Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from this Polyol.
Arniza, Mohd Zan; Hoong, Seng Soi; Idris, Zainab; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May
Transesterification of palm olein with glycerol can increase the functionality by introducing additional hydroxyl groups to the triglyceride structure, an advantage compared to using palm olein directly as feedstock for producing palm-based polyol. The objective of this study was to synthesize transesterified palm olein-based polyol via a three-step reaction: (1) transesterification of palm olein, (2) epoxidation and (3) epoxide ring opening. Transesterification of palm olein yielded approximately 78 % monoglyceride and has an hydroxyl value of approximately 164 mg KOH g -1 . The effect of formic acid and hydrogen peroxide concentrations on the epoxidation reaction was studied. The relationships between epoxide ring-opening reaction time and residual oxirane oxygen content and hydroxyl value were monitored. The synthesized transesterified palm olein-based polyol has hydroxyl value between 300 and 330 mg KOH g -1 and average molecular weight between 1,000 and 1,100 Da. On the basis of the hydroxyl value and average molecular weight of the polyol, the transesterified palm olein-based polyol is suitable for producing rigid polyurethane foam, which can be designed to exhibit desirable properties. Rigid polyurethane foams were synthesized by substituting a portion of petroleum-based polyol with the transesterified palm olein-based polyol. It was observed that by increasing the amount of transesterified palm olein-based polyol, the core density and compressive strength were reduced but at the same time the insulation properties of the rigid polyurethane foam were improved.
Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate
2013-01-01
Background A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. Results The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. Conclusion Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation. PMID:23601826
Reproduction studies in the rat with shea oleine and hardened shea oleine.
Baldrick, P; Robinson, J A; Hepburn, P A
2001-09-01
Shea oleine is an oil fraction derived from the nut of the tree Butyrospermum parkii, which grows in central and western Africa. There are several uses of shea oleine including its use as a frying oil and, after hardening, in margarine and toffee fat. This investigation was performed to examine the toxicity of 7 or 15% hardened shea oleine in comparison with 7 or 15% unhardened shea oleine and various commercially available materials, sheanut and palm oils, cocoa butter and toffee powder following dietary administration to rats during pre-mating, mating, pregnancy and offspring weaning in two separate investigations. Reproduction was assessed using number of litters and pups born plus survival and body weights at birth and at weaning on day 21. Skeletal evaluation using X-ray, clinical pathology and a macroscopic examination were also performed for F1 rats. Study measures for parent animals comprised evaluation of body weight, food consumption, clinical pathology, organ weights and macroscopic examination. Fatty acids and hydrocarbon levels were measured and an evaluation for lipogranulomata was made for various tissues. Results showed that shea oleine, whether unhardened or hardened, produced no evidence of reproduction toxicity and gave a similar profile to the other commercially available materials used in this study in the rat. Minor findings with shea oleine were not related to reproduction performance but comprised slightly reduced body weight gain and reduced cholesterol and raised alkaline phosphatase levels. None of the findings in this study were considered to be of toxicological significance. Thus, no evidence of reproduction toxicity was seen for both unhardened and hardened shea oleine in this investigation in the rat at levels equating to greater than 7.5 g/kg/day.
NASA Astrophysics Data System (ADS)
Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.
2018-05-01
Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.
Ahmad Tarmizi, Azmil Haizam; Ahmad, Karimah
2015-01-01
Comparative frying studies on the processing of extruded product were conducted under intermittent and continuous frying conditions using two separate frying systems, i.e batch and pilot scale continuous fryers, respectively. Thermal resistance of palm olein were assessed for a total of 5 days of frying operation at 155°C - the unconventional frying temperature gave the product moisture content of 3% after intermittent and continuous frying for 2.5 min and 2 min, respectively. The formation of free fatty acid in palm olein in the case of intermittent frying was more than 2-fold higher compared to its counterpart (0.66%). Smoke point inversely evolved with oil acidity: the value dropped progressively from 215 to 177°C and from 219 to 188°C when extruded product was intermittently and continuously fried, respectively. In the light of induction period, repeated frying exhibited a gradual decrease in the value after 5 days of frying (12.2 h). Interestingly, continuous frying gave somewhat similar induction period, as demonstrated by fresh palm olein, across frying time. Frying at lower temperature, to some extent, provides opportunity for palm olein to retain 74% of its initial vitamin E during continuous frying. This benefit, however, is somehow denied when extruded product was processed under intermittent frying conditions--only 27% of vitamin E was remained at the end of frying session. Regardless of frying protocols, transient in polar compounds was minimal and hence comparable. The colour in the case of continuous frying appeared to be darker due to higher degree of oil utilisation for frying. The data obtained will provide useful information for food processors on how palm olein behaves when frying is undertaken under different frying protocols.
Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro
2014-03-12
Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.
Microwave-assisted cationic polymerization of palm olein and their urea inclusion products
NASA Astrophysics Data System (ADS)
Soegijono, Bambang; Farid, Muhamad; Alim Mas'ud, Zainal
2018-01-01
Cationic polymerization is affected by the relative amount of unsaturated bond (C=C) in the compound. The enrichment of an unsaturated triglyceride fraction from oils may be performed using urea inclusion techniques. In this study, palm olein was enriched-unsaturated fraction using urea-methanol system. The palm olein and its urea-inclusion products were cationic polymerized with ethereal boron trifluoride catalyst and followed by irradiation using a commercial microwave (microwave-assisted). The microwave irradiated products were cured at 110 °C for 24 hours. Fatty acid composition of the palm olein and its urea-inclusion products were analyzed by gas chromatography. Iodine numbers, functional groups, and ultraviolet absorption spectra of all palm olein origin, urea inclusion products and polymerization products were analyzed using titrimetric, ultraviolet spectrophotometric, and Fourier Transform infrared spectrophotometric methods. Differential scanning calorimetric (DSC) was used to observe the thermal characteristics of the polymer. Urea-inclusion process increased the unsaturated fatty acid components as indicated by the increased iodine number, intensity of alkene band absorptions in the infrared spectra, and the absorbance of the ultraviolet spectra. The polymer formation is converting the C=C group to C-C, which is indicated by the opposite of the urea inclusion process. The curing process results in reformation of new C=C bonds that were similar to that of the urea inclusion process. The DSC thermogram curve shows that the enrichment process improves the thermal stability of the polymer formed.
Leigh, Jessica; MacMahon, Shaun
2017-03-01
This work presents occurrence data for fatty acid esters of 3-chloro-1,2-propanediol (3-MCPD) and glycidol in 98 infant formula samples purchased in the United States. These contaminants are considered potentially carcinogenic and/or genotoxic, making their presence in refined oils and foods a potential health risk. Recently, attention has focused on methodology to quantify MCPD and glycidyl esters in infant formula for risk-assessment purposes. Occurrence data for 3-MCPD and glycidyl esters were produced using a procedure for extracting fat from infant formula and an LC-MS/MS method for analysing fat extracts for intact esters. Infant formulas were produced by seven manufacturers, five of which use palm oil and/or palm olein in their formulations. In formulas containing palm/palm olein, concentrations for bound 3-MCPD and glycidol ranged from 0.021 to 0.92 mg kg - 1 (ppm) and from < LOQ to 0.40 mg kg - 1 (ppm), respectively. Formulas not containing palm/palm olein, bound 3-MCPD and glycidol concentrations ranged from 0.072 to 0.16 mg kg - 1 (ppm) and from 0.005 to 0.15 mg kg - 1 (ppm), respectively. Although formulas from manufacturers A and G did not contain palm/palm olein, formulas from manufacturer E (containing palm olein) had the lowest concentrations of bound 3-MCPD and glycidol, demonstrating the effectiveness of industrial mitigation strategies.
Amini, Seyed-Asadollah; Ghatreh-Samani, Keihan; Habibi-Kohi, Arash; Jafari, Laleh
2017-02-01
Due to increased consumption of canola oil and hydrogenated oil containing palm and palm olein, and their possible effects on serum lipoproteins, the present study was conducted to determine the effects of these oils on lipids and lipid oxidation level. In this experimental study, 88 Wistar rats were randomly assigned to four groups. Control group (A) was on a normal diet. Groups B, C, and D, in addition to normal diet, were fed with hydrogenated oil-contained palm oil, pure palm olein oil, and canola oil, respectively for 4 weeks. Serum Biochemical factors [total cholesterol (TC), triglyceride (TG), LDL, HDL, LDL/HDL ratio, oxLDL, paraoxanase-1 (PON1), and malondialdehyde (MDA)] were measured. The lowest mean serum TC was seen in the control group and the highest in the group B. There were differences in TC, TG, HDL, MDA, and PON1 between the control group and other groups (P<0.001). The lowest and highest LDL/HDL ratios were observed in the group C and the control group, respectively. Significant differences were seen in OxLDL and PON1 between the control group and other three groups (P<0.05), while there were no significant differences in oxLDL and PON1 among the other three groups (P>0.05). MDA was higher in groups C and D. Canola oil, hydrogenated oil-containing palm and palm olein may increase atherosclerosis risk through decreasing PON1 activity and elevating oxLDL. Palm olein oils in rats' diets cause a considerable decrease in LDL and help to increase HDL.
Spectroscopic and theoretical investigations of alkali metal linoleates and oleinates
NASA Astrophysics Data System (ADS)
Świsłocka, Renata; Regulska, Ewa; Jarońko, Paweł; Lewandowski, Włodzimierz
2017-11-01
The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the linoleic (cis-9,cis-12-octadecadienoic) and oleic (cis-9-octadecenoic) acids was investigated. The complementary analytical methods: vibrational (IR, Raman) and electronic (UV) molecular absorption spectroscopy as well as DFT quantum mechanical calculations (charge distribution, angles between bonds, bond lengths, theoretical IR and NMR spectra) were carried out. The regular shifts of bands connected with carboxylate anion in the spectra of studied salts were observed. Some bonds and angles reduced or elongated in the series: acid→Li→Na→K linoleates/oleinates. The highest changes were noted for bond lengths and angles concerning COO- ion. The electronic charge distribution in studied molecules was also discussed. Total atomic charges of carboxylate anion decrease as a result of the replacement of hydrogen atom with alkali metal cation. The increasing values of dipole moment and decreasing values of total energy in the order: linoleic/oleic acid→lithium→sodium→potassium linoleates/oleinates indicate an increase in stability of the compounds.
Ullah, Rahman; Nadeem, Muhammad; Imran, Muhammad
2017-02-07
Chia (Salvia hispanica L.) has been regarded as good source of polyunsaturated omega-3 fatty acids with cardiac, hepatic, hypotensive, antiallergic and antidiabetic role. Concentration of omega-3 fatty acids in chia oil can be enhanced by fractionation. Olein/low melting fraction of chia oil has higher concentration of omega-3 fatty acids. Therefore, main objective of current investigation was determination of various concentration effect of olein fraction of chia oil on omega-3 fatty acids, oxidative stability and sensory characteristics of ice cream. Ice cream samples were prepared by partially replacing the milk fat with olein fraction of chia oil at 5, 10, 15 and 20% concentrations (T 1 , T 2 , T 3 and T 4 ), respectively. Ice cream prepared from 100% milk fat was kept as control. Ice cream samples stored at -18 °C for 60 days were analysed at 0, 30 and 60 days of the storage period. Fatty acid profile, total phenolic contents, total flavonoids, free fatty acids, peroxide value, anisidine value and sensory characteristics of ice cream samples was studied. Concentration of α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid in T 4 was 13.24, 0.58, 0.42 and 0.31%, respectively. Total phenolic contents of control, T 1 , T 2 , T 3 and T 4 were recorded 0.12, 1.65, 3.17, 5.19 and 7.48 mg GAE/mL, respectively. Total flavonoid content of control, T 1 , T 2 , T 3 and T 4 were found 0.08, 0.64, 1.87, 3.16 and 4.29 mg Quercetin Equivalent/mL. 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity of control, T 1 , T 2 , T 3 and T 4 was noted 5.61, 17.43, 36.84, 51.17 and 74.91%, respectively. After 60 days of storage period, the highest peroxide value of 1.84 (MeqO 2 /kg) was observed in T 4 , which was much less than allowable limit of 10 (MeqO 2 /kg). Flavour score was non-significant after 30 days of storage period. Supplementation of ice cream with olein fraction of chia oil enhanced the concentration of omega-3 fatty acids and improved the antioxidant perspectives of ice cream. These results suggest that omega-3 fatty acids and antioxidant characteristics of ice cream may be improved with olein fraction of chia oil for discerning consumers.
