibit low reactivity and regioselectivity in intermolecular Pauson-Khand reactions; however, o-(dimethylamino)phenyl vinyl sulfoxide reacts under very mild conditions with a wide variety of terminal alkynes in a completely regioselective and highly stereoselective manner. The utility of the resulting 5-sulfinyl-2-cyclopentenones in asymmetric synthesis is illustrated by a very short enantioselective synthesis of the antibiotic (-)-pentenomycin I.
21 CFR 177.1520 - Olefin polymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... by reaction with fumaric acid in the absence of free radical initiators. Such polymers shall contain... acid in the absence of free radical initiators. Such polymers shall contain not more than 4.5 percent... tube for preheated, oxygen-free nitrogen, and an outlet tube located 1 inch off center. Nitrogen is fed...
21 CFR 177.1520 - Olefin polymers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... by reaction with fumaric acid in the absence of free radical initiators. Such polymers shall contain... acid in the absence of free radical initiators. Such polymers shall contain not more than 4.5 percent... tube for preheated, oxygen-free nitrogen, and an outlet tube located 1 inch off center. Nitrogen is fed...
1975-06-01
for forming Si-C bonds; the two most general are Grignard reactions (eq. 3) and hydrosilylations of olefins (eq. 4); -76- wm RMgX + R3SiY Y...October, 1973. (4) D. N. Marquardt, Ph.D. Thesis, Stanford University, May, 1974. (5) L. F. Fieser and M. Fieser, Reagents for Organic Synthesis, John
ALDOL REACTION VIA IN SITU OLEFIN MIGRATION IN WATER. (R828129)
Department of Chemistry, Tulane University, Ne...
One-Pot Isomerization–Cross Metathesis–Reduction (ICMR) Synthesis of Lipophilic Tetrapeptides
2015-01-01
An efficient, versatile and rapid method toward homologue series of lipophilic tetrapeptide derivatives (herein, the opioid peptides H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal number of synthetic steps resulted from a one-pot tandem isomerization-cross metathesis-reduction sequence (ICMR), applicable both in solution and solid phase methodology. The broadly applicable synthesis proceeds with short reaction times and simple work-up, as illustrated in this work for alkylated opioid tetrapeptides. PMID:24906051
Leonardi, Marco; Villacampa, Mercedes
2017-01-01
The pseudo-five-component reaction between β-dicarbonyl compounds (2 molecules), diamines and α-iodoketones (2 molecules), prepared in situ from aryl ketones, was performed efficiently under mechanochemical conditions involving high-speed vibration milling with a single zirconium oxide ball. This reaction afforded symmetrical frameworks containing two pyrrole or fused pyrrole units joined by a spacer, which are of interest in the exploration of chemical space for drug discovery purposes. The method was also extended to the synthesis of one compound containing three identical pyrrole fragments via a pseudo-seven-component reaction. Access to compounds having a double bond in their spacer chain was achieved by a different approach involving the homodimerization of 1-allyl- or 1-homoallylpyrroles by application of cross-metathesis chemistry. PMID:29062414
Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies.
Riva, Elena; Rencurosi, Anna; Gagliardi, Stefania; Passarella, Daniele; Martinelli, Marisa
2011-05-23
An efficient total synthesis of the natural alkaloid (+)-dumetorine by using flow technology is described. The process entailed five separate steps starting from the enantiopure (S)-2-(piperidin-2-yl)ethanol 4 with 29% overall yield. Most of the reactions were carried out by exploiting solvent superheating and by using packed columns of immobilized reagents or scavengers to minimize handling. New protocols for performing classical reactions under continuous flow are disclosed: the ring-closing metathesis reaction with a novel polyethylene glycol-supported Hoveyda catalyst and the unprecedented flow deprotection/Eschweiler-Clarke methylation sequence. The new protocols developed for the synthesis of (+)-dumetorine were applied to the synthesis of its simplified natural congeners (-)-sedamine and (+)-sedridine. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ariyawutthiphan, Orapin; Ose, Toyoyuki; Minami, Atsushi; Shinde, Sandip; Sinde, Sandip; Tsuda, Muneya; Gao, Yong-Gui; Yao, Min; Oikawa, Hideaki; Tanaka, Isao
2012-11-01
In the typical isoprenoid-biosynthesis pathway, condensation of the universal C(5)-unit precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) occurs via the common intermediates prenyl pyrophosphates (C(10)-C(20)). The diversity of isoprenoids reflects differences in chain length, cyclization and further additional modification after cyclization. In contrast, the biosynthesis of 2-methylisonorneol (2-MIB), which is responsible for taste and odour problems in drinking water, is unique in that it primes the enzymatic methylation of geranyl pyrophosphate (GPP) before cyclization, which is catalyzed by an S-adenosyl-L-methionine-dependent methyltransferase (GPPMT). The substrate of GPPMT contains a nonconjugated olefin and the reaction mechanism is expected to be similar to that of the steroid methyltransferase (SMT) family. Here, structural analysis of GPPMT in complex with its cofactor and substrate revealed the mechanisms of substrate recognition and possible enzymatic reaction. Using the structures of these complexes, methyl-group transfer and the subsequent proton-abstraction mechanism are discussed. GPPMT and SMTs contain a conserved glutamate residue that is likely to play a role as a general base. Comparison with the reaction mechanism of the mycolic acid cyclopropane synthase (MACS) family also supports this result. This enzyme represented here is the first model of the enzymatic C-methylation of a nonconjugated olefin in the isoprenoid-biosynthesis pathway. In addition, an elaborate system to avoid methylation of incorrect substrates is proposed.
Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.
Sebbar, N; Bozzelli, J W; Bockhorn, H
2014-01-09
Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.
Martinez-Solorio, Dionicio; Melillo, Bruno; Sanchez, Luis; Liang, Yong; Lam, Erwin; Houk, K. N.; Smith, Amos B.
2016-01-01
A reusable silicon-based transfer agent (1) has been designed, synthesized, and validated for effective room-temperature palladium-catalyzed cross-coupling reactions (CCRs) of aryl and heteroaryl chlorides with readily accessible aryl lithium reagents. The crystalline, bench-stable siloxane transfer agent (1) is easily prepared via a one-step protocol. Importantly, this “green” CCR protocol circumvents prefunctionalization, isolation of organometallic cross-coupling partners, and/or stoichiometric waste aside from LiCl. DFT calculations support a σ-bond metathesis mechanism during transmetalation and lead to insights on the importance of the CF3 groups. PMID:26835838
Approaches to the Chemical Synthesis of the Chlorosulfolipids
Chung, Won-Jin; Vanderwal, Christopher D.
2014-01-01
CONSPECTUS Since the initial discovery of the chlorosulfolipids in 1969, the chemical synthesis community largely ignored these compounds for nearly four decades, perhaps because they contain a high density of chlorine atoms that suggested that these molecules and any projected synthetic intermediates might be unstable. Beginning in 2008, a sudden flurry of synthesis activity by several research groups, including our own, appeared in the literature. In this Account, we highlight our work from the last several years on the chemical synthesis of the chlorosulfolipids. Our work in this area began with attempts to stereoselectively generate the abundant dichloroalcohol functional group arrangements in these natural targets. In these early studies, we learned that many polychlorinated intermediates were far more stable than anticipated. We also developed a method for the diastereoselective dichlorination of allylic alcohol derivatives that permitted access to the syn,syn-dichloroalcohol stereotriad found in several chlorosulfolipids. Concurrently, we investigated an approach to mytilipin A that included multiple intermediates bearing β-chloroaldehyde functional group arrangements, but this route proved intractable. However, we leveraged what we had learned from this approach into our first success in this area: we synthesized danicalipin A via a route that introduced all of the polar functional groups using alkene oxidation reactions. By adapting this relatively general strategy, we completed an enantioselective synthesis of malhamensilipin A. This body of work also resulted in the full stereochemical elucidation of danicalipin A and the structural revision of malhamensilipin A. Finally, with the advent of Z-selective alkene cross metathesis, we developed a second-generation synthesis that featured this strategy in place of a poorly performing Wittig olefination that plagued our first approach. In addition to this new convergent step, we developed a reliable protocol for diastereoselective addition to highly sensitive α,β-dichloroaldehydes and a method for kinetic resolution of complex vinyl epoxides. Altogether, these advances led to a synthesis of enantioenriched mytilipin A in only eight steps. In the context of this work, we discovered a number of highly stereoselective reactions that might offer new, broadly applicable lessons in acyclic stereocontrol. Moreover, this research testifies to the stability of polychlorinated molecules and should inspire confidence in the use of aliphatic chlorides in other applications, including in discovery chemistry. PMID:24400674
Mas-Ballesté, Rubén; Que, Lawrence
2007-12-26
The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.
Annual Letter Report on ONR (Office of Naval Research) Contract Number N00014-85-K-0228.
1985-12-02
olefination, ".. and thioketalization, are currently under way. Stabilization of these polyketones _ with respect to aldolization is particularly important for...11 NaH High Dilution 67 ..- expected that a knotted polyketone will be especially prone to intramolecular trans-annular reactions. The four-rung THYME
The Variable Transition State in Polar Additions to Pi Bonds
ERIC Educational Resources Information Center
Weiss, Hilton M.
2010-01-01
A vast majority of polar additions of Bronsted acids to alkynes involve a termolecular transition state. With strong acids, considerable positive charge is developed on carbon and Markovnikov addition predominates. In less acidic solutions, however, the reaction is much slower and the transition state more closely resembles the olefinic product.…
Anti-wear additive derived from soybean oil and boron utilized in a gear oil formulation
USDA-ARS?s Scientific Manuscript database
The synthesis of lubricant additives based on boron and epoxidized soybean oil are presented. These additives are made from a simple patent pending method involving a ring opening reaction and addition of the borate. A pair of different additives were tested in soybean oil, polyalpha olefin basestoc...
Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin
2012-07-09
The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Murugappan, Karthick; Mukarakate, Calvin; Budhi, Sridhar; ...
2016-07-12
The catalytic fast pyrolysis (CFP) of pine was investigated over 10 wt% MoO 3/TiO 2 and MoO 3/ZrO 2 at 500 °C and H 2 pressures ≤ 0.75 bar. The product distributions were monitored in real time using a molecular beam mass spectrometer (MBMS). Both supported MoO 3 catalysts show different levels of deoxygenation based on the cumulative biomass to MoO 3 mass ratio exposed to the catalytic bed. For biomass to MoO 3 mass ratios <1.5, predominantly olefinic and aromatic hydrocarbons are produced with no detectable oxygen-containing species. For ratios ≥ 1.5, partially deoxygenated species comprised of furans andmore » phenols are observed, with a concomitant decrease of olefinic and aromatic hydrocarbons. For ratios ≥ 5, primary pyrolysis vapours break through the bed, indicating the onset of catalyst deactivation. Product quantification with a tandem micropyrolyzer-GCMS setup shows that fresh supported MoO 3 catalysts convert ca. 27 mol% of the original carbon into hydrocarbons comprised predominantly of aromatics (7 C%), olefins (18 C%) and paraffins (2 C%), comparable to the total hydrocarbon yield obtained with HZSM-5 operated under similar reaction conditions. In conclusion, post-reaction XPS analysis on supported MoO 3/ZrO 2 and MoO 3/TiO 2 catalysts reveal that ca. 50% of Mo surface species exist in their partially reduced forms (i.e., Mo 5+ and Mo 3+), and that catalyst deactivation is likely associated to coking.« less
Mathys, Marion; Kraft, Philip
2014-10-01
Both C=C-bond isomers of cyclohexadec-7-enone (6, Aurelione(®) ) were selectively synthesized via cyclohexadec-7-ynol (16) by ring-closing alkyne metathesis of icosa-2,18-diyn-9-ol (15), employing an in situ-formed catalyst from Mo(CO)6 and 4-(trifluoromethyl)phenol. Pyridinium chlorochromate (PCC) oxidation and subsequent Lindlar hydrogenation afforded the (7Z)-configured isomer (7Z)-6, while hydrosilylation of the intermediate cyclohexadec-7-ynone (17), followed by desilylation, provided the (7E)-configured cyclohexadec-7-enone ((7E)-6). The substrate for the alkyne metathesis was prepared from cycloheptanone (7) by cycloaddition of chloromethylcarbene to its trimethylsilyl enol ether 8, and subsequent ring enlargement of the adduct 9 under rearrangement to 2-methylcyclooct-2-enone (10), which was subjected to Weitz-Scheffer epoxidation and Eschenmoser-Ohloff fragmentation to non-7-ynal (12). Its reaction with the Grignard reagent of 11-bromoundec-2-yne (14), prepared from the corresponding alcohol 13 by Appel-Lee bromination, furnished the icosa-2,18-diyn-9-ol (15). While both isomers of cyclohexadec-7-enone (6) possess warm and powdery musk odors with tobacco-type ambery accents, (7Z)-6 is more animalic and waxy, whereas (7E)-6 was found to be more floral, sweet, and hay-like in tonality. Interestingly, however, with odor detection thresholds of 2.0 ng/l air and 2.3 ng/l air, respectively, both (7Z)-6 and (7E)-6 were found to be almost identical in their odor strength, with the (7Z)-6 being only very slightly more powerful. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
Alcaide, Benito; Almendros, Pedro; Fernández, Israel; Lázaro-Milla, Carlos
2015-02-25
2-(Pyridinium-1-yl)-1,1-bis(triflyl)ethanides have been used as 1,2-dipole precursors in a metal-free direct [2+2] cycloaddition reaction of alkynes. Starting from stable zwitterionic pyridinium salts, the electron deficient olefin 1,1-bis(trifluoromethylsulfonyl)ethene is generated in situ and immediately reacted at room temperature with an alkyne to afford substituted cyclobutenes. Remarkably, this mild and facile uncatalyzed protocol requires neither irradiation nor heating.
