Science.gov

Sample records for olfactory bulb accelerates

  1. Caffeine and the olfactory bulb.

    PubMed

    Hadfield, M G

    1997-08-01

    Caffeine, a popular CNS stimulant, is the most widely used neuroactive drug. Present in coffee, tea, chocolate, and soft drinks as well as over-the-counter and prescription medications, it influences millions of users. This agent has achieved recent notoriety because its dependency consequences and addictive potential have been re-examined and emphasized. Caffeine's central actions are thought to be mediated through adenosine (A) receptors and monoamine neurotransmitters. The present article suggests that the olfactory bulb (OB) may be an important site in the brain that is responsible for caffeine's central actions in several species. This conclusion is based on the extraordinarily robust and selective effects of caffeine on norepinephrine (NE), dopamine (DA), and particularly serotonin (5HT) utilization in the OB of mice. We believe that these phenomena should be given appropriate consideration as a basis for caffeine's central actions, even in primates. Concurrently, we review a rich rodent literature concerned with A, 5HT, NE, and DA receptors in the OB and related structures along with other monoamine parameters. We also review a more limited literature concerned with the primate OB. Finally, we cite the literature that treats the dependency and addictive effects of caffeine in humans, and relate the findings to possible olfactory mechanisms.

  2. Cortical Feedback Control of Olfactory Bulb Circuits

    PubMed Central

    Boyd, Alison M.; Sturgill, James F.; Poo, Cindy; Isaacson, Jeffry S.

    2013-01-01

    SUMMARY Olfactory cortex pyramidal cells integrate sensory input from olfactory bulb mitral and tufted (M/T) cells and project axons back to the bulb. However, the impact of cortical feedback projections on olfactory bulb circuits is unclear. Here, we selectively express channelrhodopsin-2 in olfactory cortex pyramidal cells and show that cortical feedback projections excite diverse populations of bulb interneurons. Activation of cortical fibers directly excites GABAergic granule cells, which in turn inhibit M/T cells. However, we show that cortical inputs preferentially target short axon cells that drive feedforward inhibition of granule cells. In vivo, activation of olfactory cortex that only weakly affects spontaneous M/T cell firing strongly gates odor-evoked M/T cell responses: cortical activity suppresses odor-evoked excitation and enhances odor-evoked inhibition. Together, these results indicate that although cortical projections have diverse actions on olfactory bulb microcircuits, the net effect of cortical feedback on M/T cells is an amplification of odor-evoked inhibition. PMID:23259951

  3. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  4. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  5. Modeling Olfactory Bulb Evolution through Primate Phylogeny

    PubMed Central

    Heritage, Steven

    2014-01-01

    Adaptive characterizations of primates have usually included a reduction in olfactory sensitivity. However, this inference of derivation and directionality assumes an ancestral state of olfaction, usually by comparison to a group of extant non-primate mammals. Thus, the accuracy of the inference depends on the assumed ancestral state. Here I present a phylogenetic model of continuous trait evolution that reconstructs olfactory bulb volumes for ancestral nodes of primates and mammal outgroups. Parent-daughter comparisons suggest that, relative to the ancestral euarchontan, the crown-primate node is plesiomorphic and that derived reduction in olfactory sensitivity is an attribute of the haplorhine lineage. The model also suggests a derived increase in olfactory sensitivity at the strepsirrhine node. This oppositional diversification of the strepsirrhine and haplorhine lineages from an intermediate and non-derived ancestor is inconsistent with a characterization of graded reduction through primate evolution. PMID:25426851

  6. Accessory Olfactory Bulb Function is Modulated by Input from the Main Olfactory Epithelium

    PubMed Central

    Slotnick, Burton; Restrepo, Diego; Schellinck, Heather; Archbold, Georgina; Price, Stephen; Lin, Weihong

    2013-01-01

    While it is now established that sensory neurons in both the main olfactory epithelium and the vomeronasal organ may be activated by both general and pheromonal odorants, it remains unclear what initiates sampling by the VNO. Anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine that adequate intranasal syringing with zinc sulfate interrupted all inputs to the main olfactory bulb but left intact those to the accessory olfactory bulb. Adult male treated mice were frankly anosmic when tested with pheromonal and non-pheromonal odors and failed to engage in aggressive behavior. Treated juvenile females failed to show puberty acceleration subsequent to exposure to bedding from adult males. Activation of the immediate early gene c-Fos and electro-vomeronasogram recording confirmed the integrity of the vomeronasal system in zinc sulfate treated mice. These results support the hypothesis that odor detection by the main olfactory epithelium is required to initiate sampling by the vomeronasal system. PMID:20377623

  7. Accessory olfactory bulb function is modulated by input from the main olfactory epithelium.

    PubMed

    Slotnick, Burton; Restrepo, Diego; Schellinck, Heather; Archbold, Georgina; Price, Stephen; Lin, Weihong

    2010-03-01

    Although it is now established that sensory neurons in both the main olfactory epithelium and the vomeronasal organ may be activated by both general and pheromonal odorants, it remains unclear what initiates sampling by the vomeronasal organ. Anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine that adequate intranasal syringing with zinc sulfate interrupted all inputs to the main olfactory bulb but left intact those to the accessory olfactory bulb. Adult male treated mice were frankly anosmic when tested with pheromonal and non-pheromonal odors and failed to engage in aggressive behavior. Treated juvenile females failed to show puberty acceleration subsequent to exposure to bedding from adult males. Activation of the immediate early gene c-Fos and electrovomeronasogram recording confirmed the integrity of the vomeronasal system in zinc sulfate-treated mice. These results support the hypothesis that odor detection by the main olfactory epithelium is required to initiate sampling by the vomeronasal system.

  8. Chemoarchitecture of the monotreme olfactory bulb.

    PubMed

    Ashwell, Ken W S

    2006-01-01

    The cyto- and chemoarchitecture of the olfactory bulb of two monotremes (shortbeaked echidna and platypus) was studied to determine if there are any chemoarchitectural differences from therian mammals. Nissl staining in conjunction with enzyme reactivity for NADPH diaphorase, and immunoreactivity for calcium binding proteins (parvalbumin, calbindin and calretinin), neuropeptide Y, tyrosine hydroxylase and non-phosphorylated neurofilament protein (SMI-32 antibody) were applied to the echidna. Material from platypus bulb was Nissl stained, immunoreacted for calretinin, or stained for NADPH diaphorase. In contrast to eutherians, no immunoreactivity for either the SMI-32 antibody or calretinin was found in the mitral or dispersed tufted cells of the monotremes and very few parvalbumin or calbindin immunoreactive neurons were found in the bulb of the echidna. On the other hand, immunoreactivity for tyrosine hydroxylase in the echidna was similar in distribution to that seen in therians, and periglomerular and granule cells showed similar patterns of calretinin immunoreactivity to eutherians. Multipolar neuropeptide Y immunoreactive neurons were confined to the deep granule cell layer and underlying white matter of the echidna bulb and NADPH diaphorase reactivity was found in occasional granule cells, fusiform and multipolar cells of the inner plexiform and granule cell layers, as well as underlying white matter. Unlike eutherians, no NPY immunoreactive or NADPH diaphorase reactive neurons were seen in the glomerular layer. The bulb of the echidna was comparable in volume to prosimians of similar body weight, and its constituent layers were highly folded. In conclusion, the monotreme olfactory bulb does not show any significant chemoarchitectural dissimilarities from eutheria, despite differences in mitral/tufted cell distribution.

  9. Differential Muscarinic Modulation in the Olfactory Bulb

    PubMed Central

    Smith, Richard S.; Hu, Ruilong; DeSouza, Andre; Eberly, Christian L.; Krahe, Krista; Chan, Wilson

    2015-01-01

    Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input–output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic

  10. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    ERIC Educational Resources Information Center

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  11. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    ERIC Educational Resources Information Center

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  12. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  13. Localization of neurotrophin receptors in olfactory epithelium and bulb.

    PubMed

    Deckner, M L; Frisén, J; Verge, V M; Hökfelt, T; Risling, M

    1993-12-13

    We used in situ hybridization to localize trk, trkB and trkC mRNA, in rat and cat olfactory bulb. Expression of mRNA encoding truncated trkB receptors was seen in all layers, while only very modest full-length trkB expression could be detected. trkC hybridization was seen in all layers, most dense in the mitral cell layer. The localization of full-length tyrosine kinase trkB receptor in olfactory bulb and epithelium was examined with immunohistochemistry. trkB-like immunoreactivity was seen in the fila olfactoria, epithelium and in vitro, in olfactory sensory neurones. Since BDNF is expressed by olfactory sensory neurone target cells in the olfactory bulb, these data suggest that BDNF may act as a target derived neurotrophic factor in the primary olfactory system.

  14. Neural Sensitivity to Odorants in Deprived and Normal Olfactory Bulbs

    PubMed Central

    Rodríguez, Francisco B.; Huerta, Ramón; Aylwin, Maria de la Luz

    2013-01-01

    Early olfactory deprivation in rodents is accompanied by an homeostatic regulation of the synaptic connectivity in the olfactory bulb (OB). However, its consequences in the neural sensitivity and discrimination have not been elucidated. We compared the odorant sensitivity and discrimination in early sensory deprived and normal OBs in anesthetized rats. We show that the deprived OB exhibits an increased sensitivity to different odorants when compared to the normal OB. Our results indicate that early olfactory stimulation enhances discriminability of the olfactory stimuli. We found that deprived olfactory bulbs adjusts the overall excitatory and inhibitory mitral cells (MCs) responses to odorants but the receptive fields become wider than in the normal olfactory bulbs. Taken together, these results suggest that an early natural sensory stimulation sharpens the receptor fields resulting in a larger discrimination capability. These results are consistent with previous evidence that a varied experience with odorants modulates the OB's synaptic connections and increases MCs selectivity. PMID:23580211

  15. The efferent connections of the olfactory bulb and accessory olfactory bulb in the snakes, Thamnophis sirtalis and Thamnophis radix.

    PubMed

    Halpern, M

    1976-10-01

    The efferent connections of the olfactory bulb and accessory olfactory bulb of two species of garter snakes, Thamnophis sirtalis and T. radix were studied with experimental anterograde degeneration techniques. Axons of cells located in the olfactory bulb terminate ipsilaterally in all parts of the anterior olfactory nucleus, olfactory tubercle and lateral pallium. In addition, some axons enter the ipsilateral stria medullaris thalami, cross the midline in the habenular commissure, enter the contralateral stria medullaris thalami and terminate in the contralateral lateral pallium. The axons of cells in the accessory olfactory bulb course through the telencephalon completely separated from the fibers of olfactory bulb origin and terminate predominantly in the nucleus sphericus. These results confirm previous reports of the separation between the central projections of the olfactory and vomeronasal systems in a variety of vertebrates. The totality of the separation between these two systems coupled with the extensive development of the vomeronasal-accessory bulb system in these snakes suggests that they may be ideal subjects for further research on the functional significance of the vomeronasal system.

  16. Local neurons play key roles in the mammalian olfactory bulb.

    PubMed

    Saghatelyan, Armen; Carleton, Alan; Lagier, Samuel; de Chevigny, Antoine; Lledo, Pierre-Marie

    2003-01-01

    Over the past few decades, research exploring how the brain perceives, discriminates, and recognizes odorant molecules has received a growing interest. Today, olfaction is no longer considered a matter of poetry. Chemical senses entered the biological era when an increasing number of scientists started to elucidate the early stages of the olfactory pathway. A combination of genetic, biochemical, cellular, electrophysiological and behavioral methods has provided a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. Our group is exploring the physiology of the main olfactory bulb, the first processing relay in the mammalian brain. From different electrophysiological approaches, we are attempting to understand the cellular rules that contribute to the synaptic transmission and plasticity at this central relay. How olfactory sensory inputs, originating from the olfactory epithelium located in the nasal cavity, are encoded in the main olfactory bulb remains a crucial question for understanding odor processing. More importantly, the persistence of a high level of neurogenesis continuously supplying the adult olfactory bulb with newborn local neurons provides an attractive model to investigate how basic olfactory functions are maintained when a large proportion of local neurons are continuously renewed. For this purpose, we summarize the current ideas concerning the molecular mechanisms and organizational strategies used by the olfactory system to encode and process information in the main olfactory bulb. We discuss the degree of sensitivity of the bulbar neuronal network activity to the persistence of this high level of neurogenesis that is modulated by sensory experience. Finally, it is worth mentioning that analyzing the molecular mechanisms and organizational strategies used by the olfactory system to transduce, encode, and process odorant information in the olfactory bulb should aid in

  17. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  18. Voltage-Dependent Intrinsic Bursting in Olfactory Bulb Golgi Cells

    ERIC Educational Resources Information Center

    Pressler, R. Todd; Rozman, Peter A.; Strowbridge, Ben W.

    2013-01-01

    In the mammalian olfactory bulb (OB), local synaptic circuits modulate the evolving pattern of activity in mitral and tufted cells following olfactory sensory stimulation. GABAergic granule cells, the most numerous interneuron subtype in this brain region, have been extensively studied. However, classic studies using Golgi staining methods…

  19. [Olfactory dysfunction: correlation of olfactory bulb volume on MRI and objective olfactometry].

    PubMed

    Bauknecht, H-C; Jach, C; Fleiner, F; Sedlmaier, B; Göktas, O

    2010-02-01

    To define the role of olfactory bulb volume measurement by magnetic resonance imaging (MRI) for detecting olfactory dysfunction in comparison with objective olfactometry. Thirty patients with suspected olfactory dysfunction (16 women, 14 men; mean age 52 years, range 20 - 79 years) were examined by MRI and objective olfactometry between January 2006 and January 2009. Olfactory bulb volumes were measured by two neuroradiologists using 3D MR data sets. The olfactory function was categorized as normosmia, hyposmia, and anosmia on the basis of objective olfactometry. Pearson correlation coefficients were calculated for objective olfactometry and olfactory bulb volumes on MRI. ROC analysis was performed to determine whether MRI bulb volumes can serve to predict anosmia or hyposmia. The bulb volumes measured by MRI ranged from 0 to 135.9 mm (3). Based on olfactometry, anosmia was present in 11 patients (total bulb volume of 15.7 +/- 23.3 mm (3)), hyposmia in 9 patients (total bulb volume of 50.0 +/- 25.5 mm (3)), and normosmia in 10 patients (total bulb volume of 110.7 +/- 21.5 mm (3)). There was good correlation (r > 0.9) between objective olfactometry and olfactory bulb volume on MRI. ROC analysis yielded a cut-off value of 32 mm (3) for anosmia, which had a sensitivity of 0.91 and specificity of 0.947. The cut-off value for olfactory dysfunction was 80.7 mm (3) (sensitivity 0.95; specificity of 0.9). The olfactory bulb volume determined by MRI is a suitable parameter for diagnosing complete or partial loss of the sense of smell.

  20. Broadcasting of cortical activity to the olfactory bulb.

    PubMed

    Boyd, Alison M; Kato, Hiroyuki K; Komiyama, Takaki; Isaacson, Jeffry S

    2015-02-24

    Odor representations are initially formed in the olfactory bulb, which contains a topographic glomerular map of odor molecular features. The bulb transmits sensory information directly to piriform cortex, where it is encoded by distributed ensembles of pyramidal cells without spatial order. Intriguingly, piriform cortex pyramidal cells project back to the bulb, but the information contained in this feedback projection is unknown. Here, we use imaging in awake mice to directly monitor activity in the presynaptic boutons of cortical feedback fibers. We show that the cortex provides the bulb with a rich array of information for any individual odor and that cortical feedback is dependent on brain state. In contrast to the stereotyped, spatial arrangement of olfactory bulb glomeruli, cortical inputs tuned to different odors commingle and indiscriminately target individual glomerular channels. Thus, the cortex modulates early odor representations by broadcasting sensory information diffusely onto spatially ordered bulbar circuits.

  1. Parvalbumin-expressing interneurons linearly control olfactory bulb output.

    PubMed

    Kato, Hiroyuki K; Gillet, Shea N; Peters, Andrew J; Isaacson, Jeffry S; Komiyama, Takaki

    2013-12-04

    In the olfactory bulb, odor representations by principal mitral cells are modulated by local inhibitory circuits. While dendrodendritic synapses between mitral and granule cells are typically thought to be a major source of this modulation, the contributions of other inhibitory neurons remain unclear. Here we demonstrate the functional properties of olfactory bulb parvalbumin-expressing interneurons (PV cells) and identify their important role in odor coding. Using paired recordings, we find that PV cells form reciprocal connections with the majority of nearby mitral cells, in contrast to the sparse connectivity between mitral and granule cells. In vivo calcium imaging in awake mice reveals that PV cells are broadly tuned to odors. Furthermore, selective PV cell inactivation enhances mitral cell responses in a linear fashion while maintaining mitral cell odor preferences. Thus, dense connections between mitral and PV cells underlie an inhibitory circuit poised to modulate the gain of olfactory bulb output.

  2. Synaptic clusters function as odor operators in the olfactory bulb.

    PubMed

    Migliore, Michele; Cavarretta, Francesco; Marasco, Addolorata; Tulumello, Eleonora; Hines, Michael L; Shepherd, Gordon M

    2015-07-07

    How the olfactory bulb organizes and processes odor inputs through fundamental operations of its microcircuits is largely unknown. To gain new insight we focus on odor-activated synaptic clusters related to individual glomeruli, which we call glomerular units. Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain "odor operators" unique to each individual. The results provide new and specific theoretical and experimentally testable predictions.

  3. Synaptic clusters function as odor operators in the olfactory bulb

    PubMed Central

    Migliore, Michele; Cavarretta, Francesco; Marasco, Addolorata; Tulumello, Eleonora; Hines, Michael L.; Shepherd, Gordon M.

    2015-01-01

    How the olfactory bulb organizes and processes odor inputs through fundamental operations of its microcircuits is largely unknown. To gain new insight we focus on odor-activated synaptic clusters related to individual glomeruli, which we call glomerular units. Using a 3D model of mitral and granule cell interactions supported by experimental findings, combined with a matrix-based representation of glomerular operations, we identify the mechanisms for forming one or more glomerular units in response to a given odor, how and to what extent the glomerular units interfere or interact with each other during learning, their computational role within the olfactory bulb microcircuit, and how their actions can be formalized into a theoretical framework in which the olfactory bulb can be considered to contain “odor operators” unique to each individual. The results provide new and specific theoretical and experimentally testable predictions. PMID:26100895

  4. Dense representation of natural odorants in the mouse olfactory bulb

    PubMed Central

    Vincis, Roberto; Gschwend, Olivier; Bhaukaurally, Khaleel; Béroud, Jonathan; Carleton, Alan

    2013-01-01

    In mammals, odorant molecules are thought to activate only a few glomeruli, leading to the hypothesis that odor representation in the olfactory bulb is sparse. However, the studies supporting this model used anesthetized animals or monomolecular odorants at limited concentration range. In this study, using optical imaging and 2-photon microscopy, we show that natural odorants at their native concentrations can elicit dense representations in the olfactory bulb. Both anesthesia and odorant concentration are shown to modulate the representation density of natural odorants. PMID:22406552

  5. The projection from the olfactory epithelium to the olfactory bulb in the salamander, Ambystoma tigrinum.

    PubMed

    Mackay-Sim, A; Nathan, M H

    1984-01-01

    Odor quality may be represented as a "topographic" code of responses of receptor cells throughout the olfactory epithelium, with this code conveyed to the central nervous system by a topographic projection from the olfactory epithelium to the olfactory bulb. There is good evidence for topographic differences in odor-induced receptor cell activity in the tiger salamander but there is no evidence for a topographic epithelium-to-bulb projection in this species. In the present study 3H-leucine autoradiography was used to trace the projections of olfactory receptor neurons in the tiger salamander. Thirteen animals received small injections of tritiated leucine into different regions of the dorsal or the ventral olfactory epithelium, or into the ventrolateral, "vomeronasal organ". The results show that the anterior-to-posterior axes in the dorsal and ventral epithelia are represented along the ventral-to-dorsal axis in the rostral end of the olfactory bulb. The "vomeronasal organ" projects to the caudal end of the bulb. We conclude that the central projection of the olfactory epithelium in the tiger salamander is topographically organised only along the antero-posterior axis and not the medio-lateral axis. Thus epithelial receptor cell activity along the anteroposterior axis would be represented in the glomerular layer of the bulb by activity along its ventro-dorsal axis.

  6. Zincergic innervation from the anterior olfactory nucleus to the olfactory bulb displays plastic responses after mitral cell loss.

    PubMed

    Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R

    2008-12-01

    Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.

  7. Adrenergic modulation of olfactory bulb circuitry affects odor discrimination.

    PubMed

    Doucette, Wilder; Milder, Julie; Restrepo, Diego

    2007-08-01

    A rodent's survival depends upon its ability to perceive odor cues necessary to guide mate selection, sexual behavior, foraging, territorial formation, and predator avoidance. Arguably, the need to discriminate odor cues in a complex olfactory environment requires a highly adaptable olfactory system. Indeed, it has been proposed that context-dependent modulation of the initial sensory relay could alter olfactory perception. Interestingly, 40% of the adrenergic innervation from the locus coeruleus, fibers that are activated by contextual cues, innervates the first relay station in the olfactory system (the main olfactory bulb). Here we utilize restricted pharmacological inhibition of olfactory bulb noradrenergic receptors in awake-behaving animals. We show that combined blockade of alpha and beta adrenergic receptors does not impair two-odor discrimination behavior per se but does impair the ability to discriminate perceptually similar odors. Thus, contextual cues conveyed by noradrenergic fibers alter processing before the second synapse in the olfactory cortex, resulting in tuning of the ability to discriminate between similar odors.

  8. Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function.

    PubMed

    Mazal, Patricia Portillo; Haehner, Antje; Hummel, Thomas

    2016-01-01

    The aim of this review is to investigate whether changes in olfactory bulb volume relate to changes in specific olfactory functions. We studied currently available peer-reviewed articles on the volume of the human olfactory bulb that also included a psychophysical measure of olfactory function. In the present review, we observed a very clear and consistent correlation between general olfactory function and olfactory bulb (OB) volume. We were not able to find a clear relationship between a specific smell component and OB volume, even when analyzing pathologic conditions separately. In some cases, changes were observed for different subtests, but these changes did not significantly correlate with OB volume or had only a borderline correlation. In other cases, we found contradictory data. Several factors may contribute to the difficulties in finding correlations with the different components of smell: (1) the OB volume may be influenced by information from olfactory receptor neurons (bottom-up effect), information from central nervous system (top-down effect) and by direct damage; (2) most pathologic conditions affect more than one area of the olfactory pathway; (3) small sample sizes of hyposmic subjects were used. We believe that it is necessary to do further studies with larger numbers of subjects to answer the currently investigated question.

  9. Signal processing inspired from the olfactory bulb for electronic noses

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Qi; Meng, Qing-Hao; Qi, Pei-Feng; Zeng, Ming; Liu, Ying-Jie

    2017-01-01

    A bio-inspired signal processing method is proposed for electronic noses (e-noses). The proposed method contains an olfactory bulb model and a feature generation step. The structure of the olfactory bulb model is similar to the anatomical structure of mammals’ olfactory bulb. It consists of olfactory receptor neurons, mitral cells, granule cells, periglomerular cells, and short axon cells. This model uses gas sensors’ original response curves and transforms them to neuron spiking series no matter what kind the response curve is. This largely simplifies the follow-up feature generation step. Recurrence quantification analysis is employed to perform feature generation and the five most important features are selected. Finally, in order to verify the performance of the proposed method, seven kinds of Chinese liquors are tested and three classification methods are used to classify them. The experimental results demonstrate that the proposed method has a higher classification rate (99.05%) and also a steadier performance with the change of sensor number and types than the classic one.

  10. Noradrenergic and cholinergic modulation of olfactory bulb sensory processing

    PubMed Central

    Devore, Sasha; Linster, Christiane

    2012-01-01

    Neuromodulation in sensory perception serves important functions such as regulation of signal to noise ratio, attention, and modulation of learning and memory. Neuromodulators in specific sensory areas often have highly similar cellular, but distinct behavioral effects. To address this issue, we here review the function and role of two neuromodulators, acetylcholine (Ach) and noradrenaline (NE) for olfactory sensory processing in the adult main olfactory bulb. We first describe specific bulbar sensory computations, review cellular effects of each modulator and then address their specific roles in bulbar sensory processing. We finally put these data in a behavioral and computational perspective. PMID:22905025

  11. Comparative morphology of the accessory olfactory bulb in bats.

    PubMed Central

    Frahm, H D; Bhatnagar, K P

    1980-01-01

    Bouin-perfused brains of 148 bats (76 species, 48 genera, 8 families) were examined in serial sections for the presence of an accessory olfactory bulb. A moderate to well developed AOB was identified in 26 species. However, absence of an AOB in a particular species does not preclude its presence in some other species of that genus. Descriptions and measurements of the AOBs of each species are reported. The unmyelinated vomeronasal nerve enters the bulb medially and posteriorly. The glomeruli, variable in diameter, appear better circumscribed than previously described. Mitral cells often form thick layers, up to five cells deep, which sometimes reach the dorsolateral surface of the bulb formation. Both external and internal plexiform layers are thin. The latter, however is seen only in a few species. The internal granular layer, reaching the ventricular ependyma in some species, is a prominent component of the bulb. The pars dorsalis of the lateral olfactory tract usually courses between the mitral and internal granular layers. The chiropteran AOB does not differ in significant detail from that of insectivores, primates and other mammals. The occurrence of a functional vomeronasal system in the frugivorous, nectarivorous, and sanguivorous Phyllosotomatidae points to a primary functional role of this system in feeding strategy, at least in bats. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:7400042

  12. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs.

    PubMed

    Mohedano-Moriano, Alicia; de la Rosa-Prieto, Carlos; Saiz-Sanchez, Daniel; Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; de Moya-Pinilla, Miguel; Martinez-Marcos, Alino

    2012-01-01

    Parallel to the olfactory system, most mammals possess an accessory olfactory or vomeronasal system. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs, which in turn project to adjacent areas of the telencephalon, respectively. New data indicate that projections arising from the main and accessory olfactory bulbs partially converge in the rostral telencephalon and are non-overlapping at caudal telencephalic levels. Therefore, the basal telencephalon should be reclassified in olfactory, vomeronasal, and mixed areas. On the other hand, it has been demonstrated that virtually all olfactory- and vomeronasal-recipient structures send reciprocal projections to the main and accessory olfactory bulbs, respectively. Further, non-chemosensory recipient structures also projects centrifugally to the olfactory bulbs. These feed-back projections appear to be essential modulating processing of chemosensory information. The present work aims at characterizing centrifugal projections to the main and accessory olfactory bulbs arising from olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic areas. This issue has been addressed by using tracer injections in the rat and mouse brain. Tracer injections were delivered into the main and accessory olfactory bulbs as well as in olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic structures. The results confirm that olfactory- and vomeronasal-recipient structures project to the main and accessory olfactory bulbs, respectively. Interestingly, olfactory (e.g., piriform cortex), vomeronasal (e.g., posteromedial cortical amygdala), mixed (e.g., the anterior medial amygdaloid nucleus), and non-chemosensory-recipient (e.g., the nucleus of the diagonal band) structures project to the main and to the accessory olfactory bulbs thus providing the possibility of simultaneous modulation and interaction of both systems at different stages of chemosensory processing.

  13. Centrifugal telencephalic afferent connections to the main and accessory olfactory bulbs

    PubMed Central

    Mohedano-Moriano, Alicia; de la Rosa-Prieto, Carlos; Saiz-Sanchez, Daniel; Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; de Moya-Pinilla, Miguel; Martinez-Marcos, Alino

    2012-01-01

    Parallel to the olfactory system, most mammals possess an accessory olfactory or vomeronasal system. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs, which in turn project to adjacent areas of the telencephalon, respectively. New data indicate that projections arising from the main and accessory olfactory bulbs partially converge in the rostral telencephalon and are non-overlapping at caudal telencephalic levels. Therefore, the basal telencephalon should be reclassified in olfactory, vomeronasal, and mixed areas. On the other hand, it has been demonstrated that virtually all olfactory- and vomeronasal-recipient structures send reciprocal projections to the main and accessory olfactory bulbs, respectively. Further, non-chemosensory recipient structures also projects centrifugally to the olfactory bulbs. These feed-back projections appear to be essential modulating processing of chemosensory information. The present work aims at characterizing centrifugal projections to the main and accessory olfactory bulbs arising from olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic areas. This issue has been addressed by using tracer injections in the rat and mouse brain. Tracer injections were delivered into the main and accessory olfactory bulbs as well as in olfactory, vomeronasal, mixed, and non-chemosensory recipient telencephalic structures. The results confirm that olfactory- and vomeronasal-recipient structures project to the main and accessory olfactory bulbs, respectively. Interestingly, olfactory (e.g., piriform cortex), vomeronasal (e.g., posteromedial cortical amygdala), mixed (e.g., the anterior medial amygdaloid nucleus), and non-chemosensory-recipient (e.g., the nucleus of the diagonal band) structures project to the main and to the accessory olfactory bulbs thus providing the possibility of simultaneous modulation and interaction of both systems at different stages of chemosensory processing

  14. Correlated firing in tufted cells of mouse olfactory bulb

    PubMed Central

    Ma, Jie; Lowe, Graeme

    2010-01-01

    Temporally correlated spike discharges are proposed to be important for the coding of olfactory stimuli. In the olfactory bulb, correlated spiking is known in two classes of output neurons, the mitral cells and external tufted cells. We studied a third major class of bulb output neurons, the middle tufted cells, analyzing their bursting and spike timing correlations, and their relation to mitral cells. Using patch-clamp and fluorescent tracing, we recorded spontaneous spiking from tufted-tufted or mitral-tufted cell pairs with visualized dendritic projections in mouse olfactory bulb slices. We found peaks in spike cross-correlograms indicating correlated activity on both fast (peak width 1 ms – 50 ms) and slow (peak width > 50 ms) time scales, only in pairs with convergent glomerular projections. Coupling appeared tighter in tufted-tufted pairs, which showed correlated firing patterns and smaller mean width and lag of narrow peaks. Some narrow peaks resolved into 2–3 sub-peaks (width 1–12 ms), indicating multiple modes of fast correlation. Slow correlations were related to bursting activity, while fast correlations were independent of slow correlations, occurring in both bursting and non-bursting cells. The AMPA receptor antagonist NBQX (20 μM) failed to abolish broad or narrow peaks in either tufted-tufted or mitral-tufted pairs, and changes of peak height and width in NBQX were not significantly different from spontaneous drift. Thus, AMPA-receptors are not required for fast and slow spike correlations. Electrical coupling was observed in all convergent tufted-tufted and mitral-tufted pairs tested, suggesting a potential role for gap junctions in concerted firing. Glomerulus-specific correlation of spiking offers a useful mechanism for binding the output signals of diverse neurons processing and transmitting different sensory information encoded by common olfactory receptors. PMID:20600657

  15. Repeated formaldehyde inhalation impaired olfactory function and changed SNAP25 proteins in olfactory bulb.

    PubMed

    Zhang, Qi; Yan, Weiqun; Bai, Yang; Zhu, Yingqiao; Ma, Jie

    2014-10-01

    Formaldehyde inhalation exposure, which can occur through occupational exposure, can lead to sensory irritation, neurotoxicity, mood disorders, and learning and memory impairment. However, its influence on olfactory function is unclear. To investigate the mechanism and the effect of repeated formaldehyde inhalation exposure on olfactory function. Rats were treated with formaldehyde inhalation (13·5±1·5 ppm, twice 30 minutes/day) for 14 days. Buried food pellet and locomotive activity tests were used to detect olfactory function and locomotion. Western blots were used to evaluate synaptosomal-associated protein 25 (SNAP25) protein levels in the olfactory bulb (OB) lysate and synaptosome, as well as mature and immature olfactory sensory neuron markers, olfactory marker protein (OMP), and Tuj-1. Real-time polymerase chain reaction (PCR) was used to detect SNAP25 mRNA amounts. Repeated formaldehyde inhalation exposure impaired olfactory function, whereas locomotive activities were unaffected. SNAP25 protein decreased significantly in the OB, but not in the occipital lobe. SNAP25 also decreased in the OB synaptosome when synaptophysin did not change after formaldehyde treatment. mRNA levels of SNAP25A and SNAP25B were unaffected. Mature and immature olfactory sensory neuron marker, OMP, and Tuj-1, did not change after formaldehyde treatment. Repeated formaldehyde exposure impaired olfactory function by disturbing SNAP25 protein in the OB.

  16. Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival.

    PubMed

    Schwob, J E; Szumowski, K E; Stasky, A A

    1992-10-01

    In most neural systems, developing neurons are trophically dependent on contact with their synaptic target for their survival and for some features of their differentiation. However, in the olfactory system, it is unclear whether or not the survival and differentiation of olfactory sensory neurons depend on contact with the olfactory bulb (normally the sole synaptic target for these neurons). In order to address this issue, we examined neuronal life-span and differentiation in adult rats subjected to unilateral olfactory bulb ablation at least 1 month prior to use. Life-span of a newly generated cohort of olfactory neurons was determined by labeling them at their "birth" via the incorporation of 3H-thymidine. In the absence of the bulb, neurons are continually produced at a twofold greater rate. However, the epithelium on the ablated side is thinner, indicating that average neuronal life-span must be reduced in the targetless epithelium. Indeed, nearly 90% of the labeled neurons disappear from the bulbectomized side between 5 d and 2 weeks of neuronal age. Moreover, on electron microscopic examination, olfactory axons are degenerating in large numbers on the ablated side. Since labeled neurons migrate apically through the width of the epithelium during this same period, it appears that most, if not all, neurons on the ablated side have a life-span on the order of 2 weeks or less. In contrast, there is a more moderate degree of neuronal loss on the unoperated side of the same animals during the first 2 weeks after tracer injection, and that occurs while the neurons are concentrated in the deeper half of the epithelium, suggesting that there is a preexisting population of neurons in the control epithelium that does not die during this period. Likewise, degenerating axons are much less frequent on the unoperated side. We conclude that life-span is significantly shorter for olfactory neurons born in the targetless epithelium and that olfactory neurons are trophically

  17. Odor Experience Facilitates Sparse Representations of New Odors in a Large-Scale Olfactory Bulb Model

    PubMed Central

    Zhou, Shanglin; Migliore, Michele; Yu, Yuguo

    2016-01-01

    Prior odor experience has a profound effect on the coding of new odor inputs by animals. The olfactory bulb, the first relay of the olfactory pathway, can substantially shape the representations of odor inputs. How prior odor experience affects the representation of new odor inputs in olfactory bulb and its underlying network mechanism are still unclear. Here we carried out a series of simulations based on a large-scale realistic mitral-granule network model and found that prior odor experience not only accelerated formation of the network, but it also significantly strengthened sparse responses in the mitral cell network while decreasing sparse responses in the granule cell network. This modulation of sparse representations may be due to the increase of inhibitory synaptic weights. Correlations among mitral cells within the network and correlations between mitral network responses to different odors decreased gradually when the number of prior training odors was increased, resulting in a greater decorrelation of the bulb representations of input odors. Based on these findings, we conclude that the degree of prior odor experience facilitates degrees of sparse representations of new odors by the mitral cell network through experience-enhanced inhibition mechanism. PMID:26903819

  18. Laminar disorganisation of mitral cells in the olfactory bulb does not affect topographic targeting of primary olfactory axons.

    PubMed

    Royal, S J; Gambello, M J; Wynshaw-Boris, A; Key, B; Clarris, H J

    2002-04-05

    Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons, the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice, primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from

  19. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    PubMed Central

    Thewissen, JGM; Usip, Sharon; Suydam, Robert S.; George, John C.

    2015-01-01

    Although modern baleen whales (Mysticeti) retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus) lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals. PMID:25945304

  20. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour.

    PubMed

    Brai, Emanuele; Marathe, Swananda; Zentilin, Lorena; Giacca, Mauro; Nimpf, Johannes; Kretz, Robert; Scotti, Alessandra; Alberi, Lavinia

    2014-11-01

    Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    PubMed

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  2. Odor Memory Stability after Reinnervation of the Olfactory Bulb

    PubMed Central

    Blanco-Hernández, Eduardo; Valle-Leija, Pablo; Zomosa-Signoret, Viviana; Drucker-Colín, René; Vidaltamayo, Román

    2012-01-01

    The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain. PMID:23071557

  3. Odor memory stability after reinnervation of the olfactory bulb.

    PubMed

    Blanco-Hernández, Eduardo; Valle-Leija, Pablo; Zomosa-Signoret, Viviana; Drucker-Colín, René; Vidaltamayo, Román

    2012-01-01

    The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.

  4. Enhanced assymetrical noradrenergic transmission in the olfactory bulb of deoxycorticosterone acetate-salt hypertensive rats.

    PubMed

    Abramoff, Tamara; Guil, María J; Morales, Vanina P; Hope, Sandra I; Soria, Celeste; Bianciotti, Liliana G; Vatta, Marcelo S

    2013-10-01

    The ablation of olfactory bulb induces critical changes in dopamine, and monoamine oxidase activity in the brain stem. Growing evidence supports the participation of this telencephalic region in the regulation blood pressure and cardiovascular activity but little is known about its contribution to hypertension. We have previously reported that in the olfactory bulb of normotensive rats endothelins enhance noradrenergic activity by increasing tyrosine hydroxylase activity and norepinephrine release. In the present study we sought to establish the status of noradrenergic activity in the olfactory bulb of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Different steps in norepinephrine transmission including tyrosine hydroxylase activity, neuronal norepinephrine release and uptake were assessed in the left and right olfactory bulb of DOCA-salt hypertensive rats. Increased tyrosine hydroxylase activity, and decreased neuronal norepinephrine uptake were observed in the olfactory bulb of DOCA-salt hypertensive rats. Furthermore the expression of tyrosine hydroxylase and its phosphorylated forms were also augmented. Intriguingly, asymmetrical responses between the right and left olfactory bulb of normotensive and hypertensive rats were observed. Neuronal norepinephrine release was increased in the right but not in the left olfactory bulb of DOCA-salt hypertensive rats, whereas non asymmetrical differences were observed in normotensive animals. Present findings indicate that the olfactory bulb of hypertensive rats show an asymmetrical increase in norepinephrine activity. The observed changes in noradrenergic transmission may likely contribute to the onset and/or progression of hypertension in this animal model.

  5. Binaral interaction and centrifugal input enhances spatial contrast in olfactory bulb activation.

    PubMed

    Singer, Benjamin H; Kim, Soyoun; Zochowski, Michal

    2007-01-01

    We used paired-pulse odorant stimulation, with a conditioning stimulus delivered either ipsilateral or contralateral to a test stimulus, to unmask the effects of centrifugal feedback on olfactory bulb responses. In reptiles and mammals there are no direct connections between the paired olfactory bulbs, and thus all information transfer between the olfactory bulbs depends on feedback from retrobulbar structures. We measured odor-induced activity in the turtle olfactory bulb using a voltage-sensitive dye and a 464-element photodiode array, which allowed us to monitor the spatial variation in activation of the olfactory bulb. We found that both contralateral and ipsilateral conditioning stimuli evoked long-lasting inhibition of olfactory bulb activation. In contrast to previous studies using local field potential recording to monitor activity at a single site, we found that this inhibition increased contrast in the spatial patterning of activation over the dorsal surface of the olfactory bulb. Inhibition was also increased when different odorants were used as conditioning and test stimuli, suggesting a role for centrifugal feedback in olfactory discrimination. These results highlight the functional importance of centrifugal feedback and information processing in a broadly distributed olfactory network.

  6. Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus).

    PubMed

    Walton, James C; Pyter, Leah M; Weil, Zachary M; Nelson, Randy J

    2012-01-01

    Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.

  7. Photoperiod Mediated Changes in Olfactory Bulb Neurogenesis and Olfactory Behavior in Male White-Footed Mice (Peromyscus leucopus)

    PubMed Central

    Weil, Zachary M.; Nelson, Randy J.

    2012-01-01

    Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus. PMID:22912730

  8. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb.

    PubMed

    Kass, Marley D; Pottackal, Joseph; Turkel, Daniel J; McGann, John P

    2013-01-01

    Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.

  9. Component-dependent urine responses in the rat accessory olfactory bulb.

    PubMed

    Sugai, Tokio; Yoshimura, Hiroshi; Kato, Nobuo; Onoda, Norihiko

    2006-11-06

    To investigate how pheromonal information is processed in the rat accessory olfactory bulb, we optically imaged intrinsic signals to obtain high-resolution maps of activation induced by urinary stimulation. Application of volatile components in male urine mainly induced activation in the anterior accessory olfactory bulb, irrespective of the sex, whereas volatile female urine elicited activation not only in the anterior but also to some extent in the caudal part of the posterior accessory olfactory bulb of male, but not female, rats. Nonvolatile components of both male and female urine induced activation mainly in the rostral part of the posterior and to a lesser extent in the anterior accessory olfactory bulb, irrespective of the sex. These results indicate that volatile and nonvolatile urinary components activate the anterior and posterior subdivisions of the accessory olfactory bulb, respectively.

  10. Ca2+-permeable AMPA receptors in mouse olfactory bulb astrocytes

    PubMed Central

    Droste, Damian; Seifert, Gerald; Seddar, Laura; Jädtke, Oliver; Steinhäuser, Christian; Lohr, Christian

    2017-01-01

    Ca2+ signaling in astrocytes is considered to be mainly mediated by metabotropic receptors linked to intracellular Ca2+ release. However, recent studies demonstrate a significant contribution of Ca2+ influx to spontaneous and evoked Ca2+ signaling in astrocytes, suggesting that Ca2+ influx might account for astrocytic Ca2+ signaling to a greater extent than previously thought. Here, we investigated AMPA-evoked Ca2+ influx into olfactory bulb astrocytes in mouse brain slices using Fluo-4 and GCaMP6s, respectively. Bath application of AMPA evoked Ca2+ transients in periglomerular astrocytes that persisted after neuronal transmitter release was inhibited by tetrodotoxin and bafilomycin A1. Withdrawal of external Ca2+ suppressed AMPA-evoked Ca2+ transients, whereas depletion of Ca2+ stores had no effect. Both Ca2+ transients and inward currents induced by AMPA receptor activation were partly reduced by Naspm, a blocker of Ca2+-permeable AMPA receptors lacking the GluA2 subunit. Antibody staining revealed a strong expression of GluA1 and GluA4 and a weak expression of GluA2 in periglomerular astrocytes. Our results indicate that Naspm-sensitive, Ca2+-permeable AMPA receptors contribute to Ca2+ signaling in periglomerular astrocytes in the olfactory bulb. PMID:28322255

  11. Functional properties of dopaminergic neurones in the mouse olfactory bulb

    PubMed Central

    Pignatelli, Angela; Kobayashi, Kazuto; Okano, Hideyuki; Belluzzi, Ottorino

    2005-01-01

    The olfactory bulb of mammals contains a large population of dopaminergic interneurones within the glomerular layer. Dopamine has been shown both in vivo and in vitro to modulate several aspects of olfactory information processing, but the functional properties of dopaminergic neurones have never been described due to the inability to recognize these cells in living preparations. To overcome this difficulty, we used a transgenic mouse strain harbouring an eGFP (enhanced green fluorescent protein) reporter construct under the promoter of tyrosine hydroxylase, the rate-limiting enzyme for cathecolamine synthesis. As a result, we were able to identify dopaminergic neurones (TH-GFP cells) in living preparations and, for the first time, we could study the functional properties of such neurones in the olfactory bulb, in both slices and dissociated cells. The most prominent feature of these cells was the autorhythmicity. In these cells we identified five main voltage-dependent conductances: the two having largest amplitude were a fast transient Na+ current and a delayed rectifier K+ current. In addition, we observed three smaller inward currents, sustained by Na+ ions (persistent type) and by Ca2+ ions (LVA and HVA). Using pharmacological tools and ion substitution methods we showed that the pacemaking process is supported by the interplay of the persistent Na+ current and of a T-type Ca2+ current. We carried out a complete kinetical analysis of the five conductances present in these cells, and developed a Hodgkin-Huxley model of TH-GFP cells, capable of reproducing accurately the properties of living cells, including autorhytmicity, and allowing a precise understanding of the process. PMID:15731185

  12. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.

    PubMed

    Mazo, Camille; Lepousez, Gabriel; Nissant, Antoine; Valley, Matthew T; Lledo, Pierre-Marie

    2016-08-10

    Sensory perception emerges from the confluence of sensory inputs that encode the composition of external environment and top-down feedback that conveys information from higher brain centers. In olfaction, sensory input activity is initially processed in the olfactory bulb (OB), serving as the first central relay before being transferred to the olfactory cortex. In addition, the OB receives dense connectivity from feedback projections, so the OB has the capacity to implement a wide array of sensory neuronal computation. However, little is known about the impact and the regulation of this cortical feedback. Here, we describe a novel mechanism to gate glutamatergic feedback selectively from the anterior olfactory cortex (AOC) to the OB. Combining in vitro and in vivo electrophysiological recordings, optogenetics, and fiber-photometry-based calcium imaging applied to wild-type and conditional transgenic mice, we explore the functional consequences of circuit-specific GABA type-B receptor (GABABR) manipulation. We found that activation of presynaptic GABABRs specifically depresses synaptic transmission from the AOC to OB inhibitory interneurons, but spares direct excitation to principal neurons. As a consequence, feedforward inhibition of spontaneous and odor-evoked activity of principal neurons is diminished. We also show that tunable cortico-bulbar feedback is critical for generating beta, but not gamma, OB oscillations. Together, these results show that GABABRs on cortico-bulbar afferents gate excitatory transmission in a target-specific manner and thus shape how the OB integrates sensory inputs and top-down information. The olfactory bulb (OB) receives top-down inputs from the olfactory cortex that produce direct excitation and feedforward inhibition onto mitral and tufted cells, the principal neurons. The functional role of this feedback and the mechanisms regulating the balance of feedback excitation and inhibition remain unknown. We found that GABAB receptors are

  13. Retronasal odor representations in the dorsal olfactory bulb of rats

    PubMed Central

    Gautam, Shree Hari; Verhagen, Justus V.

    2012-01-01

    Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270

  14. Retronasal odor representations in the dorsal olfactory bulb of rats.

    PubMed

    Gautam, Shree Hari; Verhagen, Justus V

    2012-06-06

    Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic questions are if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthonasal versus retronasal response patterns. We found that at a physiologically relevant flow rate, retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between orthonasal and retronasal odor representations in the rat OB.

  15. Visualizing olfactory learning functional imaging of experience-induced olfactory bulb changes.

    PubMed

    Fletcher, Max L; Bendahmane, Mounir

    2014-01-01

    The anatomical organization of sensory neuron input allows odor information to be transformed into odorant-specific spatial maps of mitral/tufted cell glomerular activity. In other sensory systems, neuronal representations of sensory stimuli can be reorganized or enhanced following learning or experience. Similarly, several studies have demonstrated both structural and physiological experience-induced changes throughout the olfactory system. As experience-induced changes within this circuit likely serve as an initial site for odor memory formation, the olfactory bulb is an ideal site for optical imaging studies of olfactory learning, as they allow for the visualization of experience-induced changes in the glomerular circuit following learning and how these changes impact of odor representations with the bulb. Presently, optical imaging techniques have been used to visualize experience-induced changes in glomerular odor representations in a variety of paradigms in short-term habituation, chronic odor exposure, and olfactory associative conditioning. © 2014 Elsevier B.V. All rights reserved.

  16. Structure and diversity in mammalian accessory olfactory bulb.

    PubMed

    Meisami, E; Bhatnagar, K P

    1998-12-15

    The accessory olfactory bulb (AOB) is the first neural integrative center for the olfactory-like vomeronasal sensory system. In this article, we first briefly present an overview of vomeronasal system organization and review the history of the discovery of mammalian AOB. Next, we briefly review the evolution of the vomeronasal system in vertebrates, in particular the reptiles. Following these introductory aspects, the structure of the rodent AOB, as typical of the well-developed mammalian AOB, is presented, detailing laminar organization and cell types as well as aspects of the homology with the main olfactory bulb. Then, the evolutionary origin and diversity of the AOB in mammalian orders and species is discussed, describing structural, phylogenetic, and species-specific variation in the AOB location, shape, and size and morphologic differentiation and development. The AOB is believed to be absent in fishes but present in terrestrial tetrapods including amphibians; among the reptiles AOB is absent in crocodiles, present in turtles, snakes, and some lizards where it may be as large or larger than the main bulb. The AOB is absent in bird and in the aquatic mammals (whales, porpoises, manatees). Among other mammals, AOB is present in the monotremes and marsupials, edentates, and in the majority of the placental mammals like carnivores, herbivores, as well as rodents and lagomorphs. Most bat species do not have an AOB and among those where one is found, it shows marked variation in size and morphologic development. Among insectivores and primates, AOB shows marked variation in occurrence, size, and morphologic development. It is small in shrews and moles, large in hedgehogs and prosimians; AOB continues to persist in New World monkeys but is not found in the adults of the higher primates such as the Old World monkeys, apes, and humans. In many species where AOB is absent in the adult, it often develops in the embryo and fetus but regresses in later stages of

  17. Functional Sub-Circuits of the Olfactory System Viewed from the Olfactory Bulb and the Olfactory Tubercle.

    PubMed

    Yamaguchi, Masahiro

    2017-01-01

    Understanding of the olfactory neural circuits has progressed beyond analysis of how odor information from the external environment is processed in the brain. While spatially-organized sub-circuits were found to exist up to the olfactory bulb (OB), the arrangement in the olfactory cortex (OC), especially in its representative piriform cortex (PC), appears diffuse and dispersed. An emerging view is that the activity of OC neurons may not simply encode odor identity but rather encode plastic odor information such as odor value. Although many studies support this notion, odor value can be either positive or negative, and the existence of sub-circuits corresponding to individual value types is not well explored. To address this question, I introduce here two olfactory areas other than the PC, OB and olfactory tubercle (OT) whose analysis may facilitate understanding of functional sub-circuits related to different odor values. Peripheral and centrifugal inputs to the OB are considered to relate to odor identity and odor value, respectively and centrifugal inputs to the OB potentially represent different odor values during different behavioral periods. The OT has spatially-segregated functional domains related to distinct motivated and hedonic behaviors. Thus, the OT provides a good starting point from which functional sub-circuits across various olfactory regions can be traced. Further analysis across wide areas of the olfactory system will likely reveal the functional sub-circuits that link odor identity with distinct odor values and direct distinct odor-induced motivated and hedonic behaviors.

  18. The association between olfactory bulb volume, cognitive dysfunction, physical disability and depression in multiple sclerosis.

    PubMed

    Yaldizli, Ö; Penner, I-K; Yonekawa, T; Naegelin, Y; Kuhle, J; Pardini, M; Chard, D T; Stippich, C; Kira, J-I; Bendfeldt, K; Amann, M; Radue, E-W; Kappos, L; Sprenger, T

    2016-03-01

    Olfactory bulb atrophy is associated with cognitive dysfunction in Parkinson's and Alzheimer's disease, and with major depression. It has been suggested that olfactory bulb atrophy or dysfunction is therefore a marker of neurodegeneration. Multiple sclerosis (MS) is now also recognized as having a significant neurodegenerative component. Thus, the aim of this study was to investigate associations between physical and cognitive disability, depression and olfactory bulb volume in MS. In total, 146 patients with MS (mean age 49.0 ± 10.9 years, disease duration 21.2 ± 9.3 years, median Expanded Disability Status Scale (EDSS) score 3.0 (range 0-7.5), 103 relapsing-remitting, 35 secondary progressive and eight primary progressive MS) underwent a standardized neurological examination, comprehensive neuropsychological testing and magnetic resonance imaging (MRI); data of 27 healthy people served as age- and gender-matched control subjects. The olfactory bulb was semi-automatically segmented on high-resolution three-dimensional T1-weighted MRI. Mean olfactory bulb volume was lower in MS patients than healthy controls (183.9 ± 40.1 vs. 209.2 ± 59.3 μl; P = 0.018 adjusted to intracranial volume). Olfactory bulb volume was similar across clinical disease subtypes and did not correlate with cognitive performance, EDSS scores or total proton density/T2 white matter lesion volume. However, in progressive MS, the mean olfactory bulb volume correlated with depression scores (Spearman's rho = -0.38, P < 0.05) confirmed using a multivariate linear regression analysis including cognitive fatigue scores. This association was not observed in relapsing-remitting MS. Olfactory bulb volume was lower in MS than in healthy controls. Olfactory bulb volume does not seem to mirror cognitive impairment in MS; however, it is associated with higher depression scores in progressive MS. © 2015 EAN.

  19. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.

    PubMed

    Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto

    2017-03-06

    Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB.

  20. Subicular and CA1 hippocampal projections to the accessory olfactory bulb.

    PubMed

    de la Rosa-Prieto, C; Ubeda-Banon, I; Mohedano-Moriano, A; Pro-Sistiaga, P; Saiz-Sanchez, D; Insausti, R; Martinez-Marcos, A

    2009-02-01

    The hippocampal formation is anatomically and functionally related to the olfactory structures especially in rodents. The entorhinal cortex (EC) receives afferent projections from the main olfactory bulb; this constitutes an olfactory pathway to the hippocampus. In addition to the olfactory system, most mammals possess an accessory olfactory (or vomeronasal) system. The relationships between the hippocampal formation and the vomeronasal system are virtually unexplored. Recently, a centrifugal projection from CA1 to the accessory olfactory bulb has been identified using anterograde tracers. In the study reported herein, experiments using anterograde tracers confirm this projection, and injections of retrograde tracers show the distribution and morphology of a population of CA1 and ventral subicular neurons projecting to the accessory olfactory bulb of rats. These results extend previous descriptions of hippocampal projections to the accessory olfactory bulb by including the ventral subiculum and characterizing the morphology, neurochemistry (double labeling with somatostatin), and distribution of such neurons. These data suggest feedback hippocampal control of chemosensory stimuli in the accessory olfactory bulb. Whether this projection processes spatial information on conspecifics or is involved in learning and memory processes associated with chemical stimuli remains to be elucidated.

  1. Age-induced disruption of selective olfactory bulb synaptic circuits

    PubMed Central

    Richard, Marion B.; Taylor, Seth R.; Greer, Charles A.

    2010-01-01

    Little is known about how normal aging affects the brain. Recent evidence suggests that neuronal loss is not ubiquitous in aging neocortex. Instead, subtle and still controversial, region- and layer-specific alterations of neuron morphology and synapses are reported during aging, leading to the notion that discrete changes in neural circuitry may underlie age-related cognitive deficits. Although deficits in sensory function suggest that primary sensory cortices are affected by aging, our understanding of the age-related cellular and molecular changes is sparse. To assess the effect of aging on the organization of olfactory bulb (OB) circuitry, we carried out quantitative morphometric analyses in the mouse OB at 2, 6, 12, 18, and 24 mo. Our data establish that the volumes of the major OB layers do not change during aging. Parallel to this, we are unique in demonstrating that the stereotypic glomerular convergence of M72-GFP OSN axons in the OB is preserved during aging. We then provide unique evidence of the stability of projection neurons and interneurons subpopulations in the aging mouse OB, arguing against the notion of an age-dependent widespread loss of neurons. Finally, we show ultrastructurally a significant layer-specific loss of synapses; synaptic density is reduced in the glomerular layer but not the external plexiform layer, leading to an imbalance in OB circuitry. These results suggest that reduction of afferent synaptic input and local modulatory circuit synapses in OB glomeruli may contribute to specific age-related alterations of the olfactory function. PMID:20679234

  2. Organization of the main olfactory bulb of lesser hedgehog tenrecs.

    PubMed

    Kosaka, Katsuko; Künzle, Heinz; Kosaka, Toshio

    2005-12-01

    Using a confocal laser scanning microscope (CLSM) and an electron microscope, we investigated the organization of the main olfactory bulb (MOB) of tenrecs, which were previously included into insectivores but now considered to be in a new order "Afrosoricida" in the superclade 'Afrotheria'. We confirmed that the overall structural organization of the tenrec MOB was similar to that of rodents: (1) the compartmental organization of glomeruli and two types of periglomerular cells we proposed as the common organizational principles were present; (2) there were characteristic dendrodendritic and axo-dendritic synapses in the glomerulus and external plexiform layer (EPL) and gap junctions in glomeruli; and (3) no nidi, particular synaptic regions reported only in laboratory musk shrew and mole MOBs, were encountered. However, instead of nidi, we often observed a few tangled olfactory nerves (ONs) with large irregular boutons in the glomerular-external plexiform layer border zone, with which dendrites of various displaced periglomerular cells were usually found to be intermingled. Electron microscopic (EM) examinations confirmed characteristic large mossy terminal-like ON terminals making asymmetrical synapses to presumed mitral/tufted cell and displaced periglomerular cell dendrites. In addition, gap junctions were also encountered between dendritic processes in these tiny particular regions, further showing their resemblance to glomeruli.