Narang, Deepak; Sood, Subeena; Thomas, Mathew Kadali; Dinda, Amit Kumar; Maulik, Subir Kumar
2004-01-01
Background Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart disease. Antioxidants have potent therapeutic effects on both ischemic heart disease and ischemic-reperfusion injury. Information on the effect of PO on ischemic-reperfusion injury is, however, lacking. In the present study, the effect of dietary palm olein oil on oxidative stress associated with IRI was investigated in an isolated rat heart model. Wistar rats (150–200 gm) of either sex were divided into three different groups (n = 16). Rats were fed with palm olein oil supplemented commercial rat diet, in two different doses [5% v / w (PO 5) and 10% v / w (PO 10) of diet] for 30 days. Control rats (C) were fed with normal diet. After 30 days, half the rats from each group were subjected to in vitro myocardial IRI (20 min of global ischemia, followed by 40 min of reperfusion). Hearts from all the groups were then processed for biochemical and histopathological studies. One way ANOVA followed by Bonferroni test was applied to test for significance and values are expressed as mean ± SE (p < 0.05). Results There was a significant increase in myocardial catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities with no significant change in myocardial thiobarbituric acid reactive substances (TBARS) only in group PO 5 as compared to group C. There was no light microscopic evidence of tissue injury. A significant rise in myocardial TBARS and depletion of myocardial endogenous antioxidants (SOD, CAT and GPx) along with significant myocyte injury was observed in control rats subjected to ischemia-reperfusion (C IR). Hearts from palm olein oil fed rats subjected to ischemia-reperfusion (PO 5 IR and PO 10 IR) were protected from increase in TBARS and depletion of endogenous antioxidants as compared to C IR group. No significant myocyte injury was present in the treated groups. Conclusions The present study demonstrated for the first time that dietary palm olein oil protected rat heart from oxidative stress associated with ischemic-reperfusion injury. PMID:15535879
How does oil type determine emulsion characteristics in concentrated Na-caseinate emulsions?
Tan, Hui Lin; McGrath, Kathryn M
2013-08-01
Macroscopic properties and ensemble average diffusion of concentrated (dispersed phase 50-60 wt%) Na-caseinate-stabilised emulsions for three different oils (soybean oil, palm olein and tetradecane) were explored. On a volume fraction basis, pulsed gradient stimulated echo (PGSTE)-NMR data show that droplet dynamics for all three systems are similar within a region of the emulsion morphology diagram. The exact limits of the emulsion space depend however on which oil is considered. The reduced solubility of tetradecane in water, and Na-caseinate in tetradecane, result in the stabilisation of flocs during formulation. Floc formation is not observed when soybean oil or palm olein is used under identical emulsion formulation conditions. Linear rheology experiments provide indirect evidence that the local structure and the properties of the thin film interfacial domain of tetradecane emulsions vary from those of soybean oil and palm olein emulsions. Collectively these data indicate that protein/oil interactions within a system dominate over specific oil droplet structure and size distribution, which are similar in the three systems. Copyright © 2013 Elsevier Inc. All rights reserved.
Palm-Based Standard Reference Materials for Iodine Value and Slip Melting Point
Tarmizi, Azmil Haizam Ahmad; Lin, Siew Wai; Kuntom, Ainie
2008-01-01
This work described study protocols on the production of Palm-Based Standard Reference Materials for iodine value and slip melting point. Thirty-three laboratories collaborated in the inter-laboratory proficiency tests for characterization of iodine value, while thirty-two laboratories for characterization of slip melting point. The iodine value and slip melting point of palm oil, palm olein and palm stearin were determined in accordance to MPOB Test Methods p3.2:2004 and p4.2:2004, respectively. The consensus values and their uncertainties were based on the acceptability of statistical agreement of results obtained from collaborating laboratories. The consensus values and uncertainties for iodine values were 52.63 ± 0.14 Wijs in palm oil, 56.77 ± 0.12 Wijs in palm olein and 33.76 ± 0.18 Wijs in palm stearin. For the slip melting points, the consensus values and uncertainties were 35.6 ± 0.3 °C in palm oil, 22.7 ± 0.4 °C in palm olein and 53.4 ± 0.2 °C in palm stearin. Repeatability and reproducibility relative standard deviations were found to be good and acceptable, with values much lower than that of 10%. Stability of Palm-Based Standard Reference Materials remained stable at temperatures of −20 °C, 0 °C, 6 °C and 24 °C upon storage for one year. PMID:19609396
Cardoso-Ugarte, Gabriel Abraham; Morlán-Palmas, C Christian; Sosa-Morales, María Elena
2013-07-01
The potential antioxidant power of basil essential oil under frying conditions was explored. Two concentrations (200 or 500 ppm) were added to palm olein (PO) to evaluate their effect on fat oxidation/degradation during repeated frying of French fries at 180 °C. A higher oxidative stability index was detected for PO with basil essential oil at 200 ppm. Both concentrations showed lower p-anisidine values than PO without basil essential oil after 5 d of frying. Addition at 500 ppm resulted in the lowest total polar compounds and free fatty acids contents. Thus, the addition of basil essential oil improved the performance of PO during repeated frying of French fries. © 2013 Institute of Food Technologists®
Boon, Chee-Meng; Ng, Mei-Han; Choo, Yuen-May; Mok, Shiueh-Lian
2013-01-01
Background Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension. Methodology/Principal Findings Four-week-old male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were fed 15% SO, RPO or PO supplemented diet for 15 weeks. After 15 weeks of treatment, the systolic blood pressure (SBP) of SHR treated with SO, RPO and PO were 158.4±5.0 mmHg (p<0.001), 178.9±2.7 mmHg (p<0.001) and 167.7±2.1 mmHg (p<0.001), respectively, compared with SHR controls (220.9±1.5 mmHg). Bradycardia was observed with SO and PO. In contrast, the SBP and heart rate of treated WKY rats were not different from those of WKY controls. The SO and PO significantly reduced the increased heart size and thoracic aortic media thickness observed in untreated SHR but RPO reduced only the latter. No such differences, however, were observed between the treated and untreated WKY rats. Oil Red O enface staining of thoracic-abdominal aorta did not show any lipid deposition in all treated rats. The SO and RPO significantly raised serum alkaline phosphatase levels in the SHR while body weight and renal biochemical indices were unaltered in both strains. Serum lipid profiles of treated SHR and WKY rats were unchanged, with the exception of a significant reduction in LDL-C level and total cholesterol/HDL ratio (atherogenic index) in SO and RPO treated SHR compared with untreated SHR. Conclusion The SO, RPO and PO attenuate the rise in blood pressure in SHR, accompanied by bradycardia and heart size reduction with SO and PO, and aortic media thickness reduction with SO, RPO and PO. The SO and RPO are antiatherogenic in nature by improving blood lipid profiles in SHR. PMID:23409085
Omar, Muhammad Nor Bin; Nor, Nor Nazuha M; Idris, Nor Aini
2007-04-01
Changes of aroma constituents of palm olein and selected oils after frying French fries have been studied. The aroma constituents of used oils were collected using a solid-phase microextraction (SPME) headspace technique with an absorbent of a divinylbenzene/carboxen (DVB/CAR) (50/30 microm) on polydimethylsiloxane (PDMS) fibre. The extracted volatiles were desorbed from the fibre in the injection port of the gas chromatograph at 250 degrees C and the aroma constituents were identified by GC-MS. Analytical data showed that volatile constituents of palm olein, soybean oil, corn oil and sunflower oil changed while frying continued from 2 to 40 h, respectively. In palm olein, the 2t,4t-decadienal content decreased from 14.7 to 5.5 microg g(-1) (40 h) whilst hexanal increased from 7.9 microg g(-1) (2 h) to 29.2 microg g(-1) (40 h), respectively. Similar result was also obtained from soybean oil after frying French fries. The 2t,4t-decadienal content decreased from 15.9 microg g(-1) (2 h) to 3.2 microg g(-1) after 40 h frying whilst hexanal increased from 10.2 microg g(-1) (2 h) to 34.2 microg g(-1) (40 h). Meanwhile, in corn oil, it was found that 2t,4t-decadienal decreased from 15.6 microg g(-1) (2 h) to 3.2 microg g(-1) (40 h) whilst hexanal increased from 11.3 microg g(-1) (2 h) to 33.8 microg g(-1) when frying time reached 40 h. In sunflower oil, it was found that 2t,4t-decadienal, decreased from 16.8 microg g(-1) (2 h) to 1.2 microg g(-1) (40 h) while hexanal increased from 9.5 microg g(-1) (2 h) to 32.4 microg g(-1) when frying time reached 40 h. It also showed that used oils exhibited off-odour characteristics due to the increasing amount ofhexanal while their freshness characteristics diminished due to the decreasing amount of 2t, 4t-decadienal.
Titov, V N
2013-02-01
The positioning of individual triglycerides of blood serum in palmitinic and oleic lipoproteins ofvery low density in the order ofincrease of the rate constant of their hydrolysis under action of post-heparin lipoprotein leads to the sequence as follows: palmitoil-palmitoil-palmitate-->palmitoil-palmitoil-oleate-->palmitoil-oleil-palmitat-->oleil-palmitoil-palmitate-->oleil-palmitate-palmitate-->oleil-oleil-palmitate-->oleil-oleil-oleate. The shift to the left and to the right is discerned with this spectrum of isoforms of triglycerides. The shift to the left into direction of palmitinicc triglycerides occurs in case of eating of animal food (i.e. beef andfoodstuf of fat saw milk) when the content of palmitinic saturated fatty acid supersedes 15% of fatty acids total and under the development of endogenic syndrome of insulin resistance. The content of low density lipoproteins cholesterol is high in blood The shift to the right with prevalence of oleinic triglycerides occurs in case of low content of beef and foodstuff of fat saw milk in food, fish eating, seafood and olive oil. The physiologic levels of carbohydrates in food and insulin function are present too. The shift to the right initiates the action of insulin, ometa-3 essential polyenic fatty acids, glytazones and fibrates. They increase the activity of delta9-stearil-KoA-desaturase-2 and the transformation of palmitine saturated fatty acid into mono unsaturated oleinic fatty acid. The shift to the left forms the palmitine alternative of metabolism of substrate to supply cells with energy. The shift to the right is a more effective oleinic alternative.
Wan Mohamad, W A Fahmi; Buckow, Roman; Augustin, MaryAnn; McNaughton, Don
2017-10-15
Confocal Raman microscopy (CRM) was able to quantify the β-carotene concentration in oil droplets and determine the partitioning characteristics of β-carotene within the emulsion system in situ. The results were validated by a conventional method involving solvent extraction of β-carotene separately from the total emulsion as well as the aqueous phase separated by centrifugation, and quantification by absorption spectrophotometry. CRM also enabled the localization of β-carotene in an emulsion. From the Raman image, the β-carotene partitioning between the aqueous and oil phases of palm olein-in-water emulsions stabilized by whey protein isolate (WPI) was observed. Increasing the concentration of β-carotene in an emulsion (from 0.1 to 0.3g/kg emulsion) with a fixed gross composition (10% palm olein:2% WPI) decreased the concentration of β-carotene in the oil droplet. CRM is a powerful tool for in situ analyses of components in heterogeneous systems such as emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simultaneous Recovery of Carotenes and Tocols from Crude Palm Olein Using Ethyl Lactate and Ethanol
NASA Astrophysics Data System (ADS)
Leng Kua, Yin; Gan, Suyin; Morris, Andrew; Kiat Ng, Hoon
2018-04-01
This paper demonstrates the use of ethyl lactate and ethanol as green and safe solvents to extract phytonutrients such as carotenes and tocols from crude palm olein (CPO) before they are lost during oil refining process. The effects of mixing time (10-40 min), temperature (10-30°C) and proportion of CPO (20-60%) were studied in terms of the extraction of individual carotenes (α- and β-carotene) and tocols (α-tocopherol/T, α-, γ- and δ-tocotrienol/T3) in a temperature-controlled mixer-settler system. The optimal extraction conditions were found at 20°C, 10 min of mixing, 50% of CPO using 3:2 v/v ethyl lactate/ethanol as the solvents. After four stages of extraction, 42.2% of carotenes, 86.7% of tocols and 44.4% of oil were recovered into an oil concentrate of 717.5 mg/L of carotenes and 1496.2 mg/L of tocols.
Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol.
Pando, Daniel; Caddeo, Carla; Manconi, Maria; Fadda, Anna Maria; Pazos, Carmen
2013-08-01
The ex-vivo percutaneous absorption of the natural antioxidant resveratrol in liposomes and niosomes was investigated. The influence of vesicle composition on their physicochemical properties and stability was evaluated. Liposomes containing resveratrol were formulated using soy phosphatidylcholine (Phospholipon90G). Innovative niosomes were formulated using mono- or diglycerides: glycerol monooleate (Peceol) and polyglyceryl-3 dioleate (Plurol OleiqueCC), respectively, two suitable skin-compatible oleins used in pharmaceutical formulations as penetration enhancers. Small, negatively charged vesicles with a mean size of approximately 200 nm were prepared. The accelerated stability of vesicles was evaluated using Turbiscan Lab Expert, and the bilayer deformability was also assessed. Ex-vivo transdermal experiments were carried out in Franz diffusion cells, on newborn pig skin, to study the influence of the different vesicle formulations on resveratrol skin delivery. Results indicated a high cutaneous accumulation and a low transdermal delivery of resveratrol, especially when Peceol niosomes were used. Overall, niosomes formulated with Plurol oleique or Peceol showed a better behaviour than liposomes in the cutaneous delivery of resveratrol. © 2013 Royal Pharmaceutical Society.
Utilization of waste crab shell (Scylla serrata) as a catalyst in palm olein transesterification.
Boey, Peng-Lim; Maniam, Gaanty Pragas; Hamid, Shafida Abd
2009-01-01
Aquaculture activity has increased the population of crab, hence increasing the generation of related wastes, particularly the shell. In addition, the number of molting process in crabs compounds further the amount of waste shell generated. As such, in the present work, the application of the waste crab shell as a source of CaO in transesterification of palm olein to biodiesel (methyl ester) was investigated. Preliminary XRD results revealed that thermally activated crab shell contains mainly CaO. Parametric study has been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 4 wt. %; and reaction temperature, 338 K. As compared to laboratory CaO, the catalyst from waste crab shell performs well, thus creating another low-cost catalyst source for producing biodiesel as well as adding value to the waste crab shell. Reusability of crab shell CaO has also been studied and the outcome confirmed that the catalyst is capable to be reutilized up to 11 times, without any major deterioration.
Escrig-Doménech, Aarón; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo
2016-08-17
A method for the simultaneous determination of the most frequently used surfactant families -linear alkyl benzenesulphonates (LAS), alkyl ether sulphates (AES), fatty alcohol ethoxylates (FAE) and oleins (soaps, fatty acid salts) - in cleaning products, has been developed. The common reversed phase octyl (C8), pentafluorophenyl and biphenyl columns were not capable of separating the anionic LAS and AES classes; however, since only LAS absorbs in the UV, these two classes were independently quantified using a C8 column and serially connected UV and ELSD detection. The best compromise to resolve the four surfactant classes and the oligomers within the classes was achieved with a C8 column and an ACN/water gradient. To enhance retention of the anionic surfactants, ammonium acetate, as an ion-pairing agent compatible with ELSD detection, was used. Also, to shift the olein peaks with respect to that of the FAE oligomers, acetic acid was used. In the optimized method, modulation of the mobile phase, using ammonium acetate during elution of LAS and AES, and acetic acid after elution of LAS and AES, was provided. Quantitation of the overlapped LAS and AES classes was achieved by using the UV detector to quantitate LAS and the ELSD to determine AES by difference. Accuracy in the determination of AES was achieved by using a quadratic model, and by correcting the predicted AES concentration according to the LAS concentration previously established using the UV chromatogram. Another approach also leading to accurate predictions of the AES concentration was to increase the AES concentrations in the samples by adding a standard solution. In the samples reinforced with AES, correction of the predicted AES concentration was not required. FAE and olein were quantified using also quadratic calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
Tarmizi, Azmil Haizam Ahmad; Ismail, Razali
2014-01-01
Binary blends of palm olein (PO) with sunflower oil (SFO), canola oil (CNO), and cottonseed oil (CSO) were formulated to assess their stability under continuous frying conditions. The results were then compared with those obtained in PO. The oil blends studied were: (1) 60:40 for PO + SFO; (2) 70:30 for PO + CNO; and (3) 50:50 for PO + CSO. The PO and its blends were used to fry potato chips at 180°C for a total of 56 h of operation. The evolution of analytical parameters such as tocols, induction period, color, p-anisidine value, free fatty acid, smoke point, polar compounds, and polymer compounds were evaluated over the frying time. Blending PO with unsaturated oils was generally proved to keep most qualitative parameters comparable to those demonstrated in PO. Indeed, none of the oils surpassed the legislative limits for used frying. Overall, it was noted that oil containing PO and SFO showed higher resistance toward oxidative and hydrolytic behaviors as compared to the other oil blends. PMID:24804062
Daniali, G; Jinap, S; Sanny, M; Tan, C P
2018-04-15
This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R 2 =0.884), temperature (R 2 =0.951) and amount of acrylamide formation, both at p<0.05. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of solubility of carbon dioxide in anhydrous milk fat by lab-scale manometric method.
Truong, Tuyen; Palmer, Martin; Bansal, Nidhi; Bhandari, Bhesh
2017-12-15
This study aims to examine the solubility of CO 2 in anhydrous milk fat (AMF) as functions of partial pressure, temperature, chemical composition and physical state of AMF. AMF was fractionated at 21°C to obtain stearin and olein fractions. The CO 2 solubility was measured using a home-made experimental apparatus based on changes of CO 2 partial pressures. The apparatus was found to be reliable as the measured and theoretical values based on the ideal gas law were comparable. The dissolved CO 2 concentration in AMF increased with an increase in CO 2 partial pressure (0-101kPa). The apparent CO 2 solubility coefficients (molkg -1 Pa -1 ) in the AMF were 5.75±0.16×10 -7 , 3.9±0.19×10 -7 and 1.19±0.14×10 -7 at 35, 24 and 4°C, respectively. Higher liquid oil proportions resulted in higher CO 2 solubility in the AMF. There was insignificant difference in the dissolved CO 2 concentration among the AMF, stearin and olein fractions in their liquid state at 40°C. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao
2016-07-01
To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Han, Lijuan; Li, Lin; Li, Bing; Zhao, Lei; Liu, Guoqin; Liu, Xinqi; Wang, Xuede
2014-04-24
Moderate and high microfluidization pressures (60 and 120 MPa) and different treatment times (once and twice) were used to investigate the effect of high-pressure microfluidization (HPM) treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS) and palm olein (PO). The polarized light microscopy (PLM), texture analyzer, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.
Wong, Yu Hua; Muhamad, Halimah; Abas, Faridah; Lai, Oi Ming; Nyam, Kar Lin; Tan, Chin Ping
2017-03-15
The effects of frying duration, frying temperature and concentration of sodium chloride on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GEs) of refined, bleached and deodorized (RBD) palm olein during deep-fat frying (at 160°C and 180°C) of potato chips (0%, 1%, 3% and 5% NaCl) for 100min/d for five consecutive days in eight systems were compared in this study. All oil samples collected after each frying cycle were analyzed for 3-MCPD esters, GEs, free fatty acid (FFA) contents, specific extinction at 232 and 268 nm (K 232 and K 268 ), p-anisidine value (pAV), and fatty acid composition. The 3-MCPD ester trend was decreasing when the frying duration increased, whereas the trend was increasing when frying temperature and concentration of NaCl increased. The GEs trend was increasing when the frying temperature, frying duration and concentration of NaCl increased. All of the oil qualities were within the safety limit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States.
MacMahon, Shaun; Begley, Timothy H; Diachenko, Gregory W
2013-01-01
Fatty acid esters of 3-monochloropropanediol (3-MCPD) and glycidol are processing contaminants found in a wide range of edible oils. While both 3 MCPD and glycidol have toxicological properties that at present has concerns for food safety, the published occurrence data are limited. Occurrence information is presented for the concentrations of 3-MCPD and glycidyl esters in 116 retail and/or industrial edible oils and fats using LC-MS/MS analysis of intact esters. The concentrations for bound 3-MCPD ranged from below the limit of quantitation (
Manufacturing Chemical Equipment from Titanium - USSR
1960-05-25
hydrochloric, sulfuric and orthophosphoric, oxalic, trichlor- and tri-flour- acetic acids , and of boiling solutions of formic and citric acids . Nor...sulfofrezon and oleinic acid . Titanium dust is explosive , therefore only wet grinding is being used. The cooling is done either by a ten percent solution of...pumping ore of various organic acids , solutions of chlorides, and of moderately concentrated hydrochloric acid.are made of titanium. Such apparatus
Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard
2016-06-22
The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol trioleinate), of which the extrapolation allowed for the prediction of the identity [glycerol dioleinate-stearate (OOS) and glycerol oleinate-distearate (OSS)] of the nonpolar species detected by ICP MS in the oil but not detected by electrospray MS.
The Effect Of Additional Detergent In Crude Palm Oil In The Process Of Separation Stearin
NASA Astrophysics Data System (ADS)
Rezekyah Hasibuan, Vina; aini, Nur; Febriyanti; Ayubi Pane, Salahudin Al
2018-03-01
This study aims to find out how much stearin is formed from the addition of detergent and to understand the process of separation of crude olein with crude stearin from raw material of crude palm oil (CPO). Using a detergent fractionation system, detergent fractionation is a continuous crystallization of oil with controlled cooling and the separation of fractions by weight or centrifuge after supplementing surfactant.
Lasekan, John B.; Hustead, Deborah S.; Masor, Marc; Murray, Robert
2017-01-01
ABSTRACT Background: Meta-analysis studies have documented that palm olein (PALM) predominant formulas reduce calcium and fat absorption, and bone mineralization in infants, but none have been documented for stool consistency and frequency. Objective: The study objective was to conduct a meta-analysis of published randomized clinical trials (RCTs) on the effect of PALM-based formulas on stool consistency and frequency in infants. Design: A literature search was conducted in BIOSIS Previews®, Embase®, Embase® Alert, MEDLINE® and Cochrane databases. PALM-based RCTs with available stool outcomes were selected and meta-analyzed. Mean rank stool consistency (MRSC, primary outcome) and stool frequency (secondary outcome) were compared between infants fed PALM-based and PALM-free formulas (NoPALM), using random effects model. Results: Nine out of identified16 studies were meta-analyzed. The mean MRSC (scale of 1 = watery to 5 = hard) in the NoPALM-fed infants was lower (softer stools) compared to the PALM-fed infants (mean difference ‒0.355, 95% Confidence Interval [CI] of ‒0.472 to ‒0.239, p < 0.001). Difference for stool frequency was not significant (p = 0.613). Conclusion: Meta-analysis of RCTs indicated that NoPALM-fed infants have significantly softer stools but similar stool frequencies versus PALM-fed infants, despite differences in study types and design. Future meta-analysis could benefit from including comparison with human milk-fed infants. PMID:28659741
Nehdi, Imeddedine Arbi; Sbihi, Hassen Mohamed; Tan, Chin Ping; Rashid, Umer; Al-Resayes, Saud Ibrahim
2018-03-01
This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein. This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia. © 2018 Institute of Food Technologists®.
Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei
2014-01-01
Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544
Voon, P T; Ng, T K W; Lee, V K M; Nesaretnam, K
2015-06-01
Effects of high-protein diets that are rich in saturated fats on cell adhesion molecules, thrombogenicity and other nonlipid markers of atherosclerosis in humans have not been firmly established. We aim to investigate the effects of high-protein Malaysian diets prepared separately with virgin olive oil (OO), palm olein (PO) and coconut oil (CO) on cell adhesion molecules, lipid inflammatory mediators and thromobogenicity indices in healthy adults. A randomized cross-over intervention with three dietary sequences, using virgin OO, PO and CO as test fats, was carried out for 5 weeks on each group consisting of 45 men and women. These test fats were incorporated separately at two-thirds of 30% fat calories into high-protein Malaysian diets. For fasting and nonfasting blood samples, no significant differences were observed on the effects of the three test-fat diets on thrombaxane B2 (TXB2), TXB2/PGF1α ratios and soluble intracellular and vascular cell adhesion molecules. The OO diet induced significantly lower (P<0.05) plasma leukotriene B4 (LTB4) compared with the other two test diets, whereas PGF1α concentrations were significantly higher (P<0.05) at the end of the PO diet compared with the OO diet. Diets rich in saturated fatty acids from either PO or CO and high in monounsaturated oleic acid from virgin OO do not alter the thrombogenicity indices-cellular adhesion molecules, thromboxane B2 (TXB2) and TXB2/prostacyclin (PGF1α) ratios. However, the OO diet lowered plasma proinflammatory LTB4, whereas the PO diet raised the antiaggregatory plasma PGF1α in healthy Malaysian adults. This trial was registered at clinicaltrials.gov as NCT 00941837.
Karapanagiotidis, Ioannis T; Bell, Michael V; Little, David C; Yakupitiyage, Amararatne
2007-06-01
A 20-week feeding trial was conducted to determine whether increasing linolenic acid (18:3n-3) in vegetable oil (VO) based diets would lead to increased tissue deposition of 22:6n-3 in Nile tilapia (Oreochromis niloticus). Five isonitrogenous and isoenergetic diets were supplemented with 3% of either linseed oil (LO), a mixture of linseed oil with refined palm olein oil (PO) (LO-PO 2:1) and a mixture of refined palm olein oil with linseed oil (PO-LO 3:2) or with fish oil (FO) or corn oil (CO) as controls. The PO-LO, LO-PO and LO diets supplied a similar amount of 18:2n-6 (0.5% of diet by dry weight) and 0.5, 0.7 and 1.1% of 18:3n-3, respectively. Increased dietary 18:3n-3 caused commensurate increases in longer-chain n-3 PUFA and decreases in longer-chain n-6 PUFA in the muscle lipids of tilapia. However, the biosynthetic activities of fish fed the LO-based diets were not sufficient to raise the tissue concentrations of 20:5n-3, 22:5n-3 and 22:6n-3 to those of fish fed FO. The study suggests that tilapia (O. niloticus) has a limited capacity to synthesise 20:5n-3 and 22:6n-3 from dietary 18:3n-3. The replacement of FO in the diet of farmed tilapia with vegetable oils could therefore lower tissue concentrations of 20:5n-3 and 22:6n-3, and consequently produce an aquaculture product of lower lipid nutritional value for the consumer.
Voon, Phooi Tee; Ng, Tony Kock Wai; Lee, Verna Kar Mun; Nesaretnam, Kalanithi
2011-12-01
Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear. We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults. A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets. No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a). Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.
Ong, Su Yean; Kho, Hui-Pheng; Riedel, Sebastian L; Kim, Seok-Won; Gan, Chee-Yuen; Taylor, Todd D; Sudesh, Kumar
2018-01-10
Polyhydroxyalkanoates (PHAs) are produced in microbes as a source of carbon and energy storage. They are biodegradable and have properties similar to synthetic plastics, which make them an interesting alternative to petroleum-based plastics. In this study, a refined method of recovering PHA from Cupriavidus necator biomass was proposed by incorporating the use of the yellow mealworm (the larval phase of the mealworm beetle, Tenebrio molitor) as partial purification machinery, followed by washing of the fecal pellets with distilled water and sodium hydroxide. The PHA contents of the cells used in this study were 55wt% (produced from palm olein) and 60 wt% (produced from waste animal fats). The treatment of distilled water and NaOH further increased the purity of PHA to 94%. In parallel, analysis of the 16S rRNA metagenomic sequencing of the mealworm gut microbiome has revealed remarkable changes in the bacterial diversity, especially between the mealworms fed with cells produced from palm olein and waste animal fats. This biological recovery of PHA from cells is an attempt to move towards a green and sustainable process with the aim of reducing the use of harmful solvents and strong chemicals during polymer purification. The results obtained show that - purities of >90%, without a reduction in the molecular weight, can be obtained through this integrative biological recovery approach. In addition, this study has successfully shown that the cells, regardless of their origins, were readily consumed by the mealworms, and there is a correlation between the feed type and the mealworm gut microbiome. Copyright © 2017 Elsevier B.V. All rights reserved.
Formulation of insecticide profenofos using Surfactant Diethanolamide (DEA) based on palm olein
NASA Astrophysics Data System (ADS)
Dewi, H. S.; Rahayuningsih, M.; Hambali, E.
2017-05-01
Soybean is one of the major food commodities in Indonesia that the consumption is increasing each year, but this is not in line with the domestic soybean production capacity. One cause of the low production capacity is the armyworm attact. Generally, the armyworm attack controled by spread insecticide profenofos. Profenofos need to be dissolved, but profenofos couldn’t dissolved in water. So that, it need the right formulation between the solvent and other ingredients which can supprotprofenofos performance. One of that ingredient is surfactant. This research used surfactant diethanolamide (DEA) based on palm olein. DEAfunction in insecticide formulation are as homogenizer, dispersant, sticker and spreader agent.The aims of this research are to obtain the best emultion insecticide product based on profenofos as the active ingredients and DEA as the surfactant, moreover it also to obtain information of the physico-chemical properties. The formulation test performed with compeletely randomized design (CRD) with two factors, first factor is DEA concentrationand the second factor is profenofos concentration. Data of physico-chemical properties test was analyzed by analysis of variance (ANOVA) and significant result tested by Duncant Multiple Range Test (DMRT).The result showed that, surfactant DEA could make good emultion between profenofos and sodium ethoxide as the solvent. The best treatment which obtain from formulation stage is concentrate with DEA 10% and profenofos 40%. Physico-chemical properties test result showed that droplet size is 1,76-2,07 µm, contact angle 11,575-24,218°, density 0,996-0,998 g/cm3, surface tension 16,56-40,72 dyne/cm, viscosity 1,032-1,078 Cp and pH 6,87-8,22.
Dubois, Mathieu; Tarres, Adrienne; Goldmann, Till; Empl, Anna Maria; Donaubauer, Alfred; Seefelder, Walburga
2012-05-04
The presence of fatty acid esters of monochloropropanediol (MEs) in food is a recent concern raised due to the carcinogenicity of their hydrolysable moieties 2- and 3-monochloropropanediol (2- and 3-MCPD). Several indirect methods for the quantification of MEs have been developed and are commonly in use until today, however significant discrepancies among analytical results obtained are challenging their reliability. The aim of the present study was therefore to test the trueness of an indirect method by comparing it to a newly developed direct method using palm oil and palm olein as examples. The indirect method was based on ester cleavage under acidic conditions, derivatization of the liberated 2- and 3-MCPD with heptafluorobutyryl imidazole and GC-MS determination. The direct method was comprised of two extraction procedures targeting 2-and 3-MCPD mono esters (co-extracting as well glycidyl esters) by the use of double solid phase extraction (SPE), and 2- and 3-MCPD di-esters by the use of silica gel column, respectively. Detection was carried out by liquid chromatography coupled to time of flight mass spectrometry (LC-ToF-MS). Accurate quantification of the intact compounds was assured by means of matrix matched standard addition on extracts. Analysis of 22 palm oil and 7 palm olein samples (2- plus 3-MCPD contamination ranged from 0.3 to 8.8 μg/g) by both methods revealed no significant bias. Both methods were therefore considered as comparable in terms of results; however the indirect method was shown to require less analytical standards, being less tedious and furthermore applicable to all type of different vegetable oils and hence recommended for routine application. Copyright © 2012 Elsevier B.V. All rights reserved.
Rashed, Marwan M A; Tong, Qunyi; Abdelhai, Mandour H; Gasmalla, Mohammed A A; Ndayishimiye, Jean B; Chen, Long; Ren, Fei
2016-03-01
The aims of the current study were to evaluate the best technique for total phenolic extraction from Lavandula pubescens (Lp) and its application in vegetable oil industries as alternatives of synthetic food additives (TBHQ and BHT). To achieve these aims, three techniques of extraction were used: ultrasonic-microwave (40 kHz, 50 W, microwave power 480 W, 5 min), ultrasonic-homogenizer (20 kHz, 150 W, 5 min) and conventional maceration as a control. By using the Folin-Ciocalteu method, the total phenolic contents (TPC) (mg gallic acid equivalent/g dry matter) were found to be 253.87, 216.96 and 203.41 for ultrasonic-microwave extract, ultrasonic-homogenizer extract and maceration extract, respectively. The ultrasonic-microwave extract achieved the higher scavenger effect of DPPH (90.53%) with EC50 (19.54 μg/mL), and higher inhibition of β-carotene/linoleate emulsion deterioration (94.44%) with IC50 (30.62 μg/mL). The activity of the ultrasonic-microwave treatment could prolong the induction period (18.82 h) and oxidative stability index (1.67) of fresh refined, bleached and deodorized palm olein oil (RBDPOo) according to Rancimat assay. There was an important synergist effect between citric acid and Lp extracts in improving the oxidative stability of fresh RBDPOo. The results of this work also showed that the ultrasonic-microwave assisted extract was the most effective against Gram-positive and Gram-negative strains that were assessed in this study. The uses of ultrasonic-microwave could induce the acoustic cavitation and rupture of plant cells, and this facilitates the flow of solvent into the plant cells and enhances the desorption from the matrix of solid samples, and thus would enhance the efficiency of extraction based on cavitation phenomenon. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of microwave heating on the quality characteristics of canola oil in presence of palm olein.
Ali, M Abbas; Nouruddeen, Zahrau Bamalli; Muhamad, Ida Idayu; Latip, Razam Abd; Othman, Noor Hidayu
2013-01-01
Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO. The blend was prepared in the volume ratio of 40:60 (PO:CO, PC). Microwave heating test was performed for different periods (2, 4, 8, 12, 16 and 20 min) at medium power setting for the samples of CO and PC. The changes in quality characteristics of the samples during heating were determined by analytical and instrumental methods. In this study, refractive index, free fatty acid content, peroxide value, p-anisidine value, TOTOX value, specific extinction, viscosity, polymer content, polar compounds and food oil sensor value of the oils all increased, whereas iodine value and C₁₈.₂ /C₁₆:₀ ratio decreased as microwave heating progressed. Based on the most oxidative stability criteria, PO addition led to a slower deterioration of CO at heating temperatures. The effect of microwave heating on the fatty acid composition of the samples was not remarkable. PO addition decelerated the formation of primary and secondary oxidation products in CO. However, effect of adding PO to CO on the formation of free fatty acids and polymers during microwave treatment was not significant (P < 0.05). No significant difference in food oil sensor value was detected between CO and PC throughout the heating periods. Microwave heating caused formation of comparatively lower amounts of some degradative products in PC compared to CO indicating a lower extent of oxidative degradation of PC.