Synthesis of racemic β-chamigrene, a spiro[5.5]undecane sequiterpene.
Antonsen, Simen; Skattebøl, Lars; Stenstrøm, Yngve
2014-12-10
The present paper describes a total synthesis of racemic β-chamigrene, a sesquiterpene with a spiro[5.5]undecane carbon framework. Compared with previously reported β-chamigrene syntheses, we were able to reduce the total number of reaction steps, which also resulted in a significant improvement of the overall yield. The commercially available ketone 6-methylhept-5-en-2-one was transformed by known simple procedures into 3,3-dimethyl-2-methylenecyclohexanone. This reacted with isoprene by a Diels-Alder reaction to give a spiro ketone. An olefination reaction on this compound gave the target molecule.
Chemical kinetics of homogeneous atmospheric oxidation of sulfur dioxide
NASA Technical Reports Server (NTRS)
Sander, S. P.; Seinfeld, J. H.
1976-01-01
A systematic evaluation of known homogeneous SO2 reactions which might be important in air pollution chemistry is carried out. A mechanism is developed to represent the chemistry of NOx/hydrocarbon/SO2 systems, and the mechanism is used to analyze available experimental data appropriate for quantitative analysis of SO2 oxidation kinetics. Detailed comparisons of observed and predicted concentration behavior are presented. In all cases, observed SO2 oxidation rates cannot be explained solely on the basis of those SO2 reactions for which rate constants have been measured. The role of ozone-olefin reactions in SO2 oxidation is elucidated.
Harshbarger, Wayne; Gondi, Sudershan; Ficarro, Scott B; Hunter, John; Udayakumar, Durga; Gurbani, Deepak; Singer, William D; Liu, Yan; Li, Lianbo; Marto, Jarrod A; Westover, Kenneth D
2017-01-06
Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Harshbarger, Wayne; Gondi, Sudershan; Ficarro, Scott B.; Hunter, John; Udayakumar, Durga; Gurbani, Deepak; Singer, William D.; Liu, Yan; Li, Lianbo; Marto, Jarrod A.; Westover, Kenneth D.
2017-01-01
Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation. PMID:27872191
Reactivity of bromoalkanes in reactions of coordinated molecular decay
NASA Astrophysics Data System (ADS)
Pokidova, T. S.; Denisov, E. T.
2016-09-01
The results from experiments on reactions of the coordinated molecular decay of RBr bromoalkanes on olefin and HBr are analyzed using the model of intersecting parabolas (MIP). Kinetic parameters within the MIP are calculated from the experimental data, enabling calculation of the activation energies ( E) and rate constants ( k) of such reactions, based on the enthalphy of the reaction and the MIP algorithms. The factors affecting the E of the RBr decay reaction are established: the enthalphy of the reaction, triplet repulsion, the energy of radical R• stabilization, the presence of a π bond adjacent to the reaction center, and the dipole-dipole interaction of polar groups. The energy spectrum of the partial energies of activation is constructed for the reaction of coordinated molecular decay of RBr, and the E and k of inverse addition reactions are evaluated.
Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek
2017-01-25
Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.
Direct Partial Oxidations Using Molecular Oxygen - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Richard
In 2006, Richard A. Kemp (University of New Mexico) and Karen I. Goldberg (University of Washington) formed a team and began to investigate new strategies to accomplish direct selective aerobic oxidations, with a particular emphasis on the epoxidation of propylene and higher olefins. This DOE-BES funded project was renewed twice and concluded after a no-cost extension earlier this year. Multiple novel strategies involving homogeneous catalyst systems were initiated and investigated during the award. Important fundamental understanding and insight concerning requirements for promotion of aerobic olefin epoxidation was generated. During the tenure of this project, new knowledge was generated concerning themore » synthesis, characterization and aerobic reactivity of metal hydrides and hydroxides. Key results describing synthetic strategies and optimization of the preparation of mononuclear late metal hydrides were published. The team reported the first example of O2 insertion into a Pd-H bond, a reaction which had been proposed in the literature but never previously observed. Our experimental investigation of the mechanism was later followed by computational work, and a description of what is now referred to as the Hydrogen Atom Abstraction (HAA) pathway for this reaction has been widely accepted in the community. After investigation of many other late metal hydrides, both experimentally and computationally, the team put together a chapter that included a description of key contributing factors that allow reaction by the HAA mechanism. A brief sampling of other classic papers from our project include hydrogenolysis reactions of late metal hydroxide and alkoxide complexes, the synthesis of nickel-hydrides, and the involvement of hemilabile ligands in promoting new reaction pathways.« less
A nanocatalyst comprising ultra-small Pd/PdO nanoparticles (<5 nm) supported on maghemite was prepared by a co-precipitation protocol using inexpensive raw materials and was deployed successfully in various significant synthetic transformations, namely the Heck–Mizoroki olefinati...
Ring Expansion and Rearrangements of Rhodium(II) Azavinyl Carbenes
Selander, Nicklas; Worrell, Brady T.
2013-01-01
An efficient, regioselective and convergent method for the ring expansion and rearrangement of 1-sulfonyl-1,2,3-triazoles under rhodium(II)-catalyzed conditions is described. These denitrogenative reactions form substituted enaminone and olefin-based products, which in the former case can be further functionalized to unique products rendering the sulfonyl triazole traceless. PMID:23161725
21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.
Code of Federal Regulations, 2013 CFR
2013-04-01
... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...
21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.
Code of Federal Regulations, 2010 CFR
2010-04-01
... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...
21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.
Code of Federal Regulations, 2012 CFR
2012-04-01
... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...
21 CFR 178.3780 - Polyhydric alcohol esters of long chain monobasic acids.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chloride copolymer articles complying with § 177.1980 of this chapter that contact food of Types I, II, IV... 1,050 to 1,700. The esters are produced by the reaction of either ethylene glycol or glycerol with... chain alpha-olefins, the unreacted carboxylic acids in the formation of the glycerol esters being...
NASA Astrophysics Data System (ADS)
Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.
2000-07-01
Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.
Bruneau, Christian; Dixneuf, Pierre H
2006-03-27
The involvement of a catalytic metal vinylidene species was proposed for the first time in 1986 to explain the regioselective formation of vinyl carbamates directly from terminal alkynes, carbon dioxide, and amines. Since this initial report, various metal vinylidenes and allenylidenes, which are key activation intermediates, have proved extremely useful for many alkyne transformations. They have contributed to the rational design of new catalytic reactions. This 20th anniversary is a suitable occasion to present the advancement of organometallic vinylidenes and allenylidenes in catalysis.
Morgan, Matthew M; Piers, Warren E
2016-04-14
Polycyclic aromatic hydrocarbons in which one or more CC units have been replaced by isoelectronic BN units have attracted interest as potentially improved organic materials in various devices. This promise has been hampered by a lack of access to gram quantities of these materials. However, the exploitation of keystone reactions such as ring closing metathesis, borylative cyclization of amino styrenes and electrophilic borylation has lead to strategies for access to workable amounts of material. These strategies can be augmented by judicious postfunctionalization reactions to diversify the library of materials available. This Frontier article highlights some of the recent successes and shows that the long promised applications of BN-doped PAHs are beginning to be explored in a meaningful way.
NASA Astrophysics Data System (ADS)
Kuznetsov, N. Yu; Bubnov, Yu N.
2015-07-01
The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references.
Ohshima, Takashi; Xu, Youjun; Takita, Ryo; Shimizu, Satoshi; Zhong, Dafang; Shibasaki, Masakatsu
2002-12-11
The enantioselective total synthesis of (-)-strychnine was accomplished through the use of the highly practical catalytic asymmetric Michael reaction (0.1 mol % of (R)-ALB, more than kilogram scale, without chromatography, 91% yield and >99% ee) as well as a tandem cyclization that simultaneously constructed B- and D-rings (>77% yield). Moreover, newly developed reaction conditions for thionium ion cyclization, NaBH3CN reduction of the imine moiety in the presence of Lewis acid to prevent ring opening reaction, and chemoselective reduction of the thioether (desulfurization) in the presence of exocyclic olefin were pivotal to complete the synthesis. The described chemistry paves the way for the synthesis of more advanced Strychnos alkaloids.
Johnson, Erin R; Clarkin, Owen J; Dale, Stephen G; DiLabio, Gino A
2015-06-04
Solution-phase rate constants for the addition of selected olefins to the triethylsilyl and tris(trimethylsilyl)silyl radicals are measured using laser-flash photolysis and competition kinetics. The results are compared with predictions from density functional theory (DFT) calculations, both with and without dispersion corrections obtained from the exchange-hole dipole moment (XDM) model. Without a dispersion correction, the rate constants are consistently underestimated; the errors increase with system size, up to 10(6) s(-1) for the largest system considered. Dispersion interactions preferentially stabilize the transition states relative to the separated reactants and bring the DFT-calculated rate constants into excellent agreement with experiment. Thus, dispersion interactions are found to play a key role in determining the kinetics for addition reactions, particularly those involving sterically bulky functional groups.
Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins.
Exner, Matthias P; Köhling, Sebastian; Rivollier, Julie; Gosling, Sandrine; Srivastava, Puneet; Palyancheva, Zheni I; Herdewijn, Piet; Heck, Marie-Pierre; Rademann, Jörg; Budisa, Nediljko
2016-02-29
The increasing need for site-specific protein decorations that mimic natural posttranslational modifications requires access to a variety of noncanonical amino acids with moieties enabling bioorthogonal conjugation chemistry. Here we present the incorporation of long-chain olefinic amino acids into model proteins with rational variants of pyrrolysyl-tRNA synthetase (PylRS). Nε-heptenoyl lysine was incorporated for the first time using the known promiscuous variant PylRS(Y306A/Y384F), and Nε-pentenoyl lysine was incorporated in significant yields with the novel variant PylRS(C348A/Y384F). This is the only example of rational modification at position C348 to enlarge the enzyme's binding pocket. Furthermore, we demonstrate the feasibility of our chosen amino acids in the thiol-ene conjugation reaction with a thiolated polysaccharide.
A comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils.
Roesle, Philipp; Caporaso, Lucia; Schnitte, Manuel; Goldbach, Verena; Cavallo, Luigi; Mecking, Stefan
2014-12-03
Theoretical studies on the overall catalytic cycle of isomerizing alkoxycarbonylation reveal the steric congestion around the diphosphine coordinated Pd-center as decisive for selectivity and productivity. The energy profile of isomerization is flat with diphosphines of variable steric bulk, but the preference for the formation of the linear Pd-alkyl species is more pronounced with sterically demanding diphosphines. CO insertion is feasible and reversible for all Pd-alkyl species studied and only little affected by the diphosphine. The overall rate-limiting step associated with the highest energetic barrier is methanolysis of the Pd-acyl species. Considering methanolysis of the linear Pd-acyl species, whose energetic barrier is lowest within all the Pd-acyl species studied, the barrier is calculated to be lower for more congesting diphosphines. Calculations indicate that energy differences of methanolysis of the linear versus branched Pd-acyls are more pronounced for more bulky diphosphines, due to involvement of different numbers of methanol molecules in the transition state. Experimental studies under pressure reactor conditions showed a faster conversion of shorter chain olefin substrates, but virtually no effect of the double bond position within the substrate. Compared to higher olefins, ethylene carbonylation under identical conditions is much faster, likely due not just to the occurrence of reactive linear acyls exclusively but also to an intrinsically favorable insertion reactivity of the olefin. The alcoholysis reaction is slowed down for higher alcohols, evidenced by pressure reactor and NMR studies. Multiple unsaturated fatty acids were observed to form a terminal Pd-allyl species upon reaction with the catalytically active Pd-hydride species. This process and further carbonylation are slow compared to isomerizing methoxycarbonylation of monounsaturated fatty acids, but selective.