  3. Functional transformations of odor inputs in the mouse olfactory bulb

    PubMed Central

    Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi

    2014-01-01

    Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams. PMID:25408637

  4. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    PubMed Central

    2011-01-01

    Background Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific behavioral alterations during adulthood. Results Mice drank a 10% ethanol solution throughout pregnancy. When fetal alcohol-exposed offspring reached adulthood, we used high resolution MRI to conduct a brain-wide screen for structural changes and found that the largest reduction in volume occurred in the olfactory bulbs. Next, we tested adult mice in an associative olfactory task and found that fetal alcohol exposure impaired discrimination between similar odors but left odor memory intact. Finally, we investigated olfactory bulb neurogenesis as a potential mechanism by performing an in vitro neurosphere assay, in vivo labeling of new cells using BrdU, and in vivo labeling of new cells using a transgenic reporter system. We found that fetal alcohol exposure decreased the number of neural precursor cells in the subependymal zone and the number of new cells in the olfactory bulbs during the first few postnatal weeks. Conclusions Using a combination of techniques, including structural brain imaging, in vitro and in vivo cell detection methods, and behavioral testing, we found that fetal alcohol exposure results in smaller olfactory bulbs and impairments in odor discrimination that persist into adulthood. Furthermore, we found that these abnormalities in olfactory bulb structure and function may arise from deficits in the generation of new olfactory bulb neurons during early postnatal development. PMID:21736737

  5. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats.

    PubMed

    Gómez, Rosa M; Ghotme, Kemel; Botero, Lucía; Bernal, Jaime E; Pérez, Rosalía; Barreto, George E; Bustos, Rosa Helena

    2016-02-01

    Olfactory nerve derived and olfactory bulb derived olfactory ensheathing cells (OECs) have the ability to promote axonal regeneration and remyelination, both of which are essential in a successful cell transplant. Thus, morphological identification of OECs is a key aspect to develop an applicable cell therapy for injuries to the nervous system. However, there is no clear definition regarding which developmental stage or anatomical origin of OECs is more adequate for neural repair. In the present study, an ultrastructural comparison was made between OECs recovered from primary cultures of olfactory nerve and bulb in two developmental stages. The most notorious difference between cells obtained from olfactory nerve and bulb was the presence of indented nuclei in bulb derived OECs, suggesting a greater ability for possible chemotaxis. In neonatal OECs abundant mitochondria, lipid vacuoles, and smooth endoplasmic reticulum were detected, suggesting an active lipid metabolism, probably involved in synthesis of myelin. Our results suggest that neonatal OECs obtained from olfactory bulb have microscopic properties that could make them more suitable for neural repair. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  6. Massive normalization of olfactory bulb output in mice with a 'monoclonal nose'

    PubMed Central

    Roland, Benjamin; Jordan, Rebecca; Sosulski, Dara L; Diodato, Assunta; Fukunaga, Izumi; Wickersham, Ian; Franks, Kevin M; Schaefer, Andreas T; Fleischmann, Alexander

    2016-01-01

    Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a “monoclonal nose”, glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a “monoclonal nose” and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output. DOI: http://dx.doi.org/10.7554/eLife.16335.001 PMID:27177421

  7. Expression of polysialyltransferases (STX and PST) in adult rat olfactory bulb after an olfactory associative discrimination task.

    PubMed

    Mione, J; Manrique, C; Duhoo, Y; Roman, F S; Guiraudie-Capraz, G

    2016-04-01

    Neuronal plasticity and neurogenesis occur in the adult hippocampus and in other brain structures such as the olfactory bulb and often involve the neural cell adhesion molecule NCAM. During an olfactory associative discrimination learning task, NCAM polysialylation triggers neuronal plasticity in the adult hippocampus. The PST enzyme likely modulates this polysialylation, but not STX, a second sialyltransferase. How the two polysialyltransferases are involved in the adult olfactory bulb remains unknown. We addressed this question by investigating the effect of olfactory associative learning on plasticity and neurogenesis. After a hippocampo-dependent olfactory associative task learning, we measured the expression of both PST and STX polysialyltransferases in the olfactory bulbs of adult rats using quantitative PCR. In parallel, immunohistochemistry was used to evaluate both NCAM polysialylation level and newly-born cells, with or without learning. After learning, no changes were observed neither in the expression level of PST and NCAM polysialylation, nor in STX gene expression level and newly-born cells number in the olfactory bulb. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The first images of nerve cells: Golgi on the olfactory bulb 1875

    PubMed Central

    Shepherd, Gordon M.; Greer, Charles A.; Mazzarello, Paolo; Sassoè-Pognetto, Marco

    2015-01-01

    The third paper by Camillo Golgi on his new method was on the olfactory bulb. This paper has never been translated into English, but is of special interest both for its pioneering description of olfactory bulb cells and for containing the first illustration by Golgi of cells stained with his new method. A translation into English is provided in this paper, together with commentaries on the significant points in his descriptions. These results are placed in the perspective of Cajal's subsequent first publication on the olfactory bulb and brief mention of the work of other early histologists. This perspective allows one to see more clearly Golgi's fundamental contributions to the olfactory bulb in particular and to the description of the neuronal architecture of the brain in general. PMID:20940020

  9. Formaldehyde exposure alters miRNA expression profiles in the olfactory bulb.

    PubMed

    Li, Guifa; Yang, Jing; Ling, Shucai

    2015-01-01

    It has been reported that inhaling formaldehyde (FA) causes damage to the central nervous system. However, it is unclear whether FA can disturb the function of the olfactory bulb. Using a microarray, we found that FA inhalation altered the miRNA expression profile. Functional enrichment analysis of the predicted targets of the changed miRNA showed that the enrichment canonical pathways and networks associated with cancer and transcriptional regulation. FA exposure disrupts miRNA expression profiles within the olfactory bulb.

  10. Osterix is dispensable for the development of the mouse olfactory bulb.

    PubMed

    Park, Ji-Soo; Park, Geon-Il; Kim, Jung-Eun

    2016-09-09

    Osterix (Osx) has been shown to be an osteoblast-specific transcription factor for bone formation. Recently, it has been reported that Osx is significantly expressed in the mouse olfactory bulb, proving that Osx may play a role in olfactory bulb development, as well as bone development. Here, we studied morphological differences and neuronal cell alterations in the olfactory bulb using an Osx gene-modified mouse model. Although Osx expression was reduced, morphological differences were not observed in the olfactory bulb of Osx heterozygous mice compared with that of wild-type mice. Immunofluorescence using the neuronal marker genes DCX, MAP2, NeuN, and GFAP showed neuronal cell alterations caused by Osx deficiency in the mitral cell layer (MCL) and granule cell layer (GCL) of the olfactory bulb at postnatal stage. The number, morphology, and expression patterns of immature neurons, mature neurons, and astrocytes were identical in both wild-type and Osx heterozygous mice. At the post-embryonic stage, the expression of neuronal markers DCX, Nestin, MAP2, and NeuN were examined in the MCL and GCL of the olfactory bulb in wild-type, Osx heterozygous, and Osx knockout embryos. Both DCX- and Nestin-positive immature neurons, and MAP2- and NeuN-positive mature neurons, revealed a similar expression pattern in all mouse types. These results indicated that olfactory bulb development was not significantly impaired in the absence of Osx. Further study may be necessary to explain the functional properties of the olfactory bulb caused by Osx deficiency.

  11. Dlx-Dependent and -Independent Regulation of Olfactory Bulb Interneuron Differentiation

    PubMed Central

    Long, Jason E.; Garel, Sonia; Alvarez-Dolado, Manuel; Yoshikawa, Kazuaki; Osumi, Noriko; Alvarez-Buylla, Arturo; Rubenstein, John L. R.

    2016-01-01

    Olfactory bulb interneuron development is a complex multistep process that involves cell specification in the ventral telencephalon, tangential migration into the olfactory bulb, and local neuronal maturation. Although several transcription factors have been implicated in this process, how or when they act remains to be elucidated. Here we explore the mechanisms that result in olfactory bulb interneuron defects in Dlx1&2−/− (distal-less homeobox 1 and 2) and Mash1−/− (mammalian achaete-schute homolog 1) mutants. We provide evidence that Dlx1&2 and Mash1 regulate parallel molecular pathways that are required for the generation of these cells, thereby providing new insights into the mechanisms underlying olfactory bulb development. The analysis also defined distinct anatomical zones related to olfactory bulb development. Finally we show that Dlx1&2 are required for promoting tangential migration to the olfactory bulb, potentially via regulating the expression of ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4), Robo2 (roundabout homolog 2), Slit1 (slit homolog 1), and PK2 (prokineticin 2), which have all been shown to play essential roles in this migration. PMID:17376983

  12. Lectin binding patterns in the vomeronasal organ and accessory olfactory bulb of the rat.

    PubMed

    Salazar, I; Sánchez Quinteiro, P

    1998-10-01

    A number of previous studies have indicated that lectin histochemistry is an obvious choice for characterizing the vomeronasal system. However, apparently inconsistent results have been obtained: notably, the affinity with which various lectins bind to the accessory olfactory bulb varies among taxa, even considering closely related species. In the present study, the binding patterns of seven lectins in the rat accessory olfactory bulb, vomeronasal nerves and vomeronasal duct were investigated. The Bandeiraea simplicifolia lectin bound exclusively to the vomeronasal nerve and glomerular layers of the accessory olfactory bulb, while the Ulex europeus and Lycopersicon esculentum lectins bound to these regions and additionally to the nerve and glomerular layers of the main olfactory bulb. Soybean agglutinin showed a similar pattern to that obtained with the Ulex europeus and Lycopersicon esculentum lectins, though it also faintly labelled other parts of the structures examined. The Vicia villosa and Erythrina cristagalli lectins were not specific for the vomeronasal system, since they labelled grey and white matters in structures including the lateral olfactory tract and the anterior olfactory nuclei. The Dolichos biflorus lectin did not bind to vomeronasal tissues. The observed patterns of binding in the accessory olfactory bulb were consistent with those observed in the vomeronasal nerves, but unlike those observed in the epithelium of the vomeronasal duct. This latter result probably reflects binding of lectins to sugar residues contained in secreted mucus rather than those in epithelial nerve endings.

  13. An arterially perfused nose-olfactory bulb preparation of the rat.

    PubMed

    Pérez de los Cobos Pallarés, Fernando; Stanić, Davor; Farmer, David; Dutschmann, Mathias; Egger, Veronica

    2015-09-01

    A main feature of the mammalian olfactory bulb network is the presence of various rhythmic activities, in particular, gamma, beta, and theta oscillations, with the latter coupled to the respiratory rhythm. Interactions between those oscillations as well as the spatial distribution of network activation are likely to determine olfactory coding. Here, we describe a novel semi-intact perfused nose-olfactory bulb-brain stem preparation in rats with both a preserved olfactory epithelium and brain stem, which could be particularly suitable for the study of oscillatory activity and spatial odor mapping within the olfactory bulb, in particular, in hitherto inaccessible locations. In the perfused olfactory bulb, we observed robust spontaneous oscillations, mostly in the theta range. Odor application resulted in an increase in oscillatory power in higher frequency ranges, stimulus-locked local field potentials, and excitation or inhibition of individual bulbar neurons, similar to odor responses reported from in vivo recordings. Thus our method constitutes the first viable in situ preparation of a mammalian system that uses airborne odor stimuli and preserves these characteristic features of odor processing. This preparation will allow the use of highly invasive experimental procedures and the application of techniques such as patch-clamp recording, high-resolution imaging, and optogenetics within the entire olfactory bulb.

  14. Functional imaging of cortical feedback projections to the olfactory bulb

    PubMed Central

    Rothermel, Markus; Wachowiak, Matt

    2014-01-01

    Processing of sensory information is substantially shaped by centrifugal, or feedback, projections from higher cortical areas, yet the functional properties of these projections are poorly characterized. Here, we used genetically-encoded calcium sensors (GCaMPs) to functionally image activation of centrifugal projections targeting the olfactory bulb (OB). The OB receives massive centrifugal input from cortical areas but there has been as yet no characterization of their activity in vivo. We focused on projections to the OB from the anterior olfactory nucleus (AON), a major source of cortical feedback to the OB. We expressed GCaMP selectively in AON projection neurons using a mouse line expressing Cre recombinase (Cre) in these neurons and Cre-dependent viral vectors injected into AON, allowing us to image GCaMP fluorescence signals from their axon terminals in the OB. Electrical stimulation of AON evoked large fluorescence signals that could be imaged from the dorsal OB surface in vivo. Surprisingly, odorants also evoked large signals that were transient and coupled to odorant inhalation both in the anesthetized and awake mouse, suggesting that feedback from AON to the OB is rapid and robust across different brain states. The strength of AON feedback signals increased during wakefulness, suggesting a state-dependent modulation of cortical feedback to the OB. Two-photon GCaMP imaging revealed that different odorants activated different subsets of centrifugal AON axons and could elicit both excitation and suppression in different axons, indicating a surprising richness in the representation of odor information by cortical feedback to the OB. Finally, we found that activating neuromodulatory centers such as basal forebrain drove AON inputs to the OB independent of odorant stimulation. Our results point to the AON as a multifunctional cortical area that provides ongoing feedback to the OB and also serves as a descending relay for other neuromodulatory systems. PMID

  15. A Circadian Clock in the Olfactory Bulb Anticipates Feeding during Food Anticipatory Activity

    PubMed Central

    Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02∶00 h) or day (10∶00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02∶00. PER1 was increased 2–8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents. PMID:23094084

  16. A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity.

    PubMed

    Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario

    2012-01-01

    Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h) or day (10:00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.

  17. Rapid odor perception in rat olfactory bulb by microelectrode array*

    PubMed Central

    Zhou, Jun; Dong, Qi; Zhuang, Liu-jing; Li, Rong; Wang, Ping

    2012-01-01

    Responses of 302 mitral/tufted (M/T) cells in the olfactory bulb were recorded from 42 anesthetized freely breathing rats using a 16-channel microwire electrode array. Saturated vapors of four pure chemicals, anisole, carvone, citral and isoamyl acetate were applied. After aligning spike trains to the initial phase of the inhalation after odor onset, the responses of M/T cells showed transient temporal features including excitatory and inhibitory patterns. Both odor-evoked patterns indicated that mammals recognize odors within a short respiration cycle after odor stimulus. Due to the small amount of information received from a single cell, we pooled results from all responsive M/T cells to study the ensemble activity. The firing rates of the cell ensembles were computed over 100 ms bins and population vectors were constructed. The high dimension vectors were condensed into three dimensions for visualization using principal component analysis. The trajectories of both excitatory and inhibitory cell ensembles displayed strong dynamics during odor stimulation. The distances among cluster centers were enlarged compared to those of the resting state. Thus, we presumed that pictures of odor information sent to higher brain regions were depicted and odor discrimination was completed within the first breathing cycle. PMID:23225857

  18. Topological Reorganization of Odor Representations in the Olfactory Bulb

    PubMed Central

    Yaksi, Emre; Judkewitz, Benjamin; Friedrich, Rainer W

    2007-01-01

    Odors are initially represented in the olfactory bulb (OB) by patterns of sensory input across the array of glomeruli. Although activated glomeruli are often widely distributed, glomeruli responding to stimuli sharing molecular features tend to be loosely clustered and thus establish a fractured chemotopic map. Neuronal circuits in the OB transform glomerular patterns of sensory input into spatiotemporal patterns of output activity and thereby extract information about a stimulus. It is, however, unknown whether the chemotopic spatial organization of glomerular inputs is maintained during these computations. To explore this issue, we measured spatiotemporal patterns of odor-evoked activity across thousands of individual neurons in the zebrafish OB by temporally deconvolved two-photon Ca2+ imaging. Mitral cells and interneurons were distinguished by transgenic markers and exhibited different response selectivities. Shortly after response onset, activity patterns exhibited foci of activity associated with certain chemical features throughout all layers. During the subsequent few hundred milliseconds, however, MC activity was locally sparsened within the initial foci in an odor-specific manner. As a consequence, chemotopic maps disappeared and activity patterns became more informative about precise odor identity. Hence, chemotopic maps of glomerular input activity are initially transmitted to OB outputs, but not maintained during pattern processing. Nevertheless, transient chemotopic maps may support neuronal computations by establishing important synaptic interactions within the circuit. These results provide insights into the functional topology of neural activity patterns and its potential role in circuit function. PMID:17608564

  19. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner

    PubMed Central

    Yoshihara, Sei-ichi; Takahashi, Hiroo; Tsuboi, Akio

    2016-01-01

    Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb. PMID:26793053

  20. Microdialysis pharmacokinetic study of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration.

    PubMed

    Wei, Yan; Ying, Mingzhen; Xu, Shuai; Wang, Feng; Zou, Aifeng; Cao, Shilei; Jiang, Xinguo; Wang, Yajie

    2016-01-01

    The purpose of this study was to investigate the microdialysis pharmacokinetic of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration. The pharmacokinetic study of subcutaneous and oral administration was also performed in rats. From the in vivo results, scopolamine intranasal administration can avoid hepatic first-pass effect. Tmax plasma samples after intranasal administration were significantly faster than oral administration and subcutaneous injection. The relative bioavailability of intranasal administrations was 51.8-70% when compared with subcutaneous injection. Moreover, one can see that in comparison with scopolamine subcutaneous administration, scopolamine intranasal gel and solutions can increased drug target index (DTI) with olfactory bulb 1.69 and 2.05, vestibule 1.80 and 2.15, respectively. The results indicated that scopolamine can be absorbed directly through the olfactory mucosa into the olfactory bulb, and then transported to various brain tissue after intranasal administration, with the characteristics of brain drug delivery.

  1. The olfactory bulb and the number of its glomeruli in the common marmoset (Callithrix jacchus).

    PubMed

    Moriya-Ito, Keiko; Tanaka, Ikuko; Umitsu, Yoshitomo; Ichikawa, Masumi; Tokuno, Hironobu

    2015-04-01

    The olfactory system has been well studied in mammals such as mice and rats. However, few studies have focused on characterizing this system in diurnal primates that rely on their sense of smell to a lesser extent due to their ecological environment. In the present study, we determined the histological organization of the olfactory bulb in the common marmoset (Callithrix jacchus). We then constructed 3-dimensional models of the glomeruli of the olfactory bulb, and estimated the number of glomeruli. Olfactory glomeruli are the functional units of olfactory processing, and have been investigated in detail using mice. There are approximately 1800 glomeruli in a mouse hemibulb, and olfactory sensory neurons expressing one selected olfactory receptor converge onto one or two glomeruli. Because mice have about 1000 olfactory receptor genes, it is proposed that the number of glomeruli in mammals is nearly double that of olfactory receptor genes. The common marmoset carries only about 400 intact olfactory receptor genes. The present study revealed that the number of glomeruli in a marmoset hemibulb was approximately 1500-1800. This result suggests that the number of glomeruli is not positively correlated with the number of intact olfactory receptor genes in mammals.

  2. Kindling and electrode effects on the benzodiazepine receptors density of olfactory bulb and hippocampus after olfactory bulb kindling.

    PubMed

    Ben Attia, M; N'Gouemo, P; Belaidi, M; Rondouin, G; Chicheportiche, R

    1992-08-31

    The olfactory bulb (OB) kindling is a model of limbic secondary generalized epilepsy. Ten days after the completion of OB kindling, we have studied the long term effects of both electrode insertion and kindling on the binding of [3H]diazepam to crude mitochondrial fractions. On the one hand, we have shown that electrode implantation in sham-operated controls induced an obvious increase in benzodiazepine (BZD) receptor density (Bmax) only at the site of the electrode in comparison to sham-unoperated rats. These results might indicate an additional mechanism extending earlier observations reported by others, who have shown that prolonged electrode implantation induced changes in sham-operated and kindled rats. On the other hand, the long lasting effect of OB kindling on the binding parameters of [3H]diazepam was examined in the focus and in the hippocampus. The results indicate a bilateral increase of BZD receptors in the OB and an ipsilateral increase in the hippocampus. These changes might be a regulation phenomenon in response to a hyperexcitability state and to focal stimulations.

  3. Olfactory bulb and retrobulbar regions in the hedgehog tenrec: organization and interconnections.

    PubMed

    Radtke-Schuller, S; Künzle, H

    2000-08-07

    The Madagascan lesser hedgehog tenrec (Echinops telfairi) is a terrestrial, nocturnal insectivore with a low encephalization index and a huge olfactory bulb. To gain insight into the organization and evolution of olfactory regions in placental mammals, the cytoarchitecture (Nissl), neurochemical attributes [zinc and acetylcholinesterase stain, nicotinamide adenine dinucleotide phosphate (NADPh)-diaphorase, and calcium-binding proteins], and interconnections (injections of wheat germ agglutinin-horseradish peroxidase and biotinylated dextran amine) of tenrec bulbar and retrobulbar regions were examined. The tenrec has a well-laminated main olfactory bulb, and modified (atypical) glomeruli are found that, to date, have been demonstrated only in murine rodents. Compared with the main olfactory bulb, the accessory bulb is relatively small, with clearly different staining characteristics, particularly with respect to NADPh-diaphorase, anticalbindin, and anticalretinin. External and central anterior olfactory nuclei also show characteristic cytoarchitectural and chemoarchitectural features. The medial olfactory peduncle seems to differ considerably from that in rodents. A small taenial structure can be separated from the hippocampal continuation. This taenia tecti presumably corresponds to the superior part of the tenia tecti in rodents, but no homologue of the rodent's prominent inferior taenia tecti could be found. The connections of bulbar and retrobulbar regions are similar to those seen in other mammals. Interbulbar projection systems connect the two olfactory bulbs through an external (topographic) and central (nontopographic) anterior nucleus; however, the topographic arrangement of the intrabulbar association system seems to differ from that seen in rodents. A reciprocity of direct olfactory bulb connections with the frontal (sulcal/orbital) cortex was found in the tenrec that has not been reported so far in other species. Copyright 2000 Wiley-Liss, Inc.

  4. [Comparison of therapeutic effects of olfactory ensheathing cells derived from olfactory mucosa or olfactory bulb on spinal cord injury mouse models].

    PubMed

    Wang, Libin; Yang, Ping; Liang, Xueyun; Ma, Lijun; Wei, Jun

    2014-04-01

    To isolate and culture olfactory ensheathing cells from different origins, compare their different biological characteristics, and evaluate their therapeutic effect on spinal cord injury mouse models. The olfactory ensheathing cells from olfactory mucosa or olfactory bulb were isolated and cultured by differential adhesion method. The expressions of S100 and P75 proteins were examined by immunofluorescence staining; their growth curves were drawn by MTT colorimetric assay; the secretion of neurotrophic factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) was measured by ELISA; the gene expressions of BDNF, NGF, NT-3, neurotrophin-4 (NT-4), growth-associated protein 43 (GAP-43), and microtubule-associated protein (MAP-2) were quantified by real-time PCR; the therapeutic effect on spinal cord injury mouse models was evaluated by Basso, Beattie and Bresnahan (BBB) locomotor rating scale, which had been carried out daily for 8 weeks after the olfactory ensheathing cells of the two different origins were respectively grafted to the mouse models. The two types of olfactory ensheathing cells showed bipolar or tripolar shape; both of them were S100 and P75 protein positive; both of them expressing the gene of BDNF, NGF, NT-3, and NT-4; the olfactory bulb-derived cells did not express MAP-2, but it highly expressed GAP-43 gene; the olfactory mucosa-derived cells displayed a low expression of MAP-2 and GAP-43; the growth speed of olfactory bulb-derived cells was faster than that of the olfactory mucosa-derived cells. Both of them could secrete BDNF, NGF, and NT-3, but the neurotrophic factor levels secreted in the olfactory mucosa-derived cells were higher. The daily neurological BBB scoring showed that the therapeutic effect of olfactory mucosa-derived cells on spinal cord injury mouse models was better than that of the olfactory bulb-derived cells. There exist biological differences between the olfactory mucosa

  5. Sensory-dependent asymmetry for a urine-responsive olfactory bulb glomerulus.

    PubMed

    Oliva, Anthony M; Jones, Kevin R; Restrepo, Diego

    2008-10-10

    An unusual property of the olfactory system is that sensory input at the level of the first synapse in the olfactory bulb takes place at two mirror-image glomerular maps that appear identical across the axis of symmetry. It is puzzling how two identical odor maps would contribute to sensory function. The functional units in these maps are the glomeruli, ovoid neuropil structures formed by axons from olfactory sensory neurons expressing the same olfactory receptor. Here we find that the genetically identified P2 glomeruli are asymmetric across the axis of symmetry in terms of responsiveness to urine volatiles and neuroanatomical structure. Furthermore, P2 asymmetry is modified by sensory deprivation and abolished by decreased BDNF levels. Thus, while mirror odor maps show symmetry at the macroscopic level in maps encompassing the entire surface of the olfactory bulb, they display asymmetry at the level of the single glomerulus.

  6. Dendrodendritic synapses in the mouse olfactory bulb external plexiform layer.

    PubMed

    Bartel, Dianna L; Rela, Lorena; Hsieh, Lawrence; Greer, Charles A

    2015-06-01

    Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and was equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites were more prevalent in the outer EPL. In contrast, individual gephyrin-immunoreactive (IR) puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated for by an increase in synaptic density.

  7. Lack of Pattern Separation in Sensory Inputs to the Olfactory Bulb during Perceptual Learning.

    PubMed

    Chu, Monica W; Li, Wankun L; Komiyama, Takaki

    2017-01-01

    Recent studies revealed changes in odor representations in the olfactory bulb during active olfactory learning (Chu et al., 2016; Yamada et al., 2017). Specifically, mitral cell ensemble responses to very similar odorant mixtures sparsened and became more distinguishable as mice learned to discriminate the odorants over days (Chu et al., 2016). In this study, we explored whether changes in the sensory inputs to the bulb underlie the observed changes in mitral cell responses. Using two-photon calcium imaging to monitor the odor responses of the olfactory sensory neuron (OSN) axon terminals in the glomeruli of the olfactory bulb during a discrimination task, we found that OSN inputs to the bulb are stable during discrimination learning. During one week of training to discriminate between very similar odorant mixtures in a Go/No-go task, OSN responses did not show significant sparsening, and the responses to the trained similar odorants did not diverge throughout training. These results suggest that the adaptive changes of mitral cell responses during perceptual learning are ensured by mechanisms downstream of OSN input, possibly in local circuits within olfactory bulb.

  8. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    PubMed Central

    Burke, Mark W.; Inyatkin, Alexey; Ptito, Maurice; Ervin, Frank R.; Palmour, Roberta M.

    2016-01-01

    Fetal alcohol exposure (FAE) alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation. PMID:27801790

  9. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons.

    PubMed

    Li, H S; Chen, J H; Wu, W; Fagaly, T; Zhou, L; Yuan, W; Dupuis, S; Jiang, Z H; Nash, W; Gick, C; Ornitz, D M; Wu, J Y; Rao, Y

    1999-03-19

    The olfactory bulb plays a central role in olfactory information processing through its connections with both peripheral and cortical structures. Axons projecting from the olfactory bulb to the telencephalon are guided by a repulsive activity in the septum. The molecular nature of the repellent is not known. We report here the isolation of vertebrate homologs of the Drosophila slit gene and show that Slit protein binds to the transmembrane protein Roundabout (Robo). Slit is expressed in the septum whereas Robo is expressed in the olfactory bulb. Functionally, Slit acts as a chemorepellent for olfactory bulb axons. These results establish a ligand-receptor relationship between two molecules important for neural development, suggest a role for Slit in olfactory bulb axon guidance, and reveal the existence of a new family of axon guidance molecules.

  10. Histological Properties of Main and Accessory Olfactory Bulbs in the Common Hippopotamus.

    PubMed

    Kondoh, Daisuke; Watanabe, Kenichi; Nishihara, Kaori; Ono, Yurie S; Nakamura, Kentaro G; Yuhara, Kazutoshi; Tomikawa, Sohei; Sugimoto, Miki; Kobayashi, Saori; Horiuchi, Noriyuki; Kobayashi, Yoshiyasu; Sasaki, Motoki; Kitamura, Nobuo

    2017-08-30

    The olfactory system of mammals comprises a main olfactory system that detects hundreds of odorants and a vomeronasal system that detects specific chemicals such as pheromones. The main (MOB) and accessory (AOB) olfactory bulbs are the respective primary centers of the main olfactory and vomeronasal systems. Most mammals including artiodactyls possess a large MOB and a comparatively small AOB, whereas most cetaceans lack olfactory bulbs. The common hippopotamus (Hippopotamus amphibius) is semiaquatic and belongs to the order Cetartiodactyla, family Hippopotamidae, which seems to be the closest extant family to cetaceans. The present study evaluates the significance of the olfactory system in the hippopotamus by histologically analyzing the MOB and AOB of a male common hippopotamus. The MOB comprised six layers (olfactory nerve, glomerular, external plexiform, mitral cell, internal plexiform, and granule cell), and the AOB comprised vomeronasal nerve, glomerular, plexiform, and granule cell layers. The MOB contained mitral cells and tufted cells, and the AOB possessed mitral/tufted cells. These histological features of the MOB and the AOB were similar to those in most artiodactyls. All glomeruli in the AOB were positive for anti-Gαi2, but weakly positive for anti-Gαo, suggesting that the hippopotamus vomeronasal system expresses vomeronasal type 1 receptors with a high affinity for volatile compounds. These findings suggest that the olfactory system of the hippopotamus is as well developed as that of other artiodactyl species and that the hippopotamus might depend on its olfactory system for terrestrial social communication. © 2017 S. Karger AG, Basel.

  11. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb

    PubMed Central

    Fukunaga, Izumi; Herb, Jan; Kollo, Mihaly; Boyden, Edward S; Schaefer, Andreas T

    2014-01-01

    Circuits in the brain possess a remarkable ability to orchestrate activities on different timescales, but how distinct circuits interact to sculpt diverse rhythms remains unresolved. The olfactory bulb is a classic example where slow, theta, and fast, gamma, rhythms coexist. Furthermore inhibitory interneurons generally implicated in rhythm generation are segregated into distinct layers, neatly separating local from global motifs. Here, combining intracellular recordings in vivo with circuit-specific optogenetic interference we dissect the contribution of inhibition to rhythmic activity in the mouse olfactory bulb. We found that the two inhibitory circuits control rhythms on distinct timescales: local, glomerular networks coordinate theta activity, regulating baseline and odor-evoked inhibition; granule cells orchestrate gamma synchrony and spike timing. Surprisingly, they did not contribute to baseline rhythms, or sniff-coupled odor-evoked inhibition despite their perceived dominance. Thus, activities on theta and gamma time scales are controlled by separate, dissociable inhibitory networks in the olfactory bulb. PMID:24997762

  12. Activity-Induced Remodeling of Olfactory Bulb Microcircuits Revealed by Monosynaptic Tracing

    PubMed Central

    Arenkiel, Benjamin R.; Hasegawa, Hiroshi; Yi, Jason J.; Larsen, Rylan S.; Wallace, Michael L.; Philpot, Benjamin D.; Wang, Fan; Ehlers, Michael D.

    2011-01-01

    The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits. PMID:22216277

  13. Tonic and stimulus-evoked nitric oxide production in the mouse olfactory bulb

    PubMed Central

    Lowe, Graeme; Buerk, Donald G.; Ma, Jie; Gelperin, Alan

    2008-01-01

    Nitric oxide (NO) has been long assumed to play a key role in mammalian olfaction. This was based largely on circumstantial evidence, i.e. prominent staining for nitric oxide synthase (NOS) and cyclic GMP or soluble guanylyl cyclase, an effector enzyme activated by NO, in local interneurons of the olfactory bulb. Here we employ innovative custom-fabricated NO micro-sensors to obtain the first direct, time-resolved measurements of NO signaling in the olfactory bulb. In 400 μm thick mouse olfactory bulb slices, we detected a steady average basal level of 87 nM NO in the extracellular space of mitral or granule cell layers. This NO ‘tone’ was sensitive to NOS substrate manipulation (200 μM L-arginine, 2 mM L-NAME) and Mg2+ modulation of NMDA receptor conductance. Electrical stimulation of olfactory nerve fibers evoked transient (peak at 10 s) increments in NO levels 90 – 100 nM above baseline. In the anesthetized mouse, NO micro-sensors inserted into the granule cell layer detected NO transients averaging 55 nM in amplitude and peaking at 3.4 sec after onset of a 5 sec odorant stimulation. These findings suggest dual roles for NO signaling in the olfactory bulb – tonic inhibitory control of principal neurons, and regulation of circuit dynamics during odor information processing. PMID:18407420

  14. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.

    PubMed

    Wellis, D P; Kauer, J S

    1993-09-01

    1. Whole-cell patch clamp and optical recording techniques were applied to the same in vitro salamander olfactory bulb preparations to study the postsynaptic responses of single mitral/tufted cells in the context of the surrounding neural activity in which they are embedded. Mitral/tufted cells were identified by intracellular filling with biocytin. 2. Single mitral/tufted cells were under a tonic GABAA receptor-mediated inhibitory influence as revealed by the recording of bicuculline methiodide (BMI)/picrotoxin-sensitive inhibitory postsynaptic currents (IPSCs) in symmetrical chloride conditions at a holding potential of -70 mV. Depolarizing voltage steps (100 ms) applied to single cells or electrical stimulation of the olfactory nerve or medial olfactory tract evoked a prolonged increase in the frequency of GABAergic IPSCs. 3. The frequency of spontaneous and driven IPSCs was reduced with application of the glutamate receptor antagonists 6-cyano-2,3-dihydroxy-7-nitro-quionoxaline (CNQX) or 2-amino-5-phosphonopentanoic acid (AP5) whereas olfactory nerve- or medial olfactory tract-driven IPSC frequency was enhanced with removal of bathing Mg2+, indicating that GABAergic interneurones were driven by mitral/tufted cells at both non-NMDA and NMDA receptors. 4. Olfactory nerve or medial olfactory tract stimulation evoked widely distributed changes in fluorescence in preparations stained with the voltage-sensitive dye RH414. The optical response predominantly consisted of a decrease in fluorescence, indicative of depolarization. The presence of the dye did not obviously affect mitral/tufted cell postsynaptic responses. 5. BMI enhanced the amplitude and duration of optical signals related to depolarization within the bulb and in regions central to the bulb. In the presence of BMI, depolarizing activity appeared to spread hundreds of micrometres into regions of the bulb not activated in control conditions showing explicitly that GABAA receptors in the bulb participate in

  15. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    ERIC Educational Resources Information Center

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  16. Calcium Signaling in Mitral Cell Dendrites of Olfactory Bulbs of Neonatal Rats and Mice during Olfactory Nerve Stimulation and Beta-Adrenoceptor Activation

    ERIC Educational Resources Information Center

    Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas

    2004-01-01

    Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…

  17. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    PubMed

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury.

  18. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    PubMed Central

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  19. The mannose receptor is expressed by olfactory ensheathing cells in the rat olfactory bulb.

    PubMed

    Carvalho, Litia A; Nobrega, Alberto F; Soares, Igor D P; Carvalho, Sergio L; Allodi, Silvana; Baetas-da-Cruz, Wagner; Cavalcante, Leny A

    2013-12-01

    Complex carbohydrate structures are essential molecules of infectious bacteria, parasites, and host cells and are involved in cell signaling associated with immune responses, glycoprotein homeostasis, and cell migration. The uptake of mannose-tailed glycans is usually carried out by professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation or, alternatively, to end inflammation. We have detected the mannose receptor (MR) in cultured olfactory ensheathing cells (OECs), so we investigated by flow cytometry whether recently dissociated cells of the olfactory bulb (OB) nerve fiber layer (ONL) could bind a mannosylated ligand (fluorescein conjugate of mannosyl bovine serum albumin; Man/BSA-FITC) in a specific manner. In addition, we estimated the relative proportion of ONL OECs, microglia, and astrocytes, tagged by 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), by the B4 isolectin of Griffonia simplicifonia (IB4), and by glial fibrillary acidic protein (GFAP), respectively, that were Man/BSA-FITC(+) . We also determined by histochemistry and/or immunohistochemistry whether Man/BSA-FITC or an anti-MR antibody (anti-C-terminal MR peptide; anti-cMR) labeled OECs and/or parenchymal microglia. In addition, we confirmed by Western blot with the K1K2 (against the entire MR molecule) antibody that a band of about 180 kDA is expressed in the OB. Our findings are compatible with a prospective sentinel role of OECs against pathogens of the upper airways and/or damage-associated glycidic patterns as well as with homeostasis of OB mannosylated glycoproteins.

  20. Olfactory sensory deprivation increases the number of proBDNF-immunoreactive mitral cells in the olfactory bulb of mice.

    PubMed

    Biju, K C; Mast, Thomas Gerald; Fadool, Debra Ann

    2008-12-05

    In the olfactory bulb, apoptotic cell-death induced by sensory deprivation is restricted to interneurons in the glomerular and granule cell layers, and to a lesser extent in the external plexiform layer, whereas mitral cells do not typically undergo apoptosis. With the goal to understand whether brain-derived neurotrophic factor (BDNF) mediates mitral cell survival, we performed unilateral naris occlusion on mice at postnatal day one (P1) and examined the subsequent BDNF-immunoreactive (BDNF-ir) profile of the olfactory bulb at P20, P30, and P40. Ipsilateral to the naris occlusion, there was a significant increase in the number of BDNF-ir mitral cells per unit area that was independent of the duration of the sensory deprivation induced by occlusion. The number of BDNF-ir juxtaglomerular cells per unit area, however, was clearly diminished. Western blot analysis revealed the presence of primarily proBDNF in the olfactory bulb. These data provide evidence for a neurotrophic role of proBDNF in the olfactory system of mice and suggest that proBDNF may act to protect mitral cells from the effects of apoptotic changes induced by odor sensory deprivation.

  1. Investigating the roles of odor-evoked oscillations in information processing in the turtle olfactory bulb

    NASA Astrophysics Data System (ADS)

    Kim, Soyoun

    It has been earlier established that presentation of an odorant stimulus to the turtle evokes specific spatio-temporal responses in the olfactory bulb. This response includes three distinct oscillatory patterns (rostral, middle and caudal) that have different spatial (locations and scopes) and temporal (frequencies and delay from the odorant onset) properties. In this thesis we investigate, using modeling and experimental approaches; the mechanisms of formation and the role of the oscillatory patterning in the turtle olfactory bulb. We have built a computational model that incorporates the basic anatomy and neurophysiology of the olfactory bulb to investigate how the observed patterns relate to activity of individual neurons and what roles they could play in olfactory information processing. We show that three basic anatomical/physiological properties of the olfactory network underlie formation of a temporal sequence of simultaneous activations of glomerular modules: fast synaptic inhibition between populations of excitatory and inhibitory cells, slow self-inhibition observed on excitatory cells; and input strength. The model suggests that the role of oscillations is to organize the neural activity in a temporal sequence which groups the activation of glomerular modules based on the input strength similarity. We show that this type of code explains particularly well the experimental findings reported also by other groups, showing that temporal patterning may mediate discrimination of similar odorants. Furthermore, we showed that within our model, feedback from cortical regions of the brain could modulate oscillatory patterning and provide mechanisms to generate experimentally observed period doubling in one of the oscillations. This requires the cortical processing to act as a type of coincidence modulator and provide functional coupling between excitatory modules that is absent in the bulbar network. This hypothesis is partially supported by our experiments that

  2. Direct transport of inhaled xylene and its metabolites from the olfactory mucosa to the glomeruli of the olfactory bulbs

    SciTech Connect

    Lewis, J.L.; Dahl, A.R.; Kracko, D.A.

    1994-11-01

    The olfactory epithelium is a unique tissue in that single receptor neurons have dendrites in contact with the external environment at the nasal airway, and axon terminals that penetrate the cribriform plate and synapse in the olfactory bulb. The Central Nervous System (CNS) is protected from systematically circulating toxicants by a blood-brain barrier primarily composed of tight junctions between endothelial cells in cerebral vessels and a high metabolic capacity within these cells. No such barrier has yet been defined to protect the CNS from inhaled toxicants. Because all inhalants do not seem to access the CNS directly, a nose-brain barrier seems plausible. The purpose of the work described here is to determine whether or not a nose-brain barrier exists and to define its components. Although such a barrier is likely to be multi-faceted, the present work focuses only on the importance of gross histologic and metabolic characteristics of the olfactory epithelium in olfactory transport.

  3. Trajectory and terminal distribution of single centrifugal axons from olfactory cortical areas in the rat olfactory bulb.

    PubMed

    Matsutani, S

    2010-08-11

    The olfactory bulb receives a large number of centrifugal fibers whose functions remain unclear. To gain insight into the function of the bulbar centrifugal system, the morphology of individual centrifugal axons from olfactory cortical areas was examined in detail. An anterograde tracer, Phaseolus vulgaris leucoagglutinin, was injected into rat olfactory cortical areas, including the pars lateralis of the anterior olfactory nucleus (lAON) and the anterior part of the piriform cortex (aPC). Reconstruction from serial sections revealed that the extrabulbar segments of centrifugal axons from the lAON and those from the aPC had distinct trajectories: the former tended to innervate the pars externa of the AON before entering the olfactory bulb, while the latter had extrabulbar collaterals that extended to a variety of targets. In contrast to the extrabulbar segments, no clear differences were found between the intrabulbar segments of axons from the lAON and from the aPC. The intrabulbar segments of centrifugal axons were mainly found in the granule cell layer but a few axons extended into the external plexiform and glomerular layer. Approximately 40% of centrifugal axons innervated both the medial and lateral aspects of the olfactory bulb. The number of boutons found on single intrabulbar segments was typically less than 1000. Boutons tended to aggregate and form complex terminal tufts with short axonal branches. Terminal tufts, no more than 10 in single axons from ipsilateral cortical areas, were localized to the granule cell layer with varying intervals; some tufts formed patchy clusters and others were scattered over areas that extended for a few millimeters. The patchy, widespread distribution of terminals suggests that the centrifugal axons are able to couple the activity of specific subsets of bulbar neurons even when the subsets are spatially separated.

  4. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors

    PubMed Central

    Figueres-Oñate, Maria; López-Mascaraque, Laura

    2016-01-01

    Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400

  5. Intranasal administration of rotenone in mice attenuated olfactory functions through the lesion of dopaminergic neurons in the olfactory bulb.

    PubMed

    Sasajima, Hitoshi; Miyazono, Sadaharu; Noguchi, Tomohiro; Kashiwayanagi, Makoto

    2015-12-01

    Many environmental chemicals are thought to affect brain function. It was reported that chemicals in the nasal cavity directly reach the brain through the connection between olfactory neurons and the olfactory bulb (OB). In this 'olfactory transport,' xenobiotics absorbed at the nasal mucosa reach the brain by bypassing some physical barriers and defenses, and thus olfactory transport is suspected to be a vulnerable mechanism of the brain against invasion threats of environmental chemicals. In this study, we focused on the neuronal toxicity of rotenone administered intranasally to mice. The results showed that the mice that were administered rotenone had attenuated olfactory functions. We also found that intranasally administered rotenone induced acute mitochondrial stress at the OB. The repeated administration of rotenone resulted in a decrease in the number of dopaminergic neurons, which are inhibitory interneurons in the OB. Taken together, our findings suggest that the inhalation of environmental toxins induces the neurodegeneration of cranial neurons through olfactory transport, and that olfactory dysfunction may be induced as an earliest symptom of neurodegeneration caused by inhaled neurotoxins. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb

    PubMed Central

    Li, Guoshi; Cleland, Thomas A.

    2013-01-01

    Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions including odor discrimination, perceptual learning, and short term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but has little effect on mitral cell firing rates and hence will not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials, and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations. PMID:23407960

  7. Implementation of Olfactory Bulb Glomerular-Layer Computations in a Digital Neurosynaptic Core

    PubMed Central

    Imam, Nabil; Cleland, Thomas A.; Manohar, Rajit; Merolla, Paul A.; Arthur, John V.; Akopyan, Filipp; Modha, Dharmendra S.

    2012-01-01

    We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statistical distributions of analyte features. Our system is based on a digital neuromorphic chip consisting of 256 leaky-integrate-and-fire neurons, 1024 × 256 crossbar synapses, and address-event representation communication circuits. The neural circuits configured in the chip reflect established connections among mitral cells, periglomerular cells, external tufted cells, and superficial short-axon cells within the olfactory bulb, and accept input from convergent sets of sensors configured as olfactory sensory neurons. This configuration generates functional transformations comparable to those observed in the glomerular layer of the mammalian olfactory bulb. Our circuits, consuming only 45 pJ of active power per spike with a power supply of 0.85 V, can be used as the first stage of processing in low-power artificial chemical sensing devices inspired by natural olfactory systems. PMID:22685425

  8. Mechanisms and benefits of granule cell latency coding in the mouse olfactory bulb

    PubMed Central

    Giridhar, Sonya; Urban, Nathaniel N.

    2012-01-01

    Inhibitory circuits are critical for shaping odor representations in the olfactory bulb. There, individual granule cells can respond to brief stimulation with extremely long (up to 1000 ms), input-specific latencies that are highly reliable. However, the mechanism and function of this long timescale activity remain unknown. We sought to elucidate the mechanism responsible for long-latency activity, and to understand the impact of widely distributed interneuron latencies on olfactory coding. We used a combination of electrophysiological, optical, and pharmacological techniques to show that long-latency inhibition is driven by late onset synaptic excitation to granule cells. This late excitation originates from tufted cells, which have intrinsic properties that favor longer latency spiking than mitral cells. Using computational modeling, we show that widely distributed interneuron latency increases the discriminability of similar stimuli. Thus, long-latency inhibition in the olfactory bulb requires a combination of circuit- and cellular-level mechanisms that function to improve stimulus representations. PMID:22754503

  9. Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics.

    PubMed

    Huang, Yuahn-Sieh; Li, I-Hsun; Chueh, Sheau-Huei; Hueng, Dueng-Yuan; Tai, Ming-Cheng; Liang, Chang-Min; Lien, Shiu-Bii; Sytwu, Huey-Kang; Ma, Kuo-Hsing

    2015-12-01

    Mesenchymal stromal/stem cells (MSCs) are widely distributed in different tissues such as bone marrow, adipose tissues, peripheral blood, umbilical cord and amnionic fluid. Recently, MSC-like cells were also found to exist in rat olfactory bulb and are capable of inducing differentiation into mesenchymal lineages - osteocytes, chondrocytes and adipocytes. However, whether these cells can differentiate into myocardial cells is not known. In this study, we examined whether olfactory bulb-derived MSCs could differentiate into myocardial cells in vitro. Fibroblast-like cells isolated from the olfactory bulb of neonatal rats were grown under four conditions: no treatment; in the presence of growth factors (neuregulin-1, bFGF and forskolin); co-cultured with cardiomyocytes; and co-cultured with cardiomyocytes plus neuregulin-1, bFGF and forskolin. Cell differentiation into myocardial cells was monitored by RT-PCR, light microscopy immunofluorescence, western blot analysis and contractile response to pharmacological treatments. The isolated olfactory bulb-derived fibroblast-like cells expressed CD29, CD44, CD90, CD105, CD166 but not CD34 and CD45, consistent with the characteristics of MSCs. Long cylindical cells that spontaneously contracted were only observed following 7 days of co-culture of MSCs with rat cardiomyocytes plus neuregulin-1, bFGF and forskolin. RT-PCR and western blot analysis indicated that the cylindrical cells expressed myocardial markers, such as Nkx2.5, GATA4, sarcomeric α-actinin, cardiac troponin I, cardiac myosin heavy chain, atrial natriuretic peptide and connexin 43. They also contained sarcomeres and gap junction and were sensitive to pharmacological treatments (adrenal and cholinergic agonists and antagonists). These findings indicate that rat olfactory bulb-derived fibroblast-like cells with MSC characteristics can differentiate into myocardial-like cells.

  10. Differential effects of unilateral olfactory deprivation on noradrenergic and cholinergic systems in the main olfactory bulb of the rat.

    PubMed

    Gómez, C; Briñón, J G; Colado, M I; Orio, L; Vidal, M; Barbado, M V; Alonso, J R

    2006-09-15

    The lack of environmental olfactory stimulation produced by sensory deprivation causes significant changes in the deprived olfactory bulb. Olfactory transmission in the main olfactory bulb (MOB) is strongly modulated by centrifugal systems. The present report examines the effects of unilateral deprivation on the noradrenergic and cholinergic centrifugal systems innervating the MOB. The morphology, distribution, and density of positive axons were studied in the MOBs of control and deprived rats, using dopamine-beta-hydroxylase (DBH)-immunohistochemistry and acetylcholinesterase (AChE) histochemistry in serial sections. Catecholamine content was compared among the different groups of MOBs (control, contralateral, and ipsilateral to the deprivation) using high-performance liquid chromatography analysis. Sensory deprivation revealed that the noradrenergic system developed adaptive plastic changes after olfactory deprivation, including important modifications in its fiber density and distribution, while no differences in cholinergic innervation were observed under the same conditions. The noradrenergic system underwent an important alteration in the glomerular layer, in which some glomeruli showed a dense noradrenergic innervation that was not detected in control animals. The DBH-positive glomeruli with the highest noradrenergic fiber density were compared with AChE-stained sections and it was observed that the strongly noradrenergic-innervated glomeruli were always atypical glomeruli (characterized by their strong degree of cholinergic innervation). In addition to the morphological findings, our biochemical data revealed that olfactory deprivation caused a decrease in the content of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid in the ipsilateral MOB in comparison to the contralateral and control MOBs, together with an increase in noradrenaline levels in both the ipsilateral and contralateral MOBs. Our results show that regulation of the noradrenergic

  11. Continuous Spatial Representations in the Olfactory Bulb may Reflect Perceptual Categories

    PubMed Central

    Auffarth, Benjamin; Gutierrez-Galvez, Agustín; Marco, Santiago

    2011-01-01

    In sensory processing of odors, the olfactory bulb is an important relay station, where odor representations are noise-filtered, sharpened, and possibly re-organized. An organization by perceptual qualities has been found previously in the piriform cortex, however several recent studies indicate that the olfactory bulb code reflects behaviorally relevant dimensions spatially as well as at the population level. We apply a statistical analysis on 2-deoxyglucose images, taken over the entire bulb of glomerular layer of the rat, in order to see how the recognition of odors in the nose is translated into a map of odor quality in the brain. We first confirm previous studies that the first principal component could be related to pleasantness, however the next higher principal components are not directly clear. We then find mostly continuous spatial representations for perceptual categories. We compare the space spanned by spatial and population codes to human reports of perceptual similarity between odors and our results suggest that perceptual categories could be already embedded in glomerular activations and that spatial representations give a better match than population codes. This suggests that human and rat perceptual dimensions of odorant coding are related and indicates that perceptual qualities could be represented as continuous spatial codes of the olfactory bulb glomerulus population. PMID:22013415

  12. Reduced olfactory bulb volume in adults with a history of childhood maltreatment.

    PubMed

    Croy, Ilona; Negoias, Simona; Symmank, Anja; Schellong, Julia; Joraschky, Peter; Hummel, Thomas

    2013-10-01

    The human olfactory bulb (OB) is the first relay station of the olfactory pathway and may have the potential for postnatal neurogenesis in early childhood. In animals, chronic stress affects the OB and olfactory functioning. For humans, it has been shown that major depressive disorder is accompanied by reduced OB volume and reduced olfactory function. However, it is not clear if major stress in childhood development also affects olfactory functioning and OB volume in humans. OB volume was measured and olfactory function was tested in 17 depressive patients with and 10 without a history of severe childhood maltreatment (CM). CM patients exhibited a significantly reduced olfactory threshold and identification ability. The OB volume of the CM patients was significantly reduced to 80% of the non-CM patients. In conclusion, postnatal neurogenesis might be by reduced in CM, which may affect olfactory function of the brain in later life. Alternatively, a reduced OB volume may enhance psychological vulnerability in the presence of adverse childhood conditions although other areas not analyzed in this study may also be involved.

  13. Timescale-dependent shaping of correlation by olfactory bulb lateral inhibition.

    PubMed

    Giridhar, Sonya; Doiron, Brent; Urban, Nathaniel N

    2011-04-05

    Neurons respond to sensory stimuli by altering the rate and temporal pattern of action potentials. These spike trains both encode and propagate information that guides behavior. Local inhibitory networks can affect the information encoded and propagated by neurons by altering correlations between different spike trains. Correlations introduce redundancy that can reduce encoding but also facilitate propagation of activity to downstream targets. Given this trade-off, how can networks maximize both encoding and propagation efficacy? Here, we examine this problem by measuring the effects of olfactory bulb inhibition on the pairwise statistics of mitral cell spiking. We evoked spiking activity in the olfactory bulb in vitro and measured how lateral inhibition shapes correlations across timescales. We show that inhibitory circuits simultaneously increase fast correlation (i.e., synchrony increases) and decrease slow correlation (i.e., firing rates become less similar). Further, we use computational models to show the benefits of fast correlation/slow decorrelation in the context of odor coding. Olfactory bulb inhibition enhances population-level discrimination of similar inputs, while improving propagation of mitral cell activity to cortex. Our findings represent a targeted strategy by which a network can optimize the correlation structure of its output in a dynamic, activity-dependent manner. This trade-off is not specific to the olfactory system, but rather our work highlights mechanisms by which neurons can simultaneously accomplish multiple, and sometimes competing, aspects of sensory processing.

  14. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits.

    PubMed

    Navarrete, Erika; Ortega-Bernal, Juan Roberto; Trejo-Muñoz, Lucero; Díaz, Georgina; Montúfar-Chaveznava, Rodrigo; Caldelas, Ivette

    2016-01-01

    Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb.

  15. Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb.

    PubMed

    Gómez, C; Briñón, J G; Barbado, M V; Weruaga, E; Valero, J; Alonso, J R

    2005-06-01

    The centrifugal systems innervating the olfactory bulb are important elements in the functional regulation of the olfactory pathway. In this study, the selective innervation of specific glomeruli by serotonergic, noradrenergic and cholinergic centrifugal axons was analyzed. Thus, the morphology, distribution and density of positive axons were studied in the glomerular layer of the main olfactory bulb of the rat, using serotonin-, serotonin transporter- and dopamine-beta-hydroxylase-immunohistochemistry and acetylcholinesterase histochemistry in serial sections. Serotonin-, serotonin transporter-immunostaining and acetylcholinesterase-staining revealed a higher heterogeneity in the glomerular layer of the main olfactory bulb than previously reported. In this sense, four types of glomeruli could be identified according to their serotonergic innervation. The main distinctive feature of these four types of glomeruli was their serotonergic fibre density, although they also differed in their size, morphology and relative position throughout the rostro-caudal main olfactory bulb. In this sense, some specific regions of the glomerular layer were occupied by glomeruli with a particular morphology and a characteristic serotonergic innervation pattern that was consistent from animal to animal. Regarding the cholinergic system, we offer a new subclassification of glomeruli based on the distribution of cholinergic fibres in the glomerular structure. Finally, the serotonergic and cholinergic innervation patterns were compared in the glomerular layer. Sexual differences concerning the density of serotonergic fibres were observed in the atypical glomeruli (characterized by their strong cholinergic innervation). The present report provides new data on the heterogeneity of the centrifugal innervation of the glomerular layer that constitutes the morphological substrate supporting the existence of differential modulatory levels among the entire glomerular population.

  16. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits

    PubMed Central

    Navarrete, Erika; Ortega-Bernal, Juan Roberto; Trejo-Muñoz, Lucero; Díaz, Georgina; Montúfar-Chaveznava, Rodrigo; Caldelas, Ivette

    2016-01-01

    Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb. PMID:27305041

  17. Selective neuroinhibitory effects of taurine in slices of rat main olfactory bulb.

    PubMed

    Belluzzi, O; Puopolo, M; Benedusi, M; Kratskin, I

    2004-01-01

    Taurine is abundant in the main olfactory bulb, exceeding glutamate and GABA in concentration. In whole-cell patch-clamp recordings in rat olfactory bulb slices, taurine inhibited principal neurons, mitral and tufted cells. In these cells, taurine decreased the input resistance and caused a shift of the membrane potential toward the chloride equilibrium potential. The taurine actions were sustained under the blockade of transmitter release and were reversible and dose-dependent. At a concentration of 5 mM, typically used in this study, taurine showed 90% of its maximal effect. GABA(A) antagonists, bicuculline and picrotoxin, blocked the taurine actions, whereas the glycine receptor antagonist strychnine and GABA(B) antagonists, CGP 55845A and CGP 35348, were ineffective. These findings are consistent with taurine directly activating GABA(A) receptors and inducing chloride conductance. Taurine had no effect on periglomerular and granule interneurons. The subunit composition of GABA(A) receptors in these cells, differing from those in mitral and tufted cells, may account for taurine insensitivity of the interneurons. Taurine suppressed olfactory nerve-evoked monosynaptic responses of mitral and tufted cells while chloride conductance was blocked. This action was mimicked by the GABA(B) agonist baclofen and abolished by CGP 55845A; CGP 35348, which primarily blocks postsynaptic GABA(B) receptors, was ineffective. The taurine effect most likely was due to GABA(B) receptor-mediated inhibition of presynaptic glutamate release. Neither taurine nor baclofen affected responses of periglomerular cells. The lack of a baclofen effect implies that functional GABA(B) receptors are absent from olfactory nerve terminals that contact periglomerular cells. These results indicate that taurine decreases the excitability of mitral and tufted cells and their responses to olfactory nerve stimulation without influencing periglomerular and granule cells. Selective effects of taurine in the

  18. Differences in peripheral sensory input to the olfactory bulb between male and female mice

    NASA Astrophysics Data System (ADS)

    Kass, Marley D.; Czarnecki, Lindsey A.; Moberly, Andrew H.; McGann, John P.