Del Mundo, Dann Marie N; Sutheerawattananonda, Manote
2017-11-01
Fat, oil, and grease (FOG) deposit, in the form of calcium soap, was found to cause sanitary sewer overflows due to its adhesion on pipe walls. To address this problem, laboratory-prepared calcium soaps have been used to investigate the formation mechanisms of FOG deposits. However, the fats and oils previously utilized were limited and some soap characteristics were not examined. This research attempted to probe through the properties of calcium soaps prepared from calcium chloride and the fats and oils of chicken, pork, palm olein, soybean, olive, and coconut to further understand FOG formation and stability. Results revealed that FOG deposits may occur as smooth, paste-like material or coarse, semi-solid substance depending on their exposure to excess fat/oil and calcium. The smooth soaps with more excess fat/oil demonstrated high apparent viscosity and consistency index, while the coarse soaps with large levels of calcium signified higher melting endset. Moreover, a soap microstructure showing evident networks and lesser void area displayed higher heat and rheological stability, respectively. Overall, fats and oils with higher oleic to palmitic acid ratio such as palm olein oil, olive oil, chicken fat, and pork fat produced soaps with greater yield and degree of saponification. Hence, establishments and authorities should be alert in managing and monitoring these wastes. On the other hand, soybean oil high in linoleic acid and coconut oil high in lauric acid do not pose an immediate threat to the sewer system since they only produced soaps in small quantity. However, their soaps showed high melting endset which could pose a serious effect when accumulated at large amount. On the whole, the fatty acid profile of fats and oils, the presence of excess fat/oil, and calcium content mainly dictate the appearance, melting, rheology, and microstructure of calcium soaps. Their distinct properties can be used as criteria in predicting the condition and stability of FOG deposits. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soha, Sahel; Mortazavian, Amir M; Piravi-Vanak, Zahra; Mohammadifar, Mohammad A; Sahafar, Hamed; Nanvazadeh, Sara
2015-01-01
In this research a comparison has been made between the fatty acid and sterol compositions of Iranian pure butter and three samples of adulterated butter. These samples were formulated using edible vegetable fats/oils with similar milk fat structures including palm olein, palm kernel and coconut oil to determine the authenticity of milk fat. The amount of vegetable fats/oils used in the formulation of the adulterated butter was 10%. The adulterated samples were formulated so that their fatty acid profiles were comforted with acceptable levels of pure butter as specified by the Iranian national standard. Based on the type of the vegetable oil/fat, fatty acids such as C4:0, C12:0 and C18:2 were used as indicators for the adulterated formulations. According to the standard method of ISO, the analysis was performed using gas chromatography. The cholesterol contents were 99.71% in pure butter (B1), and 97.61%, 98.48% and 97.98% of the total sterols in the samples adulterated with palm olein, palm kernel and coconut oil (B2, B3 and B4), respectively. Contents of the main phytosterol profiles such as β-sitosterol, stigmasterol and campesterol were also determined. The β-sitosterol content, as an indicator of phytosterols, was 0% in pure butter, and 1.81%, 1.67% and 2.16%, of the total sterols in the adulterated samples (B2, B3 and B4), respectively. Our findings indicate that fatty acid profiles are not an efficient indicator for butter authentication. Despite the increase in phytosterols and the reduction in cholesterol and with regard to the conformity of the sterol profiles of the edible fats/oils used in the formulations with Codex standards, lower cholesterol and higher phytosterols contents should have been observed. It can therefore be concluded that sterol measurement is insufficient to verify the authenticity of the milk fat in butter. It can therefore be concluded that sterol measurement is insufficient in verifying the authenticity of milk fat.
Acrylamide formation in vegetable oils and animal fats during heat treatment.
Daniali, G; Jinap, S; Hajeb, P; Sanny, M; Tan, C P
2016-12-01
The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g. Copyright © 2016. Published by Elsevier Ltd.
Arisseto, A P; Marcolino, P F C; Vicente, E
2014-01-01
An in-house validated GC-MS method preceded by acid-catalysed methanolysis was applied to 97 samples of vegetable oils and fats marketed in Brazil. The levels of the compounds ranged from not detected (limit of detection = 0.05 mg kg(-1)) to 5.09 mg kg(-1), and the highest concentrations were observed in samples containing olive pomace oil and in products used for industrial applications, such as palm oil and its fractions (olein and stearin). The content of diesters and monoesters was also investigated by employing solid-phase extraction on silica cartridges, indicating that the majority of the compounds were present as diesters. This study provides the first occurrence data on these contaminants in Brazil and the results are comparable with those reported in other countries.
Borschel, Marlene W; Choe, Yong S; Kajzer, Janice A
2014-12-01
Partially hydrolyzed formulas (pHF) represent a significant percentage of the infant formula market. A new whey-based, palm olein oil (PO)-free pHF was developed and a masked, randomized, parallel growth study was conducted in infants fed this formula or a commercially available whey-based pHF with PO. Infants between 0 and 8 days were to be enrolled and studied to 119 days of age. Growth and tolerance of infants were evaluated. Mean weight gain from 14 to 119 days of age was similar between groups. There were no significant differences between groups in weight, length, head circumference (HC), or length or HC gains. Infants fed the new PO-free pHF had significantly softer stools than those fed the PO-containing formula except at 119 days of age. This study demonstrates that whereas growth of infants fed different formulas during the first 4 months of life may be similar, infants may tolerate individual formulas differently. © The Author(s) 2014.
A high performance liquid chromatography method for determination of furfural in crude palm oil.
Loi, Chia Chun; Boo, Huey Chern; Mohammed, Abdulkarim Sabo; Ariffin, Abdul Azis
2011-09-01
A modified steam distillation method was developed to extract furfural from crude palm oil (CPO). The collected distillates were analysed using high performance liquid chromatography (HPLC) coupled with an ultraviolet diode detector at 284nm. The HPLC method allowed identification and quantification of furfural in CPO. The unique thermal extraction of CPO whereby the fresh fruit bunches (FFB) are first subjected to steam treatment, distinguishes itself from other solvent-extracted or cold-pressed vegetable oils. The presence of furfural was also determined in the fresh palm oil from FFB (without undergoing the normal extraction process), palm olein, palm stearin, olive oil, coconut oil, sunflower oil, soya oil and corn oil. The chromatograms of the extracts were compared to that of standard furfural. Furfural was only detected in CPO. The CPO consignments obtained from four mills were shown to contain 7.54 to 20.60mg/kg furfural. Copyright © 2011 Elsevier Ltd. All rights reserved.
2011-01-01
Background Increasing prevalence of obesity and overweight in the Western world, continue to be a major health threat and is responsible for increased health care costs. Dietary intervention studies show a strong positive association between saturated fat intake and the development of obesity and cardiovascular disease. This study investigated the effect of positional distribution of palmitic acid (Sn-1, 2 & 3) of palm oil on cardiovascular health and development of obesity, using weaner pigs as a model for young children. Methods Male and female weaner piglets were randomly allocated to 4 dietary treatment groups: 1) pork lard (LRD); 2) natural palm olein (NPO); 3) chemically inter-esterified PO (CPO) and 4) enzymatically inter-esterified PO (EnPO) as the fat source. Diets were formulated with 11% lard or with palm olein in order to provide 31% of digestible energy from fat in the diet and were balanced for cholesterol, protein and energy across treatments. Results From 8 weeks onwards, pigs on EnPO diet gained (P < 0.05) more weight than all other groups. Feed conversion efficiency (feed to gain) over the 12 week experimental period did not vary between treatment groups. Plasma LDL-C content and LDL-C/HDL-C ratio in pigs fed natural PO tended to be lower compared to all other diets. The natural PO lowered (P < 0.02) the plasma triglyceride (TG) content relative to the lard or EnPO diets, but was not different from the CPO diet. The natural PO diet was associated with lower (P < 0.05) saturated fat levels in subcutaneous adipose tissue than the CPO and EnPO diets that had lower saturated fat levels than the lard diet. Female pigs had lower lean and higher fat and fat:lean ratio in the body compared with male pigs. No difference in weight gain or blood lipid parameters was observed between sexes. Conclusions The observations on plasma TG, muscle and adipose tissue saturated fatty acid contents and back fat (subcutaneous) thickness suggest that natural palm oil may reduce deposition of body fat. In addition, dietary supplementation with natural palm oil containing palmitic acid at different positions in meat producing animals may lead to the production of meat and meat products with lower saturated fats. An increase in fat content and a decrease in lean content in female pigs resulted in an increased body fat:lean ratio but gender had no effect on blood lipid parameters or insulin concentrations. PMID:21586170
Karupaiah, Tilakavati; Chuah, Khun-Aik; Chinna, Karuthan; Matsuoka, Ryosuke; Masuda, Yasunobu; Sundram, Kalyana; Sugano, Michihiro
2016-08-17
Mayonnaise is used widely in contemporary human diet with widespread use as a salad dressing or spread on breads. Vegetable oils used in its formulation may be a rich source of ω-6 PUFAs and the higher-PUFA content of mayonnaise may be beneficial in mediating a hypocholesterolemic effect. This study, therefore, evaluated the functionality of mayonnaise on cardiometabolic risk within a regular human consumption scenario. Subjects underwent a randomized double-blind crossover trial, consuming diets supplemented with 20 g/day of either soybean oil-based mayonnaise (SB-mayo) or palm olein-based mayonnaise (PO-mayo) for 4 weeks each with a 2-week wash-out period. The magnitude of changes for metabolic outcomes between dietary treatments was compared with PO-mayo serving as the control. The data was analyzed by ANCOVA using the GLM model. Analysis was adjusted for weight changes. Treatments resulted in significant reductions in TC (diff = -0.25 mmol/L; P = 0.001), LDL-C (diff = -0.17 mmol/L; P = 0.016) and HDL-C (diff = -0.12 mmol/L; P < 0.001) in SB-mayo compared to PO-mayo without affecting LDL-C:HDL-C ratio (P > 0.05). Lipoprotein particle change was significant with large LDL particles increasing after PO-mayo (diff = +63.2 nmol/L; P = 0.007) compared to SB-mayo but small LDL particles remained unaffected. Plasma glucose, apolipoproteins and oxidative stress markers remained unchanged. Daily use with 20 g of linoleic acid-rich SB-mayo elicited reductions in TC and LDL-C concentrations without significantly changing LDL-C:HDL-C ratio or small LDL particle distributions compared to the PO-mayo diet. This clinical trial was retrospectively registered with the National Medical Research Register, National Institute of Health, Ministry of Health Malaysia, (NMRR-15-40-24035; registered on 29/01/2015; https://www.nmrr.gov.my/fwbPage.jsp?fwbPageId=ResearchISRForm&fwbAction=Update&fwbStep=10&pk.researchID=24035&fwbVMenu=3&fwbResearchAction=Update ). Ethical approval was obtained from the National University of Malaysia's Medical Ethics Committee (UKM 1.5.3.5/244/SPP/NN-054-2011, approved on 25/05/2011).
Aspects on mediated glucose oxidation at a supported cubic phase.
Aghbolagh, Mahdi Shahmohammadi; Khani Meynaq, Mohammad Yaser; Shimizu, Kenichi; Lindholm-Sethson, Britta
2017-12-01
A supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase. The system was investigated with cyclic voltammetry at different scan rates and the temperature was varied between 15°C and 30°C. The diffusion coefficient of the mediator and also the film resistance was estimated showing a large decrease in the mass-transport properties as the temperature was decreased. The current from mediated oxidation of glucose at the electrode surface increased with decreasing film thickness. The transport of the mediator in the cubic phase was the rate-limiting step in the overall reaction, where the oxidation of glucose took place at the outer surface of the cubic phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Phuah, Eng-Tong; Lee, Yee-Ying; Tang, Teck-Kim
2018-01-01
Diacylglycerol (DAG) and monoacylglycerol (MAG) are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM) was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG) and glycerol (G) were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE) were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor. PMID:29401481
Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai
2014-04-01
Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Xia; Li, Lin; Xie, He; Liang, Zhili; Su, Jianyu; Liu, Guoqin; Li, Bing
2013-01-15
Thermal behavior of palm stearin (PS) and palm olein (PO) was explored by monitoring peak temperature transitions by differential scanning calorimetry (DSC). The fatty acid composition (FAC), isothermal crystallization kinetics studied by pulsed Nuclear Magnetic Resonance (pNMR) and isothermal microstructure were also compared. The results indicated that the fatty acid composition had an important influence on the crystallization process. PS and PO both exhibited more multiple endotherms than exotherms which showed irregular peak shapes. An increasing in cooling rate, generally, was associated with an increase in peak size. Application of the Avaimi equation to isothermal crystallization of PS and PO revealed different nucleation and growth mechanisms based on the Avrami exponents. PS quickly reached the end of crystallization because of more saturated triacylglycerol (TAG). The Avrami index of PS were the same as PO under the same isothermal condition at lower temperatrue, indicating that the crystallization mechanism of the two samples based on super-cooling state were the same. According to the polarized light microscope (PLM) images, crystal morphology of PS and PO was different. With the temperature increased, the structure of crystal network of both PS and PO gradually loosened.
Loo, Ching-Yee; Lee, Wing-Hin; Tsuge, Takeharu; Doi, Yoshiharu; Sudesh, Kumar
2005-09-01
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (M(n)) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6-3.9.