Zhang, Chaoyang; Cao, Xia; Xiang, Bin
2012-04-01
We simulated the shear slide behavior of typical mixed HMX-olefin systems and the effect of thickness of olefin layers (4-22 Å) on the behavior at a molecular level by considering two cases: bulk shear and interfacial shear. The results show that: (1) the addition of olefin into HMX can reduce greatly the shear sliding barriers relative to the pure HMX in the two cases, suggesting that the desensitizing mechanism of olefin is controlled dominantly by its good lubricating property; (2) the change of interaction energy in both systoles of shear slide is strongly dominated by van der Waals interaction; and (3) the thickness of olefin layers in the mixed explosives can influence its desensitizing efficiency. That is, the excessive thinness of olefin layers in the mixed explosive systems, for example, several angstroms, can lead to very high sliding barriers.
2016-01-01
In the presence of a chiral thioxanthone catalyst (10 mol %) the title compounds underwent a clean intermolecular [2 + 2] photocycloaddition with electron-deficient olefins at λ = 419 nm. The reactions not only proceeded with excellent regio- and diastereoselectivity but also delivered the respective cyclobutane products with significant enantiomeric excess (up to 95% ee). Key to the success of the reactions is a two-point hydrogen bonding between quinolone and catalyst enabling efficient energy transfer and high enantioface differentiation. Preliminary work indicated that solar irradiation can be used for this process and that the substrate scope can be further expanded to isoquinolones. PMID:27268908
Vázquez-Romero, Ana; Cárdenas, Lydia; Blasi, Emma; Verdaguer, Xavier; Riera, Antoni
2009-07-16
A new approach to the synthesis of prostaglandin and phytoprostanes B(1) is described. The key step is an intermolecular Pauson-Khand reaction between a silyl-protected propargyl acetylene and ethylene. This reaction, promoted by NMO in the presence of 4 A molecular sieves, afforded the 3-tert-butyldimethylsilyloxymethyl-2-substituted-cyclopent-2-en-1-ones (III) in good yield and with complete regioselectivity. Deprotection of the silyl ether, followed by Swern oxidation, gave 3-formyl-2-substituted-cyclopent-2-en-1-ones (II). Julia olefination of the aldehydes II with the suitable chiral sulfone enabled preparation of PPB(1) type I and PGB(1).
Treatment of olefin plant spent caustic by combination of neutralization and Fenton reaction.
Sheu, S H; Weng, H S
2001-06-01
Spent caustic from olefin plants contains much H2S and some mercaptans, phenols and oil. A new treatment process of spent caustic by neutralization followed by oxidation with Fenton's reagent (Fe2+/H2O2) was successfully developed. Over 90% of dissolved H2S were converted to gas phase by neutralization at pH = 5 and T = 70 degrees, and the vent gas stream could be introduced to sulfur recovery plant. The neutralized liquid was oxidized with OH. free radical, which was provided by a Fenton's reagent. The residual sulfides in the neutralized spent caustic were oxidized to less than 0.1 mg/L. The total COD removal of spent caustic is over 99.5% and the final COD value of the effluent can be lower than 100 mg/L under the following oxidation conditions: reaction time = 50 min, T = 90 degrees, Fe2+ = 100 mg/L, and a stoichiometric H2O2/COD = 1.1. The value is better than the 800 mg/L value obtained by common WAO process. The optimum pH of the Fenton reaction is around 2 for this process, and the oxidation step can maintain a pH value in the range of 1.8-2.4. Moreover, the iron catalyst can be recycled without affecting process effectiveness thus preventing secondary pollution.
Mild Palladium Catalyzed ortho C-H Bond Functionalizations of Aniline Derivatives.
Tischler, Ms Orsolya; Tóth, Mr Balázs; Novák, Zoltán
2017-02-01
This account collects the developments and transformations which avoid the utilization of harsh reaction conditions in the field of palladium catalyzed, ortho-directed C-H activation of aniline derivatives from the first attempts to up-to-date results, including the results of our research laboratory. The discussed functionalizations performed under mild conditions include acylation, olefination, arylation, alkylation, alkoxylation reactions. Beside the optimization studies and the synthetic applications mechanistic investigations are also presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Catalytic Enantioselective Total Synthesis of (+)-Liphagal**
Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.
2012-01-01
Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwave-assisted metal catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin to establish the trans homodecalin system found in the natural product. PMID:21671325
Developing clean fuels: Novel techniques for desulfurization
NASA Astrophysics Data System (ADS)
Nehlsen, James P.
The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this system and is justified with a thermodynamic analysis and an experimental determination of the reaction rate law.
The Electrochemistry of Organophosphorus Compounds.
1988-01-20
of hydrogen on the electrode surface. Mechanistkc views are further developed with the addition of water resulting in the formation of...the exclusive vlide product. Furthermore, carbonvl compounds were added to the electrolyses to react with the electrochemically-generated ylides via...the Wittig reaction. The resulting olefins were found to catalytically isomerize from the Z isomer to the E isomer upon reduction. The role of water
Gold(I) Carbenoids: On‐Demand Access to Gold(I) Carbenes in Solution
Sarria Toro, Juan M.; García‐Morales, Cristina; Raducan, Mihai; Smirnova, Ekaterina S.
2017-01-01
Abstract Chloromethylgold(I) complexes of phosphine, phosphite, and N‐heterocyclic carbene ligands are easily synthesized by reaction of trimethylsilyldiazomethane with the corresponding gold chloride precursors. Activation of these gold(I) carbenoids with a variety of chloride scavengers promotes reactivity typical of metallocarbenes in solution, namely homocoupling to ethylene, olefin cyclopropanation, and Buchner ring expansion of benzene. PMID:28090747
Pu, Qiaosheng; Oyesanya, Olufemi; Thompson, Bowlin; Liu, Shantang; Alvarez, Julio C
2007-01-30
This paper reports on the surface modification of plastic microfluidic channels to prepare different biomolecule micropatterns using ultraviolet (UV) photografting methods. The linkage chemistry is based upon UV photopolymerization of acryl monomers to generate thin films (0.01-6 microm) chemically linked to the organic backbone of the plastic surface. The commodity thermoplastic, cyclic olefin copolymer (COC) was selected to build microfluidic chips because of its significant UV transparency and easiness for microfabrication by molding techniques. Once the polyacrylic films were grafted on the COC surface using photomasks, micropatterns of proteins, DNA, and biotinlated conjugates were readily obtained by surface chemical reactions in one or two subsequent steps. The thickness of the photografted films can be tuned from several nanometers up to several micrometers, depending on the reaction conditions. The micropatterned films can be prepared inside the microfluidic channel (on-chip) or on open COC surfaces (off-chip) with densities of functional groups about 10(-7) mol/cm2. Characterization of these films was performed by attenuated-total-reflectance IR spectroscopy, fluorescence microscopy, profilometry, atomic force microscopy, and electrokinetic methods.
Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.
Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun
2018-08-01
The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.
Schwach, Pierre; Pan, Xiulian; Bao, Xinhe
2017-07-12
The quest for an efficient process to convert methane efficiently to fuels and high value-added chemicals such as olefins and aromatics is motivated by their increasing demands and recently discovered large reserves and resources of methane. Direct conversion to these chemicals can be realized either oxidatively via oxidative coupling of methane (OCM) or nonoxidatively via methane dehydroaromatization (MDA), which have been under intensive investigation for decades. While industrial applications are still limited by their low yield (selectivity) and stability issues, innovations in new catalysts and concepts are needed. The newly emerging strategy using iron single sites to catalyze methane conversion to olefins, aromatics, and hydrogen (MTOAH) attracted much attention when it was reported. Because the challenge lies in controlled dehydrogenation of the highly stable CH 4 and selective C-C coupling, we focus mainly on the fundamentals of C-H activation and analyze the reaction pathways toward selective routes of OCM, MDA, and MTOAH. With this, we intend to provide some insights into their reaction mechanisms and implications for future development of highly selective catalysts for direct conversion of methane to high value-added chemicals.
Kinetic Studies of the Thermal Decomposition of Methylperoxynitrate and of Ozone-Olefin Reactions.
NASA Astrophysics Data System (ADS)
Bahta, Abraha
This research concerns the thermal decomposition kinetics of CH(,3)O(,2)NO(,2) and laboratory kinetic measurements of ozone-olefin reactions. In the first system, the thermal decomposition rate of CH(,3)O(,2)NO(,2) was studied in the temperature range of 256-268 K at (TURN)350 torr total pressure and in the pressure range of 50-720 torr at 263 K by the perturbation of the equilibrium: (UNFORMATTED TABLE FOLLOWS). CH(,3)O(,2) + NO(,2) (+M) (DBLARR) CH(,3)O(,2)NO(,2) (+M) (3,-3). with NO. CH(,3)O(,2) + NO (--->) CH(,3)O + NO(,2) (4). (TABLE ENDS). The CH(,3)O(,2)NO(,2) was generated in situ by the photolysis of Cl(,2) in the presence of O(,2), CH(,4) and NO(,2). The decomposition kinetics were monitored in the presence of NO by the change in ultraviolet absorption at 250 nm. The Arrhenius expression obtained for the thermal decomposition is k(,-3) = 6 x 10('15) exp{-(21,000 (+OR-) 1500)/RT} sec('-1) at (TURNEQ)350 torr total pressure (mostly CH(,4)) where R = 1.987 cal/mole('-) K. The uncertainty in the Arrhenius parameters can be greatly reduced by combining this expression with data for k(,3) and thermodynamics data to give k(,-3) = (6 (+OR-) 3) x 10('15) exp{-(21,300 (+OR-) 300)/RT} sec('-1) at (TURNEQ)350 torr total pressure. Computations based on the pressure dependence of the forward reaction give k(,-3)('(INFIN)) = 2.1 x 10('16) exp{-(21,700 (+OR -) 300)/RT} sec('-1) k(,-3)('(DEGREES)) = 3.3 x 10(' -4) exp{-(20,150 x 300)/RT} cm('3) sec('-1). At 263 K the equilibrium constant K(,3,-3){263 K} is determined to be (2.68 (+OR-) 0.26) x 10('-10) cm('3). In the stratosphere the CH(,3)O(,2)NO(,2) lifetime will be controlled by play a role in the NO(,x) budget of the lower stratosphere. In the second part, the kinetics of the reactions of O(,3) with C(,2)H(,4), C(,3)H(,4), 1,3-C(,4)H(,6), and trans-1,3-C(,5)H(,8) were studied with initial olefin-to -ozone ratios (GREATERTHEQ) 4.9, in the presence of excess O(,2), and over the temperature range 232 to 300 K. The initial O(,3) pressure was varied from 5-18 mtorr, and the olefin pressure was varied from 0.1 to 4.5 torr (C(,2)H(,4)), 2.8 to 39.6 torr (allene), 52.7 to 600 mtorr (1,3-C(,4)H(,6)), or 26.2 to 106 mtorr (1,3-C(,5)H(,8)). The O(,3) decay was monitored by ultraviolet absorption. The reaction is first order in both O(,3) and olefin. The rate coefficients are independent of the O(,2) pressure (100-400 torr), and in the case of the O(,3)/C(,2)H(,4) system, the rate coefficients are independent of the nature of the diluent gas--N(,2), O(,2), and air were used. These measured rate coefficients were found to fit the Arrhenius expressions: (UNFORMATTED TABLE FOLLOWS). For C(,2)H(,4): k{232-298 K}=(7.88(+OR -)0.46)x10('-15) exp{-(5085(+OR-)580)/RT}. For C(,3)H(,4): k{252-298 K}=(1.92(+OR -)0.14)x10('-15) exp{-(5430(+OR-)830)/RT}. For 1,3-C(,4)H(,6): k{254-299 K}=(2.43(+OR -)0.15)x10('-14) exp{-(4900(+OR-)670)}. and. For t-1,3-C(,5)H(,8): k{262-298 K}=(6.56(+OR -)0.40)x10('-12). exp{-(7140(+OR-)860)/RT}. (TABLE ENDS). cm('3) s('-1), where the uncertainties represent one standard deviation.
Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.
Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément
2018-06-05
Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in various relevant chemical reactions like isomerisation, hydrogenation, olefin metathesis, pollutant total oxidation, selective oxidation, CO2 methanation, etc. A short survey of patents and industrial applications is also presented. Our objective is to demonstrate the tremendous possibilities offered by the coupling between bottom up synthesis routes and these aerosol processing technologies which will most probably represent a major route of innovation in the mushrooming field of catalyst preparation research.
Phosphorus-containing nucleophiles in reactions with polyfluorinated organic compounds
NASA Astrophysics Data System (ADS)
Furin, Georgii G.
1993-03-01
The review presents a compilation of new expelimental data on the reactions of phosphorus-containing nucleophiles [triphenylphosphine, trialkylphosphines, trialkyl phosphites, phosphorus tris(diethylamide), etc.] with perfluorinated olefins and aromatic and heterocyclic compounds, leading to substances both with and without a phosphorus atom. It is shown that the interaction of phosphorus tris(diethylamide) and trialkylphosphines with organic polyfluoro-compounds and perfluoroolefins leads to the formation of phosphoranes, the decomposition of which is accompanied by the generation of aryl and alkenyl anions. The reactions of these anions with C-electrophiles and compounds containing mobile halogen atoms are examined. In addition, the pathways in the Arbuzov reaction involving a series of unsaturated perfluorinated compounds are analysed. Possible applications of these reactions in organic synthesis are demonstrated. The bibliography includes 120 references.
Mostafa, Mohamed A B; McMillan, Angus E; Sutherland, Andrew
2017-04-05
The amino substituted bicyclo[4.3.0]nonane is a molecular scaffold found in a wide range of natural products and medicinal agents. Despite this, synthetic methods for the general preparation of this structural motif are sparse. Here we evaluate a diastereoselective approach for the preparation of vinylsilyl derived aminobicyclo[4.3.0]nonanes using a one-pot multi-bond forming process involving a Pd(ii)-catalysed Overman rearrangement, a Ru(ii)-catalysed ring closing enyne metathesis reaction, followed by a hydrogen bonding directed Diels-Alder reaction. We show that a benzyldimethylsilyl-substituted alkene analogue is amenable to further functionalisation and the late stage generation of diverse sp 3 -rich, drug-like aminobicyclo[4.3.0]nonane scaffolds with up to six stereogenic centres.
Junker; Reif; Steinhagen; Junker; Felli; Reggelin; Griesinger
2000-09-01
The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.
NASA Astrophysics Data System (ADS)
Kelb, Christian; Rother, Raimund; Schuler, Anne-Katrin; Hinkelmann, Moritz; Rahlves, Maik; Prucker, Oswald; Müller, Claas; Rühe, Jürgen; Reithmeier, Eduard; Roth, Bernhard
2016-03-01
We demonstrate the manufacturing of embedded multimode optical waveguides through linking of polymethylmethacrylate (PMMA) foils and cyclic olefin polymer (COP) filaments based on a lamination process. Since the two polymeric materials cannot be fused together through interdiffusion of polymer chains, we utilize a reactive lamination agent based on PMMA copolymers containing photoreactive 2-acryloyloxyanthraquinone units, which allows the creation of monolithic PMMA-COP substrates through C-H insertion reactions across the interface between the two materials. We elucidate the lamination process and evaluate the chemical link between filament and foils by carrying out extraction tests with a custom-built tensile testing machine. We also show attenuation measurements of the manufactured waveguides for different manufacturing parameters. The lamination process is in particular suited for large-scale and low-cost fabrication of board-level devices with optical waveguides or other micro-optical structures, e.g., optofluidic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Hong; Liao, Zhixiong; Zhang, Guanghui
Abstract: The CuI/CuII and CuI/CuIII catalytic cycles have been subject to intense debate in the field of copper-catalyzed oxidative coupling reactions. A mechanistic study on the CuI/CuII redox process, by X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of CuII to CuI by 1,3-diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby-formed CuI has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper-catalyzed oxidative cyclization of b-ketocarbonyl derivatives to dihydrofurans. This protocol provides an idealmore » route to highly substituted dihydrofuran rings from easily available 1,3-dicarbonyls and olefins. Copper« less
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium salt...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.; Wackett, Lawrence P.; Wilmot, Carrie M.
2016-01-01
Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. PMID:27815501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goblirsch, Brandon R.; Jensen, Matthew R.; Mohamed, Fatuma A.
Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry aremore » precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety—unusual for a thiolase—are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.« less
Goetze, Joris; Meirer, Florian; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Ruiz-Martínez, Javier; Weckhuysen, Bert M
2017-06-02
The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.
2017-01-01
The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV–vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV–vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature. PMID:28603658
Nam, Wonwoo; Kim, Inwoo; Lim, Mi Hee; Choi, Hye Jin; Lee, Je Seung; Jang, Ho G
2002-05-03
The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.
Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.
Atkins, Tonya M; Cassidy, Maja C; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M; Kauzlarich, Susan M
2013-02-26
We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na₄Si₄) and silicon tetrachloride (SiCl₄) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²⁹Si spin-lattice relaxation (T₁) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.
Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging
Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.
2013-01-01
We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651
Synthesis of O- and C-glycosides derived from β-(1,3)-D-glucans.
Marca, Eduardo; Valero-Gonzalez, Jessika; Delso, Ignacio; Tejero, Tomás; Hurtado-Guerrero, Ramon; Merino, Pedro
2013-12-15
A series of β-(1,3)-d-glucans have been synthesized incorporating structural variations specifically on the reducing end of the oligomers. Both O- and C-glucosides derived from di- and trisaccharides have been obtained in good overall yields and with complete selectivity. Whereas the O-glycosides were obtained via a classical Koenigs-Knorr glycosylation, the corresponding C-glycosides were obtained through allylation of the anomeric carbon and further cross-metathesis reaction. Finally, the compounds were evaluated against two glycosidases and two endo-glucanases and no inhibitory activity was observed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Focken, Thilo
2014-01-01
Summary A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents. PMID:25246946
Li, Wei; Fan, Zhoulong; Geng, Kaijun; Xu, Youjun; Zhang, Ao
2015-01-14
Divergent C-H functionalization reactions (arylation, carboxylation, olefination, thiolation, acetoxylation, halogenation, naphthylation) using a pyridazinone moiety as an internal directing group were successfully established. This approach offers a late-stage, ortho-selective diversification of a biologically active pyridazinone scaffold. Seven series of novel pyridazinone analogues were synthesized conveniently as the synthetic precursors of potential sortase A (SrtA) inhibitors.
Sakamoto, Ryu; Kashiwagi, Hirotaka; Selvakumar, Sermadurai; Moteki, Shin A; Maruoka, Keiji
2016-07-06
This article describes an efficient method for the introduction of perfluoroalkyl groups into N-acrylamides, 2-isocyanides, olefins, and other heterocycles using perfluoroalkyl radicals that were generated from the reaction between sodium perfluoroalkanesulfinates and a hypervalent iodine(iii) reagent. This approach represents a simple, scalable perfluoroalkylation method under mild and metal-free conditions.
ERIC Educational Resources Information Center
Gerlach, Sharon Ruth
2010-01-01
This dissertation examines three processes affecting consonants in child speech: harmony (long-distance assimilation) involving major place features as in "coat" [kouk]; long-distance metathesis as in "cup" [p[wedge]k]; and initial consonant deletion as in "fish" [is]. These processes are unattested in adult phonology, leading to proposals for…
NASA Astrophysics Data System (ADS)
Magenau, Andrew Jackson David
The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar cycloaddition reaction. 1-(o-Azidoalkyl)pyrrolyl-terminated PIB was successfully synthesized both by substitution of the terminal halide of 1-(o-haloalkyl)pyrrolyl-terminated PIB with sodium azide and by in situ quenching of quasiliving PIB with a 1-(o-azidoalkyl)pyrrole. GPC indicated the absence of coupled PIB under optimized conditions, confirming exclusive mono-substitution on each pyrrole ring. In a fourth study, radical thiol-ene hydrothiolation "Click" chemistry was explored and adapted to easily and rapidly modify exo -olefin PIB with an array of thiol compounds bearing useful functionalities, including primary halogen, primary amine, primary hydroxyl, and carboxylic acid. The thiol-ene "click" procedure was shown to be applicable to both mono and difunctional exo-olefin polyisobutylene. Telechelic mono- and difunctional exo-olefin PIBs were synthesized via quasiliving cationic polymerization followed by quenching with the hindered amine, 1,2,2,6,6-pentamethylpiperidine. Lower reaction temperatures were found to increase exo-olefin conversion to near quantitative amounts. In the fifth study, thiol-terminated polyisobutylene (PIB-SH) was synthesized by reaction of thiourea with alpha,o-bromine-terminated PIB in a three step one-pot procedure. First the alkylisothiouronium salt was produced using a 1:1 (v:v) DMF:heptane cosolvent mixture at 90°C. Hydrolysis of the salt by aqueous base produced thiolate chain ends, which were then acidified to form the desired thiol functional group. An extension of this reaction was performed by a sequential thiol-ene/thiol-yne procedure to produce tetra-hydroxy functionalized PIB. 1H NMR was used to confirm formation of both alkyne and tetrahydroxyl functional species. Further utility of PIB-SH was demonstrated by base catalyzed thiol-isocyanate reactions. A model reaction was conducted with phenyl isocyanate in THF using triethylamine as the catalyst. Last, conversion of PIB-SH directly into a RAFT macro-CTA was accomplished, as shown by 1H NMR, by treatment of PIB-SH with triethylamine in carbon disulfide and subsequent alkylation with 2-bromopropionic acid. (Abstract shortened by UMI.)
Yurkerwich, Kevin; Quinlivan, Patrick J.; Rong, Yi
2015-01-01
The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg–C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg–C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg–SePh/Hg–X groups rather than metathesis of the Hg–R/Hg–R groups. PMID:26644634
Yurkerwich, Kevin; Quinlivan, Patrick J; Rong, Yi; Parkin, Gerard
2016-01-08
The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg-C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg-C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199 Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg-SePh/Hg-X groups rather than metathesis of the Hg-R/Hg-R groups.
Easy access to silicon(0) and silicon(II) compounds.
Mondal, Kartik Chandra; Samuel, Prinson P; Tretiakov, Mykyta; Singh, Amit Pratap; Roesky, Herbert W; Stückl, A Claudia; Niepötter, Benedikt; Carl, Elena; Wolf, Hilke; Herbst-Irmer, Regine; Stalke, Dietmar
2013-04-15
Two different synthetic methodologies of silicon dihalide bridged biradicals of the general formula (L(n)•)2SiX2 (n = 1, 2) have been developed. First, the metathesis reaction between NHC:SiX2 and L(n): (L(n): = cyclic akyl(amino) carbene in a 1:3 molar ratio leads to the products 2 (n = 1, X = Cl), 4 (n = 2, X = Cl), 6 (n = 1, X = Br), and 7 (n = 2, X = Br). These reactions also produce coupled NHCs (3, 5) under C-C bond formation. The formation of the coupled NHCs (L(m) = cyclic alkyl(amino) carbene substituted N-heterocyclic carbene; m = 3, n = 1 (3) and m = 4, n =2 (5)) is faster during the metathesis reaction between NHC:SiBr2 and L(n): when compared with that of NHC:SiCl2. Second, the reaction of L(1):SiCl4 (8) (L(1): =:C(CH2)(CMe2)2N-2,6-iPr2C6H3) with a non-nucleophilic base LiN(iPr)2 in a 1:1 molar ratio shows an unprecedented methodology for the synthesis of the biradical (L(1)•)2SiCl2 (2). The blue blocks of silicon dichloride bridged biradicals (2, 4) are stable for more than six months under an inert atmosphere and in air for one week. Compounds 2 and 4 melt in the temperature range of 185 to 195 °C. The dibromide (6, 7) analogue is more prone to decomposition in the solution but comparatively more stable in the solid state than in the solution. Decomposition of the products has been observed in the UV-vis spectra. Moreover, compounds 2 and 4 were further converted to stable singlet biradicaloid dicarbene-coordinated (L(n):)2Si(0) (n = 1 (9), 2 (10)) under KC8 reduction. Compounds 2 and 4 were also reduced to dehalogenated products 9 and 10, respectively when treated with RLi (R = Ph, Me, tBu). Cyclic voltametry measurements show that 10 can irreversibly undergo both one electron oxidation and reduction.