    2017-04-01

    Female mammals generally have a superior sense of smell than males, but the biological basis of this difference is unknown. Here, we demonstrate sexually dimorphic neural coding of odorants by olfactory sensory neurons (OSNs), primary sensory neurons that physically contact odor molecules in the nose and provide the initial sensory input to the brain’s olfactory bulb. We performed in vivo optical neurophysiology to visualize odorant-evoked OSN synaptic output into olfactory bub glomeruli in unmanipulated (gonad-intact) adult mice from both sexes, and found that in females odorant presentation evoked more rapid OSN signaling over a broader range of OSNs than in males. These spatiotemporal differences enhanced the contrast between the neural representations of chemically related odorants in females compared to males during stimulus presentation. Removing circulating sex hormones makes these signals slower and less discriminable in females, while in males they become faster and more discriminable, suggesting opposite roles for gonadal hormones in influencing male and female olfactory function. These results demonstrate that the famous sex difference in olfactory abilities likely originates in the primary sensory neurons, and suggest that hormonal modulation of the peripheral olfactory system could underlie differences in how males and females experience the olfactory world.

  19. Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice.

    PubMed

    Pardo-Bellver, Cecília; Martínez-Bellver, Sergio; Martínez-García, Fernando; Lanuza, Enrique; Teruel-Martí, Vicent

    2017-08-30

    Chemosensory processing in mammals involves the olfactory and vomeronasal systems, but how the activity of both circuits is integrated is unknown. In our study, we recorded the electrophysiological activity in the olfactory bulbs and the vomeronasal amygdala in freely behaving mice exploring a battery of neutral and conspecific stimuli. The exploration of stimuli, including a neutral stimulus, induced synchronic activity in the olfactory bulbs characterized by a dominant theta rhythmicity, with specific theta-gamma coupling, distinguishing between vomeronasal and olfactory structures. The correlated activation of the bulbs suggests a coupling between the stimuli internalization in the nasal cavity and the vomeronasal pumping. In the amygdala, male stimuli are preferentially processed in the medial nucleus, whereas female cues induced a differential response in the posteromedial cortical amygdala. Thus, particular theta-gamma patterns in the olfactory network modulates the integration of chemosensory information in the amygdala, allowing the selection of an appropriate behaviour.

  20. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys

    PubMed Central

    Gonzales, Lauren A.; Benefit, Brenda R.; McCrossin, Monte L.; Spoor, Fred

    2015-01-01

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently. PMID:26138795

  1. Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys.

    PubMed

    Gonzales, Lauren A; Benefit, Brenda R; McCrossin, Monte L; Spoor, Fred

    2015-07-03

    Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently.

  2. Olfactory bulb units - Activity correlated with inhalation cycles and odor quality.

    NASA Technical Reports Server (NTRS)

    Macrides, F.; Chorover, S. L.

    1972-01-01

    Single olfactory bulb units were studied in two macrosmatic species of rodents under conditions intended to preserve the cyclical stimulation which normally accompanies nasal breathing. Patterns of unit activity related to the inhalation cycle were observed in all animals, often in the absence of specific stimuli, and could not be explained in simple mechanical terms. Distinctive changes in these patterns occurred in response to certain odors, and were generally independent of changes in the overall firing frequency. These findings indicate that a change in the overall firing frequency of unit discharges is neither a necessary nor sufficient measure of responsiveness to odors in the rodent olfactory bulb, and that stimulus-specific temporal distributions of unit firing may be involved in olfacto-endocrine activities.

  3. Olfactory bulb units - Activity correlated with inhalation cycles and odor quality.

    NASA Technical Reports Server (NTRS)

    Macrides, F.; Chorover, S. L.

    1972-01-01

    Single olfactory bulb units were studied in two macrosmatic species of rodents under conditions intended to preserve the cyclical stimulation which normally accompanies nasal breathing. Patterns of unit activity related to the inhalation cycle were observed in all animals, often in the absence of specific stimuli, and could not be explained in simple mechanical terms. Distinctive changes in these patterns occurred in response to certain odors, and were generally independent of changes in the overall firing frequency. These findings indicate that a change in the overall firing frequency of unit discharges is neither a necessary nor sufficient measure of responsiveness to odors in the rodent olfactory bulb, and that stimulus-specific temporal distributions of unit firing may be involved in olfacto-endocrine activities.

  4. Sexual dimorphism in accessory olfactory bulb mitral cells: a quantitative Golgi study.

    PubMed

    Caminero, A A; Segovia, S; Guillamón, A

    1991-01-01

    The purpose of the present study was to identify the existence of sexual dimorphism in the dendritic field of accessory olfactory bulb mitral cells in rats and to investigate the effects of male orchidectomy and female androgenization on the day of birth upon this dendritic field. The rapid Golgi method was used to conduct a quantitative study of various characteristics of the dendritic field of accessory olfactory bulb mitral cells. The results indicated greater values for males than females for the following characteristics: (i) somatic area; (ii) degree of branching in the dendritic field; (iii) total dendritic length; and (iv) dendritic density around the neuronal soma. Orchidectomy of males, as well as androgenization of females, on the day of birth inverted these differences.

  5. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb

    PubMed Central

    Burton, Shawn D.

    2015-01-01

    Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE

  6. Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males.

    PubMed

    Oliveira-Pinto, Ana V; Santos, Raquel M; Coutinho, Renan A; Oliveira, Lays M; Santos, Gláucia B; Alho, Ana T L; Leite, Renata E P; Farfel, José M; Suemoto, Claudia K; Grinberg, Lea T; Pasqualucci, Carlos A; Jacob-Filho, Wilson; Lent, Roberto

    2014-01-01

    Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55-94 years) with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40-50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb.

  7. Sexual Dimorphism in the Human Olfactory Bulb: Females Have More Neurons and Glial Cells than Males

    PubMed Central

    Oliveira-Pinto, Ana V.; Santos, Raquel M.; Coutinho, Renan A.; Oliveira, Lays M.; Santos, Gláucia B.; Alho, Ana T. L.; Leite, Renata E. P.; Farfel, José M.; Suemoto, Claudia K.; Grinberg, Lea T.; Pasqualucci, Carlos A.; Jacob-Filho, Wilson; Lent, Roberto

    2014-01-01

    Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55–94 years) with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40–50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb. PMID:25372872

  8. Interneurons and beta-amyloid in the olfactory bulb, anterior olfactory nucleus and olfactory tubercle in APPxPS1 transgenic mice model of Alzheimer's disease.

    PubMed

    Saiz-Sanchez, Daniel; De La Rosa-Prieto, Carlos; Ubeda-Bañon, Isabel; Martinez-Marcos, Alino

    2013-09-01

    Impaired olfaction has been described as an early symptom in Alzheimer's disease (AD). Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Given that interneuron populations are crucial in olfactory information processing, we have quantitatively analyzed somatostatin- (SOM), parvalbumin- (PV), and calretinin-expressing (CR) cells in the olfactory bulb, anterior olfactory nucleus, and olfactory tubercle in PS1 x APP double transgenic mice model of AD. The experiments were performed in wild type and double transgenic homozygous animal groups of 2, 4, 6, and 8 months of age to analyze early stages of the pathology. In addition, beta-amyloid (Aβ) expression and its correlation with SOM cells have been quantified under confocal microscopy. The results indicate increasing expressions of Aβ with aging as well as an early fall of SOM and CR expression, whereas PV was decreased later in the disease progression. These observations evidence an early, preferential vulnerability of SOM and CR cells in rostral olfactory structures during AD that may be useful to unravel neural basis of olfactory deficits associated to this neurodegenerative disorder. Copyright © 2013 Wiley Periodicals, Inc.

  9. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb

    PubMed Central

    Ma, Jie; Lowe, Graeme

    2007-01-01

    Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > ~ 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co2+ ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd2+ and NBQX, and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA

  10. Hyperpolarization-Activated Currents and Subthreshold Resonance in Granule Cells of the Olfactory Bulb

    PubMed Central

    Hu, Ruilong; Ferguson, Katie A.; Meijer, Dimphna H.

    2016-01-01

    Abstract An important contribution to neural circuit oscillatory dynamics is the ongoing activation and inactivation of hyperpolarization-activated currents (Ih). Network synchrony dynamics play an important role in the initial processing of odor signals by the main olfactory bulb (MOB) and accessory olfactory bulb (AOB). In the mouse olfactory bulb, we show that Ih is present in granule cells (GCs), the most prominent inhibitory neuron in the olfactory bulb, and that Ih underlies subthreshold resonance in GCs. In accord with the properties of Ih, the currents exhibited sensitivity to changes in extracellular K+ concentration and ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidin chloride), a blocker of Ih. ZD7288 also caused GCs to hyperpolarize and increase their input resistance, suggesting that Ih is active at rest in GCs. The inclusion of cAMP in the intracellular solution shifted the activation of Ih to less negative potentials in the MOB, but not in the AOB, suggesting that channels with different subunit composition mediate Ih in these regions. Furthermore, we show that mature GCs exhibit Ih-dependent subthreshold resonance in the theta frequency range (4–12 Hz). Another inhibitory subtype in the MOB, the periglomerular cells, exhibited Ih-dependent subthreshold resonance in the delta range (1–4 Hz), while principal neurons, the mitral cells, do not exhibit Ih-dependent subthreshold resonance. Importantly, Ih size, as well as the strength and frequency of resonance in GCs, exhibited a postnatal developmental progression, suggesting that this development of Ih in GCs may differentially contribute to their integration of sensory input and contribution to oscillatory circuit dynamics. PMID:27844056

  11. Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander

    PubMed Central

    Kauer, John S.; Moulton, David G.

    1974-01-01

    1. Previous experiments have suggested that one way odours may be discriminated is by different spatial patterns of response at both the olfactory bulb and receptor level. The present experiments were designed to test to what extent the position of an odour on the receptor mucosa can influence the activity of olfactory bulb neurones. 2. To deliver odours to small areas on the nasal receptor sheet a new method for local application of odour was developed. The flow rate, concentration, and time course of the odour were controlled using the olfactometer described in the preceding paper. 3. In thirty olfactory bulb units in the salamander it was found that if the response of a unit to odour delivered to the entire exposed receptor epithelium were suppression (type S), then the unit tended to be suppressed when odour was delivered to a number of localized epithelial regions. If the response were excitation (type E) to stimulation of the entire epithelium, then stimulation to only one or two localized regions would elicit the maximum response. 4. Different epithelial regions had the ability to cause excitation in the same bulbar unit depending on the odour being used. Two odours, camphor and amyl acetate, elicited maximum excitation when they were presented to different mucosal areas. The areas at which presentation of these odours gave excitation were surprisingly consistent from unit to unit and animal to animal. 5. The data presented here suggest the presence of restricted excitatory receptive fields for some olfactory bulb neurones for a particular odour. 6. The presence of spatial response patterns using odour delivery to small nasal receptor regions and thus the presence of receptive fields is discussed with reference to bulbar neuronal circuitry. ImagesText-fig. 2Plate 1A, B PMID:4548721

  12. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb.

    PubMed

    Mohedano-Moriano, Alicia; Pro-Sistiaga, Palma; Ubeda-Bañón, Isabel; Crespo, Carlos; Insausti, Ricardo; Martinez-Marcos, Alino

    2007-04-01

    Apically and basally located receptor neurons in the vomeronasal sensory epithelium express G(i2 alpha)- and G(o alpha)-proteins, V1R and V2R vomeronasal receptors, project to the anterior and posterior accessory olfactory bulb and respond to different stimuli, respectively. The extent to which secondary projections from the two portions of the accessory olfactory bulb are convergent in the vomeronasal amygdala is controversial. This issue is addressed by using anterograde and retrograde tract-tracing methods in rats including electron microscopy. Injections of dextran-amines, Fluoro Gold, cholera toxin-B subunit and Fast Blue were delivered to the anterior and posterior accessory olfactory bulb, bed nucleus of the stria terminalis, dorsal anterior amygdala and bed nucleus of the accessory olfactory tract/anteroventral medial amygdaloid nucleus. We have demonstrated that, apart from common vomeronasal-recipient areas, only the anterior accessory olfactory bulb projects to the bed nucleus of the stria terminalis, medial division, posteromedial part, and only the posterior accessory olfactory bulb projects to the dorsal anterior amygdala and deep cell layers of the bed nucleus of the accessory olfactory tract and the anteroventral medial amygdaloid nucleus. These results provide evidence that, excluding areas of convergence, the V1R and V2R vomeronasal pathways project to specific areas of the amygdala. These two vomeronasal subsystems are therefore anatomically and functionally separated in the telencephalon.

  13. Layer- and cell type-selective co-transmission by a basal forebrain cholinergic projection to the olfactory bulb.

    PubMed

    Case, Daniel T; Burton, Shawn D; Gedeon, Jeremy Y; Williams, Sean-Paul G; Urban, Nathaniel N; Seal, Rebecca P

    2017-09-21

    Cholinergic neurons in the basal forebrain project heavily to the main olfactory bulb, the first processing station in the olfactory pathway. The projections innervate multiple layers of the main olfactory bulb and strongly influence odor discrimination, detection, and learning. The precise underlying circuitry of this cholinergic input to the main olfactory bulb remains unclear, however. Here, we identify a specific basal forebrain cholinergic projection that innervates select neurons concentrated in the internal plexiform layer of the main olfactory bulb. Optogenetic activation of this projection elicits monosynaptic nicotinic and GABAergic currents in glomerular layer-projecting interneurons. Additionally, we show that the projection co-expresses markers for GABAergic neurotransmission. The data thus implicate neurotransmitter co-transmission in the basal forebrain regulation of this inhibitory olfactory microcircuit.Cholinergic neurons innervate multiple layers in the main olfactory bulb but the precise circuitry of this input is not known. Here the authors show that VGLUT3(+) cholinergic neurons selectively innervate deep short axon cells in specific layers and elicit robust monosynaptic GABAergic and nicotinic postsynaptic currents.

  14. Gender differences in elements of human anterior commissure and olfactory bulb and tract.

    PubMed

    Tohno, Setsuko; Ongkana, Nutcharin; Ke, Lining; Mahakkanukrauh, Pasuk; Minami, Takeshi; Suwannahoy, Patipath; Sinthubua, Apichat; Tohno, Yoshiyuki

    2010-10-01

    To examine whether there were gender differences in the various brain regions, the authors investigated the gender differences in seven element contents of the anterior commissure, mammillary body, and olfactory bulb and tract by direct chemical analysis. After ordinary dissection at Nara Medical University was finished, the anterior commissures, mammillary bodies, and olfactory bulbs and tracts were resected from the cerebra cut at median line. The brain samples were treated with 99.5% ethanol three times to remove lipids. After ashing with nitric acid and perchloric acid, the seven element contents Ca, P, S, Mg, Zn, Fe, and Na were determined by inductively coupled plasma-atomic emission spectrometry. It was found that the Zn content was significantly higher in the anterior commissures of men than in those of women. In the olfactory bulbs and tracts, it was found that the Ca, P, and Zn contents were significantly higher in men than in women. In contrast, no significant difference was found between the mammillary bodies of men and women regarding the seven element contents.

  15. Sparse Distributed Representation of Odors in a Large-scale Olfactory Bulb Circuit

    PubMed Central

    Yu, Yuguo; McTavish, Thomas S.; Hines, Michael L.; Shepherd, Gordon M.; Valenti, Cesare; Migliore, Michele

    2013-01-01

    In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and temporally. To address this critical step in the neural basis of odor recognition, we built a biophysical network model of mitral and granule cells, corresponding to 1/100th of the real system in the rat, and used direct experimental imaging data of glomeruli activated by various odors. The model allows the systematic investigation and generation of testable hypotheses of the functional mechanisms underlying odor representation in the olfactory bulb circuit. Specifically, we demonstrate that lateral inhibition emerges within the olfactory bulb network through recurrent dendrodendritic synapses when constrained by a range of balanced excitatory and inhibitory conductances. We find that the spatio-temporal dynamics of lateral inhibition plays a critical role in building the glomerular-related cell clusters observed in experiments, through the modulation of synaptic weights during odor training. Lateral inhibition also mediates the development of sparse and synchronized spiking patterns of mitral cells related to odor inputs within the network, with the frequency of these synchronized spiking patterns also modulated by the sniff cycle. PMID:23555237

  16. Activity patterns elicited by airflow in the olfactory bulb and their possible functions.

    PubMed

    Wu, Ruiqi; Liu, Yue; Wang, Li; Li, Bo; Xu, Fuqiang

    2017-10-02

    Olfactory sensory neurons (OSNs) can sense both odorants and airflows. In the olfactory bulb (OB), the coding of odor information is well studied, but the coding of mechanical stimulation is rarely investigated. Unlike odor sensing, the functions of airflow sensing of OSNs are also largely unknown. Here, the activity patterns elicited by mechanical airflow in male rat OBs were mapped using fMRI and correlated with local field potential recordings. In an attempt to reveal possible functions of airflow sensing, the relationship between airflow patterns and physiological parameters was also examined. We found that: a) the activity pattern in the OB evoked by airflow in the nasal cavity was more broadly distributed, compared with those evoked by odors; b) the pattern intensity increases with total airflow, while the pattern topography is rather similar; and c) the heart rate, spontaneous respiratory rate, and EEG power in β-band were reduced under regular mechanical airflow, compared with no airflow through the nasal cavity. The mapping results provide evidence that the signals elicited by mechanical airflow in OSNs are transmitted to the OB, and that the OB has the potential to code and process mechanical information. Our functional data indicate that airflow rhythm in the olfactory system is able to regulate the physiological and brain states, providing an explanation for the effects of breath controlling in meditation, yoga, and Taoism practices.Significant statementThe studies about presentation of odor information in the olfactory bulb is comprehensive, while that of breathing features is rare. Here we investigated the global activity patterns in the rat olfactory bulb elicited by airflow in the nasal cavity using BOLD-fMRI for the first time and found that the activity pattern elicited by airflow is broadly distributed, with increasing pattern intensity and similar topography under increasing total airflow. Further, heart rate, spontaneous respiratory rate in

  17. 17β-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice.

    PubMed

    Dillon, T Samuel; Fox, Laura C; Han, Crystal; Linster, Christiane

    2013-12-01

    Rodents rely heavily on odor detection, discrimination, and memory to locate food, find mates, care for pups, and avoid predators. Estrogens have been shown to increase memory retention in rodents performing spatial memory and object placement tasks. Here we evaluate the extent to which 17β-estradiol modulates memory formation and duration in the olfactory system. Adult CD-1 mice were gonadectomized and given either systemic 17β-estradiol replacement, local 17β-estradiol in the main olfactory bulb, or no replacement. Before performing the behavioral task the mice were given saline or PHTPP (an estrogen receptor β [ER-β] antagonist) via bilateral infusion into the main olfactory bulb. As the beta-type estrogen receptor (ER-β) is more abundant than the alpha-type estrogen receptor in the murine main olfactory bulb, the current study focuses on 17β-estradiol and its interactions with ERβ. Habituation, a simple, nonassociative learning task in which an animal is exposed to the same odor over successive presentations, was used to evaluate the animals' ability to detect odors and form an olfactory memory. To evaluate memory duration, we added a final trial of intertrial interval time (30 or 60 min) in which we presented the habituated odor. Neither surgical nor drug manipulation affected the ability of mice to detect or habituate to an odor. After habituation, gonadectomized 17β-estradiol-treated mice retained memory of an odor for 30 min, whereas non-estradiol-treated, 17β-estradiol+ERβ antagonist (PHTPP), and untreated male mice did not remember an odor 30 min after habituation. The results show that both systemic and local bulbar infusions of 17β-estradiol enhance odor memory duration in mice.

  18. Changes in the serotonergic system in the main olfactory bulb of rats unilaterally deprived from birth to adulthood.

    PubMed

    Gómez, C; Briñón, J G; Orio, L; Colado, M I; Lawrence, A J; Zhou, F C; Vidal, M; Barbado, M V; Alonso, J R

    2007-02-01

    The serotonergic system plays a key role in the modulation of olfactory processing. The present study examined the plastic response of this centrifugal system after unilateral naris occlusion, analysing both serotonergic afferents and receptors in the main olfactory bulb. After 60 days of sensory deprivation, the serotonergic system exhibited adaptive changes. Olfactory deprivation caused a general increase in the number of fibres immunopositive for serotonin but not of those immunopositive for the serotonin transporter. HPLC data revealed an increase in serotonin levels but not in those of its major metabolite, 5-hydroxyindole acetic acid, resulting in a decrease in the 5-hydroxyindole acetic acid/serotonin ratio. These changes were observed not only in the deprived but also in the contralateral olfactory bulb. Double serotonin-tyrosine hydroxylase immunolabelling revealed that the glomerular regions of the deprived olfactory bulb with a high serotonergic fibre density showed a strong reduction in tyrosine hydroxylase. Finally, the serotonin(2A) receptor distribution density and the number of juxtaglomerular cells immunopositive for serotonin(2A) receptor remained unaltered after olfactory deprivation. Environmental stimulation modulated the serotonergic afferents to the olfactory bulb. Our results indicate the presence of a bilateral accumulation of serotonin in the serotonergic axon network, with no changes in serotonin(2A) receptor density after unilateral olfactory deprivation.

  19. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo

    PubMed Central

    McDole, Brittnee; Isgor, Ceylan; Pare, Christopher; Guthrie, Kathleen

    2015-01-01

    Olfactory bulb granule cells are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on granule cell spines. These contacts are established in the distal apical dendritic compartment, while granule cell basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong granule cell neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb granule cell spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF produces a marked increase in granule cell spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on granule cells, suggesting a role for this factor in modulating granule cell functional connectivity within adult olfactory circuitry. PMID:26211445

  20. Odor Information Processing by the Olfactory Bulb Analyzed in Gene-Targeted Mice

    PubMed Central

    Tan, Jie; Savigner, Agnès; Ma, Minghong; Luo, Minmin

    2010-01-01

    SUMMARY In mammals, olfactory sensory neurons (OSNs) expressing a specific odorant receptor (OR) gene project with precise stereotypy onto mitral/tufted (M/T) cells in the main olfactory bulb (MOB). It remains challenging to understand how incoming olfactory signals are transformed into outputs of M/T cells. By recording from OSNs expressing mouse I7 receptor and their postsynaptic neurons in the bulb, we found that I7 OSNs and their corresponding M/T cells exhibit similarly selective tuning profiles at low concentrations. Increasing the concentration significantly reduces response selectivity for both OSNs and M/T cells, although the tuning curve of M/T cells remains comparatively narrow. By contrast, interneurons in the MOB are broadly tuned, and blocking GABAergic neurotransmission reduces selectivity of M/T cells at high odorant concentrations. Our results indicate that olfactory information carried by an OR is channeled to its corresponding M/T cells and support the role of lateral inhibition via interneurons in sharpening the tuning of M/T cells. PMID:20346765

  1. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.

    PubMed

    McDole, B; Isgor, C; Pare, C; Guthrie, K

    2015-09-24

    Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.

  2. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.

    PubMed

    Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L

    2017-03-01

    In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABAA receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D2 and GABAB receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells.NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.

  3. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning

    PubMed Central

    Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan

    2015-01-01

    Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. Here we show that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) are dynamically reformatted in the network at the timescale of a single breath, giving rise to separated patterns of activity in ensemble of output neurons (mitral/tufted cells; M/T). Strikingly, the extent of pattern separation in M/T assemblies predicts behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimuli distinction, a process that is sculpted by synaptic inhibition. PMID:26301325

  4. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.

    PubMed

    Gschwend, Olivier; Abraham, Nixon M; Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan

    2015-10-01

    Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.

  5. Dopaminergic Neurones in the Main Olfactory Bulb: An Overview from an Electrophysiological Perspective

    PubMed Central

    Pignatelli, Angela; Belluzzi, Ottorino

    2017-01-01

    The olfactory bulb (OB), the first center processing olfactory information, is characterized by a vigorous life-long activity-dependent plasticity responsible for a variety of odor-evoked behavioral responses. It hosts the more numerous group of dopaminergic (DA) neurones in the central nervous system, cells strategically positioned at the entry of the bulbar circuitry, directly in contact with the olfactory nerve terminals, which play a key role in odor processing and in the adaptation of the bulbar network to external conditions. Here, we focus mainly on the electrophysiological properties of DA interneurones, reviewing findings concerning their excitability profiles in adulthood and in different phases of adult neurogenesis. We also discuss dynamic changes of the DA interneurones related to environmental stimuli and their possible functional implications. PMID:28261065

  6. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    PubMed

    Lethbridge, Rebecca; Hou, Qinlong; Harley, Carolyn W; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  7. Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task

    PubMed Central

    Devore, Sasha; Manella, Laura C.; Linster, Christiane

    2012-01-01

    Cholinergic inputs to cortical processing networks have long been associated with attentional and top-down processing. Experimental and theoretical studies suggest that cholinergic inputs to the main olfactory bulb (OB) can modulate both neural and behavioral odor discrimination. Previous experiments from our laboratory and others demonstrate that blockade of nicotinic receptors directly impairs olfactory discrimination, whereas blockade of muscarinic receptors only measurably impairs olfactory perception when task demands are made more challenging, such as when very low-concentration odors are used or rats are required to maintain sensory memory over long durations. To further investigate the role of muscarinic signaling in the OB, we developed an olfactory delayed match-to-sample task using a digging-based behavioral paradigm. We find that rats are able to maintain robust short-term odor memory for 10–100 s. To investigate the role of muscarinic signaling in task performance, we bilaterally infused scopolamine into the OB. We find that high dosages of scopolamine (38 mM) impair performance on the task across all delays tested, including the baseline condition with no delay, whereas lower dosages (7.6 mM and 22.8 mM) had no measureable effects. These results indicate that general execution of the match-to-sample task, even with no delay, is at least partially dependent on muscarinic signaling in the OB. PMID:22973212

  8. Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference Learning in the Neonate Rat

    PubMed Central

    Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning. PMID:22496886

  9. Comprehensive connectivity of the mouse main olfactory bulb: analysis and online digital atlas

    PubMed Central

    Hintiryan, Houri; Gou, Lin; Zingg, Brian; Yamashita, Seita; Lyden, Hannah M.; Song, Monica Y.; Grewal, Arleen K.; Zhang, Xinhai; Toga, Arthur W.; Dong, Hong-Wei

    2012-01-01

    We introduce the first open resource for mouse olfactory connectivity data produced as part of the Mouse Connectome Project (MCP) at UCLA. The MCP aims to assemble a whole-brain connectivity atlas for the C57Bl/6J mouse using a double coinjection tracing method. Each coinjection consists of one anterograde and one retrograde tracer, which affords the advantage of simultaneously identifying efferent and afferent pathways and directly identifying reciprocal connectivity of injection sites. The systematic application of double coinjections potentially reveals interaction stations between injections and allows for the study of connectivity at the network level. To facilitate use of the data, raw images are made publicly accessible through our online interactive visualization tool, the iConnectome, where users can view and annotate the high-resolution, multi-fluorescent connectivity data (www.MouseConnectome.org). Systematic double coinjections were made into different regions of the main olfactory bulb (MOB) and data from 18 MOB cases (~72 pathways; 36 efferent/36 afferent) currently are available to view in iConnectome within their corresponding atlas level and their own bright-field cytoarchitectural background. Additional MOB injections and injections of the accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), and other olfactory cortical areas gradually will be made available. Analysis of connections from different regions of the MOB revealed a novel, topographically arranged MOB projection roadmap, demonstrated disparate MOB connectivity with anterior versus posterior piriform cortical area (PIR), and exposed some novel aspects of well-established cortical olfactory projections. PMID:22891053

  10. Neuropilin-1 and the Positions of Glomeruli in the Mouse Olfactory Bulb

    PubMed Central

    Zapiec, Bolek; Bressel, Olaf Christian; Khan, Mona; Walz, Andreas

    2016-01-01

    Abstract It is known since 1996 that mouse odorant receptors (ORs) are involved in determining the positions of the sites of coalescence of axons of olfactory sensory neurons (OSNs)—the thousands of glomeruli in the olfactory bulb. But the molecular and cellular mechanisms of OR-mediated axonal coalescence into glomeruli remain unclear. A model was proposed in 2006–2009 whereby OR-derived cAMP signals, rather than direct action of OR molecules, determine the target destinations (glomeruli) of OSNs in the bulb. This model hypothesizes that OR-derived cAMP signals determine the expression levels of neuropilin 1 (Nrp1) in OSN axon termini; that levels of Nrp1 in glomeruli form a gradient from anterior-low to posterior-high throughout the bulb; and that these Nrp1 levels mechanistically determine anterior-posterior patterning of glomeruli. Here, we describe the first independent evaluation of the Nrp1 model since it was formulated a decade ago. We tested the model for the well-characterized mouse OR M71 using our gene-targeted mouse strains, which are publicly available. In contradiction to the model, we observed a variety of configurations for the M71 glomeruli in the conditional Nrp1 knockout. We then reassessed the model for the original OR transgene with which the model was developed, using the same publicly available mouse strains. We discovered that glomerular positions do not undergo the simple anterior shift that has been reported in the conditional Nrp1 knockout for this OR transgene. Taken together, our findings do not support the Nrp1 model for the anterior-posterior patterning of glomerular positions in the olfactory bulb. PMID:27844052

  11. In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic-like neurons.

    PubMed

    Alizadeh, Rafieh; Hassanzadeh, Gholamreza; Joghataei, Mohammad Taghi; Soleimani, Mansoureh; Moradi, Fatemeh; Mohammadpour, Shahram; Ghorbani, Jahangir; Safavi, Ali; Sarbishegi, Maryam; Pirhajati Mahabadi, Vahid; Alizadeh, Leila; Hadjighassem, Mahmoudreza

    2017-03-01

    This study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain-death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell-derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l-amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co-positive cells (microtubule-associated protein 2 and tyrosine hydroxylase; aromatic l-amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell-based therapeutic strategy for Parkinson

  12. [Oxidative metabolism of main and accessory olfactory bulbs, limpic system and hypothalamus during the estral cycle of the rat (author's transl)].

    PubMed

    Sánchez-Criado, J E

    1979-06-01

    The in vitro oxidative metabolism of hypothalamus, olfactory and limbic systems from female rats in the estrous cycle have been measured. The accessory olfactory bulb becomes most active during diestrous when the hypothalamus reaches its lowest values.

  13. Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice

    PubMed Central

    Chelminski, Yan; Magnan, Christophe; Luquet, Serge H.; Everard, Amandine; Meunier, Nicolas; Gurden, Hirac; Martin, Claire

    2017-01-01

    Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning. PMID:28154537

  14. Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction.

    PubMed

    Miller, Jae-Eun Kang; Granados-Fuentes, Daniel; Wang, Thomas; Marpegan, Luciano; Holy, Timothy E; Herzog, Erik D

    2014-04-23

    Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in olfactory performance. However, the cells and signals in the olfactory system that generate and coordinate these circadian rhythms are unknown. Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar, sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP) or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from the OB to maintain circadian rhythms in the mammalian olfactory system.

  15. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

    NASA Astrophysics Data System (ADS)

    Baird, Bill

    1986-10-01

    A mathematical model of the process of pattern recognition in the first olfactory sensory cortex of the rabbit is presented. It explains the formation and alteration of spatial patterns in neural activity observed experimentally during classical Pavlovian conditioning. On each inspiration of the animal, a surge of receptor input enters the olfactory bulb. EEG activity recorded at the surface of the bulb undergoes a transition from a low amplitude background state of temporal disorder to coherent oscillation. There is a distinctive spatial pattern of rms amplitude in this oscillation which changes reliably to a second pattern during each successful recognition by the animal of a conditioned stimulus odor. When a new odor is paired as conditioned stimulus, these patterns are replaced by new patterns that stabilize as the animal adapts to the new environment. I will argue that a unification of the theories of pattern formation and associative memory is required to account for these observations. This is achieved in a model of the bulb as a discrete excitable medium with spatially inhomogeneous coupling expressed by a connection matrix. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of competing unstable oscillatory modes. These may be created in the system by proper coupling and selectively evoked by specific classes of inputs. This allows a view of limit cycle attractors as “stored” fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  16. The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways

    PubMed Central

    Puche, Adam C.; Shipley, Michael T.

    2016-01-01

    Sensory processing shapes our perception. In mammals, odor information is encoded by combinatorial activity patterns of olfactory bulb (OB) glomeruli. Glomeruli are richly interconnected by short axon cells (SACs), which form the interglomerular circuit (IGC). It is unclear how the IGC impacts OB output to downstream neural circuits. We combined in vitro and in vivo electrophysiology with optogenetics in mice and found the following: (1) the IGC potently and monosynaptically inhibits the OB output neurons mitral/tufted cells (MTCs) by GABA release from SACs: (2) gap junction-mediated electrical coupling is strong for the SAC→MTC synapse, but negligible for the SAC→ETC synapse; (3) brief IGC-mediated inhibition is temporally prolonged by the intrinsic properties of MTCs; and (4) sniff frequency IGC activation in vivo generates persistent MTC inhibition. These findings suggest that the temporal sequence of glomerular activation by sensory input determines which stimulus features are transmitted to downstream olfactory networks and those filtered by lateral inhibition. SIGNIFICANCE STATEMENT Odor identity is encoded by combinatorial patterns of activated glomeruli, the initial signal transformation site of the olfactory system. Lateral circuit processing among activated glomeruli modulates olfactory signal transformation before transmission to higher brain centers. Using a combination of in vitro and in vivo optogenetics, this work demonstrates that interglomerular circuitry produces potent inhibition of olfactory bulb output neurons via direct chemical and electrical synapses as well as by indirect pathways. The direct inhibitory synaptic input engages mitral cell intrinsic membrane properties to generate inhibition that outlasts the initial synaptic action. PMID:27629712

  17. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.

    PubMed

    Liu, Shaolin; Shipley, Michael T

    2008-10-08

    The initial synapse in the olfactory system is from olfactory nerve (ON) terminals to postsynaptic targets in olfactory bulb glomeruli. Recent studies have disclosed multiple presynaptic factors that regulate this important linkage, but less is known about the contribution of postsynaptic intrinsic conductances to integration at these synapses. The present study demonstrates voltage-dependent amplification of EPSPs in external tufted (ET) cells in response to monosynaptic (ON) inputs. This amplification is mainly exerted by persistent Na(+) conductance. Larger EPSPs, which bring the membrane potential to a relatively depolarized level, are further boosted by the low-voltage-activated Ca(2+) conductance. In contrast, the hyperpolarization-activated nonselective cation conductance (I(h)) attenuates EPSPs mainly by reducing EPSP duration; this also reduces temporal summation of multiple EPSPs. Regulation of EPSPs by these subthreshold, voltage-dependent conductances can enhance both the signal-to-noise ratio and the temporal summation of multiple synaptic inputs and thus help ET cells differentiate high- and low-frequency synaptic inputs. I(h) can also transform inhibitory inputs to postsynaptic excitation. When the ET cell membrane potential is relatively depolarized, as during a burst of action potentials, IPSPs produce classic inhibition. However, near resting membrane potentials where I(h) is engaged, IPSPs produce rebound bursts of action potentials. ET cells excite GABAergic PG cells. Thus, the transformation of inhibitory inputs to postsynaptic excitation in ET cells may enhance intraglomerular inhibition of mitral/tufted cells, the main output neurons in the olfactory bulb, and hence shape signaling to olfactory cortex.

  18. Basal telencephalic regions connected with the olfactory bulb in a Madagascan hedgehog tenrec.

    PubMed

    Künzle, H; Radtke-Schuller, S

    2000-08-07

    In an attempt to gain insight into the organization and evolution of the basal forebrain, the region was analysed cytoarchitecturally, chemoarchitecturally, and hodologically in a lower placental mammal, the lesser hedgehog tenrec. Particular emphasis was laid on the subdivision of the olfactory tubercle, the nuclear complex of the diagonal band, and the cortical amygdala. The proper tubercule and the rostrolateral tubercular seam differed from each other with regard to their immunoreactivity to calbindin and calretinin, as well as their afferents from the piriform cortex. Interestingly, the tubercular seam showed similar properties to the dwarf cell compartment, located immediately adjacent to the islands of Calleja. The most prominent input to the olfactory bulb (OfB) originated from the diagonal nuclear complex. This projection was ipsilateral, whereas the bulbar afferents from the hypothalamus and the mesopontine tegmentum were bilateral. The amygdala projected only sparsely to the OfB, but received a prominent bulbar projection. An exception was the nucleus of the lateral olfactory tract, which was poorly connected with the OfB. Unlike other species with an accessory OfB, the projections from the tenrec's main OfB did not show a topographic organization upon the lateral and medial olfactory amygdala. However, there was an accessory amygdala, which could be differentiated from the lateral nuclei by its intense reaction to NADPh-diaphorase. This reaction was poor in the diagonal nuclear complex as in monkey but unlike in rat. The variability of cell populations and olfactory bulb connections shown here may help to clarify both phylogenetic relationships and the significance of individual basal telencephalic subdivisions. Copyright 2000 Wiley-Liss, Inc.

  19. Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling.

    PubMed

    Yu, Yiyi; Burton, Shawn D; Tripathy, Shreejoy J; Urban, Nathaniel N

    2015-11-01

    Mitral cells (MCs) are a major class of principal neurons in the vertebrate olfactory bulb, conveying odor-evoked activity from the peripheral sensory neurons to olfactory cortex. Previous work has described the development of MC morphology and connectivity during the first few weeks of postnatal development. However, little is known about the postnatal development of MC intrinsic biophysical properties. To understand stimulus encoding in the developing olfactory bulb, we have therefore examined the development of MC intrinsic biophysical properties in acute slices from postnatal day (P)7-P35 mice. Across development, we observed systematic changes in passive membrane properties and action potential waveforms consistent with a developmental increase in sodium and potassium conductances. We further observed developmental decreases in hyperpolarization-evoked membrane potential sag and firing regularity, extending recent links between MC sag heterogeneity and firing patterns. We then applied a novel combination of statistical analyses to examine how the evolution of these intrinsic biophysical properties specifically influenced the representation of fluctuating stimuli by MCs. We found that immature MCs responded to frozen fluctuating stimuli with lower firing rates, lower spike-time reliability, and lower between-cell spike-time correlations than more mature MCs. Analysis of spike-triggered averages revealed that these changes in spike timing were driven by a developmental shift from broad integration of inputs to more selective detection of coincident inputs. Consistent with this shift, generalized linear model fits to MC firing responses demonstrated an enhanced encoding of high-frequency stimulus features by mature MCs.

  20. Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    PubMed Central

    Chow, Siu-Fai; Wick, Stuart D.; Riecke, Hermann

    2012-01-01

    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb – the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells – are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures. PMID:22442645

  1. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    PubMed Central

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep. PMID:27247803

  2. Exposure to Sevoflurane Affects the Development of Parvalbumin Interneurons in the Main Olfactory Bulb in Mice

    PubMed Central

    Yang, Jing; Chen, Jing; Cai, Guohong; Lu, Rui; Sun, Tingting; Luo, Tingting; Wu, Shengxi; Ling, Shucai

    2016-01-01

    Sevoflurane is widely used in adult and pediatric patients during clinical surgeries. Although studies have shown that exposure to sevoflurane impairs solfactory memory after an operation, the neuropathological changes underlying this effect are not clear. This study detected the effect of sevoflurane exposure on the development of calcium-binding proteins-expressing interneurons in the main olfactory bulb (MOB). We exposed neonatal mice to 2% sevoflurane at two different developmental time points and found that exposing mice to sevoflurane at postnatal day (PD) 7 significantly decreased the expression of GAD67 and parvalbumin (PV) in the olfactory bulb (OB) but did not alter the expression of calretinin (CR) or calbindin D28k (CB). The number and dendritic morphology of PV-expressing interneurons in the MOB were impaired by exposure to sevoflurane at PD7. However, exposure to sevoflurane at PD10 had no effect on calcium-binding protein expression or the number and dendritic morphology of PV-expressing interneurons in the MOB. These results suggest that exposing neonatal mice to sevoflurane during a critical period of olfactory development affects the development of PV-expressing interneurons in the MOB. PMID:27445710

  3. Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae).

    PubMed

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Haupt, Moritz; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2010-09-17

    The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.

  4. Reduced nasal transport of insulin-like growth factor-1 to the mouse cerebrum with olfactory bulb resection.

    PubMed

    Shiga, Hideaki; Nagaoka, Mikiya; Washiyama, Kohshin; Yamamoto, Junpei; Yamada, Kentaro; Noda, Takuya; Harita, Masayuki; Amano, Ryohei; Miwa, Takaki

    2014-09-01

    Although the olfactory nerve is involved in nasal transport of insulin-like growth factor-1 (IGF-1) to the brain, to our knowledge there have been no direct assessments of the effects of olfactory nerve damage on this transport. To determine whether olfactory bulb resection resulted in reduced transport of nasally administered human recombinant IGF-1 (hIGF-1) to the cerebrum, we measured the uptake of nasally administered iodine-125 hIGF-1 ((125)I-hIGF-1) in the cerebrum as a percentage of that in the blood in male ICR mice subjected to left olfactory bulb resection (model mice) and in sham-operated male ICR mice (control mice). Phosphorylated extracellular signal-regulated kinase (ERK) 1/2 (Thr202/Tyr204)/(Thr185/Tyr187) as a percentage of total ERK 1/2 in the left cerebrum was also assessed by using enzyme-linked immunosorbent assay after nasal administration of hIGF-1. Uptake of nasally administered (125)I-hIGF-1 in the cerebrum as a percentage of that in the blood was significantly lower in the model group than in the control group 30min after nasal administration of hIGF-1. Unilateral olfactory bulb resection prevented nasally administered hIGF-1 from increasing the phosphorylation of ERK 1/2 in the mouse cerebrum in vivo. These findings suggest that olfactory bulb damage reduces nasal transport of hIGF-1 to the brain in vivo.

  5. A model of cholinergic modulation in olfactory bulb and piriform cortex

    PubMed Central

    de Almeida, Licurgo; Idiart, Marco

    2013-01-01

    In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity. PMID:23221406

  6. Increase of peripheral type benzodiazepine binding sites in kidney and olfactory bulb in acutely stressed rats.

    PubMed

    Novas, M L; Medina, J H; Calvo, D; De Robertis, E

    1987-03-17

    Fifteen minutes after the initiation of swimming stress in the rat we observed a 50% increase in the number of [3H]RO 5-4864 binding sites in kidney and a 37% increase in the olfactory bulb, without change in affinity. The binding in heart and cerebral cortex remained unchanged after the stress. These results are discussed in relation to previous work on both the action of an acute stress in central benzodiazepine receptors and the possible modulation of peripheral benzodiazepine receptors of the kidney by adrenocortical hormones.

  7. The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat

    PubMed Central

    Rojas-Líbano, Daniel; Frederick, Donald E.; Egaña, José I.; Kay, Leslie M.

    2014-01-01

    Sensory-motor relationships are part of the normal operation of sensory systems. Sensing occurs in the context of active sensor movement, which in turn influences sensory processing. We address such a process in the rat olfactory system. Through recordings of the diaphragm electromyogram (EMG), we monitored the motor output of the respiratory circuit involved in sniffing behavior, simultaneously with the local field potential (LFP) of the olfactory bulb (OB) in rats moving freely in a familiar environment, where they display a wide range of respiratory frequencies. We show that the OB LFP represents the sniff cycle with high reliability at every sniff frequency and can therefore be used to study the neural representation of motor drive in a sensory cortex. PMID:24966821

  8. Adult Born Olfactory Bulb Dopaminergic Interneurons: Molecular Determinants and Experience-Dependent Plasticity

    PubMed Central

    Bonzano, Sara; Bovetti, Serena; Gendusa, Claudio; Peretto, Paolo; De Marchis, Silvia

    2016-01-01

    The olfactory bulb (OB) is a highly plastic brain region involved in the early processing of olfactory information. A remarkably feature of the OB circuits in rodents is the constitutive integration of new neurons that takes place during adulthood. Newborn cells in the adult OB are mostly inhibitory interneurons belonging to chemically, morphologically and functionally heterogeneous types. Although there is general agreement that adult neurogenesis in the OB plays a key role in sensory information processing and olfaction-related plasticity, the contribution of each interneuron subtype to such functions is far to be elucidated. Here, we focus on the dopaminergic (DA) interneurons: we highlight recent findings about their morphological features and then describe the molecular factors required for the specification/differentiation and maintenance of the DA phenotype in adult born neurons. We also discuss dynamic changes of the DA interneuron population related to age, environmental stimuli and lesions, and their possible functional implications. PMID:27199651

  9. Direct inhibitory effect of taurine on relay neurones of the rat olfactory bulb in vitro.

    PubMed

    Puopolo, M; Kratskin, I; Belluzzi, O

    1998-07-13

    Whole-cell recordings in rat olfactory bulb slices showed that bath application of 5 mM taurine produces a potent and reversible inhibition of identified mitral and tufted cells. Under current-clamp conditions, a shift of the membrane potential toward the chloride equilibrium potential and a 75% reduction in the membrane resistance were observed. These effects were strongly blocked by bicuculline (10 microM), but not by GABA(B) antagonist and strychnine, and completely maintained under the blockage of synaptic transmission. The results suggest that inhibition of bulbar relay neurons produced by taurine is primarily due to direct activation of somatic GABA(A) receptors and initiation of chloride conductance. This study demonstrates for the first time the actions of taurine in the olfactory system.

  10. Reduction of the number of new cells reaching olfactory bulbs impairs olfactory perception in the adult opossum.

    PubMed

    Grabiec, Marta; Turlejski, Kris; Djavadian, Rouzanna

    2009-01-01

    In adult mammals cells generated in the subventricular zone (SVZ) migrate to olfactory bulbs (OB). Functional significance of this continuous neurogenesis is not clear. We injected opossums (Monodelphis domestica) for seven consecutive days with a 5HT(1A) agonist (8-OH-DPAT or buspirone) or its antagonist WAY100635. One hour after each of these injections bromodeoxyuridine (BrdU) a marker of dividing cells was also injected. Two months later, when newly generated neurons settled in the OB and matured the ability of these opossums to detect hidden food by olfactory cues was tested. Afterwards, numbers of BrdU-labeled cell nuclei in their OB were counted and a phenotype of labeled cells established. In all groups investigated the majority of new cells differentiated into neurons (55-76%) and a lower proportion into astroglia (6-12%). Numbers of BrdU-labeled cells differed depending on the applied treatment: both agonists of the 5HT(1A) receptor increased these numbers, while its antagonist decreased them. The increased number of new OB interneurons did not change the time required for finding all three food items and therefore did not improve the opossums' performance in this test of the olfactory perception. However, opossums that had the reduced number of new generated OB cells searched longer for each food item and in consequence took three times longer to find all three crickets, than did opossums from other groups. In conclusion, lower numbers of new neurons in the opossums OB correlated with their worse behavioral performance in a test based on olfactory perception.

  11. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.

    PubMed

    Burton, Shawn D; LaRocca, Greg; Liu, Annie; Cheetham, Claire E J; Urban, Nathaniel N

    2017-02-01

    In the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system, GABAergic interneuron signaling shapes principal neuron activity to regulate olfaction. However, a lack of known selective markers for MOB interneurons has strongly impeded cell-type-selective investigation of interneuron function. Here, we identify the first selective marker of glomerular layer-projecting deep short-axon cells (GL-dSACs) and investigate systematically the structure, abundance, intrinsic physiology, feedforward sensory input, neuromodulation, synaptic output, and functional role of GL-dSACs in the mouse MOB circuit. GL-dSACs are located in the internal plexiform layer, where they integrate centrifugal cholinergic input with highly convergent feedforward sensory input. GL-dSAC axons arborize extensively across the glomerular layer to provide highly divergent yet selective output onto interneurons and principal tufted cells. GL-dSACs are thus capable of shifting the balance of principal tufted versus mitral cell activity across large expanses of the MOB in response to diverse sensory and top-down neuromodulatory input. The identification of cell-type-selective molecular markers has fostered tremendous insight into how distinct interneurons shape sensory processing and behavior. In the main olfactory bulb (MOB), inhibitory circuits regulate the activity of principal cells precisely to drive olfactory-guided behavior. However, selective markers for MOB interneurons remain largely unknown, limiting mechanistic understanding of olfaction. Here, we identify the first selective marker of a novel population of deep short-axon cell interneurons with superficial axonal projections to the sensory input layer of the MOB. Using this marker, together with immunohistochemistry, acute slice electrophysiology, and optogenetic circuit mapping, we reveal that this novel interneuron population integrates centrifugal cholinergic input with broadly tuned feedforward sensory

  12. Two types of periglomerular cells in the olfactory bulb of the macaque monkey (Macaca fascicularis).

    PubMed

    Liberia, Teresa; Blasco-Ibáñez, José Miguel; Nácher, Juan; Varea, Emilio; Lanciego, José Luis; Crespo, Carlos

    2013-07-01

    The olfactory bulb (OB) of mammals is the brain region that receives the sensory information coming from the olfactory epithelium. The entrance of the olfactory information occurs in spherical structures of neuropil named olfactory glomeruli and is modulated by a population of interneurons known as periglomerular cells (PG). It has been demonstrated that there are two types of PG in the OB of some macrosmatic mammals, including rats and mice. Type 1 PG (PG-1) receive synapses from the olfactory nerve, whereas type 2 PG (PG-2) do not receive synapses from the olfactory axons. To date, the presence of the two types of PG has not been investigated in microsmatic mammals. In this context, we analyze the presence of PG-1 and PG-2 in the OB of the long-tailed macaque (Macaca fascicularis). For that, we used the enzyme tyrosine hydroxylase, the neuronal isoform of the enzyme nitric oxide synthase and the calcium-binding proteins calbindin D-28k and calretinin as neurochemical markers. Our results demonstrate that the OB of the macaque contains PG-1 and PG-2. A subpopulation of PG-1 expresses tyrosine hydroxylase and another expresses the neuronal isoform of nitric oxide synthase. In addition, a subpopulation of PG-2 expresses calbindin D-28k and another expresses calretinin. Double immunofluorescence demonstrates that there is no colocalization of two markers in the same PG. These results mimic those found in macrosmatic animals. The presence of two types of PG in the glomerular circuits seems to be a key principle for the organization of the OB of mammals.

  13. Sex differences in catechol contents in the olfactory bulb of control and unilaterally deprived rats.

    PubMed

    Gómez, C; Briñón, J G; Valero, J; Recio, J S; Murias, A R; Curto, G G; Orio, L; Colado, M I; Alonso, J R

    2007-03-01

    The dopaminergic system plays important roles in the modulation of olfactory transmission. The present study examines the distribution of dopaminergic cells and the content of dopamine (DA) and its metabolites in control and deprived olfactory bulbs (OB), focusing on the differences between sexes. The content of DA and of its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were measured by HPLC. The morphology and distribution of dopaminergic neurons were studied using tyrosine hydroxylase (TH) immunohistochemistry. Cells were typified with TH-parvalbumin, TH-cholecystokinin or TH-neurocalcin double-immunofluorescence assays. Biochemical analyses revealed sex differences in the content of DA and of its metabolites. In normal conditions, the OBs of male rats had higher concentrations of DA, DOPAC and HVA than the OBs of females. The immunohistochemical data pointed to sex differences in the number of TH-immunopositive cells (higher in male than in female rats). Colocalization analyses revealed that dopaminergic cells constitute a different cell subpopulation from those labelled after parvalbumin, cholecystokinin or neurocalcin immunostaining. Unilateral olfactory deprivation caused dramatic alterations in the dopaminergic system. The DA content and the density of dopaminergic cells decreased, the contents of DA and DOPAC as well as TH immunoreactivity were similar in deprived males and females and, finally, the metabolite/neurotransmitter ratio increased. Our results show that the dopaminergic modulation of olfactory transmission seems to differ between males and females and that it is regulated by peripheral olfactory activity. A possible role of the dopaminergic system in the sexually different olfactory sensitivity, discrimination and memory is discussed.

  14. Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes.

    PubMed

    Yopak, Kara E; Lisney, Thomas J; Collin, Shaun P

    2015-03-01

    Olfaction is a universal modality by which all animals sample chemical stimuli from their environment. In cartilaginous fishes, olfaction is critical for various survival tasks including localizing prey, avoiding predators, and chemosensory communication with conspecifics. Little is known, however, about interspecific variation in olfactory capability in these fishes, or whether the relative importance of olfaction in relation to other sensory systems varies with regard to ecological factors, such as habitat and lifestyle. In this study, we have addressed these questions by directly examining interspecific variation in the size of the olfactory bulbs (OB), the region of the brain that receives the primary sensory projections from the olfactory nerve, in 58 species of cartilaginous fishes. Relative OB size was compared among species occupying different ecological niches. Our results show that the OBs maintain a substantial level of allometric independence from the rest of the brain across cartilaginous fishes and that OB size is highly variable among species. These findings are supported by phylogenetic generalized least-squares models, which show that this variability is correlated with ecological niche, particularly habitat. The relatively largest OBs were found in pelagic-coastal/oceanic sharks, especially migratory species such as Carcharodon carcharias and Galeocerdo cuvier. Deep-sea species also possess large OBs, suggesting a greater reliance on olfaction in habitats where vision may be compromised. In contrast, the smallest OBs were found in the majority of reef-associated species, including sharks from the families Carcharhinidae and Hemiscyllidae and dasyatid batoids. These results suggest that there is great variability in the degree to which these fishes rely on olfactory cues. The OBs have been widely used as a neuroanatomical proxy for olfactory capability in vertebrates, and we speculate that differences in olfactory capabilities may be the result of

  15. Amyloid beta inhibits olfactory bulb activity and the ability to smell.

    PubMed

    Alvarado-Martínez, Reynaldo; Salgado-Puga, Karla; Peña-Ortega, Fernando

    2013-01-01

    Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.

  16. BDNF promoter-mediated beta-galactosidase expression in the olfactory epithelium and bulb.

    PubMed

    Clevenger, Amy C; Salcedo, Ernesto; Jones, Kevin R; Restrepo, Diego

    2008-07-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.

  17. Disruption of Adult Neurogenesis in the Olfactory Bulb Affects Social Interaction but not Maternal Behavior

    PubMed Central

    Feierstein, Claudia E.; Lazarini, Françoise; Wagner, Sebastien; Gabellec, Marie-Madeleine; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Boussin, François D.; Lledo, Pierre-Marie; Gheusi, Gilles

    2010-01-01

    Adult-born neurons arrive to the olfactory bulb (OB) and integrate into the existing circuit throughout life. Despite the prevalence of this phenomenon, its functional impact is still poorly understood. Recent studies point to the importance of newly generated neurons to olfactory learning and memory. Adult neurogenesis is regulated by a variety of factors, notably by instances related to reproductive behavior, such as exposure to mating partners, pregnancy and lactation, and exposure to offspring. To study the contribution of olfactory neurogenesis to maternal behavior and social recognition, here we selectively disrupted OB neurogenesis using focal irradiation of the subventricular zone in adult female mice. We show that reduction of olfactory neurogenesis results in an abnormal social interaction pattern with male, but not female, conspecifics; we suggest that this effect could result from the inability to detect or discriminate male odors and could therefore have implications for the recognition of potential mating partners. Disruption of OB neurogenesis, however, neither impaired maternal-related behaviors, nor did it affect the ability of mothers to discriminate their own progeny from others. PMID:21160552

  18. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output.