MacDougall, Colin J; Razul, M Shajahan; Papp-Szabo, Erzsebet; Peyronel, Fernanda; Hanna, Charles B; Marangoni, Alejandro G; Pink, David A
2012-01-01
Fats are elastoplastic materials with a defined yield stress and flow behavior and the plasticity of a fat is central to its functionality. This plasticity is given by a complex tribological interplay between a crystalline phase structured as crystalline nanoplatelets (CNPs) and nanoplatelet aggregates and the liquid oil phase. Oil can be trapped within microscopic pores within the fat crystal network by capillary action, but it is believed that a significant amount of oil can be trapped by adsorption onto crystalline surfaces. This, however, remains to be proven. Further, the structural basis for the solid-liquid interaction remains a mystery. In this work, we demonstrate that the triglyceride liquid structure plays a key role in oil binding and that this binding could potentially be modulated by judicious engineering of liquid triglyceride structure. The enhancement of oil binding is central to many current developments in this area since an improvement in the health characteristics of fat and fat-structured food products entails a reduction in the amount of crystalline triacylglycerols (TAGs) and a relative increase in the amount of liquid TAGs. Excessive amounts of unbound, free oil, will lead to losses in functionality of this important food component. Engineering fats for enhanced oil binding capacity is thus central to the design of more healthy food products. To begin to address this, we modelled the interaction of triacylglycerol oils, triolein (OOO), 1,2-olein elaidin (OOE) and 1,2-elaidin olein (EEO) with a model crystalline nanoplatelet composed of tristearin in an undefined polymorphic form. The surface of the CNP in contact with the oil was assumed to be planar. We considered pure OOO and mixtures of OOO + OOE and OOO + EEO with 80% OOO. The last two cases were taken as approximations to high oleic sunflower oil (HOSO). The intent was to investigate whether phase separation on a nanoscale took place. We defined an "oil binding capacity" parameter, B(Q,Q'), relating a state Q to a reference state Q'. We used atomic scale molecular dynamics in the NVT ensemble and computed averages over 1-5 ns. We found that the probability of the OOE phase separating into a layer on the surface of the CNP compared to being retained randomly in an OOO + OOE mix were approximately equal. However, we found that it was probable that the EEO component of an OOO + EEO mix would phase separate and coat the surface of the CNP. These results suggest a mechanism whereby many-component oils undergo phase separation on a nanoscale so as to create a transition oil region between the surface of the CNP and the bulk major oil component (OOO in the case considered here) so as to create the appropriate oil binding capacity for the use to which it is put.
Mohamad, Nur Aqilah; Azis, Norhafiz; Jasni, Jasronita; Yunus, Robiah; Yaakub, Zaini
2018-01-01
This paper presents a sealed ageing study of palm oil (PO) and coconut oil (CO) in the presence of insulation paper. The type of PO under study is refined, bleached, and deodorized palm oil (RBDPO) olein. Three different variations of RBDPO and one sample of CO are aged at temperatures of 90 °C, 110 °C, and 130 °C. The properties of RBDPO and CO as well as paper under ageing are then analysed through dielectric and physicochemical measurements. It is found that the effect of ageing is not significant on the alternating current (AC) breakdown voltages and relative permittivities of RBDPO and CO. There is a slight increment trend of the resistivity for CO, while for all of the RBDPO, the resistivity slightly decreases as the ageing progresses. Only CO shows an apparent reduction of the dielectric dissipation factor. Throughout the ageing time, the acidities of all of the RBDPO and CO remain at low level, while the moisture in oils decreases. The tensile index (TI) of the papers for all of the RBDPO and CO retain more than 50% of the TI. A significant increment of the paper ageing rates of all of the RBDPO and CO is observed at an ageing temperature of 130 °C. PMID:29601520
Mohamad, Nur Aqilah; Azis, Norhafiz; Jasni, Jasronita; Ab Kadir, Mohd Zainal Abidin; Yunus, Robiah; Yaakub, Zaini
2018-03-30
This paper presents a sealed ageing study of palm oil (PO) and coconut oil (CO) in the presence of insulation paper. The type of PO under study is refined, bleached, and deodorized palm oil (RBDPO) olein. Three different variations of RBDPO and one sample of CO are aged at temperatures of 90 °C, 110 °C, and 130 °C. The properties of RBDPO and CO as well as paper under ageing are then analysed through dielectric and physicochemical measurements. It is found that the effect of ageing is not significant on the alternating current (AC) breakdown voltages and relative permittivities of RBDPO and CO. There is a slight increment trend of the resistivity for CO, while for all of the RBDPO, the resistivity slightly decreases as the ageing progresses. Only CO shows an apparent reduction of the dielectric dissipation factor. Throughout the ageing time, the acidities of all of the RBDPO and CO remain at low level, while the moisture in oils decreases. The tensile index (TI) of the papers for all of the RBDPO and CO retain more than 50% of the TI. A significant increment of the paper ageing rates of all of the RBDPO and CO is observed at an ageing temperature of 130 °C.
Effects of soy oil on murine salivary tumorigenesis.
Actis, Adriana B; Cremonezzi, David C; King, Irena B; Joekes, Silvia; Eynard, Aldo R; Valentich, Mirta A
2005-03-01
Dietary fat influences dimethylbenzanthracene (DMBA)-induced tumorigenesis of several organs, including the salivary glands. There is not enough evidence to suggest that soy oil could also affect growth of salivary tumors. The main purpose of this work therefore was to study the effects of dietary soy oil on macroscopic parameters of chemically induced murine salivary gland tumors. Eighty BALB/c male mice were assigned to four groups: soy oil (SO), corn oil (CO, control), fish oil (FO) and olein (O). Two weeks later, tumors were induced by 9,10-dimethyl-1,2-benzanthracene (DMBA). At the 13th post-injection week, the animals were sacrificed. In vivo tumor diameter, gland volume (total resected mass), tumor volume (microscopically measured), tumor remission and tumor histopathology were analyzed. The initial in vivo tumor diameter, gland and tumor volume were significantly greater in soy oil than in fish oil group. 26.7% of animals on the soy oil diet showed tumor remission. Sarcomas were more often found in the SO group, carcinomas in FO and the mixed-type tumors both in SO and CO groups. This study shows that the soy oil treatment resulted in larger tumors, some of which later became undetectable. It is necessary to further investigate these divergent results.
Leong, Jun-Yee; Tey, Beng-Ti; Tan, Chin-Ping; Chan, Eng-Seng
2015-08-05
Ionotropic gelation has been an attractive method for the fabrication of biopolymeric oil-core microcapsules due to its safe and mild processing conditions. However, the mandatory use of a nozzle system to form the microcapsules restricts the process scalability and the production of small microcapsules (<100 μm). We report, for the first time, a nozzleless and surfactant-free approach to fabricate oil-core biopolymeric microcapsules through ionotropic gelation at the interface of an O/W Pickering emulsion. This approach involves the self-assembly of calcium carbonate (CaCO3) nanoparticles at the interface of O/W emulsion droplets followed by the addition of a polyanionic biopolymer into the aqueous phase. Subsequently, CaCO3 nanoparticles are dissolved by pH reduction, thus liberating Ca(2+) ions to cross-link the surrounding polyanionic biopolymer to form a shell that encapsulates the oil droplet. We demonstrate the versatility of this method by fabricating microcapsules from different types of polyanionic biopolymers (i.e., alginate, pectin, and gellan gum) and water-immiscible liquid cores (i.e., palm olein, cyclohexane, dichloromethane, and toluene). In addition, small microcapsules with a mean size smaller than 100 μm can be produced by selecting the appropriate conventional emulsification methods available to prepare the Pickering emulsion. The simplicity and versatility of this method allows biopolymeric microcapsules to be fabricated with ease by ionotropic gelation for numerous applications.
Teng, Kim-Tiu; Voon, Phooi-Tee; Cheng, Hwee-Ming; Nesaretnam, Kalanithi
2010-05-01
Knowledge about the effects of dietary fats on subclinical inflammation and cardiovascular disease risk are mainly derived from studies conducted in Western populations. Little information is available on South East Asian countries. This current study investigated the chronic effects on serum inflammatory markers, lipids, and lipoproteins of three vegetable oils. Healthy, normolipidemic subjects (n = 41; 33 females, 8 males) completed a randomized, single-blind, crossover study. The subjects consumed high oleic palm olein (HOPO diet: 15% of energy 18:1n-9, 9% of energy 16:0), partially hydrogenated soybean oil (PHSO diet: 7% of energy 18:1n-9, 10% of energy 18:1 trans) and an unhydrogenated palm stearin (PST diet: 11% of energy 18:1n-9, 14% of energy 16:0). Each dietary period lasted 5 weeks with a 7 days washout period. The PHSO diet significantly increased serum concentrations of high sensitivity C-reactive protein compared to HOPO and PST diets (by 26, 23%, respectively; P < 0.05 for both) and significantly decreased interleukin-8 (IL-8) compared to PST diet (by 12%; P < 0.05). In particular PHSO diet, and also PST diet, significantly increased total:HDL cholesterol ratio compared to HOPO diet (by 23, 13%, respectively; P < 0.05), with the PST diet having a lesser effect than the PHSO diet (by 8%; P < 0.05). The use of vegetable oils in their natural state might be preferred over one that undergoes the process of hydrogenation in modulating blood lipids and inflammation.
Kam, Yew Chee; Woo, Kwan Kit; Ong, Lisa Gaik Ai
2017-12-08
Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i) optimize the fermentation parameters via solid state fermentation (SSF); and (ii) study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB) with used cooking oil (UCO) via SSF and its production was optimized using Design-Expert ® 7.0.0. Fractions 30% ( Sc LipA) and 70% ( Sc LipB) which contained high lipase activity were obtained by stepwise (NH₄)₂SO₄ precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that Sc LipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas Sc LipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, Sc LipA was able to synthesize trilaurin and triacetin. Conversely, Sc LipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that Sc LipA and Sc LipB are sn -2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.
Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd
2014-01-01
Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.
Côtes, Karen; Dhouib, Rabeb; Douchet, Isabelle; Chahinian, Henri; de Caro, Alain; Carrière, Frédéric; Canaan, Stéphane
2007-12-15
The Rv0183 gene of the Mycobacterium tuberculosis H37Rv strain, which has been implicated as a lysophospholipase, was cloned and expressed in Escherichia coli. The purified Rv0183 protein did not show any activity when lysophospholipid substrates were used, but preferentially hydrolysed monoacylglycerol substrates with a specific activity of 290 units x mg(-1) at 37 degrees C. Rv0183 hydrolyses both long chain di- and triacylglycerols, as determined using the monomolecular film technique, although the turnover was lower than with MAG (monoacyl-glycerol). The enzyme shows an optimum activity at pH values ranging from 7.5 to 9.0 using mono-olein as substrate and is inactivated by serine esterase inhibitors such as E600, PMSF and tetrahydrolipstatin. The catalytic triad is composed of Ser110, Asp226 and His256 residues, as confirmed by the results of site-directed mutagenesis. Rv0183 shows 35% sequence identity with the human and mouse monoglyceride lipases and well below 15% with the other bacterial lipases characterized so far. Homologues of Rv0183 can be identified in other mycobacterial genomes such as Mycobacterium bovis, Mycobacterium smegmatis, and even Mycobacterium leprae, which is known to contain a low number of genes involved in the replication process within the host cells. The results of immunolocalization studies performed with polyclonal antibodies raised against the purified recombinant Rv0183 suggested that the enzyme was present only in the cell wall and culture medium of M. tuberculosis. Our results identify Rv0183 as the first exported lipolytic enzyme to be characterized in M. tuberculosis and suggest that Rv0183 may be involved in the degradation of the host cell lipids.