Catalytic partial oxidation of hydrocarbons
Schmidt, Lanny D.; Krummenacher, Jakob J.; West, Kevin N.
2007-08-28
A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.
Catalytic partial oxidation of hydrocarbons
Schmidt, Lanny D [Minneapolis, MN; Krummenacher, Jakob J [Minneapolis, MN; West, Kevin N [Minneapolis, MN
2009-05-19
A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.
Stereoselective 1,3-Insertions of Rhodium(II) Azavinyl Carbenes
Chuprakov, Stepan; Worrell, Brady T.; Selander, Nicklas; Sit, Rakesh K.; Fokin, Valery V.
2014-01-01
Rhodium(II) azavinyl carbenes, conveniently generated from 1-sulfonyl-1,2,3-triazoles, undergo a facile, mild and convergent formal 1,3-insertion into N–H and O–H bonds of primary and secondary amides, various alcohols, and carboxylic acids to afford a wide range of vicinally bis-functionalized Z-olefins with perfect regio- and stereoselectively. Utilizing the distinctive functionality installed through these reactions, a number of subsequent rearrangements and cyclizations expand the repertoire of valuable organic building blocks constructed by reactions of transition metal carbene complexes, including α-allenyl ketones and amino-substituted heterocycles. PMID:24295389
Melt Miscibility in Block Copolymers Containing Polyethylene and Substituted Polynorbornenes
NASA Astrophysics Data System (ADS)
Mulhearn, William; Register, Richard
Very few polymer species exist with a sufficiently weak repulsive interaction against polyethylene (PE), characterized by a low Flory parameter χ or interaction energy density X, to be useful for preparing PE-containing block copolymers with disordered melts at high molecular weights. Most suitably miscible polymers are chemically similar to PE, such as copolymers of ethylene with a minority content of an α-olefin, and so are only marginally useful for property modification due to similar physical properties like the glass transition temperature (Tg) . However, the family of polymers consisting of substituted norbornenes prepared via ring-opening metathesis polymerization (ROMP) and subsequent hydrogenation is unique in that many of its members exhibit very low X against PE (comparable with the interaction energy between poly(ethylene-alt-propylene) and PE), and some of these also exhibit high Tg. The miscibility between PE and a substituted, hydrogenated ROMP polynobornene, or between two dissimilar hydrogenated polynorbornenes, is a strong function of the substituent appended to the norbornene monomer. The mixing thermodynamics of this polymer series are irregular, in that the interaction energies do not follow X = (δ1 - δ2)2 where δ is the solubility parameter. However, other systematic trends do apply and we develop a set of mixing rules to quantitatively describe the experimental miscibility behavior. We also investigate statistical copolymerization of two norbornene monomers as a means to continuously tune miscibility with a homopolymer of a third monomer.
Assessing synthetic strategies: total syntheses of (+/-)-neodolabellane-type diterpenoids.
Valente, Cory; Organ, Michael G
2008-01-01
Two strategies, namely a cross-metathesis/ring-closing metathesis and Pd-catalyzed Stille allylation/Nozaki-Hiyama-Kishi coupling, are examined for the preparation of neodolabellane-type diterpenoids 1 and 2. Whereas the first approach possessed synthetic limitations, the latter was successfully employed to provide compounds 1 and 2 in 8.8% (14 steps) and 8% (15 steps) overall yields, respectively.
Hu, Lu; Zhang, Panjie; Shan, Wanyu; Wang, Xuan; Li, Songqing; Zhou, Wenfeng; Gao, Haixiang
2015-11-01
A novel dispersion liquid-liquid microextraction method based on the solidification of sedimentary ionic liquids (SSIL-DLLME), in which an in situ metathesis reaction forms an ionic liquid (IL) extraction phase, was developed to determine four pyrethroid insecticides (i.e., permethrin, cyhalothrin, fenpropathrin, and transfluthrin) in water followed by separation using high-performance liquid chromatography. In the developed method, in situ DLLME was used to enhance the extraction efficiency and yield. After centrifugation, the extraction solvent, tributyldodecylphosphonium hexafluorophosphate ([P44412][PF6]), was easily collected by solidification in the bottom of the tube. The effects of various experimental parameters, the quantity of tributyldodecylphosphonium bromide ([P44412]Br), the molar ratio of [P44412]Br to potassium hexafluorophosphate (KPF6), the ionic strength, the temperature of the sample solution, and the centrifugation time, were optimized using a Plackett-Burman design to identify the significant factors that affected the extraction efficiency. These significant factors were then optimized using a central composite design. Under the optimized conditions, the recoveries of the four pyrethroid insecticides at four spiked levels ranged from 87.1% to 101.7%, with relative standard deviations (RSDs) ranging from 0.1% to 5.5%. At concentration levels between 1 and 500 µg/L, good linearity was obtained, with coefficients of determination greater than 0.9995. The limits of detection (LODs) for the four pyrethroid insecticides were in the range of 0.71-1.54 µg/L. The developed method was then successfully used for the determination of pyrethroid insecticides in environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J
2018-01-15
In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.
Nishikata, Takashi; Nakamura, Kimiaki; Inoue, Yuki; Ishikawa, Shingo
2015-06-25
2-Vinyl-substituted phenol and an alpha-bromoester undergo a tandem esterification-alkylation reaction in the presence of a Cu-amine catalyst system to produce benzene-fused lactone. Z-Alkylated styrene is obtained after hydrolysis of the lactone with perfect selectivity. The simple protocol developed in this work opens a new avenue in the multi-substitution chemistry of alkenes.
A Pauson-Khand approach to the hamigerans.
Madu, Christian E; Lovely, Carl J
2007-11-08
An intramolecular Pauson-Khand reaction has been used in the construction of the tricyclic core common to the hamigeran terpenes. For effective cyclization, it was necessary to tether the olefin-containing moiety to the aromatic framework to reduce its conformation mobility; this was accomplished using a silylene protecting group. Efficient construction of the aryl enyne from a salicylic acid derivative was accomplished via ortho lithiation and Sonogashira cross-coupling chemistry.
Preetz, Angelika; Drexler, Hans-Joachim; Fischer, Christian; Dai, Zhenya; Börner, Armin; Baumann, Wolfgang; Spannenberg, Anke; Thede, Richard; Heller, Detlef
2008-01-01
The use of diolefin-containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna-2,5-diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF(4) for the ligands Binap (1,1'-binaphthalene-2,2'-diylbis(phenylphosphine)), Me-Duphos (1,2-bis(2,5-dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre-hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me-Duphos, Et-Duphos (1,2-bis(2,5-diethylphospholano)benzene), and dppe (1,2-bis(diphenylphosphino)ethane).
Xing, Shiyou; Lv, Pengmei; Wang, Jiayan; Fu, Junying; Fan, Pei; Yang, Lingmei; Yang, Gaixiu; Yuan, Zhenhong; Chen, Yong
2017-01-25
For high caloricity and stability in bio-aviation fuels, a certain content of aromatic hydrocarbons (AHCs, 8-25 wt%) is crucial. Fatty acids, obtained from waste or inedible oils, are a renewable and economic feedstock for AHC production. Considerable amounts of AHCs, up to 64.61 wt%, were produced through the one-step hydroprocessing of fatty acids over Ni/HZSM-5 catalysts. Hydrogenation, hydrocracking, and aromatization constituted the principal AHC formation processes. At a lower temperature, fatty acids were first hydrosaturated and then hydrodeoxygenated at metal sites to form long-chain hydrocarbons. Alternatively, the unsaturated fatty acids could be directly deoxygenated at acid sites without first being saturated. The long-chain hydrocarbons were cracked into gases such as ethane, propane, and C 6 -C 8 olefins over the catalysts' Brønsted acid sites; these underwent Diels-Alder reactions on the catalysts' Lewis acid sites to form AHCs. C 6 -C 8 olefins were determined as critical intermediates for AHC formation. As the Ni content in the catalyst increased, the Brønsted-acid site density was reduced due to coverage by the metal nanoparticles. Good performance was achieved with a loading of 10 wt% Ni, where the Ni nanoparticles exhibited a polyhedral morphology which exposed more active sites for aromatization.
Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J
2009-01-01
One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions.
Homogeneous and Supported Niobium Catalysts as Lewis Acid and Radical Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne Tikkanen
2006-12-31
The synthesis of tetrachlorotetraphenylcyclopentadienyl group 5 metal complexes has been accomplished through two routes, one a salt metathesis with lithiumtetraphenylcyclopentadiende and the other, reaction with trimethyltintetraphenylcyclopentadiene. The reactants and products have been characterized by {sup 1}H and {sup 13}C({sup 1}H) NMR spectroscopy. The niobium complex promotes the silylcyanation of butyraldehyde. The grafting of metal complexes to silica gel surfaces has been accomplished using tetrakisdimethylamidozirconium as the metal precursor. The most homogeneous binding as determined by CP-MAS {sup 13}C NMR and infrared spectroscopy was obtained with drying at 500 C at 3 mtorr vacuum. The remaining amido groups can be replacedmore » by reaction with alcohols to generate surface bound metal alkoxides. These bound catalysts promote silylcyanation of aryl aldehydes and can be reused three times with no loss of activity.« less
Schmidt, Yvonne; Lam, Jonathan K.; Pham, Hung V.; Houk, K. N.; Vanderwal, Christopher D.
2013-01-01
The unusual intramolecular arene/allene cycloaddition described thirty years ago by Himbert permits rapid access to strained polycyclic compounds that offer great potential for the synthesis of complex scaffolds. To more fully understand the mechanism of this cycloaddition reaction, and to guide efforts to extend its scope to new substrates, quantum mechanical computational methods were employed in concert with laboratory experiments. These studies indicated that the cycloadditions likely proceed via concerted processes; a stepwise biradical mechanism was shown to be higher in energy in the cases studied. The original Himbert cycloaddition chemistry is also extended from heterocyclic to carbocyclic systems, with computational guidance used to predict thermodynamically favorable cases. Complex polycyclic scaffolds result from the combination of the cycloaddition and subsequent ring-rearrangement metathesis reactions. PMID:23634642
Braunschweig, Holger; Bertermann, Rüdiger; Brenner, Peter; Burzler, Michael; Dewhurst, Rian D; Radacki, Krzysztof; Seeler, Fabian
2011-10-10
A stable trans-(alkyl)(boryl) platinum complex trans-[Pt(BCat')Me(PCy(3))(2)] (Cat'=Cat-4-tBu; Cy=cyclohexyl=C(6)H(11)) was synthesised by salt metathesis reaction of trans-[Pt(BCat')Br(PCy(3))(2)] with LiMe and was fully characterised. Investigation of the reactivity of the title compound showed complete reductive elimination of Cat'BMe at 80 °C within four weeks. This process may be accelerated by the addition of a variety of alkynes, thereby leading to the formation of the corresponding η(2) -alkyne platinum complexes, of which [Pt(η(2)-MeCCMe)(PCy(3))(2)] was characterised by X-ray crystallography. Conversion of the trans-configured title compound to a cis derivative remained unsuccessful due to an instantaneous reductive elimination process during the reaction with chelating phosphines. Treatment of trans-[Pt(BCat')Me(PCy(3))(2)] with Cat(2)B(2) led to the formation of CatBMe and Cat'BMe. In the course of further investigations into this reaction, indications for two indistinguishable reaction mechanisms were found: 1) associative formation of a six-coordinate platinum centre prior to reductive elimination and 2) σ-bond metathesis of B-B and C-Pt bonds. Mechanism 1 provides a straightforward explanation for the formation of both methylboranes. Scrambling of diboranes(4) Cat(2)B(2) and Cat'(2)B(2) in the presence of [Pt(PCy(3))(2)], fully reductive elimination of CatBMe or Cat'BMe from trans-[Pt(BCat')Me(PCy(3))(2)] in the presence of sub-stoichiometric amounts of Cat(2)B(2), and evidence for the reversibility of the oxidative addition of Cat(2)B(2) to [Pt(PCy(3))(2)] all support mechanism 2, which consists of sequential equilibria reactions. Furthermore, the solid-state molecular structure of cis-[Pt(BCat)(2)(PCy(3))(2)] and cis-[Pt(BCat')(2)(PCy(3))(2)] were investigated. The remarkably short B-B separations in both bis(boryl) complexes suggest that the two boryl ligands in each case are more loosely bound to the Pt(II) centre than in related bis(boryl) species. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of 50% Synthesized Iso-Paraffins (SIP) on F-76 Fuel Coalescence
2013-12-16
petroleum JP-5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic...manufactured scaled down filter/coalescer and separator to simulate the performance of a full-scale filter separator system. This test is designed to predict...5 and Synthesized Iso-Paraffins (SIP). SIP fuels are made from direct fermentation of sugar into olefinic hydrocarbons. The olefinic hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagpal, J.M.; Joshi, G.C.; Aswal, D.S.