    PubMed

    Miyamichi, Kazunari; Shlomai-Fuchs, Yael; Shu, Marvin; Weissbourd, Brandon C; Luo, Liqun; Mizrahi, Adi

    2013-12-04

    In the mouse olfactory bulb, information from sensory neurons is extensively processed by local interneurons before being transmitted to the olfactory cortex by mitral and tufted (M/T) cells. The precise function of these local networks remains elusive because of the vast heterogeneity of interneurons, their diverse physiological properties, and their complex synaptic connectivity. Here we identified the parvalbumin interneurons (PVNs) as a prominent component of the M/T presynaptic landscape by using an improved rabies-based transsynaptic tracing method for local circuits. In vivo two-photon-targeted patch recording revealed that PVNs have exceptionally broad olfactory receptive fields and exhibit largely excitatory and persistent odor responses. Transsynaptic tracing indicated that PVNs receive direct input from widely distributed M/T cells. Both the anatomical and functional extent of this M/T→PVN→M/T circuit contrasts with the narrowly confined M/T→granule cell→M/T circuit, suggesting that olfactory information is processed by multiple local circuits operating at distinct spatial scales.

  19. Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output

    PubMed Central

    Miyamichi, Kazunari; Shlomai-Fuchs, Yael; Shu, Marvin; Weissbourd, Brandon C.

    2014-01-01

    Summary In the mouse olfactory bulb, information from sensory neurons is extensively processed by local interneurons before being transmitted to the olfactory cortex by mitral and tufted (M/T) cells. The precise function of these local networks remains elusive because of the vast heterogeneity of interneurons, their diverse physiological properties, and their complex synaptic connectivity. Here we identified the parvalbumin interneurons (PVNs) as a prominent component of the M/T presynaptic landscape by using an improved rabies-based trans-synaptic tracing method for local circuits. In vivo two-photon targeted patch recording revealed that PVNs have exceptionally broad olfactory receptive fields, and exhibit largely excitatory and persistent odor responses. Trans-synaptic tracing indicated that PVNs receive direct input from widely distributed M/T cells. Both the anatomical and functional extent of this M/T→PVN→M/T circuit contrasts with the narrowly confined M/T→granule cell→M/T circuit, suggesting that olfactory information is processed by multiple local circuits operating at distinct spatial scales. PMID:24239125

  20. Neonatal focal denervation of the rat olfactory bulb alters cell structure and survival: a Golgi, Nissl and confocal study.

    PubMed

    Couper Leo, J M; Brunjes, P C

    2003-02-16

    Contact between sensory axons and their targets is critical for the development and maintenance of normal neural circuits. Previous work indicates that the removal of afferent contact to the olfactory bulb affects bulb organization, neurophenotypic expression, and cell survival. The studies also suggested changes to the structure of individual cell types. The current work examines the effects of denervation on the morphology of mitral/tufted, periglomerular, and granule cells. Focal denervation drastically changed mitral/tufted cell structure but had only subtle effects on periglomerular and granule cells. Denervated mitral/tufted cells lacked apical tufts and, in most cases, a primary dendrite. In addition, the denervated cells had more secondary processes whose orientation with respect to the bulb surface was altered. Our results suggest that contact between olfactory axons and the bulb is necessary for cell maintenance and may be critical for the ability of mitral/tufted cells to achieve adult morphology

  1. The Effect of Chronic Methamphetamine Exposure on the Hippocampal and Olfactory Bulb Neuroproteomes of Rats

    PubMed Central

    Zhu, Rui; Yang, Tianjiao; Kobeissy, Firas; Mouhieddine, Tarek H.; Raad, Mohamad; Nokkari, Amaly; Gold, Mark S.; Wang, Kevin K.; Mechref, Yehia

    2016-01-01

    Nowadays, drug abuse and addiction are serious public health problems in the USA. Methamphetamine (METH) is one of the most abused drugs and is known to cause brain damage after repeated exposure. In this paper, we conducted a neuroproteomic study to evaluate METH-induced brain protein dynamics, following a two-week chronic regimen of an escalating dose of METH exposure. Proteins were extracted from rat brain hippocampal and olfactory bulb tissues and subjected to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Both shotgun and targeted proteomic analysis were performed. Protein quantification was initially based on comparing the spectral counts between METH exposed animals and their control counterparts. Quantitative differences were further confirmed through multiple reaction monitoring (MRM) LC-MS/MS experiments. According to the quantitative results, the expression of 18 proteins (11 in the hippocampus and 7 in the olfactory bulb) underwent a significant alteration as a result of exposing rats to METH. 13 of these proteins were up-regulated after METH exposure while 5 were down-regulated. The altered proteins belonging to different structural and functional families were involved in processes such as cell death, inflammation, oxidation, and apoptosis. PMID:27082425

  2. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb.

    PubMed

    Short, Shaina M; Morse, Thomas M; McTavish, Thomas S; Shepherd, Gordon M; Verhagen, Justus V

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses.

  3. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

    PubMed Central

    Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923

  4. Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb

    PubMed Central

    Migliore, Michele; Cavarretta, Francesco; Hines, Michael L.; Shepherd, Gordon M.

    2014-01-01

    The functional consequences of the laminar organization observed in cortical systems cannot be easily studied using standard experimental techniques, abstract theoretical representations, or dimensionally reduced models built from scratch. To solve this problem we have developed a full implementation of an olfactory bulb microcircuit using realistic three-dimensional (3D) inputs, cell morphologies, and network connectivity. The results provide new insights into the relations between the functional properties of individual cells and the networks in which they are embedded. To our knowledge, this is the first model of the mitral-granule cell network to include a realistic representation of the experimentally-recorded complex spatial patterns elicited in the glomerular layer (GL) by natural odor stimulation. Although the olfactory bulb, due to its organization, has unique advantages with respect to other brain systems, the method is completely general, and can be integrated with more general approaches to other systems. The model makes experimentally testable predictions on distributed processing and on the differential backpropagation of somatic action potentials in each lateral dendrite following odor learning, providing a powerful 3D framework for investigating the functions of brain microcircuits. PMID:24808855

  5. The Effect of Chronic Methamphetamine Exposure on the Hippocampal and Olfactory Bulb Neuroproteomes of Rats.

    PubMed

    Zhu, Rui; Yang, Tianjiao; Kobeissy, Firas; Mouhieddine, Tarek H; Raad, Mohamad; Nokkari, Amaly; Gold, Mark S; Wang, Kevin K; Mechref, Yehia

    2016-01-01

    Nowadays, drug abuse and addiction are serious public health problems in the USA. Methamphetamine (METH) is one of the most abused drugs and is known to cause brain damage after repeated exposure. In this paper, we conducted a neuroproteomic study to evaluate METH-induced brain protein dynamics, following a two-week chronic regimen of an escalating dose of METH exposure. Proteins were extracted from rat brain hippocampal and olfactory bulb tissues and subjected to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Both shotgun and targeted proteomic analysis were performed. Protein quantification was initially based on comparing the spectral counts between METH exposed animals and their control counterparts. Quantitative differences were further confirmed through multiple reaction monitoring (MRM) LC-MS/MS experiments. According to the quantitative results, the expression of 18 proteins (11 in the hippocampus and 7 in the olfactory bulb) underwent a significant alteration as a result of exposing rats to METH. 13 of these proteins were up-regulated after METH exposure while 5 were down-regulated. The altered proteins belonging to different structural and functional families were involved in processes such as cell death, inflammation, oxidation, and apoptosis.

  6. Perinatal administration of diazepam alters sexual dimorphism in the rat accessory olfactory bulb.

    PubMed

    Pérez-Laso, C; Valencia, A; Rodríguez-Zafra, M; Calés, J M; Guillamón, A; Segovia, S

    1994-01-14

    The present study examines the effects of pre and/or early postnatal administration of diazepam on the mitral cell and on the light and dark granule cell populations in the sexually dimorphic accessory olfactory bulb of the rat. Quantitative differences related to sex were observed in the numbers of the three types of neurons, with vehicle males showing greater numbers of cells than vehicle females. The number of mitral cells in males decreased to the levels shown by female rats following prenatal and pre-postnatal diazepam treatments, whereas the DZ treatments did not affect the females. In addition, the diazepam administration during the prenatal, postnatal and pre-postnatal periods decreased the numbers of both light and dark granule cells in males, while these two granule cell subpopulations were not affected in diazepam treated females. These results indicate that perinatal administration of diazepam can alter the sexual dimorphism in the accessory olfactory bulb and that the GABAA/benzodiazepine receptor complex is involved in the sexual differentiation this part of the brain.

  7. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells

    PubMed Central

    Linster, Christiane

    2015-01-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function. PMID:26334007

  8. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

    PubMed

    Li, Guoshi; Linster, Christiane; Cleland, Thomas A

    2015-12-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

  9. Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network.

    PubMed

    Pouille, Frederic; McTavish, Thomas S; Hunter, Lawrence E; Restrepo, Diego; Schoppa, Nathan E

    2017-09-01

    Despite sparse connectivity, population-level interactions between mitral cells (MCs) and granule cells (GCs) can generate synchronized oscillations in the rodent olfactory bulb. Intraglomerular gap junctions between MCs at the same glomerulus can greatly enhance synchronized activity of MCs at different glomeruli. The facilitating effect of intraglomerular gap junctions on interglomerular synchrony is through triggering of mutually synchronizing interactions between MCs and GCs. Divergent connections between MCs and GCs make minimal direct contribution to synchronous activity. A dominant feature of the olfactory bulb response to odour is fast synchronized oscillations at beta (15-40 Hz) or gamma (40-90 Hz) frequencies, thought to be involved in integration of olfactory signals. Mechanistically, the bulb presents an interesting case study for understanding how beta/gamma oscillations arise. Fast oscillatory synchrony in the activity of output mitral cells (MCs) appears to result from interactions with GABAergic granule cells (GCs), yet the incidence of MC-GC connections is very low, around 4%. Here, we combined computational and experimental approaches to examine how oscillatory synchrony can nevertheless arise, focusing mainly on activity between 'non-sister' MCs affiliated with different glomeruli (interglomerular synchrony). In a sparsely connected model of MCs and GCs, we found first that interglomerular synchrony was generally quite low, but could be increased by a factor of 4 by physiological levels of gap junctional coupling between sister MCs at the same glomerulus. This effect was due to enhanced mutually synchronizing interactions between MC and GC populations. The potent role of gap junctions was confirmed in patch-clamp recordings in bulb slices from wild-type and connexin 36-knockout (KO) mice. KO reduced both beta and gamma local field potential oscillations as well as synchrony of inhibitory signals in pairs of non-sister MCs. These effects were

  10. Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb

    NASA Astrophysics Data System (ADS)

    Baird, Bill

    1986-08-01

    A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  11. Glomerular input patterns in the mouse olfactory bulb evoked by retronasal odor stimuli

    PubMed Central

    2013-01-01

    Background Odorant stimuli can access the olfactory epithelium either orthonasally, by inhalation through the external nares, or retronasally by reverse airflow from the oral cavity. There is evidence that odors perceived through these two routes can differ in quality and intensity. We were curious whether such differences might potentially have a neural basis in the peripheral mechanisms of odor coding. To explore this possibility, we compared olfactory receptor input to glomeruli in the dorsal olfactory bulb evoked by orthonasal and retronasal stimulation. Maps of glomerular response were acquired by optical imaging of transgenic mice expressing synaptopHluorin (spH), a fluorescent reporter of presynaptic activity, in olfactory nerve terminals. Results We found that retronasally delivered odorants were able to activate inputs to multiple glomeruli in the dorsal olfactory bulb. The retronasal responses were smaller than orthonasal responses to odorants delivered at comparable concentrations and flow rates, and they displayed higher thresholds and right-shifted dose–response curves. Glomerular maps of orthonasal and retronasal responses were usually well overlapped, with fewer total numbers of glomeruli in retronasal maps. However, maps at threshold could be quite distinct with little overlap. Retronasal responses were also more narrowly tuned to homologous series of aliphatic odorants of varying carbon chain length, with longer chain, more hydrophobic compounds evoking little or no response at comparable vapor levels. Conclusions Several features of retronasal olfaction are possibly referable to the observed properties of glomerular odorant responses. The finding that retronasal responses are weaker and sparser than orthonasal responses is consistent with psychophysical studies showing lower sensitivity for retronasal olfaction in threshold and suprathreshold tests. The similarity and overlap of orthonasal and retronasal odor maps at suprathreshold

  12. The functional significance of newly born neurons integrated into olfactory bulb circuits

    PubMed Central

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons. PMID:24904263

  13. Odour perception following bilateral damage to the olfactory bulbs: a possible case of blind smell.

    PubMed

    Zucco, Gesualdo M; Prior, Massimo; Sartori, Giuseppe; Stevenson, Richard J

    2013-02-01

    Unconsciously detected chemicals may affect human behaviour (Kirk-Smith et al., 1983; Stern and McClintock, 1998; Zucco et al., 2009), likeability judgements (Li et al., 2007) and brain activity (Lorig et al., 1990; Sobel et al., 1999). No studies, however, have investigated blind smell - the hypothetical olfactory counterpart of blindsight (Weiskrantz et al., 1974). In this report, free and cued olfactory identification of suprathreshold odorants varying in irritancy (i.e., low or no irritant odours versus irritant odours), and taste identification abilities, were examined in patient MB who had undergone surgery for a meningioma. Post-operative imaging revealed encephalomalacia in the left gyrus rectus, with ablation of the left olfactory bulb and damage to the right, subcortical abnormality on the left near the orbital cortex, and damage to a small section of the right gyrus rectus. On free identification MB, while denying a capacity to smell the odours, still correctly identified some and detected others significantly above chance. In contrast, awareness always accompanied correct detections of irritant odours. Cued odour identification was at chance and no taste impairments were observed. We suggest, tentatively, that MB's unusual pattern of awareness when detecting and identifying odours relative to irritant odours may represent an example of 'blind smell'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Perceptual stability during dramatic changes in olfactory bulb activation maps and dramatic declines in activation amplitudes

    PubMed Central

    Homma, R.; Cohen, L. B.; Kosmidis, E. K.; Youngentob, S. L.

    2009-01-01

    We compared the concentration dependence of the ability of rats to identify odorants with the calcium signals in the nerve terminals of the olfactory receptor neurons. Although identification performance decreased with concentrations both above and below the training stimuli it remained well above random at all concentrations tested (between 0.0006% and 35% of saturated vapor). In contrast, the calcium signals in the same awake animals were much smaller than their maximum values at odorant concentrations less than 1% of saturated vapor. In addition, maps of activated glomeruli changed dramatically as odorant concentration was reduced. Thus perceptual stability exists in the face of dramatic changes in both the amplitude and the maps of the input to the olfactory bulb. The data for the concentration dependence of the response of the most sensitive glomeruli for each of five odorants was fitted with a Michaelis-Menten (Hill) equation. The fitted curves were extrapolated to odorant concentrations several orders of magnitude lower the smallest observed signals and suggest that the calcium response at low odorant concentrations is more than 1000 times smaller than the response at saturating odorant concentrations. We speculate that only a few spikes in olfactory sensory neurons may be sufficient for correct odorant identification. PMID:19291227

  15. Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb.

    PubMed

    Kauer, J S

    1988-01-14

    The encoding of olfactory information in the central nervous system (CNS) depends on spatially distributed patterns of activity generated simultaneously in many neuronal circuits. Optical neurophysiological recording permits analysis of neural activity non-invasively and with high spatial and temporal resolution. Here, a video method for imaging voltage-sensitive dye fluorescence in vivo is used to map neuronal activity in local circuits of the salamander olfactory bulb. The method permits the imaging of simultaneous ensemble transmembrane activity in real time. After electrical stimulation of the olfactory nerve, activity spreads centripetally from the sites of synaptic input to generate nonhomogeneous response patterns that are presumably mediated by local circuits within the bulbar layers. The results also show the overlapping temporal sequences of activation of cell groups in each layer. The method thus provides high resolution, sequential video images of the spatial and temporal progression of transmembrane events in neuronal circuits after afferent stimulation and offers the opportunity for studying ensemble events in other brain regions.

  16. Statistical Analysis of Coding for Molecular Properties in the Olfactory Bulb

    PubMed Central

    Auffarth, Benjamin; Gutierrez-Galvez, Agustín; Marco, Santiago

    2011-01-01

    The relationship between molecular properties of odorants and neural activities is arguably one of the most important issues in olfaction and the rules governing this relationship are still not clear. In the olfactory bulb (OB), glomeruli relay olfactory information to second-order neurons which in turn project to cortical areas. We investigate relevance of odorant properties, spatial localization of glomerular coding sites, and size of coding zones in a dataset of [14C] 2-deoxyglucose images of glomeruli over the entire OB of the rat. We relate molecular properties to activation of glomeruli in the OB using a non-parametric statistical test and a support-vector machine classification study. Our method permits to systematically map the topographic representation of various classes of odorants in the OB. Our results suggest many localized coding sites for particular molecular properties and some molecular properties that could form the basis for a spatial map of olfactory information. We found that alkynes, alkanes, alkenes, and amines affect activation maps very strongly as compared to other properties and that amines, sulfur-containing compounds, and alkynes have small zones and high relevance to activation changes, while aromatics, alkanes, and carboxylics acid recruit very big zones in the dataset. Results suggest a local spatial encoding for molecular properties. PMID:21811447

  17. Organotypic culture of neuroepithelium attached to olfactory bulb from adult mouse as a tool to study neuronal regeneration after ZnSO4 neuroepithelial trauma.

    PubMed

    Michel, V; Monnier, Z; Cvetkovic, V; Math, F

    1999-08-27

    Chemical destruction of the olfactory mucosa leads to a neuronal regeneration. A new organotypic culture model is perfected to improve the regenerating processes study. Explants of neuroepithelium attached to olfactory bulbs were removed from adult mice and cultured, 12 h after ZnSO4 intranasal application. After 3 days in culture, explants showed a necrosis in the olfactory epithelium and a thinning of the olfactory bulb nervous layer. From the fifth day of culture, and mostly the tenth, new cells showed positive immunoreactivity with the olfactory marker protein (OMP), meaning they were regenerating olfactory neurons. Simultaneously, OMP immunoreactivity increased in the nervous and glomerular layers of the olfactory bulb, indicating epithelio-bulbar reconnection. This organotypic culture model could allow further investigations on the regenerating process kinetic.

  18. Grueneberg Glomeruli in the Olfactory Bulb are Activated by Odorants and Cool Temperature.

    PubMed

    Bumbalo, Rosolino; Lieber, Marilena; Schroeder, Lisa; Polat, Yasemin; Breer, Heinz; Fleischer, Joerg

    2017-05-01

    Neurons of the Grueneberg ganglion respond to cool temperatures as well as to distinct odorants and extend axonal processes to the olfactory bulb of the brain. Analyses of transgenic mice, in which Grueneberg ganglion neurons and their axons are labeled, revealed that these axons innervated nine distinct glomeruli distributed in a characteristic topographical pattern in dorsal, lateral, ventral, and medial regions of rather posterior areas in the bulb. To assess activation of these glomeruli (hereinafter designated as Grueneberg glomeruli) upon stimulation of Grueneberg ganglion neurons, mice were exposed to the odorant 2,3-dimethylpyrazine (2,3-DMP) and the expression of the activity-dependent marker c-Fos in juxtaglomerular cells of the relevant glomeruli was monitored. It was found that all of these glomeruli were activated, irrespective of their localization in the bulb. To verify that the activation of juxtaglomerular cells in Grueneberg glomeruli was indeed based on stimulation of Grueneberg ganglion neurons, the 2,3-DMP-induced responses in these glomeruli were investigated in mice lacking the cyclic nucleotide-gated channel CNGA3 which is critical for chemo- and thermosensory signal transduction in Grueneberg ganglion neurons. This approach revealed that elimination of CNGA3 led to a reduction of the odorant-induced activity in Grueneberg glomeruli, indicating that the activation of these glomeruli is based on a preceding stimulation of the Grueneberg ganglion. Analyzing whether Grueneberg glomeruli in the bulb might also process thermosensory information, it was found that upon exposure to coolness, Grueneberg glomeruli were activated. Investigating mice lacking CNGA3, the activation of these glomeruli by cool temperatures was attenuated.

  19. Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates

    PubMed Central

    Ribeiro, Pedro F. M.; Manger, Paul R.; Catania, Kenneth C.; Kaas, Jon H.; Herculano-Houzel, Suzana

    2014-01-01

    The olfactory bulb is an evolutionarily old structure that antedates the appearance of a six-layered mammalian cerebral cortex. As such, the neuronal scaling rules that apply to scaling the mass of the olfactory bulb as a function of its number of neurons might be shared across mammalian groups, as we have found to be the case for the ensemble of non-cortical, non-cerebellar brain structures. Alternatively, the neuronal scaling rules that apply to the olfactory bulb might be distinct in those mammals that rely heavily on olfaction. The group previously referred to as Insectivora includes small mammals, some of which are now placed in Afrotheria, a base group in mammalian radiation, and others in Eulipotyphla, a group derived later, at the base of Laurasiatheria. Here we show that the neuronal scaling rules that apply to building the olfactory bulb differ across eulipotyphlans and other mammals such that eulipotyphlans have more neurons concentrated in an olfactory bulb of similar size than afrotherians, glires and primates. Most strikingly, while the cerebral cortex gains neurons at a faster pace than the olfactory bulb in glires, and afrotherians follow this trend, it is the olfactory bulb that gains neurons at a faster pace than the cerebral cortex in eulipotyphlans, which contradicts the common view that the cerebral cortex is the fastest expanding structure in brain evolution. Our findings emphasize the importance of not using brain structure size as a proxy for numbers of neurons across mammalian orders, and are consistent with the notion that different selective pressures have acted upon the olfactory system of eulipotyphlans, glires and primates, with eulipotyphlans relying more on olfaction for their behavior than glires and primates. Surprisingly, however, the neuronal scaling rules for primates predict that the human olfactory bulb has as many neurons as the larger eulipotyphlan olfactory bulbs, which questions the classification of humans as microsmatic

  20. Transcriptome profile and cytogenetic analysis of immortalized neuronally restricted progenitor cells derived from the porcine olfactory bulb

    USDA-ARS?s Scientific Manuscript database

    Recently, we established and phenotypically characterized an immortalized porcine olfactory bulb neuroblast cell line, OBGF400 (Uebing-Czipura et al., 2008). To facilitate the future application of these cells in studies of neurological dysfunction and neuronal replacement therapies, a comprehensive...

  1. Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure

    SciTech Connect

    Tin-Tin-Win-Shwe Mitsushima, Dai; Yamamoto, Shoji; Fukushima, Atsushi; Funabashi, Toshiya; Kobayashi, Takahiro; Fujimaki, Hidekazu

    2008-01-15

    Recently, there have been increasing reports that nano-sized component of particulate matter can reach the brain and may be associated with neurodegenerative diseases. Previously, our laboratory has studied the effect of intranasal instillation of nano-sized carbon black (CB) (14 nm and 95 nm) on brain cytokine and chemokine mRNA expressions and found that 14-nm CB increased IL-1{beta}, TNF-{alpha}, CCL2 and CCL3 mRNA expressions in the olfactory bulb, not in the hippocampus of mice. To investigate the effect of a single administration of nanoparticles on neurotransmitters and proinflammatory cytokines in a mouse olfactory bulb, we performed in vivo microdialysis and real-time PCR methods. Ten-week-old male BALB/c mice were implanted with guide cannula in the right olfactory bulb and, 1 week later, were instilled vehicle or CB (14 nm, 250 {mu}g) intranasally. Six hours after the nanoparticle instillation, the mice were intraperitoneally injected with normal saline or 50 {mu}g of bacteria cell wall component lipoteichoic acid (LTA), which may potentiate CB-induced neurologic effect. Extracellular glutamate and glycine levels were significantly increased in the olfactory bulb of CB-instilled mice when compared with vehicle-instilled control mice. Moreover, we found that LTA further increased glutamate and glycine levels. However, no alteration of taurine and GABA levels was observed in the olfactory bulb of the same mice. We also detected immunological changes in the olfactory bulb 11 h after vehicle or CB instillation and found that IL-1{beta} mRNA expression was significantly increased in CB- and LTA-treated mice when compared with control group. However, TNF-{alpha} mRNA expression was increased significantly in CB- and saline-treated mice when compared with control group. These findings suggest that nanoparticle CB may modulate the extracellular amino acid neurotransmitter levels and proinflammatory cytokine IL-1 {beta} mRNA expressions synergistically with LTA

  2. Amyloid Beta Inhibits Olfactory Bulb Activity and the Ability to Smell

    PubMed Central

    Peña-Ortega, Fernando

    2013-01-01

    Early olfactory dysfunction has been consistently reported in both Alzheimer’s disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress. PMID:24086624

  3. Functional recovery of odor representations in regenerated sensory inputs to the olfactory bulb

    PubMed Central

    Cheung, Man C.; Jang, Woochan; Schwob, James E.; Wachowiak, Matt

    2014-01-01

    The olfactory system has a unique capacity for recovery from peripheral damage. After injury to the olfactory epithelium (OE), olfactory sensory neurons (OSNs) regenerate and re-converge on target glomeruli of the olfactory bulb (OB). Thus far, this process has been described anatomically for only a few defined populations of OSNs. Here we characterize this regeneration at a functional level by assessing how odor representations carried by OSN inputs to the OB recover after massive loss and regeneration of the sensory neuron population. We used chronic imaging of mice expressing synaptopHluorin in OSNs to monitor odor representations in the dorsal OB before lesion by the olfactotoxin methyl bromide and after a 12 week recovery period. Methyl bromide eliminated functional inputs to the OB, and these inputs recovered to near-normal levels of response magnitude within 12 weeks. We also found that the functional topography of odor representations recovered after lesion, with odorants evoking OSN input to glomerular foci within the same functional domains as before lesion. At a finer spatial scale, however, we found evidence for mistargeting of regenerated OSN axons onto OB targets, with odorants evoking synaptopHluorin signals in small foci that did not conform to a typical glomerular structure but whose distribution was nonetheless odorant-specific. These results indicate that OSNs have a robust ability to reestablish functional inputs to the OB and that the mechanisms underlying the topography of bulbar reinnervation during development persist in the adult and allow primary sensory representations to be largely restored after massive sensory neuron loss. PMID:24431990

  4. Physical limits to autofluorescence signals in vivo recordings in the rat olfactory bulb: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    L'Heureux, B.; Gurden, H.; Pinot, L.; Mastrippolito, R.; Lefebvre, F.; Lanièce, P.; Pain, F.

    2007-07-01

    Understanding the cellular mechanisms of energy supply to neurons following physiological activation is still challenging and has strong implications to the interpretation of clinical functional images based on metabolic signals such as Blood Oxygen Level Dependent Magnetic Resonance Imaging or 18F-Fluorodexoy-Glucose Positron Emission Tomography. Intrinsic Optical Signal Imaging provides with high spatio temporal resolution in vivo imaging in the anaesthetized rat. In that context, intrinsic signals are mainly related to changes in the optical absorption of haemoglobin depending on its oxygenation state. This technique has been validated for imaging of the rat olfactory bulb, providing with maps of the actived olfactory glomeruli, the functional modules involved in the first step of olfactory coding. A complementary approach would be autofluorescence imaging relying on the fluorescence properties of endogenous Flavin Adenine Dinucleotide (FAD) or Nicotinamide Adenine Dinucleotide (NADH) both involved in intracellular metabolic pathways. The purpose of the present study was to investigate the feasibility of in vivo autofluorescence imaging in the rat olfactory bulb. We performed standard Monte Carlo simulations of photons scattering and absorption at the excitation and emission wavelengths of FAD and NADH fluorescence. Characterization of the fluorescence distribution in the glomerulus, effect of hemoglobin absorption at the excitation and absorption wavelengths as well as the effect of the blurring due to photon scattering and the depth of focus of the optical apparatus have been studied. Finally, optimal experimental parameters are proposed to achieve in vivo validation of the technique in the rat olfactory bulb.

  5. The effect of some drugs on the mitral cell odor-evoked responses in the gecko olfactory bulb.

    PubMed

    Tonosaki, K; Shibuya, T

    1985-01-01

    The activity of odor-evoked olfactory mitral cell response of the gecko was recorded extracellularly by glass microelectrodes. The activities of the mitral cell observed during the presentation of the odor (n-amyl acetate) could be described as excitation, suppression or zero. The present experiments were undertaken to study the neural activities of the mitral cell in the olfactory bulb by perfusion application of some drugs (cobalt chloride, carnosine, norepinephrine, GABA and D-L-homocysteate) on the olfactory bulb surface or iontophoretic application of some drugs (carnosine, norepinephrine, GABA and D-L-homocysteate) to the glomerulus and the external plexiform layer to change the physiological environment. The effect of the drugs suggested that the synaptic neurons on the mitral cell have different chemical characteristics.

  6. Removal of olfactory bulbs in chickens: consequent changes in food intake and thyroid activity.

    PubMed

    Robinzon, B; Snapir, N; Perek, M

    1977-01-01

    Surgical removal of the olfactory bulbs (O.B) in the chicken caused a marked increase in food intake, which was not accompanied by development of obestiy. Oxygen consumption of the O.B. removed birds was significantly higher than that of the controls. Alcianophylic-thyrotropic cell population of the adenohypophysis and the percentage of active follicles in the thyroid gland were higher for the O.B. removed birds than for those of the controls. Feed supplementation of 0.1% propylthiouracil to the O.B removed birds abolished the previously exhibited hyperphagia and caused a significant decline in oxygen consumption. The possibility that the O.B removal caused a primary increase in thyrotropic axis activity follwoed by a secondary compensatory hyperphagia, is discussed.

  7. Detection and discrimination of carvone enantiomers in rats with olfactory bulb lesions.

    PubMed

    Slotnick, B; Bisulco, S

    2003-01-01

    Rats with lesions of dorsal and dorsolateral bulbar sites known to be differentially responsive to carvone enantiomers were tested for their ability to detect (+)-carvone, to discriminate between (+)-carvone from (-)-carvone, and to discriminate (+)-carvone from mixtures of both enantiomers after they had been pre-trained or not pre-trained on these tasks prior to surgery. In postoperative tests, rats pre-trained on the enantiomer discrimination problems made somewhat fewer errors than those not pre-trained, but experimental rats performed as well as controls (those that had one intact olfactory bulb) within both conditions and on each task. These results indicate that removal of most bulbar sites known to be differentially responsive to carvone enantiomers and the consequent disruption of normal patterns of bulbar input produced in response to carvones are largely without effect on the ability of rats to discriminate between these odors.

  8. Effect of sniffing on the temporal structure of mitral/tufted cell output from the olfactory bulb

    PubMed Central

    Carey, Ryan M.; Wachowiak, Matt

    2011-01-01

    Neural activity underlying odor representations in the mammalian olfactory system is strongly patterned by respiratory behavior; these dynamics are central to many models of olfactory information processing. We have previously found that sensory inputs to the olfactory bulb change both their magnitude and temporal structure as a function of sniff frequency. Here, we asked how sniff frequency affects responses of mitral/tufted (MT) cells – the principal olfactory bulb output neuron. We recorded from MT cells in anesthetized rats while reproducing sniffs recorded previously from awake animals and varying sniff frequency. The dynamics of a sniff-evoked response were consistent from sniff to sniff but varied across cells. Compared to the dynamics of receptor neuron activation by the same sniffs, the MT response was shorter and faster, reflecting a temporal sharpening of sensory inputs. Increasing sniff frequency led to moderate attenuation of MT response magnitude and significant changes in the temporal structure of the sniff-evoked MT cell response. Most MT cells responded with a shorter duration and shorter rise-time spike burst as sniff frequency increased, reflecting increased temporal sharpening of inputs by the olfactory bulb. These temporal changes were necessary and sufficient to maintain respiratory modulation in the MT cell population across the range of sniff frequencies expressed during behavior. These results suggest that the input-output relationship in the olfactory bulb varies dynamically as a function of sniff frequency, and that one function of the postsynaptic network is to maintain robust temporal encoding of odor information across different odor sampling strategies. PMID:21775605

  9. Human olfactory bulb neural stem cells mitigate movement disorders in a rat model of Parkinson's disease.

    PubMed

    Marei, Hany E S; Lashen, Samah; Farag, Amany; Althani, Asmaa; Afifi, Nahla; A, Abd-Elmaksoud; Rezk, Shaymaa; Pallini, Roberto; Casalbore, Patrizia; Cenciarelli, Carlo

    2015-07-01

    Parkinson's disease (PD) is a neurological disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are multipotent stem cells that are capable of differentiating into different neuronal and glial elements. The production of DA neurons from NSCs could potentially alleviate behavioral deficits in Parkinsonian patients; timely intervention with NSCs might provide a therapeutic strategy for PD. We have isolated and generated highly enriched cultures of neural stem/progenitor cells from the human olfactory bulb (OB). If NSCs can be obtained from OB, it would alleviate ethical concerns associated with the use of embryonic tissue, and provide an easily accessible cell source that would preclude the need for invasive brain surgery. Following isolation and culture, olfactory bulb neural stem cells (OBNSCs) were genetically engineered to express hNGF and GFP. The hNFG-GFP-OBNSCs were transplanted into the striatum of 6-hydroxydopamin (6-OHDA) Parkinsonian rats. The grafted cells survived in the lesion environment for more than eight weeks after implantation with no tumor formation. The grafted cells differentiated in vivo into oligodendrocyte-like (25 ± 2.88%), neuron-like (52.63 ± 4.16%), and astrocyte -like (22.36 ± 1.56%) lineages, which we differentiated based on morphological and immunohistochemical criteria. Transplanted rats exhibited a significant partial correction in stepping and placing in non-pharmacological behavioral tests, pole and rotarod tests. Taken together, our data encourage further investigations of the possible use of OBNSCs as a promising cell-based therapeutic strategy for Parkinson's disease. © 2014 Wiley Periodicals, Inc.

  10. Segregated labeling of olfactory bulb projection neurons based on their birthdates.

    PubMed

    Imamura, Fumiaki; Greer, Charles A

    2015-01-01

    Mitral and tufted cells are the projection neurons of the olfactory bulb (OB). We previously reported that somata location and innervation patterns were different between early- and late-born mitral cells (Imamura et al., 2011). Here, we introduced a plasmid that drives the expression of a GFP gene into the mouse OB using in utero electroporation, and demonstrated that we can deliver the plasmid vectors into distinct subsets of OB projection neurons by changing the timing of electroporation after fertilisation. The electroporation performed at embryonic day (E)10 preferentially labeled mitral cells in the accessory OB and main OB mitral cells in dorsomedial mitral cell layer (MCL). In contrast, the E12 electroporation introduced the plasmid vectors preferentially into main OB mitral cells in the ventrolateral MCL and tufted cells. Combining these data with BrdU injections, we confirmed that E10 and E12 electroporation preferentially labeled early- and late-born projection neurons, respectively. This work introduces a novel method for segregated labeling of mouse olfactory bulb projection neurons based on their birthdates. With this technique we found that early- and late-born projection neurons extend their secondary dendrites in the deep and superficial external plexiform layer (EPL), respectively. Although a similar segregation has been suggested for mitral vs. tufted cell dendrites, we found mitral cells projecting secondary dendrites into the superficial EPL in E12-electroporated main OB. Our observations indicate that timing of neurogenesis regulates not only somata location and innervation patterns but also the laminar organisation of projection neuron dendrites in the EPL.

  11. Transcription factors expressed in olfactory bulb local progenitor cells revealed by genome-wide transcriptome profiling

    PubMed Central

    Campbell, Gordon R. O.; Baudhuin, Ariane; Vranizan, Karen; Ngai, John

    2011-01-01

    The local progenitor population in the olfactory bulb (OB) gives rise to mitral and tufted projection neurons during embryonic development. In contrast, OB interneurons are derived from sources outside the bulb where neurogenesis continues throughout life. While many of the genes involved in OB interneuron development have been characterized, the genetic pathways driving local progenitor cell differentiation in this tissue are largely unknown. To better understand this process, we used transcriptional profiling to monitor gene expression of whole OB at daily intervals from embryonic day 11 through birth, generating a compendium of gene expression encompassing the major developmental events of this tissue. Through hierarchical clustering, bioinformatics analysis, and validation by RNA in situ hybridizations, we identified a large number of transcription factors, DNA binding proteins, and cell cycle-related genes expressed by the local neural progenitor cells (NPCs) of the embryonic OB. Further in silico analysis of transcription factor binding sites identified an enrichment of genes regulated by the E2F-Rb pathway among those expressed in the local NPC population. Together these results provide initial insights into the molecular identity of the OB local NPC population and the transcription factor networks that may regulate their function. PMID:21194568

  12. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb

    PubMed Central

    Lehmann, Alexander; D’Errico, Anna; Vogel, Martin; Spors, Hartwig

    2016-01-01

    Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics. PMID:27047340

  13. Diabetes Impairs Wnt3 Protein-induced Neurogenesis in Olfactory Bulbs via Glutamate Transporter 1 Inhibition.

    PubMed

    Wakabayashi, Tamami; Hidaka, Ryo; Fujimaki, Shin; Asashima, Makoto; Kuwabara, Tomoko

    2016-07-15

    Diabetes is associated with impaired cognitive function. Streptozotocin (STZ)-induced diabetic rats exhibit a loss of neurogenesis and deficits in behavioral tasks involving spatial learning and memory; thus, impaired adult hippocampal neurogenesis may contribute to diabetes-associated cognitive deficits. Recent studies have demonstrated that adult neurogenesis generally occurs in the dentate gyrus of the hippocampus, the subventricular zone, and the olfactory bulbs (OB) and is defective in patients with diabetes. We hypothesized that OB neurogenesis and associated behaviors would be affected in diabetes. In this study, we show that inhibition of Wnt3-induced neurogenesis in the OB causes several behavioral deficits in STZ-induced diabetic rats, including impaired odor discrimination, cognitive dysfunction, and increased anxiety. Notably, the sodium- and chloride-dependent GABA transporters and excitatory amino acid transporters that localize to GABAergic and glutamatergic terminals decreased in the OB of diabetic rats. Moreover, GAT1 inhibitor administration also hindered Wnt3-induced neurogenesis in vitro Collectively, these data suggest that STZ-induced diabetes adversely affects OB neurogenesis via GABA and glutamate transporter systems, leading to functional impairments in olfactory performance.

  14. Distinct Pattern of Microgliosis in the Olfactory Bulb of Neurodegenerative Proteinopathies

    PubMed Central

    Feldewerth, Judith; Hornauer, Philipp; Münch, Martina; Adame, Anthony; Riemenschneider, Markus J.

    2017-01-01

    The olfactory bulb (OB) shows early neuropathological hallmarks in numerous neurodegenerative diseases, for example, in Alzheimer's disease (AD) and Parkinson's disease (PD). The glomerular and granular cell layer of the OB is characterized by preserved cellular plasticity in the adult brain. In turn, alterations of this cellular plasticity are related to neuroinflammation such as microglia activation, implicated in the pathogenesis of AD and PD, as well as frontotemporal lobe degeneration (FTLD). To determine microglia proliferation and activation we analyzed ionized calcium binding adaptor molecule 1 (Iba1) expressing microglia in the glomerular and granular cell layer, and the olfactory tract of the OB from patients with AD, PD dementia/dementia with Lewy bodies (PDD/DLB), and FTLD compared to age-matched controls. The number of Iba1 and CD68 positive microglia associated with enlarged amoeboid microglia was increased particularly in AD, to a lesser extent in FTLD and PDD/DLB as well, while the proportion of proliferating microglia was not altered. In addition, cells expressing the immature neuronal marker polysialylated neural cell adhesion molecule (PSA-NCAM) were increased in the glomerular layer of PDD/DLB and FTLD cases only. These findings provide novel and detailed insights into differential levels of microglia activation in the OB of neurodegenerative diseases. PMID:28409032

  15. Clonal Mapping of Astrocytes in the Olfactory Bulb and Rostral Migratory Stream.

    PubMed

    García-Marqués, Jorge; López-Mascaraque, Laura

    2017-03-01

    Astrocytes are the most abundant glial population in the central nervous system, where they fulfill multiple essential tasks. Such diverse functions require a heterogeneous population of cells, yet it is still unclear how this cellular heterogeneity emerges during development. To clarify to what extent such diversity is determined by lineage, we have elaborated the first clonal map of astrocytes in the olfactory bulb and rostral migratory stream. Astrocyte clones are comprised of a limited number of cells, which arise from local progenitors and that are arranged following a radial pattern. Although astroglia exhibit a vast morphological diversity, this was layer-dependent rather than determined by lineage. Likewise, lineage did not strictly determine their position, although we found a striking relationship between the clones and olfactory glomeruli. A distinctive morphology and other clonal features, together with the occurrence of immature forms, reflect the singularity of these astroglial populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Activity Regulates Functional Connectivity from the Vomeronasal Organ to the Accessory Olfactory Bulb

    PubMed Central

    Hovis, Kenneth R.; Ramnath, Rohit; Dahlen, Jeffrey E.; Romanova, Anna L.; LaRocca, Greg; Bier, Mark E.; Urban, Nathaniel N.

    2012-01-01

    The mammalian accessory olfactory system is specialized for the detection of chemicals that identify kin and conspecifics. Vomeronasal sensory neurons (VSNs), residing in the vomeronasal organ, project axons to the accessory olfactory bulb (AOB) where they form synapses with principle neurons, known as mitral cells. The organization of this projection is quite precise and is believed to be essential for appropriate function of this system. However, how this precise connectivity is established is unknown. We show here that in mice the vomeronasal duct is open at birth, allowing external chemical stimuli access to sensory neurons, and that these sensory neurons are capable of releasing neurotransmitter to downstream neurons as early as the first post-natal day. Using major histocompatibility complex class I (MHC-1) peptides to activate a selective subset of VSNs during the first few post-natal days of development, we show that increased activity results in exuberant VSN axonal projections and a delay in axonal coalescence into well-defined glomeruli in the AOB. Finally, we show that mitral cell dendritic refinement occurs just after the coalescence of pre-synaptic axons. Such a mechanism may allow the formation of precise connectivity with specific glomeruli that receive input from sensory neurons expressing the same receptor type. PMID:22674266

  17. In vivo functional properties of juxtaglomerular neurons in the mouse olfactory bulb

    PubMed Central

    Homma, R.; Kovalchuk, Y.; Konnerth, A.; Cohen, L. B.; Garaschuk, O.

    2013-01-01

    Juxtaglomerular neurons represent one of the largest cellular populations in the mammalian olfactory bulb yet their role for signal processing remains unclear. We used two-photon imaging and electrophysiological recordings to clarify the in vivo properties of these cells and their functional organization in the juxtaglomerular space. Juxtaglomerular neurons coded for many perceptual characteristics of the olfactory stimulus such as (1) identity of the odorant, (2) odorant concentration, (3) odorant onset, and (4) offset. The odor-responsive neurons clustered within a narrow area surrounding the glomerulus with the same odorant specificity, with ~80% of responding cells located ≤20 μm from the glomerular border. This stereotypic spatial pattern of activated cells persisted at different odorant concentrations and was found for neurons both activated and inhibited by the odorant. Our data identify a principal glomerulus with a narrow shell of juxtaglomerular neurons as a basic odor coding unit in the glomerular layer and underline the important role of intraglomerular circuitry. PMID:23459031

  18. Retronasal odor concentration coding in glomeruli of the rat olfactory bulb

    PubMed Central

    Gautam, Shree Hari; Short, Shaina M.; Verhagen, Justus V.

    2014-01-01

    The mammalian olfactory system processes odorants presented orthonasally (inhalation through the nose) and also retronasally (exhalation), enabling identification of both external as well as internal objects during food consumption. There are distinct differences between ortho- and retronasal air flow patterns, psychophysics, multimodal integration, and glomerular responses. Recent work indicates that rats can also detect odors retronasally, that rats can associate retronasal odors with tastes, and that their olfactory bulbs (OBs) can respond to retronasal odorants but differently than to orthonasal odors. To further characterize retronasal OB input activity patterns, experiments here focus on determining the effects of odor concentration on glomerular activity by monitoring calcium activity in the dorsal OB of rats using a dextran-conjugated calcium-sensitive dye in vivo. Results showed reliable concentration-response curves that differed between odorants, and recruitment of additional glomeruli, as odor concentration increased. We found evidence of different concentration-response functions between glomeruli, that in turn depended on odor. Further, the relation between dynamics and concentration differed remarkably among retronasal odorants. These dynamics are suggested to reduce the odor map ambiguity based on response amplitude. Elucidating the coding of retronasal odor intensity is fundamental to the understanding of feeding behavior and the neural basis of flavor. These data further establish and refine the rodent model of flavor neuroscience. PMID:25386123

  19. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb.

    PubMed

    Hamamoto, Masakazu; Kiyokage, Emi; Sohn, Jaerin; Hioki, Hiroyuki; Harada, Tamotsu; Toida, Kazunori

    2017-02-15

    Odor information is regulated by olfactory inputs, bulbar interneurons, and centrifugal inputs in the olfactory bulb (OB). Cholinergic neurons projecting from the nucleus of the horizontal limb of the diagonal band of Broca and the magnocellular preoptic nucleus are one of the primary centrifugal inputs to the OB. In this study, we focused on cholinergic regulation of the OB and analyzed neural morphology with a particular emphasis on the projection pathways of cholinergic neurons. Single-cell imaging of a specific neuron within dense fibers is critical to evaluate the structure and function of the neural circuits. We labeled cholinergic neurons by infection with virus vector and then reconstructed them three-dimensionally. We also examined the ultramicrostructure of synapses by electron microscopy tomography. To further clarify the function of cholinergic neurons, we performed confocal laser scanning microscopy to investigate whether other neurotransmitters are present within cholinergic axons in the OB. Our results showed the first visualization of complete cholinergic neurons, including axons projecting to the OB, and also revealed frequent axonal branching within the OB where it innervated multiple glomeruli in different areas. Furthermore, electron tomography demonstrated that cholinergic axons formed asymmetrical synapses with a morphological variety of thicknesses of the postsynaptic density. Although we have not yet detected the presence of other neurotransmitters, the range of synaptic morphology suggests multiple modes of transmission. The present study elucidates the ways that cholinergic neurons could contribute to the elaborate mechanisms involved in olfactory processing in the OB. J. Comp. Neurol. 525:574-591, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny

    PubMed Central

    Corfield, Jeremy R.; Price, Kasandra; Iwaniuk, Andrew N.; Gutierrez-Ibañez, Cristian; Birkhead, Tim; Wylie, Douglas R.

    2015-01-01

    The relative size of olfactory bulbs (OBs) is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species’ ecology. In birds, variations in the relative size of OBs are correlated with some behaviors; however, the factors that have led to the high level of diversity seen in OB sizes across birds are still not well understood. In this study, we use the relative size of OBs as a neuroanatomical proxy for olfactory capabilities in 135 species of birds, representing 21 orders. We examine the scaling of OBs with brain size across avian orders, determine likely ancestral states and test for correlations between OB sizes and habitat, ecology, and behavior. The size of avian OBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large OBs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi-aquatic environment was the strongest variable driving the evolution of large OBs in birds; olfaction may provide cues for navigation and foraging in this otherwise featureless environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and social structure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is an important sensory modality for all avian species. PMID:26283931

  1. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    PubMed Central

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  2. Manganese Accumulation in the Olfactory Bulbs and Other Brain Regions of “Asymptomatic” Welders

    PubMed Central

    Sen, Suman; Flynn, Michael R.; Du, Guangwei; Tröster, Alexander I.; An, Hongyu; Huang, Xuemei

    2011-01-01

    Welding-generated metallic fumes contain a substantial amount of manganese (Mn), making welders susceptible to Mn toxicity. Although overt Mn toxicity manifests as a type of parkinsonism, the consequences of chronic, low-level Mn exposure are unknown. To explore region-specific Mn accumulation and its potential functional consequences at subclinical levels of Mn exposure, we studied seven welders without obvious neurological deficits and seven age- and gender-matched controls. Mn exposure for welders was estimated by an occupational questionnaire. High-resolution brain magnetic resonance imaging (MRI), Grooved Pegboard performance of both hands, Trail making, and olfactory function tests were obtained from all subjects. Compared with controls, the welders had a significantly higher T1 relaxation rate (R1) in the olfactory bulb (OB, p = 0.02), mean T1-weighted intensity at frontal white matter (FWM; p = 0.01), bilateral globus pallidus (GP; p = 0.03), and putamen (p = 0.03). The welders scored worse than the controls on the Grooved Pegboard test for both dominant (p = 0.06) and nondominant hand (p = 0.03). The dominant hand Grooved Pegboard scores correlated best with mean MRI intensity of FWM (R2 = 0.51, p = 0.004), GP (R2 = 0.51, p = 0.004), putamen (R2 = 0.49, p= 0.006), and frontal gray matter (R2 = 0.42, p = 0.01), whereas the nondominant hand scores correlated best with intensity of FWM (R2 = 0.37, p = 0.02) and GP (R2 = 0.28, p = 0.05). No statistical differences were observed in either the Trail-making test or the olfactory test between the two groups. This study suggests that Mn accumulates in OB and multiple other brain regions in “asymptomatic” welders and that MRI abnormalities correlate with fine motor but not cognitive deficits. Further investigations of subclinical Mn exposure are warranted. PMID:21307282

  3. Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny.

    PubMed

    Corfield, Jeremy R; Price, Kasandra; Iwaniuk, Andrew N; Gutierrez-Ibañez, Cristian; Birkhead, Tim; Wylie, Douglas R

    2015-01-01

    The relative size of olfactory bulbs (OBs) is correlated with olfactory capabilities across vertebrates and is widely used to assess the relative importance of olfaction to a species' ecology. In birds, variations in the relative size of OBs are correlated with some behaviors; however, the factors that have led to the high level of diversity seen in OB sizes across birds are still not well understood. In this study, we use the relative size of OBs as a neuroanatomical proxy for olfactory capabilities in 135 species of birds, representing 21 orders. We examine the scaling of OBs with brain size across avian orders, determine likely ancestral states and test for correlations between OB sizes and habitat, ecology, and behavior. The size of avian OBs varied with the size of the brain and this allometric relationship was for the most part isometric, although species did deviate from this trend. Large OBs were characteristic of more basal species and in more recently derived species the OBs were small. Living and foraging in a semi-aquatic environment was the strongest variable driving the evolution of large OBs in birds; olfaction may provide cues for navigation and foraging in this otherwise featureless environment. Some of the diversity in OB sizes was also undoubtedly due to differences in migratory behavior, foraging strategies and social structure. In summary, relative OB size in birds reflect allometry, phylogeny and behavior in ways that parallel that of other vertebrate classes. This provides comparative evidence that supports recent experimental studies into avian olfaction and suggests that olfaction is an important sensory modality for all avian species.

  4. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb

    PubMed Central

    Huang, Longwen; Ung, Kevin; Garcia, Isabella; Quast, Kathleen B.; Cordiner, Keith; Saggau, Peter

    2016-01-01

    Elucidating patterns of functional synaptic connectivity and deciphering mechanisms of how plasticity influences such connectivity is essential toward understanding brain function. In the mouse olfactory bulb (OB), principal neurons (mitral/tufted cells) make reciprocal connections with local inhibitory interneurons, including granule cells (GCs) and external plexiform layer (EPL) interneurons. Our current understanding of the functional connectivity between these cell types, as well as their experience-dependent plasticity, remains incomplete. By combining acousto-optic deflector-based scanning microscopy and genetically targeted expression of Channelrhodopsin-2, we mapped connections in a cell-type-specific manner between mitral cells (MCs) and GCs or between MCs and EPL interneurons. We found that EPL interneurons form broad patterns of connectivity with MCs, whereas GCs make more restricted connections with MCs. Using an olfactory associative learning paradigm, we found that these circuits displayed differential features of experience-dependent plasticity. Whereas reciprocal connectivity between MCs and EPL interneurons was nonplastic, the connections between GCs and MCs were dynamic and adaptive. Interestingly, experience-dependent plasticity of GCs occurred only in certain stages of neuronal maturation. We show that different interneuron subtypes form distinct connectivity maps and modes of experience-dependent plasticity in the OB, which may reflect their unique functional roles in information processing. SIGNIFICANCE STATEMENT Deducing how specific interneuron subtypes contribute to normal circuit function requires understanding the dynamics of their connections. In the olfactory bulb (OB), diverse interneuron subtypes vastly outnumber principal excitatory cells. By combining acousto-optic deflector-based scanning microscopy, electrophysiology, and genetically targeted expression of Channelrhodopsin-2, we mapped the functional connectivity between mitral

  5. Experience-Dependent Plasticity in Accessory Olfactory Bulb Interneurons following Male-Male Social Interaction.

    PubMed

    Cansler, Hillary L; Maksimova, Marina A; Meeks, Julian P

    2017-07-26

    Chemosensory information processing in the mouse accessory olfactory system guides the expression of social behavior. After salient chemosensory encounters, the accessory olfactory bulb (AOB) experiences changes in the balance of excitation and inhibition at reciprocal synapses between mitral cells (MCs) and local interneurons. The mechanisms underlying these changes remain controversial. Moreover, it remains unclear whether MC-interneuron plasticity is unique to specific behaviors, such as mating, or whether it is a more general feature of the AOB circuit. Here, we describe targeted electrophysiological studies of AOB inhibitory internal granule cells (IGCs), many of which upregulate the immediate-early gene Arc after male-male social experience. Following the resident-intruder paradigm, Arc-expressing IGCs in acute AOB slices from resident males displayed stronger excitation than nonexpressing neighbors when sensory inputs were stimulated. The increased excitability of Arc-expressing IGCs was not correlated with changes in the strength or number of excitatory synapses with MCs but was instead associated with increased intrinsic excitability and decreased HCN channel-mediated IH currents. Consistent with increased inhibition by IGCs, MCs responded to sensory input stimulation with decreased depolarization and spiking following resident-intruder encounters. These results reveal that nonmating behaviors drive AOB inhibitory plasticity and indicate that increased MC inhibition involves intrinsic excitability changes in Arc-expressing interneurons.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is a site of experience-dependent plasticity between excitatory mitral cells (MCs) and inhibitory internal granule cells (IGCs), but the physiological mechanisms and behavioral conditions driving this plasticity remain unclear. Here, we report studies of AOB neuronal plasticity following male-male social chemosensory encounters. We show that the plasticity

  6. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    SciTech Connect

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues (Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916). Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system.

  7. Paced-Mating Increases the Number of Adult New Born Cells in the Internal Cellular (Granular) Layer of the Accessory Olfactory Bulb

    PubMed Central

    Corona, Rebeca; Larriva-Sahd, Jorge; Paredes, Raúl G.

    2011-01-01

    The continuous production and addition of new neurons during life in the olfactory bulb is well accepted and has been extensively studied in rodents. This process could allow the animals to adapt to a changing environment. Olfactory neurogenesis begins in the subventricular zone where stem cells proliferate and give rise to young undifferentiated neuroblasts that migrate along the rostral migratory stream to the olfactory bulb (OB). Olfaction is crucial for the expression of sexual behavior in rodents. In female rats, the ability to control the rate of sexual interactions (pacing) has important physiological and behavioral consequences. In the present experiment we evaluated if pacing behavior modifies the rate of new cells that reach the main and accessory olfactory bulb. The BrdU marker was injected before and after different behavioral tests which included: females placed in a mating cage (control), females allowed to pace the sexual interaction, females that mated but were not able to control the rate of the sexual interaction and females exposed to a sexually active male. Subjects were sacrificed fifteen days after the behavioral test. We observed a significant increase in the density of BrdU positive cells in the internal cellular layer of the accessory olfactory bulb when females paced the sexual interaction in comparison to the other 3 groups. No differences in the cell density in the main olfactory bulb were found. These results suggest that pacing behavior promotes an increase in density of the new cells in the accessory olfactory bulb. PMID:21637743

  8. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb.

    PubMed

    Dong, Qi; Du, Liping; Zhuang, Liujing; Li, Rong; Liu, Qingjun; Wang, Ping

    2013-11-15

    The mammalian olfactory system has merits of higher sensitivity, selectivity and faster response than current electronic nose system based on chemical sensor array. It is advanced and feasible to detect and discriminate odors by mammalian olfactory system. The purpose of this study is to develop a novel bioelectronic nose based on the brain-machine interface (BMI) technology for odor detection by in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted (M/T) cells in olfactory bulb (OB) were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns both in temporal features and rate features when stimulated by different small molecular odorants. The detection low limit is below 1 ppm for some specific odors. Odors were classified by an algorithm based on population vector similarity and support vector machine (SVM). The results suggested that the novel bioelectonic nose was sensitive to odorant stimuli. The best classifying accuracy was up to 95%. With the development of the BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.

  9. Increased Olfactory Bulb BDNF Expression Does Not Rescue Deficits in Olfactory Neurogenesis in the Huntington's Disease R6/2 Mouse.