Côtes, Karen; Dhouib, Rabeb; Douchet, Isabelle; Chahinian, Henri; deCaro, Alain; Carrière, Frédéric; Canaan, Stéphane
2007-01-01
The Rv0183 gene of the Mycobacterium tuberculosis H37Rv strain, which has been implicated as a lysophospholipase, was cloned and expressed in Escherichia coli. The purified Rv0183 protein did not show any activity when lysophospholipid substrates were used, but preferentially hydrolysed monoacylglycerol substrates with a specific activity of 290 units·mg−1 at 37 °C. Rv0183 hydrolyses both long chain di- and triacylglycerols, as determined using the monomolecular film technique, although the turnover was lower than with MAG (monoacyl-glycerol). The enzyme shows an optimum activity at pH values ranging from 7.5 to 9.0 using mono-olein as substrate and is inactivated by serine esterase inhibitors such as E600, PMSF and tetrahydrolipstatin. The catalytic triad is composed of Ser110, Asp226 and His256 residues, as confirmed by the results of site-directed mutagenesis. Rv0183 shows 35% sequence identity with the human and mouse monoglyceride lipases and well below 15% with the other bacterial lipases characterized so far. Homologues of Rv0183 can be identified in other mycobacterial genomes such as Mycobacterium bovis, Mycobacterium smegmatis, and even Mycobacterium leprae, which is known to contain a low number of genes involved in the replication process within the host cells. The results of immunolocalization studies performed with polyclonal antibodies raised against the purified recombinant Rv0183 suggested that the enzyme was present only in the cell wall and culture medium of M. tuberculosis. Our results identify Rv0183 as the first exported lipolytic enzyme to be characterized in M. tuberculosis and suggest that Rv0183 may be involved in the degradation of the host cell lipids. PMID:17784850
Fat digestion in the stomach: stability of lingual lipase in the gastric environment.
Fink, C S; Hamosh, P; Hamosh, M
1984-03-01
Digestion of dietary fat starts in the stomach, where lingual lipase hydrolyzes triglycerides to free fatty acids and partial glycerides at pH 3.0-6.0. Lingual lipase is secreted continuously from lingual serous glands and accumulates in the stomach between meals, when gastric pH is less than 3.0. We have, therefore, examined the resistance of lingual lipase to low pH and its possible protection by dietary components present in the stomach contents. Partially purified rat lingual lipase (7-15 micrograms enzyme protein) was preincubated at 37 degrees C for 10-60 min at pH 1.0-6.0 before incubation for assay of lipolytic activity, hydrolysis of tri-[3H]olein at pH 5.4. The data show that partially purified rat lingual lipase preparations are stable at 37 degrees C in the pH range of 2.5-6.0. Enzyme activity, however, is rapidly and irreversibly lost during preincubation at pH 1.0-2.4 for 10-30 min. Protein (gelatin 1% or albumin 1% or 2.5%) cannot prevent the inactivation of lingual lipase at low pH. The large molecular species (molecular weight greater than 500,000) of lingual lipase (thought to be an aggregate of enzyme with lipids) is slightly more resistant to inactivation than the 46,000 dalton preparation, suggesting that lipids might protect the enzyme from inactivation. Indeed, about 60% of the initial lipase activity is preserved during incubation at pH 2.0 in the presence of 50 mM lecithin or 10 mM triolein. The data indicate that triglycerides which are hydrolyzed by this enzyme as well as phospholipids that are not hydrolyzed can prevent the inactivation of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Filippou, A; Teng, K-T; Berry, S E; Sanders, T A B
2014-09-01
Dietary triacylglycerols containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose. We used a cross-over designed feeding trial in 53 healthy Asian men and women (20-50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose. Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0-2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05). Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis.
Sundram, Kalyana; French, Margaret A; Clandinin, M Thomas
2003-08-01
Partial hydrogenation of oil results in fats containing unusual isomeric fatty acids characterized by cis and trans configurations. Hydrogenated fats containing trans fatty acids increase plasma total cholesterol (TC) and LDL-cholesterol while depressing HDL-cholesterol levels. Identifying the content of trans fatty acids by food labeling is overshadowed by a reluctance of health authorities to label saturates and trans fatty acids separately. Thus, it is pertinent to compare the effects of trans to saturated fatty acids using stable isotope methodology to establish if the mechanism of increase in TC and LDL-cholesterol is due to the increase in the rate of endogenous synthesis of cholesterol. Ten healthy normocholesterolemic female subjects consumed each of two diets containing approximately 30% of energy as fat for a fourweek period. One diet was high in palmitic acid (10.6% of energy) from palm olein and the other diet exchanged 5.6% of energy as partially hydrogenated fat for palmitic acid. This fat blend resulted in monounsaturated fatty acids decreasing by 4.9 % and polyunsaturated fats increasing by 2.7%. The hydrogenated fat diet treatment provided 3.1% of energy as elaidic acid. For each dietary treatment, the fractional synthesis rates for cholesterol were measured using deuterium-labeling procedures and blood samples were obtained for blood lipid and lipoprotein measurements. Subjects exhibited a higher total cholesterol and LDL-cholesterol level when consuming the diet containing trans fatty acids while also depressing the HDL-cholesterol level. Consuming the partially hydrogenated fat diet treatment increased the fractional synthesis rate of free cholesterol. Consumption of hydrogenated fats containing trans fatty acids in comparison to a mixtur e of palmitic and oleic acids increase plasma cholesterol levels apparently by increasing endogenous synthesis of cholesterol.
Filippou, A; Teng, K-T; Berry, S E; Sanders, T A B
2014-01-01
Background/objectives: Dietary triacylglycerols containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose. Subjects/Methods: We used a cross-over designed feeding trial in 53 healthy Asian men and women (20–50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose. Results: Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0–2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05). Conclusion: Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis. PMID:25052227
Abdullah, Ghassan Z; Abdulkarim, Muthanna F; Salman, Ibrahim M; Ameer, Omar Z; Yam, Mun F; Mutee, Ahmed F; Chitneni, Mallikarjun; Mahdi, Elrashid S; Basri, Mahiran; Sattar, Munavvar A; Noor, Azmin M
2011-01-01
Introduction: As a topical delivery system, a nanoscaled emulsion is considered a good carrier of several active ingredients that convey several side effects upon oral administration, such as nonsteroidal anti-inflammatory drugs (NSAIDs). Objective: We investigated the in vitro permeation properties and the in vivo pharmacodynamic activities of different nanoscaled emulsions containing ibuprofen, an NSAID, as an active ingredient and newly synthesized palm olein esters (POEs) as the oil phase. Methodology: A ratio of 25:37:38 of oil phase:aqueous phase:surfactant was used, and different additives were used for the production of a range of nanoscaled emulsions. Carbopol® 940 dispersion neutralized by triethanolamine was employed as a rheology modifier. In some circumstances, menthol and limonene were employed at different concentrations as permeation promoters. All formulae were assessed in vitro using Franz diffusion cell fitted with full-thickness rat skin. This was followed by in vivo evaluation of the anti-inflammatory and analgesic activities of the promising formulae and comparison of the effects with that of the commercially available gel. Results and discussion: Among all other formulae, formula G40 (Carbopol® 940-free formula) had a superior ability in transferring ibuprofen topically compared with the reference. Carbopol® 940 significantly decreased the amount of drug transferred from formula G41 through the skin as a result of swelling, gel formation, and reduction in drug thermodynamic activity. Nonetheless, the addition of 10% w/w of menthol and limonene successfully overcame this drawback since, relative to the reference, higher amount of ibuprofen was transferred through the skin. By contrast, these results were relatively comparable to that of formula G40. Pharmacodynamically, the G40, G45, and G47 formulae exhibited the highest anti-inflammatory and analgesic effects compared with other formulae. Conclusion: The ingredients and the physical properties of the nanoscaled emulsions produced by using the newly synthesized POEs succeeded to deliver ibuprofen competently. PMID:21499428
Ayala-Bribiesca, Erik; Turgeon, Sylvie L; Britten, Michel
2017-04-01
Calcium plays an important role in intestinal lipid digestion by increasing the lipolysis rate, but also limits fatty acid bioaccessibility by producing insoluble Ca soaps with long-chain fatty acids at intestinal pH conditions. The aim of this study was to better understand the effect of Ca on the bioaccessibility of milk fat from Cheddar-type cheeses. Three anhydrous milk fats (AMF) with different fatty acid profiles (olein, stearin, or control AMF) were used to prepare Cheddar-type cheeses, which were then enriched or not with Ca using CaCl 2 during the salting step. The cheeses were digested in vitro, and their disintegration and lipolysis rates were monitored during the process. At the end of digestion, lipids were extracted under neutral and acidic pH conditions to compare free fatty acids under intestinal conditions in relation to total fatty acids released during the digestion process. The cheeses prepared with the stearin (the AMF with the highest ratio of long-chain fatty acids) were more resistant to disintegration than the other cheeses, owing to the high melting temperature of that AMF. The Ca-enriched cheeses had faster lipolysis rates than the regular Ca cheeses. Chromatographic analysis of the digestion products showed that Ca interacted with long-chain fatty acids, producing Ca soaps, whereas no interaction with shorter fatty acids was detected. Although higher Ca levels resulted in faster lipolysis rates, driven by the depletion of reaction products as Ca soaps, such insoluble compounds are expected to reduce the bioavailability of fatty acids by hindering their absorption. These effects on lipid digestion and absorption are of interest for the design of food matrices for the controlled release of fat-soluble nutrients or bioactive molecules. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah
The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-basedmore » compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.« less
Stability evaluation of quality parameters for palm oil products at low temperature storage.
Ramli, Nur Aainaa Syahirah; Mohd Noor, Mohd Azmil; Musa, Hajar; Ghazali, Razmah
2018-07-01
Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated. In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P < 0.05), whereas the moisture content for CPO, IV for RBDPO and RBDPOo, stearic acid composition for CPO and linolenic acid composition for CPO, RBDPO, RBDPOo and RBDPS did not (P > 0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature. The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
2013-01-01
The use of bioactive antioxidants in feed of broiler to mitigate reactive oxygen species (ROS) in biological systems is one of promising nutritional strategies. The aim of present study was to alleviate ROS production in mitochondrial fraction (MF) of meat by supplemented dietary antioxidant in feed of broiler. For this purpose, mitochondria specific antioxidant: α-lipoic acid (25 mg, 75 mg and 150 mg) with or without combination of α-tocopherol acetate (200 mg) used in normal and palm olein oxidized oil (4%) supplemented feed. One hundred and eighty one day old broiler birds were randomly divided into six treatments and provided the mentioned feed from third week. Feed intake, feed conversion ratio (FCR) remained statistically same in all groups while body weight decreased in supplemented groups accordingly at the end of study. The broiler meat MF antioxidant potential was significantly improved by feeding supplemented feed estimated as 1,1-di phenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, 2,2-azinobis-(3- ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and thiobarbituric acid reactive substances (TBARS). The maximum antioxidant activity was depicted in group fed on 150 mg/kg α-lipoic acid (ALA) and 200 mg/kg α-tocopherol acetate (ATA) (T4) in both breast and leg MF. Moreover, TBARS were higher in leg as compared to breast MF. Although, oxidized oil containing feed reduced the growth, lipid stability and antioxidant potential of MF whilst these traits were improved by receiving feed containing ALA and ATA. ALA and ATA showed higher deposition in T4 group while least in group received oxidized oil containing feed (T5). Positive correlation exists between DPPH free radical scavenging activity and the ABTS + reducing activity. In conclusion, ALA and ATA supplementation in feed had positive effect on antioxidant status of MF that consequently diminished the oxidative stress in polyunsaturated fatty acid enriched meat. PMID:23617815
Stonehouse, Welma; Brinkworth, Grant D; Thompson, Campbell H; Abeywardena, Mahinda Y
2016-11-01
In vitro, ex vivo and animal studies suggest palm-based tocotrienols and carotenes enhance vascular function, but limited data in humans exists. The aim was to examine the effects of palm-tocotrienols (TRF- 80) and palm-carotene (CC-60) supplementation on vascular function and cardiovascular disease (CVD) risk factors in adults at increased risk of impaired vascular function. Ninety men and women (18-70 yr, 20-45 kg/m 2 ) with type 2 diabetes, impaired fasting glucose and/or elevated waist circumference were randomised to consume either TRF-80 (420 mg/day tocotrienol + 132 mg/day tocopherol), CC-60 (21 mg/day carotenes) or placebo (palm olein) supplements for 8 weeks. Brachial artery flow-mediated dilation (FMD), other physiological and circulatory markers of vascular function, lipid profiles, glucose, insulin and inflammatory markers were assessed pre- and post-supplementation. Pairwise comparisons were performed using mixed effects longitudinal models (n = 87, n = 3 withdrew before study commencement). Plasma α- and β-carotene and α-, δ- and γ-tocotrienol concentrations increased in CC-60 and TRF-80 groups, respectively, compared to placebo (mean ± SE difference in total plasma carotene change between CC-60 and placebo: 1.5 ± 0.13 μg/ml, p < 0.0001; total plasma tocotrienol change between TRF-80 and placebo: 0.36 ± 0.05 μg/ml, p < 0.0001). Neither FMD (treatment x time effect for CC-60 vs. placebo, p = 0.71; TRF-80 vs. placebo, p = 0.80) nor any other vascular function and CVD outcomes were affected by treatments. CC-60 and TRF-80 supplementation increased bioavailability of palm-based carotenes and tocotrienols but had no effects, superior or detrimental, on vascular function or CVD risk factors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nisya, F. N.; Prijono, D.; Nurkania, A.