1995-04-01
The high octane gasoline pool contains varying amounts of cracked naphthas as an important ingredient in formulating high octane lead free gasoline. The cracked naphthas are largely from Fluidized Catalytic Cracking (FCC) units and to lesser extend from thermal cracking units. While the role of olefinic unsaturation in gum formation during storage of gasoline has been extensively studied, there is little published work on contribution of individual olefin types in storage stability and gum formation tendency of gasoline containing these compound types. In the present work we report our results on storage stability and gum formation tendency of different olefinmore » types present in cracked naphthas through model compound matrix. It is found that cyclic olefins and cyclic diolefins are the most prolific gum formers. We have also studied the role of sulfur compounds present in the gasolines on gum formation tendency of olefins. While thiols enhance gum formation from all olefinic types, sulfides and disulfides interact depending on the structure of olefins. These can have either an accelerating, or inhibiting effect on gum formation.« less
Stout, Scott A; Payne, James R
2017-05-15
Olefin-based synthetic-based drilling mud (SBM) was released into the Gulf of Mexico as a result of the Deepwater Horizon (DWH) disaster in 2010. We studied the composition of neat SBM and, using conventional GC-FID, the extent, concentration, and chemical character of SBM-derived olefins in >3600 seafloor sediments collected in 2010/2011 and 2014. SBM-derived (C 14 -C 20 ) olefins occurred (up to 10cm deep) within a 6.5km 2 "footprint" around the well. The olefin concentration in most sediments decreased an order of magnitude between 2010/2011 and 2014, at least in part due to biodegradation, evidenced by the preferential loss C 16 and C 18 linear (α- and internal) versus branched olefins. Based on their persistence for 4-years in sediments around the Macondo well, and 13-years near a former unrelated drill site (~62km away), weathered SBM-derived olefins released during the DWH disaster are anticipated to persist in deep-sea sediment for (at least) a comparable duration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Shihong; Yang, Mingfa; Shao, Jingai; Yang, Haiping; Zeng, Kuo; Chen, Yingquan; Luo, Jun; Agblevor, Foster A; Chen, Hanping
2018-07-01
Light olefins are the key building blocks for the petrochemical industry. In this study, the effects of in-situ and ex-situ process, temperature, Fe loading, catalyst to feed ratio and gas flow rate on the olefins carbon yield and selectivity were explored. The results showed that Fe-modified ZSM-5 catalyst increased the olefins yield significantly, and the ex-situ process was much better than in-situ. With the increasing of temperature, Fe-loading amount, catalyst to feed ratio, and gas flow rate, the carbon yields of light olefins were firstly increased and further decreased. The maximum carbon yield of light olefins (6.98% C-mol) was obtained at the pyrolysis temperature of 600°C, catalyst to feed ratio of 2, gas flow rate of 100ml/min, and 3wt% Fe/ZSM-5 for cellulose. The selectivity of C 2 H 4 was more than 60% for all feedstock, and the total light olefins followed the decreasing order of cellulose, corn stalk, hemicelluloses and lignin. Copyright © 2018 Elsevier B.V. All rights reserved.
Hanessian, Stephen; Schroeder, Benjamin R; Merner, Bradley L; Chen, Bin; Swayze, Eric E; Seth, Punit P
2013-09-20
Two α-L-ribo-configured bicyclic nucleic acid modifications, represented by analogues 12 and 13, which are epimeric at C3' and C5' have been synthesized using a carbohydrate-based approach to build the bicyclic core structure. An intramolecular L-proline-mediated aldol reaction was employed to generate the cis-configured ring junction of analogue 12 and represents a rare application of this venerable organocatalytic reaction to a carbohydrate system. In the case of analogue 13, where a trans-ring junction was desired, an intermolecular diastereoselective Grignard reaction followed by ring-closing metathesis was used. In order to set the desired stereochemistry at the C5' positions of both nucleoside targets, a study of diastereoselective Lewis acid mediated allylation reactions on a common bicyclic aldehyde precursor was carried out. Analogue 12 was incorporated in oligonucleotide sequences, and thermal denaturation experiments indicate that it is destabilizing when paired with complementary DNA and RNA. However, this construct shows a significant improvement in nuclease stability relative to a DNA oligonucleotide.
Lin, Bijin; Liu, Xiaoping; Zhang, Zhuan; Chen, Yang; Liao, Xiaojian; Li, Yiqun
2017-07-01
A very easy sequential metathesis for the synthesis of Pd(II)-CMC@Ce(OH) 4 organic/inorganic hybrid and its application as effective pre-catalyst for the Suzuki-Miyaura reaction have been reported. It was found that the Pd nanoparticles (Pd NPs) were formed in situ in the course of the Suzuki-Miyaura couplings when Pd(II)-CMC@Ce(OH) 4 was used as a pre-catalyst. The activity of the Pd NPs in the reaction was enhanced synergistically by the unique redox properties (Ce 3+ /Ce 4+ ) of Ce(OH) 4 and coordination with carboxyl groups as well as free hydroxyl groups of the hybrid of CMC@Ce(OH) 4 . The results exhibit the Pd(0)-CMC@Ce(OH) 4 is super over Pd(II)@CMC, Pd(II)@CeO 2 , and Pd(II)@Ce(OH) 4 catalysts in the Suzuki-Miyaura reaction. Moreover, the catalyst could be easily separated by simple filtration and reused at least seven runs without losing its activity. Copyright © 2017 Elsevier Inc. All rights reserved.
Seifrtova, Marcela; Halesova, Tatana; Sulcova, Klara; Riddellova, Katerina; Erban, Tomas
2017-05-01
Imidacloprid-urea is the primary imidacloprid soil metabolite, whereas imidacloprid-olefin is the main plant-relevant metabolite and is more toxic to insects than imidacloprid. We artificially contaminated potting soil and used quantitative UHPLC-QqQ-MS/MS to determine the imidacloprid, imidacloprid-olefin and imidacloprid-urea distributions in rapeseed green plant tissues and roots after 4 weeks of exposure. In soil, the imidacloprid/imidacloprid-urea molar ratios decreased similarly after the 250 and 2500 µg kg -1 imidacloprid treatments. The imidacloprid/imidacloprid-urea molar ratios in the root and soil were similar, whereas in the green plant tissue, imidacloprid-urea increased more than twofold compared with the root. Although imidacloprid-olefin was prevalent in the green plant tissues, with imidacloprid/imidacloprid-olefin molar ratios of 2.24 and 1.47 for the 250 and 2500 µg kg -1 treatments respectively, it was not detected in the root. However, imidacloprid-olefin was detected in the soil after the 2500 µg kg -1 imidacloprid treatment. Significant proportions of imidacloprid-olefin and imidacloprid-urea in green plant tissues were demonstrated. The greater imidacloprid supply increased the imidacloprid-olefin/imidacloprid molar ratio in the green plant tissues. The absence of imidacloprid-olefin in the root excluded its retransport from leaves. The similar imidacloprid/imidacloprid-urea ratios in the soil and root indicated that the root serves primarily for transporting these substances. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Producing alpha-olefins using polyketide synthases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.
2018-01-02
The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.
Zhu, Tao; Scalvenzi, Thibault; Sassoon, Nathalie; Lu, Xuefeng; Gugger, Muriel
2018-07-01
Cyanobacteria can synthesize alkanes and alkenes, which are considered to be infrastructure-compatible biofuels. In terms of physiological function, cyanobacterial hydrocarbons are thought to be essential for membrane flexibility for cell division, size, and growth. The genetic basis for the biosynthesis of terminal olefins (1-alkenes) is a modular type I polyketide synthase (PKS) termed olefin synthase (Ols). The modular architectures of Ols and structural characteristics of alkenes have been investigated only in a few species of the small percentage (approximately 10%) of cyanobacteria that harbor putative Ols pathways. In this study, investigations of the domains, modular architectures, and phylogenies of Ols in 28 cyanobacterial strains suggested distinctive pathway evolution. Structural feature analyses revealed 1-alkenes with three carbon chain lengths (C 15 , C 17 , and C 19 ). In addition, the total cellular fatty acid profile revealed the diversity of the carbon chain lengths, while the fatty acid feeding assay indicated substrate carbon chain length specificity of cyanobacterial Ols enzymes. Finally, in silico analyses suggested that the N terminus of the modular Ols enzyme exhibited characteristics typical of a fatty acyl-adenylate ligase (FAAL), suggesting a mechanism of fatty acid activation via the formation of acyl-adenylates. Our results shed new light on the diversity of cyanobacterial terminal olefins and a mechanism for substrate activation in the biosynthesis of these olefins. IMPORTANCE Cyanobacterial terminal olefins are hydrocarbons with promising applications as advanced biofuels. Despite the basic understanding of the genetic basis of olefin biosynthesis, the structural diversity and phylogeny of the key modular olefin synthase (Ols) have been poorly explored. An overview of the chemical structural traits of terminal olefins in cyanobacteria is provided in this study. In addition, we demonstrated by in vivo fatty acid feeding assays that cyanobacterial Ols enzymes might exhibit substrate carbon chain length specificity. Furthermore, by performing bioinformatic analyses, we observed that the substrate activation domain of Ols exhibited features typical of a fatty acyl-adenylate ligase (FAAL), which activates fatty acids by converting them to fatty acyl-adenylates. Our results provide further insight into the chemical structures of terminal olefins and further elucidate the mechanism of substrate activation for terminal olefin biosynthesis in cyanobacteria. Copyright © 2018 American Society for Microbiology.
Storable Arylpalladium(II) Reagents for Alkene Labeling in Aqueous Media
Simmons, Rebecca L.; Yu, Robert T.; Myers, Andrew G.
2011-01-01
We show that arylpalladium(II) reagents linked to biotin and indocyanine dye residues can be prepared by decarboxylative palladation of appropriately substituted electron-rich benzoic acid derivatives. When prepared under the conditions described, these organometallic intermediates are tolerant of air and water, can be stored for several months in solution in dimethylsulfoxide, and permit biotin- and indocyanine dye-labeling of functionally complex olefinic substrates in water by Heck-type coupling reactions. PMID:21888420
Researches on Preliminary Chemical Reactions in Spark-Ignition Engines
1943-06-01
correct ratio for air, mth’ was determined analyt- ically from the proportion of alcohols , olefines, 16 NACA Technical Memorandum No, 1049 ’\\ aromatics...umption is therefore permissible. The mix- ture ratio for a fuel will then depend on its aromatic and alcohol content as fdund by chemical analysis. The...composition, would behave differently. To obtain informa- tion on this point, tests wer~ made with pure iso-octane, ~thyl alcohol , and benzol, all
Sun, Xiang; Li, Xinyao; Song, Song; Zhu, Yuchao; Liang, Yu-Feng; Jiao, Ning
2015-05-13
An efficient Mn-catalyzed aerobic oxidative hydroxyazidation of olefins for synthesis of β-azido alcohols has been developed. The aerobic oxidative generation of azido radical employing air as the terminal oxidant is disclosed as the key process for this transformation. The reaction is appreciated by its broad substrate scope, inexpensive Mn-catalyst, high efficiency, easy operation under air, and mild conditions at room temperature. This chemistry provides a novel approach to high value-added β-azido alcohols, which are useful precursors of aziridines, β-amino alcohols, and other important N- and O-containing heterocyclic compounds. This chemistry also provides an unexpected approach to azido substituted cyclic peroxy alcohol esters. A DFT calculation indicates that Mn catalyst plays key dual roles as an efficient catalyst for the generation of azido radical and a stabilizer for peroxyl radical intermediate. Further calculation reasonably explains the proposed mechanism for the control of C-C bond cleavage or for the formation of β-azido alcohols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yohsin; Stang, P.J.; Arif, A.M.