    PubMed

    Smail, Shamayra; Bahga, Dalbir; McDole, Brittnee; Guthrie, Kathleen

    2016-03-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG trinucleotide repeats in the huntingtin gene. Mutant huntingtin protein (mhtt) interferes with the actions of brain-derived neurotrophic factor (BDNF), and BDNF signaling is reduced in the diseased striatum. Loss of this trophic support is thought to contribute to loss of striatal medium spiny neurons in HD. Increasing BDNF in the adult striatum or ventricular ependyma slows disease progression in HD mouse models, and diverts subventricular zone (SVZ)-derived neuroblasts from their normal destination, the olfactory bulb, to the striatum, where some survive and develop features of mature neurons. Most neuroblasts that migrate to the olfactory bulb differentiate as granule cells, with approximately half surviving whereas others undergo apoptosis. In the R6/2 HD mouse model, survival of adult-born granule cells is reduced. Newly maturing cells express the BDNF receptor TrkB, suggesting that mhtt may interfere with normal BDNF trophic activity, increasing their loss. To determine if augmenting BDNF counteracts this, we examined granule cell survival in R6/2 mice that overexpress BDNF in olfactory bulb. Although we detected a decline in apoptosis, increased BDNF was not sufficient to normalize granule cell survival within their normal target in R6/2 mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Organization of glomerular territories in the olfactory bulb of post-embryonic wild chinook salmon Oncorhynchus tshawytscha.

    PubMed

    Ochs, Cory L; Suntres, Tina; Zygowska, Alexandra; Pitcher, Trevor; Zielinski, Barbara S

    2017-04-01

    The post-embryonic odor imprinting paradigm suggests Chinook salmon (Oncorhynchus tshawytscha) acquire memory to stream-specific amino acid olfactory odors prior to emergence as fry. Because effects of olfactory experience on development can be examined by mapping olfactory sensory neurons extending into distinct territories of glomerular neuropil in the olfactory bulb, glomerular patterning from early yolk-sac larva to fry was documented in wild salmonids, a temporal scale not yet thoroughly explored. Labeling olfactory sensory neurons with anti-keyhole limpet hemocyanin (anti-KLH) revealed seven spatially conserved glomerular territories visible at hatch and well established by the late yolk-sac larva developmental stage. Because of the responsiveness of microvillous olfactory sensory neurons to amino acids, corresponding glomeruli in the lateral bulbar region were mapped using anti-calretinin. The dorsolateral territory, distinct glomeruli of the lateral glomerular territory and the ventromedial glomeruli were immunoreactive to both KLH and calretinin. This study offers a morphological description of glomerular patterning in post-embryonic stages in wild Chinook salmon, a temporal window previously shown to be significant for olfactory imprinting. J. Morphol. 278:464-474, 2017. © 2017 Wiley Periodicals, Inc.

  11. Staging of alpha-synuclein in the olfactory bulb in a model of Parkinson's disease: cell types involved.

    PubMed

    Ubeda-Bañon, Isabel; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Mohedano-Moriano, Alicia; Fradejas, Noelia; Calvo, Soledad; Argandoña-Palacios, Lucia; Garcia-Muñozguren, Susana; Martinez-Marcos, Alino

    2010-08-15

    Impaired olfaction is an early symptom of Parkinson's disease. The underlying neuropathology likely includes alpha-synucleinopathy in the olfactory bulb at an earlier stage (Braak's stage1) than pathology in the substantia nigra, which is not observed until stage 3. In this report, we investigated the distribution and cell types affected by alpha-synuclein in the olfactory bulb of transgenic mice (2-8 months of age) expressing the human A53T variant of alpha-synuclein. alpha-Synuclein immunostaining progressively affects interneurons and mitral cells. Double labeling studies demonstrate that dopaminergic cells are hardly involved, whereas glutamatergic- and calcium binding protein-positive cells are severely affected. This temporal evolution and the cell types expressing alpha-synuclein are reminiscent of idiopathic Parkinson's disease and support the usefulness of this model to address specific topics in the premotor phase of the disease.

  12. Sexual activity increases the number of newborn cells in the accessory olfactory bulb of male rats

    PubMed Central

    Portillo, Wendy; Unda, Nancy; Camacho, Francisco J.; Sánchez, María; Corona, Rebeca; Arzate, Dulce Ma.; Díaz, Néstor F.; Paredes, Raúl G.

    2012-01-01

    In rodents, sexual behavior depends on the adequate detection of sexually relevant stimuli. The olfactory bulb (OB) is a region of the adult mammalian brain undergoing constant cell renewal by continuous integration of new granular and periglomerular neurons in the accessory (AOB) and main (MOB) olfactory bulbs. The proliferation, migration, survival, maturation, and integration of these new cells to the OB depend on the stimulus that the subjects received. We have previously shown that 15 days after females control (paced) the sexual interaction an increase in the number of cells is observed in the AOB. No changes are observed in the number of cells when females are not allowed to control the sexual interaction. In the present study we investigated if in male rats sexual behavior increases the number of new cells in the OB. Male rats were divided in five groups: (1) males that did not receive any sexual stimulation, (2) males that were exposed to female odors, (3) males that mated for 1 h and could not pace their sexual interaction, (4) males that paced their sexual interaction and ejaculated one time and (5) males that paced their sexual interaction and ejaculated three times. All males received three injections of the DNA synthesis marker bromodeoxyuridine at 1h intervals, starting 1 h before the beginning of the behavioral test. Fifteen days later, males were sacrificed and the brains were processed to identify new cells and to evaluate if they differentiated into neurons. The number of newborn cells increased in the granular cell layer (GrCL; also known as the internal cell layer) of the AOB in males that ejaculated one or three times controlling (paced) the rate of the sexual interaction. Some of these new cells were identified as neurons. In contrast, no significant differences were found in the mitral cell layer (also known as the external cell layer) and glomerular cell layer (GlCL) of the AOB. In addition, no significant differences were found between

  13. Subsecond Regulation of Synaptically Released Dopamine by COMT in the Olfactory Bulb.

    PubMed

    Cockerham, Renee; Liu, Shaolin; Cachope, Roger; Kiyokage, Emi; Cheer, Joseph F; Shipley, Michael T; Puche, Adam C

    2016-07-20

    The efficacy of neurotransmission depends on multiple factors, including presynaptic vesicular release of transmitter, postsynaptic receptor populations and clearance/inactivation of the transmitter. In the olfactory bulb (OB), short axon cells (SACs) form an interglomerular circuit that uses GABA and dopamine (DA) as cotransmitters. Selective optical activation of SACs causes GABA and DA co-release, resulting in a fast, postsynaptic GABA inhibitory response and a slower G-protein-coupled DA rebound excitation. In most systems, vesicular release of DA is cleared by the dopamine transporter (DAT). However, in the OB, high levels of specific DA metabolites suggest that enzymatic catalysis by catechol-O-methyl-transferase (COMT) predominates over DAT re-uptake. To assess this possibility we measured the amount of the DA breakdown enzyme, COMT, present in the OB. Compared with the striatum, the brain structure richest in DA terminals, the OB contains 50% more COMT per unit of tissue. Furthermore, the OB has dramatically less DAT compared with striatum, supporting the idea that COMT enzymatic breakdown, rather than DAT recycling, is the predominant mechanism for DA clearance. To functionally assess COMT inactivation of vesicular release of DA we used fast-scan cyclic voltammetry and pharmacological blockade of COMT. In mice expressing ChR2 in tyrosine hydroxylase-containing neurons, optical activation of SACs evoked robust DA release in the glomerular layer. The COMT inhibitor, tolcapone, increased the DA signal ∼2-fold, whereas the DAT inhibitor GBR12909 had no effect. Together, these data indicate that the OB preferentially employs COMT enzymatic inactivation of vesicular release of DA. In the olfactory bulb (OB), odors are encoded by glomerular activation patterns. Dopaminergic short axon neurons (SACs) form an extensive network of lateral connections that mediate cross talk among glomeruli, releasing GABA and DA onto sensory nerve terminals and postsynaptic

  14. Subsecond Regulation of Synaptically Released Dopamine by COMT in the Olfactory Bulb

    PubMed Central

    Cockerham, Renee; Liu, Shaolin; Cachope, Roger; Kiyokage, Emi; Cheer, Joseph F.; Shipley, Michael T.

    2016-01-01

    The efficacy of neurotransmission depends on multiple factors, including presynaptic vesicular release of transmitter, postsynaptic receptor populations and clearance/inactivation of the transmitter. In the olfactory bulb (OB), short axon cells (SACs) form an interglomerular circuit that uses GABA and dopamine (DA) as cotransmitters. Selective optical activation of SACs causes GABA and DA co-release, resulting in a fast, postsynaptic GABA inhibitory response and a slower G-protein-coupled DA rebound excitation. In most systems, vesicular release of DA is cleared by the dopamine transporter (DAT). However, in the OB, high levels of specific DA metabolites suggest that enzymatic catalysis by catechol-O-methyl-transferase (COMT) predominates over DAT re-uptake. To assess this possibility we measured the amount of the DA breakdown enzyme, COMT, present in the OB. Compared with the striatum, the brain structure richest in DA terminals, the OB contains 50% more COMT per unit of tissue. Furthermore, the OB has dramatically less DAT compared with striatum, supporting the idea that COMT enzymatic breakdown, rather than DAT recycling, is the predominant mechanism for DA clearance. To functionally assess COMT inactivation of vesicular release of DA we used fast-scan cyclic voltammetry and pharmacological blockade of COMT. In mice expressing ChR2 in tyrosine hydroxylase-containing neurons, optical activation of SACs evoked robust DA release in the glomerular layer. The COMT inhibitor, tolcapone, increased the DA signal ∼2-fold, whereas the DAT inhibitor GBR12909 had no effect. Together, these data indicate that the OB preferentially employs COMT enzymatic inactivation of vesicular release of DA. SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are encoded by glomerular activation patterns. Dopaminergic short axon neurons (SACs) form an extensive network of lateral connections that mediate cross talk among glomeruli, releasing GABA and DA onto sensory nerve terminals

  15. Enhanced synaptic integration of adult-born neurons in the olfactory bulb of lactating mothers.

    PubMed

    Kopel, Hagit; Schechtman, Eitan; Groysman, Maya; Mizrahi, Adi

    2012-05-30

    One of the most dramatic events during the life of adult mammals is the transition into motherhood. This transition is accompanied by specific maternal behaviors, displayed by the mother, that ensure the survival and the well-being of her offspring. The execution of these behaviors is most likely accompanied by plastic changes in specific neuronal circuits, but these are still poorly defined. In this work, we studied the mammalian olfactory bulb (OB), which has been shown to be an essential brain region for maternal behaviors in mice. In the OB, we focused on adult-born neurons, which are continuously incorporated into the circuit during adulthood, thus providing a potential substrate for heightened plasticity after parturition. We analyzed the dynamics and morphological characteristics of adult-born granule cells (abGCs), innervating the OB of primiparous lactating mothers, shortly after parturition as well as in naive females. In vivo time-lapse imaging of abGCs revealed that dendritic spines were significantly more stable in lactating mothers compared with naive virgins. In contrast, spine stability of resident GCs remained unchanged after parturition. In addition, while spine size distribution of abGCs was approximately similar between mothers and naive virgins, the spine density of abGCs was lower in lactating mothers and the density of their presynaptic components was higher. These structural features are indicative of enhanced integration of adult-born neurons into the bulbar circuitry of lactating mothers. This enhanced integration may serve as a cellular mechanism, supporting changes in olfactory coding of new mothers during their first days following parturition.

  16. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb.

    PubMed

    Fang, Long-Yun; Quan, Rong-Dan; Kaba, Hideto

    2008-06-20

    When female mice are mated, they form a memory to the pheromonal signal of their male partner. Several lines of evidence indicate that the neural changes underlying this memory occur in the accessory olfactory bulb (AOB) at the first stage of the vomeronasal system. The formation of this memory depends on the mating-induced release of noradrenaline in the AOB. In addition to noradrenaline, the neuropeptide oxytocin (OT) is also released within the central nervous system during mating. Because OT has been implicated in social memory and its receptors are expressed in the AOB, we hypothesized that OT might promote the strength of synaptic transmission from mitral to granule cells in the AOB. To test this hypothesis, we analyzed the lateral olfactory tract-evoked field potential that represents the granule cell response to mitral cell activation and its plasticity in parasagittal slices of the AOB. Of the 10-, 20-, 50-, and 100-Hz stimulations tested, the 100-Hz stimulation was optimal for inducing long-term potentiation (LTP). OT paired with 100-Hz stimulation that only produced short-term potentiation enhanced LTP induction in a dose-dependent manner. OT-paired LTP was blocked by both the selective OT antagonist desGly-NH(2),d(CH(2))(5)[Tyr(Me)(2),Thr(4)]-ornithine vasotocin and the N-methyl-d-aspartate (NMDA) receptor antagonist dl-2-amino-5-phosphonovaleric acid. These results indicate that OT can function as a gate to modulate the establishment of NMDA receptor-dependent LTP at the mitral-to-granule cell synapse in the AOB.

  17. Clinical application of adult olfactory bulb ensheathing glia for nervous system repair.

    PubMed

    Ramón-Cueto, Almudena; Muñoz-Quiles, Cintia

    2011-05-01

    The ability of adult olfactory bulb ensheathing glia (OB-OEG) to promote histological and functional neural repair has been broadly documented. Pre-clinical studies show that beneficial effects of adult OB-OEG are repeatable in the same type of spinal cord injury initially tested, in other spinal cord and CNS injury models, in different species and after the administration of these cells in different forms (either alone or in combination with other cells, drugs, products or devices). These studies demonstrate the reproducibility, robustness, fundamental nature and relevance of the findings. Therefore, the use of adult OB-OEG for spinal cord injury repair meets the scientific criteria established by the International Campaign for Cures of Spinal Cord Injury Paralysis (ICCP) for the translation to human application. Because there is so much heterogeneity in the way adult OEG is administered, each of these different OEG-based therapies must be individually categorized to determine whether they fulfill the requisites dictated by the consolidated regulatory body to be considered or not as a medicine. In the case they do, in Europe, they shall be subjected to the Regulatory European Framework for Advanced Therapy Medicinal Products and the European Clinical Trials Directive (Directives 2001/20/EC and 2009/120/EC). After a deep analysis of the European Regulation we have concluded that grafts consisting of suspensions of purified adult OEG, to be used for the promotion of axonal regeneration in the CNS, do not comply with the definition of Medicinal Product provided by the European Medicines Agency. In contrast, experimental therapies using OEG in combination with other cell types, drugs, products or devices, or genetically-modified OEG fall under the definitions of Medicinal Product. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Odour enrichment increases adult-born dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Fasolo, Aldo; Peretto, Paolo; De Marchis, Silvia

    2014-11-01

    The olfactory bulb (OB) is the first brain region involved in the processing of olfactory information. In adult mice, the OB is highly plastic, undergoing cellular/molecular dynamic changes that are modulated by sensory experience. Odour deprivation induces down-regulation of tyrosine hydroxylase (TH) expression in OB dopaminergic interneurons located in the glomerular layer (GL), resulting in decreased dopamine in the OB. Although the effect of sensory deprivation is well established, little is known about the influence of odour enrichment on dopaminergic cells. Here we report that prolonged odour enrichment on C57BL/6J strain mice selectively increases TH-immunopositive cells in the GL by nearly 20%. Following odour enrichment on TH-green fluorescent protein (GFP) transgenic mice, in which GFP identified both mature TH-positive cells and putative immature dopaminergic cells expressing TH mRNA but not TH protein, we found a similar 20% increase in GFP-expressing cells, with no changes in the ratio between TH-positive and TH-negative cells. These data suggest that enriched conditions induce an expansion in the whole dopaminergic lineage. Accordingly, by using 5-bromo-2-deoxyuridine injections to label adult-generated cells in the GL of TH-GFP mice, we found an increase in the percentage of 5-bromo-2-deoxyuridine-positive dopaminergic cells in enriched compared with control conditions, whereas no differences were found for calretinin- and calbindin-positive subtypes. Strikingly, the fraction of newborn cells among the dopaminergic population doubled in enriched conditions. On the whole, our results demonstrate that odour enrichment drives increased integration of adult-generated dopaminergic cells that could be critical to adapt the OB circuits to the environmental incoming information.

  19. Multiple conductances cooperatively regulate spontaneous bursting in mouse olfactory bulb external tufted cells.

    PubMed

    Liu, Shaolin; Shipley, Michael T

    2008-02-13

    External tufted (ET) cells are juxtaglomerular neurons that spontaneously generate bursts of action potentials, which persist when fast synaptic transmission is blocked. The intrinsic mechanism of this autonomous bursting is unknown. We identified a set of voltage-dependent conductances that cooperatively regulate spontaneous bursting: hyperpolarization-activated inward current (I(h)), persistent Na+ current (I(NaP)), low-voltage-activated calcium current (I(L/T)) mediated by T- and/or L-type Ca2+ channels, and large-conductance Ca2+-dependent K+ current (I(BK)). I(h) is important in setting membrane potential and depolarizes the cell toward the threshold of I(NaP) and I(T/L), which are essential to generate the depolarizing envelope that is crowned by a burst of action potentials. Action potentials depolarize the membrane and induce Ca2+ influx via high-voltage-activated Ca2+ channels (I(HVA)). The combined depolarization and increased intracellular Ca2+ activates I(BK), which terminates the burst by hyperpolarizing the membrane. Hyperpolarization activates I(h) and the cycle is regenerated. A novel finding is the role of L-type Ca2+ channels in autonomous ET cells bursting. A second novel feature is the role of BK channels, which regulate burst duration. I(L) and I(BK) may go hand-in-hand, the slow inactivation of I(L) requiring I(BK)-dependent hyperpolarization to deactivate inward conductances and terminate the burst. ET cells receive monosynaptic olfactory nerve input and drive the major inhibitory interneurons of the glomerular circuit. Modulation of the conductances identified here can regulate burst frequency, duration, and spikes per burst in ET cells and thus significantly shape the impact of glomerular circuits on mitral and tufted cells, the output channels of the olfactory bulb.

  20. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei

    PubMed Central

    Brunert, Daniela; Tsuno, Yusuke; Rothermel, Markus; Shipley, Michael T.

    2016-01-01

    Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo. Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1–4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory

  1. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei.

    PubMed

    Brunert, Daniela; Tsuno, Yusuke; Rothermel, Markus; Shipley, Michael T; Wachowiak, Matt

    2016-06-22

    Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the

  2. Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb

    PubMed Central

    Cavarretta, Francesco; Marasco, Addolorata; Hines, Michael L.; Shepherd, Gordon M.; Migliore, Michele

    2016-01-01

    The olfactory bulb processes inputs from olfactory receptor neurons (ORNs) through two levels: the glomerular layer at the site of input, and the granule cell level at the site of output to the olfactory cortex. The sequence of action of these two levels has not yet been examined. We analyze this issue using a novel computational framework that is scaled up, in three-dimensions (3D), with realistic representations of the interactions between layers, activated by simulated natural odors, and constrained by experimental and theoretical analyses. We suggest that the postulated functions of glomerular circuits have as their primary role transforming a complex and disorganized input into a contrast-enhanced and normalized representation, but cannot provide for synchronization of the distributed glomerular outputs. By contrast, at the granule cell layer, the dendrodendritic interactions mediate temporal decorrelation, which we show is dependent on the preceding contrast enhancement by the glomerular layer. The results provide the first insights into the successive operations in the olfactory bulb, and demonstrate the significance of the modular organization around glomeruli. This layered organization is especially important for natural odor inputs, because they activate many overlapping glomeruli. PMID:27471461

  3. Home-cage odors spatial cues elicit theta phase/gamma amplitude coupling between olfactory bulb and dorsal hippocampus.

    PubMed

    Pena, Roberta Ribas; Medeiros, Daniel de Castro; Guarnieri, Leonardo de Oliveira; Guerra, Julio Boriollo; Carvalho, Vinícius Rezende; Mendes, Eduardo Mazoni Andrade Marçal; Pereira, Grace Schenatto; Moraes, Márcio Flávio Dutra

    2017-09-07

    The brain oscillations may play a critical role in synchronizing neuronal assemblies in order to establish appropriate sensory-motor integration. In fact, studies have demonstrated phase-amplitude coupling of distinct oscillatory rhythms during cognitive processes. Here we investigated whether olfacto-hippocampal coupling occurs when mice are detecting familiar odors located in a spatially restricted area of a new context. The spatial olfactory task (SOT) was designed to expose mice to a new environment in which only one quadrant (target) contains odors provided by its own home-cage bedding. As predicted, mice showed a significant higher exploration preference to the target quadrant; which was impaired by olfactory epithelium lesion (ZnSO4). Furthermore, mice were able to discriminate odors from a different cage and avoided the quadrant with predator odor 2,4,5-trimethylthiazoline (TMT), reinforcing the specificity of the SOT. The local field potential (LFP) analysis of non-lesioned mice revealed higher gamma activity (35-100Hz) in the main olfactory bulb (MOB) and a significant theta phase/gamma amplitude coupling between MOB and dorsal hippocampus, only during exploration of home-cage odors (i.e. in the target quadrant). Our results suggest that exploration of familiar odors in a new context involves dynamic coupling between the olfactory bulb and dorsal hippocampus. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Sensory deprivation increases phagocytosis of adult-born neurons by activated microglia in the olfactory bulb.

    PubMed

    Denizet, Marie; Cotter, Laurent; Lledo, Pierre-Marie; Lazarini, Françoise

    2017-02-01

    The olfactory bulb (OB) is a highly plastic structure that can change organizational networks depending on environmental inputs in adult mammals. Particularly, in rodents, adult neurogenesis underlies plastic changes in the OB circuitry by continuously adding new interneurons to the network. We addressed the question of whether microglia, the immune cells of the brain, were involved in pruning OB neurons. Using lentiviral labeling of neurons in neonatal or adult mice and confocal analysis, we showed that microglia engulfed parts of neonatal-born and adult-born neurons in the healthy OB. We demonstrated that OB deafferentation by Dichlobenil administration induced sensory deprivation. It also increased phagocytosis of adult-born, but not neonatal-born neurons, by activated microglia. Conversely, intranasal lipopolysaccharide administration induced activation of microglia but changed neither adult neurogenesis nor olfaction. Our data reveal that steady-state microglia eliminate adult-born neurons and their synapses in both healthy and sensory deprived OBs, thereby adapting neuronal connections to the sensory experience.

  5. Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum.

    PubMed

    Weingarten, Jens; Laßek, Melanie; Mueller, Benjamin F; Rohmer, Marion; Baeumlisberger, Dominic; Beckert, Benedikt; Ade, Jens; Gogesch, Patricia; Acker-Palmer, Amparo; Karas, Michael; Volknandt, Walter

    2015-05-13

    Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements.

  6. Increased olfactory bulb acetylcholine bi-directionally modulates glomerular odor sensitivity

    PubMed Central

    Bendahmane, Mounir; Ogg, M. Cameron; Ennis, Matthew; Fletcher, Max L.

    2016-01-01

    The glomerular layer of the olfactory bulb (OB) receives heavy cholinergic input from the horizontal limb of the diagonal band of Broca (HDB) and expresses both muscarinic and nicotinic acetylcholine (ACh) receptors. However, the effects of ACh on OB glomerular odor responses remain unknown. Using calcium imaging in transgenic mice expressing the calcium indicator GCaMP2 in the mitral/tufted cells, we investigated the effect of ACh on the glomerular responses to increasing odor concentrations. Using HDB electrical stimulation and in vivo pharmacology, we find that increased OB ACh leads to dynamic, activity-dependent bi-directional modulation of glomerular odor response due to the combinatorial effects of both muscarinic and nicotinic activation. Using pharmacological manipulation to reveal the individual receptor type contributions, we find that m2 muscarinic receptor activation increases glomerular sensitivity to weak odor input whereas nicotinic receptor activation decreases sensitivity to strong input. Overall, we found that ACh in the OB increases glomerular sensitivity to odors and decreases activation thresholds. This effect, along with the decreased responses to strong odor input, reduces the response intensity range of individual glomeruli to increasing concentration making them more similar across the entire concentration range. As a result, odor representations are more similar as concentration increases. PMID:27165547

  7. Regional Specializations of the PAZ Proteomes Derived from Mouse Hippocampus, Olfactory Bulb and Cerebellum

    PubMed Central

    Weingarten, Jens; Laßek, Melanie; Mueller, Benjamin F.; Rohmer, Marion; Baeumlisberger, Dominic; Beckert, Benedikt; Ade, Jens; Gogesch, Patricia; Acker-Palmer, Amparo; Karas, Michael; Volknandt, Walter

    2015-01-01

    Neurotransmitter release as well as structural and functional dynamics at the presynaptic active zone (PAZ) comprising synaptic vesicles attached to the presynaptic plasma membrane are mediated and controlled by its proteinaceous components. Here we describe a novel experimental design to immunopurify the native PAZ-complex from individual mouse brain regions such as olfactory bulb, hippocampus, and cerebellum with high purity that is essential for comparing their proteome composition. Interestingly, quantitative immunodetection demonstrates significant differences in the abundance of prominent calcium-dependent PAZ constituents. Furthermore, we characterized the proteomes of the immunoisolated PAZ derived from the three brain regions by mass spectrometry. The proteomes of the release sites from the respective regions exhibited remarkable differences in the abundance of a large variety of PAZ constituents involved in various functional aspects of the release sites such as calcium homeostasis, synaptic plasticity and neurogenesis. On the one hand, our data support an identical core architecture of the PAZ for all brain regions and, on the other hand, demonstrate that the proteinaceous composition of their presynaptic active zones vary, suggesting that changes in abundance of individual proteins strengthen the ability of the release sites to adapt to specific functional requirements. PMID:28248263

  8. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network

    PubMed Central

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709

  9. Principal cell activity induces spine relocation of adult-born interneurons in the olfactory bulb

    PubMed Central

    Breton-Provencher, Vincent; Bakhshetyan, Karen; Hardy, Delphine; Bammann, Rodrigo Roberto; Cavarretta, Francesco; Snapyan, Marina; Côté, Daniel; Migliore, Michele; Saghatelyan, Armen

    2016-01-01

    Adult-born neurons adjust olfactory bulb (OB) network functioning in response to changing environmental conditions by the formation, retraction and/or stabilization of new synaptic contacts. While some changes in the odour environment are rapid, the synaptogenesis of adult-born neurons occurs over a longer time scale. It remains unknown how the bulbar network functions when rapid and persistent changes in environmental conditions occur but when new synapses have not been formed. Here we reveal a new form of structural remodelling where mature spines of adult-born but not early-born neurons relocate in an activity-dependent manner. Principal cell activity induces directional growth of spine head filopodia (SHF) followed by spine relocation. Principal cell-derived glutamate and BDNF regulate SHF motility and directional spine relocation, respectively; and spines with SHF are selectively preserved following sensory deprivation. Our three-dimensional model suggests that spine relocation allows fast reorganization of OB network with functional consequences for odour information processing. PMID:27578235

  10. Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells

    PubMed Central

    Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo

    2015-01-01

    Persistent activity has been reported in many brain areas and is hypothesized to mediate working memory and emotional brain states and to rely upon network or biophysical feedback. Here, we demonstrate a novel mechanism by which persistent neuronal activity can be generated without feedback, relying instead on the slow removal of Na+ from neurons following bursts of activity. We show that mitral cells in the accessory olfactory bulb (AOB), which plays a major role in mammalian social behavior, may respond to a brief sensory stimulation with persistent firing. By combining electrical recordings, Ca2+ and Na+ imaging, and realistic computational modeling, we explored the mechanisms underlying the persistent activity in AOB mitral cells. We found that the exceptionally slow inward current that underlies this activity is governed by prolonged dynamics of intracellular Na+ ([Na+]i), which affects neuronal electrical activity via several pathways. Specifically, elevated dendritic [Na+]i reverses the Na+-Ca2+ exchanger activity, thus modifying the [Ca2+]i set-point. This process, which relies on ubiquitous membrane mechanisms, is likely to play a role in other neuronal types in various brain regions. PMID:26674618

  11. The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network.

    PubMed

    Malvaut, Sarah; Saghatelyan, Armen

    2016-01-01

    The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour.

  12. New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis

    PubMed Central

    Eiriz, Maria F.; Valero, Jorge; Malva, João O.; Bernardino, Liliana

    2014-01-01

    The subventricular zone (SVZ) contains neural stem cells (NSCs) that generate new neurons throughout life. Many brain diseases stimulate NSCs proliferation, neuronal differentiation and homing of these newborns cells into damaged regions. However, complete cell replacement has never been fully achieved. Hence, the identification of proneurogenic factors crucial for stem cell-based therapies will have an impact in brain repair. Histamine, a neurotransmitter and immune mediator, has been recently described to modulate proliferation and commitment of NSCs. Histamine levels are increased in the brain parenchyma and at the cerebrospinal fluid (CSF) upon inflammation and brain injury, thus being able to modulate neurogenesis. Herein, we add new data showing that in vivo administration of histamine in the lateral ventricles has a potent proneurogenic effect, increasing the production of new neuroblasts in the SVZ that ultimately reach the olfactory bulb (OB). This report emphasizes the multidimensional effects of histamine in the modulation of NSCs dynamics and sheds light into the promising therapeutic role of histamine for brain regenerative medicine. PMID:24982610

  13. Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb

    PubMed Central

    Gschwend, Olivier; Beroud, Jonathan; Vincis, Roberto; Rodriguez, Ivan; Carleton, Alan

    2016-01-01

    Sensory information undergoes substantial transformation along sensory pathways, usually encompassing sparsening of activity. In the olfactory bulb, though natural odorants evoke dense glomerular input maps, mitral and tufted (M/T) cells tuning is considered to be sparse because of highly odor-specific firing rate change. However, experiments used to draw this conclusion were either based on recordings performed in anesthetized preparations or used monomolecular odorants presented at arbitrary concentrations. In this study, we evaluated the lifetime and population sparseness evoked by natural odorants by capturing spike temporal patterning of neuronal assemblies instead of individual M/T tonic activity. Using functional imaging and tetrode recordings in awake mice, we show that natural odorants at their native concentrations are encoded by broad assemblies of M/T cells. While reducing odorant concentrations, we observed a reduced number of activated glomeruli representations and consequently a narrowing of M/T tuning curves. We conclude that natural odorants at their native concentrations recruit M/T cells with phasic rather than tonic activity. When encoding odorants in assemblies, M/T cells carry information about a vast number of odorants (lifetime sparseness). In addition, each natural odorant activates a broad M/T cell assembly (population sparseness). PMID:27824096

  14. Changes in cell migration and survival in the olfactory bulb of the pcd/pcd mouse.

    PubMed

    Valero, J; Weruaga, E; Murias, A R; Recio, J S; Curto, G G; Gómez, C; Alonso, J R

    2007-06-01

    Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.

  15. Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice

    PubMed Central

    Li, Zhenzu; Zhang, Tingting; Lin, Zhuchun; Hou, Congzhe; Zhang, Jian; Men, Yuqin; Li, Huashun

    2016-01-01

    Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice. PMID:27603780

  16. 3-dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons.

    PubMed

    Wanner, Adrian A; Genoud, Christel; Friedrich, Rainer W

    2016-11-08

    Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm(3). Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS.

  17. Functional optical coherence tomography of rat olfactory bulb with periodic odor stimulation

    PubMed Central

    Watanabe, Hideyuki; Rajagopalan, Uma Maheswari; Nakamichi, Yu; Igarashi, Kei M.; Kadono, Hirofumi; Tanifuji, Manabu

    2016-01-01

    In rodent olfactory bulb (OB), optical intrinsic signal imaging (OISI) is commonly used to investigate functional maps to odorant stimulations. However, in such studies, the spatial resolution in depth direction (z-axis) is lost because of the integration of light from different depths. To solve this problem, we propose functional optical coherence tomography (fOCT) with periodic stimulation and continuous recording. In fOCT experiments of in vivo rat OB, propionic acid and m-cresol were used as odor stimulus presentations. Such a periodic stimulation enabled us to detect the specific odor-responses from highly scattering brain tissue. Swept source OCT operating at a wavelength of 1334 nm and a frequency of 20 kHz, was employed with theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm, respectively. We succeeded in visualizing 2D cross sectional fOCT map across the neural layer structure of OCT in vivo. The detected fOCT signals corresponded to a few glomeruli of the medial and lateral parts of dorsal OB. We also obtained 3D fOCT maps, which upon integration across z-axis agreed well with OISI results. We expect such an approach to open a window for investigating and possibly addressing toward inter/intra-layer connections at high resolutions in the future. PMID:27231593

  18. Chronic Spinal Injury Repair by Olfactory Bulb Ensheathing Glia and Feasibility for Autologous Therapy

    PubMed Central

    Muñoz-Quiles, Cintia; Santos-Benito, Fernando F.; Llamusí, M. Beatriz; Ramón-Cueto, Almudena

    2009-01-01

    Olfactory bulb ensheathing glia (OB-OEG) promote repair of spinal cord injury (SCI) in rats after transplantation at acute or subacute (up to 45 days) stages. The most relevant clinical scenario in humans, however, is chronic SCI, in which no more major cellular or molecular changes occur at the injury site; this occurs after the third month in rodents. Whether adult OB-OEG grafts promote repair of severe chronic SCI has not been previously addressed. Rats with complete SCI that were transplanted with OB-OEG 4 months after injury exhibited progressive improvement in motor function and axonal regeneration from different brainstem nuclei across and beyond the SCI site. A positive correlation between motor outcome and axonal regeneration suggested a role for brainstem neurons in the recovery. Functional and histological outcomes did not differ at subacute or chronic stages. Thus, autologous transplantation is a feasible approach as there is time for patient stabilization and OEG preparation in human chronic SCI; the healing effects of OB-OEG on established injuries may offer new therapeutic opportunities for chronic SCI patients. PMID:19915486

  19. 3-dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons

    PubMed Central

    Wanner, Adrian A.; Genoud, Christel; Friedrich, Rainer W.

    2016-01-01

    Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm3. Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS. PMID:27824337

  20. Role of the Retinoblastoma protein, Rb, during adult neurogenesis in the olfactory bulb

    PubMed Central

    Naser, Rayan; Vandenbosch, Renaud; Omais, Saad; Hayek, Dayana; Jaafar, Carine; Al Lafi, Sawsan; Saliba, Afaf; Baghdadi, Maarouf; Skaf, Larissa; Ghanem, Noël

    2016-01-01

    Adult neural stem cells (aNSCs) are relatively quiescent populations that give rise to distinct neuronal subtypes throughout life, yet, at a very low rate and restricted differentiation potential. Thus, identifying the molecular mechanisms that control their cellular expansion is critical for regeneration after brain injury. Loss of the Retinoblastoma protein, Rb, leads to several defects in cell cycle as well as neuronal differentiation and migration during brain development. Here, we investigated the role of Rb during adult neurogenesis in the olfactory bulb (OB) by inducing its temporal deletion in aNSCs and progenitors. Loss of Rb was associated with increased proliferation of adult progenitors in the subventricular zone (SVZ) and the rostral migratory stream (RMS) but did not alter self-renewal of aNSCs or neuroblasts subsequent migration and terminal differentiation. Hence, one month after their birth, Rb-null neuroblasts were able to differentiate into distinct subtypes of GABAergic OB interneurons but were gradually lost after 3 months. Similarly, Rb controlled aNSCs/progenitors proliferation in vitro without affecting their differentiation capacity. This enhanced SVZ/OB neurogenesis associated with loss of Rb was only transient and negatively affected by increased apoptosis indicating a critical requirement for Rb in the long-term survival of adult-born OB interneurons. PMID:26847607

  1. Role of the Retinoblastoma protein, Rb, during adult neurogenesis in the olfactory bulb.

    PubMed

    Naser, Rayan; Vandenbosch, Renaud; Omais, Saad; Hayek, Dayana; Jaafar, Carine; Al Lafi, Sawsan; Saliba, Afaf; Baghdadi, Maarouf; Skaf, Larissa; Ghanem, Noël

    2016-02-05

    Adult neural stem cells (aNSCs) are relatively quiescent populations that give rise to distinct neuronal subtypes throughout life, yet, at a very low rate and restricted differentiation potential. Thus, identifying the molecular mechanisms that control their cellular expansion is critical for regeneration after brain injury. Loss of the Retinoblastoma protein, Rb, leads to several defects in cell cycle as well as neuronal differentiation and migration during brain development. Here, we investigated the role of Rb during adult neurogenesis in the olfactory bulb (OB) by inducing its temporal deletion in aNSCs and progenitors. Loss of Rb was associated with increased proliferation of adult progenitors in the subventricular zone (SVZ) and the rostral migratory stream (RMS) but did not alter self-renewal of aNSCs or neuroblasts subsequent migration and terminal differentiation. Hence, one month after their birth, Rb-null neuroblasts were able to differentiate into distinct subtypes of GABAergic OB interneurons but were gradually lost after 3 months. Similarly, Rb controlled aNSCs/progenitors proliferation in vitro without affecting their differentiation capacity. This enhanced SVZ/OB neurogenesis associated with loss of Rb was only transient and negatively affected by increased apoptosis indicating a critical requirement for Rb in the long-term survival of adult-born OB interneurons.

  2. Age-Dependent Neurogenesis and Neuron Numbers within the Olfactory Bulb and Hippocampus of Homing Pigeons

    PubMed Central

    Meskenaite, Virginia; Krackow, Sven; Lipp, Hans-Peter

    2016-01-01

    Many birds are supreme long-distance navigators that develop their navigational ability in the first months after fledgling but update the memorized environmental information needed for navigation also later in life. We studied the extent of juvenile and adult neurogenesis that could provide such age-related plasticity in brain regions known to mediate different mechanisms of pigeon homing: the olfactory bulb (OB), and the triangular area of the hippocampal formation (HP tr). Newly generated neurons (visualized by doublecortin, DCX) and mature neurons were counted stereologically in 35 pigeon brains ranging from 1 to 168 months of age. At the age of 1 month, both areas showed maximal proportions of DCX positive neurons, which rapidly declined during the first year of life. In the OB, the number of DCX-positive periglomerular neurons declined further over time, but the number of mature periglomerular cells appeared unchanged. In the hippocampus, the proportion of DCX-positive neurons showed a similar decline yet to a lesser extent. Remarkably, in the triangular area of the hippocampus, the oldest birds showed nearly twice the number of neurons as compared to young adult pigeons, suggesting that adult born neurons in these regions expanded the local circuitry even in aged birds. This increase might reflect navigational experience and, possibly, expanded spatial memory. On the other hand, the decrease of juvenile neurons in the aging OB without adding new circuitry might be related to the improved attachment to the loft characterizing adult and old pigeons. PMID:27445724

  3. Imaging Odor-Evoked Activities in the Mouse Olfactory Bulb using Optical Reflectance and Autofluorescence Signals

    PubMed Central

    Chery, Romain; L'Heureux, Barbara; Bendahmane, Mounir; Renaud, Rémi; Martin, Claire; Pain, Frédéric; Gurden, Hirac

    2011-01-01

    In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain. Here, we present two techniques based on changes of endogenous optical properties of the brain tissue during activation. First the intrinsic optical signals (IOS) are produced by a local alteration in red light reflectance due to: (i) absorption by changes in blood oxygenation level and blood volume (ii) photon scattering. The use of in vivo IOS to record spatial maps started in the mid 1980's with the observation of optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex1. IOS imaging of the surface of the rodent main olfactory bulb (OB) in response to odorants was later demonstrated by Larry Katz's group2. The second approach relies on flavoprotein autofluorescence signals (FAS) due to changes in the redox state of these mitochondrial metabolic intermediates. More precisely, the technique is based on the green fluorescence due to oxidized state of flavoproteins when the tissue is excited with blue light. Although such signals were probably among the first fluorescent molecules recorded for the study of brain activity by the pioneer studies of Britton Chances and colleagues3, it was not until recently that they have been used for mapping of brain activation in vivo. FAS imaging was first applied to the somatosensory cortex in rodents in response to hindpaw stimulation by Katsuei Shibuki's group4. The olfactory system is of central importance for the survival of the vast majority of living species because it

  4. Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields.

    PubMed

    Kress, Sigrid; Biechl, Daniela; Wullimann, Mario F

    2015-07-01

    In the zebrafish (Danio rerio) olfactory epithelium, the calcium-binding proteins (CBPs) calretinin and S100/S100-like protein are mainly expressed in ciliated or crypt olfactory sensory neurons (OSNs), respectively. In contrast parvalbumin and calbindin1 have not been investigated. We present a combinatorial immunohistological analysis of all four CBPs, including their expression in OSNs and their axonal projections to the olfactory bulb in larval and adult zebrafish. A major expression of calretinin and S100 in ciliated and crypt cells, respectively, with some expression of S100 in microvillous cells is confirmed. Parvalbumin and calbindin1 are strongly expressed in ciliated and microvillous cells, but not in crypt cells. Moreover, detailed combinatorial double-label experiments indicate that there are eight subpopulations of zebrafish OSNs: S100-positive crypt cells (negative for all other three CBPs), parvalbumin only, S100 and parvalbumin, parvalbumin and calbindin1, and parvalbumin and calbindin1 and calretinin-positive microvillous OSNs, as well as a major parvalbumin and calbindin1 and calretinin, and minor parvalbumin and calbindin1 and calretinin-only-positive ciliated OSN populations. CBP-positive projections to olfactory bulb are consistent with previous reports of ciliated OSNs projecting to dorsal and ventromedial glomerular fields and microvillous OSNs to ventrolateral glomerular fields. We newly describe parvalbumin-positive fibers to the mediodorsal field which is calretinin free, with its anterior part showing additionally calbindin1-positive fibers, but absence thereof in the posterior part, indicating an origin from microvillous OSNs in both parts. One singular glomerulus (mdG2) exhibits S100 and parvalbumin-positive fibers, apparently originating from all crypt cells plus some microvillous OSNs. Arguments for various olfactory labeled lines are discussed.

  5. Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure.

    PubMed

    Monjaraz-Fuentes, Fernanda; Millán-Adalco, Diana; Palomero-Rivero, Marcela; Hudson, Robyn; Drucker-Colín, René

    2017-09-01

    Olfactory glomeruli are the first synaptic site of the olfactory system and are formed by the convergence of axons of the same type of sensory neurons onto the olfactory bulbs of the brain. Although the anatomical organization of glomeruli is conserved across species, their particular role in olfactory processing remains uncertain. We studied the composition and maintenance of glomeruli by means of a genetic model, mI7-IRES-tauGFP knock-in young mice, where the cytoskeleton of sensory neurons expressing the mI7 olfactory receptor is tagged with green fluorescent protein. Animals were continuously exposed to heptaldehyde, a cognate ligand of the mI7 receptor, from postnatal days 5-10. We hypothesized that continuous odorant exposure will induce changes in glomerular morphology, and that this can be recovered if the normal odorant environment is reestablished within the early postnatal period. We assessed changes in the distribution of mI7 axons in glomerular morphology, as well as possible changes in the number of the mI7 olfactory sensory neurons. Following odorant exposure the well-defined convergence of mI7 fibers into a single glomerulus was disrupted, producing numerous neighboring glomeruli partially innervated by mI7 fibers. After the normal odor environment was reestablished the number of glomeruli partially innervated by mI7 fibers decreased significantly. Moreover, we found that multiple supernumerary mI7 glomeruli were formed. Our results confirm the significant role of sensory input in glomerular formation and maintenance. Additionally, we show that the developing olfactory system actively maintains glomerular morphology, suggesting the importance of this for olfactory processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Egr-1 antisense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx.

    PubMed

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Balamurugan, Krishnaswamy; Ragu Varman, Durairaj; Rajan, Koilmani Emmanuvel

    2012-08-30

    Postsynaptic densities (PSDs) contain proteins that regulate synaptic transmission. We examined two important examples of these, calcium/calmodulin-dependent protein kinase II (CaMKII) and PSD-95, in regard to the functional role of early growth response gene-1 (egr-1) in regulation of olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx (family Pteropodidae). To test whether activation of egr-1 in the olfactory bulb (OB) is required for olfactory memory of these bats, bilaterally canulated individuals were infused with antisense (AS) or non-sense (NS)-oligodeoxynucleotides (ODN) of egr-1, or with phosphate buffer saline (PBS), 2h before the olfactory training. Our results showed that behavioral training significantly up-regulates immediate early gene (IEG) EGR-1 and key synaptic proteins Synaptotagmin-1(SYT-1), CaMKII and PSD-95, and phosphorylation of CaMKII in the OB at the protein level per se. Subsequently, we observed that egr-1 antisense-ODN infusion in the OB impaired olfactory memory and down regulates the expression of CaMKII and PSD-95, and the phosphorylation of CaMKII but not SYT-1. In contrast, NS-ODN or PBS had no effect on the expression of the PSDs CaMKII or PSD-95, or on the phosphorylation of CaMKII. When the egr-1 NS-ODN was infused in the OB after training for the novel odor there was no effect on olfactory memory. These findings suggest that egr-1 control the activation of CaMKII and PSD-95 during the process of olfactory memory formation.

  7. Integration and sensory experience-dependent survival of newly-generated neurons in the accessory olfactory bulb of female mice.

    PubMed

    Oboti, L; Savalli, G; Giachino, C; De Marchis, S; Panzica, G C; Fasolo, A; Peretto, P

    2009-02-01

    Newborn neurons generated by proliferative progenitors in the adult subventricular zone (SVZ) integrate into the olfactory bulb circuitry of mammals. Survival of these newly-formed cells is regulated by the olfactory input. The presence of new neurons in the accessory olfactory bulb (AOB) has already been demonstrated in some mammalian species, albeit their neurochemical profile and functional integration into AOB circuits are still to be investigated. To unravel whether the mouse AOB represents a site of adult constitutive neurogenesis and whether this process can be modulated by extrinsic factors, we have used multiple in vivo approaches. These included fate mapping of bromodeoxyuridine-labelled cells, lineage tracing of SVZ-derived enhanced green fluorescent protein-positive engrafted cells and neurogenesis quantification in the AOB, in both sexes, as well as in females alone after exposure to male-soiled bedding or its derived volatiles. Here, we show that a subpopulation of SVZ-derived neuroblasts acquires proper neurochemical profiles of mature AOB interneurons. Moreover, 3D reconstruction of long-term survived engrafted neuroblasts in the AOB confirms these cells show features of fully integrated neurons. Finally, exposure to male-soiled bedding, but not to its volatile compounds, significantly increases the number of new neurons in the AOB, but not in the main olfactory bulb of female mice. These data show SVZ-derived neuroblasts differentiate into new functionally integrated neurons in the AOB of young and adult mice. Survival of these cells seems to be regulated by an experience-specific mechanism mediated by pheromones.

  8. Early in vivo Effects of the Human Mutant Amyloid-β Protein Precursor (hAβPPSwInd) on the Mouse Olfactory Bulb.

    PubMed

    Rusznák, Zoltán; Kim, Woojin Scott; Hsiao, Jen-Hsiang T; Halliday, Glenda M; Paxinos, George; Fu, YuHong

    2016-01-01

    The amyloid-β protein precursor (AβPP) has long been linked to Alzheimer's disease (AD). Using J20 mice, which express human AβPP with Swedish and Indiana mutations, we studied early pathological changes in the olfactory bulb. The presence of AβPP/amyloid-β (Aβ) was examined in mice aged 3 months (before the onset of hippocampal Aβ deposition) and over 5 months (when hippocampal Aβ deposits are present). The number of neurons, non-neurons, and proliferating cells was assessed using the isotropic fractionator method. Our results demonstrate that although AβPP is overexpressed in some of the mitral cells, widespread Aβ deposition and microglia aggregates are not prevalent in the olfactory bulb. The olfactory bulbs of the younger J20 group harbored significantly fewer neurons than those of the age-matched wild-type mice (5.57±0.13 million versus 6.59±0.36 million neurons; p = 0.011). In contrast, the number of proliferating cells was higher in the young J20 than in the wild-type group (i.e., 6617±425 versus 4455±623 cells; p = 0.011). A significant increase in neurogenic activity was also observed in the younger J20 olfactory bulb. In conclusion, our results indicate that (1) neurons participating in the mouse olfactory function overexpress AβPP; (2) the cellular composition of the young J20 olfactory bulb is different from that of wild-type littermates; (3) these differences may reflect altered neurogenic activity and/or delayed development of the J20 olfactory system; and (4) AβPP/Aβ-associated pathological changes that take place in the J20 hippocampus and olfactory bulb are not identical.

  9. Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb

    PubMed Central

    Marking, Sarah; Krosnowski, Kurt; Ogura, Tatsuya; Lin, Weihong

    2017-01-01

    Sensory information processing in the olfactory bulb (OB) relies on diverse populations of bulbar interneurons. In rodents, the accessory OB (AOB) is divided into two bulbar regions, the anterior (aAOB) and posterior (pAOB), which differ substantially in their circuitry connections and associated behaviors. We previously identified and characterized a large number of morphologically diverse cholinergic interneurons in the main OB (MOB) using transgenic mice to visualize the cell bodies of choline acetyltransferase (ChAT-expressing neurons and immunolabeling (Krosnowski et al., 2012)). However, whether there are cholinergic neurons in the AOB is controversial and there is no detailed characterization of such neurons. Using the same line of ChAT(bacterial artificial chromosome, BAC)-enhanced green fluorescent protein (eGFP) transgenic mice, we investigated cholinergic neurons in the AOB. We found significant differences in the number and location of GFP-expressing (GFP+), putative cholinergic interneurons between the aAOB and pAOB. The highest numbers of GFP+ interneurons were found in the aAOB glomerular layer (aGL) and pAOB mitral/tufted cell layer (pMCL). We also noted a high density of GFP+ interneurons encircling the border region of the pMCL. Interestingly, a small subset of glomeruli in the middle of the GL receives strong MCL GFP+ nerve processes. These local putative cholinergic-innervated glomeruli are situated just outside the aGL, setting the boundary between the pGL and aGL. Many but not all GFP+ neurons in the AOB were weakly labeled with antibodies against ChAT and vesicular acetylcholine transporter (VAChT). We further determined if these GFP+ interneurons differ from other previously characterized interneuron populations in the AOB and found that AOB GFP+ interneurons express neither GABAergic nor dopaminergic markers and most also do not express the glutamatergic marker. Similar to the cholinergic interneurons of the MOB, some AOB GFP+ interneurons

  10. Organisation and tyrosine hydroxylase and calretinin immunoreactivity in the main olfactory bulb of paca (Cuniculus paca): a large caviomorph rodent.

    PubMed

    Sasahara, Tais Harumi de Castro; Leal, Leonardo Martins; Spillantini, Maria Grazia; Machado, Márcia Rita Fernandes

    2015-04-01

    The majority of neuroanatomical and chemical studies of the olfactory bulb have been performed in small rodents, such as rats and mice. Thus, this study aimed to describe the organisation and the chemical neuroanatomy of the main olfactory bulb (MOB) in paca, a large rodent belonging to the Hystricomorpha suborder and Caviomorpha infraorder. For this purpose, histological and immunohistochemical procedures were used to characterise the tyrosine hydroxylase (TH) and calretinin (CR) neuronal populations and their distribution. The paca MOB has eight layers: the olfactory nerve layer (ONL), the glomerular layer (GL), the external plexiform layer (EPL; subdivided into the inner and outer sublayers), the mitral cell layer (MCL), the internal plexiform layer (IPL), the granule cell layer (GCL), the periventricular layer and the ependymal layer. TH-ir neurons were found mostly in the GL, and moderate numbers of TH-ir neurons were scattered in the EPL. Numerous varicose fibres were distributed in the IPL and in the GCL. CR-ir neurons concentrated in the GL, around the base of the olfactory glomeruli. Most of the CR-ir neurons were located in the MCL, IPL and GCL. Some of the granule cells had an apical dendrite with a growth cone. The CR immunoreactivity was also observed in the ONL with olfactory nerves strongly immunostained. This study has shown that the MOB organisation in paca is consistent with the description in other mammals. The characterisation and distribution of the population of TH and CR in the MOB is not exclusively to this species. This large rodent shares common patterns to other caviomorph rodent, as guinea pig, and to the myomorph rodents, as mice, rats and hamsters.

  11. Signaling between periglomerular cells reveals a bimodal role for GABA in modulating glomerular microcircuitry in the olfactory bulb

    PubMed Central

    Parsa, Pirooz Victor; D’Souza, Rinaldo David; Vijayaraghavan, Sukumar

    2015-01-01

    In the mouse olfactory bulb glomerulus, the GABAergic periglomerular (PG) cells provide a major inhibitory drive within the microcircuit. Here we examine GABAergic synapses between these interneurons. At these synapses, GABA is depolarizing and exerts a bimodal control on excitability. In quiescent cells, activation of GABAA receptors can induce the cells to fire, thereby providing a means for amplification of GABA release in the glomerular microcircuit via GABA-induced GABA release. In contrast, GABA is inhibitory in neurons that are induced to fire tonically. PG–PG interactions are modulated by nicotinic acetylcholine receptors (nAChRs), and our data suggest that changes in intracellular calcium concentrations triggered by nAChR activation can be amplified by GABA release. Our results suggest that bidirectional control of inhibition in PG neurons can allow for modulatory inputs, like the cholinergic inputs from the basal forebrain, to determine threshold set points for filtering out weak olfactory inputs in the glomerular layer of the olfactory bulb via the activation of nAChRs. PMID:26170298

  12. In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles

    PubMed Central

    Huang, Yu-Bin; Hu, Chun-Rui; Zhang, Li; Yin, Wu; Hu, Bing

    2015-01-01

    Dendritic spines undergo continuous remodeling during development of the nervous system. Their stability is essential for maintaining a functional neuronal circuit. Spine dynamics and stability of cortical excitatory pyramidal neurons have been explored extensively in mammalian animal models. However, little is known about spiny interneurons in non-mammalian vertebrate models. In the present study, neuronal morphology was visualized by single-cell electroporation. Spiny neurons were surveyed in the Xenopus tadpole brain and observed to be widely distributed in the olfactory bulb and telencephalon. DsRed- or PSD95-GFP-expressing spiny interneurons in the olfactory bulb were selected for in vivo time-lapse imaging. Dendritic protrusions were classified as filopodia, thin, stubby, or mushroom spines based on morphology. Dendritic spines on the interneurons were highly dynamic, especially the filopodia and thin spines. The stubby and mushroom spines were relatively more stable, although their stability significantly decreased with longer observation intervals. The 4 spine types exhibited diverse preferences during morphological transitions from one spine type to others. Sensory deprivation induced by severing the olfactory nerve to block the input of mitral/tufted cells had no significant effects on interneuron spine stability. Hence, a new model was established in Xenopus laevis tadpoles to explore dendritic spine dynamics in vivo. PMID:26485435

  13. Agrin-signalling is necessary for the integration of newly generated neurons in the adult olfactory bulb

    PubMed Central

    Burk, Katja; Desoeuvre, Angelique; Boutin, Camille; Smith, Martin A.; Kröger, Stephan; Bosio, Andreas; Tiveron, Marie-Catherine; Cremer, Harold

    2012-01-01

    In the adult forebrain new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb. In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3Na+K+ATPase was strongly expressed in mitral cells. Using a transplantation approach we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wildtype neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Lastly, we provide in vivo evidence that an interaction between agrin and α3Na+K+ATPase is of functional importance in this system. PMID:22423096

  14. Sexually dimorphic activation of the accessory, but not the main, olfactory bulb in mice by urinary volatiles

    PubMed Central

    Martel, Kristine L.; Baum, Michael J.

    2008-01-01

    Previous research suggests that volatile body odourants detected by the main olfactory epithelium (MOE) are processed mainly by the main olfactory bulb (MOB) whereas nonvolatile body odourants detected by the vomeronasal organ (VNO) are processed via the accessory olfactory bulb (AOB). We asked whether urinary volatiles from males and females differentially activate the AOB in addition to the MOB in gonadectomized mice of either sex. Exposure to urinary volatiles from opposite-sex but not same-sex conspecifics augmented the number of Fos-immunoreactive mitral and granule cells in the AOB. Volatile urinary odours from male as well as female mice also stimulated Fos expression in distinct clusters of MOB glomeruli in both sexes. Intranasal administration of ZnSO4, intended to disrupt MOE function, eliminated the ability of volatile urinary odours to stimulate Fos in both the MOB and AOB. In ovariectomized, ZnSO4-treated females a significant, though attenuated, AOB Fos response occurred after direct nasal exposure to male urine plus soiled bedding, suggesting that VNO signaling remained partially functional in these mice. Future studies will determine whether MOE or VNO signaling, or both types of input, drive the sexually dimorphic response of the AOB to volatile opposite-sex odours and whether this AOB response contributes to reproductive success. PMID:17623023

  15. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb

    PubMed Central

    Comte, Isabelle; Kim, Yongsoo; Young, Christopher C.; van der Harg, Judith M.; Hockberger, Philip; Bolam, Paul J.; Poirier, Françoise; Szele, Francis G.