2017-05-01
The purpose of this research was to improve the performance of organic pesticide derived from neem plant using diethanolamide surfactant (DEA) derived from palm oil in controlling armyworms. The pesticide was made of neem oil. Neem oil is a neem plant product containing several active components, i.e. azadirachtin, salanin, nimbin, and meliantriol which act as a pesticide. DEA surfactant acts as a wetting, dispersing and spreading agent in neem oil pesticide. The neem oil was obtained by pressing neem seeds using a screw press machine and a hydraulic press machine. DEA surfactant was synthesized from methyl esters of palm oil olein. Pesticide formulation was conducted by stirring the ingredients by using a homogenizer at 5,000 rpm for 30 minutes. Surfactant was added to the formulation by up to 5%. Glycerol, as an emulsifier, was added in to pesticide formulations of neem oil. The efficacy of the pesticides in controlling armyworms fed soybean leaves in laboratory was measured at six concentrations, i.e. 10, 13, 16, 19, 22, and 25 ml/L. Results showed that the neem oil used in this study had a density of 0.91 g/cm3, viscosity of 58.94 cPoise, refractive index of 1.4695, surface tension of 40.69 dyne/cm, azadirachtin content of 343.82-1.604 ppm. Meanwhile, the azadirachtin content of neem seed cake was 242.20 ppm. It was also found that palmitic (31.4%) and oleic (22.5%) acids were the main fatty acids contained in neem oil. As the additive material used in neem oil in this study, diethanolamide surfactant had a pH of 10.6, density of 0.9930 g/cm3, viscosity of 708.20 cP, and surface tension of 25.37 dyne/cm. Results of CMC, contact angle, and droplet size analyzes showed that diethanolamide surfactant could be added into insecticide formulation by 5%. Results of LC tests showed that on Spodoptera litura the LC50 and LC95 values were 13 and 22 ml/L, respectively. Neem oil was found to inhibit the development of Spodoptera litura and its larval molting process.
NASA Astrophysics Data System (ADS)
Sasidharan Pillai, Prasanth Kumar
This thesis explores the use of 1-butene cross metathesized palm oil (PMTAG) as a feedstock for preparation of polyols which can be used to prepare rigid and flexible polyurethane foams. PMTAG is advantageous over its precursor feedstock, palm oil, for synthesizing polyols, especially for the preparation of rigid foams, because of the reduction of dangling chain effects associated with the omega unsaturated fatty acids. 1-butene cross metathesis results in shortening of the unsaturated fatty acid moieties, with approximately half of the unsaturated fatty acids assuming terminal double bonds. It was shown that the associated terminal OH groups introduced through epoxidation and hydroxylation result in rigid foams with a compressive strength approximately 2.5 times higher than that of rigid foams from palm and soybean oil polyols. Up to 1.5 times improvement in the compressive strength value of the rigid foams from the PMTAG polyol was further obtained following dry and/or solvent assisted fractionation of PMTAG in order to reduce the dangling chain effects associated with the saturated components of the PMTAG. Flexible foams with excellent recovery was achieved from the polyols of PMTAG and the high olein fraction of PMTAG indicating that these bio-derived polyurethane foams may be suitable for flexible foam applications. PMTAG polyols with controlled OH values prepared via an optimized green solvent free synthetic strategy provided flexible foams with lower compressive strength and higher recovery; i.e., better flexible foam potential compared to the PMTAG derived foams with non-controlled OH values. Overall, this study has revealed that the dangling chain issues of vegetable oils can be addressed in part using appropriate chemical and physical modification techniques such as cross metathesis and fractionation, respectively. In fact, the rigidity and the compressive strength of the polyurethane foams were in very close agreement with the percentage of terminal hydroxyl and OH value of the polyol. The results obtained from the study can be used to convert PMTAG like materials into industrially valuable materials.
Mossoba, Magdi M; Azizian, Hormoz; Fardin-Kia, Ali Reza; Karunathilaka, Sanjeewa R; Kramer, John K G
2017-05-01
Economically motivated adulteration (EMA) of extra virgin olive oils (EVOO) has been a worldwide problem and a concern for government regulators for a long time. The US Food and Drug Administration (FDA) is mandated to protect the US public against intentional adulteration of foods and has jurisdiction over deceptive label declarations. To detect EMA of olive oil and address food safety vulnerabilities, we used a previously developed rapid screening methodology to authenticate EVOO. For the first time, a recently developed FT-NIR spectroscopic methodology in conjunction with partial least squares analysis was applied to commercial products labeled EVOO purchased in College Park, MD, USA to rapidly predict whether they are authentic, potentially mixed with refined olive oil (RO) or other vegetable oil(s), or are of lower quality. Of the 88 commercial products labeled EVOO that were assessed according to published specified ranges, 33 (37.5%) satisfied the three published FT-NIR requirements identified for authentic EVOO products which included the purity test. This test was based on limits established for the contents of three potential adulterants, oils high in linoleic acid (OH-LNA), oils high in oleic acid (OH-OLA), palm olein (PO), and/or RO. The remaining 55 samples (62.5%) did not meet one or more of the criteria established for authentic EVOO. The breakdown of the 55 products was EVOO potentially mixed with OH-LNA (25.5%), OH-OLA (10.9%), PO (5.4%), RO (25.5%), or a combination of any of these four (32.7%). If assessments had been based strictly on whether the fatty acid composition was within the established ranges set by the International Olive Council (IOC), less than 10% would have been identified as non-EVOO. These findings are significant not only because they were consistent with previously published data based on the results of two sensory panels that were accredited by IOC but more importantly each measurement/analysis was accomplished in less than 5 min.
Noguchi, H
1907-07-17
In normal serums of the majority of mammalian and avian blood there exists certain substances capable of activating venom haemolysin. They are extractable from serum by means of ether, and are capable of conferring upon the originally non-activating serum a power to activate venom, when mixed with the latter. The ethereal extract consists of fatty acids, neutral fats and possibly also some ether soluble organic soaps. The fatty acids and soaps, especially of the oleinic series, acquire certain characteristics of complements in general, when they are mixed with serum. They are inactive without the venom in the mixture; they are inactivable with calcium chloride; they exhibit a tendency to go off in activity with age; they are inactive or only weakly active at 0 degrees C., and they are extractable by ether. In testing the serum from which the ether soluble substances are removed, it is found that no venom activating property is left. Warm alcoholic extraction of such serum yields, however, a large quantity of lecithin. In the case of non-activating serums no venom activating fats appear in the ethereal extract. Lecithin exists in such serum in no less quantity than in the activating kind. The addition of oleinic acid or its soluble soaps to a non-activating serum, in a ratio which corresponds to the percentage of fatty acids or soaps contained in some of the easily activating serums, will make the serum highly active in regard to venom. In normal serum of dog there exists, besides the group of activators already mentioned, another kind of venom activators which has been identified as a lecithin compound acting in the manner of free lecithin. A very sharp differentiation of the haemolysis produced by this activator and by the other groups of activators is obtained by means of calcium chloride, which is powerless against lecithin or lecithin compounds, but effective in removing the action of the latter. This lecithin containing proteid can be precipitated by half saturation with ammonium sulphate, but is perfectly soluble in water, and is not coagulated in neutral alkaline salt solutions upon boiling. Alcohol precipitates a proteid-like coagulum and extracts lecithin from it; ether does not extract lecithin from this compound. Non-activating serums do not contain any such lecithin compound. Lecithin contained in other serum proteids, mainly as lecithalbumin, and perhaps as contained in globulin, is not able to activate venom. This is true of all the serums with which I worked; it matters not whether these fractions (obtained with ammonium sulphate) belong to the most activating serum (dog) or to the non-activating serum (ox). The non-coagulable portion of all heated serum contains a venom activator of the nature of lecithin. This activator is contained in a non-coagulable proteid described by Howell which is identical with Chabrie's albumon. As there is no ether-extractable lecithin in this portion of the serum, the activating property of heated serum must be due to this proteid compound of lecithin. That this lecithin proteid does not pre-exist in normal serum but is produced by the action of high temperature is true of all serums except that of the dog. In venom activation we know now that lecithin becomes reactive with venom when it is transformed from other proteid compounds into the non-coagulable form, the albumon. Howell's view of the non-existence of the non-coagulable proteid in normal serum seems to receive a biological support from venom haemolysis. Ovovitellin derived from hen's egg is one of the best venom activators of the lecithin proteid type. The cause of venom susceptibility of various kinds of blood corpuscles does not depend upon the existence of lecithin in the corpuscles, but solely upon the amount of fatty acids, and perhaps, also, soaps and fats, contained in the corpuscles. The protection which calcium chloride gives against venom haemolysis is proof of the absence of lecithin activation. From the stroma of susceptible corpuscles fatty acids or some fats can be extracted with ether. After ethereal extraction the stroma becomes non-activating, while the extract contains fatty acids and some soaps or fats, which when added to venom-resistant corpuscles render the latter vulnerable to venom. The corpuscular solution of non-activating corpuscles does not contain enough fatty acids. The larger the amount of fatty acids and soaps in the corpuscles, the easier the cells undergo venom haemolysis. Lecithin exists in the strorna of all kinds of corpuscles, but in a form unavailable for venom activation. The somatic cytolytic processes caused by venom requires intracellular complements. The experiments performed on the cells of liver, kidney, testis and brain of the guinea-pig and rat indicate that the substances which act as complements are inactivable by calcium chloride.
Tropical oils: nutritional and scientific issues.
Elson, C E
1992-01-01
Individually and in combination with other oils, the tropical oils impart into manufactured foods functional properties that appeal to consumers. The use of and/or labeling in the ingredient lists give the impression that these oils are used extensively in commercially processed foods. The estimated daily intake of tropical oils by adult males is slightly more than one fourth of a tablespoon (3.8 g), 75% of which consists of saturated fatty acids. Dietary fats containing saturated fatty acids at the beta-position tend to raise plasma total and LDL-cholesterol, which, of course, contribute to atherosclerosis and coronary heart disease. Health professionals express concern that consumers who choose foods containing tropical oils unknowingly increase their intake of saturated fatty acids. The saturated fatty acid-rich tropical oils, coconut oil, hydrogenated coconut oil, and palm kernel oil, raise cholesterol levels; studies demonstrating this effect are often confounded by a developing essential fatty acid deficiency. Palm oil, an essential fatty acid-sufficient tropical oil, raises plasma cholesterol only when an excess of cholesterol is presented in the diet. The failure of palm oil to elevate blood cholesterol as predicted by the regression equations developed by Keys et al. and Hegsted et al. might be due to the dominant alpha-position location of its constituent saturated fatty acids. If so, the substitution of interesterified artificial fats for palm oil in food formulations, a recommendation of some health professionals, has the potential of raising cholesterol levels. A second rationale addresses prospective roles minor constituents of palm oil might play in health maintenance. This rationale is founded on the following observations. Dietary palm oil does not raise plasma cholesterol. Single fat studies suggests that oils richer in polyunsaturated fatty acid content tend to decrease thrombus formation. Anomalously, palm oil differs from other of the more saturated fats in tending to decrease thrombus formation. Finally, in studies comparing palm oil with other fats and oils, experimental carcinogenesis is enhanced both by vegetable oils richer in linoleic acid content and by more highly saturated animal fats. The carotenoid constituents of red palm oil are potent dietary anticarcinogens. A second group of antioxidants, the tocotrienols, are present in both palm olein and red palm oil. These vitamin E-active constituents are potent suppressors of cholesterol biosynthesis; emerging data point to their anticarcinogenic and antithrombotic activities. This review does not support claims that foods containing palm oil have no place in a prudent diet.