1990-07-04
Heterobimetallic complexes containing asymmetric metal-metal bonds as well as homogeneous C-H bond activation by organometallic compounds are of considerable current interest largely because of their relevance to catalysis. Although coordination of an alkene to transition metal systems is generally considered a necessary activation step in many catalytic and stoichiometric organometallic reactions, little is known about alkene C-H bond activation of precomplexed olefin substrates. In this paper the authors report the first intermolecular example of olefin C-H activation by a second, different metal system of a precomplexed {pi}-ethylene transition-metal complex and the concomitant formation of a novel alkene-bridged heterobimetallic Ir-Pt complex.
A chameleon catalyst for nonheme iron-promoted olefin oxidation.
Iyer, Shyam R; Javadi, Maedeh Moshref; Feng, Yan; Hyun, Min Young; Oloo, Williamson N; Kim, Cheal; Que, Lawrence
2014-11-18
We report the chameleonic reactivity of two nonheme iron catalysts for olefin oxidation with H2O2 that switch from nearly exclusive cis-dihydroxylation of electron-poor olefins to the exclusive epoxidation of electron-rich olefins upon addition of acetic acid. This switching suggests a common precursor to the nucleophilic oxidant proposed to Fe(III)-η(2)-OOH and electrophilic oxidant proposed to Fe(V)(O)(OAc), and reversible coordination of acetic acid as a switching pathway.
Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu
2014-01-01
Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709
Lignos, Ioannis; Stavrakis, Stavros; Nedelcu, Georgian; Protesescu, Loredana; deMello, Andrew J; Kovalenko, Maksym V
2016-03-09
Prior to this work, fully inorganic nanocrystals of cesium lead halide perovskite (CsPbX3, X = Br, I, Cl and Cl/Br and Br/I mixed halide systems), exhibiting bright and tunable photoluminescence, have been synthesized using conventional batch (flask-based) reactions. Unfortunately, our understanding of the parameters governing the formation of these nanocrystals is still very limited due to extremely fast reaction kinetics and multiple variables involved in ion-metathesis-based synthesis of such multinary halide systems. Herein, we report the use of a droplet-based microfluidic platform for the synthesis of CsPbX3 nanocrystals. The combination of online photoluminescence and absorption measurements and the fast mixing of reagents within such a platform allows the rigorous and rapid mapping of the reaction parameters, including molar ratios of Cs, Pb, and halide precursors, reaction temperatures, and reaction times. This translates into enormous savings in reagent usage and screening times when compared to analogous batch synthetic approaches. The early-stage insight into the mechanism of nucleation of metal halide nanocrystals suggests similarities with multinary metal chalcogenide systems, albeit with much faster reaction kinetics in the case of halides. Furthermore, we show that microfluidics-optimized synthesis parameters are also directly transferrable to the conventional flask-based reaction.
Hoogenboom, Jorin; Lutz, Martin; Zuilhof, Han; Wennekes, Tom
2016-10-07
Starting from a chiral furanone, the nitrone-olefin [3 + 2] cycloaddition can be used to obtain bicyclic isoxazolidines for which we report a set of reactions to selectively modify each functional position. These synthetically versatile bicyclic isoxazolidines allowed us to obtain complex glycomimetic building blocks, like iminosugars, via multicomponent chemistry. For example, a library of 20 pipecolic acid derivatives, a recurring motif in various prescription drugs, could be obtained via a one-pot Staudinger/aza-Wittig/Ugi three-component reaction of a bicyclic isoxazolidine-derived azido-hemiacetal. Notably, specific pipecolic acids in this library were obtained via hydrolysis of an unique tricyclic imidate side product of the Ugi reaction. The azido-hemiacetal was also converted into an aza-C-glycoside iminosugar via an unprecendented one-pot Staudinger/aza-Wittig/Mannich reaction.
Supported organometallic catalysts for hydrogenation and Olefin Polymerization
Marks, Tobin J.; Ahn, Hongsang
2001-01-01
Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.
NASA Astrophysics Data System (ADS)
Aïssa, B.; Nechache, R.; Haddad, E.; Jamroz, W.; Merle, P. G.; Rosei, F.
2012-10-01
A self healing composite material consisting of 5-Ethylidene-2-Norbornene (5E2N) monomer reacted with Ruthenium Grubbs' Catalyst (RGC) was prepared. First, the kinetics of the 5E2N ring opening metathesis polymerization (ROMP) reaction RGC was studied as a function of temperature. We show that the polymerization reaction is still effective in a large temperature range (-15 to 45 °C), occurring at short time scales (less than 1 min at 40 °C). Second, the amount of RGC required for ROMP reaction significantly decreased through its nanostructuration by means of a UV-excimer laser ablation process. RGC nanostructures of few nanometers in size where successfully obtained directly on silicon substrates. The X-ray photoelectron spectroscopy data strongly suggest that the RGC still keep its original stoichiometry after nanostructuration. More importantly, the associated ROMP reaction was successfully achieved at an extreme low RGC concentration equivalent to (11.16 ± 1.28) × 10-4 Vol.%, occurring at very short time reaction. This approach opens new prospects for using healing agent nanocomposite materials for self-repair functionality, thereby obtaining a higher catalytic efficiency per unit mass.
Dang, Yanfeng; Qu, Shuanglin; Tao, Yuan; Deng, Xi; Wang, Zhi-Xiang
2015-05-20
Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems.
Goblirsch, Brandon R; Jensen, Matthew R; Mohamed, Fatuma A; Wackett, Lawrence P; Wilmot, Carrie M
2016-12-23
Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys 143 ) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C 12 and C 14 ) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ 117 ) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Peng, Zhiyong; Soper, Steven A.; Pingle, Maneesh R.; Barany, Francis; Davis, Lloyd M.
2015-01-01
Detection of pathogenic bacteria and viruses require strategies that can signal the presence of these targets in near real-time due to the potential threats created by rapid dissemination into water and/or food supplies. In this paper, we report an innovative strategy that can rapidly detect bacterial pathogens using reporter sequences found in their genome without requiring polymerase chain reaction (PCR). A pair of strain-specific primers was designed based on the 16S rRNA gene and were end-labeled with a donor (Cy5) or acceptor (Cy5.5) dye. In the presence of the target bacterium, the primers were joined using a ligase detection reaction (LDR) only when the primers were completely complementary to the target sequence to form a reverse molecular beacon (rMB), thus bringing Cy5 (donor) and Cy5.5 (acceptor) into close proximity to allow fluorescence resonance energy transfer (FRET) to occur. These rMBs were subsequently analyzed using single-molecule detection of the FRET pairs (single-pair FRET; spFRET). The LDR was performed using a continuous flow thermal cycling process configured in a cyclic olefin copolymer (COC) microfluidic device using either 2 or 20 thermal cycles. Single-molecule photon bursts from the resulting rMBs were detected on-chip and registered using a simple laser-induced fluorescence (LIF) instrument. The spFRET signatures from the target pathogens were reported in as little as 2.6 min using spFRET. PMID:21047095
Experimental and modeling study of the thermal decomposition of methyl decanoate
Herbinet, Olivier; Glaude, Pierre-Alexandre; Warth, Valérie; Battin-Leclerc, Frédérique
2013-01-01
The experimental study of the thermal decomposition of methyl decanoate was performed in a jet-stirred reactor at temperatures ranging from 773 to 1123 K, at residence times between 1 and 4 s, at a pressure of 800 Torr (106.6 kPa) and at high dilution in helium (fuel inlet mole fraction of 0.0218). Species leaving the reactor were analyzed by gas chromatography. Main reaction products were hydrogen, carbon oxides, small hydrocarbons from C1 to C3, large 1-olefins from 1-butene to 1-nonene, and unsaturated esters with one double bond at the end of the alkyl chain from methyl-2-propenoate to methyl-8-nonenoate. At the highest temperatures, the formation of polyunsaturated species was observed: 1,3-butadiene, 1,3-cyclopentadiene, benzene, toluene, indene, and naphthalene. These results were compared with previous ones about the pyrolysis of n-dodecane, an n-alkane of similar size. The reactivity of both molecules was found to be very close. The alkane produces more olefins while the ester yields unsaturated oxygenated compounds. A detailed kinetic model for the thermal decomposition of methyl decanoate has been generated using the version of software EXGAS which was updated to take into account the specific chemistry involved in the oxidation of methyl esters. This model contains 324 species and 3231 reactions. It provided a very good prediction of the experimental data obtained in jet-stirred reactor. The formation of the major products was analyzed. The kinetic analysis showed that the retro-ene reactions of intermediate unsaturated methyl esters are of importance in low reactivity systems. PMID:23710078
Easy access to nucleophilic boron through diborane to magnesium boryl metathesis
NASA Astrophysics Data System (ADS)
Pécharman, Anne-Frédérique; Colebatch, Annie L.; Hill, Michael S.; McMullin, Claire L.; Mahon, Mary F.; Weetman, Catherine
2017-04-01
Organoboranes are some of the most synthetically valuable and widely used intermediates in organic and pharmaceutical chemistry. Their synthesis, however, is limited by the behaviour of common boron starting materials as archetypal Lewis acids such that common routes to organoboranes rely on the reactivity of boron as an electrophile. While the realization of convenient sources of nucleophilic boryl anions would open up a wealth of opportunity for the development of new routes to organoboranes, the synthesis of current candidates is generally limited by a need for highly reducing reaction conditions. Here, we report a simple synthesis of a magnesium boryl through the heterolytic activation of the B-B bond of bis(pinacolato)diboron, which is achieved by treatment of an easily generated magnesium diboranate complex with 4-dimethylaminopyridine. The magnesium boryl is shown to act as an unambiguous nucleophile through its reactions with iodomethane, benzophenone and N,N'-di-isopropyl carbodiimide and by density functional theory.
Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries
Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T
2013-10-08
Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.
Iron-catalyzed, directed oxidative arylation of olefins with organozinc and Grignard reagents.
Ilies, Laurean; Okabe, Jun; Yoshikai, Naohiko; Nakamura, Eiichi
2010-06-18
Chelation-controlled arylation of olefins with organozinc or Grignard reagents proceeds in the presence of an iron catalyst, under mild conditions and typically without the need of external ligands, to afford substituted olefins in high yield and with complete regio- and stereocontrol.
Peters, Byron K; Zhou, Taigang; Rujirawanich, Janjira; Cadu, Alban; Singh, Thishana; Rabten, Wangchuk; Kerdphon, Sutthichat; Andersson, Pher G
2014-11-26
Several chiral sulfonyl compounds were prepared using the iridium catalyzed asymmetric hydrogenation reaction. Vinylic, allylic and homoallylic sulfone substitutions were investigated, and high enantioselectivity is maintained regardless of the location of the olefin with respect to the sulfone. Impressive stereoselectivity was obtained for dialkyl substitutions, which typically are challenging substrates in the hydrogenation. As expected, the more bulky Z-substrates were hydrogenated slower than the corresponding E isomers, and in slightly lower enantioselectivity.
Yang, Qihao; Xu, Qiang; Yu, Shu-Hong; Jiang, Hai-Long
2016-03-07
Composite nanomaterials usually possess synergetic properties resulting from the respective components and can be used for a wide range of applications. In this work, a Pd nanocubes@ZIF-8 composite material has been rationally fabricated by encapsulation of the Pd nanocubes in ZIF-8, a common metal-organic framework (MOF). This composite was used for the efficient and selective catalytic hydrogenation of olefins at room temperature under 1 atm H2 and light irradiation, and benefits from plasmonic photothermal effects of the Pd nanocube cores while the ZIF-8 shell plays multiple roles; it accelerates the reaction by H2 enrichment, acts as a "molecular sieve" for olefins with specific sizes, and stabilizes the Pd cores. Remarkably, the catalytic efficiency of a reaction under 60 mW cm(-2) full-spectrum or 100 mW cm(-2) visible-light irradiation at room temperature turned out to be comparable to that of a process driven by heating at 50 °C. Furthermore, the catalyst remained stable and could be easily recycled. To the best of our knowledge, this work represents the first combination of the photothermal effects of metal nanocrystals with the favorable properties of MOFs for efficient and selective catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin
2013-07-09
Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.
Myoglobin-Catalyzed Olefination of Aldehydes.