    2011-01-01

    The adult brain subventricular zone (SVZ) produces neuroblasts that migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) in a specialized niche. Galectin-3 (Gal-3) regulates proliferation and migration in cancer and is expressed by activated macrophages after brain injury. The function of Gal-3 in the normal brain is unknown, but we serendipitously found that it was expressed by ependymal cells and SVZ astrocytes in uninjured mice. Ependymal cilia establish chemotactic gradients and astrocytes form glial tubes, which combine to aid neuroblast migration. Whole-mount preparations and electron microscopy revealed that both ependymal cilia and SVZ astrocytes were disrupted in Gal3−/− mice. Interestingly, far fewer new BrdU+ neurons were found in the OB of Gal3−/− mice, than in wild-type mice 2 weeks after labeling. However, SVZ proliferation and cell death, as well as OB differentiation rates were unaltered. This suggested that decreased migration in vivo was sufficient to decrease the number of new OB neurons. Two-photon time-lapse microscopy in forebrain slices confirmed decreased migration; cells were slower and more exploratory in Gal3−/− mice. Gal-3 blocking antibodies decreased migration and dissociated neuroblast cell–cell contacts, whereas recombinant Gal-3 increased migration from explants. Finally, we showed that expression of phosphorylated epidermal growth factor receptor (EGFR) was increased in Gal3−/− mice. These results suggest that Gal-3 is important in SVZ neuroblast migration, possibly through an EGFR-based mechanism, and reveals a role for this lectin in the uninjured brain. PMID:21693585

  16. Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells.

    PubMed

    Vergaño-Vera, Eva; Yusta-Boyo, María J; de Castro, Fernando; Bernad, Antonio; de Pablo, Flora; Vicario-Abejón, Carlos

    2006-11-01

    During the embryonic period, many olfactory bulb (OB) interneurons arise in the lateral ganglionic eminence (LGE) from precursor cells expressing Dlx2, Gsh2 and Er81 transcription factors. Whether GABAergic and dopaminergic interneurons are also generated within the embryonic OB has not been studied thoroughly. In contrast to abundant Dlx2 and Gsh2 expression in ganglionic eminences (GE), Dlx2 and Gsh2 proteins are not expressed in the E12.5-13.5 mouse OB, whereas the telencephalic pallial domain marker Pax6 is abundant. We found GABAergic and dopaminergic neurons originating from dividing precursor cells in E13.5 OB and in short-term dissociated cultures prepared from the rostral half of E13.5 OB. In OB cultures, 22% of neurons were GAD+, of which 53% were Dlx2+, whereas none expressed Gsh2. By contrast, 70% of GAD+ cells in GE cultures were Dlx2+ and 16% expressed Gsh2. In E13.5 OB slices transplanted with EGFP-labeled E13.5 OB precursor cells, 31.7% of EGFP+ cells differentiated to GABAergic neurons. OB and LGE precursors transplanted into early postnatal OB migrated and differentiated in distinct patterns. Transplanted OB precursors gave rise to interneurons with dendritic spines in close proximity to synaptophysin-positive boutons. Interneurons were also abundant in differentiating OB neural stem cell cultures; the neurons responded to the neurotrophin Bdnf and expressed presynaptic proteins. In vivo, the Bdnf receptor TrkB colocalized with synaptic proteins at the glomeruli. These findings suggest that, in addition to receiving interneurons from the LGE, the embryonic OB contains molecularly distinct local precursor cells that generate mature GABAergic and dopaminergic neurons.

  17. Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migration.

    PubMed

    Rosillo, Juan Carlos; Torres, Maximiliano; Olivera-Bravo, Silvia; Casanova, Gabriela; García-Verdugo, José Manuel; Fernández, Anabel Sonia

    2016-11-12

    Adult neurogenesis participates in fish olfaction sensitivity in response to environmental challenges. Therefore, we investigated if several populations of stem/progenitor cells that are retained in the olfactory bulbs (OB) may constitute different neurogenic niches that support growth and functional demands. By electron microscopy and combination cell proliferation and lineage markers, we found that the telencephalic ventricle wall (VW) at OB level of Austrolebias charrua fish presents three neurogenic niches (transitional 1, medial 2 and ventral 3). The main cellular types described in other vertebrate neurogenic niches were identified (transient amplifying cells, stem cells and migrating neuroblasts). However, elongated vimentin/BLBP+ radial glia were the predominant cells in transitional and ventral zones. Use of halogenated thymidine analogs chloro- and iodo-deoxyuridine administered at different experimental times showed that both regions have the highest cell proliferation and migration rates. Zone 1 migration was toward the OB and telencephalon, whereas in zone 3, migration was directed toward the OB rostral portion constituting the equivalent of the mammal rostral migratory band. Medial zone (MZ) has fewer proliferating non-migrant cells that are the putative stem cells as indicated by short and long proliferation assays as well as cell lineage markers. Sparse migration observed suggests MZ may collaborate with VW growth. Scanning electron microscopy evidenced that the whole VW has only monociliated cells with remarkable differences in cilium length among regions. In OB there are monociliated cells with dwarf cilium whereas ventral telencephalon shows long cilium. Summarizing, we identified three neurogenic niches that might serve different functional purposes.

  18. Optimization of wavelengths sets for multispectral reflectance imaging of rat olfactory bulb activation in vivo

    NASA Astrophysics Data System (ADS)

    Renaud, Rémi; Bendahmane, Mounir; Chery, Romain; Martin, Claire; Gurden, Hirac; Pain, Frederic

    2012-06-01

    Wide field multispectral imaging of light backscattered by brain tissues provides maps of hemodynamics changes (total blood volume and oxygenation) following activation. This technique relies on the fit of the reflectance images obtain at two or more wavelengths using a modified Beer-Lambert law1,2. It has been successfully applied to study the activation of several sensory cortices in the anesthetized rodent using visible light1-5. We have carried out recently the first multispectral imaging in the olfactory bulb6 (OB) of anesthetized rats. However, the optimization of wavelengths choice has not been discussed in terms of cross talk and uniqueness of the estimated parameters (blood volume and saturation maps) although this point was shown to be crucial for similar studies in Diffuse Optical Imaging in humans7-10. We have studied theoretically and experimentally the optimal sets of wavelength for multispectral imaging of rodent brain activation in the visible. Sets of optimal wavelengths have been identified and validated in vivo for multispectral imaging of the OB of rats following odor stimulus. We studied the influence of the wavelengths sets on the magnitude and time courses of the oxy- and deoxyhemoglobin concentration variations as well as on the spatial extent of activated brain areas following stimulation. Beyond the estimation of hemodynamic parameters from multispectral reflectance data, we observed repeatedly and for all wavelengths a decrease of light reflectance. For wavelengths longer than 590 nm, these observations differ from those observed in the somatosensory and barrel cortex and question the basis of the reflectance changes during activation in the OB. To solve this issue, Monte Carlo simulations (MCS) have been carried out to assess the relative contribution of absorption, scattering and anisotropy changes to the intrinsic optical imaging signals in somatosensory cortex (SsC) and OB model.

  19. Specific entrainment of mitral cells during gamma oscillation in the rat olfactory bulb.

    PubMed

    David, François O; Hugues, Etienne; Cenier, Tristan; Fourcaud-Trocmé, Nicolas; Buonviso, Nathalie

    2009-10-01

    Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain, under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences derived from this mechanism.

  20. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb.

    PubMed

    Scotto-Lomassese, Sophie; Nissant, Antoine; Mota, Tatiana; Néant-Féry, Marie; Oostra, Ben A; Greer, Charles A; Lledo, Pierre-Marie; Trembleau, Alain; Caillé, Isabelle

    2011-02-09

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.

  1. Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis.

    PubMed

    Kronenberg, Golo; Gertz, Karen; Baldinger, Tina; Kirste, Imke; Eckart, Sarah; Yildirim, Ferah; Ji, Shengbo; Heuser, Isabella; Schröck, Helmut; Hörtnagl, Heide; Sohr, Reinhard; Djoufack, Pierre Chryso; Jüttner, René; Glass, Rainer; Przesdzing, Ingo; Kumar, Jitender; Freyer, Dorette; Hellweg, Rainer; Kettenmann, Helmut; Fink, Klaus Benno; Endres, Matthias

    2010-03-03

    Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis.

  2. Dendritic Arborization Patterns of Small Juxtaglomerular Cell Subtypes within the Rodent Olfactory Bulb

    PubMed Central

    Bywalez, Wolfgang G.; Ona-Jodar, Tiffany; Lukas, Michael; Ninkovic, Jovica; Egger, Veronica

    2017-01-01

    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional

  3. Fragile X Mental Retardation Protein Regulates New Neuron Differentiation in the Adult Olfactory Bulb

    PubMed Central

    Scotto-Lomassese, Sophie; Nissant, Antoine; Mota, Tatiana; Néant-Féry, Marie; Oostra, Ben A.; Greer, Charles A.; Lledo, Pierre-Marie; Trembleau, Alain; Caillé, Isabelle

    2013-01-01

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis. PMID:21307257

  4. PROTEIN KINASE Cα MEDIATES A NOVEL FORM OF PLASTICITY IN THE ACCESSORY OLFACTORY BULB

    PubMed Central

    DONG, C.; GODWIN, D. W.; BRENNAN, P. A.; HEGDE, A. N.

    2009-01-01

    Modification of synapses in the accessory olfactory bulb (AOB) is believed to underlie pheromonal memory that enables mate recognition in mice. The memory, which is acquired with single-trial learning forms only with coincident noradrenergic and glutamatergic inputs to the AOB. The mechanisms by which glutamate and norepinephrine (NE) alter the AOB synapses are not well understood. Here we present results that not only reconcile the earlier, seemingly contradictory, observations on the role of glutamate and NE in changing the AOB synapses, but also reveal novel mechanisms of plasticity. Our studies suggest that initially, glutamate acting at Group II metabotropic receptors and NE acting at α2-adrenergic receptors inhibit N-type and R-type Ca2+ channels in mitral cells via a G-Protein. The N-type and R-type Ca2+ channel inhibition is reversed by activation of α1-adrenergic receptors and protein kinase Cα (PKCα). Based on these results, we propose a hypothetical model for a new kind of synaptic plasticity in the AOB that accounts for the previous behavioral data on pheromonal memory. According to this model, initial inhibition of the Ca2+ channels suppresses the GABAergic inhibitory feedback to mitral cells, causing disinhibition and Ca2+ influx. NE also activates phospholipase C (PLC) through α1-adrenergic receptors generating inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Calcium and DAG together activate protein kinase Cα (PKCα) which switches the disinhibition to increased inhibition of mitral cells. Thus, PKCα is likely to be a coincidence detector integrating glutamate and NE input in the AOB and bridging the short-term signaling to long-term structural changes resulting in enhanced inhibition of mitral cells that is thought to underlie memory formation. PMID:19580852

  5. Partial Conservation between Mice and Humans in Olfactory Bulb Interneuron Transcription Factor Codes

    PubMed Central

    Fujiwara, Nana; Cave, John W.

    2016-01-01

    The mammalian main olfactory bulb (OB) has a large population of GABAergic inhibitory interneurons that contains several subtypes defined by the co-expression other neurotransmitters and calcium binding proteins. The three most commonly studied OB interneuron subtypes co-express either Calretinin, Calbindin, or Tyrosine hydroxylase (Th). Combinations of transcription factors used to specify the phenotype of progenitors are referred to as transcription factor codes, and the current understanding of transcription factor codes that specify OB inhibitory neuron phenotypes are largely based on studies in mice. The conservation of these transcription factor codes in the human OB, however, has not been investigated. The aim of this study was to establish whether transcription factor codes in OB interneurons are conserved between mice and humans. This study compared the co-expression of Foxp2, Meis2, Pax6, and Sp8 transcription factors with Calretinin, Calbindin, or Th in human and mouse OB interneurons. This analysis found strong conservation of Calretinin co-expression with Sp8 and Meis2 as well as Th co-expression with Pax6 and Meis2. This analysis also showed that selective Foxp2 co-expression with Calbindin was conserved between mice and humans, which suggests Foxp2 is a novel determinant of the OB Calbindin interneuron phenotype. Together, the findings in this study provide insight into the conservation of transcription codes for OB interneuron phenotypes between humans and mice, as well as reveal some important differences between the species. This advance in our understanding of transcription factor codes in OB interneurons provides an important complement to the codes that have been established for other regions within the mammalian central nervous system, such as the cortex and spinal cord. PMID:27489533

  6. Monitoring neurodegeneration in diabetes using adult neural stem cells derived from the olfactory bulb

    PubMed Central

    2013-01-01

    Introduction Neurons have the intrinsic capacity to produce insulin, similar to pancreatic cells. Adult neural stem cells (NSCs), which give rise to functional neurons, can be established and cultured not only by intracerebral collection, which requires difficult surgery, but also by collection from the olfactory bulb (OB), which is relatively easy. Adult neurogenesis in the hippocampus (HPC) is significantly decreased in diabetes patients. As a result, learning and memory functions, for which the HPC is responsible, decrease. Methods In the present study, we compared the effect of diabetes on neurogenesis and insulin expression in adult NSCs. Adult NSCs were derived from the HPC or OB of streptozotocin-induced diabetic rats. Comparative gene-expression analyses were carried out by using extracted tissues and established adult NSC cultures from the HPC or OB in diabetic rats. Results Diabetes progression influenced important genes that were required for insulin expression in both OB- and HPC-derived cells. Additionally, we found that the expression levels of several genes, such as voltage-gated sodium channels, glutamate transporters, and glutamate receptors, were significantly different in OB and HPC cells collected from diabetic rats. Conclusions By using identified diabetes-response genes, OB NSCs from diabetes patients can be used during diabetes progression to monitor processes that cause neurodegeneration in the central nervous system (CNS). Because hippocampal NSCs and OB NSCs exhibited similar gene-expression profiles during diabetes progression, OB NSCs, which are more easily collected and established than HPC NSCs, may potentially be used for screening of effective drugs for neurodegenerative disorders that cause malignant damage to CNS functions. PMID:23673084

  7. Partial Conservation between Mice and Humans in Olfactory Bulb Interneuron Transcription Factor Codes.

    PubMed

    Fujiwara, Nana; Cave, John W

    2016-01-01

    The mammalian main olfactory bulb (OB) has a large population of GABAergic inhibitory interneurons that contains several subtypes defined by the co-expression other neurotransmitters and calcium binding proteins. The three most commonly studied OB interneuron subtypes co-express either Calretinin, Calbindin, or Tyrosine hydroxylase (Th). Combinations of transcription factors used to specify the phenotype of progenitors are referred to as transcription factor codes, and the current understanding of transcription factor codes that specify OB inhibitory neuron phenotypes are largely based on studies in mice. The conservation of these transcription factor codes in the human OB, however, has not been investigated. The aim of this study was to establish whether transcription factor codes in OB interneurons are conserved between mice and humans. This study compared the co-expression of Foxp2, Meis2, Pax6, and Sp8 transcription factors with Calretinin, Calbindin, or Th in human and mouse OB interneurons. This analysis found strong conservation of Calretinin co-expression with Sp8 and Meis2 as well as Th co-expression with Pax6 and Meis2. This analysis also showed that selective Foxp2 co-expression with Calbindin was conserved between mice and humans, which suggests Foxp2 is a novel determinant of the OB Calbindin interneuron phenotype. Together, the findings in this study provide insight into the conservation of transcription codes for OB interneuron phenotypes between humans and mice, as well as reveal some important differences between the species. This advance in our understanding of transcription factor codes in OB interneurons provides an important complement to the codes that have been established for other regions within the mammalian central nervous system, such as the cortex and spinal cord.

  8. The supraorbital keyhole approach via an eyebrow incision applied to obtain the olfactory bulb as a source of olfactory ensheathing cells--radiological feasibility study.

    PubMed

    Czyż, Marcin; Tabakow, Paweł; Gheek, Daniel; Miś, Marcin; Jarmundowicz, Włodzimierz; Raisman, Geoffrey

    2014-04-01

    BACKGROUND. The purpose of the study was to test the suitability of supraorbital keyhole craniotomy with an eyebrow incision for obtaining olfactory bulb for therapeutic purposes. METHODS. Fifty three high-resolution axial head computed tomography images of patients with a mean age of 55 ± 15 years were used. The exclusion criterion was a pathology of the anterior skull base. The virtual keyhole supraorbital craniotomy was placed on each side of a three-dimensional skull model with respect to the anatomical landmarks. Trajectories of neurosurgical instrument transitions to the anterior and posterior aspects of olfactory grooves (OGs) were subsequently designed with the use of a neuronavigation planning station and measured with correction allowing the avoidance of collisions with skull base structures. Three types of anatomical configuration were divided, reflecting the extent of the correction needed to reach the bottom of OG. RESULTS. Simulation of the surgical access and consequent metrological analysis was performed on 97 skull sides - 9 (8.5%) sides were excluded due to the large frontal sinus. The mean length of the craniotomy basis was 30.71 mm, lengths of the anterior and posterior trajectories were 53.25 and 58.24 mm, respectively (p < 0.0001). In 37% of cases the value of the corrections exceeded the depth of OG. CONCLUSIONS. The supraorbital keyhole approach via an eyebrow incision may be applied to obtain the olfactory bulb as a source of olfactory ensheathing cells in over 60% of cases. Further verification and evaluation of the surgical handiness based on cadaver specimens is justifiable.

  9. Olfactory bulb proteome dynamics during the progression of sporadic Alzheimer's disease: identification of common and distinct olfactory targets across Alzheimer-related co-pathologies

    PubMed Central

    Zelaya, María Victoria; Pérez-Valderrama, Estela; de Morentin, Xabier Martínez; Tuñon, Teresa; Ferrer, Isidro; Luquin, María Rosario; Fernandez-Irigoyen, Joaquín; Santamaría, Enrique

    2015-01-01

    Olfactory dysfunction is present in up to 90% of Alzheimer's disease (AD) patients. Although deposition of hyperphosphorylated tau and β-amyloid substrates are present in olfactory areas, the molecular mechanisms associated with decreased smell function are not completely understood. We have applied mass spectrometry-based quantitative proteomics to probe additional molecular disturbances in postmortem olfactory bulbs (OB) dissected from AD cases respect to neurologically intact controls (n=20, mean age 82.1 years). Relative proteome abundance measurements have revealed protein interaction networks progressively disturbed across AD stages suggesting an early imbalance in splicing factors, subsequent interrupted cycling of neurotransmitters, alteration in toxic and protective mechanisms of β-amyloid, and finally, a mitochondrial dysfunction together with disturbance in neuron-neuron adhesion. We also present novel molecular findings in the OB in an autopsy cohort composed by Lewy body disease (LBD), frontotemporal lobar degeneration (FTLD), mixed dementia, and progressive supranuclear palsy (PSP) cases (n = 41, mean age 79.7 years). Olfactory mediators deregulated during the progression of AD such as Visinin-like protein 1, RUFY3 protein, and Copine 6 were also differentially modulated in the OB in LBD, FTLD, and mixed dementia. Only Dipeptidyl aminopeptidase-like protein 6 showed a specific down-regulation in AD. However, no differences were observed in the olfactory expression of this protein panel in PSP subjects. This study demonstrates an olfactory progressive proteome modulation in AD, unveiling cross-disease similarities and differences especially for specific proteins involved in dendritic and axonic distributions that occur in the OB during the neurodegenerative process. PMID:26517091

  10. Afterhyperpolarization (AHP) regulates the frequency and timing of action potentials in the mitral cells of the olfactory bulb: role of olfactory experience

    PubMed Central

    Duménieu, Maël; Fourcaud-Trocmé, Nicolas; Garcia, Samuel; Kuczewski, Nicola

    2015-01-01

    Afterhyperpolarization (AHP) is a principal feedback mechanism in the control of the frequency and patterning of neuronal firing. In principal projection neurons of the olfactory bulb, the mitral cells (MCs), the AHP is produced by three separate components: classical potassium-mediated hyperpolarization, and the excitatory and inhibitory components, which are generated by the recurrent dendrodendritic synaptic transmission. Precise spike timing is involved in olfactory coding and learning, as well as in the appearance of population oscillatory activity. However, the contribution of the AHP and its components to these processes remains unknown. In this study, we demonstrate that the AHP is developed with the MC firing frequency and is dominated by the potassium component. We also show that recurrent synaptic transmission significantly modifies MC AHP and that the strength of the hyperpolarization produced by the AHP in the few milliseconds preceding the action potential (AP) emission determines MC firing frequency and AP timing. Moreover, we show that the AHP area is larger in younger animals, possibly owing to increased Ca2+ influx during MC firing. Finally, we show that olfactory experience selectively reduces the early component of the MC AHP (under 25 msec), thus producing a modification of the AP timing limited to the higher firing frequency. On the basis of these results, we propose that the AHP, and its susceptibility to be selectively modulated by the recurrent synaptic transmission and olfactory experience, participate in odor coding and learning by modifying the frequency and pattern of MC firing. PMID:26019289

  11. Oligosynaptic pathways possibly relaying visceral and/or gustatory information to the olfactory bulb in the hedgehog tenrec.

    PubMed

    Künzle, H; Radtke-Schuller, S

    2001-04-27

    Using anterograde and retrograde transport of wheat germ agglutinin we showed that the parabrachial nucleus, known to receive second order visceral and gustatory afferents, might project directly to the anterior olfactory nucleus which is connected with the olfactory bulb (OfB). Only a small bulbar region is targeted directly by parabrachial fibers. This region is located immediately adjacent to the accessory OfB and may be closely related to, if not identical with the modified glomerular complex. To further substantiate the presence of true parabrachio-bulbar projections thyrosine hydroxylase immunohistochemistry was employed. The absence of immunoreactive neurons in the parabrachial nucleus and the different distribution patterns of immunoreactive fibers and axons labeled with wheat germ agglutinin conjugated to horseradish peroxidase in the target areas make it unlikely that catecholaminergic fibers were involved in the projections shown.

  12. Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease

    PubMed Central

    Lee, Virginia M.-Y.

    2016-01-01

    Parkinson’s disease (PD) is characterized by the progressive appearance of intraneuronal Lewy aggregates, which are primarily composed of misfolded α-synuclein (α-syn). The aggregates are believed to propagate via neural pathways following a stereotypical pattern, starting in the olfactory bulb (OB) and gut. We hypothesized that injection of fibrillar α-syn into the OB of wild-type mice would recreate the sequential progression of Lewy-like pathology, while triggering olfactory deficits. We demonstrate that injected α-syn fibrils recruit endogenous α-syn into pathological aggregates that spread transneuronally over several months, initially in the olfactory network and later in distant brain regions. The seeded inclusions contain posttranslationally modified α-syn that is Thioflavin S positive, indicative of amyloid fibrils. The spreading α-syn pathology induces progressive and specific olfactory deficits. Thus, we demonstrate that propagating α-syn pathology triggered in the OB is functionally detrimental. Collectively, we have created a mouse model of prodromal PD. PMID:27503075

  13. The effect of bilirubin on the excitability of mitral cells in the olfactory bulb of the rat

    PubMed Central

    Chen, Xiao-Juan; Zhou, Hui-Qun; Ye, Hai-bo; Li, Chun-Yan; Zhang, Wei-Tian

    2016-01-01

    Olfactory dysfunction is a common clinical phenomenon observed in various liver diseases. Previous studies have shown a correlation between smell disorders and bilirubin levels in patients with hepatic diseases. Bilirubin is a well-known neurotoxin; however, its effect on neurons in the main olfactory bulb (MOB), the first relay in the olfactory system, has not been examined. We investigated the effect of bilirubin (>3 μM) on mitral cells (MCs), the principal output neurons of the MOB. Bilirubin increased the frequency of spontaneous firing and the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). TTX completely blocked sEPSCs in almost all of the cells tested. Bilirubin activity was partially blocked by N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepro pionic acid (AMPA) receptor antagonists. Furthermore, we found that bilirubin increased the frequency of intrinsic firing independent of synaptic transmission in MCs. Our findings suggest that bilirubin enhances glutamatergic transmission and strengthens intrinsic firing independent of synaptic transmission, all of which cause hyperexcitability in MCs. Our findings provide the basis for further investigation into the mechanisms underlying olfactory dysfunction that are often observed in patients with severe liver disease. PMID:27611599

  14. Depolarizing GABA-activated Cl- channels in embryonic rat spinal and olfactory bulb cells.

    PubMed Central

    Serafini, R; Valeyev, A Y; Barker, J L; Poulter, M O

    1995-01-01

    1. We have compared the electrical properties of the Cl- channels activated by GABA in cells acutely dissociated from embryonic (E) spinal cord (SC) and olfactory bulb (OB) regions at E15 using different configurations of the patch-recording technique. By in situ analysis these cells express GABAA receptor mRNAs encoding a common set of subunits (alpha 2, beta 2, and beta 3). SC cells also express alpha 3, alpha 5 and gamma 2s transcripts. 2. Whole-cell recordings revealed current responses to GABA (0.5 microM to 1 mM) in 242 out of 294 cells. In both SC and OB cells, currents evoked by 2 microM GABA could be potentiated by diazepam (DZP) in a dose-dependent manner with an EC50 of approximately 50 nM in both SC and OB. The maximal effect was approximately 300%. Both SC and OB cells exhibited GABA-activated currents that were only partially sensitive to zinc even at high micromolar concentrations. The effect of DZP and the relatively modest sensitivity to zinc suggest the presence of gamma subunits in both preparations. 3. Spectral analysis of current responses in twenty-six cells showed that power spectra could be fitted by three exponential components (tau 1-3) in the cells of both areas. The tau of the longest-lasting component (tau 3) was significantly different in the cells of the two areas: approximately 50 ms in OB and 80-100 ms in SC. No statistically significant differences in the average inferred unitary conductance between the two cell types could be resolved. 4. Single-channel properties were examined directly using the cell-attached configuration. GABA-activated channels could be recorded in only 89 out of well-sealed 984 patches and most of them exhibited multiple channel activity. The mean open time in the response to 10 microM GABA was significantly shorter in OB cells (12 ms) compared to SC cells (25 ms) while the average conductance values were not significantly different between the two cell types. 5. On average, Cl- channels reversed polarity

  15. Potassium Currents of Olfactory Bulb Juxtaglomerular Cells: Characterization, Simulation, and Implications for Plateau Potential Firing

    PubMed Central

    Masurkar, Arjun V.; Chen, Wei R.

    2011-01-01

    Odor identity is encoded by the activity of olfactory bulb glomeruli, which receive primary sensory input and transfer it to projection neurons. Juxtaglomerular cells (JGCs) may influence glomerular processing via firing of long lasting plateau potentials. Though inward currents have been investigated, little is known regarding potassium current contribution to JGC plateau potentials. We pursued study of these currents, with the overarching goal of creating components for a computational model of JGC plateau potential firing. In conditions minimizing calcium-activated potassium current (IK(Ca)), we used whole cell voltage clamp and in vitro slice preparations to characterize three potassium currents in rat JGCs. The prominent component Ikt1 displayed rapid kinetics (τ10%−90% rise 0.6–2ms, τinactivation 5–10ms) and was blocked by high concentration 4-AP (5mM) and TEA (40mM). It had half maximal activation at −10mV (V½max) and little inactivation at rest. Ikt2, with slower kinetics (τ10%−90% rise 11–15ms, τinactivation 100–300ms), was blocked by low concentration 4-AP (0.5mM) and TEA (5mM). The V½max was 0mV and inactivation was also minimal at rest. Sustained current Ikt3 showed sensitivity to low concentration 4-AP and TEA, and had V½max of +10mV. Further experiments, in conditions of physiologic calcium buffering, suggested that IK(Ca) contributed to Ikt3 with minimal effect on plateau potential evolution. We transformed these characterizations into Hodgkin-Huxley models that robustly mimicked experimental data. Further simulation demonstrated that Ikt1 would be most efficiently activated by plateau potential waveforms, predicting a critical role in shaping JGC firing. These studies demonstrated that JGCs possess a unique potassium current profile, with delayed rectifier (Ikt3), atypical A-current (Ikt1), and D-current (Ikt2) in accordance with known expression patterns in OB glomeruli. Our simulations also provide an initial framework for

  16. Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb.

    PubMed

    Salcedo, Ernesto; Zhang, Chunbo; Kronberg, Eugene; Restrepo, Diego

    2005-09-01

    Odor quality is thought to be encoded by the activation of partially overlapping subsets of glomeruli in the olfactory bulb (odor maps). Mouse genetic studies have demonstrated that olfactory sensory neurons (OSNs) expressing a particular olfactory receptor target their axons to a few individual glomeruli in the bulb. While the specific targeting of OSN axons provides a molecular underpinning for the odor maps, much remains to be understood about the relationship between the functional and molecular maps. In this article, we ask the question whether intensive training of mice in a go/no-go operant conditioning odor discrimination task affects odor maps measured by determining c-fos up-regulation in periglomerular cells. Data analysis is performed using a newly developed suite of computational tools designed to systematically map functional and molecular features of glomeruli in the adult mouse olfactory bulb. This suite provides the necessary tools to process high-resolution digital images, map labeled glomeruli, visualize odor maps, and facilitate statistical analysis of patterns of identified glomeruli in the olfactory bulb. The software generates odor maps (density plots) based on glomerular activity, density, or area. We find that training up-regulates the number of glomeruli that become c-fos positive after stimulation with ethyl acetate.

  17. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer's disease rat model.

    PubMed

    Marei, Hany E S; Farag, Amany; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Lashen, Samah; Rezk, Shaymaa; Pallini, Roberto; Casalbore, Patrizia; Cenciarelli, Carlo

    2015-01-01

    In this study, we aim to demonstrate the fate of allogenic adult human olfactory bulb neural stem/progenitor cells (OBNSC/NPCs) transplanted into the rat hippocampus treated with ibotenic acid (IBO), a neurotoxicant specific to hippocampal cholinergic neurons that are lost in Alzheimer's disease. We assessed their possible ability to survive, integrate, proliferate, and differentiate into different neuronal and glial elements: we also evaluate their possible therapeutic potential, and the mechanism(s) relevant to neuroprotection following their engraftment into the CNS milieu. OBNSC/NPCs were isolated from adult human olfactory bulb patients, genetically engineered to express GFP and human nerve growth factor (hNGF) by lentivirus-mediated infection, and stereotaxically transplanted into the hippocampus of IBO-treated animals and controls. Stereological analysis of engrafted OBNSCs eight weeks post transplantation revealed a 1.89 fold increase with respect to the initial cell population, indicating a marked ability for survival and proliferation. In addition, 54.71 ± 11.38%, 30.18 ± 6.00%, and 15.09 ± 5.38% of engrafted OBNSCs were identified by morphological criteria suggestive of mature neurons, oligodendrocytes and astrocytes respectively. Taken together, this work demonstrated that human OBNSCs expressing NGF ameliorate the cognitive deficiencies associated with IBO-induced lesions in AD model rats, and the improvement can probably be attributed primarily to neuronal and glial cell replacement as well as the trophic influence exerted by the secreted NGF.

  18. Evaluation of the T&T olfactometer by mapping c-fos protein in an olfactory bulb.

    PubMed

    Kawamoto, M; Ohno, K; Tamura, M; Kawasaki, Y; Kubo, T

    2002-01-01

    Although in Japan the T&T olfactometer is most commonly used in patients suffering from smelling disorders, no scientific analysis has been performed so far. The objective of this study was to clarify whether the five odorants used in the T&T olfactometer are suitable or not. We mapped the glomeruli activated by the five test odorants employed in the T&T olfactometer. The expression of c-fos protein as a marker of neuronal excitation was monitored using an immunohistochemical technique. The expression of c-fos protein in the rat olfactory bulb was investigated to determine what part of the olfactory system is activated by five odorants used in the T&T olfactometer. Each rat was isolated in a clean cage for 120 min to reduce the basal expression of c-fos protein. Each rat was fixed in the cage and exposed to one of five test odorants for 90 min. The expression of c-fos protein was measured using an immunohistochemical technique. Each odorant activated numerous glomeruli and the patterns of distribution of activated glomeruli were specific to each odorant. Glomeruli in most regions of the bulb were activated by all five test odorants. We assume that in the T&T olfactometer the optimal ((five)) odorants are employed, because the glomeruli activated by those odorants showed unique patterns in the immunohistochemical assay.

  19. Electrophysiological Evidence for a Direct Link between the Main and Accessory Olfactory Bulbs in the Adult Rat

    PubMed Central

    Vargas-Barroso, Victor; Ordaz-Sánchez, Benito; Peña-Ortega, Fernando; Larriva-Sahd, Jorge A.

    2016-01-01

    It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB). This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs) of the anterior AOB (aAOB). Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB) halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8%) send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX). Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB) or antidromic action potentials (n = 8, aAOB; n = 7, pAOB) when applying field stimulation to the opposite half of the recording site (e.g., recording in aAOB; stimulating in pAOB, and vice-versa). Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24% of the total) that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17). PMID:26858596

  20. Electrophysiological Evidence for a Direct Link between the Main and Accessory Olfactory Bulbs in the Adult Rat.

    PubMed

    Vargas-Barroso, Victor; Ordaz-Sánchez, Benito; Peña-Ortega, Fernando; Larriva-Sahd, Jorge A

    2015-01-01

    It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB). This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs) of the anterior AOB (aAOB). Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB) halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8%) send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX). Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB) or antidromic action potentials (n = 8, aAOB; n = 7, pAOB) when applying field stimulation to the opposite half of the recording site (e.g., recording in aAOB; stimulating in pAOB, and vice-versa). Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24% of the total) that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17).

  1. Dietary Restriction Mitigates Cocaine-Induced Alterations of Olfactory Bulb Cellular Plasticity and Gene Expression, and Behavior

    PubMed Central

    Xu, Xiangru; Mughal, Mohamed R.; Hall, F. Scott; Perona, Maria T.G.; Pistell, Paul J.; Lathia, Justin D; Chigurupati, Srinivasulu; Becker, Kevin G; Ladenheim, Bruce; Niklason, Laura E; Uhl, George R.; Cadet, Jean Lud; Mattson, Mark P.

    2010-01-01

    Because the olfactory system plays a major role in food consumption, and because “food addiction” and associated morbidities have reached epidemic proportions, we tested the hypothesis that dietary energy restriction can modify adverse effects of cocaine on behavior and olfactory cellular and molecular plasticity. Mice maintained on an alternate day fasting (ADF) diet exhibited increased baseline locomotion and increased cocaine-sensitized locomotion during cocaine conditioning, despite no change in cocaine conditioned place preference, compared to mice fed ad libitum. Levels of dopamine and its metabolites in the olfactory bulb (OB) were suppressed in mice on the ADF diet compared to mice on the control diet, independent of acute or chronic cocaine treatment. The expression of several enzymes involved in dopamine metabolism including tyrosine hydroxylase, monoamine oxidases A and B (MAOA), and catechol-O-methyltransferase were significantly reduced in OBs of mice on the ADF diet. Both acute and chronic administration of cocaine suppressed the production of new OB cells, and this effect of cocaine was attenuated in mice on the ADF diet. Cocaine administration to mice on the control diet resulted in up-regulation of OB genes involved in mitochondrial energy metabolism, synaptic plasticity, cellular stress responses, and calcium- and cyclic AMP-mediated signaling, whereas multiple olfactory receptor genes were down-regulated by cocaine treatment. ADF abolished many of the effects of cocaine on OB gene expression. Our findings reveal that dietary energy intake modifies the neural substrates underlying some of the behavioral and physiological responses to repeated cocaine treatment, and also suggest novel roles for the olfactory system in addiction. The data further suggest that modification of dietary energy intake could provide a novel potential approach to addiction treatments. PMID:20456017

  2. A SEX COMPARISON OF THE ANATOMY AND FUNCTION OF THE MAIN OLFACTORY BULB-MEDIAL AMYGDALA PROJECTION IN MICE

    PubMed Central

    Kang, Ningdong; McCarthy, Elizabeth A.; Cherry, James A.; Baum, Michael J.

    2010-01-01

    We previously reported that some main olfactory bulb (MOB) mitral/tufted (M/T) cells send a direct projection to the ‘vomeronasal’ amygdala in female mice and selectively respond to volatile male mouse urinary odors. We asked whether MOB M/T cells that project to the vomeronasal amygdala exist in male mice and whether there is a sexually dimorphic response of these neurons to volatile male urinary pheromones. Gonadectomized male and female mice received bilateral injections of the retrograde tracer, Cholera toxin-B (CTb) into the medial amygdala (Me), which is part of the vomeronasal amygdala. All subjects were then treated with estradiol benzoate and progesterone before being exposed to volatile male urinary odors whereupon they were sacrificed 90 min later. Sections of the MOB were immunostained for Fos protein and/or CTb. Male mice, like females, displayed a small population of MOB M/T cells that project to the Me. While the general localization of these cells was similar in the two sexes, there were statistically significant sex differences in the percentage of MOB M/T cells in the anterior and posterior medial segments of the MOB that were retrogradely labeled by CTb. Male urinary volatiles stimulated equivalent, significant increases in Fos expression by MOB M/T neurons projecting to the Me in the two sexes. By contrast, in the same mice exposure to male urinary volatiles stimulated a significant increase in Fos expression by mitral cells in the accessory olfactory bulb (AOB) only in female subjects. Thus any sexually dimorphic behavioral or neuroendocrine responses to male urinary volatiles likely depend on the differential processing of these odor inputs in the AOB and/or other downstream forebrain structures after their detection by the main olfactory system. PMID:21070839

  3. Respiratory Modulation of Spontaneous Subthreshold Synaptic Activity in Olfactory Bulb Granule Cells Recorded in Awake, Head-Fixed Mice

    PubMed Central

    Youngstrom, Isaac A.

    2015-01-01

    Although the firing patterns of principal neurons in the olfactory bulb are known to be modulated strongly by respiration even under basal conditions, less is known about whether inhibitory local circuit activity in the olfactory bulb (OB) is modulated phasically. The diverse phase preferences of principal neurons in the OB and olfactory cortex that innervate granule cells (GCs) may interfere and prevent robust respiratory coupling, as suggested by recent findings. Using whole-cell recording, we examined the spontaneous, subthreshold membrane potential of GCs in the OBs of awake head-fixed mice. We found that, during periods of basal respiration, the synaptic input to GCs was strongly phase modulated, leading to a phase preference in the average, cycle-normalized membrane potential. Subthreshold phase tuning was heterogeneous in both mitral and tufted cells (MTCs) and GCs but relatively constant within each GC during periods of increased respiratory frequency. The timing of individual EPSPs in GC recordings also was phase modulated with the phase preference imparted by large-amplitude EPSPs, with fast kinetics often matching the phase tuning of the average membrane potential. These results suggest that activity in a subset of excitatory afferents to GCs, presumably including cortical feedback projections and other sources of large-amplitude unitary EPSPs, function to provide a timing signal linked to respiration. The phase preference we find in the membrane potential may provide a mechanism to dynamically modulate recurrent and lateral dendrodendritic inhibition of MTCs and to selective engage a subpopulation of interneurons based on the alignment of their phase tuning relative to sensory-driven MTC discharges. PMID:26063910

  4. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb.

    PubMed

    Cho, Jin H; Kam, Joseph W K; Cloutier, Jean-François

    2012-11-15

    Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.

  5. Roles of GSK3β in Odor Habituation and Spontaneous Neural Activity of the Mouse Olfactory Bulb

    PubMed Central

    Xu, Zhixiang; Wang, Li; Chen, Guo; Rao, Xiaoping; Xu, Fuqiang

    2013-01-01

    Glycogen synthase kinase 3β (GSK3β), a multifaceted kinase, is abundantly expressed in the brain, including the olfactory bulb (OB). In resting cells, GSK3β is constitutively active, and its over-activation is presumably involved in numerous brain diseases, such as Alzheimer’s disease. However, the functions of the constitutively active GSK3β in the adult brain under physiological conditions are not well understood. Here, we studied the possible functions of GSK3β activity in the OB. Odor stimulation, or blockade of peripheral olfactory inputs caused by either transgenic knock-out or ZnSO4 irrigation to the olfactory epithelium, all affected the expression level of GSK3β in the OB. When GSK3β activity was reduced by a selective inhibitor, the spontaneous oscillatory activity was significantly decreased in the granule cell layer of the OB. Furthermore, local inhibition of GSK3β activity in the OB significantly impaired the odor habituation ability. These results suggest that GSK3β plays important roles in both spontaneous neural activity and odor information processing in the OB, deepening our understanding of the potential functions of the constitutively active GSK3β in the brain under physiological conditions. PMID:23658842

  6. Using Intrinsic Flavoprotein and NAD(P)H Imaging to Map Functional Circuitry in the Main Olfactory Bulb

    PubMed Central

    Puche, Adam C.; Munger, Steven D.

    2016-01-01

    Neurons exhibit strong coupling of electrochemical and metabolic activity. Increases in intrinsic fluorescence from either oxidized flavoproteins or reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the mitochondria have been used as an indicator of neuronal activity for the functional mapping of neural circuits. However, this technique has not been used to investigate the flow of olfactory information within the circuitry of the main olfactory bulb (MOB). We found that intrinsic flavoprotein fluorescence signals induced by electrical stimulation of single glomeruli displayed biphasic responses within both the glomerular (GL) and external plexiform layers (EPL) of the MOB. Pharmacological blockers of mitochondrial activity, voltage-gated Na+ channels, or ionotropic glutamate receptors abolished stimulus-dependent flavoprotein responses. Blockade of GABAA receptors enhanced the amplitude and spatiotemporal spread of the flavoprotein signals, indicating an important role for inhibitory neurotransmission in shaping the spread of neural activity in the MOB. Stimulus-dependent spread of fluorescence across the GL and EPL displayed a spatial distribution consistent with that of individual glomerular microcircuits mapped by neuroanatomic tract tracing. These findings demonstrated the feasibility of intrinsic fluorescence imaging in the olfactory systems and provided a new tool to examine the functional circuitry of the MOB. PMID:27902689

  7. Olfactory Bulb [alpha][subscript 2]-Adrenoceptor Activation Promotes Rat Pup Odor-Preference Learning via a cAMP-Independent Mechanism

    ERIC Educational Resources Information Center

    Shakhawat, Amin MD.; Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    In this study, three lines of evidence suggest a role for [alpha][subscript 2]-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the [alpha][subscript 2]-antagonist, yohimbine, prevents learning; the [alpha][subscript 2]-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with…

  8. Direct visualization of cell movement in the embryonic olfactory bulb using green fluorescent protein transgenic mice: evidence for rapid tangential migration of neural cell precursors.

    PubMed

    Yamamoto, Kazuhiro; Yamaguchi, Masahiro; Okabe, Shigeo

    2005-02-01

    We analyzed motile behavior of neuronal precursor cells in the intact olfactory bulbs (OBs) using transgenic mice expressing GFP under the control of T alpha 1 tubulin promoter. In the olfactory bulbs at the embryonic days 12.5-14.5, a large number of immature neurons expressed GFP in this transgenic line. Embryonic OBs were maintained in an organ culture system and the migratory behavior of GFP-positive cells was analyzed by time-lapse confocal microscopy. We observed rapid tangential movement of GFP-positive cells in the ventral olfactory bulb. In contrast to the typical bipolar morphology of translocating immature neurons within the developing cortex, the motile cells had neither leading nor trailing processes and changed their overall shape frequently. Comparison of the behavior of cells expressing GFP under the control of T alpha 1 tubulin or nestin promoter revealed that rapid motility was specific to cells in the neuronal lineage. The rapid movement was sensitive to an actin perturbing reagent and also dependent on the calcium influx through L-type calcium channels. These results indicate the presence of a specific form of precursor cell migration in the embryonic olfactory bulb.

  9. Olfactory Bulb [alpha][subscript 2]-Adrenoceptor Activation Promotes Rat Pup Odor-Preference Learning via a cAMP-Independent Mechanism

    ERIC Educational Resources Information Center

    Shakhawat, Amin MD.; Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    In this study, three lines of evidence suggest a role for [alpha][subscript 2]-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the [alpha][subscript 2]-antagonist, yohimbine, prevents learning; the [alpha][subscript 2]-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with…

  10. Immortalization and Characterization of Lineage-restricted Neuronal Progenitor Cells Derived From the Procine Olfactory Bulb

    USDA-ARS?s Scientific Manuscript database

    Crucial aspects in the development of in vitro neuropathogenic disease model systems are the identification, characterization, and continuous mitotic expansion of cultured neuronal cells. To facilitate long-term cultivation, we immortalized cultured porcine olfactory neuronally restricted progenitor...

  11. Top-down inputs from the olfactory cortex in the postprandial period promote elimination of granule cells in the olfactory bulb.

    PubMed

    Komano-Inoue, Sayaka; Manabe, Hiroyuki; Ota, Mizuho; Kusumoto-Yoshida, Ikue; Yokoyama, Takeshi K; Mori, Kensaku; Yamaguchi, Masahiro

    2014-09-01

    Elimination of granule cells (GCs) in the olfactory bulb (OB) is not a continual event but is promoted during a short time window in the postprandial period, typically with postprandial sleep. However, the neuronal mechanisms for the enhanced GC elimination during the postprandial period are not understood. Here, we addressed the question of whether top-down inputs of centrifugal axons from the olfactory cortex (OC) during the postprandial period are involved in the enhanced GC elimination in the OB. Electrical stimulation of centrifugal axons from the OC of anesthetized mice increased GC apoptosis. Furthermore, pharmacological suppression of top-down inputs from the OC to the OB during the postprandial period of freely behaving mice by γ-aminobutyric acid (GABA)A receptor agonist injection in the OC significantly decreased GC apoptosis. Remarkable apoptotic GC elimination in the sensory-deprived OB was also suppressed by pharmacological blockade of top-down inputs. These results indicate that top-down inputs from the OC to the OB during the postprandial period are the crucial signal promoting GC elimination, and suggest that the life and death decision of GCs in the OB is determined by the interplay between bottom-up sensory inputs from the external world and top-down inputs from the OC. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb

    PubMed Central

    Wienisch, Martin; Murthy, Venkatesh N.

    2016-01-01

    Information processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relations to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons. PMID:27388949

  13. Automatic segmentation of odor maps in the mouse olfactory bulb using regularized non-negative matrix factorization.

    PubMed

    Soelter, Jan; Schumacher, Jan; Spors, Hartwig; Schmuker, Michael

    2014-09-01

    Segmentation of functional parts in image series of functional activity is a common problem in neuroscience. Here we apply regularized non-negative matrix factorization (rNMF) to extract glomeruli in intrinsic optical signal (IOS) images of the olfactory bulb. Regularization allows us to incorporate prior knowledge about the spatio-temporal characteristics of glomerular signals. We demonstrate how to identify suitable regularization parameters on a surrogate dataset. With appropriate regularization segmentation by rNMF is more resilient to noise and requires fewer observations than conventional spatial independent component analysis (sICA). We validate our approach in experimental data using anatomical outlines of glomeruli obtained by 2-photon imaging of resting synapto-pHluorin fluorescence. Taken together, we show that rNMF provides a straightforward method for problem tailored source separation that enables reliable automatic segmentation of functional neural images, with particular benefit in situations with low signal-to-noise ratio as in IOS imaging.

  14. Postnatal administration of dihydrotestosterone to the male rat abolishes sexual dimorphism in the accessory olfactory bulb: a volumetric study.

    PubMed

    Valencia, A; Collado, P; Calés, J M; Segovia, S; Pérez Laso, C; Rodríguez Zafra, M; Guillamón, A

    1992-07-24

    The regulatory action of the non-aromatizable androgen dihydrotestosterone (DHT) on sexual differentiation of the volume of the rat accessory olfactory bulb (AOB) was studied. Postnatal treatment with DHT (180 micrograms/day) carried out daily between days 6 and 20 produced a drastic reduction in overall AOB size and that of its constituent neural layers in genetic males with respect to intact and control males. The volumetric measures found in DHT-treated males did not differ from those shown by the intact females. These results, which indicate a demasculinization and a feminization of the AOB volume in gonadally intact male rats induced by DHT, are discussed in relation to the presumably regulatory role of DHT on neuron populations during the sexual organizational process of the brain.

  15. Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats.

    PubMed

    González-Reyes, Susana; Santillán-Cigales, Juan Jair; Jiménez-Osorio, Angélica Saraí; Pedraza-Chaverri, José; Guevara-Guzmán, Rosalinda

    2016-10-01

    Glycyrrhizin (GL) is a triterpene present in the roots and rhizomes of Glycyrrhiza glabra that has anti-inflammatory, hepatoprotective and neuroprotective effects. Recently, it was demonstrated that GL produced neuroprotective effects on the postischemic brain as well as on the kainic acid injury model in rats. In addition to this, GL also prevented excitotoxic effects on primary cultures. The aims of the present study were to evaluate GL scavenging properties and to investigate GL's effect on oxidative stress and inflammation in the lithium/pilocarpine-induced seizure model in two cerebral regions, hippocampus and olfactory bulb, at acute time intervals (3 or 24h) after status epilepticus (SE). Fluorometric methods showed that GL scavenged three reactive oxygen species: hydrogen peroxide, peroxyl radicals and superoxide anions. In contrast, GL was unable to scavenge peroxynitrite, hydroxyl radicals, singlet oxygen and 2,2-diphenil-1-picrylhydrazyl (DPPH) radicals suggesting that GL is a weak scavenger. Additionally, administration of GL (50mg/kg, i.p.) 30min before pilocarpine administration significantly suppressed oxidative stress. Moreover, malondialdehyde levels were diminished and glutathione levels were maintained at control values in both cerebral regions at 3 and 24 after SE. At 24h after SE, glutathione S-transferase and superoxide dismutase activity increased in the hippocampus, while both glutathione reductase and glutathione peroxidase activity were unchanged in the olfactory bulb at that time. In addition, GL suppressed the induction of the proinflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in both cerebral regions evaluated. These results suggest that GL confers protection against pilocarpine damage via antioxidant and anti-inflammatory effects.

  16. A Mathematical Model of the Olfactory Bulb for the Selective Adaptation Mechanism in the Rodent Olfactory System.

    PubMed

    Soh, Zu; Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio

    2016-01-01

    To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation.

  17. A Mathematical Model of the Olfactory Bulb for the Selective Adaptation Mechanism in the Rodent Olfactory System

    PubMed Central

    Nishikawa, Shinya; Kurita, Yuichi; Takiguchi, Noboru; Tsuji, Toshio

    2016-01-01

    To predict the odor quality of an odorant mixture, the interaction between odorants must be taken into account. Previously, an experiment in which mice discriminated between odorant mixtures identified a selective adaptation mechanism in the olfactory system. This paper proposes an olfactory model for odorant mixtures that can account for selective adaptation in terms of neural activity. The proposed model uses the spatial activity pattern of the mitral layer obtained from model simulations to predict the perceptual similarity between odors. Measured glomerular activity patterns are used as input to the model. The neural interaction between mitral cells and granular cells is then simulated, and a dissimilarity index between odors is defined using the activity patterns of the mitral layer. An odor set composed of three odorants is used to test the ability of the model. Simulations are performed based on the odor discrimination experiment on mice. As a result, we observe that part of the neural activity in the glomerular layer is enhanced in the mitral layer, whereas another part is suppressed. We find that the dissimilarity index strongly correlates with the odor discrimination rate of mice: r = 0.88 (p = 0.019). We conclude that our model has the ability to predict the perceptual similarity of odorant mixtures. In addition, the model also accounts for selective adaptation via the odor discrimination rate, and the enhancement and inhibition in the mitral layer may be related to this selective adaptation. PMID:27992433

  18. Freezing to the predator odor 2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is disrupted by olfactory bulb removal but not trigeminal deafferentation.

    PubMed

    Ayers, Luke W; Asok, Arun; Heyward, Frankie D; Rosen, Jeffrey B

    2013-09-15

    2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is a synthesized component of red fox anal secretions that reliably elicits defensive behaviors in rats and mice. TMT differs from other predator odors because it is a single molecule, it can be synthesized in large quantities, and the dose for exposure is highly controllable in an experimental setting. TMT has become a popular tool for studying the brain mechanisms that mediate innate fear behavior to olfactory stimuli. However, this view of TMT as a biologically relevant olfactory stimulus has been challenged by suggestions that the odor elicits fear behavior due to its irritating properties, presumably working through a nociceptive mechanism. To address this criticism our lab measured freezing behavior in rats during exposures to 2 odors (TMT and butyric acid) and H2O (no odor control) following either surgical transection of the trigeminal nerves or ablation of the olfactory bulbs. Our findings (Experiment 1) indicate that freezing behavior to TMT requires an intact olfactory system, as indicated by the loss of freezing following olfactory bulb removal. Experiment 2 revealed that rats with trigeminal nerve transection freeze normally to TMT, suggesting the olfactory system mediates this behavior to TMT. A replication of Experiment 1 that included contextual fear conditioning revealed that the decreased freezing behavior was not due to an inability of olfactory bulb ablated rats to freeze (Experiment 3). Taken together, these findings support TMT's role as an ecologically relevant predator odor useful in experiments of unconditioned fear that is mediated via olfaction and not nociception. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits

    PubMed Central

    Schmidt, Loren J.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles of mitral cells (MCs), a primary output neuron in the olfactory bulb, and recorded intracellularly from pairs of MCs to directly assay coincident inhibitory input. We find that 5-HT disynaptically depolarized granule cells (GCs) only slightly but robustly increased the frequency of inhibitory postsynaptic inhibitory currents in MCs. Serotonin also triggered more coincident IPSCs in pairs of nearby MCs than expected by chance, including in MCs with truncated apical dendrites that lack glomerular synapses. That serotonin-triggered coincident inhibition in the absence of elevated GC somatic firing rates suggested that synchronized MC inhibition arose from glutamate receptor-mediated depolarization of GC dendrites or other (non-GC) interneurons outside the glomerular layer. Tetanic stimulation of GCL afferents to GCs triggered robust GC spiking, coincident inhibition in pairs of MCs, and recruited large-amplitude IPSCs in MCs. Enhancing neurotransmission through NMDARs by lowering the external Mg2+ concentration also increased inhibitory tone onto MCs but failed to promote synchronized inhibition. These results demonstrate that coincident MC inhibition can occur through multiple circuit pathways and suggests that the functional coordination between different GABAergic synapses in individual GCs can be dynamically regulated. PMID:25031366

  20. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb.

    PubMed

    García-González, Diego; Murcia-Belmonte, Verónica; Esteban, Pedro F; Ortega, Felipe; Díaz, David; Sánchez-Vera, Irene; Lebrón-Galán, Rafael; Escobar-Castañondo, Laura; Martínez-Millán, Luis; Weruaga, Eduardo; García-Verdugo, José Manuel; Berninger, Benedikt; de Castro, Fernando

    2016-01-01

    New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.

  1. Altered Morphologies and Functions of the Olfactory Bulb and Hippocampus Induced by miR-30c

    PubMed Central

    Sun, Tingting; Li, Tianpeng; Davies, Henry; Li, Weiyun; Yang, Jing; Li, Shanshan; Ling, Shucai

    2016-01-01

    Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ) and dentate gyrus (DG) by stereotaxic injection with their respective up- and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for 3 months, we detected significant morphological changes in the olfactory bulb (OB) and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain. PMID:27242411

  2. Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination

    PubMed Central

    Gödde, Kathrin; Gschwend, Olivier; Puchkov, Dmytro; Pfeffer, Carsten K.; Carleton, Alan; Jentsch, Thomas J.

    2016-01-01

    Synaptic inhibition in the olfactory bulb (OB), the first relay station of olfactory information, is believed to be important for odour discrimination. We interfered with GABAergic inhibition of mitral and tufted cells (M/T cells), the principal neurons of the OB, by disrupting their potassium-chloride cotransporter 2 (Kcc2). Roughly, 70% of mice died around 3 weeks, but surviving mice appeared normal. In these mice, the resulting increase in the intracellular Cl− concentration nearly abolished GABA-induced hyperpolarization of mitral cells (MCs) and unexpectedly increased the number of perisomatic synapses on MCs. In vivo analysis of odorant-induced OB electrical activity revealed increased M/T cell firing rate, altered phasing of action potentials in the breath cycle and disrupted separation of odour-induced M/T cell activity patterns. Mice also demonstrated a severely impaired ability to discriminate chemically similar odorants or odorant mixtures. Our work suggests that precisely tuned GABAergic inhibition onto M/T cells is crucial for M/T cell spike pattern separation needed to distinguish closely similar odours. PMID:27389623

  3. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    PubMed Central

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  4. Two-Photon Na(+) Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites.

    PubMed

    Ona-Jodar, Tiffany; Gerkau, Niklas J; Sara Aghvami, S; Rose, Christine R; Egger, Veronica

    2017-01-01

    Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca(2+) imaging. Here, we used two-photon Na(+) imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na(+)]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na(+)]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na(+)]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na(+)]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na(+) transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na(+)]i replicated these behaviors via negative and positive gradients in Na(+) current density, assuming faithful AP backpropagation. Such specializations of dendritic

  5. Two-Photon Na+ Imaging Reports Somatically Evoked Action Potentials in Rat Olfactory Bulb Mitral and Granule Cell Neurites

    PubMed Central

    Ona-Jodar, Tiffany; Gerkau, Niklas J.; Sara Aghvami, S.; Rose, Christine R.; Egger, Veronica

    2017-01-01

    Dendrodendritic synaptic interactions are a hallmark of neuronal processing in the vertebrate olfactory bulb. Many classes of olfactory bulb neurons including the principal mitral cells (MCs) and the axonless granule cells (GCs) dispose of highly efficient propagation of action potentials (AP) within their dendrites, from where they can release transmitter onto each other. So far, backpropagation in GC dendrites has been investigated indirectly via Ca2+ imaging. Here, we used two-photon Na+ imaging to directly report opening of voltage-gated sodium channels due to AP propagation in both cell types. To this end, neurons in acute slices from juvenile rat bulbs were filled with 1 mM SBFI via whole-cell patch-clamp. Calibration of SBFI signals revealed that a change in fluorescence ΔF/F by 10% corresponded to a Δ[Na+]i of ∼22 mM. We then imaged proximal axon segments of MCs during somatically evoked APs (sAP). While single sAPs were detectable in ∼50% of axons, trains of 20 sAPs at 50 Hz always resulted in substantial ΔF/F of ∼15% (∼33 mM Δ[Na+]i). ΔF/F was significantly larger for 80 Hz vs. 50 Hz trains, and decayed with half-durations τ1/2 ∼0.6 s for both frequencies. In MC lateral dendrites, AP trains yielded small ΔF/F of ∼3% (∼7 mM Δ[Na+]i). In GC apical dendrites and adjacent spines, single sAPs were not detectable. Trains resulted in an average dendritic ΔF/F of 7% (16 mM Δ[Na+]i) with τ1/2 ∼1 s, similar for 50 and 80 Hz. Na+ transients were indistinguishable between large GC spines and their adjacent dendrites. Cell-wise analysis revealed two classes of GCs with the first showing a decrease in ΔF/F along the dendrite with distance from the soma and the second an increase. These classes clustered with morphological parameters. Simulations of Δ[Na+]i replicated these behaviors via negative and positive gradients in Na+ current density, assuming faithful AP backpropagation. Such specializations of dendritic excitability might confer

  6. Sexual Stimulation Increases the Survival of New Cells in the Accessory Olfactory Bulb of the Male Rat

    PubMed Central

    Unda, Nancy M.; Portillo, Wendy; Corona, Rebeca; Paredes, Raúl G.

    2016-01-01

    Sexual behavior in rodents is modulated by the olfactory system. The olfactory bulb (OB) is a structure that undergoes continues neurogenesis in adulthood. We have previously shown that 15 days after males rats pace the sexual interaction and ejaculate 1 or 3 times, there is an increase in the density of new cells that reach the accessory olfactory bulb (AOB). The aim of the present study was to evaluate if sexual behavior in male rats increases the density of new neurons that survive 45 days after sexual behavior in the AOB and in the main OB (MOB). Male rats were randomly divided in four groups: (1) Control (Ctr), males without sexual interaction; (2) Exposed (Exp), males only exposed to a sexually receptive female; (3) No pacing (NP), males that mated in conditions in which the female paced the sexual interaction; (4) One ejaculation (1E), males that paced the sexual interaction with a receptive female and ejaculated once; and (5) Three ejaculations (3E), males that paced the sexual interaction and were allowed to ejaculate three times. All males were injected with the DNA synthesis marker 5-bromo-2-deoxyuridine (BrdU), and were tested in one of the above conditions. 45 days later they were sacrificed, and the OBs were processed to identify new cells and evaluate if they had differentiated into neurons. Our data indicate that males that ejaculated three times showed an increase in the density of new cells that survive in the posterior part of the granular cell layer of the AOB and have more new neurons that the control group. However, no significant differences were found in the percentage of new cells that differentiate into neurons. No significant increase in the density of new cells was observed in the MOB. Our data show that pacing the sexual interaction until three ejaculations increases the density of new cells and neurons in the granular layer of the AOB, confirming that sexual behavior induces long-lasting plastic changes in the OB. PMID:26973447

  7. RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse.

    PubMed

    Ballester-Lurbe, Begoña; González-Granero, Susana; Mocholí, Enric; Poch, Enric; García-Manzanares, María; Dierssen, Mara; Pérez-Roger, Ignacio; García-Verdugo, José M; Guasch, Rosa M; Terrado, José

    2015-11-01

    The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89% less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.

  8. Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress

    PubMed Central

    Belnoue, Laure; Malvaut, Sarah; Ladevèze, Elodie; Abrous, Djoher Nora; Koehl, Muriel

    2016-01-01

    Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers’ ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers. PMID:27886228

  9. Odorants with Multiple Oxygen-Containing Functional Groups and Other Odorants with High Water Solubility Preferentially Activate Posterior Olfactory Bulb Glomeruli

    PubMed Central

    Johnson, Brett A.; Arguello, Spart; Leon, Michael

    2008-01-01

    In past studies in which we mapped 2-deoxyglucose uptake evoked by systematically different odorant chemicals across the entire rat olfactory bulb, glomerular responses could be related to each odorant's particular oxygen-containing functional group. In the present study, we tested whether aliphatic odorants containing two such functional groups (esters, ketones, acids, alcohols, and ethers) would stimulate the combination of glomerular regions that are associated with each of the functional groups separately, or whether they would evoke unique responses in different regions of the bulb. We found that these very highly water-soluble molecules rarely evoked activity in the regions responding to the individual functional groups; instead, they activated posterior glomeruli located about halfway between the dorsal and ventral extremes in both the lateral and the medial aspects of the bulb. Additional highly water-soluble odorants, including very small molecules with single oxygenic groups, also strongly stimulated these posterior regions, resulting in a statistically significant correlation between posterior 2-deoxyglucose uptake and molecular properties associated with water solubility. By showing that highly water-soluble odorants stimulate a part of the bulb associated with peripheral and ventral regions of the epithelium, our results challenge a prevalent notion that such odorants would activate class I odorant receptors located in zone 1 of the olfactory epithelium, which projects to the dorsal aspect of the bulb. PMID:17366613

  10. Toxic effects of inhaled manganese on the olfactory bulb: an ultrastructural approach in mice.

    PubMed

    Colin-Barenque, L; Souza-Gallardo, L M; Fortoul, T I

    2011-01-01

    Olfactory dysfunction is a common symptom reported by patients with neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Despite the knowledge gathered about the pathology of these diseases, little information has been generated regarding the ultrastructure modifications of the granule cells that regulate the information for odor identification. Swollen organelles and nuclear invaginations identified the exposed mice. Necrosis was evidenced at 4th week of exposure, whereas apoptosis arose at 8th week of exposure. A ruffled electron-dense membrane changes were also found. The changes observed could be explained by the reactive oxygen species generated by manganese and its effects on the membrane's structure and on the cytoskeleton's function. This study contributes to correlate metal air pollution and neurodegenerative changes with olfactory affection.

  11. DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease.

    PubMed

    Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A; Sykora, Peter; Liu, Dong; Cordonnier, Stephanie; Fang, Evandro F; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2017-02-01

    Alzheimer's disease (AD) involves the progressive degeneration of neurons critical for learning and memory. In addition, patients with AD typically exhibit impaired olfaction associated with neuronal degeneration in the olfactory bulb (OB). Because DNA base excision repair (BER) is reduced in brain cells during normal aging and AD, we determined whether inefficient BER due to reduced DNA polymerase-β (Polβ) levels renders OB neurons vulnerable to degeneration in the 3xTgAD mouse model of AD. We interrogated OB histopathology and olfactory function in wild-type and 3xTgAD mice with normal or reduced Polβ levels. Compared to wild-type control mice, Polβ heterozygous (Polβ(+/-) ), and 3xTgAD mice, 3xTgAD/Polβ(+/-) mice exhibited impaired performance in a buried food test of olfaction. Polβ deficiency did not affect the proliferation of OB neural progenitor cells in the subventricular zone. However, numbers of newly generated neurons were reduced by approximately 25% in Polβ(+/-) and 3xTgAD mice, and by over 60% in the 3xTgAD/Polβ(+/-) mice compared to wild-type control mice. Analyses of DNA damage and apoptosis revealed significantly greater degeneration of OB neurons in 3xTgAD/Polβ(+/-) mice compared to 3xTgAD mice. Levels of amyloid β-peptide (Aβ) accumulation in the OB were similar in 3xTgAD and 3xTgAD/Polβ(+/-) mice, and cultured Polβ-deficient neurons exhibited increased vulnerability to Aβ-induced death. Olfactory deficit is an early sign in human AD, but the mechanism is not yet understood. Our findings in a new AD mouse model demonstrate that diminution of BER can endanger OB neurons, and suggest a mechanism underlying early olfactory impairment in AD. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Organization of the main olfactory bulbs of some mammals: musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats.

    PubMed

    Kosaka, Katsuko; Kosaka, Toshio

    2004-04-19

    We immunohistochemically examined the organization of the main olfactory bulbs (MOBs) in seven mammalian species, including moles, hedgehogs, tree shrews, bats, and mice as well as laboratory musk shrews and rats. We focused our investigation on two points: 1) whether nidi, particular spheroidal synaptic regions subjacent to glomeruli, which we previously reported for the laboratory musk shrew MOBs, are also present in other animals and 2) whether the compartmental organization of glomeruli and two types of periglomerular cells we proposed for the rat MOBs are general in other animals. The general laminar pattern was similar among these seven species, but discrete nidi and the nidal layer were recognized only in two insectivores, namely, the mole and laboratory musk shrew. Olfactory marker protein-immunoreactive (OMP-IR) axons extended beyond the limits of the glomerular layer (GL) into the superficial region of the external plexiform layer (EPL) or the nidal layer in the laboratory musk shrew, mole, hedgehog, and tree shrew but not in bat, mouse, and rat. We observed, in nidi and the nidal layer in the mole and laboratory musk shrew MOBs, only a few OMP-IR axons. In the hedgehog, another insectivore, OMP-IR processes extending from the glomeruli were scattered and intermingled with calbindin D28k-IR cells at the border between the GL and the EPL. In the superficial region of the EPL of the tree shrew MOBs, there were a small number of tiny glomerulus-like spheroidal structures where OMP-IR axons protruding from glomeruli were intermingled with dendritic branches of surrounding calbindin D28k-IR cells. Furthermore, we recognized the compartmental organization of glomeruli and two types of periglomerular cells in the MOBs of all of the mammals we examined. These structural features are therefore considered to be common and important organizational principles of the MOBs.

  13. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb

    PubMed Central

    Carey, Ryan M.; Sherwood, William Erik; Shipley, Michael T.; Borisyuk, Alla

    2015-01-01

    Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks. PMID:25717156

  14. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys.

    PubMed

    Pifl, Christian; Reither, Harald; Del Rey, Natalia Lopez-Gonzalez; Cavada, Carmen; Obeso, Jose A; Blesa, Javier

    2017-01-01

    Parkinson's disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.

  15. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys

    PubMed Central

    Pifl, Christian; Reither, Harald; del Rey, Natalia Lopez-Gonzalez; Cavada, Carmen; Obeso, Jose A.; Blesa, Javier

    2017-01-01

    Parkinson’s disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms. PMID:28611598

  16. Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb

    PubMed Central

    Phillips, Matthew E.; Sachdev, Robert N. S.; Willhite, David C.; Shepherd, Gordon M.

    2012-01-01

    Respiration produces rhythmic activity in the entire olfactory system, driving neurons in the olfactory epithelium, bulb (OB) and cortex. The rhythmic nature of this activity is believed to be a critical component of sensory processing. OB projection neurons, mitral and tufted cells, exhibit both spiking and subthreshold membrane potential oscillations rhythmically coupled to respiration. Yet, the network and synaptic mechanisms that produce respiration-coupled activity, and the effects of respiration on lateral inhibition, a major component of sensory processing in OB circuits, are not known. Is respiration-coupled activity in mitral and tufted cells produced by sensory synaptic inputs from nasal airflow alone, cortico-bulbar feedback, or intrinsic membrane properties of the projection neurons? Does respiration facilitate or modulate the activity of inhibitory lateral circuits in the OB? Here, in vivo intracellular recordings from identified mitral and tufted cells in anesthetized rats demonstrate that nasal airflow provides excitatory synaptic inputs to both cell types and drives respiration-coupled spiking. Lateral inhibition, inhibitory post-synaptic potentials evoked by intrabulbar microstimulation, was modulated by respiration. In individual mitral and tufted cells inhibition was larger at specific respiratory phases. However, lateral inhibition was not uniformly larger during a particular respiratory phase in either cell type. Removing nasal airflow abolished respiration-coupled spiking in both cell types and nearly eliminated spiking in mitral, but not tufted cells. In the absence of nasal airflow, lateral inhibition was weaker in mitral cells and less modulated in tufted cells. Thus, respiration drives distinct network activities that functionally modulate sensory processing in the OB. PMID:22219272

  17. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.

    PubMed

    Carey, Ryan M; Sherwood, William Erik; Shipley, Michael T; Borisyuk, Alla; Wachowiak, Matt

    2015-05-01

    Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.

  18. Pheromones from males of different familiarity exert divergent effects on adult neurogenesis in the female accessory olfactory bulb.

    PubMed

    Wu, Jyun-Han; Han, Yueh-Ting; Yu, Jenn-Yah; Wang, Tsu-Wei

    2013-08-01

    Pheromones from urine of unfamiliar conspecific male animals can reinitiate a female's estrus cycle to cause pregnancy block through the vomeronasal organ (VNO)-accessory olfactory bulb (AOB)-hypothalamic pathway. This phenomenon is called the Bruce effect. Pheromones from the mate of the female, however, do not trigger re-entrance of the estrus cycle because an olfactory memory toward its mate is formed. The activity of the VNO-AOB-hypothalamic pathway is negatively modulated by GABAergic granule cells in the AOB. Since these cells are constantly replenished by neural stem cells in the subventricular zone (SVZ) of the lateral ventricle throughout adulthood and adult neurogenesis is required for mate recognition and fertility, we tested the hypothesis that pheromones from familiar and unfamiliar males may have different effects on adult AOB neurogenesis in female mice. When female mice were exposed to bedding used by a male or lived with one, cell proliferation and neuroblast production in the SVZ were increased. Furthermore, survival of newly generated cells in the AOB was enhanced. This survival effect was transient and mediated by norepinephrine. Interestingly, male bedding-induced newborn cell survival in the AOB but not cell proliferation in the SVZ was attenuated when females were subjected to bedding from an unfamiliar male. Our results indicate that male pheromones from familiar and unfamiliar males exert different effects on neurogenesis in the adult female AOB. Given that adult neurogenesis is required for reproductive behaviors, these divergent pheromonal effects may provide a mechanism for the Bruce effect. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 632-645, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  19. Responses of mitral/tufted cells to orthodromic and antidromic electrical stimulation in the olfactory bulb of the tiger salamander.

    PubMed

    Hamilton, K A; Kauer, J S

    1988-06-01

    1. Responses evoked by electrical stimulation of the olfactory nerve and olfactory tracts were analyzed in 46 output cells of the salamander olfactory bulb, in vivo. Labeling of several cells with horseradish peroxidase indicated that they were mitral and/or tufted neurons. The responses contained reproducible sequences of depolarizing and hyperpolarizing potentials, which changed with increases in stimulus intensity. 2. Stimulation of the nerve with intensities subthreshold for evoking spikes in the recorded cell resulted in a small depolarization followed by a period of hyperpolarization, during which spontaneous spikes were suppressed. With suprathreshold stimulus intensities, a single spike or often a burst of spikes was evoked, followed by a complex prolonged hyperpolarization. When full spikes were blocked by injecting hyperpolarizing current through the recording electrode, an excitatory postsynaptic potential (EPSP) with two major components and sometimes a fast prepotential were observed at the beginning of the response. Amplitudes of the EPSP and hyperpolarization increased with graded increases in stimulus intensity. In tests with paired stimulus volleys, spike generation was inhibited for at least 1 s and often for several seconds during the hyperpolarization. 3. Stimulation of the tracts with intensities subthreshold for evoking spikes in the recorded cell resulted in a complex prolonged hyperpolarization. With suprathreshold stimulus intensities, a single spike was evoked, followed by a similar period of hyperpolarization. When full spikes were blocked by injecting hyperpolarizing current through the recording electrode, a small antidromic spike, presumably generated in the axon or initial segment, was often observed. Amplitude of the hyperpolarization increased with graded increases in stimulus intensity. In tests with paired volleys, generation of a full antidromic spike was inhibited for a period that usually began 20-30 ms, following the spike

  20. mTOR kinase is needed for the development and stabilization of dendritic arbors in newly born olfactory bulb neurons

    PubMed Central

    Skalecka, Agnieszka; Liszewska, Ewa; Bilinski, Robert; Gkogkas, Christos; Khoutorsky, Arkady; Malik, Anna R.; Sonenberg, Nahum

    2016-01-01

    ABSTRACT Neurogenesis is the process of neuron generation, which occurs not only during embryonic development but also in restricted niches postnatally. One such region is called the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb (OB). Neurons that are born postnatally migrate through more complex territories and integrate into fully functional circuits. Therefore, differences in the differentiation of embryonic and postnatally born neurons may exist. Dendritogenesis is an important process for the proper formation of future neuronal circuits. Dendritogenesis in embryonic neurons cultured in vitro was shown to depend on the mammalian target of rapamycin (mTOR). Still unknown, however, is whether mTOR could regulate the dendritic arbor morphology of SVZ‐derived postnatal OB neurons under physiological conditions in vivo. The present study used in vitro cultured and differentiated SVZ‐derived neural progenitors and found that both mTOR complex 1 and mTOR complex 2 were required for the dendritogenesis of SVZ‐derived neurons. Furthermore, using a combination of in vivo electroporation of neural stem cells in the SVZ and genetic and pharmacological inhibition of mTOR, it was found that mTOR was crucial for the growth of basal and apical dendrites in postnatally born OB neurons under physiological conditions and contributed to the stabilization of their basal dendrites. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1308–1327, 2016 PMID:27008592

  1. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb

    PubMed Central

    Ben-Shaul, Y.; Katz, L. C.; Mooney, R.; Dulac, C.

    2010-01-01

    The rodent vomeronasal system plays a critical role in mediating pheromone-evoked social and sexual behaviors. Recent studies of the anatomical and molecular architecture of the vomeronasal organ (VNO) and of its synaptic target, the accessory olfactory bulb (AOB), have suggested that unique features underlie vomeronasal sensory processing. However, the neuronal representation of pheromonal information leading to specific behavioral and endocrine responses has remained largely unexplored due to the experimental difficulty of precise stimulus delivery to the VNO. To determine the basic rules of information processing in the vomeronasal system, we developed a unique preparation that allows controlled and repeated stimulus delivery to the VNO and combined this approach with multisite recordings of neuronal activity in the AOB. We found that urine, a well-characterized pheromone source in mammals, as well as saliva, activates AOB neurons in a manner that reliably encodes the donor animal’s sexual and genetic status. We also identified a significant fraction of AOB neurons that respond robustly and selectively to predator cues, suggesting an expanded role for the vomeronasal system in both conspecific and interspecific recognition. Further analysis reveals that mixed stimuli from distinct sources evoke synergistic responses in AOB neurons, thereby supporting the notion of integrative processing of chemosensory information. PMID:20194746

  2. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis

    PubMed Central

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-01-01

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits. PMID:27782186

  3. The basal forebrain modulates spontaneous activity of principal cells in the main olfactory bulb of anesthetized mice

    PubMed Central

    Zhan, Xiping; Yin, Pingbo; Heinbockel, Thomas

    2013-01-01

    Spontaneous activity is an important characteristic of the principal cells in the main olfactory bulb (MOB) for encoding odor information, which is modulated by the basal forebrain. Cholinergic activation has been reported to inhibit all major neuron types in the MOB. In this study, the effect of diagonal band (NDB) stimulation on mitral/tufted (M/T) cell spontaneous activity was examined in anesthetized mice. NDB stimulation increased spontaneous activity in 66 MOB neurons which lasted for 2–35 s before returning to the baseline level. The majority of the effected units showed a decrease of interspike intervals (ISI) at a range of 8–25 ms. Fifty-two percent of NDB stimulation responsive units showed intrinsic rhythmical bursting, which was enhanced temporarily by NDB stimulation, whereas the remaining non-rhythmic units were capable of synchronized bursting. The effect was attenuated by scopolamine in 21 of 27 units tested. Only four NDB units were inhibited by NDB stimulation, an inhibition that lasted less than 10 s. The NDB stimulation responsive neurons appeared to be M/T cells. Our findings demonstrate an NDB excitation effect on M/T neurons that mostly requires muscarinic receptor activation, and is likely due to non-selectivity of electrical stimulation. This suggests that cholinergic and a diverse group of non-cholinergic neurons in the basal forebrain co-ordinately modulate the dynamics of M/T cell spontaneous activity, which is fundamental for odor representation and attentional perception. PMID:24065892

  4. The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb.

    PubMed

    Li, Xiaosu; Sun, Chifei; Lin, Chao; Ma, Tong; Madhavan, Mayur C; Campbell, Kenneth; Yang, Zhengang

    2011-06-08

    Interneurons in the olfactory bulb (OB) represent a heterogeneous population, which are first produced at embryonic stages and persisting into adulthood. Using the BrdU birthdating method combined with immunostaining for several different neuronal markers, we provide the integrated temporal patterns of distinct mouse OB interneuron production from embryonic day 14 to postnatal day 365. We show that although the majority of OB interneuron subtypes continue to be generated throughout life, most subtypes show a similar "bell-like" temporal production pattern with a peak around birth. Tyrosine hydroxylase and calretinin-expressing interneurons are produced at a relatively low rate in the adult OB, while parvalbumin-expressing (PV+) interneuron production is confined to later embryonic and early postnatal stages. We also show that Dlx5/6-expressing progenitors contribute to PV+ interneurons in the OB. Interestingly, all PV+ interneurons in the external plexiform layer (EPL) express the transcription factor Sp8. Genetic ablation of Sp8 by cre/loxP-based recombination severely reduces the number of PV+ interneurons in the EPL of the OB. Our results suggest that Sp8 is required for the normal production of PV+ interneurons in the EPL of the OB. These data expand our understanding of the temporal and molecular regulation of OB interneuron neurogenesis.

  5. Influence of modified alginate hydrogels on mesenchymal stem cells and olfactory bulb-derived glial cells cultures.

    PubMed

    Marycz, Krzysztof; Szarek, Dariusz; Grzesiak, Jakub; Wrzeszcz, Karol

    2014-01-01

    Great potential of cellular therapies has generated extensive research in the field of cells harvesting and culturing. Transplantation of cell cultures has been used in a variety of therapeutic programs but in many cases it appeared that biomaterial scaffold or sheath would enhance cells regenerative potential. Hydrogels composed of different proportions sodium and calcium alginates, were undertaken to evaluate their influence on mesenchymal stem cells and olfactory bulb-derived glial cells cultures. Additionally, these biomaterials were also enriched with fibrin protein. The structure of materials was visualized by means of scanning electron microscopy. After seeding with cells - hydrogels were observed with inverted and fluorescence microscope. Cell's morphology, behavior and phenotype were analyzed in investigated materials by means of light, fluorescence and scanning electron microscopes. Also, viability assay was performed with Alamar Blue cytotoxic test. Our observations showed that basic alginate hydrogels had significant influence on both cell types. Materials maintained cells alive, which is desired attribute, however none of them kept cells in normal, flat form. Alginates with significant calcium component kept cells alive for longer period of culture. Addition of fibrin protein resulted in material's biocompatibility properties improvement, by creation of adhesion surface, which helps cells to keep proper morphology and behavior. Our findings suggest that addition of fibrin protein to alginate hydrogels improves them as cell carriers for regenerative medicine applications.

  6. The subrhinal paleocortex in the hedgehog tenrec: a multiarchitectonic characterization and an analysis of its connections with the olfactory bulb.

    PubMed

    Künzle, H; Radtke-Schuller, S

    2000-12-01

    In the Madagascan hedgehog tenrec, Echinops telfairi, the entire paleocortical region (PCx) subjacent to the rhinal indentation is composed of three layers and occupies up to two thirds of the lateral hemisphere. A clear differentiation of PCx into its presumed constituents, the piriform cortex and the entorhinal cortex, as seen in other mammals, has not been obtained so far. To gain insight into location and intrinsic organization of these areas in a basal placental mammal we investigated the tenrec's PCx using cyto-, myelo- and chemoarchitectural criteria (zinc, acetylcholinesterase, NADPh-diaphorase, Wisteria floribunda agglutinin, parvalbumin, calbindin, calretinin) and analysed its connections with the olfactory bulb. The layers 2 and 3 of the tenrec's PCx differed from the corresponding layers in the rat. The layer 2 showed a complex distribution of corticobulbar cells but could not be subdivided, in contrast to layer 3. Additional cell groups in the depth of PCx were tentatively compared with subdivisions of the endopiriform region. The architectural and connectional features varied clearly along the rostrocaudal and dorso-ventral extents of PCx and gave hints for the presence of different paleocortical subdivisions. With the possible exception of an area located at the most caudal tip of the dorsomedial hemisphere, however, no conclusive evidence was obtained for the presence of a multilayered, entorhinal region. The bulbar projections to the PCx were very extensive and almost exclusively ipsilateral. The laterality of the projection is similar to that in higher mammals, but differs from that in the erinaceous hedgehog.

  7. Interactions Between Odorant Functional Group and Hydrocarbon Structure Influence Activity in Glomerular Response Modules in the Rat Olfactory Bulb

    PubMed Central

    Johnson, Brett A.; Farahbod, Haleh; Leon, Michael

    2008-01-01

    To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [14C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules. PMID:15678471

  8. Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb

    PubMed Central

    2017-01-01

    Abstract Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB. PMID:28955723

  9. Topology-graph directed separating boundary surfaces approximation of nonmanifold neuroanatomical structures: application to mouse brain olfactory bulb.

    PubMed

    Koh, Wonryull; McCormick, Bruce H

    2009-04-01

    Boundary surface approximation of 3-D neuroanatomical regions from sparse 2-D images (e.g., mouse brain olfactory bulb structures from a 2-D brain atlas) has proven to be difficult due to the presence of abutting, shared boundary surfaces that are not handled by traditional boundary-representation data structures and surfaces-from-contours algorithms. We describe a data structure and an algorithm to reconstruct separating surfaces among multiple regions from sparse cross-sectional contours. We define a topology graph for each region, that describes the topological skeleton of the region's boundary surface and that shows between which contours the surface patches should be generated. We provide a graph-directed triangulation algorithm to reconstruct surface patches between contours. We combine our graph-directed triangulation algorithm together with a piecewise parametric curve fitting technique to ensure that abutting or shared surface patches are precisely coincident. We show that our method overcomes limitations in 1) traditional contours-from-surfaces algorithms that assume binary, not multiple, regionalization of space, and in 2) few existing separating surfaces algorithms that assume conversion of input into a regular volumetric grid, which is not possible with sparse interplanar resolution.

  10. Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb.

    PubMed

    Liu, Annie; Urban, Nathaniel N

    2017-01-01

    Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB.

  11. A morphological study of the vomeronasal organ and the accessory olfactory bulb in the Korean roe deer, Capreolus pygargus.

    PubMed

    Park, Changnam; Ahn, Meejung; Lee, Jae-Yuk; Lee, Sang; Yun, Youngmin; Lim, Yoon-Kyu; Taniguchi, Kazumi; Shin, Taekyun

    2014-01-01

    The vomeronasal organ (VNO) and accessory olfactory bulb (AOB) of the Korean roe deer (Capreolus pygargus) were studied histologically to evaluate their morphological characteristics. Grossly, the VNO, encased by cartilage, has a paired tubular structure with a caudal blind end and a rostral connection through incisive ducts on the hard palate. In the VNO, the vomeronasal sensory epithelium (VSE) consists of galectin-3-positive supporting cells, protein gene product (PGP) 9.5-positive receptor cells, and basal cells. The vomeronasal respiratory epithelium (VRE) consists of a pseudostratified epithelium. The AOB strata included a vomeronasal nerve layer (VNL), a glomerular layer (GL), a mitral/tufted cell layer, and a granular cell layer. All lectins used in this study, including Bandeiraea simplicifolia agglutinin isolectin B4 (BSI-B4), soybean agglutinin (SBA), Ulex europaeus agglutinin I (UEA-I), and Triticum vulgaris wheat germ agglutinin (WGA), labeled the VSE with varying intensity. In the AOB, both the VNL and the GL reacted with BSI-B4, SBA, and WGA with varying intensity, but not with UEA-I. This is the first morphological study of the VNO and AOB of the Korean roe deer, which are similar to those of goats.

  12. The effect of spaceflight on mouse olfactory bulb volume, neurogenesis, and cell death indicates the protective effect of novel environment

    PubMed Central

    Latchney, Sarah E.; Rivera, Phillip D.; Mao, Xiao W.; Ferguson, Virginia L.; Bateman, Ted A.; Stodieck, Louis S.; Nelson, Gregory A.

    2014-01-01

    Space missions necessitate physiological and psychological adaptations to environmental factors not present on Earth, some of which present significant risks for the central nervous system (CNS) of crewmembers. One CNS region of interest is the adult olfactory bulb (OB), as OB structure and function are sensitive to environmental- and experience-induced regulation. It is currently unknown how the OB is altered by spaceflight. In this study, we evaluated OB volume and neurogenesis in mice shortly after a 13-day flight on Space Shuttle Atlantis [Space Transport System (STS)-135] relative to two groups of control mice maintained on Earth. Mice housed on Earth in animal enclosure modules that mimicked the conditions onboard STS-135 (AEM-Ground mice) had greater OB volume relative to mice maintained in standard housing on Earth (Vivarium mice), particularly in the granule (GCL) and glomerular (GL) cell layers. AEM-Ground mice also had more OB neuroblasts and fewer apoptotic cells relative to Vivarium mice. However, the AEM-induced increase in OB volume and neurogenesis was not seen in STS-135 mice (AEM-Flight mice), suggesting that spaceflight may have negated the positive effects of the AEM. In fact, when OB volume of AEM-Flight mice was considered, there was a greater density of apoptotic cells relative to AEM-Ground mice. Our findings suggest that factors present during spaceflight have opposing effects on OB size and neurogenesis, and provide insight into potential strategies to preserve OB structure and function during future space missions. PMID:24744382

  13. Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb

    PubMed Central

    Geramita, Matthew A; Burton, Shawn D; Urban, Nathan N

    2016-01-01

    Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways. DOI: http://dx.doi.org/10.7554/eLife.16039.001 PMID:27351103

  14. Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb.

    PubMed

    Geramita, Matthew A; Burton, Shawn D; Urban, Nathan N

    2016-06-28

    Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways.

  15. Main and accessory olfactory bulbs and their projections in the brain anticipate feeding in food-entrained rats.

    PubMed

    Caba, Mario; Pabello, Marcela; Moreno, Maria Luisa; Meza, Enrique

    2014-10-01

    The olfactory bulb (OB) has a circadian clock independent of the suprachiasmatic nucleus, but very little is known about the functional significance of its oscillations. The OB plays a major role in food intake as it contributes to the evaluation of the hedonic properties of food, it is necessary for a normal pattern of locomotor behavior and their ablation disrupts feeding patterns. Previously we demonstrated that OB of rabbit pups can be entrained by periodic nursing but it was not clear whether food was the entraining signal. Here we hypothesized that OB can be entrained by a food pulse during the day in adult rats under a restricted feeding schedule. Then we expect that OB will have a high activation before food presentation when animals show food anticipatory activity (FAA). To this aim we determined by immunohistochemistry the expression of FOS protein, as an indicator of neural activation, in the mitral and granular cell layers of the main and accessory OB. Additionally we also explored two of the OB brain targets, the piriform cortex (PC) and bed nuclei of the accessory olfactory tract (BAOT), in three groups: ad libitum (ALF), restricted feeding (RF), and fasted rats after restricted feeding (RF-F). In ALF group FOS levels in both main and accessory OB were low during the day and high during the night at the normal onset of the increase of activity, in agreement with previous reports. On the contrary in RF and RF-F groups FOS was high at the time of FAA, just before food presentation, when animals are in a state of high arousal and during food consumption but was low during the night. In their brain targets, we observed a similar pattern as OB in all groups with the only difference being that FOS levels remained high during the night in RF-F group. We conclude that the OB is entrained by food restriction by showing high activation at the time of food presentation, which persists during fasting and impose a similar FOS pattern to the two brain targets

  16. Inward rectifier potassium (Kir) current in dopaminergic periglomerular neurons of the mouse olfactory bulb.

    PubMed

    Borin, Mirta; Fogli Iseppe, Alex; Pignatelli, Angela; Belluzzi, Ottorino

    2014-01-01

    Dopaminergic (DA) periglomerular (PG) neurons are critically placed at the entry of the bulbar circuitry, directly in contact with both the terminals of olfactory sensory neurons and the apical dendrites of projection neurons; they are autorhythmic and are the target of numerous terminals releasing a variety of neurotransmitters. Despite the centrality of their position, suggesting a critical role in the sensory processing, their properties -and consequently their function- remain elusive. The current mediated by inward rectifier potassium (Kir) channels in DA-PG cells was recorded by adopting the perforated-patch configuration in thin slices; IKir could be distinguished from the hyperpolarization-activated current (I h ) by showing full activation in <10 ms, no inactivation, suppression by Ba(2+) in a typical voltage-dependent manner (IC50 208 μM) and reversal potential nearly coincident with EK. Ba(2+) (2 mM) induces a large depolarization of DA-PG cells, paralleled by an increase of the input resistance, leading to a block of the spontaneous activity, but the Kir current is not an essential component of the pacemaker machinery. The Kir current is negatively modulated by intracellular cAMP, as shown by a decrease of its amplitude induced by forskolin or 8Br-cAMP. We have also tested the neuromodulatory effects of the activation of several metabotropic receptors known to be present on these cells, showing that the current can be modulated by a multiplicity of pathways, whose activation in some case increases the amplitude of the current, as can be observed with agonists of D2, muscarinic, and GABAA receptors, whereas in other cases has the opposite effect, as it can be observed with agonists of α1 noradrenergic, 5-HT and histamine receptors. These characteristics of the Kir currents provide the basis for an unexpected plasticity of DA-PG cell function, making them potentially capable to reconfigure the bulbar network to allow a better flexibility.

  17. Novel subdivisions of the rat accessory olfactory bulb revealed by the combined method with lectin histochemistry, electrophysiological and optical recordings.

    PubMed

    Sugai, T; Sugitani, M; Onoda, N

    2000-01-01

    Wistaria floribunda agglutinin and peanut agglutinin were found to bind histochemically to the anterior and posterior regions, respectively, of the vomeronasal nerve and glomerular layers in the rat accessory olfactory bulb. Furthermore, Ricinus communis agglutinin showed strong binding to the anterior region of the vomeronasal nerve and glomerular layers, whereas it bound weakly and/or moderately to the rostral two-thirds of the posterior glomerular layer but not at all to the caudal one-third. This suggests that the posterior region is further divided into two subregions. An electrophysiological mapping study in sagittal slice preparations demonstrated that stimulation given within the anterior vomeronasal nerve layer elicited field potentials within the anterior region of the external plexiform layer, whereas shocks to the rostral two-thirds and the caudal one-third of the posterior vomeronasal nerve layer provoked field responses within the rostral two-thirds and within the caudal one-third of the posterior external plexiform layer, respectively, indicating that the posterior external plexiform layer is also divided into two subregions. Real-time optical imaging showed similar results as above, except that neural activity also spread into mitral cell layers. Furthermore, the most anterior and posterior ends of the neural activity evoked in the rostral two-thirds of the posterior region immediately adjoined the posterior border of that evoked in the anterior region and the anterior border of that evoked in the caudal one-third of the posterior region, respectively. Moreover, the granule cell layer was also found to have similar boundaries. Thus, optical imaging studies demonstrated individual precise boundaries of these subdivisions, which were positioned right beneath those defined by Ricinus communis agglutinin histochemistry. The presence of functional segregation in each layer leads us to conclude that there are at least three different input-output pathways

  18. Gene Expression Profile of Adult Human Olfactory Bulb and Embryonic Neural Stem Cell Suggests Distinct Signaling Pathways and Epigenetic Control

    PubMed Central

    Marei, Hany E. S.; Ahmed, Abd-Elmaksoud; Michetti, Fabrizio; Pescatori, Mario; Pallini, Roberto; Casalbore, Patricia; Cenciarelli, Carlo; Elhadidy, Mohamed

    2012-01-01

    Global gene expression profiling was performed using RNA from human embryonic neural stem cells (hENSC), and adult human olfactory bulb-derived neural stem cells (OBNSCs), to define a gene expression pattern and signaling pathways that are specific for each cell lineage. We have demonstrated large differences in the gene expression profile of human embryonic NSC, and adult human OBNSCs, but less variability between parallel cultures. Transcripts of genes involved in neural tube development and patterning (ALDH1A2, FOXA2), progenitor marker genes (LMX1a, ALDH1A1, SOX10), proliferation of neural progenitors (WNT1 and WNT3a), neuroplastin (NPTN), POU3F1 (OCT6), neuroligin (NLGN4X), MEIS2, and NPAS1 were up-regulated in both cell populations. By Gene Ontology, 325 out of 3875 investigated gene sets were scientifically different. 41 out of the 307 investigated Cellular Component (CC) categories, 45 out of the 620 investigated Molecular Function (MF) categories, and 239 out of the 2948 investigated Biological Process (BP) categories were significant. KEGG Pathway Class Comparison had revealed that 75 out of 171 investigated gene sets passed the 0.005 significance threshold. Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and mTOR that are known to be involved in NS cell fates determination. The transcriptional signature also deciphers the role of genes involved in epigenetic modifications. SWI/SNF DNA chromatin remodeling complex family, including SMARCC1 and SMARCE1, were found specifically up-regulated in our OBNSC but not in hENSC. Differences in gene expression profile of transcripts controlling epigenetic modifications, and signaling pathways might indicate differences in the therapeutic potential of our examined two cell populations in relation to in cell survival, proliferation, migration, and differentiation following engraftments in different CNS insults. PMID:22485144

  19. Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in Trimethyltin-induced neurodegeneration rat model.

    PubMed

    Marei, Hany E; Elnegiry, Ahmed A; Zaghloul, Adel; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Farag, Amany; Lashen, Samah; Rezk, Shymaa; Shouman, Zeinab; Cenciarelli, Carlo; Hasan, Anwarul

    2017-12-01

    Neural stem cells (NSCs) are multipotent self-renewing cells that could be used in cellular-based therapy for a wide variety of neurodegenerative diseases including Alzheimer's diseases (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Being multipotent in nature, they are practically capable of giving rise to major cell types of the nervous tissue including neurons, astrocytes, and oligodendrocytes. This is in marked contrast to neural progenitor cells which are committed to a specific lineage fate. In previous studies, we have demonstrated the ability of NSCs isolated from human olfactory bulb (OB) to survive, proliferate, differentiate, and restore cognitive and motor deficits associated with AD, and PD rat models, respectively. The use of carbon nanotubes (CNTs) to enhance the survivability and differentiation potential of NSCs following their in vivo engraftment have been recently suggested. Here, in order to assess the ability of CNTs to enhance the therapeutic potential of human OBNSCs for restoring cognitive deficits and neurodegenerative lesions, we co-engrafted CNTs and human OBNSCs in TMT-neurodegeneration rat model. The present study revealed that engrafted human OBNSCS-CNTs restored cognitive deficits, and neurodegenerative changes associated with TMT-induced rat neurodegeneration model. Moreover, the CNTs seemed to provide a support for engrafted OBNSCs, with increasing their tendency to differentiate into neurons rather than into glia cells. The present study indicate the marked ability of CNTs to enhance the therapeutic potential of human OBNSCs which qualify this novel therapeutic paradigm as a promising candidate for cell-based therapy of different neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  20. Global Histone H4 Acetylation in the Olfactory Bulb of Lactating Rats with Different Patterns of Maternal Behavior.

    PubMed

    de Moura, Ana Carolina; da Silva, Ivy Reichert Vital; Reinaldo, Gustavo; Dani, Caroline; Elsner, Viviane Rostirola; Giovenardi, Márcia

    2016-10-01

    In rats, variations in the levels of neuromodulatory molecules and in the expression of their receptors are observed during pregnancy and postpartum. These changes may contribute to the development and management of maternal behavior. The frequency of licking the pups is used to evaluate maternal care, having mothers with low licking (LL) and high licking (HL) frequencies. Previously, we found that HL had increased levels of transcriptional expression of the receptors for serotonin (HTR1a, HTR1b), estrogen (Erα), dopamine (D1a), and prolactin (Prlr) than LL in the olfactory bulb (OB); however, the molecular mechanisms behind this phenomenon are unknown. Since evidences pointed out that epigenetic marks, which may alter gene expression, are modulated by environmental factors such as exercise, diet, maternal care, and xenobiotic exposure, our objective was to verify the acetylation levels of histone-H4 in the OB of LL and HL rats. Maternal behavior was studied for the first 7 postpartum days. LL (n = 4) and HL (n = 5) mothers were selected according to the behavior of licking their pups. Acetylation levels of histone-H4 were determined using the Global Histone-H4 Acetylation Assay Kit and expressed as ng/mg protein (mean ± SD). Analysis revealed that HL (278.36 ± 68.95) had increased H4 acetylation levels than LL (183.24 ± 73.05; p = 0.045). The enhanced expression of the previously studied receptors in the OB could be related, at least in part, to the hyperacetylation status of histone-H4 here observed. Afterward, the modulation of histone acetylation levels could exert a pivotal role through molecular mechanisms involved in the different patterns of maternal behavior.

  1. Shared and differential traits in the accessory olfactory bulb of caviomorph rodents with particular reference to the semiaquatic capybara.

    PubMed

    Suárez, Rodrigo; Santibáñez, Rodrigo; Parra, Daniela; Coppi, Antonio A; Abrahão, Luciana M B; Sasahara, Tais H C; Mpodozis, Jorge

    2011-05-01

    The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing Gαi2 or Gαo proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the Gαi2- and Gαo-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male-male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB.

  2. Tumorigenic Potential of Olfactory Bulb-Derived Human Adult Neural Stem Cells Associates with Activation of TERT and NOTCH1

    PubMed Central

    Ricci-Vitiani, Lucia; Cenciarelli, Carlo; Petrucci, Giovanna; Milazzo, Luisa; Montano, Nicola; Tabolacci, Elisabetta; Maira, Giulio; Larocca, Luigi M.; Pallini, Roberto

    2009-01-01

    Background Multipotent neural stem cells (NSCs) have been isolated from neurogenic regions of the adult brain. Reportedly, these cells can be expanded in vitro under prolonged mitogen stimulation without propensity to transform. However, the constitutive activation of the cellular machinery required to bypass apoptosis and senescence places these cells at risk for malignant transformation. Methodology/Principal Findings Using serum-free medium supplemented with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), we established clonally derived NS/progenitor cell (NS/PC) cultures from the olfactory bulb (OB) of five adult patients. The NS/PC cultures obtained from one OB specimen lost growth factor dependence and neuronal differentiation at early passage. These cells developed glioblastoma tumors upon xenografting in immunosuppressed mice. The remaining NS/PC cultures were propagated either as floating neurospheres or as adherent monolayers with mainteinance of growth factor dependence and multipotentiality at late passage. These cells were engrafted onto the CNS of immunosuppressed rodents. Overall, the grafted NS/PCs homed in the host parenchyma showing ramified morphology and neuronal marker expression. However, a group of animals transplanted with NS/PCs obtained from an adherent culture developed fast growing tumors histologically resembling neuroesthesioblastoma. Cytogenetic and molecular analyses showed that the NS/PC undergo chromosomal changes with repeated in vitro passages under mitogen stimulation, and that up-regulation of hTERT and NOTCH1 associates with in vivo tumorigenicity. Conclusions/Significance Using culturing techniques described in current literature, NS/PCs arise from the OB of adult patients which in vivo either integrate in the CNS parenchyma showing neuron-like features or initiate tumor formation. Extensive xenografting studies on each human derived NS cell line appear mandatory before any use of these cells in the

  3. Shared and differential traits in the accessory olfactory bulb of caviomorph rodents with particular reference to the semiaquatic capybara

    PubMed Central

    Suárez, Rodrigo; Santibáñez, Rodrigo; Parra, Daniela; Coppi, Antonio A; Abrahão, Luciana M B; Sasahara, Tais H C; Mpodozis, Jorge

    2011-01-01

    The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing Gαi2 or Gαo proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the Gαi2- and Gαo-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male–male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB. PMID:21457258

  4. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

    PubMed

    Inoue, Takahito; Fujiwara, Takeshi; Rikitake, Yoshiyuki; Maruo, Tomohiko; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Mizoguchi, Akira; Takai, Yoshimi

    2015-08-15

    Mitral cells project lateral dendrites that contact the lateral and primary dendrites of other mitral cells and granule cell dendrites in the external plexiform layer (EPL) of the olfactory bulb. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. In immunofluorescence microscopy, the immunofluorescence signal for the cell adhesion molecule nectin-1 was concentrated on mitral cell lateral dendrites in the EPL of the developing mouse olfactory bulb. In electron microscopy, the immunogold particles for nectin-1 were symmetrically localized on the plasma membranes at the contacts between mitral cell lateral dendrites, which showed bilateral darkening without dense cytoskeletal undercoats characteristic of puncta adherentia junctions. We named the contacts where the immunogold particles for nectin-1 were symmetrically accumulated "nectin-1 spots." The nectin-1 spots were 0.21 μm in length on average and the distance between the plasma membranes was 20.8 nm on average. In 3D reconstruction of serial sections, clusters of the nectin-1 spots formed a disc-like structure. In the mitral cell lateral dendrites of nectin-1-knockout mice, the immunogold particles for nectin-1 were undetectable and the plasma membrane darkening was electron-microscopically normalized, but the plasma membranes were partly separated from each other. The nectin-1 spots were further identified between mitral cell lateral and primary dendrites and between mitral cell lateral dendrites and granule cell dendritic spine necks. These results indicate that the nectin-1 spots constitute a novel adhesion apparatus that tethers mitral cell dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

  5. Odorant Sensory Input Modulates DNA Secondary Structure Formation and Heterogeneous Ribonucleoprotein Recruitment on the Tyrosine Hydroxylase and Glutamic Acid Decarboxylase 1 Promoters in the Olfactory Bulb.

    PubMed

    Wang, Meng; Cai, Elizabeth; Fujiwara, Nana; Fones, Lilah; Brown, Elizabeth; Yanagawa, Yuchio; Cave, John W

    2017-05-03

    Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 (Gad1) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase (Th), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression.SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis (Gad1 and Th, respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings

  6. The involvement of the olfactory bulbs in the regulation of gonadal and thyroidal activities of male red-winged blackbirds, exposed to short-day light regime.

    PubMed

    Robinzon, B; Katz, Y; Rogers, J G

    1979-01-01

    Surgical removal of the olfactory bulbs (OB) was performed in mature male red-winged blackbirds, maintained under a short-day light regime. Bulbectomy caused hyperphagia, which was not accompanied by obesity. Bulbectomized (OBX) birds had incresaed thyroid follicular activity and had greater developed testes than sham-operated controls. In the adenohypophyses of the OB-removed birds there was an increase in the populations of 4 types of chromophils: alcianophils, PAS-positive basophils, orangeophils and PAS-positive acidophils. The possibility that the OB are involved in the photoperiodic regulation of the activity of the gonads and thyroids is discussed.

  7. Complementary Postsynaptic Activity Patterns Elicited in Olfactory Bulb by Stimulation of Mitral/Tufted and Centrifugal Fiber Inputs to Granule Cells

    PubMed Central

    Laaris, Nora; Puche, Adam; Ennis, Matthew

    2009-01-01

    Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially target the somata/proximal dendrites of granule cells in the granule cell layer (GCL). In the present study, tract tracing, and recordings of field potentials and voltage-sensitive dye optical signals were used to map activity patterns elicited by activation of these two inputs to granule cells in mouse olfactory bulb slices. Stimulation of the lateral olfactory tract (LOT) produced a negative field potential in the EPL and a positivity in the GCL. CFF stimulation produced field potentials of opposite polarity in the EPL and GCL to those elicited by LOT. LOT-evoked optical signals appeared in the EPL and spread subsequently to deeper layers, whereas CFF-evoked responses appeared in the GCL and then spread superficially. Evoked responses were reduced by N-methyl-d-aspartate (NMDA) receptor antagonists and completely suppressed by AMPA receptor antagonists. Reduction of extracellular Mg2+ enhanced the strength and spatiotemporal extent of the evoked responses. These and additional findings indicate that LOT- and CFF-evoked field potentials and optical signals reflect postsynaptic activity in granule cells, with moderate NMDA and dominant AMPA receptor components. Taken together, these results demonstrate that LOT and CFF stimulation in MOB slices selectively activate glutamatergic inputs to the distal dendrites versus somata/proximal dendrites of granule cells. PMID:17035366

  8. A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males

    PubMed Central

    Kang, Ningdong; Baum, Michael J.; Cherry, James A.

    2009-01-01

    The main olfactory system, like the accessory olfactory system, responds to pheromones involved in social communication. Whereas pheromones detected by the accessory system are transmitted to the hypothalamus via the medial (‘vomeronasal’) amygdala, the pathway by which pheromones are detected and transmitted by the main system is not well understood. We examined in female mice whether a direct projection from mitral/tufted (M/T) cells in the main olfactory bulb (MOB) to the medial amygdala exists, and whether medial amygdala-projecting M/T cells are activated by volatile urinary odors from conspecifics or a predator (cat). Simultaneous anterograde tracing using Phaseolus vulgaris leucoagglutinin and Fluoro-Ruby placed in the MOB and accessory olfactory bulb (AOB), respectively, revealed that axons of MOB M/T cells projected to superficial laminae of layer Ia in anterior and posterodorsal subdivisions of the medial amygdala, whereas projection neurons from the AOB sent axons to non-overlapping, deeper layer Ia laminae of the same subdivisions. Placement of the retrograde tracer cholera toxin B into the medial amygdala labeled M/T cells that were concentrated in the ventral MOB. Urinary volatiles from male mice, but not from female conspecifics or cat, induced Fos in medial amygdala-projecting MOB M/T cells of female subjects, suggesting that information about male odors is transmitted directly from the MOB to the ‘vomeronasal’ amygdala. The presence of a direct MOB-to-medial amygdala pathway in mice and other mammals could enable volatile, opposite-sex pheromones to gain privileged access to diencephalic structures that control mate recognition and reproduction. PMID:19187265

  9. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats.

    PubMed

    Aimé, Pascaline; Hegoburu, Chloé; Jaillard, Tristan; Degletagne, Cyril; Garcia, Samuel; Messaoudi, Belkacem; Thevenet, Marc; Lorsignol, Anne; Duchamp, Claude; Mouly, Anne-Marie; Julliard, Andrée Karyn

    2012-01-01

    Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.

  10. A Physiological Increase of Insulin in the Olfactory Bulb Decreases Detection of a Learned Aversive Odor and Abolishes Food Odor-Induced Sniffing Behavior in Rats

    PubMed Central

    Aimé, Pascaline; Hegoburu, Chloé; Jaillard, Tristan; Degletagne, Cyril; Garcia, Samuel; Messaoudi, Belkacem; Thevenet, Marc; Lorsignol, Anne; Duchamp, Claude; Mouly, Anne-Marie; Julliard, Andrée Karyn

    2012-01-01

    Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors. PMID:23251461

  11. A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine

    PubMed Central

    Dieris, Milan; Ahuja, Gaurav; Krishna, Venkatesh; Korsching, Sigrun I.

    2017-01-01

    The death-associated odor cadaverine, generated by bacteria-mediated decarboxylation of lysine, has been described as the principal activator of a particular olfactory receptor in zebrafish, TAAR13c. Low concentrations of cadaverine activated mainly TAAR13c-expressing olfactory sensory neurons, suggesting TAAR13c as an important element of the neuronal processing pathway linking cadaverine stimulation to a strongly aversive innate behavioral response. Here, we characterized the initial steps of this neuronal pathway. First we identified TAAR13c-expressing cells as ciliated neurons, equivalent to the situation for mammalian taar genes, which shows a high degree of conservation despite the large evolutionary distance between teleost fishes and mammals. Next we identified the target area of cadaverine-responsive OSNs in the olfactory bulb. We report that cadaverine dose-dependently activates a group of dorsolateral glomeruli, at the lowest concentration down to a single invariant glomerulus, situated at the medial border of the dorsolateral cluster. This is the first demonstration of a single stereotyped target glomerulus in the fish olfactory system for a non-pheromone odor. A mix of different amines activates many glomeruli within the same dorsolateral cluster, suggesting this area to function as a general amine response region. PMID:28102357

  12. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb.

    PubMed

    Bhalla, U S; Bower, J M

    1993-06-01

    1. Detailed compartmental computer simulations of single mitral and granule cells of the vertebrate olfactory bulb were constructed using previously published geometric data. Electrophysiological properties were determined by comparing model output to previously published experimental data, mainly current-clamp recordings. 2. The passive electrical properties of each model were explored by comparing model output with intracellular potential data from hyperpolarizing current injection experiments. The results suggest that membrane resistivity in both cells is nonuniform, with somatas having a substantially lower resistivity than the dendrites. 3. The active properties of these cells were explored by incorporating active ion channels into modeled compartments. On the basis of evidence from the literature, the mitral cell model included six channel types: fast sodium, fast delayed rectifier (Kfast), slow delayed rectifier (K), transient outward potassium current (KA), voltage- and calcium-dependent potassium current (KCa), and L-type calcium current. The granule cell model included four channel types: rat brain sodium, K, KA, and the non-inactivating muscarinic potassium current (KM). Modeled channels were based on the Hodgkin-Huxley formalism. 4. Representative kinetics for each of the channel classes above were obtained from the literature. The experimentally unknown spatial distributions of each included channel were obtained by systematic parameter searches. These were conducted in two ways: large-scale simulation series, in which each parameter was varied in turn, and an adaptation of a multidimensional conjugate gradient method. In each case, the simulated results were compared wtih experimental data using a curve-matching function evaluating mean squared differences of several aspects of the simulated and experimental voltage waveforms. 5. Systematic parameter variations revealed a single distinct region of parameter space in which the mitral cell model best

  13. Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb.

    PubMed

    Cheaha, Dania; Bumrungsri, Sara; Chatpun, Surapong; Kumarnsit, Ekkasit

    2015-09-01

    Valproic acid (VPA) mouse model of autism spectrum disorder (ASD) has been characterized mostly by impaired ultrasonic vocalization, poor sociability and increased repetitive self-grooming behavior. However, its neural signaling remained unknown. This study investigated the local field potentials (LFPs) in the dorsal hippocampal CA1 and the olfactory bulb while animals exploring a novel open field. VPA was administered at gestational day 13. The results demonstrated three core features of ASD in male offspring. However, there was no difference in Y-maze performance and locomotor activity. Analysis of hippocampal LFP power revealed significantly increased slow wave (1-4 Hz) and high gamma (80-140 Hz) oscillations and decreased theta (4-12 Hz) activity in VPA mice. In the olfactory bulb, VPA animals showed greater slow wave (1-4 Hz) and beta (25-40 Hz) activity and lower activity of low gamma (55-80 Hz) wave. Regression analysis revealed positive correlations between hippocampal theta power and locomotor speed for both control and VPA-exposed mice. There was no significant difference between groups for modulation index of theta (4-12 Hz) phase modulated gamma (30-200 Hz) amplitude. These findings characterized VPA mouse model with LFP oscillations that might provide better understanding of neural processing in ASD.

  14. Brain-derived neurotrophic factor selectively regulates dendritogenesis of parvalbumin-containing interneurons in the main olfactory bulb through the PLCgamma pathway.

    PubMed

    Berghuis, Paul; Agerman, Karin; Dobszay, Marton B; Minichiello, Liliana; Harkany, Tibor; Ernfors, Patrik

    2006-11-01

    Molecular mechanisms of neurotrophin signaling on dendrite development and dynamics are only partly understood. To address the role of brain-derived neurotrophic factor (BDNF) in the morphogenesis of GABAergic neurons of the main olfactory bulb, we analyzed mice lacking BDNF, mice carrying neurotrophin-3 (NT3) in the place of BDNF, and TrkB signaling mutant mice with a receptor that can activate phospholipase Cgamma (PLCgamma) but is unable to recruit the adaptors Shc/Frs2. BDNF deletion yielded a compressed olfactory bulb with a significant loss of parvalbumin (PV) immunoreactivity in GABAergic interneurons of the external plexiform layer. Dendrite development of PV-positive interneurons was selectively attenuated by BDNF since other Ca2+ -binding protein-containing neuron populations appeared unaffected. The deficit in PV-positive neurons could be rescued by the NT3/NT3 alleles. The degree of PV immunoreactivity was dependent on BDNF and TrkB recruitment of the adaptor proteins Shc/Frs2. In contrast, PLCgamma signaling from the TrkB receptor was sufficient for dendrite growth in vivo and consistently, blocking PLCgamma prevented BDNF-dependent dendrite development in vitro. Collectively, our results provide genetic evidence that BDNF and TrkB signaling selectively regulate PV expression and dendrite growth in a subset of neurochemically-defined GABAergic interneurons via activation of the PLCgamma pathway.