Tyagi, Vikas; Fasan, Rudi
2016-02-12
The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In silico-generated hypothetical interactions of a ring-closing metathesis-macrocylized peptide bound to the amino terminal SH3 domain of the growth factor receptor bound protein 2 (Grb2). The complex was derived from the NMR solution structure of the bound parent peptide, Ac-V-P-P-P-V-P-P-R-R-R-amide (Protein Data Bank: 3GBQ). The protein surface is shown as electrostatic
Kelly, Rory P.; Falcone, Marta; Lamsfus, Carlos Alvarez; Scopelliti, Rosario; Maron, Laurent; Meyer, Karsten
2017-01-01
Herein, we report the synthesis and characterisation of the first terminal uranium(v) sulfide and a related UV trithiocarbonate complex supported by sterically demanding tris(tert-butoxy)siloxide ligands. The reaction of the potassium-bound UV imido complex, [U(NAd){OSi(OtBu)3}4K] (4), with CS2 led to the isolation of perthiodicarbonate [K(18c6)]2[C2S6] (6), with concomitant formation of the UIV complex, [U{OSi(OtBu)3}4], and S 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CNAd. In contrast, the reaction of the UV imido complex, [K(2.2.2-cryptand)][U(NAd){OSi(OtBu)3}4] (5), with one or two equivalents of CS2 afforded the trithiocarbonate complex, [K(2.2.2-cryptand)][U(CS3){OSi(OtBu)3}4] (7), which was isolated in 57% yield, with concomitant elimination of the admantyl thiocyanate product, SCNAd. Complex 7 is likely formed by fast nucleophilic addition of a UV terminal sulfide intermediate, resulting from the slow metathesis reaction of the imido complex with CS2, to a second CS2 molecule. The addition of a solution of H2S in thf (1.3 eq.) to 4 afforded the first isolable UV terminal sulfide complex, [K(2.2.2-cryptand)][US{OSi(OtBu)3}4] (8), in 41% yield. Based on DFT calculations, triple-bond character with a strong covalent interaction is suggested for the U–S bond in complex 7. PMID:28970911
Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions.
Brandenberg, Oliver F; Fasan, Rudi; Arnold, Frances H
2017-10-01
The surge in reports of heme-dependent proteins as catalysts for abiotic, synthetically valuable carbene and nitrene transfer reactions dramatically illustrates the evolvability of the protein world and our nascent ability to exploit that for new enzyme chemistry. We highlight the latest additions to the hemoprotein-catalyzed reaction repertoire (including carbene Si-H and C-H insertions, Doyle-Kirmse reactions, aldehyde olefinations, azide-to-aldehyde conversions, and intermolecular nitrene C-H insertion) and show how different hemoprotein scaffolds offer varied reactivity and selectivity. Preparative-scale syntheses of pharmaceutically relevant compounds accomplished with these new catalysts are beginning to demonstrate their biotechnological relevance. Insights into the determinants of enzyme lifetime and product yield are providing generalizable cues for engineering heme-dependent proteins to further broaden the scope and utility of these non-natural activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Theoretical study of the mechanism of CH2CO + CN reaction
NASA Astrophysics Data System (ADS)
Sun, Hao; He, Hong-Qing; Hong, Bo; Chang, Ying-Fei; An, Zhe; Wang, Rong-Shun
The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6-311+G(d,p) level. To gain further mechanistic knowledge, higher-level single-point calculations for the stationary points are performed at the QCISD(T)/6-311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition-elimination, carbonyl carbon addition-elimination, and side oxygen addition-elimination. Our calculations demonstrate that R?IM1?TS3?P3: CH2CN + CO is the energetically favorable channel; however, channel R?IM2?TS4?P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction.
The chemistry of gold as an anion.
Jansen, Martin
2008-09-01
Due to relativistic and classical shell structure effects, the 6s orbital of gold is significantly contracted and energetically stabilized. This is reflected by a strikingly high electron affinity, and a distinct tendency to adopt negatively polarized valence states. This tutorial review focuses on the chemistry of gold as an anion, displaying the integral ionic charge number of 1-. Two synthetic approaches to compounds containing monoatomic gold anions have become available: (1) reacting elemental gold with molten caesium and an oxide, e.g. Cs2O; (2) metathesis reactions involving Au- dissolved in liquid ammonia. Both procedures have proven to be rather versatile. Aurides synthesized along these routes are surveyed, in particular with respect to their structures and bonding properties.
Kumar, Akshai; Zhou, Tian; Emge, Thomas J; Mironov, Oleg; Saxton, Robert J; Krogh-Jespersen, Karsten; Goldman, Alan S
2015-08-12
We report the transfer-dehydrogenation of gas-phase alkanes catalyzed by solid-phase, molecular, pincer-ligated iridium catalysts, using ethylene or propene as hydrogen acceptor. Iridium complexes of sterically unhindered pincer ligands such as (iPr4)PCP, in the solid phase, are found to give extremely high rates and turnover numbers for n-alkane dehydrogenation, and yields of terminal dehydrogenation product (α-olefin) that are much higher than those previously reported for solution-phase experiments. These results are explained by mechanistic studies and DFT calculations which jointly lead to the conclusion that olefin isomerization, which limits yields of α-olefin from pincer-Ir catalyzed alkane dehydrogenation, proceeds via two mechanistically distinct pathways in the case of ((iPr4)PCP)Ir. The more conventional pathway involves 2,1-insertion of the α-olefin into an Ir-H bond of ((iPr4)PCP)IrH2, followed by 3,2-β-H elimination. The use of ethylene as hydrogen acceptor, or high pressures of propene, precludes this pathway by rapid hydrogenation of these small olefins by the dihydride. The second isomerization pathway proceeds via α-olefin C-H addition to (pincer)Ir to give an allyl intermediate as was previously reported for ((tBu4)PCP)Ir. The improved understanding of the factors controlling rates and selectivity has led to solution-phase systems that afford improved yields of α-olefin, and provides a framework required for the future development of more active and selective catalytic systems.
76 FR 5319 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... proposing to allow refiners and laboratories to use an alternative test method for olefin content in... test method for compliance measurement while maintaining environmental benefits achieved from our fuels...
76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline AGENCY: Environmental... gasoline. This final rule will provide flexibility to the regulated community by allowing an additional... Method for Olefins in Gasoline III. Statutory and Executive Order Reviews A. Executive Order 12866...
Process for reducing aromatic compounds in ethylenediamine with calcium
Benkeser, Robert A.; Laugal, James A.; Rappa, Angela
1985-01-01
Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.
Process for reducing aromatic compounds in ethylenediamine with calcium
Benkeser, R.A.; Laugal, J.A.; Rappa, A.
1985-08-06
Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.
Photo-induced electron transfer method
Wohlgemuth, R.; Calvin, M.
1984-01-24
The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.
Schneider, Ludovic; Mekmouche, Yasmina; Rousselot-Pailley, Pierre; Simaan, A Jalila; Robert, Viviane; Réglier, Marius; Aukauloo, Ally; Tron, Thierry
2015-09-21
Oxidation reactions are highly important chemical transformations that still require harsh reaction conditions and stoichiometric amounts of chemical oxidants that are often toxic. To circumvent these issues, olefins oxidation is achieved in mild conditions upon irradiation of an aqueous solution of the complex [Ru(bpy)3 ](2+) and the enzyme laccase. Epoxide formation is coupled to the light-driven reduction of O2 by [Ru(bpy)3 ](2+) /laccase system. The reactivity can be explained by dioxygen acting both as an oxidative agent and as renewable electron acceptor, avoiding the use of a sacrificial electron acceptor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Busch, Michael; Wodrich, Matthew D; Corminboeuf, Clémence
2015-12-01
Linear free energy scaling relationships and volcano plots are common tools used to identify potential heterogeneous catalysts for myriad applications. Despite the striking simplicity and predictive power of volcano plots, they remain unknown in homogeneous catalysis. Here, we construct volcano plots to analyze a prototypical reaction from homogeneous catalysis, the Suzuki cross-coupling of olefins. Volcano plots succeed both in discriminating amongst different catalysts and reproducing experimentally known trends, which serves as validation of the model for this proof-of-principle example. These findings indicate that the combination of linear scaling relationships and volcano plots could serve as a valuable methodology for identifying homogeneous catalysts possessing a desired activity through a priori computational screening.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, M.S.; Saunders, R.
1997-02-18
Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.
Block copolymer adhesion promoters via ring-opening metathesis polymerization
Kent, Michael S.; Saunders, Randall
1997-01-01
Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.
Survival of aerosolized bacteriophage phi X174 in air containing ozone--olefin mixtures.
Mik, G.; de Groot, I.; Gerbrandy, J. L.
1977-01-01
The effects of ozone and ozonized olefins on aerosol survival of bacteriophage phiX174 were studied. The ozone concentrations used were between 0 and 110 parts/10(9), giving decay rates up to 0-03 min-1. The olefins used were trans-2-butene and cyclohexene in concentrations of 500 parts/10(9) and 2-4 parts/10(6), respectively. Olefins alone have no effect, whereas in combination with ozone, decay rates of 0-1 min-1 and higher were obtained. The results are discussed in relation to the viricidal effect of open air. PMID:265341
Conversion of alkanes to organoseleniums and organotelluriums
Periana, Roy A.; Konnick, Michael M.; Hashiguchi, Brian G.
2016-11-29
The invention provides processes and materials for the efficient and costeffective functionalization of alkanes and heteroalkanes, comprising contacting the alkane or heteroalkane and a soft oxidizing electrophile comprising Se(VI) or Te(VI), in an acidic medium, optionally further comprising an aprotic medium, which can be carried out at a temperature of less than 300 C. Isolation of the alkylselenium or alkyltellurium intermediate allows the subsequent conversion to products not necessarily compatible with the initial reaction conditions, such as amines, stannanes, organosulfur compounds, acyls, halocarbons, and olefins.
1992-10-01
DBMBF2 ) undergoes photoreaction with olefins through a partial electron transfer that leads to cycloaddition or sensitized Diels - Alder reactions. We...8217 Fluorescence. 10:00 J.M. WARMAN: Photon-induced Intramolecular Charge Sepaiation Studied byTime-Resolved Microwave Conductivity. 10:30 Coffee 11:)) W...26 Photon-Induced Intramolecular Charge Separation Studied by Time-Resolved Microwave Conductivity John M. Warman IRI, Delft University of Technology
[Ni(cod) 2][Al(OR F) 4], a Source for Naked Nickel(I) Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwab, Miriam M.; Himmel, Daniel; Kacprzak, Sylwia
The straightforward synthesis of the cationic, purely organometallic Ni I salt [Ni(cod) 2] +[Al(OR F) 4] - was realized through a reaction between [Ni(cod) 2] and Ag[Al(OR F) 4] (cod=1,5-cyclooctadiene). Crystal-structure analysis and EPR, XANES, and cyclic voltammetry studies confirmed the presence of a homoleptic NiI olefin complex. Weak interactions between the metal center, the ligands, and the anion provide a good starting material for further cationic NiI complexes.
Takatori, Kazuhiko; Ota, Shoya; Tendo, Kenta; Matsunaga, Kazuma; Nagasawa, Kokoro; Watanabe, Shinya; Kishida, Atsushi; Kogen, Hiroshi; Nagaoka, Hiroto
2017-07-21
Direct conversion of methylenebicyclo[4.2.0]octanone to methylenebicyclo[3.2.1]octanol by a Sm(II)-induced 1,2-rearrangement with ring expansion of the methylenecyclobutane is described. Three conditions were optimized to allow the adaptation of this approach to various substrates. A rearrangement mechanism is proposed involving the generation of a ketyl radical and cyclopentanation by ketyl-olefin cyclization, followed by radical fragmentation and subsequent protonation.
Zheng, Jun; You, Shu-Li
2014-11-24
Enantioselective construction of axially chiral biaryls by direct C-H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C-H bond olefination of biaryl compounds, using a chiral [Cp*Rh(III)] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium-catalyzed asymmetric conjugate additions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetic modeling of ethane pyrolysis at high conversion.
Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M
2011-09-29
The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential for an accurate model, but also that the reaction set describing molecular weight growth chemistry must include a final product that is sufficiently stable to shift the equilibrium toward this product despite the decrease in entropy that accompanies molecular weight growth. Another reaction, H addition to olefins, was found to inhibit molecular weight growth by leading to the production of a lower olefin plus methyl radicals.
40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation
Code of Federal Regulations, 2014 CFR
2014-07-01
... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...
40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation
Code of Federal Regulations, 2012 CFR
2012-07-01
... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...
40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation
Code of Federal Regulations, 2013 CFR
2013-07-01
... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...
21 CFR 177.1520 - Olefin polymers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Olefin polymers. 177.1520 Section 177.1520 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1520 Olefin polymers. The olefi...