  15. Gestational ethanol exposure alters the behavioral response to ethanol odor and the expression of neurotransmission genes in the olfactory bulb of adolescent rats.

    PubMed

    Middleton, Frank A; Carrierfenster, Kellyn; Mooney, Sandra M; Youngentob, Steven L

    2009-02-03

    Fetal exposure to ethanol is highly predictive of the propensity to ingest ethanol during adolescence and in utero chemosensory plasticity has been implicated as a contributing factor in this process. Recent rodent studies have shown that fetal ethanol exposure results in a tuned unconditioned sniffing and neurophysiological olfactory response to ethanol odor in infant animals. Importantly, a significant proportion of increased ethanol avidity at this age can be attributed to the tuned behavioral response to ethanol odor. These effects are absent in adults. Using behavioral methods and comprehensive gene expression profiling to screen for robust transcriptional differences induced in the olfactory bulb, we examined whether ethanol exposure via maternal diet results in an altered responsiveness to ethanol odor that persists into late adolescence and, if so, the molecular mechanisms that may be associated with such effects. Compared to controls, fetal exposure altered: the adolescent sniffing response to ethanol odor consistent with the previously observed changes in infant animals; and the expression of genes involved in synaptic transmission and plasticity as well as neuronal development (both cell fate and axon/neurite outgrowth). These data provide evidence for a persistence of olfactory-mediated responsiveness to ethanol into the period of adolescence. Further, they provide insight into an important relationship between fetal exposure to ethanol, adolescent odor responsiveness to the drug and potential underlying molecular mechanisms for the odor-guided behavioral response.

  16. Brain Insulin Receptor Causes Activity-Dependent Current Suppression in the Olfactory Bulb Through Multiple Phosphorylation of Kv1.3

    PubMed Central

    FADOOL, D. A.; TUCKER, K.; PHILLIPS, J. J.; SIMMEN, J. A.

    2015-01-01

    Insulin and insulin receptor (IR) kinase are found in abundance in discrete brain regions yet insulin signaling in the CNS is not understood. Because it is known that the highest brain insulin-binding affinities, insulin-receptor density, and IR kinase activity are localized to the olfactory bulb, we sought to explore the downstream substrates for IR kinase in this region of the brain to better elucidate the function of insulin signaling in the CNS. First, we demonstrate that IR is postnatally and developmentally expressed in specific lamina of the highly plastic olfactory bulb (OB). ELISA testing confirms that insulin is present in the developing and adult OB. Plasma insulin levels are elevated above that found in the OB, which perhaps suggests a differential insulin pool. Olfactory bulb insulin levels appear not to be static, however, but are elevated as much as 15-fold after a 72-h fasting period. Bath application of insulin to cultured OB neurons acutely induces outward current suppression as studied by the use of traditional whole-cell and single-channel patchclamp recording techniques. Modulation of OB neurons is restricted to current magnitude; IR kinase activation does not modulate current kinetics of inactivation or deactivation. Transient transfection of human embryonic kidney cells with cloned Kv1.3 ion channel, which carries a large proportion of the outward current in these neurons, revealed that current suppression was the result of multiple tyrosine phosphorylation of Kv1.3 channel. Y to F single-point mutations in the channel or deletion of the kinase domain in IR blocks insulininduced modulation and phosphorylation of Kv1.3. Neuromodulation of Kv1.3 current in OB neurons is activity dependent and is eliminated after 20 days of odor/sensory deprivation induced by unilateral naris occlusion at postnatal day 1. IR kinase but not Kv1.3 expression is downregulated in the OB ipsilateral to the occlusion, as demonstrated in cryosections of right (control

  17. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss.

    PubMed

    Gómez, C; Curto, G G; Baltanás, F C; Valero, J; O'Shea, E; Colado, M I; Díaz, D; Weruaga, E; Alonso, J R

    2012-01-10

    The serotonergic centrifugal system innervating the main olfactory bulb (MOB) plays a key role in the modulation of olfactory processing. We have previously demonstrated that this system suffers adaptive changes under conditions of a lack of olfactory input. The present work examines the response of this centrifugal system after mitral cell loss in the Purkinje cell degeneration (pcd) mutant mice. The distribution and density of serotonergic centrifugal axons were studied in the MOB of control and pcd mice, both before and after the loss of mitral cells, using serotonin (5-HT) and 5-HT transporter immunohistochemistry. Studies of the amount of 5-HT and its metabolite, 5-hydroxyindole acetic acid (5-HIAA), were performed by means of high-performance liquid chromatography (HPLC), and the relative amounts of brain-derived neurotrophin factor, BDNF, and its major receptor, tropomyosin-related kinase B (TrkB), were measured by Western blot. Our study revealed that the serotonergic system develops adaptive changes after, but not before, mitral cell loss. The lack of the main bulbar projection cells causes a decrease in the serotonergic input received by the MOB, whereas the number of serotonergic cells in the raphe nuclei remains constant. In addition, one of the molecules directly involved in serotonergic sprouting, the neurotrophin BDNF and its main receptor TrkB, underwent alterations in the MOBs of the pcd animals even before the loss of mitral cells. These data indicate that serotonergic function in the MOB is closely related to olfactory activity and that mitral cell loss induces serotonergic plastic responses. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Expression of miR-155 associated with Toll-like receptors 3, 7, and 9 transcription in the olfactory bulbs of cattle naturally infected with BHV5.

    PubMed

    Oliveira, Bruna R S M; Vieira, Flavia V; de S Vieira, Dielson; da Silva, Sergio E L; Gameiro, Roberto; Flores, Eduardo F; Cardoso, Tereza C

    2017-08-22

    Bovine herpesvirus 5 (BHV5) infection of young cattle is frequently associated with fatal neurological disease and, as such, represents an attractive model for studying the pathogenesis of viral-induced meningoencephalitis. Following replication in the nasal mucosa, BHV5 invades the central nervous system (CNS) mainly through the olfactory pathway. The innate immune response triggered by the host face to virus replication through the olfactory route is poorly understood. Recently, an upregulation of conserved pathogen-associated molecular pattern, as Toll-like receptors (TLRs), has been demonstrated in the CNS of BHV5 experimentally infected cows. A new perspective to understand host-pathogen interactions has emerged elucidating microRNAs (miRNAs) network that interact with innate immune response during neurotropic viral infections. In this study, we demonstrated a link between the expression of TLRs 3, 7, and 9 and miR-155 transcription in the olfactory bulbs (OB) of 16 cows suffering from acute BHV5-induced neurological disease. The OBs were analyzed for viral antigens and genome, miR-155 and TLR 3, 7, and 9 expression considering three major regions: olfactory receptor neurons (ORNs), glomerular layer (GL), and mitral cell layer (ML). BHV5 antigens and viral genomes, corresponding to glycol-C gene, were detected in all OBs regions by fluorescent antibody assay (FA) and PCR, respectively. TLR 3, 7, and 9 transcripts were upregulated in ORNs and ML, yet only ORN layers revealed a positive correlation between TLR3 and miR-155 transcription. In ML, miR-155 correlated positively with all TLRs studied. Herein, our results evidence miR-155 transcription in BHV5 infected OB tissue associated to TLRs expression specifically ORNs which may be a new window for further studies.

  19. A comparative study of prenatal development in the olfactory bulb, neocortex and hippocampal region of the precocial mouse Acomys cahirinus and rat.

    PubMed

    Brunjes, P C

    1989-09-01

    Unlike the remainder of the rodent subfamily Muridae, Acomys cahirinus (the 'spiny' mouse) is born in a precocial state after a long (39 day) gestation. In this paper, the development of the olfactory bulb, neocortex and hippocampal formation of Acomys from prenatal days 14-34 was examined and the rate of maturation compared with that of its cousin, the laboratory rat (Rattus norvegicus). At the earliest stages examined, Acomys was approximately 2 days less mature than the same post-conception aged rat. The difference between the two species increased: Acomys at 28 days postconception resembled the 22-day rat. By the end of gestation, Acomys and the rat were in a relatively similar developmental state. Therefore, Acomys exhibits a quite different timetable of early maturation which includes a protracted period of relatively slow growth during mid-gestation. As such, it offers many benefits as a subject for studies of both early ontogenesis and the mechanisms which result in species differences.

  20. Thermally reduced graphene is a permissive material for neurons and astrocytes and de novo neurogenesis in the adult olfactory bulb in vivo.

    PubMed

    Defteralı, Çağla; Verdejo, Raquel; Peponi, Laura; Martín, Eduardo D; Martínez-Murillo, Ricardo; López-Manchado, Miguel Ángel; Vicario-Abejón, Carlos

    2016-03-01

    Graphene and graphene-based nanomaterials (GBNs) are being investigated as potential substrates for the growth of neural stem cells (NSCs), neurons and glia in cell culture models. In contrast, reports testing the effects of graphene directly with adult neural cells in vivo are missing. Here we studied the biocompatibility of thermally reduced graphene (TRG) with neurons and glia, as well as with the generation of new neurons in the adult brain in vivo. TRG injected in the brain together with a retroviral vector expressing GFP to label dividing progenitor cells in the core of the adult olfactory bulb (OB) did not alter de novo neurogenesis, neuronal and astrocyte survival nor did it produce a microglial response. These findings indicate that TRG may be a biocompatible material with neuronal and glial cells in vivo and support its use in studies of brain repair and function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Neuroanatomy of cerebellum and olfactory bulb in a substrain of C57BL/6J inbred mice carrying a spontaneous mutation.

    PubMed

    Pager, J; Mineur, Y S; Pinoteau, W; LeRoy, I; Crusio, W E

    2001-08-01

    Mice of the inbred C57BL/6JNmg substrain carry a mutation decreasing the size of the zinc-rich hippocampal intra- and infrapyramidal mossy fibre (IIPMF) terminal fields. In the present experiment, it was investigated whether this neurological mutation has also effects on other characteristics of the brain. No morphological differences were found in two other laminated neural structures, the olfactory bulb, where the accessory granular layer is also rich in zinc terminals, and the cerebellum. However, the mutants had a somewhat inferior performance on a motor function task known to test cerebellar involvement. The present findings confirm that previously found effects of this mutation on different types of behaviour are most probably due to the IIPMF. These substrains provide a powerful tool to localise the gene involved and subsequently investigate the plausible pathways leading from gene to behaviour.

  2. Activation of group I metabotropic glutamate receptors enhances persistent sodium current and rhythmic bursting in main olfactory bulb external tufted cells

    PubMed Central

    Ennis, Matthew

    2013-01-01

    Rhythmically bursting olfactory bulb external tufted (ET) cells are thought to play a key role in synchronizing glomerular network activity to respiratory-driven sensory input. Whereas spontaneous bursting in these cells is intrinsically generated by interplay of several voltage-dependent currents, bursting strength and frequency can be modified by local intrinsic and centrifugal synaptic input. Activation of metabotropic glutamate receptors (mGluRs) engages a calcium-dependent cation current (ICAN) that increases rhythmic bursting, but mGluRs may also modulate intrinsic mechanisms involved in bursting. Here, we used patch-clamp electrophysiology in rat olfactory bulb slices to investigate whether mGluRs modulate two key intrinsic currents involved in ET cell burst initiation: persistent sodium (INaP) and hyperpolarization-activated cation (Ih) currents. Using a BAPTA-based internal solution to block ICAN, we found that the mGluR1/5 agonist DHPG enhanced INaP but did not alter Ih. INaP enhancement consisted of increased current at membrane potentials between −60 and −50 mV and a hyperpolarizing shift in activation threshold. Both effects would be predicted to shorten the interburst interval. In agreement, DHPG modestly depolarized (∼3.5 mV) ET cells and increased burst frequency without effect on other major burst parameters. This increase was inversely proportional to the basal burst rate such that slower ET cells exhibited the largest increases. This may enable ET cells with slow intrinsic burst rates to pace with faster sniff rates. Taken with other findings, these results indicate that multiple neurotransmitter mechanisms are engaged to fine-tune rhythmic ET cell bursting to context- and state-dependent changes in sniffing frequency. PMID:24225539

  3. Long-term in vivo single-cell tracking reveals the switch of migration patterns in adult-born juxtaglomerular cells of the mouse olfactory bulb

    PubMed Central

    Liang, Yajie; Li, Kaizhen; Riecken, Kristoffer; Maslyukov, Anatoliy; Gomez-Nicola, Diego; Kovalchuk, Yury; Fehse, Boris; Garaschuk, Olga

    2016-01-01

    The behavior of adult-born cells can be easily monitored in cell culture or in lower model organisms, but longitudinal observation of individual mammalian adult-born cells in their native microenvironment still proves to be a challenge. Here we have established an approach named optical cell positioning system for long-term in vivo single-cell tracking, which integrates red-green-blue cell labeling with repeated angiography. By combining this approach with in vivo two-photon imaging technique, we characterized the in vivo migration patterns of adult-born neurons in the olfactory bulb. In contrast to the traditional view of mere radial migration of adult-born cells within the bulb, we found that juxtaglomerular cells switch from radial migration to long distance lateral migration upon arrival in their destination layer. This unique long-distance lateral migration has characteristic temporal (stop-and-go) and spatial (migratory, unidirectional or multidirectional) patterns, with a clear cell age-dependent decrease in the migration speed. The active migration of adult-born cells coincides with the time period of initial fate determination and is likely to impact on the integration sites of adult-born cells, their odor responsiveness, as well as their survival rate. PMID:27174051

  4. Lesion of the olfactory epithelium accelerates prion neuroinvasion and disease onset when prion replication is restricted to neurons.

    PubMed

    Crowell, Jenna; Wiley, James A; Bessen, Richard A

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain.

  5. Lesion of the Olfactory Epithelium Accelerates Prion Neuroinvasion and Disease Onset when Prion Replication Is Restricted to Neurons

    PubMed Central

    Crowell, Jenna; Wiley, James A.; Bessen, Richard A.

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718

  6. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    PubMed Central

    Perez de los Cobos Pallares, Fernando; Loebel, Alex; Lukas, Michael

    2016-01-01

    During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm”) can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse. PMID:27747107

  7. Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb.

    PubMed

    Prince, Janet E A; Cho, Jin Hyung; Dumontier, Emilie; Andrews, William; Cutforth, Tyler; Tessier-Lavigne, Marc; Parnavelas, John; Cloutier, Jean-François

    2009-11-11

    The ability of sensory systems to detect and process information from the environment relies on the elaboration of precise connections between sensory neurons in the periphery and second order neurons in the CNS. In mice, the accessory olfactory system is thought to regulate a wide variety of social and sexual behaviors. The expression of the Slit receptors Robo-1 and Robo-2 in vomeronasal sensory neurons (VSNs) suggests they may direct the stereotypic targeting of their axons to the accessory olfactory bulb (AOB). Here, we have examined the roles of Robo-1 and Robo-2 in the formation of connections by VSN axons within the AOB. While Robo-1 is not necessary for the segregation of VSN axons within the anterior and posterior regions of the AOB, Robo-2 is required for the targeting of some basal VSN axons to the posterior region of the AOB but is dispensable for the fasciculation of VSN axons. Furthermore, the specific ablation of Robo-2 expression in VSNs leads to mistargeting of a portion of basal VSN axons to the anterior region of the AOB, indicating that Robo-2 expression is required on projecting VSN axons. Together, these results identify Robo-2 as a receptor that controls the targeting of basal VSN axons to the posterior AOB.

  8. [Development of the Human Olfactory Bulbs in the Prenatal Ontogenesis: an Immunochistochemical Study with Markers of Presynaptic Terminals (anti-SNAP-25, -Synapsin-I, -Synaptophysin)].

    PubMed

    Kharlamova, A S; Barabanov, V M; Saveliev, S V

    2015-01-01

    We provide the data of the olfactory bulbs (OB) development in the human fetuses on the stages from 8 week to birth. Immunochistochemical markers of presynaptic terminals (anti-SNAP-25, -synapsin-I, -synaptophysin) were used to evaluate the maturation of the OB. Differentiation of the OB layers begins from periphery, which implicitly evidences that growth of the olfactory nerves fibers induses not only anatomical differentiation of the OB, but also differentiation of its functional layers. The sites of the developing glomerulus are revealed using the immunochistochemical prosedure on the stage before distinct glomerulus can be identified with common histological procedure. OB conductive system demonstrates immunoreactivity with the antibodies to the presynaptic proteins on the all stages from 10-11 weeks of fetus development. Four stages of the OB development are described. All functional layers of the OB are mature at the 22-weeks stage. Further differentiation of the OB neuroblasts, including lamina formation of the internal granular leyer, glomerular layer development, OB growth continue after 20-22 weeks stage until 38-40 weeks of the fetus develoment. Patterns of the immunoreactivity with antibodies to SNAP-25, synapsin-I and synaptophysin are completely appropriate to those of adult's OB on the 38-40 weeks of the prenatal development. Complete maturity of the human OB is achived at 38-40 weeks of the prenatal development.

  9. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis.

    PubMed

    Reshef, Ronen; Kreisel, Tirzah; Beroukhim Kay, Dorsa; Yirmiya, Raz

    2014-10-01

    Recent studies demonstrate that microglia play an important role in cognitive and neuroplasticity processes, at least partly via microglial CX3C receptor 1 (CX3CR1) signaling. Furthermore, microglia are responsive to environmental enrichment (EE), which modulates learning, memory and neurogenesis. In the present study we examined the role of microglial CX3CR1 signaling in hippocampal- and olfactory-bulb (OB)-related memory and neurogenesis in homozygous mice with microglia-specific transgenic expression of GFP under the CX3CR1 promoter (CX3CR1(-/-) mice), in which the CX3CR1 gene is functionally deleted, as well as heterozygous CX3CR1(+/-) and WT controls. We report that the CX3CR1-deficient mice displayed better hippocampal-dependent memory functioning and olfactory recognition, along with increased number and soma size of hippocampal microglia, suggestive of mild activation status, but no changes in OB microglia. A similar increase in hippocampal-dependent memory functioning and microglia number was also induced by pharmacological inhibition of CX3CR1 signaling, using chronic (2weeks) i.c.v. administration of CX3CR1 blocking antibody. In control mice, EE improved hippocampal-dependent memory and neurogenesis, and increased hippocampal microglia number and soma size, whereas odor enrichment (OE) improved olfactory recognition and OB neurogenesis without changing OB microglia status. In CX3CR1-deficient mice, EE and OE did not produce any further improvement in memory functioning or neurogenesis and had no effect on microglial status. These results support the notion that in the hippocampus microglia and their interactions with neurons via the CX3CR1 play an important role in memory functioning and neurogenesis, whereas in the OB microglia do not seem to be involved in these processes.

  10. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    ERIC Educational Resources Information Center

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  11. Modulation of Olfactory Bulb Network Activity by Serotonin: Synchronous Inhibition of Mitral Cells Mediated by Spatially Localized GABAergic Microcircuits

    ERIC Educational Resources Information Center

    Schmidt, Loren J.; Strowbridge, Ben W.

    2014-01-01

    Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles…

  12. Regarding several points of doubt of the structure of the olfactory bulb: as described by T. Blanes.

    PubMed

    Levine, Catherine; Marcillo, Alexander

    2008-07-01

    In order to complement the studies on the fila olfactoria completed by Dr. Santiago Ramón y Cajal, we have included a translation of "Sobre Algunos Puntos Dudosos de la Estructura del Bulbo Olfatorio" by T. Blanes, a student of Dr. Cajal. This work describes in stunning detail additional morphological aspects of the olfactory pathway, including what was at the time the modestly studied neuroglia. The neuroglia of the olfactory system has been revisited in the last several decades for its importance in the field of regenerative neuroscience. Olfactory ensheathing glia has the unique quality of providing ensheathment to neurons which traverse from the central to the peripheral nervous system and are being used as a candidate in present-day transplantation studies to mimic this phenomenon at the dorsal root entry zone after a central nervous system injury. Although this fine work has passed its centennial anniversary since initial publication, it has been widely cited throughout the years, and of recent when Pressler and Stowbridge reported Blanes cell electrophysiological recordings (Neuron V 49, 6; p 889-904, 2006). An English translation the details of what Blanes initially documented with unduplicated precision can now be made available to a wider audience in the field of neuroscience, and is especially important now that more and more present-day studies require a precise and complete understanding of the anatomical structures contained within the olfactory system. (c) 2008 Wiley-Liss, Inc.

  13. Local corticotropin releasing hormone (CRH) signals to its receptor CRHR1 during postnatal development of the mouse olfactory bulb.

    PubMed

    Garcia, Isabella; Bhullar, Paramjit K; Tepe, Burak; Ortiz-Guzman, Joshua; Huang, Longwen; Herman, Alexander M; Chaboub, Lesley; Deneen, Benjamin; Justice, Nicholas J; Arenkiel, Benjamin R

    2016-01-01

    Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.

  14. Recovery of olfactory function after bilateral bulbectomy.

    PubMed

    Wright, J W; Harding, J W

    1982-04-16

    Mice were trained to discriminate between scented and unscented air. After olfactory bulbs were removed, discrimination was lost, but returned with the formation of synaptic connections between regenerated primary olfactory neurons and the cortex of the forebrain. The acquisition of a second olfactory-mediated task by long-term bulbectomized mice and controls was indistinguishable. The results emphasize the plasticity of the nervous system, correlate the presence of neural connections between olfactory mucosa and forebrain with the recovery of olfactory function, suggest that olfactory-mediated memory resides at least in part outside the olfactory bulbs, and demonstrate that the bulbs are not required for the acquisition of olfactory tasks.

  15. Olfactory bulb ventricles as a frequent finding--a myth or reality? Evaluation using high resolution 3 Tesla magnetic resonance imaging.

    PubMed

    Burmeister, H P; Bitter, T; Baltzer, P A T; Dietzel, M; Guntinas-Lichius, O; Gudziol, H; Kaiser, W A

    2011-01-13

    Data on the prevalence of persistent olfactory bulb ventricles (OBV) in humans remain contradictory. The aim of this study was to investigate the hypothesis of large cystic-like OBVs filled with cerebrospinal fluid (CSF) as a frequent finding in magnetic resonance imaging (MRI). Fifty normosmic volunteers (25 men and 25 women, mean 40 years) underwent 3 Tesla MRI of the anterior skull base. Normal smell function was determined by testing of the odor threshold discrimination identification score using the Sniffin' Sticks test kit. The voxel size of the constructive interference in steady state (CISS) sequence was 0.4×0.4×0.4 mm (TR 12.18 ms, TE 6.09 ms) using a 12-channel head coil. Image quality was rated by three observers according to predefined criteria on an ordinal scale. Additionally, contrast-to-noise (CNR) and signal-to-noise (SNR) ratios were calculated. Quantitative signal intensity (SI) measurement of olfactory bulb (OB) structures and small Virchow-Robin spaces (VRS) was performed using multi planar reconstruction mode. Ninety-one OBs were eligible for evaluation. Image quality was rated as adequate in 55% and as excellent in 36% of cases. CNR and SNR calculations resulted in values of 21.59 and 19.06, respectively. Wilcoxon signed rank test revealed significant higher SI values for OB center compared to OB surface (P<0.001) and to OB base (P<0.001) but also significant lower SI values compared to small VRS (P<0.001) in 94.5%. In 5.5%, SI measurement revealed signs for CSF-filled structures in the OB. High-resolution 3 Tesla MRI did not verify the hypothesis of large cystic CSF-filled OBVs as a frequent finding although evidence is growing that the hyperintense signal in the center of OBs might be associated with interstitial or finely dispersed CSF/fluid or with tiny, histologically detectable remnants of OBVs. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  16. Sexual Behavior Increases Cell Proliferation in the Rostral Migratory Stream and Promotes the Differentiation of the New Cells into Neurons in the Accessory Olfactory Bulb of Female Rats

    PubMed Central

    Corona, Rebeca; Retana-Márquez, Socorro; Portillo, Wendy; Paredes, Raúl G.

    2016-01-01

    We have previously demonstrated, that 15 days after female rats pace the sexual interaction, there is an increase in the number of new cells that reach the granular cell layer (GrL) of the accessory olfactory bulb (AOB). The aim of the present study was to evaluate, if the first sexual experience in the female rat increases cell proliferation in the subventricular zone (SVZ) and the rostral migratory stream (RMS). We also tested if this behavior promotes the survival of the new cells that integrate into the main olfactory bulb (MOB) and AOB 45 days after the behavioral test. Sexually, naive female rats were injected with the DNA synthesis marker 5′-bromo-2′-deoxyuridine (BrdU) on the day of the behavioral test. They were randomly divided into the following groups: Female rats placed alone in the mating cage (1); Females exposed to amyl acetate odor [banana scent, (2)]; Females that could see, hear, and smell the male but physical contact was not possible [exposed to male, (3)]; Female rats that could pace the sexual interaction (4); and females that mated without the possibility of pacing the sexual interaction (5). Animals were sacrificed 2 days after the behavioral test (proliferation) or 45 days later (survival). Our results show that 2 days after females were exposed to banana scent or to the male, they had a higher number of cells in the SVZ. Females, that mated in pace and no-paced conditions had more new cells in the RMS. At 45 days, no significant differences were found in the number of new cells that survived in the MOB or in the AOB. However, mating increased the percentage of new cells, that differentiated into neurons in the GrL of the AOB. These new cells expressed c-Fos after a second sexual encounter just before the females were sacrificed. No significant differences in plasma levels of estradiol and progesterone were observed between groups. Our results indicate that the first sexual experience increases cell proliferation in the RMS and mating

  17. Optogenetic Activation of Accessory Olfactory Bulb Input to the Forebrain Differentially Modulates Investigation of Opposite versus Same-Sex Urinary Chemosignals and Stimulates Mating in Male Mice

    PubMed Central

    McCarthy, Elizabeth A.; Korzan, Wayne J.; Doctor, Danielle; Han, Xue; Baum, Michael J.

    2017-01-01

    Abstract Surgical or genetic disruption of vomeronasal organ (VNO)-accessory olfactory bulb (AOB) function previously eliminated the ability of male mice to processes pheromones that elicit territorial behavior and aggression. By contrast, neither disruption significantly affected mating behaviors, although VNO lesions reduced males’ investigation of nonvolatile female pheromones. We explored the contribution of VNO-AOB pheromonal processing to male courtship using optogenetic activation of AOB projections to the forebrain. Protocadherin-Cre male transgenic mice received bilateral AOB infections with channelrhodopsin2 (ChR2) viral vectors, and an optical fiber was implanted above the AOB. In olfactory choice tests, males preferred estrous female urine (EFU) over water; however, this preference was eliminated when diluted (5%) EFU was substituted for 100% EFU. Optogenetic AOB activation concurrent with nasal contact significantly augmented males’ investigation compared to 5% EFU alone. Conversely, concurrent optogenetic AOB activation significantly reduced males’ nasal investigation of diluted urine from gonadally intact males (5% IMU) compared to 5% IMU alone. These divergent effects of AOB optogenetic activation were lost when males were prevented from making direct nasal contact. Optogenetic AOB stimulation also failed to augment males’ nasal investigation of deionized water or of food odors. Finally, during mating tests, optogenetic AOB stimulation delivered for 30 s when the male was in physical contact with an estrous female significantly facilitated the occurrence of penile intromission. Our results suggest that VNO-AOB signaling differentially modifies males’ motivation to seek out female vs male urinary pheromones while augmenting males’ sexual arousal leading to intromission and improved reproductive performance. PMID:28374006

  18. Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells

    PubMed Central

    Burton, Shawn D; Urban, Nathaniel N

    2014-01-01

    Mitral and tufted cells, the two classes of principal neurons in the mammalian main olfactory bulb, exhibit morphological differences but remain widely viewed as functionally equivalent. Results from several recent studies, however, suggest that these two cell classes may encode complementary olfactory information in their distinct patterns of afferent-evoked activity. To understand how these differences in activity arise, we have performed the first systematic comparison of synaptic and intrinsic properties between mitral and tufted cells. Consistent with previous studies, we found that tufted cells fire with higher probability and rates and shorter latencies than mitral cells in response to physiological afferent stimulation. This stronger response of tufted cells could be partially attributed to synaptic differences, as tufted cells received stronger afferent-evoked excitation than mitral cells. However, differences in intrinsic excitability also contributed to the differences between mitral and tufted cell activity. Compared to mitral cells, tufted cells exhibited twofold greater excitability and peak instantaneous firing rates. These differences in excitability probably arise from differential expression of voltage-gated potassium currents, as tufted cells exhibited faster action potential repolarization and afterhyperpolarizations than mitral cells. Surprisingly, mitral and tufted cells also showed firing mode differences. While both cell classes exhibited regular firing and irregular stuttering of action potential clusters, tufted cells demonstrated a greater propensity to stutter than mitral cells. Collectively, stronger afferent-evoked excitation, greater intrinsic excitability and more irregular firing in tufted cells can combine to drive distinct responses of mitral and tufted cells to afferent-evoked input. PMID:24614745

  19. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb.

    PubMed

    Wachowiak, Matt; Economo, Michael N; Díaz-Quesada, Marta; Brunert, Daniela; Wesson, Daniel W; White, John A; Rothermel, Markus

    2013-03-20

    Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. In the present study, we used recently optimized variants of the genetically encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically and anatomically defined neuronal populations in the olfactory bulb (OB), including two types of GABAergic interneurons (periglomerular [PG] and short axon [SA] cells) and OB output neurons (mitral/tufted [MT] cells) projecting to the piriform cortex. We first established that changes in neuronal spiking can be related accurately to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, whereas MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA, and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple, whereas those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results suggest multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further study of early olfactory processing using optical and genetic tools.

  20. Optical dissection of odor information processing in vivo using GCaMPs expressed in specified cell types of the olfactory bulb

    PubMed Central

    Wachowiak, Matt; Economo, Michael N.; Díaz-Quesada, Marta; Brunert, Daniela; Wesson, Daniel W.; White, John. A.; Rothermel, Markus

    2013-01-01

    Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. Here we used recently-optimized variants of the genetically-encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically- and anatomically-defined neuronal populations in the olfactory bulb (OB), including two types of GABA-ergic interneurons (periglomerular (PG) and short axon (SA) cells) and OB output neurons (mitral/tufted (MT) cells) projecting to piriform cortex. We first established that changes in neuronal spiking can be accurately related to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, while MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple while those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results point to multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further dissecting early olfactory processing using optical and genetic tools. PMID:23516293

  1. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.

    PubMed

    Manabe, Hiroyuki; Mori, Kensaku

    2013-10-01

    Odor signals are conveyed from the olfactory bulb (OB) to the olfactory cortex by two types of projection neurons, tufted cells and mitral cells, which differ in signal timing and firing frequency in response to odor inhalation. Whereas tufted cells respond with early-onset high-frequency burst discharges starting at the middle of the inhalation phase of sniff, mitral cells show odor responses with later-onset lower-frequency burst discharges. Since odor inhalation induces prominent gamma-oscillations of local field potentials (LFPs) in the OB during the transition period from inhalation to exhalation that accompany synchronized spike discharges of tufted cells and mitral cells, we addressed the question of whether the odor-induced gamma-oscillations encompass two distinct gamma-oscillatory sources, tufted cell and mitral cell subsystems, by simultaneously recording the sniff rhythms and LFPs in the OB of freely behaving rats. We observed that individual sniffs induced nested gamma-oscillations with two distinct parts during the inhalation-exhalation transition period: early-onset fast gamma-oscillations followed by later-onset slow gamma-oscillations. These results suggest that tufted cells carry odor signals with early-onset fast gamma-synchronization at the early phase of sniff, whereas mitral cells send them with later-onset slow gamma-synchronization. We also observed that each sniff typically induced both fast and slow gamma-oscillations during awake, whereas respiration during slow-wave sleep and rapid-eye-movement sleep failed to induce these oscillations. These results suggest that behavioral states regulate the generation of sniff rhythm-paced fast and slow gamma-oscillations in the OB.

  2. Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb.

    PubMed

    Raineki, C; De Souza, M A; Szawka, R E; Lutz, M L; De Vasconcellos, L F T; Sanvitto, G L; Izquierdo, I; Bevilaqua, L R; Cammarota, M; Lucion, A B

    2009-03-03

    Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age.

  3. Optogenetic Activation of Accessory Olfactory Bulb Input to the Forebrain Differentially Modulates Investigation of Opposite versus Same-Sex Urinary Chemosignals and Stimulates Mating in Male Mice.

    PubMed

    Kunkhyen, Tenzin; McCarthy, Elizabeth A; Korzan, Wayne J; Doctor, Danielle; Han, Xue; Baum, Michael J; Cherry, James A

    2017-01-01

    Surgical or genetic disruption of vomeronasal organ (VNO)-accessory olfactory bulb (AOB) function previously eliminated the ability of male mice to processes pheromones that elicit territorial behavior and aggression. By contrast, neither disruption significantly affected mating behaviors, although VNO lesions reduced males' investigation of nonvolatile female pheromones. We explored the contribution of VNO-AOB pheromonal processing to male courtship using optogenetic activation of AOB projections to the forebrain. Protocadherin-Cre male transgenic mice received bilateral AOB infections with channelrhodopsin2 (ChR2) viral vectors, and an optical fiber was implanted above the AOB. In olfactory choice tests, males preferred estrous female urine (EFU) over water; however, this preference was eliminated when diluted (5%) EFU was substituted for 100% EFU. Optogenetic AOB activation concurrent with nasal contact significantly augmented males' investigation compared to 5% EFU alone. Conversely, concurrent optogenetic AOB activation significantly reduced males' nasal investigation of diluted urine from gonadally intact males (5% IMU) compared to 5% IMU alone. These divergent effects of AOB optogenetic activation were lost when males were prevented from making direct nasal contact. Optogenetic AOB stimulation also failed to augment males' nasal investigation of deionized water or of food odors. Finally, during mating tests, optogenetic AOB stimulation delivered for 30 s when the male was in physical contact with an estrous female significantly facilitated the occurrence of penile intromission. Our results suggest that VNO-AOB signaling differentially modifies males' motivation to seek out female vs male urinary pheromones while augmenting males' sexual arousal leading to intromission and improved reproductive performance.

  4. Brain-derived neurotrophic factor levels influence the balance of migration and differentiation of subventricular zone cells, but not guidance to the olfactory bulb.

    PubMed

    Petridis, Athanasios K; El Maarouf, Abderrahman

    2011-02-01

    New progenitor cells in the subventricular zone (SVZ) migrate rostrally and differentiate into interneurons in the olfactory bulb (OB) throughout life. Brain-derived neurotrophic factor (BDNF) may influence the normal progression of this migration. In the present study, mouse SVZ explant cultures were used to investigate how BDNF modulates the behavior of these migrating progenitors. Concentrations of BDNF in the physiological range (e.g. 1ng/mL) stimulated migration, whereas doses of 10 ng/mL or higher induced SVZ cell differentiation and reduced migration. Pharmacological inhibition of the mitogen-activated protein kinase (MAPK) pathway blocked the BDNF-induced differentiation of SVZ progenitors, indicating that differentiation of SVZ progenitors in response to high-dose BDNF is initiated through MAPK. Physiological concentrations of BDNF, like the presence of polysialic acid in the tissue, stimulated migration of cells from the explant without affecting the speed at which this occurs. Interestingly, in vivo immunohistochemical and molecular analysis showed similar levels of BDNF in both the SVZ and OB; that is, there was no positive gradient attracting SVZ cells towards the OB. Our data show that SVZ cells respond differently to different concentrations of BDNF.

  5. Deletion of collapsin response mediator protein 4 results in abnormal layer thickness and elongation of mitral cell apical dendrites in the neonatal olfactory bulb.

    PubMed

    Tsutiya, Atsuhiro; Watanabe, Hikaru; Nakano, Yui; Nishihara, Masugi; Goshima, Yoshio; Ohtani-Kaneko, Ritsuko

    2016-05-01

    Collapsin response mediator protein 4 (CRMP4), a member of the CRMP family, is involved in the pathogenesis of neurodevelopmental disorders such as schizophrenia and autism. Here, we first compared layer thickness of the olfactory bulb between wild-type (WT) and CRMP4-knockout (KO) mice. The mitral cell layer (MCL) was significantly thinner, whereas the external plexiform layer (EPL) was significantly thicker in CRMP4-KO mice at postnatal day 0 (PD0) compared with WTs. However, differences in layer thickness disappeared by PD14. No apoptotic cells were found in the MCL, and the number of mitral cells (MCs) identified with a specific marker (i.e. Tbx21 antibody) did not change in CRMP4-KO neonates. However, DiI-tracing showed that the length of mitral cell apical dendrites was greater in CRMP4-KO neonates than in WTs. In addition, expression of CRMP4 mRNA in WT mice was most abundant in the MCL at PD0 and decreased afterward. These results suggest that CRMP4 contributes to dendritic elongation. Our in vitro studies showed that deletion or knockdown of CRMP4 resulted in enhanced growth of MAP2-positive neurites, whereas overexpression of CRMP4 reduced their growth, suggesting a new role for CRMP4 as a suppressor of dendritic elongation. Overall, our data suggest that disruption of CRMP4 produces a temporary alteration in EPL thickness, which is constituted mainly of mitral cell apical dendrites, through the enhanced growth of these dendrites.

  6. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. Copyright © 2015. Published by Elsevier B.V.

  7. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb

    NASA Astrophysics Data System (ADS)

    Renaud, Rémi; Martin, Claire; Gurden, Hirac; Pain, Frédéric

    2012-01-01

    Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed.

  8. Firing properties of accessory olfactory bulb mitral/tufted cells in response to urine delivered to the vomeronasal organ of gray short-tailed opossums.

    PubMed

    Zhang, Jing-Ji; Huang, Guang-Zhe; Halpern, Mimi

    2007-05-01

    In comparison with many mammals, there is limited knowledge of the role of pheromones in conspecific communication in the gray short-tailed opossum. Here we report that mitral/tufted (M/T) cells of the accessory olfactory bulb (AOB) of male opossums responded to female urine but not to male urine with two distinct patterns: excitation followed by inhibition or inhibition. Either pattern could be mimicked by application of guanosine 5'-O-3-thiotriphosphate and blocked by guanosine 5'-O-2-thiodiphosphate, indicating that the response of neurons in this pathway is through a G-protein-coupled receptor mechanism. In addition, the inhibitor of phospholipase C (PLC), U73122, significantly blocked urine-induced responses. Male and female urine were ineffective as stimuli for M/T cells in the AOB of female opossums. These results indicate that urine of diestrous females contains a pheromone that directly stimulates vomeronasal neurons through activation of PLC by G-protein-coupled receptor mechanisms and that the response to urine is sexually dimorphic.

  9. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb

    PubMed Central

    Helluy, Xavier; Milford, David; Heiland, Sabine; Bendszus, Martin

    2016-01-01

    Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema. PMID:26863147

  10. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb.

    PubMed

    Hoffmann, Angelika; Kunze, Reiner; Helluy, Xavier; Milford, David; Heiland, Sabine; Bendszus, Martin; Pham, Mirko; Marti, Hugo H

    2016-01-01

    Human pathophysiology of high altitude hypoxic brain injury is not well understood and research on the underlying mechanisms is hampered by the lack of well-characterized animal models. In this study, we explored the evolution of brain injury by magnetic resonance imaging (MRI) and histological methods in mice exposed to normobaric hypoxia at 8% oxygen for 48 hours followed by rapid reoxygenation and incubation for further 24 h under normoxic conditions. T2*-, diffusion-weighted and T2-relaxometry MRI was performed before exposure, immediately after 48 hours of hypoxia and 24 hours after reoxygenation. Cerebral microhemorrhages, previously described in humans suffering from severe high altitude cerebral edema, were also detected in mice upon hypoxia-reoxygenation with a strong region-specific clustering in the olfactory bulb, and to a lesser extent, in the basal ganglia and cerebral white matter. The number of microhemorrhages determined immediately after hypoxia was low, but strongly increased 24 hours upon onset of reoxygenation. Histologically verified microhemorrhages were exclusively located around cerebral microvessels with disrupted interendothelial tight junction protein ZO-1. In contrast, quantitative T2 and apparent-diffusion-coefficient values immediately after hypoxia and after 24 hours of reoxygenation did not show any region-specific alteration, consistent with subtle multifocal but not with regional or global brain edema.

  11. Developmental exposure of decabromodiphenyl ether impairs subventricular zone neurogenesis and morphology of granule cells in mouse olfactory bulb.

    PubMed

    Xu, Mingrui; Huang, Yingxue; Li, Kaikai; Cheng, Xinran; Li, Guohong; Liu, Mengmeng; Nie, Yufei; Geng, Shu; Zhao, Shanting

    2017-09-07

    Polybrominated diphenyl ethers (PBDEs) are additive flame retardants widely used in various products (e.g., textiles, consumer electronics, and plastics). Strong evidence indicates that PBDEs are developmental neurotoxicants that can cause neurodevelopmental disabilities and cognitive defects. Currently, decabromodiphenyl ether (BDE 209) is the only PBDE permitted for production in most countries. This study investigated the impact of BDE 209 on postnatal neurogenesis in the subventricular zone (SVZ) of ICR mice. For this purpose, pregnant ICR mice were orally administrated a daily dose of 0, 20 or 100 mg/kg BDE 209 from gestation day 6 to postnatal day 16. Bromodeoxyuridine (BrdU) incorporation and in vivo postnatal electroporation were performed to label the newly generated cells in the SVZ. On PND 16, a reduction of type-B stem cells was found in the 100 mg/kg group. BDE 209 also decreased the number of newborn cells and Calretinin(+) interneurons in granule cell layer at the dose of 100 mg/kg. In addition, we observed impaired neuronal migration and dendritic development of newborn olfactory granule cells in both 20 and 100 mg/kg groups. In conclusion, developmental exposure to BDE 209 produces adverse effects on SVZ neurogenesis and dendritic growth of mouse offspring. These findings suggest a potential risk of BDE 209 in human neurodevelopment.

  12. Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid-β in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease

    PubMed Central

    De la Rosa-Prieto, Carlos; Saiz-Sanchez, Daniel; Ubeda-Banon, Isabel; Flores-Cuadrado, Alicia; Martinez-Marcos, Alino

    2016-01-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, mostly idiopathic and with palliative treatment. Neuropathologically, it is characterized by intracellular neurofibrillary tangles of tau protein and extracellular plaques of amyloid β peptides. The relationship between AD and neurogenesis is unknown, but two facts are particularly relevant. First, early aggregation sites of both proteinopathies include the hippocampal formation and the olfactory bulb (OB), which have been correlated to memory and olfactory deficits, respectively. These areas are well-recognized integration zones of newly-born neurons in the adult brain. Second, molecules, such as amyloid precursor protein (APP) and presenilin-1 are common to both AD etiology and neurogenic development. Adult neurogenesis in AD models has been studied in the hippocampus, but only occasionally addressed in the OB and results are contradictory. To gain insight on the relationship between adult neurogenesis and AD, this work analyzes neurogenesis, neurodegeneration, interneuron vulnerability, and amyloid-β involvement in the OB of an AD model. Control and double-transgenic mice carrying the APP and the presenilin-1 genes, which give rise amyloid β plaques have been used. BrdU-treated animals have been studied at 16, 30, 43, and 56 weeks of age. New-born cell survival (BrdU), neuronal loss (using neuronal markers NeuN and PGP9.5), differential interneuron (calbindin-, parvalbumin-, calretinin- and somatostatin-expressing populations) vulnerability, and involvement by amyloid β have been analyzed. Neurogenesis increases with aging in the granule cell layer of control animals from 16 to 43 weeks. No neuronal loss has been observed after quantifying NeuN or PGP9.5. Regarding interneuron population vulnerability: calbindin-expressing neurons remains unchanged; parvalbumin-expressing neurons trend to increase with aging in transgenic animals; calretinin-expressing neurons increase with aging in

  13. Effects of GABAergic agonists and antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice revealed by optical recording.

    PubMed

    Sugai, T; Sugitani, M; Onoda, N

    1999-08-01

    To investigate the action of GABAergic agents on oscillatory signal propagation induced by electrical stimulation of the vomeronasal nerve layer, optical and electrophysiological recordings were carried out in slice preparations of the guinea-pig accessory olfactory bulb. In response to electrical stimuli, characteristic optical signals appeared in each layer: in the vomeronasal nerve layer, a transient presynaptic response; in the glomerular layer, pre- and postsynaptic responses; in the external plexiform, mitral cell and granule cell layers, a damped oscillatory response. Application of the GABAergic agonists, that is, GABA, muscimol (a GABAA receptor agonist) and baclofen (a GABAB receptor agonist), suggested that the GABAB action existed mainly in the glomeruli, whereas the GABAA action was present in both the glomeruli and the external plexiform layer. Bicuculline (a GABAA receptor antagonist) produced long-lasting but nonoscillating excitation in the external plexiform and mitral cell layers, indicating that the GABAA action contributes to the formation of oscillatory responses. When double-pulse stimulation was applied to the vomeronasal nerve layer, the test responses in the glomerular layer and external plexiform and mitral cell layers were depressed, but those in the vomeronasal nerve layer were not. Application of 2-hydroxysaclofen (a GABAB receptor antagonist) mostly blocked paired-pulse depression occurring in the glomerular layer and restored the reduced transmission to mitral cells, but had only a small effect on the depressed oscillatory response in the external plexiform and mitral cell layers. These observations suggest that GABAB action in the glomerular layer might, at least, regulate information flow from vomeronasal afferents to apical dendrites of mitral cells, like a gate inhibition. However, actions other than GABAB could also be involved in the depression of the oscillation in the external plexiform and mitral cell layers.

  14. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.

    PubMed

    Ono, Daisuke; Honma, Sato; Honma, Ken-Ichi

    2015-12-01

    The temporal order of physiology and behaviour in mammals is regulated by the coordination of the master circadian clock in the suprachiasmatic nucleus (SCN) and peripheral clocks in various tissues outside the SCN. Because the circadian oscillator(s) in the olfactory bulb (OB) is regarded as SCN independent, we examined the relationship between the SCN master clock and the circadian clock in the OB. We also examined the role of vasoactive intestinal peptide receptor 2 in the circadian organization of the OB. We continuously monitored the circadian rhythms of a clock gene product PER2 in the SCN and OB of freely moving mice by means of a bioluminescence reporter and an optical fibre implanted in the brain. Robust circadian rhythms were detected in the OB and SCN for up to 19 days. Bilateral SCN lesions abolished the circadian behaviour rhythms and disorganized the PER2 rhythms in the OB. The PER2 rhythms in the OB showed more than one oscillatory component of a similar circadian period, suggesting internal desynchronization of constituent oscillators. By contrast, significant circadian PER2 rhythms were detected in the vasoactive intestinal peptide receptor 2-deficient mice, despite the substantial deterioration or abolition of circadian behavioural rhythms. These findings indicate that the circadian clock in the OB of freely moving mice depends on the SCN master clock but not on the circadian behavioural rhythms. The circadian PER2::LUC rhythm in the cultured OB was as robust as that in the cultured SCN but reset by slice preparation, suggesting that culturing of the slice reinforces the circadian rhythm. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Intracellular injections of lucifer yellow into lightly fixed mitral cells reveal neuronal dye-coupling in the developing rat olfactory bulb.

    PubMed

    Paternostro, M A; Reyher, C K; Brunjes, P C

    1995-01-14

    We report that intracellular injections of Lucifer Yellow into lightly fixed mitral cells revealed dye-coupling between mitral cells and between mitral and granule cells in the form of discrete, radially oriented cell clusters. Dye-coupling was observed in animals as early as postnatal day 10 (P10) and at least until P30. In P10 rats, a mean of 2.5 dye-coupled mitral cells and 27 granule cells were observed per column. Mean column depth and width were 169 microns and 86 microns respectively. Most of the dye-filled granule cells were found within 150 microns of the mitral cell layer. No significant changes were found at P20. By P30, the mean number of granule cells per column increased to 42 and the addition of granule cells occurred in areas proximal to the mitral cell layer. Immunocytochemical results indicate that the developing bulb contains a large concentration of the gap junction protein Connexin 43 (Cx43). Cx43-like immunoreactivity was found at all ages examined, with the most intense staining in the nerve and glomerular layers. Less intense Cx43-like immunoreactivity was found in both the mitral and granule cell layers, with Cx43-like immunoreactive puncta observed between and around cell body profiles. Freeze-fracture analysis revealed the presence of gap junction-like plaques on mitral cells, further suggesting that the dye-coupling occurred across interneuronal gap junctions. Neuronal coupling during development could provide an inter-cellular pathway for the passage of relevant developmental signals which could influence the formation and/or strengthening of synaptic contacts. The coupling could also be involved in the synchronization of neuronal activity, which may be important for olfactory coding.

  16. Nutritional status modulates behavioural and olfactory bulb Fos responses to isoamyl acetate or food odour in rats: roles of orexins and leptin.

    PubMed

    Prud'homme, M J; Lacroix, M C; Badonnel, K; Gougis, S; Baly, C; Salesse, R; Caillol, M

    2009-09-15

    Food odours are major determinants for food choice, and their detection depends on nutritional status. The effects of different odour stimuli on both behavioural responses (locomotor activity and sniffing) and Fos induction in olfactory bulbs (OB) were studied in satiated or 48-h fasted rats. We focused on two odour stimuli: isoamyl acetate (ISO), as a neutral stimulus either unknown or familiar, and food pellet odour, that were presented to quiet rats during the light phase of the day. We found significant effects of nutritional status and odour stimulus on both behavioural and OB responses. The locomotor activity induced by odour stimuli was always more marked in fasted than in satiated rats, and food odour induced increased sniffing activity only in fasted rats. Fos expression was quantified in periglomerular, mitral and granular OB cell layers. As a new odour, ISO induced a significant increase in Fos expression in all OB layers, similar in fasted and satiated rats. Significant OB responses to familiar odours were only observed in fasted rats. Among the numerous peptides shown to vary after 48 h of fasting, we focused on orexins (for which immunoreactive fibres are present in the OB) and leptin, as a peripheral hormone linked to adiposity, and tested their effects of food odour. The administration of orexin A in satiated animals partially mimicked fasting, since food odour increased OB Fos responses, but did not induce sniffing. The treatment of fasted animals with either an orexin receptors antagonist (ACT-078573) or leptin significantly decreased both locomotor activity, time spent sniffing food odour and OB Fos induction in all cell layers, thus mimicking a satiated status. We conclude that orexins and leptin are some of the factors that can modify behavioural and OB Fos responses to a familiar food odour.

  17. Reduction in Subventricular Zone-Derived Olfactory Bulb Neurogenesis in a Rat Model of Huntington’s Disease Is Accompanied by Striatal Invasion of Neuroblasts

    PubMed Central

    Kandasamy, Mahesh; Rosskopf, Michael; Wagner, Katrin; Klein, Barbara; Couillard-Despres, Sebastien; Reitsamer, Herbert A.; Stephan, Michael; Nguyen, Huu Phuc; Riess, Olaf; Bogdahn, Ulrich; Winkler, Jürgen; von Hörsten, Stephan; Aigner, Ludwig

    2015-01-01

    Huntington’s disease (HD) is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT). The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN) in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ) might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB) neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs) in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats) carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL) compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM) of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies. PMID:25719447

  18. Prenatal and postnatal ethanol experiences modulate consumption of the drug in rat pups, without impairment in the granular cell layer of the main olfactory bulb

    PubMed Central

    Pueta, Mariana; Rovasio, Roberto A.; Abate, Paula; Spear, Norman E.; Molina, Juan C.

    2010-01-01

    The effect of moderate exposure to ethanol during late gestation was studied in terms of its interaction with moderate exposure during nursing from an intoxicated dam. A further issue was whether behavioral effects of ethanol, especially the enhanced ethanol intake known to occur after moderate ethanol prenatally or during nursing, depend upon teratological effects that may include death of neurons in the main olfactory bulb (MOB). During gestational days 17–20 rats were given 0, 1 or 2 g/kg ethanol doses intragastrically (i.g.). After parturition these dams were given a dose of 2.5 g/kg ethanol i.g. each day and allowed to perform regular nursing activities. During postnatal days (PDs) 15 and 16, ethanol intake of pups was assessed along with aspects of their general activity. In a second experiment pups given the same prenatal treatment as above were tested for blood ethanol concentration (BEC) in response to an ethanol challenge on PD6. A third experiment (Exp. 2b) assessed stereologically the number of cells in the granular cell layer of the MOB on PD7, as a function of analogous pre- and postnatal ethanol exposures. Results revealed that ethanol intake during the third postnatal week was increased by prenatal as well as postnatal ethanol exposure, with a few interesting qualifications. For instance, pups given 1 g/kg prenatally did not have increased ethanol intake unless they also had experienced ethanol during nursing. There were no effects of ethanol on either BECs or conventional teratology (cell number). This increases the viability of an explanation of the effects of prenatal and early postnatal ethanol on later ethanol intake in terms of learning and memory. PMID:20951715

  19. Pax6 Is Essential for the Maintenance and Multi-Lineage Differentiation of Neural Stem Cells, and for Neuronal Incorporation into the Adult Olfactory Bulb

    PubMed Central

    Curto, Gloria G.; Nieto-Estévez, Vanesa; Hurtado-Chong, Anahí; Valero, Jorge; Gómez, Carmela; Alonso, José R.; Weruaga, Eduardo

    2014-01-01

    The paired type homeobox 6 (Pax6) transcription factor (TF) regulates multiple aspects of neural stem cell (NSC) and neuron development in the embryonic central nervous system. However, less is known about the role of Pax6 in the maintenance and differentiation of adult NSCs and in adult neurogenesis. Using the +/SeyDey mouse, we have analyzed how Pax6 heterozygosis influences the self-renewal and proliferation of adult olfactory bulb stem cells (aOBSCs). In addition, we assessed its influence on neural differentiation, neuronal incorporation, and cell death in the adult OB, both in vivo and in vitro. Our results indicate that the Pax6 mutation alters Nestin+-cell proliferation in vivo, as well as self-renewal, proliferation, and survival of aOBSCs in vitro although a subpopulation of +/SeyDey progenitors is able to expand partially similar to wild-type progenitors. This mutation also impairs aOBSC differentiation into neurons and oligodendrocytes, whereas it increases cell death while preserving astrocyte survival and differentiation. Furthermore, Pax6 heterozygosis causes a reduction in the variety of neurochemical interneuron subtypes generated from aOBSCs in vitro and in the incorporation of newly generated neurons into the OB in vivo. Our findings support an important role of Pax6 in the maintenance of aOBSCs by regulating cell death, self-renewal, and cell fate, as well as in neuronal incorporation into the adult OB. They also suggest that deregulation of the cell cycle machinery and TF expression in aOBSCs which are deficient in Pax6 may be at the origin of the phenotypes observed in this adult NSC population. PMID:25117830

  20. Multispectral imaging of the olfactory bulb activation: influence of realistic differential pathlength correction factors on the derivation of oxygenation and total hemoglobin concentration maps

    NASA Astrophysics Data System (ADS)

    Renaud, R.; Gurden, H.; Chery, R.; Bendhamane, M.; Martin, C.; Pain, F.

    2011-02-01

    In vivo multispectral reflectance imaging has been extensively used in the somatosensory cortex (SsC) in anesthetized rodents to collect intrinsic signal during activation and derive hemodynamics signals time courses. So far it has never been applied to the Olfactory Bulb (OB), although this structure is particularly well suited to the optical study of brain activation due to the its well defined organization, the ability to physiologically activate it with odorants, and the low depth of the activated layers. To obtain hemodynamics parameters from reflectance variations data, it is necessary to take into account a corrective factor called Differential Pathlength (DP). It is routinely estimated using Monte Carlo simulations, modeling photons propagation in simplified infinite geometry tissue models. The first goal of our study was to evaluate the influence of more realistic layered geometries and optical properties on the calculation of DP and ultimately on the estimation of the hemodynamics parameters. Since many valuable results have been obtained previously by others in the SSc, for the purpose of validation and comparison we performed Monte Carlo simulations in both the SSC and the OB. We verified the assumption of constant DP during activation by varying the hemoglobin oxygen saturation, total hemoglobin concentration and we also studied the effect of a superficial bone layer on DP estimation for OB. The simulations show the importance of defining a finite multilayer model instead of the coarse infinite monolayer model, especially for the SSc, and demonstrate the need to perform DP calculation for each structure taking into account their anatomofunctional properties. The second goal of the study was to validate in vivo multispectral imaging for the study of hemodynamics in the OB during activation. First results are presented and discussed.